xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 489c66b2683cdcb31da1cfeaf21b236e41ae3967)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
81       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
82       OpenCLRuntime(0), OpenMPRuntime(nullptr), CUDARuntime(0), DebugInfo(0),
83       ARCData(0), NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr),
84       CFConstantStringClassRef(0),
85       ConstantStringClassRef(0), NSConstantStringType(0),
86       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
87       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
88       LifetimeStartFn(0), LifetimeEndFn(0),
89       SanitizerBlacklist(
90           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
91       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
92                                           : LangOpts.Sanitize) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112 
113   if (LangOpts.ObjC1)
114     createObjCRuntime();
115   if (LangOpts.OpenCL)
116     createOpenCLRuntime();
117   if (LangOpts.OpenMP)
118     createOpenMPRuntime();
119   if (LangOpts.CUDA)
120     createCUDARuntime();
121 
122   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
123   if (SanOpts.Thread ||
124       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
125     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
126                            getCXXABI().getMangleContext());
127 
128   // If debug info or coverage generation is enabled, create the CGDebugInfo
129   // object.
130   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
131       CodeGenOpts.EmitGcovArcs ||
132       CodeGenOpts.EmitGcovNotes)
133     DebugInfo = new CGDebugInfo(*this);
134 
135   Block.GlobalUniqueCount = 0;
136 
137   if (C.getLangOpts().ObjCAutoRefCount)
138     ARCData = new ARCEntrypoints();
139   RRData = new RREntrypoints();
140 
141   if (!CodeGenOpts.InstrProfileInput.empty()) {
142     if (llvm::error_code EC = llvm::IndexedInstrProfReader::create(
143             CodeGenOpts.InstrProfileInput, PGOReader)) {
144       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
145                                               "Could not read profile: %0");
146       getDiags().Report(DiagID) << EC.message();
147     }
148   }
149 }
150 
151 CodeGenModule::~CodeGenModule() {
152   delete ObjCRuntime;
153   delete OpenCLRuntime;
154   delete OpenMPRuntime;
155   delete CUDARuntime;
156   delete TheTargetCodeGenInfo;
157   delete TBAA;
158   delete DebugInfo;
159   delete ARCData;
160   delete RRData;
161 }
162 
163 void CodeGenModule::createObjCRuntime() {
164   // This is just isGNUFamily(), but we want to force implementors of
165   // new ABIs to decide how best to do this.
166   switch (LangOpts.ObjCRuntime.getKind()) {
167   case ObjCRuntime::GNUstep:
168   case ObjCRuntime::GCC:
169   case ObjCRuntime::ObjFW:
170     ObjCRuntime = CreateGNUObjCRuntime(*this);
171     return;
172 
173   case ObjCRuntime::FragileMacOSX:
174   case ObjCRuntime::MacOSX:
175   case ObjCRuntime::iOS:
176     ObjCRuntime = CreateMacObjCRuntime(*this);
177     return;
178   }
179   llvm_unreachable("bad runtime kind");
180 }
181 
182 void CodeGenModule::createOpenCLRuntime() {
183   OpenCLRuntime = new CGOpenCLRuntime(*this);
184 }
185 
186 void CodeGenModule::createOpenMPRuntime() {
187   OpenMPRuntime = new CGOpenMPRuntime(*this);
188 }
189 
190 void CodeGenModule::createCUDARuntime() {
191   CUDARuntime = CreateNVCUDARuntime(*this);
192 }
193 
194 void CodeGenModule::applyReplacements() {
195   for (ReplacementsTy::iterator I = Replacements.begin(),
196                                 E = Replacements.end();
197        I != E; ++I) {
198     StringRef MangledName = I->first();
199     llvm::Constant *Replacement = I->second;
200     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
201     if (!Entry)
202       continue;
203     llvm::Function *OldF = cast<llvm::Function>(Entry);
204     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
205     if (!NewF) {
206       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
207         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
208       } else {
209         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
210         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
211                CE->getOpcode() == llvm::Instruction::GetElementPtr);
212         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
213       }
214     }
215 
216     // Replace old with new, but keep the old order.
217     OldF->replaceAllUsesWith(Replacement);
218     if (NewF) {
219       NewF->removeFromParent();
220       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
221     }
222     OldF->eraseFromParent();
223   }
224 }
225 
226 void CodeGenModule::checkAliases() {
227   // Check if the constructed aliases are well formed. It is really unfortunate
228   // that we have to do this in CodeGen, but we only construct mangled names
229   // and aliases during codegen.
230   bool Error = false;
231   DiagnosticsEngine &Diags = getDiags();
232   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
233          E = Aliases.end(); I != E; ++I) {
234     const GlobalDecl &GD = *I;
235     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
236     const AliasAttr *AA = D->getAttr<AliasAttr>();
237     StringRef MangledName = getMangledName(GD);
238     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
239     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
240     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
241     if (!GV) {
242       Error = true;
243       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
244     } else if (GV->isDeclaration()) {
245       Error = true;
246       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
247     }
248 
249     llvm::Constant *Aliasee = Alias->getAliasee();
250     llvm::GlobalValue *AliaseeGV;
251     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) {
252       assert((CE->getOpcode() == llvm::Instruction::BitCast ||
253               CE->getOpcode() == llvm::Instruction::AddrSpaceCast) &&
254              "Unsupported aliasee");
255       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
256     } else {
257       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
258     }
259 
260     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
261       StringRef AliasSection = SA->getName();
262       if (AliasSection != AliaseeGV->getSection())
263         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
264             << AliasSection;
265     }
266 
267     // We have to handle alias to weak aliases in here. LLVM itself disallows
268     // this since the object semantics would not match the IL one. For
269     // compatibility with gcc we implement it by just pointing the alias
270     // to its aliasee's aliasee. We also warn, since the user is probably
271     // expecting the link to be weak.
272     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
273       if (GA->mayBeOverridden()) {
274         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
275           << GA->getAliasedGlobal()->getName() << GA->getName();
276         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
277             GA->getAliasee(), Alias->getType());
278         Alias->setAliasee(Aliasee);
279       }
280     }
281   }
282   if (!Error)
283     return;
284 
285   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
286          E = Aliases.end(); I != E; ++I) {
287     const GlobalDecl &GD = *I;
288     StringRef MangledName = getMangledName(GD);
289     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
290     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
291     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
292     Alias->eraseFromParent();
293   }
294 }
295 
296 void CodeGenModule::clear() {
297   DeferredDeclsToEmit.clear();
298 }
299 
300 void CodeGenModule::Release() {
301   EmitDeferred();
302   applyReplacements();
303   checkAliases();
304   EmitCXXGlobalInitFunc();
305   EmitCXXGlobalDtorFunc();
306   EmitCXXThreadLocalInitFunc();
307   if (ObjCRuntime)
308     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
309       AddGlobalCtor(ObjCInitFunction);
310   if (getCodeGenOpts().ProfileInstrGenerate)
311     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
312       AddGlobalCtor(PGOInit, 0);
313   if (PGOReader && PGOStats.isOutOfDate())
314     getDiags().Report(diag::warn_profile_data_out_of_date)
315         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
316   EmitCtorList(GlobalCtors, "llvm.global_ctors");
317   EmitCtorList(GlobalDtors, "llvm.global_dtors");
318   EmitGlobalAnnotations();
319   EmitStaticExternCAliases();
320   emitLLVMUsed();
321 
322   if (CodeGenOpts.Autolink &&
323       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
324     EmitModuleLinkOptions();
325   }
326   if (CodeGenOpts.DwarfVersion)
327     // We actually want the latest version when there are conflicts.
328     // We can change from Warning to Latest if such mode is supported.
329     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
330                               CodeGenOpts.DwarfVersion);
331   if (DebugInfo)
332     // We support a single version in the linked module: error out when
333     // modules do not have the same version. We are going to implement dropping
334     // debug info when the version number is not up-to-date. Once that is
335     // done, the bitcode linker is not going to see modules with different
336     // version numbers.
337     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
338                               llvm::DEBUG_METADATA_VERSION);
339 
340   SimplifyPersonality();
341 
342   if (getCodeGenOpts().EmitDeclMetadata)
343     EmitDeclMetadata();
344 
345   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
346     EmitCoverageFile();
347 
348   if (DebugInfo)
349     DebugInfo->finalize();
350 
351   EmitVersionIdentMetadata();
352 }
353 
354 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
355   // Make sure that this type is translated.
356   Types.UpdateCompletedType(TD);
357 }
358 
359 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
360   if (!TBAA)
361     return 0;
362   return TBAA->getTBAAInfo(QTy);
363 }
364 
365 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
366   if (!TBAA)
367     return 0;
368   return TBAA->getTBAAInfoForVTablePtr();
369 }
370 
371 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
372   if (!TBAA)
373     return 0;
374   return TBAA->getTBAAStructInfo(QTy);
375 }
376 
377 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
378   if (!TBAA)
379     return 0;
380   return TBAA->getTBAAStructTypeInfo(QTy);
381 }
382 
383 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
384                                                   llvm::MDNode *AccessN,
385                                                   uint64_t O) {
386   if (!TBAA)
387     return 0;
388   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
389 }
390 
391 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
392 /// and struct-path aware TBAA, the tag has the same format:
393 /// base type, access type and offset.
394 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
395 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
396                                         llvm::MDNode *TBAAInfo,
397                                         bool ConvertTypeToTag) {
398   if (ConvertTypeToTag && TBAA)
399     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
400                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
401   else
402     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
403 }
404 
405 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
406   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
407   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
408 }
409 
410 /// ErrorUnsupported - Print out an error that codegen doesn't support the
411 /// specified stmt yet.
412 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
413   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
414                                                "cannot compile this %0 yet");
415   std::string Msg = Type;
416   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
417     << Msg << S->getSourceRange();
418 }
419 
420 /// ErrorUnsupported - Print out an error that codegen doesn't support the
421 /// specified decl yet.
422 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
423   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
424                                                "cannot compile this %0 yet");
425   std::string Msg = Type;
426   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
427 }
428 
429 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
430   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
431 }
432 
433 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
434                                         const NamedDecl *D) const {
435   // Internal definitions always have default visibility.
436   if (GV->hasLocalLinkage()) {
437     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
438     return;
439   }
440 
441   // Set visibility for definitions.
442   LinkageInfo LV = D->getLinkageAndVisibility();
443   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
444     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
445 }
446 
447 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
448   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
449       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
450       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
451       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
452       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
453 }
454 
455 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
456     CodeGenOptions::TLSModel M) {
457   switch (M) {
458   case CodeGenOptions::GeneralDynamicTLSModel:
459     return llvm::GlobalVariable::GeneralDynamicTLSModel;
460   case CodeGenOptions::LocalDynamicTLSModel:
461     return llvm::GlobalVariable::LocalDynamicTLSModel;
462   case CodeGenOptions::InitialExecTLSModel:
463     return llvm::GlobalVariable::InitialExecTLSModel;
464   case CodeGenOptions::LocalExecTLSModel:
465     return llvm::GlobalVariable::LocalExecTLSModel;
466   }
467   llvm_unreachable("Invalid TLS model!");
468 }
469 
470 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
471                                const VarDecl &D) const {
472   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
473 
474   llvm::GlobalVariable::ThreadLocalMode TLM;
475   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
476 
477   // Override the TLS model if it is explicitly specified.
478   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
479     TLM = GetLLVMTLSModel(Attr->getModel());
480   }
481 
482   GV->setThreadLocalMode(TLM);
483 }
484 
485 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
486   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
487 
488   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
489   if (!Str.empty())
490     return Str;
491 
492   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
493     IdentifierInfo *II = ND->getIdentifier();
494     assert(II && "Attempt to mangle unnamed decl.");
495 
496     Str = II->getName();
497     return Str;
498   }
499 
500   SmallString<256> Buffer;
501   llvm::raw_svector_ostream Out(Buffer);
502   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
503     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
504   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
505     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
506   else
507     getCXXABI().getMangleContext().mangleName(ND, Out);
508 
509   // Allocate space for the mangled name.
510   Out.flush();
511   size_t Length = Buffer.size();
512   char *Name = MangledNamesAllocator.Allocate<char>(Length);
513   std::copy(Buffer.begin(), Buffer.end(), Name);
514 
515   Str = StringRef(Name, Length);
516 
517   return Str;
518 }
519 
520 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
521                                         const BlockDecl *BD) {
522   MangleContext &MangleCtx = getCXXABI().getMangleContext();
523   const Decl *D = GD.getDecl();
524   llvm::raw_svector_ostream Out(Buffer.getBuffer());
525   if (D == 0)
526     MangleCtx.mangleGlobalBlock(BD,
527       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
528   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
529     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
530   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
531     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
532   else
533     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
534 }
535 
536 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
537   return getModule().getNamedValue(Name);
538 }
539 
540 /// AddGlobalCtor - Add a function to the list that will be called before
541 /// main() runs.
