xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 488f7c2b67f5a3811cab59577da367cc45984e28)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   EmitCXXThreadLocalInitFunc();
401   if (ObjCRuntime)
402     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
403       AddGlobalCtor(ObjCInitFunction);
404   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
405       CUDARuntime) {
406     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
407       AddGlobalCtor(CudaCtorFunction);
408     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
409       AddGlobalDtor(CudaDtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.ControlFlowGuard) {
462     // We want function ID tables for Control Flow Guard.
463     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
464   }
465   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466     // We don't support LTO with 2 with different StrictVTablePointers
467     // FIXME: we could support it by stripping all the information introduced
468     // by StrictVTablePointers.
469 
470     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471 
472     llvm::Metadata *Ops[2] = {
473               llvm::MDString::get(VMContext, "StrictVTablePointers"),
474               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475                   llvm::Type::getInt32Ty(VMContext), 1))};
476 
477     getModule().addModuleFlag(llvm::Module::Require,
478                               "StrictVTablePointersRequirement",
479                               llvm::MDNode::get(VMContext, Ops));
480   }
481   if (DebugInfo)
482     // We support a single version in the linked module. The LLVM
483     // parser will drop debug info with a different version number
484     // (and warn about it, too).
485     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486                               llvm::DEBUG_METADATA_VERSION);
487 
488   // We need to record the widths of enums and wchar_t, so that we can generate
489   // the correct build attributes in the ARM backend. wchar_size is also used by
490   // TargetLibraryInfo.
491   uint64_t WCharWidth =
492       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494 
495   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496   if (   Arch == llvm::Triple::arm
497       || Arch == llvm::Triple::armeb
498       || Arch == llvm::Triple::thumb
499       || Arch == llvm::Triple::thumbeb) {
500     // The minimum width of an enum in bytes
501     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503   }
504 
505   if (CodeGenOpts.SanitizeCfiCrossDso) {
506     // Indicate that we want cross-DSO control flow integrity checks.
507     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508   }
509 
510   if (CodeGenOpts.CFProtectionReturn &&
511       Target.checkCFProtectionReturnSupported(getDiags())) {
512     // Indicate that we want to instrument return control flow protection.
513     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514                               1);
515   }
516 
517   if (CodeGenOpts.CFProtectionBranch &&
518       Target.checkCFProtectionBranchSupported(getDiags())) {
519     // Indicate that we want to instrument branch control flow protection.
520     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521                               1);
522   }
523 
524   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525     // Indicate whether __nvvm_reflect should be configured to flush denormal
526     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
527     // property.)
528     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
530   }
531 
532   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533   if (LangOpts.OpenCL) {
534     EmitOpenCLMetadata();
535     // Emit SPIR version.
536     if (getTriple().getArch() == llvm::Triple::spir ||
537         getTriple().getArch() == llvm::Triple::spir64) {
538       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539       // opencl.spir.version named metadata.
540       llvm::Metadata *SPIRVerElts[] = {
541           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542               Int32Ty, LangOpts.OpenCLVersion / 100)),
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545       llvm::NamedMDNode *SPIRVerMD =
546           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547       llvm::LLVMContext &Ctx = TheModule.getContext();
548       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549     }
550   }
551 
552   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553     assert(PLevel < 3 && "Invalid PIC Level");
554     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555     if (Context.getLangOpts().PIE)
556       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557   }
558 
559   if (CodeGenOpts.NoPLT)
560     getModule().setRtLibUseGOT();
561 
562   SimplifyPersonality();
563 
564   if (getCodeGenOpts().EmitDeclMetadata)
565     EmitDeclMetadata();
566 
567   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568     EmitCoverageFile();
569 
570   if (DebugInfo)
571     DebugInfo->finalize();
572 
573   EmitVersionIdentMetadata();
574 
575   EmitTargetMetadata();
576 }
577 
578 void CodeGenModule::EmitOpenCLMetadata() {
579   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
580   // opencl.ocl.version named metadata node.
581   llvm::Metadata *OCLVerElts[] = {
582       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
583           Int32Ty, LangOpts.OpenCLVersion / 100)),
584       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
585           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
586   llvm::NamedMDNode *OCLVerMD =
587       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
588   llvm::LLVMContext &Ctx = TheModule.getContext();
589   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
590 }
591 
592 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
593   // Make sure that this type is translated.
594   Types.UpdateCompletedType(TD);
595 }
596 
597 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
598   // Make sure that this type is translated.