542 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
543   // FIXME: Type coercion of void()* types.
544   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
545 }
546 
547 /// AddGlobalDtor - Add a function to the list that will be called
548 /// when the module is unloaded.
549 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
550   // FIXME: Type coercion of void()* types.
551   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
552 }
553 
554 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
555   // Ctor function type is void()*.
556   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
557   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
558 
559   // Get the type of a ctor entry, { i32, void ()* }.
560   llvm::StructType *CtorStructTy =
561     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
562 
563   // Construct the constructor and destructor arrays.
564   SmallVector<llvm::Constant*, 8> Ctors;
565   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
566     llvm::Constant *S[] = {
567       llvm::ConstantInt::get(Int32Ty, I->second, false),
568       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
569     };
570     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
571   }
572 
573   if (!Ctors.empty()) {
574     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
575     new llvm::GlobalVariable(TheModule, AT, false,
576                              llvm::GlobalValue::AppendingLinkage,
577                              llvm::ConstantArray::get(AT, Ctors),
578                              GlobalName);
579   }
580 }
581 
582 llvm::GlobalValue::LinkageTypes
583 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
584   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
585 
586   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
587 
588   bool UseThunkForDtorVariant =
589       isa<CXXDestructorDecl>(D) &&
590       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
591                                          GD.getDtorType());
592 
593   return getLLVMLinkageforDeclarator(D, Linkage, /*isConstantVariable=*/false,
594                                      UseThunkForDtorVariant);
595 }
596 
597 
598 /// SetFunctionDefinitionAttributes - Set attributes for a global.
599 ///
600 /// FIXME: This is currently only done for aliases and functions, but not for
601 /// variables (these details are set in EmitGlobalVarDefinition for variables).
602 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
603                                                     llvm::GlobalValue *GV) {
604   setNonAliasAttributes(D, GV);
605 }
606 
607 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
608                                               const CGFunctionInfo &Info,
609                                               llvm::Function *F) {
610   unsigned CallingConv;
611   AttributeListType AttributeList;
612   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
613   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
614   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
615 }
616 
617 /// Determines whether the language options require us to model
618 /// unwind exceptions.  We treat -fexceptions as mandating this
619 /// except under the fragile ObjC ABI with only ObjC exceptions
620 /// enabled.  This means, for example, that C with -fexceptions
621 /// enables this.
622 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
623   // If exceptions are completely disabled, obviously this is false.
624   if (!LangOpts.Exceptions) return false;
625 
626   // If C++ exceptions are enabled, this is true.
627   if (LangOpts.CXXExceptions) return true;
628 
629   // If ObjC exceptions are enabled, this depends on the ABI.
630   if (LangOpts.ObjCExceptions) {
631     return LangOpts.ObjCRuntime.hasUnwindExceptions();
632   }
633 
634   return true;
635 }
636 
637 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
638                                                            llvm::Function *F) {
639   llvm::AttrBuilder B;
640 
641   if (CodeGenOpts.UnwindTables)
642     B.addAttribute(llvm::Attribute::UWTable);
643 
644   if (!hasUnwindExceptions(LangOpts))
645     B.addAttribute(llvm::Attribute::NoUnwind);
646 
647   if (D->hasAttr<NakedAttr>()) {
648     // Naked implies noinline: we should not be inlining such functions.
649     B.addAttribute(llvm::Attribute::Naked);
650     B.addAttribute(llvm::Attribute::NoInline);
651   } else if (D->hasAttr<OptimizeNoneAttr>()) {
652     // OptimizeNone implies noinline; we should not be inlining such functions.
653     B.addAttribute(llvm::Attribute::OptimizeNone);
654     B.addAttribute(llvm::Attribute::NoInline);
655   } else if (D->hasAttr<NoDuplicateAttr>()) {
656     B.addAttribute(llvm::Attribute::NoDuplicate);
657   } else if (D->hasAttr<NoInlineAttr>()) {
658     B.addAttribute(llvm::Attribute::NoInline);
659   } else if (D->hasAttr<AlwaysInlineAttr>() &&
660              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
661                                               llvm::Attribute::NoInline)) {
662     // (noinline wins over always_inline, and we can't specify both in IR)
663     B.addAttribute(llvm::Attribute::AlwaysInline);
664   }
665 
666   if (D->hasAttr<ColdAttr>()) {
667     B.addAttribute(llvm::Attribute::OptimizeForSize);
668     B.addAttribute(llvm::Attribute::Cold);
669   }
670 
671   if (D->hasAttr<MinSizeAttr>())
672     B.addAttribute(llvm::Attribute::MinSize);
673 
674   if (D->hasAttr<OptimizeNoneAttr>()) {
675     // OptimizeNone wins over OptimizeForSize and MinSize.
676     B.removeAttribute(llvm::Attribute::OptimizeForSize);
677     B.removeAttribute(llvm::Attribute::MinSize);
678   }
679 
680   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
681     B.addAttribute(llvm::Attribute::StackProtect);
682   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
683     B.addAttribute(llvm::Attribute::StackProtectStrong);
684   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
685     B.addAttribute(llvm::Attribute::StackProtectReq);
686 
687   // Add sanitizer attributes if function is not blacklisted.
688   if (!SanitizerBlacklist->isIn(*F)) {
689     // When AddressSanitizer is enabled, set SanitizeAddress attribute
690     // unless __attribute__((no_sanitize_address)) is used.
691     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
692       B.addAttribute(llvm::Attribute::SanitizeAddress);
693     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
694     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
695       B.addAttribute(llvm::Attribute::SanitizeThread);
696     }
697     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
698     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
699       B.addAttribute(llvm::Attribute::SanitizeMemory);
700   }
701 
702   F->addAttributes(llvm::AttributeSet::FunctionIndex,
703                    llvm::AttributeSet::get(
704                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
705 
706   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
707     F->setUnnamedAddr(true);
708   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
709     if (MD->isVirtual())
710       F->setUnnamedAddr(true);
711 
712   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
713   if (alignment)
714     F->setAlignment(alignment);
715 
716   // C++ ABI requires 2-byte alignment for member functions.
717   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
718     F->setAlignment(2);
719 }
720 
721 void CodeGenModule::SetCommonAttributes(const Decl *D,
722                                         llvm::GlobalValue *GV) {
723   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
724     setGlobalVisibility(GV, ND);
725   else
726     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
727 
728   if (D->hasAttr<UsedAttr>())
729     addUsedGlobal(GV);
730 }
731 
732 void CodeGenModule::setNonAliasAttributes(const Decl *D,
733                                           llvm::GlobalValue *GV) {
734   assert(!isa<llvm::GlobalAlias>(GV));
735   SetCommonAttributes(D, GV);
736 
737   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
738     GV->setSection(SA->getName());
739 
740   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
741 }
742 
743 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
744                                                   llvm::Function *F,
745                                                   const CGFunctionInfo &FI) {
746   SetLLVMFunctionAttributes(D, FI, F);
747   SetLLVMFunctionAttributesForDefinition(D, F);
748 
749   F->setLinkage(llvm::Function::InternalLinkage);
750 
751   setNonAliasAttributes(D, F);
752 }
753 
754 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
755                                          const NamedDecl *ND) {
756   // Set linkage and visibility in case we never see a definition.
757   LinkageInfo LV = ND->getLinkageAndVisibility();
758   if (LV.getLinkage() != ExternalLinkage) {
759     // Don't set internal linkage on declarations.
760   } else {
761     if (ND->hasAttr<DLLImportAttr>()) {
762       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
763       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
764     } else if (ND->hasAttr<DLLExportAttr>()) {
765       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
766       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
767     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
768       // "extern_weak" is overloaded in LLVM; we probably should have
769       // separate linkage types for this.
770       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
771     }
772 
773     // Set visibility on a declaration only if it's explicit.
774     if (LV.isVisibilityExplicit())
775       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
776   }
777 }
778 
779 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
780                                           llvm::Function *F,
781                                           bool IsIncompleteFunction) {
782   if (unsigned IID = F->getIntrinsicID()) {
783     // If this is an intrinsic function, set the function's attributes
784     // to the intrinsic's attributes.
785     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
786                                                     (llvm::Intrinsic::ID)IID));
787     return;
788   }
789 
790   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
791 
792   if (!IsIncompleteFunction)
793     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
794 
795   // Add the Returned attribute for "this", except for iOS 5 and earlier
796   // where substantial code, including the libstdc++ dylib, was compiled with
797   // GCC and does not actually return "this".
798   if (getCXXABI().HasThisReturn(GD) &&
799       !(getTarget().getTriple().isiOS() &&
800         getTarget().getTriple().isOSVersionLT(6))) {
801     assert(!F->arg_empty() &&
802            F->arg_begin()->getType()
803              ->canLosslesslyBitCastTo(F->getReturnType()) &&
804            "unexpected this return");
805     F->addAttribute(1, llvm::Attribute::Returned);
806   }
807 
808   // Only a few attributes are set on declarations; these may later be
809   // overridden by a definition.
810 
811   setLinkageAndVisibilityForGV(F, FD);
812 
813   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
814     F->setSection(SA->getName());
815 
816   // A replaceable global allocation function does not act like a builtin by
817   // default, only if it is invoked by a new-expression or delete-expression.
818   if (FD->isReplaceableGlobalAllocationFunction())
819     F->addAttribute(llvm::AttributeSet::FunctionIndex,
820                     llvm::Attribute::NoBuiltin);
821 }
822 
823 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
824   assert(!GV->isDeclaration() &&
825          "Only globals with definition can force usage.");
826   LLVMUsed.push_back(GV);
827 }
828 
829 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
830   assert(!GV->isDeclaration() &&
831          "Only globals with definition can force usage.");
832   LLVMCompilerUsed.push_back(GV);
833 }
834 
835 static void emitUsed(CodeGenModule &CGM, StringRef Name,
836                      std::vector<llvm::WeakVH> &List) {
837   // Don't create llvm.used if there is no need.
838   if (List.empty())
839     return;
840 
841   // Convert List to what ConstantArray needs.
842   SmallVector<llvm::Constant*, 8> UsedArray;
843   UsedArray.resize(List.size());
844   for (unsigned i = 0, e = List.size(); i != e; ++i) {
845     UsedArray[i] =
846      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
847                                     CGM.Int8PtrTy);
848   }
849 
850   if (UsedArray.empty())
851     return;
852   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
853 
854   llvm::GlobalVariable *GV =
855     new llvm::GlobalVariable(CGM.getModule(), ATy, false,
856                              llvm::GlobalValue::AppendingLinkage,
857                              llvm::ConstantArray::get(ATy, UsedArray),
858                              Name);
859 
860   GV->setSection("llvm.metadata");
861 }
862 
863 void CodeGenModule::emitLLVMUsed() {
864   emitUsed(*this, "llvm.used", LLVMUsed);
865   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
866 }
867 
868 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
869   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
870   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
871 }
872 
873 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
874   llvm::SmallString<32> Opt;
875   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
876   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
877   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
878 }
879 
880 void CodeGenModule::AddDependentLib(StringRef Lib) {
881   llvm::SmallString<24> Opt;
882   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
883   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
884   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
885 }
886 
887 /// \brief Add link options implied by the given module, including modules
888 /// it depends on, using a postorder walk.
889 static void addLinkOptionsPostorder(CodeGenModule &CGM,
890                                     Module *Mod,
891                                     SmallVectorImpl<llvm::Value *> &Metadata,
892                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
893   // Import this module's parent.
894   if (Mod->Parent && Visited.insert(Mod->Parent)) {
895     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
896   }
897 
898   // Import this module's dependencies.
899   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
900     if (Visited.insert(Mod->Imports[I-1]))
901       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
902   }
903 
904   // Add linker options to link against the libraries/frameworks
905   // described by this module.
906   llvm::LLVMContext &Context = CGM.getLLVMContext();
907   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
908     // Link against a framework.  Frameworks are currently Darwin only, so we
909     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
910     if (Mod->LinkLibraries[I-1].IsFramework) {
911       llvm::Value *Args[2] = {
912         llvm::MDString::get(Context, "-framework"),
913         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
914       };
915 
916       Metadata.push_back(llvm::MDNode::get(Context, Args));
917       continue;
918     }
919 
920     // Link against a library.
921     llvm::SmallString<24> Opt;
922     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
923       Mod->LinkLibraries[I-1].Library, Opt);
924     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
925     Metadata.push_back(llvm::MDNode::get(Context, OptString));
926   }
927 }
928 
929 void CodeGenModule::EmitModuleLinkOptions() {
930   // Collect the set of all of the modules we want to visit to emit link
931   // options, which is essentially the imported modules and all of their
932   // non-explicit child modules.
933   llvm::SetVector<clang::Module *> LinkModules;
934   llvm::SmallPtrSet<clang::Module *, 16> Visited;
935   SmallVector<clang::Module *, 16> Stack;
936 
937   // Seed the stack with imported modules.
938   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
939                                                MEnd = ImportedModules.end();
940        M != MEnd; ++M) {
941     if (Visited.insert(*M))
942       Stack.push_back(*M);
943   }
944 
945   // Find all of the modules to import, making a little effort to prune
946   // non-leaf modules.
947   while (!Stack.empty()) {
948     clang::Module *Mod = Stack.pop_back_val();
949 
950     bool AnyChildren = false;
951 
952     // Visit the submodules of this module.
953     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
954                                         SubEnd = Mod->submodule_end();
955          Sub != SubEnd; ++Sub) {
956       // Skip explicit children; they need to be explicitly imported to be
957       // linked against.
958       if ((*Sub)->IsExplicit)
959         continue;
960 
961       if (Visited.insert(*Sub)) {
962         Stack.push_back(*Sub);
963         AnyChildren = true;
964       }
965     }
966 
967     // We didn't find any children, so add this module to the list of
968     // modules to link against.
969     if (!AnyChildren) {
970       LinkModules.insert(Mod);
971     }
972   }
973 
974   // Add link options for all of the imported modules in reverse topological
975   // order.  We don't do anything to try to order import link flags with respect
976   // to linker options inserted by things like #pragma comment().
977   SmallVector<llvm::Value *, 16> MetadataArgs;
978   Visited.clear();
979   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
980                                                MEnd = LinkModules.end();
981        M != MEnd; ++M) {
982     if (Visited.insert(*M))
983       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
984   }
985   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
986   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
987 
988   // Add the linker options metadata flag.
989   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
990                             llvm::MDNode::get(getLLVMContext(),
991                                               LinkerOptionsMetadata));
992 }
993 
994 void CodeGenModule::EmitDeferred() {
995   // Emit code for any potentially referenced deferred decls.  Since a
996   // previously unused static decl may become used during the generation of code
997   // for a static function, iterate until no changes are made.
998 
999   while (true) {
1000     if (!DeferredVTables.empty()) {
1001       EmitDeferredVTables();
1002 
1003       // Emitting a v-table doesn't directly cause more v-tables to
1004       // become deferred, although it can cause functions to be
1005       // emitted that then need those v-tables.
1006       assert(DeferredVTables.empty());
1007     }
1008 
1009     // Stop if we're out of both deferred v-tables and deferred declarations.
1010     if (DeferredDeclsToEmit.empty()) break;
1011 
1012     DeferredGlobal &G = DeferredDeclsToEmit.back();
1013     GlobalDecl D = G.GD;
1014     llvm::GlobalValue *GV = G.GV;
1015     DeferredDeclsToEmit.pop_back();
1016 
1017     assert(GV == GetGlobalValue(getMangledName(D)));
1018     // Check to see if we've already emitted this.  This is necessary
1019     // for a couple of reasons: first, decls can end up in the
1020     // deferred-decls queue multiple times, and second, decls can end
1021     // up with definitions in unusual ways (e.g. by an extern inline
1022     // function acquiring a strong function redefinition).  Just
1023     // ignore these cases.
1024     if(!GV->isDeclaration())
1025       continue;
1026 
1027     // Otherwise, emit the definition and move on to the next one.
1028     EmitGlobalDefinition(D, GV);
1029   }
1030 }
1031 
1032 void CodeGenModule::EmitGlobalAnnotations() {
1033   if (Annotations.empty())
1034     return;
1035 
1036   // Create a new global variable for the ConstantStruct in the Module.
1037   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1038     Annotations[0]->getType(), Annotations.size()), Annotations);
1039   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1040     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1041     "llvm.global.annotations");
1042   gv->setSection(AnnotationSection);
1043 }
1044 
1045 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1046   llvm::Constant *&AStr = AnnotationStrings[Str];
1047   if (AStr)
1048     return AStr;
1049 
1050   // Not found yet, create a new global.
1051   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1052   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1053     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1054   gv->setSection(AnnotationSection);
1055   gv->setUnnamedAddr(true);
1056   AStr = gv;
1057   return gv;
1058 }
1059 
1060 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1061   SourceManager &SM = getContext().getSourceManager();
1062   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1063   if (PLoc.isValid())
1064     return EmitAnnotationString(PLoc.getFilename());
1065   return EmitAnnotationString(SM.getBufferName(Loc));
1066 }
1067 
1068 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1069   SourceManager &SM = getContext().getSourceManager();
1070   PresumedLoc PLoc = SM.getPresumedLoc(L);
1071   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1072     SM.getExpansionLineNumber(L);
1073   return llvm::ConstantInt::get(Int32Ty, LineNo);
1074 }
1075 
1076 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1077                                                 const AnnotateAttr *AA,
1078                                                 SourceLocation L) {
1079   // Get the globals for file name, annotation, and the line number.
1080   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1081                  *UnitGV = EmitAnnotationUnit(L),
1082                  *LineNoCst = EmitAnnotationLineNo(L);
1083 
1084   // Create the ConstantStruct for the global annotation.
1085   llvm::Constant *Fields[4] = {
1086     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1087     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1088     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1089     LineNoCst
1090   };
1091   return llvm::ConstantStruct::getAnon(Fields);
1092 }
1093 
1094 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1095                                          llvm::GlobalValue *GV) {
1096   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1097   // Get the struct elements for these annotations.
1098   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1099     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1100 }
1101 
1102 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1103   // Never defer when EmitAllDecls is specified.
1104   if (LangOpts.EmitAllDecls)
1105     return false;
1106 
1107   return !getContext().DeclMustBeEmitted(Global);
1108 }
1109 
1110 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1111     const CXXUuidofExpr* E) {
1112   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1113   // well-formed.
1114   StringRef Uuid = E->getUuidAsStringRef(Context);
1115   std::string Name = "_GUID_" + Uuid.lower();
1116   std::replace(Name.begin(), Name.end(), '-', '_');
1117 
1118   // Look for an existing global.
1119   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1120     return GV;
1121 
1122   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1123   assert(Init && "failed to initialize as constant");
1124 
1125   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1126       getModule(), Init->getType(),
1127       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1128   return GV;
1129 }
1130 
1131 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1132   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1133   assert(AA && "No alias?");
1134 
1135   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1136 
1137   // See if there is already something with the target's name in the module.
1138   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1139   if (Entry) {
1140     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1141     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1142   }
1143 
1144   llvm::Constant *Aliasee;
1145   if (isa<llvm::FunctionType>(DeclTy))
1146     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1147                                       GlobalDecl(cast<FunctionDecl>(VD)),
1148                                       /*ForVTable=*/false);
1149   else
1150     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1151                                     llvm::PointerType::getUnqual(DeclTy), 0);
1152 
1153   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1154   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1155   WeakRefReferences.insert(F);
1156 
1157   return Aliasee;
1158 }
1159 
1160 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1161   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1162 
1163   // Weak references don't produce any output by themselves.
1164   if (Global->hasAttr<WeakRefAttr>())
1165     return;
1166 
1167   // If this is an alias definition (which otherwise looks like a declaration)
1168   // emit it now.
1169   if (Global->hasAttr<AliasAttr>())
1170     return EmitAliasDefinition(GD);
1171 
1172   // If this is CUDA, be selective about which declarations we emit.
1173   if (LangOpts.CUDA) {
1174     if (CodeGenOpts.CUDAIsDevice) {
1175       if (!Global->hasAttr<CUDADeviceAttr>() &&
1176           !Global->hasAttr<CUDAGlobalAttr>() &&
1177           !Global->hasAttr<CUDAConstantAttr>() &&
1178           !Global->hasAttr<CUDASharedAttr>())
1179         return;
1180     } else {
1181       if (!Global->hasAttr<CUDAHostAttr>() && (
1182             Global->hasAttr<CUDADeviceAttr>() ||
1183             Global->hasAttr<CUDAConstantAttr>() ||
1184             Global->hasAttr<CUDASharedAttr>()))
1185         return;
1186     }
1187   }
1188 
1189   // Ignore declarations, they will be emitted on their first use.
1190   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1191     // Forward declarations are emitted lazily on first use.
1192     if (!FD->doesThisDeclarationHaveABody()) {
1193       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1194         return;
1195 
1196       StringRef MangledName = getMangledName(GD);
1197 
1198       // Compute the function info and LLVM type.
1199       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1200       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1201 
1202       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1203                               /*DontDefer=*/false);
1204       return;
1205     }
1206   } else {
1207     const VarDecl *VD = cast<VarDecl>(Global);
1208     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1209 
1210     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1211       return;
1212   }
1213 
1214   // Defer code generation when possible if this is a static definition, inline
1215   // function etc.  These we only want to emit if they are used.
1216   if (!MayDeferGeneration(Global)) {
1217     // Emit the definition if it can't be deferred.
1218     EmitGlobalDefinition(GD);
1219     return;
1220   }
1221 
1222   // If we're deferring emission of a C++ variable with an
1223   // initializer, remember the order in which it appeared in the file.
1224   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1225       cast<VarDecl>(Global)->hasInit()) {
1226     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1227     CXXGlobalInits.push_back(0);
1228   }
1229 
1230   // If the value has already been used, add it directly to the
1231   // DeferredDeclsToEmit list.
1232   StringRef MangledName = getMangledName(GD);
1233   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1234     addDeferredDeclToEmit(GV, GD);
1235   else {
1236     // Otherwise, remember that we saw a deferred decl with this name.  The
1237     // first use of the mangled name will cause it to move into
1238     // DeferredDeclsToEmit.
1239     DeferredDecls[MangledName] = GD;
1240   }
1241 }
1242 
1243 namespace {
1244   struct FunctionIsDirectlyRecursive :
1245     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1246     const StringRef Name;
1247     const Builtin::Context &BI;
1248     bool Result;
1249     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1250       Name(N), BI(C), Result(false) {
1251     }
1252     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1253 
1254     bool TraverseCallExpr(CallExpr *E) {
1255       const FunctionDecl *FD = E->getDirectCallee();
1256       if (!FD)
1257         return true;
1258       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1259       if (Attr && Name == Attr->getLabel()) {
1260         Result = true;
1261         return false;
1262       }
1263       unsigned BuiltinID = FD->getBuiltinID();
1264       if (!BuiltinID)
1265         return true;
1266       StringRef BuiltinName = BI.GetName(BuiltinID);
1267       if (BuiltinName.startswith("__builtin_") &&
1268           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1269         Result = true;
1270         return false;
1271       }
1272       return true;
1273     }
1274   };
1275 }
1276 
1277 // isTriviallyRecursive - Check if this function calls another
1278 // decl that, because of the asm attribute or the other decl being a builtin,
1279 // ends up pointing to itself.
1280 bool
1281 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1282   StringRef Name;
1283   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1284     // asm labels are a special kind of mangling we have to support.
1285     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1286     if (!Attr)
1287       return false;
1288     Name = Attr->getLabel();
1289   } else {
1290     Name = FD->getName();
1291   }
1292 
1293   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1294   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1295   return Walker.Result;
1296 }
1297 
1298 bool
1299 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1300   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1301     return true;
1302   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1303   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1304     return false;
1305   // PR9614. Avoid cases where the source code is lying to us. An available
1306   // externally function should have an equivalent function somewhere else,
1307   // but a function that calls itself is clearly not equivalent to the real
1308   // implementation.
1309   // This happens in glibc's btowc and in some configure checks.
1310   return !isTriviallyRecursive(F);
1311 }
1312 
1313 /// If the type for the method's class was generated by
1314 /// CGDebugInfo::createContextChain(), the cache contains only a
1315 /// limited DIType without any declarations. Since EmitFunctionStart()
1316 /// needs to find the canonical declaration for each method, we need
1317 /// to construct the complete type prior to emitting the method.
1318 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1319   if (!D->isInstance())
1320     return;
1321 
1322   if (CGDebugInfo *DI = getModuleDebugInfo())
1323     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1324       const PointerType *ThisPtr =
1325         cast<PointerType>(D->getThisType(getContext()));
1326       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1327     }
1328 }
1329 
1330 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1331   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1332 
1333   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1334                                  Context.getSourceManager(),
1335                                  "Generating code for declaration");
1336 
1337   if (isa<FunctionDecl>(D)) {
1338     // At -O0, don't generate IR for functions with available_externally
1339     // linkage.
1340     if (!shouldEmitFunction(GD))
1341       return;
1342 
1343     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1344       CompleteDIClassType(Method);
1345       // Make sure to emit the definition(s) before we emit the thunks.
1346       // This is necessary for the generation of certain thunks.