599   Types.RefreshTypeCacheForClass(RD);
600 }
601 
602 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
603   if (!TBAA)
604     return nullptr;
605   return TBAA->getTypeInfo(QTy);
606 }
607 
608 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
609   if (!TBAA)
610     return TBAAAccessInfo();
611   return TBAA->getAccessInfo(AccessType);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 TBAAAccessInfo
655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656                                               TBAAAccessInfo SrcInfo) {
657   if (!TBAA)
658     return TBAAAccessInfo();
659   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660 }
661 
662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663                                                 TBAAAccessInfo TBAAInfo) {
664   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666 }
667 
668 void CodeGenModule::DecorateInstructionWithInvariantGroup(
669     llvm::Instruction *I, const CXXRecordDecl *RD) {
670   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671                  llvm::MDNode::get(getLLVMContext(), {}));
672 }
673 
674 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677 }
678 
679 /// ErrorUnsupported - Print out an error that codegen doesn't support the
680 /// specified stmt yet.
681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683                                                "cannot compile this %0 yet");
684   std::string Msg = Type;
685   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686     << Msg << S->getSourceRange();
687 }
688 
689 /// ErrorUnsupported - Print out an error that codegen doesn't support the
690 /// specified decl yet.
691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693                                                "cannot compile this %0 yet");
694   std::string Msg = Type;
695   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696 }
697 
698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700 }
701 
702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703                                         const NamedDecl *D) const {
704   if (GV->hasDLLImportStorageClass())
705     return;
706   // Internal definitions always have default visibility.
707   if (GV->hasLocalLinkage()) {
708     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
709     return;
710   }
711   if (!D)
712     return;
713   // Set visibility for definitions.
714   LinkageInfo LV = D->getLinkageAndVisibility();
715   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
716     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
717 }
718 
719 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
720                                  llvm::GlobalValue *GV) {
721   if (GV->hasLocalLinkage())
722     return true;
723 
724   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
725     return true;
726 
727   // DLLImport explicitly marks the GV as external.
728   if (GV->hasDLLImportStorageClass())
729     return false;
730 
731   const llvm::Triple &TT = CGM.getTriple();
732   // Every other GV is local on COFF.
733   // Make an exception for windows OS in the triple: Some firmware builds use
734   // *-win32-macho triples. This (accidentally?) produced windows relocations
735   // without GOT tables in older clang versions; Keep this behaviour.
736   // FIXME: even thread local variables?
737   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
738     return true;
739 
740   // Only handle COFF and ELF for now.
741   if (!TT.isOSBinFormatELF())
742     return false;
743 
744   // If this is not an executable, don't assume anything is local.
745   const auto &CGOpts = CGM.getCodeGenOpts();
746   llvm::Reloc::Model RM = CGOpts.RelocationModel;
747   const auto &LOpts = CGM.getLangOpts();
748   if (RM != llvm::Reloc::Static && !LOpts.PIE)
749     return false;
750 
751   // A definition cannot be preempted from an executable.
752   if (!GV->isDeclarationForLinker())
753     return true;
754 
755   // Most PIC code sequences that assume that a symbol is local cannot produce a
756   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
757   // depended, it seems worth it to handle it here.
758   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
759     return false;
760 
761   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
762   llvm::Triple::ArchType Arch = TT.getArch();
763   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
764       Arch == llvm::Triple::ppc64le)
765     return false;
766 
767   // If we can use copy relocations we can assume it is local.
768   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
769     if (!Var->isThreadLocal() &&
770         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
771       return true;
772 
773   // If we can use a plt entry as the symbol address we can assume it
774   // is local.
775   // FIXME: This should work for PIE, but the gold linker doesn't support it.
776   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
777     return true;
778 
779   // Otherwise don't assue it is local.
780   return false;
781 }
782 
783 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
784   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
785 }
786 
787 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
788                                           GlobalDecl GD) const {
789   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
790   // C++ destructors have a few C++ ABI specific special cases.
791   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
792     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
793     return;
794   }
795   setDLLImportDLLExport(GV, D);
796 }
797 
798 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
799                                           const NamedDecl *D) const {
800   if (D && D->isExternallyVisible()) {
801     if (D->hasAttr<DLLImportAttr>())
802       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
803     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
804       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
805   }
806 }
807 
808 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
809                                     GlobalDecl GD) const {
810   setDLLImportDLLExport(GV, GD);
811   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
812 }
813 
814 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
815                                     const NamedDecl *D) const {
816   setDLLImportDLLExport(GV, D);
817   setGlobalVisibilityAndLocal(GV, D);
818 }
819 
820 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
821                                                 const NamedDecl *D) const {
822   setGlobalVisibility(GV, D);
823   setDSOLocal(GV);
824 }
825 
826 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
827   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
828       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
829       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
830       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
831       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
832 }
833 
834 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
835     CodeGenOptions::TLSModel M) {
836   switch (M) {
837   case CodeGenOptions::GeneralDynamicTLSModel:
838     return llvm::GlobalVariable::GeneralDynamicTLSModel;
839   case CodeGenOptions::LocalDynamicTLSModel:
840     return llvm::GlobalVariable::LocalDynamicTLSModel;
841   case CodeGenOptions::InitialExecTLSModel:
842     return llvm::GlobalVariable::InitialExecTLSModel;
843   case CodeGenOptions::LocalExecTLSModel:
844     return llvm::GlobalVariable::LocalExecTLSModel;
845   }
846   llvm_unreachable("Invalid TLS model!");
847 }
848 
849 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
850   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
851 
852   llvm::GlobalValue::ThreadLocalMode TLM;
853   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
854 
855   // Override the TLS model if it is explicitly specified.