1347       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1348         EmitCXXConstructor(CD, GD.getCtorType());
1349       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1350         EmitCXXDestructor(DD, GD.getDtorType());
1351       else
1352         EmitGlobalFunctionDefinition(GD, GV);
1353 
1354       if (Method->isVirtual())
1355         getVTables().EmitThunks(GD);
1356 
1357       return;
1358     }
1359 
1360     return EmitGlobalFunctionDefinition(GD, GV);
1361   }
1362 
1363   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1364     return EmitGlobalVarDefinition(VD);
1365 
1366   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1367 }
1368 
1369 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1370 /// module, create and return an llvm Function with the specified type. If there
1371 /// is something in the module with the specified name, return it potentially
1372 /// bitcasted to the right type.
1373 ///
1374 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1375 /// to set the attributes on the function when it is first created.
1376 llvm::Constant *
1377 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1378                                        llvm::Type *Ty,
1379                                        GlobalDecl GD, bool ForVTable,
1380                                        bool DontDefer,
1381                                        llvm::AttributeSet ExtraAttrs) {
1382   const Decl *D = GD.getDecl();
1383 
1384   // Lookup the entry, lazily creating it if necessary.
1385   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1386   if (Entry) {
1387     if (WeakRefReferences.erase(Entry)) {
1388       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1389       if (FD && !FD->hasAttr<WeakAttr>())
1390         Entry->setLinkage(llvm::Function::ExternalLinkage);
1391     }
1392 
1393     if (Entry->getType()->getElementType() == Ty)
1394       return Entry;
1395 
1396     // Make sure the result is of the correct type.
1397     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1398   }
1399 
1400   // This function doesn't have a complete type (for example, the return
1401   // type is an incomplete struct). Use a fake type instead, and make
1402   // sure not to try to set attributes.
1403   bool IsIncompleteFunction = false;
1404 
1405   llvm::FunctionType *FTy;
1406   if (isa<llvm::FunctionType>(Ty)) {
1407     FTy = cast<llvm::FunctionType>(Ty);
1408   } else {
1409     FTy = llvm::FunctionType::get(VoidTy, false);
1410     IsIncompleteFunction = true;
1411   }
1412 
1413   llvm::Function *F = llvm::Function::Create(FTy,
1414                                              llvm::Function::ExternalLinkage,
1415                                              MangledName, &getModule());
1416   assert(F->getName() == MangledName && "name was uniqued!");
1417   if (D)
1418     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1419   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1420     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1421     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1422                      llvm::AttributeSet::get(VMContext,
1423                                              llvm::AttributeSet::FunctionIndex,
1424                                              B));
1425   }
1426 
1427   if (!DontDefer) {
1428     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1429     // each other bottoming out with the base dtor.  Therefore we emit non-base
1430     // dtors on usage, even if there is no dtor definition in the TU.
1431     if (D && isa<CXXDestructorDecl>(D) &&
1432         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1433                                            GD.getDtorType()))
1434       addDeferredDeclToEmit(F, GD);
1435 
1436     // This is the first use or definition of a mangled name.  If there is a
1437     // deferred decl with this name, remember that we need to emit it at the end
1438     // of the file.
1439     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1440     if (DDI != DeferredDecls.end()) {
1441       // Move the potentially referenced deferred decl to the
1442       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1443       // don't need it anymore).
1444       addDeferredDeclToEmit(F, DDI->second);
1445       DeferredDecls.erase(DDI);
1446 
1447       // Otherwise, if this is a sized deallocation function, emit a weak
1448       // definition
1449       // for it at the end of the translation unit.
1450     } else if (D && cast<FunctionDecl>(D)
1451                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1452       addDeferredDeclToEmit(F, GD);
1453 
1454       // Otherwise, there are cases we have to worry about where we're
1455       // using a declaration for which we must emit a definition but where
1456       // we might not find a top-level definition:
1457       //   - member functions defined inline in their classes
1458       //   - friend functions defined inline in some class
1459       //   - special member functions with implicit definitions
1460       // If we ever change our AST traversal to walk into class methods,
1461       // this will be unnecessary.
1462       //
1463       // We also don't emit a definition for a function if it's going to be an
1464       // entry
1465       // in a vtable, unless it's already marked as used.
1466     } else if (getLangOpts().CPlusPlus && D) {
1467       // Look for a declaration that's lexically in a record.
1468       const FunctionDecl *FD = cast<FunctionDecl>(D);
1469       FD = FD->getMostRecentDecl();
1470       do {
1471         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1472           if (FD->isImplicit() && !ForVTable) {
1473             assert(FD->isUsed() &&
1474                    "Sema didn't mark implicit function as used!");
1475             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1476             break;
1477           } else if (FD->doesThisDeclarationHaveABody()) {
1478             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1479             break;
1480           }
1481         }
1482         FD = FD->getPreviousDecl();
1483       } while (FD);
1484     }
1485   }
1486 
1487   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1488 
1489   // Make sure the result is of the requested type.
1490   if (!IsIncompleteFunction) {
1491     assert(F->getType()->getElementType() == Ty);
1492     return F;
1493   }
1494 
1495   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1496   return llvm::ConstantExpr::getBitCast(F, PTy);
1497 }
1498 
1499 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1500 /// non-null, then this function will use the specified type if it has to
1501 /// create it (this occurs when we see a definition of the function).
1502 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1503                                                  llvm::Type *Ty,
1504                                                  bool ForVTable,
1505                                                  bool DontDefer) {
1506   // If there was no specific requested type, just convert it now.
1507   if (!Ty)
1508     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1509 
1510   StringRef MangledName = getMangledName(GD);
1511   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1512 }
1513 
1514 /// CreateRuntimeFunction - Create a new runtime function with the specified
1515 /// type and name.
1516 llvm::Constant *
1517 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1518                                      StringRef Name,
1519                                      llvm::AttributeSet ExtraAttrs) {
1520   llvm::Constant *C =
1521       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1522                               /*DontDefer=*/false, ExtraAttrs);
1523   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1524     if (F->empty())
1525       F->setCallingConv(getRuntimeCC());
1526   return C;
1527 }
1528 
1529 /// isTypeConstant - Determine whether an object of this type can be emitted
1530 /// as a constant.
1531 ///
1532 /// If ExcludeCtor is true, the duration when the object's constructor runs
1533 /// will not be considered. The caller will need to verify that the object is
1534 /// not written to during its construction.
1535 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1536   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1537     return false;
1538 
1539   if (Context.getLangOpts().CPlusPlus) {
1540     if (const CXXRecordDecl *Record
1541           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1542       return ExcludeCtor && !Record->hasMutableFields() &&
1543              Record->hasTrivialDestructor();
1544   }
1545 
1546   return true;
1547 }
1548 
1549 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1550   if (!VD->isStaticDataMember())
1551     return false;
1552   const VarDecl *InitDecl;
1553   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1554   if (!InitExpr)
1555     return false;
1556   if (InitDecl->isThisDeclarationADefinition())
1557     return false;
1558   return true;
1559 }
1560 
1561 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1562 /// create and return an llvm GlobalVariable with the specified type.  If there
1563 /// is something in the module with the specified name, return it potentially
1564 /// bitcasted to the right type.
1565 ///
1566 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1567 /// to set the attributes on the global when it is first created.
1568 llvm::Constant *
1569 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1570                                      llvm::PointerType *Ty,
1571                                      const VarDecl *D,
1572                                      bool UnnamedAddr) {
1573   // Lookup the entry, lazily creating it if necessary.
1574   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1575   if (Entry) {
1576     if (WeakRefReferences.erase(Entry)) {
1577       if (D && !D->hasAttr<WeakAttr>())
1578         Entry->setLinkage(llvm::Function::ExternalLinkage);
1579     }
1580 
1581     if (UnnamedAddr)
1582       Entry->setUnnamedAddr(true);
1583 
1584     if (Entry->getType() == Ty)
1585       return Entry;
1586 
1587     // Make sure the result is of the correct type.
1588     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1589       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1590 
1591     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1592   }
1593 
1594   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1595   llvm::GlobalVariable *GV =
1596     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1597                              llvm::GlobalValue::ExternalLinkage,
1598                              0, MangledName, 0,
1599                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1600 
1601   // This is the first use or definition of a mangled name.  If there is a
1602   // deferred decl with this name, remember that we need to emit it at the end
1603   // of the file.
1604   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1605   if (DDI != DeferredDecls.end()) {
1606     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1607     // list, and remove it from DeferredDecls (since we don't need it anymore).
1608     addDeferredDeclToEmit(GV, DDI->second);
1609     DeferredDecls.erase(DDI);
1610   }
1611 
1612   // Handle things which are present even on external declarations.
1613   if (D) {
1614     // FIXME: This code is overly simple and should be merged with other global
1615     // handling.
1616     GV->setConstant(isTypeConstant(D->getType(), false));
1617 
1618     setLinkageAndVisibilityForGV(GV, D);
1619 
1620     if (D->getTLSKind()) {
1621       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1622         CXXThreadLocals.push_back(std::make_pair(D, GV));
1623       setTLSMode(GV, *D);
1624     }
1625 
1626     // If required by the ABI, treat declarations of static data members with
1627     // inline initializers as definitions.
1628     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1629         isVarDeclInlineInitializedStaticDataMember(D))
1630       EmitGlobalVarDefinition(D);
1631 
1632     // Handle XCore specific ABI requirements.
1633     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1634         D->getLanguageLinkage() == CLanguageLinkage &&
1635         D->getType().isConstant(Context) &&
1636         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1637       GV->setSection(".cp.rodata");
1638   }
1639 
1640   if (AddrSpace != Ty->getAddressSpace())
1641     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1642 
1643   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1644 
1645   return GV;
1646 }
1647 
1648 
1649 llvm::GlobalVariable *
1650 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1651                                       llvm::Type *Ty,
1652                                       llvm::GlobalValue::LinkageTypes Linkage) {
1653   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1654   llvm::GlobalVariable *OldGV = 0;
1655 
1656 
1657   if (GV) {
1658     // Check if the variable has the right type.
1659     if (GV->getType()->getElementType() == Ty)
1660       return GV;
1661 
1662     // Because C++ name mangling, the only way we can end up with an already
1663     // existing global with the same name is if it has been declared extern "C".
1664     assert(GV->isDeclaration() && "Declaration has wrong type!");
1665     OldGV = GV;
1666   }
1667 
1668   // Create a new variable.
1669   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1670                                 Linkage, 0, Name);
1671 
1672   if (OldGV) {
1673     // Replace occurrences of the old variable if needed.
1674     GV->takeName(OldGV);
1675 
1676     if (!OldGV->use_empty()) {
1677       llvm::Constant *NewPtrForOldDecl =
1678       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1679       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1680     }
1681 
1682     OldGV->eraseFromParent();
1683   }
1684 
1685   return GV;
1686 }
1687 
1688 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1689 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1690 /// then it will be created with the specified type instead of whatever the
1691 /// normal requested type would be.
1692 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1693                                                   llvm::Type *Ty) {
1694   assert(D->hasGlobalStorage() && "Not a global variable");
1695   QualType ASTTy = D->getType();
1696   if (Ty == 0)
1697     Ty = getTypes().ConvertTypeForMem(ASTTy);
1698 
1699   llvm::PointerType *PTy =
1700     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1701 
1702   StringRef MangledName = getMangledName(D);
1703   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1704 }
1705 
1706 /// CreateRuntimeVariable - Create a new runtime global variable with the
1707 /// specified type and name.
1708 llvm::Constant *
1709 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1710                                      StringRef Name) {
1711   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1712                                true);
1713 }
1714 
1715 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1716   assert(!D->getInit() && "Cannot emit definite definitions here!");
1717 
1718   if (MayDeferGeneration(D)) {
1719     // If we have not seen a reference to this variable yet, place it
1720     // into the deferred declarations table to be emitted if needed
1721     // later.
1722     StringRef MangledName = getMangledName(D);
1723     if (!GetGlobalValue(MangledName)) {
1724       DeferredDecls[MangledName] = D;
1725       return;
1726     }
1727   }
1728 
1729   // The tentative definition is the only definition.
1730   EmitGlobalVarDefinition(D);
1731 }
1732 
1733 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1734     return Context.toCharUnitsFromBits(
1735       TheDataLayout.getTypeStoreSizeInBits(Ty));
1736 }
1737 
1738 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1739                                                  unsigned AddrSpace) {
1740   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1741     if (D->hasAttr<CUDAConstantAttr>())
1742       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1743     else if (D->hasAttr<CUDASharedAttr>())
1744       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1745     else
1746       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1747   }
1748 
1749   return AddrSpace;
1750 }
1751 
1752 template<typename SomeDecl>
1753 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1754                                                llvm::GlobalValue *GV) {
1755   if (!getLangOpts().CPlusPlus)
1756     return;
1757 
1758   // Must have 'used' attribute, or else inline assembly can't rely on
1759   // the name existing.
1760   if (!D->template hasAttr<UsedAttr>())
1761     return;
1762 
1763   // Must have internal linkage and an ordinary name.
1764   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1765     return;
1766 
1767   // Must be in an extern "C" context. Entities declared directly within
1768   // a record are not extern "C" even if the record is in such a context.
1769   const SomeDecl *First = D->getFirstDecl();
1770   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1771     return;
1772 
1773   // OK, this is an internal linkage entity inside an extern "C" linkage
1774   // specification. Make a note of that so we can give it the "expected"
1775   // mangled name if nothing else is using that name.
1776   std::pair<StaticExternCMap::iterator, bool> R =
1777       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1778 
1779   // If we have multiple internal linkage entities with the same name
1780   // in extern "C" regions, none of them gets that name.
1781   if (!R.second)
1782     R.first->second = 0;
1783 }
1784 
1785 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1786   llvm::Constant *Init = 0;
1787   QualType ASTTy = D->getType();
1788   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1789   bool NeedsGlobalCtor = false;
1790   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1791 
1792   const VarDecl *InitDecl;
1793   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1794 
1795   if (!InitExpr) {
1796     // This is a tentative definition; tentative definitions are
1797     // implicitly initialized with { 0 }.
1798     //
1799     // Note that tentative definitions are only emitted at the end of
1800     // a translation unit, so they should never have incomplete
1801     // type. In addition, EmitTentativeDefinition makes sure that we
1802     // never attempt to emit a tentative definition if a real one
1803     // exists. A use may still exists, however, so we still may need
1804     // to do a RAUW.
1805     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1806     Init = EmitNullConstant(D->getType());
1807   } else {
1808     initializedGlobalDecl = GlobalDecl(D);
1809     Init = EmitConstantInit(*InitDecl);
1810 
1811     if (!Init) {
1812       QualType T = InitExpr->getType();
1813       if (D->getType()->isReferenceType())
1814         T = D->getType();
1815 
1816       if (getLangOpts().CPlusPlus) {
1817         Init = EmitNullConstant(T);
1818         NeedsGlobalCtor = true;
1819       } else {
1820         ErrorUnsupported(D, "static initializer");
1821         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1822       }
1823     } else {
1824       // We don't need an initializer, so remove the entry for the delayed
1825       // initializer position (just in case this entry was delayed) if we
1826       // also don't need to register a destructor.
1827       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1828         DelayedCXXInitPosition.erase(D);
1829     }
1830   }
1831 
1832   llvm::Type* InitType = Init->getType();
1833   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1834 
1835   // Strip off a bitcast if we got one back.
1836   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1837     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1838            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1839            // All zero index gep.
1840            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1841     Entry = CE->getOperand(0);
1842   }
1843 
1844   // Entry is now either a Function or GlobalVariable.
1845   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1846 
1847   // We have a definition after a declaration with the wrong type.
1848   // We must make a new GlobalVariable* and update everything that used OldGV
1849   // (a declaration or tentative definition) with the new GlobalVariable*
1850   // (which will be a definition).
1851   //
1852   // This happens if there is a prototype for a global (e.g.
1853   // "extern int x[];") and then a definition of a different type (e.g.
1854   // "int x[10];"). This also happens when an initializer has a different type
1855   // from the type of the global (this happens with unions).
1856   if (GV == 0 ||
1857       GV->getType()->getElementType() != InitType ||
1858       GV->getType()->getAddressSpace() !=
1859        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1860 
1861     // Move the old entry aside so that we'll create a new one.
1862     Entry->setName(StringRef());
1863 
1864     // Make a new global with the correct type, this is now guaranteed to work.
1865     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1866 
1867     // Replace all uses of the old global with the new global
1868     llvm::Constant *NewPtrForOldDecl =
1869         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1870     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1871 
1872     // Erase the old global, since it is no longer used.
1873     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1874   }
1875 
1876   MaybeHandleStaticInExternC(D, GV);
1877 
1878   if (D->hasAttr<AnnotateAttr>())
1879     AddGlobalAnnotations(D, GV);
1880 
1881   GV->setInitializer(Init);
1882 
1883   // If it is safe to mark the global 'constant', do so now.
1884   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1885                   isTypeConstant(D->getType(), true));
1886 
1887   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1888 
1889   // Set the llvm linkage type as appropriate.
1890   llvm::GlobalValue::LinkageTypes Linkage =
1891       getLLVMLinkageVarDefinition(D, GV->isConstant());
1892   GV->setLinkage(Linkage);
1893   if (D->hasAttr<DLLImportAttr>())
1894     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1895   else if (D->hasAttr<DLLExportAttr>())
1896     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1897 
1898   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1899     // common vars aren't constant even if declared const.
1900     GV->setConstant(false);
1901 
1902   setNonAliasAttributes(D, GV);
1903 
1904   // Emit the initializer function if necessary.
1905   if (NeedsGlobalCtor || NeedsGlobalDtor)
1906     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1907 
1908   // If we are compiling with ASan, add metadata indicating dynamically
1909   // initialized globals.
1910   if (SanOpts.Address && NeedsGlobalCtor) {
1911     llvm::Module &M = getModule();
1912 
1913     llvm::NamedMDNode *DynamicInitializers =
1914         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1915     llvm::Value *GlobalToAdd[] = { GV };
1916     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1917     DynamicInitializers->addOperand(ThisGlobal);
1918   }
1919 
1920   // Emit global variable debug information.
1921   if (CGDebugInfo *DI = getModuleDebugInfo())
1922     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1923       DI->EmitGlobalVariable(GV, D);
1924 }
1925 
1926 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1927   // Don't give variables common linkage if -fno-common was specified unless it
1928   // was overridden by a NoCommon attribute.
1929   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1930     return true;
1931 
1932   // C11 6.9.2/2:
1933   //   A declaration of an identifier for an object that has file scope without
1934   //   an initializer, and without a storage-class specifier or with the
1935   //   storage-class specifier static, constitutes a tentative definition.
1936   if (D->getInit() || D->hasExternalStorage())
1937     return true;
1938 
1939   // A variable cannot be both common and exist in a section.
1940   if (D->hasAttr<SectionAttr>())
1941     return true;
1942 
1943   // Thread local vars aren't considered common linkage.
1944   if (D->getTLSKind())
1945     return true;
1946 
1947   // Tentative definitions marked with WeakImportAttr are true definitions.
1948   if (D->hasAttr<WeakImportAttr>())
1949     return true;
1950 
1951   return false;
1952 }
1953 
1954 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageforDeclarator(
1955     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable,
1956     bool UseThunkForDtorVariant) {
1957   if (Linkage == GVA_Internal)
1958     return llvm::Function::InternalLinkage;
1959 
1960   if (D->hasAttr<WeakAttr>()) {
1961     if (IsConstantVariable)
1962       return llvm::GlobalVariable::WeakODRLinkage;
1963     else
1964       return llvm::GlobalVariable::WeakAnyLinkage;
1965   }
1966 
1967   // We are guaranteed to have a strong definition somewhere else,
1968   // so we can use available_externally linkage.
1969   if (Linkage == GVA_AvailableExternally)
1970     return llvm::Function::AvailableExternallyLinkage;
1971 
1972   // LinkOnceODRLinkage is insufficient if the symbol is required to exist in
1973   // the symbol table.  Promote the linkage to WeakODRLinkage to preserve the
1974   // semantics of LinkOnceODRLinkage while providing visibility in the symbol
1975   // table.
1976   llvm::GlobalValue::LinkageTypes OnceLinkage =
1977       llvm::GlobalValue::LinkOnceODRLinkage;
1978   if (D->hasAttr<DLLExportAttr>() || D->hasAttr<DLLImportAttr>())
1979     OnceLinkage = llvm::GlobalVariable::WeakODRLinkage;
1980 
1981   // Note that Apple's kernel linker doesn't support symbol
1982   // coalescing, so we need to avoid linkonce and weak linkages there.
1983   // Normally, this means we just map to internal, but for explicit
1984   // instantiations we'll map to external.
1985 
1986   // In C++, the compiler has to emit a definition in every translation unit
1987   // that references the function.  We should use linkonce_odr because
1988   // a) if all references in this translation unit are optimized away, we
1989   // don't need to codegen it.  b) if the function persists, it needs to be
1990   // merged with other definitions. c) C++ has the ODR, so we know the
1991   // definition is dependable.
1992   if (Linkage == GVA_DiscardableODR)
1993     return !Context.getLangOpts().AppleKext ? OnceLinkage
1994                                             : llvm::Function::InternalLinkage;
1995 
1996   // An explicit instantiation of a template has weak linkage, since
1997   // explicit instantiations can occur in multiple translation units
1998   // and must all be equivalent. However, we are not allowed to
1999   // throw away these explicit instantiations.
2000   if (Linkage == GVA_StrongODR)
2001     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2002                                             : llvm::Function::ExternalLinkage;
2003 
2004   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
2005   // emitted on an as-needed basis.
2006   if (UseThunkForDtorVariant)
2007     return OnceLinkage;
2008 
2009   // If required by the ABI, give definitions of static data members with inline
2010   // initializers at least linkonce_odr linkage.
2011   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
2012       isa<VarDecl>(D) &&
2013       isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D)))
2014     return OnceLinkage;
2015 
2016   // C++ doesn't have tentative definitions and thus cannot have common
2017   // linkage.
2018   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2019       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
2020     return llvm::GlobalVariable::CommonLinkage;
2021 
2022   // selectany symbols are externally visible, so use weak instead of
2023   // linkonce.  MSVC optimizes away references to const selectany globals, so
2024   // all definitions should be the same and ODR linkage should be used.
2025   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2026   if (D->hasAttr<SelectAnyAttr>())
2027     return llvm::GlobalVariable::WeakODRLinkage;
2028 
2029   // Otherwise, we have strong external linkage.
2030   assert(Linkage == GVA_StrongExternal);
2031   return llvm::GlobalVariable::ExternalLinkage;
2032 }
2033 
2034 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2035     const VarDecl *VD, bool IsConstant) {
2036   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2037   return getLLVMLinkageforDeclarator(VD, Linkage, IsConstant,
2038                                      /*UseThunkForDtorVariant=*/false);
2039 }
2040 
2041 /// Replace the uses of a function that was declared with a non-proto type.
2042 /// We want to silently drop extra arguments from call sites
2043 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2044                                           llvm::Function *newFn) {
2045   // Fast path.
2046   if (old->use_empty()) return;
2047 
2048   llvm::Type *newRetTy = newFn->getReturnType();
2049   SmallVector<llvm::Value*, 4> newArgs;
2050 
2051   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2052          ui != ue; ) {
2053     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2054     llvm::User *user = use->getUser();
2055 
2056     // Recognize and replace uses of bitcasts.  Most calls to
2057     // unprototyped functions will use bitcasts.
2058     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2059       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2060         replaceUsesOfNonProtoConstant(bitcast, newFn);
2061       continue;
2062     }
2063 
2064     // Recognize calls to the function.
2065     llvm::CallSite callSite(user);
2066     if (!callSite) continue;
2067     if (!callSite.isCallee(&*use)) continue;
2068 
2069     // If the return types don't match exactly, then we can't
2070     // transform this call unless it's dead.
2071     if (callSite->getType() != newRetTy && !callSite->use_empty())
2072       continue;
2073 
2074     // Get the call site's attribute list.
2075     SmallVector<llvm::AttributeSet, 8> newAttrs;
2076     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2077 
2078     // Collect any return attributes from the call.
2079     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2080       newAttrs.push_back(
2081         llvm::AttributeSet::get(newFn->getContext(),
2082                                 oldAttrs.getRetAttributes()));
2083 
2084     // If the function was passed too few arguments, don't transform.
2085     unsigned newNumArgs = newFn->arg_size();
2086     if (callSite.arg_size() < newNumArgs) continue;
2087 
2088     // If extra arguments were passed, we silently drop them.
2089     // If any of the types mismatch, we don't transform.
2090     unsigned argNo = 0;
2091     bool dontTransform = false;
2092     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2093            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2094       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2095         dontTransform = true;
2096         break;
2097       }
2098 
2099       // Add any parameter attributes.
2100       if (oldAttrs.hasAttributes(argNo + 1))
2101         newAttrs.
2102           push_back(llvm::
2103                     AttributeSet::get(newFn->getContext(),
2104                                       oldAttrs.getParamAttributes(argNo + 1)));
2105     }
2106     if (dontTransform)
2107       continue;
2108 
2109     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2110       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2111                                                  oldAttrs.getFnAttributes()));
2112 
2113     // Okay, we can transform this.  Create the new call instruction and copy
2114     // over the required information.
2115     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2116 
2117     llvm::CallSite newCall;
2118     if (callSite.isCall()) {
2119       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2120                                        callSite.getInstruction());
2121     } else {
2122       llvm::InvokeInst *oldInvoke =
2123         cast<llvm::InvokeInst>(callSite.getInstruction());
2124       newCall = llvm::InvokeInst::Create(newFn,
2125                                          oldInvoke->getNormalDest(),
2126                                          oldInvoke->getUnwindDest(),
2127                                          newArgs, "",
2128                                          callSite.getInstruction());
2129     }
2130     newArgs.clear(); // for the next iteration
2131 
2132     if (!newCall->getType()->isVoidTy())
2133       newCall->takeName(callSite.getInstruction());
2134     newCall.setAttributes(
2135                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2136     newCall.setCallingConv(callSite.getCallingConv());
2137 
2138     // Finally, remove the old call, replacing any uses with the new one.
2139     if (!callSite->use_empty())
2140       callSite->replaceAllUsesWith(newCall.getInstruction());
2141 
2142     // Copy debug location attached to CI.
2143     if (!callSite->getDebugLoc().isUnknown())
2144       newCall->setDebugLoc(callSite->getDebugLoc());
2145     callSite->eraseFromParent();
2146   }
2147 }
2148 
2149 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2150 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2151 /// existing call uses of the old function in the module, this adjusts them to
2152 /// call the new function directly.
2153 ///
2154 /// This is not just a cleanup: the always_inline pass requires direct calls to
2155 /// functions to be able to inline them.  If there is a bitcast in the way, it
2156 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2157 /// run at -O0.
2158 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2159                                                       llvm::Function *NewFn) {
2160   // If we're redefining a global as a function, don't transform it.
2161   if (!isa<llvm::Function>(Old)) return;
2162 
2163   replaceUsesOfNonProtoConstant(Old, NewFn);
2164 }
2165 
2166 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2167   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2168   // If we have a definition, this might be a deferred decl. If the
2169   // instantiation is explicit, make sure we emit it at the end.
2170   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2171     GetAddrOfGlobalVar(VD);
2172 
2173   EmitTopLevelDecl(VD);
2174 }
2175 
2176 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2177                                                  llvm::GlobalValue *GV) {
2178   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2179 
2180   // Compute the function info and LLVM type.
2181   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2182   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2183 
2184   // Get or create the prototype for the function.
2185   if (!GV) {
2186     llvm::Constant *C =
2187         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2188 
2189     // Strip off a bitcast if we got one back.
2190     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2191       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2192       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2193     } else {
2194       GV = cast<llvm::GlobalValue>(C);
2195     }
2196   }
2197 
2198   if (!GV->isDeclaration()) {
2199     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2200     return;
2201   }
2202 
2203   if (GV->getType()->getElementType() != Ty) {
2204     // If the types mismatch then we have to rewrite the definition.
2205     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2206 
2207     // F is the Function* for the one with the wrong type, we must make a new
2208     // Function* and update everything that used F (a declaration) with the new
2209     // Function* (which will be a definition).
2210     //
2211     // This happens if there is a prototype for a function
2212     // (e.g. "int f()") and then a definition of a different type
2213     // (e.g. "int f(int x)").  Move the old function aside so that it
2214     // doesn't interfere with GetAddrOfFunction.
2215     GV->setName(StringRef());
2216     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2217 
2218     // This might be an implementation of a function without a
2219     // prototype, in which case, try to do special replacement of
2220     // calls which match the new prototype.  The really key thing here
2221     // is that we also potentially drop arguments from the call site
2222     // so as to make a direct call, which makes the inliner happier
2223     // and suppresses a number of optimizer warnings (!) about
2224     // dropping arguments.
2225     if (!GV->use_empty()) {
2226       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2227       GV->removeDeadConstantUsers();
2228     }
2229 
2230     // Replace uses of F with the Function we will endow with a body.
2231     if (!GV->use_empty()) {
2232       llvm::Constant *NewPtrForOldDecl =
2233           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2234       GV->replaceAllUsesWith(NewPtrForOldDecl);
2235     }
2236 
2237     // Ok, delete the old function now, which is dead.
2238     GV->eraseFromParent();
2239 
2240     GV = NewFn;
2241   }
2242 
2243   // We need to set linkage and visibility on the function before
2244   // generating code for it because various parts of IR generation
2245   // want to propagate this information down (e.g. to local static
2246   // declarations).
2247   llvm::Function *Fn = cast<llvm::Function>(GV);
2248   setFunctionLinkage(GD, Fn);
2249 
2250   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2251   setGlobalVisibility(Fn, D);
2252 
2253   MaybeHandleStaticInExternC(D, Fn);
2254 
2255   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2256 
2257   SetFunctionDefinitionAttributes(D, Fn);
2258   SetLLVMFunctionAttributesForDefinition(D, Fn);
2259 
2260   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2261     AddGlobalCtor(Fn, CA->getPriority());
2262   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2263     AddGlobalDtor(Fn, DA->getPriority());
2264   if (D->hasAttr<AnnotateAttr>())
2265     AddGlobalAnnotations(D, Fn);
2266 }
2267 
2268 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2269   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2270   const AliasAttr *AA = D->getAttr<AliasAttr>();
2271   assert(AA && "Not an alias?");
2272 
2273   StringRef MangledName = getMangledName(GD);
2274 
2275   // If there is a definition in the module, then it wins over the alias.
2276   // This is dubious, but allow it to be safe.  Just ignore the alias.
2277   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2278   if (Entry && !Entry->isDeclaration())
2279     return;
2280 
2281   Aliases.push_back(GD);
2282 
2283   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2284 
2285   // Create a reference to the named value.  This ensures that it is emitted
2286   // if a deferred decl.
2287   llvm::Constant *Aliasee;
2288   if (isa<llvm::FunctionType>(DeclTy))
2289     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2290                                       /*ForVTable=*/false);
2291   else
2292     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2293                                     llvm::PointerType::getUnqual(DeclTy), 0);
2294 
2295   // Create the new alias itself, but don't set a name yet.
2296   llvm::GlobalValue *GA =
2297     new llvm::GlobalAlias(Aliasee->getType(),
2298                           llvm::Function::ExternalLinkage,
2299                           "", Aliasee, &getModule());
2300 
2301   if (Entry) {
2302     assert(Entry->isDeclaration());
2303 
2304     // If there is a declaration in the module, then we had an extern followed
2305     // by the alias, as in:
2306     //   extern int test6();
2307     //   ...
2308     //   int test6() __attribute__((alias("test7")));
2309     //
2310     // Remove it and replace uses of it with the alias.
2311     GA->takeName(Entry);
2312 
2313     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2314                                                           Entry->getType()));
2315     Entry->eraseFromParent();
2316   } else {
2317     GA->setName(MangledName);
2318   }
2319 
2320   // Set attributes which are particular to an alias; this is a
2321   // specialization of the attributes which may be set on a global
2322   // variable/function.
2323   if (D->hasAttr<DLLExportAttr>()) {
2324     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2325       // The dllexport attribute is ignored for undefined symbols.
2326       if (FD->hasBody())
2327         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2328     } else {
2329       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2330     }
2331   } else if (D->hasAttr<WeakAttr>() ||
2332              D->hasAttr<WeakRefAttr>() ||
2333              D->isWeakImported()) {
2334     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2335   }
2336 
2337   SetCommonAttributes(D, GA);
2338 }
2339 
2340 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2341                                             ArrayRef<llvm::Type*> Tys) {
2342   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2343                                          Tys);
2344 }
2345 
2346 static llvm::StringMapEntry<llvm::Constant*> &
2347 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2348                          const StringLiteral *Literal,
2349                          bool TargetIsLSB,
2350                          bool &IsUTF16,
2351                          unsigned &StringLength) {
2352   StringRef String = Literal->getString();
2353   unsigned NumBytes = String.size();
2354 
2355   // Check for simple case.
2356   if (!Literal->containsNonAsciiOrNull()) {
2357     StringLength = NumBytes;
2358     return Map.GetOrCreateValue(String);
2359   }
2360 
2361   // Otherwise, convert the UTF8 literals into a string of shorts.
2362   IsUTF16 = true;
2363 
2364   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2365   const UTF8 *FromPtr = (const UTF8 *)String.data();
2366   UTF16 *ToPtr = &ToBuf[0];
2367 
2368   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2369                            &ToPtr, ToPtr + NumBytes,
2370                            strictConversion);
2371 
2372   // ConvertUTF8toUTF16 returns the length in ToPtr.
2373   StringLength = ToPtr - &ToBuf[0];
2374 
2375   // Add an explicit null.
2376   *ToPtr = 0;
2377   return Map.
2378     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2379                                (StringLength + 1) * 2));
2380 }
2381 
2382 static llvm::StringMapEntry<llvm::Constant*> &
2383 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2384                        const StringLiteral *Literal,
2385                        unsigned &StringLength) {
2386   StringRef String = Literal->getString();
2387   StringLength = String.size();
2388   return Map.GetOrCreateValue(String);
2389 }
2390 
2391 llvm::Constant *
2392 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2393   unsigned StringLength = 0;
2394   bool isUTF16 = false;
2395   llvm::StringMapEntry<llvm::Constant*> &Entry =
2396     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2397                              getDataLayout().isLittleEndian(),
2398                              isUTF16, StringLength);
2399 
2400   if (llvm::Constant *C = Entry.getValue())
2401     return C;
2402 
2403   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2404   llvm::Constant *Zeros[] = { Zero, Zero };
2405   llvm::Value *V;
2406 
2407   // If we don't already have it, get __CFConstantStringClassReference.
2408   if (!CFConstantStringClassRef) {
2409     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2410     Ty = llvm::ArrayType::get(Ty, 0);
2411     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2412                                            "__CFConstantStringClassReference");
2413     // Decay array -> ptr
2414     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2415     CFConstantStringClassRef = V;
2416   }
2417   else
2418     V = CFConstantStringClassRef;
2419 
2420   QualType CFTy = getContext().getCFConstantStringType();
2421 
2422   llvm::StructType *STy =
2423     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2424 
2425   llvm::Constant *Fields[4];
2426 
2427   // Class pointer.
2428   Fields[0] = cast<llvm::ConstantExpr>(V);
2429 
2430   // Flags.
2431   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2432   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2433     llvm::ConstantInt::get(Ty, 0x07C8);
2434 
2435   // String pointer.
2436   llvm::Constant *C = 0;
2437   if (isUTF16) {
2438     ArrayRef<uint16_t> Arr =
2439       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2440                                      const_cast<char *>(Entry.getKey().data())),
2441                                    Entry.getKey().size() / 2);
2442     C = llvm::ConstantDataArray::get(VMContext, Arr);
2443   } else {
2444     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2445   }
2446 
2447   // Note: -fwritable-strings doesn't make the backing store strings of
2448   // CFStrings writable. (See <rdar://problem/10657500>)
2449   llvm::GlobalVariable *GV =
2450       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2451                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2452   GV->setUnnamedAddr(true);
2453   // Don't enforce the target's minimum global alignment, since the only use
2454   // of the string is via this class initializer.
2455   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2456   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2457   // that changes the section it ends in, which surprises ld64.
2458   if (isUTF16) {
2459     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2460     GV->setAlignment(Align.getQuantity());
2461     GV->setSection("__TEXT,__ustring");
2462   } else {
2463     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2464     GV->setAlignment(Align.getQuantity());
2465     GV->setSection("__TEXT,__cstring,cstring_literals");
2466   }
2467 
2468   // String.
2469   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2470 
2471   if (isUTF16)
2472     // Cast the UTF16 string to the correct type.
2473     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2474 
2475   // String length.
2476   Ty = getTypes().ConvertType(getContext().LongTy);
2477   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2478 
2479   // The struct.
2480   C = llvm::ConstantStruct::get(STy, Fields);
2481   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2482                                 llvm::GlobalVariable::PrivateLinkage, C,
2483                                 "_unnamed_cfstring_");
2484   GV->setSection("__DATA,__cfstring");
2485   Entry.setValue(GV);
2486 
2487   return GV;
2488 }
2489 
2490 llvm::Constant *
2491 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2492   unsigned StringLength = 0;
2493   llvm::StringMapEntry<llvm::Constant*> &Entry =
2494     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2495 
2496   if (llvm::Constant *C = Entry.getValue())
2497     return C;
2498 
2499   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2500   llvm::Constant *Zeros[] = { Zero, Zero };
2501   llvm::Value *V;
2502   // If we don't already have it, get _NSConstantStringClassReference.
2503   if (!ConstantStringClassRef) {
2504     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2505     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2506     llvm::Constant *GV;
2507     if (LangOpts.ObjCRuntime.isNonFragile()) {
2508       std::string str =
2509         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2510                             : "OBJC_CLASS_$_" + StringClass;
2511       GV = getObjCRuntime().GetClassGlobal(str);
2512       // Make sure the result is of the correct type.
2513       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2514       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2515       ConstantStringClassRef = V;
2516     } else {
2517       std::string str =
2518         StringClass.empty() ? "_NSConstantStringClassReference"
2519                             : "_" + StringClass + "ClassReference";
2520       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2521       GV = CreateRuntimeVariable(PTy, str);
2522       // Decay array -> ptr
2523       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2524       ConstantStringClassRef = V;
2525     }
2526   }
2527   else
2528     V = ConstantStringClassRef;
2529 
2530   if (!NSConstantStringType) {
2531     // Construct the type for a constant NSString.
2532     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2533     D->startDefinition();
2534 
2535     QualType FieldTypes[3];
2536 
2537     // const int *isa;
2538     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2539     // const char *str;
2540     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2541     // unsigned int length;
2542     FieldTypes[2] = Context.UnsignedIntTy;
2543 
2544     // Create fields
2545     for (unsigned i = 0; i < 3; ++i) {
2546       FieldDecl *Field = FieldDecl::Create(Context, D,
2547                                            SourceLocation(),
2548                                            SourceLocation(), 0,
2549                                            FieldTypes[i], /*TInfo=*/0,
2550                                            /*BitWidth=*/0,
2551                                            /*Mutable=*/false,
2552                                            ICIS_NoInit);
2553       Field->setAccess(AS_public);
2554       D->addDecl(Field);
2555     }
2556 
2557     D->completeDefinition();
2558     QualType NSTy = Context.getTagDeclType(D);
2559     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2560   }
2561 
2562   llvm::Constant *Fields[3];
2563 
2564   // Class pointer.
2565   Fields[0] = cast<llvm::ConstantExpr>(V);
2566 
2567   // String pointer.
2568   llvm::Constant *C =
2569     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2570 
2571   llvm::GlobalValue::LinkageTypes Linkage;
2572   bool isConstant;
2573   Linkage = llvm::GlobalValue::PrivateLinkage;
2574   isConstant = !LangOpts.WritableStrings;
2575 
2576   llvm::GlobalVariable *GV =
2577   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2578                            ".str");
2579   GV->setUnnamedAddr(true);
2580   // Don't enforce the target's minimum global alignment, since the only use
2581   // of the string is via this class initializer.
2582   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2583   GV->setAlignment(Align.getQuantity());
2584   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2585 
2586   // String length.
2587   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2588   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2589 
2590   // The struct.
2591   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2592   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2593                                 llvm::GlobalVariable::PrivateLinkage, C,
2594                                 "_unnamed_nsstring_");
2595   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2596   const char *NSStringNonFragileABISection =
2597       "__DATA,__objc_stringobj,regular,no_dead_strip";
2598   // FIXME. Fix section.
2599   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2600                      ? NSStringNonFragileABISection
2601                      : NSStringSection);
2602   Entry.setValue(GV);
2603 
2604   return GV;
2605 }
2606 
2607 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2608   if (ObjCFastEnumerationStateType.isNull()) {
2609     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2610     D->startDefinition();
2611 
2612     QualType FieldTypes[] = {
2613       Context.UnsignedLongTy,
2614       Context.getPointerType(Context.getObjCIdType()),
2615       Context.getPointerType(Context.UnsignedLongTy),
2616       Context.getConstantArrayType(Context.UnsignedLongTy,
2617                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2618     };
2619 
2620     for (size_t i = 0; i < 4; ++i) {
2621       FieldDecl *Field = FieldDecl::Create(Context,
2622                                            D,
2623                                            SourceLocation(),
2624                                            SourceLocation(), 0,
2625                                            FieldTypes[i], /*TInfo=*/0,
2626                                            /*BitWidth=*/0,
2627                                            /*Mutable=*/false,
2628                                            ICIS_NoInit);
2629       Field->setAccess(AS_public);
2630       D->addDecl(Field);
2631     }
2632 
2633     D->completeDefinition();
2634     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2635   }
2636 
2637   return ObjCFastEnumerationStateType;
2638 }
2639 
2640 llvm::Constant *
2641 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2642   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2643 
2644   // Don't emit it as the address of the string, emit the string data itself
2645   // as an inline array.
2646   if (E->getCharByteWidth() == 1) {
2647     SmallString<64> Str(E->getString());
2648 
2649     // Resize the string to the right size, which is indicated by its type.
2650     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2651     Str.resize(CAT->getSize().getZExtValue());
2652     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2653   }
2654 
2655   llvm::ArrayType *AType =
2656     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2657   llvm::Type *ElemTy = AType->getElementType();
2658   unsigned NumElements = AType->getNumElements();
2659 
2660   // Wide strings have either 2-byte or 4-byte elements.
2661   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2662     SmallVector<uint16_t, 32> Elements;
2663     Elements.reserve(NumElements);
2664 
2665     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2666       Elements.push_back(E->getCodeUnit(i));
2667     Elements.resize(NumElements);
2668     return llvm::ConstantDataArray::get(VMContext, Elements);
2669   }
2670 
2671   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2672   SmallVector<uint32_t, 32> Elements;
2673   Elements.reserve(NumElements);
2674 
2675   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2676     Elements.push_back(E->getCodeUnit(i));
2677   Elements.resize(NumElements);
2678   return llvm::ConstantDataArray::get(VMContext, Elements);
2679 }
2680 
2681 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2682 /// constant array for the given string literal.
2683 llvm::Constant *
2684 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2685   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2686 
2687   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2688   llvm::GlobalVariable *GV = nullptr;
2689   if (!LangOpts.WritableStrings) {
2690     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2691     switch (S->getCharByteWidth()) {
2692     case 1:
2693       ConstantStringMap = &Constant1ByteStringMap;
2694       break;
2695     case 2:
2696       ConstantStringMap = &Constant2ByteStringMap;
2697       break;
2698     case 4:
2699       ConstantStringMap = &Constant4ByteStringMap;
2700       break;
2701     default:
2702       llvm_unreachable("unhandled byte width!");
2703     }
2704     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2705     GV = Entry->getValue();
2706   }
2707 
2708   if (!GV) {
2709     SmallString<256> MangledNameBuffer;
2710     StringRef GlobalVariableName;
2711     llvm::GlobalValue::LinkageTypes LT;
2712 
2713     // Mangle the string literal if the ABI allows for it.  However, we cannot
2714     // do this if  we are compiling with ASan or -fwritable-strings because they
2715     // rely on strings having normal linkage.
2716     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2717         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2718       llvm::raw_svector_ostream Out(MangledNameBuffer);
2719       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2720       Out.flush();
2721 
2722       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2723       GlobalVariableName = MangledNameBuffer;
2724     } else {
2725       LT = llvm::GlobalValue::PrivateLinkage;
2726       GlobalVariableName = ".str";
2727     }
2728 
2729     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2730     unsigned AddrSpace = 0;
2731     if (getLangOpts().OpenCL)
2732       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2733 
2734     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2735     GV = new llvm::GlobalVariable(
2736         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2737         GlobalVariableName, /*InsertBefore=*/nullptr,
2738         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2739     GV->setUnnamedAddr(true);
2740     if (Entry)
2741       Entry->setValue(GV);
2742   }
2743 
2744   if (Align.getQuantity() > GV->getAlignment())
2745     GV->setAlignment(Align.getQuantity());
2746 
2747   return GV;
2748 }
2749 
2750 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2751 /// array for the given ObjCEncodeExpr node.
2752 llvm::Constant *
2753 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2754   std::string Str;
2755   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2756 
2757   return GetAddrOfConstantCString(Str);
2758 }
2759 
2760 
2761 /// GenerateWritableString -- Creates storage for a string literal.
2762 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2763                                              bool constant,
2764                                              CodeGenModule &CGM,
2765                                              const char *GlobalName,
2766                                              unsigned Alignment) {
2767   // Create Constant for this string literal. Don't add a '\0'.
2768   llvm::Constant *C =
2769       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2770 
2771   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2772   unsigned AddrSpace = 0;
2773   if (CGM.getLangOpts().OpenCL)
2774     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2775 
2776   // Create a global variable for this string
2777   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2778       CGM.getModule(), C->getType(), constant,
2779       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2780       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2781   GV->setAlignment(Alignment);
2782   GV->setUnnamedAddr(true);
2783   return GV;
2784 }
2785 
2786 /// GetAddrOfConstantString - Returns a pointer to a character array
2787 /// containing the literal. This contents are exactly that of the
2788 /// given string, i.e. it will not be null terminated automatically;
2789 /// see GetAddrOfConstantCString. Note that whether the result is
2790 /// actually a pointer to an LLVM constant depends on
2791 /// Feature.WriteableStrings.
2792 ///
2793 /// The result has pointer to array type.
2794 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2795                                                        const char *GlobalName,
2796                                                        unsigned Alignment) {
2797   // Get the default prefix if a name wasn't specified.
2798   if (!GlobalName)
2799     GlobalName = ".str";
2800 
2801   if (Alignment == 0)
2802     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2803       .getQuantity();
2804 
2805   // Don't share any string literals if strings aren't constant.
2806   if (LangOpts.WritableStrings)
2807     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2808 
2809   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2810     Constant1ByteStringMap.GetOrCreateValue(Str);
2811 
2812   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2813     if (Alignment > GV->getAlignment()) {
2814       GV->setAlignment(Alignment);
2815     }
2816     return GV;
2817   }
2818 
2819   // Create a global variable for this.
2820   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2821                                                    Alignment);
2822   Entry.setValue(GV);
2823   return GV;
2824 }
2825 
2826 /// GetAddrOfConstantCString - Returns a pointer to a character
2827 /// array containing the literal and a terminating '\0'
2828 /// character. The result has pointer to array type.
2829 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2830                                                         const char *GlobalName,
2831                                                         unsigned Alignment) {
2832   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2833   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2834 }
2835 
2836 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2837     const MaterializeTemporaryExpr *E, const Expr *Init) {
2838   assert((E->getStorageDuration() == SD_Static ||
2839           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2840   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2841 
2842   // If we're not materializing a subobject of the temporary, keep the
2843   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2844   QualType MaterializedType = Init->getType();
2845   if (Init == E->GetTemporaryExpr())
2846     MaterializedType = E->getType();
2847 
2848   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2849   if (Slot)
2850     return Slot;
2851 
2852   // FIXME: If an externally-visible declaration extends multiple temporaries,
2853   // we need to give each temporary the same name in every translation unit (and
2854   // we also need to make the temporaries externally-visible).
2855   SmallString<256> Name;
2856   llvm::raw_svector_ostream Out(Name);
2857   getCXXABI().getMangleContext().mangleReferenceTemporary(
2858       VD, E->getManglingNumber(), Out);
2859   Out.flush();
2860 
2861   APValue *Value = 0;
2862   if (E->getStorageDuration() == SD_Static) {
2863     // We might have a cached constant initializer for this temporary. Note
2864     // that this might have a different value from the value computed by
2865     // evaluating the initializer if the surrounding constant expression
2866     // modifies the temporary.
2867     Value = getContext().getMaterializedTemporaryValue(E, false);
2868     if (Value && Value->isUninit())
2869       Value = 0;
2870   }
2871 
2872   // Try evaluating it now, it might have a constant initializer.
2873   Expr::EvalResult EvalResult;
2874   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2875       !EvalResult.hasSideEffects())
2876     Value = &EvalResult.Val;
2877 
2878   llvm::Constant *InitialValue = 0;
2879   bool Constant = false;
2880   llvm::Type *Type;
2881   if (Value) {
2882     // The temporary has a constant initializer, use it.
2883     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2884     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2885     Type = InitialValue->getType();
2886   } else {
2887     // No initializer, the initialization will be provided when we
2888     // initialize the declaration which performed lifetime extension.
2889     Type = getTypes().ConvertTypeForMem(MaterializedType);
2890   }
2891 
2892   // Create a global variable for this lifetime-extended temporary.
2893   llvm::GlobalValue::LinkageTypes Linkage =
2894       getLLVMLinkageVarDefinition(VD, Constant);
2895   // There is no need for this temporary to have global linkage if the global
2896   // variable has external linkage.
2897   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2898     Linkage = llvm::GlobalVariable::PrivateLinkage;
2899   unsigned AddrSpace = GetGlobalVarAddressSpace(
2900       VD, getContext().getTargetAddressSpace(MaterializedType));
2901   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2902       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2903       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2904       AddrSpace);
2905   setGlobalVisibility(GV, VD);
2906   GV->setAlignment(
2907       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2908   if (VD->getTLSKind())
2909     setTLSMode(GV, *VD);
2910   Slot = GV;
2911   return GV;
2912 }
2913 
2914 /// EmitObjCPropertyImplementations - Emit information for synthesized
2915 /// properties for an implementation.
2916 void CodeGenModule::EmitObjCPropertyImplementations(const
2917                                                     ObjCImplementationDecl *D) {
2918   for (const auto *PID : D->property_impls()) {
2919     // Dynamic is just for type-checking.
2920     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2921       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2922 
2923       // Determine which methods need to be implemented, some may have
2924       // been overridden. Note that ::isPropertyAccessor is not the method
2925       // we want, that just indicates if the decl came from a
2926       // property. What we want to know is if the method is defined in
2927       // this implementation.
2928       if (!D->getInstanceMethod(PD->getGetterName()))
2929         CodeGenFunction(*this).GenerateObjCGetter(
2930                                  const_cast<ObjCImplementationDecl *>(D), PID);
2931       if (!PD->isReadOnly() &&
2932           !D->getInstanceMethod(PD->getSetterName()))
2933         CodeGenFunction(*this).GenerateObjCSetter(
2934                                  const_cast<ObjCImplementationDecl *>(D), PID);
2935     }
2936   }
2937 }
2938 
2939 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2940   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2941   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2942        ivar; ivar = ivar->getNextIvar())
2943     if (ivar->getType().isDestructedType())
2944       return true;
2945 
2946   return false;
2947 }
2948 
2949 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2950 /// for an implementation.
2951 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2952   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2953   if (needsDestructMethod(D)) {
2954     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2955     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2956     ObjCMethodDecl *DTORMethod =
2957       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2958                              cxxSelector, getContext().VoidTy, 0, D,
2959                              /*isInstance=*/true, /*isVariadic=*/false,
2960                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2961                              /*isDefined=*/false, ObjCMethodDecl::Required);
2962     D->addInstanceMethod(DTORMethod);
2963     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2964     D->setHasDestructors(true);
2965   }
2966 
2967   // If the implementation doesn't have any ivar initializers, we don't need
2968   // a .cxx_construct.
2969   if (D->getNumIvarInitializers() == 0)
2970     return;
2971 
2972   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2973   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2974   // The constructor returns 'self'.
2975   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2976                                                 D->getLocation(),
2977                                                 D->getLocation(),
2978                                                 cxxSelector,
2979                                                 getContext().getObjCIdType(), 0,
2980                                                 D, /*isInstance=*/true,
2981                                                 /*isVariadic=*/false,
2982                                                 /*isPropertyAccessor=*/true,
2983                                                 /*isImplicitlyDeclared=*/true,
2984                                                 /*isDefined=*/false,
2985                                                 ObjCMethodDecl::Required);
2986   D->addInstanceMethod(CTORMethod);
2987   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2988   D->setHasNonZeroConstructors(true);
2989 }
2990 
2991 /// EmitNamespace - Emit all declarations in a namespace.
2992 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2993   for (auto *I : ND->decls()) {
2994     if (const auto *VD = dyn_cast<VarDecl>(I))
2995       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2996           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2997         continue;
2998     EmitTopLevelDecl(I);
2999   }
3000 }
3001 
3002 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3003 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3004   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3005       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3006     ErrorUnsupported(LSD, "linkage spec");
3007     return;
3008   }
3009 
3010   for (auto *I : LSD->decls()) {
3011     // Meta-data for ObjC class includes references to implemented methods.
3012     // Generate class's method definitions first.
3013     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3014       for (auto *M : OID->methods())
3015         EmitTopLevelDecl(M);
3016     }
3017     EmitTopLevelDecl(I);
3018   }
3019 }
3020 
3021 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3022 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3023   // Ignore dependent declarations.
3024   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3025     return;
3026 
3027   switch (D->getKind()) {
3028   case Decl::CXXConversion:
3029   case Decl::CXXMethod:
3030   case Decl::Function:
3031     // Skip function templates
3032     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3033         cast<FunctionDecl>(D)->isLateTemplateParsed())
3034       return;
3035 
3036     EmitGlobal(cast<FunctionDecl>(D));
3037     break;
3038 
3039   case Decl::Var:
3040     // Skip variable templates
3041     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3042       return;
3043   case Decl::VarTemplateSpecialization:
3044     EmitGlobal(cast<VarDecl>(D));
3045     break;
3046 
3047   // Indirect fields from global anonymous structs and unions can be
3048   // ignored; only the actual variable requires IR gen support.
3049   case Decl::IndirectField:
3050     break;
3051 
3052   // C++ Decls
3053   case Decl::Namespace:
3054     EmitNamespace(cast<NamespaceDecl>(D));
3055     break;
3056     // No code generation needed.
3057   case Decl::UsingShadow:
3058   case Decl::ClassTemplate:
3059   case Decl::VarTemplate:
3060   case Decl::VarTemplatePartialSpecialization:
3061   case Decl::FunctionTemplate:
3062   case Decl::TypeAliasTemplate:
3063   case Decl::Block:
3064   case Decl::Empty:
3065     break;
3066   case Decl::Using:          // using X; [C++]
3067     if (CGDebugInfo *DI = getModuleDebugInfo())
3068         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3069     return;
3070   case Decl::NamespaceAlias:
3071     if (CGDebugInfo *DI = getModuleDebugInfo())
3072         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3073     return;
3074   case Decl::UsingDirective: // using namespace X; [C++]
3075     if (CGDebugInfo *DI = getModuleDebugInfo())
3076       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3077     return;
3078   case Decl::CXXConstructor:
3079     // Skip function templates
3080     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3081         cast<FunctionDecl>(D)->isLateTemplateParsed())
3082       return;
3083 
3084     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3085     break;
3086   case Decl::CXXDestructor:
3087     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3088       return;
3089     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3090     break;
3091 
3092   case Decl::StaticAssert:
3093     // Nothing to do.
3094     break;
3095 
3096   // Objective-C Decls
3097 
3098   // Forward declarations, no (immediate) code generation.
3099   case Decl::ObjCInterface:
3100   case Decl::ObjCCategory:
3101     break;
3102 
3103   case Decl::ObjCProtocol: {
3104     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
3105     if (Proto->isThisDeclarationADefinition())
3106       ObjCRuntime->GenerateProtocol(Proto);
3107     break;
3108   }
3109 
3110   case Decl::ObjCCategoryImpl:
3111     // Categories have properties but don't support synthesize so we
3112     // can ignore them here.
3113     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3114     break;
3115 
3116   case Decl::ObjCImplementation: {
3117     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3118     EmitObjCPropertyImplementations(OMD);
3119     EmitObjCIvarInitializations(OMD);
3120     ObjCRuntime->GenerateClass(OMD);
3121     // Emit global variable debug information.
3122     if (CGDebugInfo *DI = getModuleDebugInfo())
3123       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3124         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3125             OMD->getClassInterface()), OMD->getLocation());
3126     break;
3127   }
3128   case Decl::ObjCMethod: {
3129     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3130     // If this is not a prototype, emit the body.
3131     if (OMD->getBody())
3132       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3133     break;
3134   }
3135   case Decl::ObjCCompatibleAlias:
3136     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3137     break;
3138 
3139   case Decl::LinkageSpec:
3140     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3141     break;
3142 
3143   case Decl::FileScopeAsm: {
3144     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3145     StringRef AsmString = AD->getAsmString()->getString();
3146 
3147     const std::string &S = getModule().getModuleInlineAsm();
3148     if (S.empty())
3149       getModule().setModuleInlineAsm(AsmString);
3150     else if (S.end()[-1] == '\n')
3151       getModule().setModuleInlineAsm(S + AsmString.str());
3152     else
3153       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3154     break;
3155   }
3156 
3157   case Decl::Import: {
3158     ImportDecl *Import = cast<ImportDecl>(D);
3159 
3160     // Ignore import declarations that come from imported modules.
3161     if (clang::Module *Owner = Import->getOwningModule()) {
3162       if (getLangOpts().CurrentModule.empty() ||
3163           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3164         break;
3165     }
3166 
3167     ImportedModules.insert(Import->getImportedModule());
3168     break;
3169   }
3170 
3171   case Decl::ClassTemplateSpecialization: {
3172     const ClassTemplateSpecializationDecl *Spec =
3173         cast<ClassTemplateSpecializationDecl>(D);
3174     if (DebugInfo &&
3175         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3176       DebugInfo->completeTemplateDefinition(*Spec);
3177   }
3178 
3179   default:
3180     // Make sure we handled everything we should, every other kind is a
3181     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3182     // function. Need to recode Decl::Kind to do that easily.
3183     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3184   }
3185 }
3186 
3187 /// Turns the given pointer into a constant.
3188 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3189                                           const void *Ptr) {
3190   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3191   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3192   return llvm::ConstantInt::get(i64, PtrInt);
3193 }
3194 
3195 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3196                                    llvm::NamedMDNode *&GlobalMetadata,
3197                                    GlobalDecl D,
3198                                    llvm::GlobalValue *Addr) {
3199   if (!GlobalMetadata)
3200     GlobalMetadata =
3201       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3202 
3203   // TODO: should we report variant information for ctors/dtors?
3204   llvm::Value *Ops[] = {
3205     Addr,
3206     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3207   };
3208   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3209 }
3210 
3211 /// For each function which is declared within an extern "C" region and marked
3212 /// as 'used', but has internal linkage, create an alias from the unmangled
3213 /// name to the mangled name if possible. People expect to be able to refer
3214 /// to such functions with an unmangled name from inline assembly within the
3215 /// same translation unit.
3216 void CodeGenModule::EmitStaticExternCAliases() {
3217   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3218                                   E = StaticExternCValues.end();
3219        I != E; ++I) {
3220     IdentifierInfo *Name = I->first;
3221     llvm::GlobalValue *Val = I->second;
3222     if (Val && !getModule().getNamedValue(Name->getName()))
3223       addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3224                                           Name->getName(), Val, &getModule()));
3225   }
3226 }
3227 
3228 /// Emits metadata nodes associating all the global values in the
3229 /// current module with the Decls they came from.  This is useful for
3230 /// projects using IR gen as a subroutine.
3231 ///
3232 /// Since there's currently no way to associate an MDNode directly
3233 /// with an llvm::GlobalValue, we create a global named metadata
3234 /// with the name 'clang.global.decl.ptrs'.
3235 void CodeGenModule::EmitDeclMetadata() {
3236   llvm::NamedMDNode *GlobalMetadata = 0;
3237 
3238   // StaticLocalDeclMap
3239   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3240          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3241        I != E; ++I) {
3242     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3243     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3244   }
3245 }
3246 
3247 /// Emits metadata nodes for all the local variables in the current
3248 /// function.
3249 void CodeGenFunction::EmitDeclMetadata() {
3250   if (LocalDeclMap.empty()) return;
3251 
3252   llvm::LLVMContext &Context = getLLVMContext();
3253 
3254   // Find the unique metadata ID for this name.
3255   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3256 
3257   llvm::NamedMDNode *GlobalMetadata = 0;
3258 
3259   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3260          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3261     const Decl *D = I->first;
3262     llvm::Value *Addr = I->second;
3263 
3264     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3265       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3266       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3267     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3268       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3269       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3270     }
3271   }
3272 }
3273 
3274 void CodeGenModule::EmitVersionIdentMetadata() {
3275   llvm::NamedMDNode *IdentMetadata =
3276     TheModule.getOrInsertNamedMetadata("llvm.ident");
3277   std::string Version = getClangFullVersion();
3278   llvm::LLVMContext &Ctx = TheModule.getContext();
3279 
3280   llvm::Value *IdentNode[] = {
3281     llvm::MDString::get(Ctx, Version)
3282   };
3283   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3284 }
3285 
3286 void CodeGenModule::EmitCoverageFile() {
3287   if (!getCodeGenOpts().CoverageFile.empty()) {
3288     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3289       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3290       llvm::LLVMContext &Ctx = TheModule.getContext();
3291       llvm::MDString *CoverageFile =
3292           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3293       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3294         llvm::MDNode *CU = CUNode->getOperand(i);
3295         llvm::Value *node[] = { CoverageFile, CU };
3296         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3297         GCov->addOperand(N);
3298       }
3299     }
3300   }
3301 }
3302 
3303 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3304                                                      QualType GuidType) {
3305   // Sema has checked that all uuid strings are of the form
3306   // "12345678-1234-1234-1234-1234567890ab".
3307   assert(Uuid.size() == 36);
3308   for (unsigned i = 0; i < 36; ++i) {
3309     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3310     else                                         assert(isHexDigit(Uuid[i]));
3311   }
3312 
3313   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3314 
3315   llvm::Constant *Field3[8];
3316   for (unsigned Idx = 0; Idx < 8; ++Idx)
3317     Field3[Idx] = llvm::ConstantInt::get(
3318         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3319 
3320   llvm::Constant *Fields[4] = {
3321     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3322     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3323     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3324     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3325   };
3326 
3327   return llvm::ConstantStruct::getAnon(Fields);
3328 }
3329