856   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
857     TLM = GetLLVMTLSModel(Attr->getModel());
858   }
859 
860   GV->setThreadLocalMode(TLM);
861 }
862 
863 static void AppendTargetMangling(const CodeGenModule &CGM,
864                                  const TargetAttr *Attr, raw_ostream &Out) {
865   if (Attr->isDefaultVersion())
866     return;
867 
868   Out << '.';
869   const auto &Target = CGM.getTarget();
870   TargetAttr::ParsedTargetAttr Info =
871       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
872                     // Multiversioning doesn't allow "no-${feature}", so we can
873                     // only have "+" prefixes here.
874                     assert(LHS.startswith("+") && RHS.startswith("+") &&
875                            "Features should always have a prefix.");
876                     return Target.multiVersionSortPriority(LHS.substr(1)) >
877                            Target.multiVersionSortPriority(RHS.substr(1));
878                   });
879 
880   bool IsFirst = true;
881 
882   if (!Info.Architecture.empty()) {
883     IsFirst = false;
884     Out << "arch_" << Info.Architecture;
885   }
886 
887   for (StringRef Feat : Info.Features) {
888     if (!IsFirst)
889       Out << '_';
890     IsFirst = false;
891     Out << Feat.substr(1);
892   }
893 }
894 
895 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
896                                       const NamedDecl *ND,
897                                       bool OmitTargetMangling = false) {
898   SmallString<256> Buffer;
899   llvm::raw_svector_ostream Out(Buffer);
900   MangleContext &MC = CGM.getCXXABI().getMangleContext();
901   if (MC.shouldMangleDeclName(ND)) {
902     llvm::raw_svector_ostream Out(Buffer);
903     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
904       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
905     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
906       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
907     else
908       MC.mangleName(ND, Out);
909   } else {
910     IdentifierInfo *II = ND->getIdentifier();
911     assert(II && "Attempt to mangle unnamed decl.");
912     const auto *FD = dyn_cast<FunctionDecl>(ND);
913 
914     if (FD &&
915         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
916       llvm::raw_svector_ostream Out(Buffer);
917       Out << "__regcall3__" << II->getName();
918     } else {
919       Out << II->getName();
920     }
921   }
922 
923   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
924     if (FD->isMultiVersion() && !OmitTargetMangling)
925       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
926   return Out.str();
927 }
928 
929 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
930                                             const FunctionDecl *FD) {
931   if (!FD->isMultiVersion())
932     return;
933 
934   // Get the name of what this would be without the 'target' attribute.  This
935   // allows us to lookup the version that was emitted when this wasn't a
936   // multiversion function.
937   std::string NonTargetName =
938       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
939   GlobalDecl OtherGD;
940   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
941     assert(OtherGD.getCanonicalDecl()
942                .getDecl()
943                ->getAsFunction()
944                ->isMultiVersion() &&
945            "Other GD should now be a multiversioned function");
946     // OtherFD is the version of this function that was mangled BEFORE
947     // becoming a MultiVersion function.  It potentially needs to be updated.
948     const FunctionDecl *OtherFD =
949         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
950     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
951     // This is so that if the initial version was already the 'default'
952     // version, we don't try to update it.
953     if (OtherName != NonTargetName) {
954       // Remove instead of erase, since others may have stored the StringRef
955       // to this.
956       const auto ExistingRecord = Manglings.find(NonTargetName);
957       if (ExistingRecord != std::end(Manglings))
958         Manglings.remove(&(*ExistingRecord));
959       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
960       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
961       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
962         Entry->setName(OtherName);
963     }
964   }
965 }
966 
967 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
968   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
969 
970   // Some ABIs don't have constructor variants.  Make sure that base and
971   // complete constructors get mangled the same.
972   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
973     if (!getTarget().getCXXABI().hasConstructorVariants()) {
974       CXXCtorType OrigCtorType = GD.getCtorType();
975       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
976       if (OrigCtorType == Ctor_Base)
977         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
978     }
979   }
980 
981   auto FoundName = MangledDeclNames.find(CanonicalGD);
982   if (FoundName != MangledDeclNames.end())
983     return FoundName->second;
984 
985 
986   // Keep the first result in the case of a mangling collision.
987   const auto *ND = cast<NamedDecl>(GD.getDecl());
988   auto Result =
989       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
990   return MangledDeclNames[CanonicalGD] = Result.first->first();
991 }
992 
993 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
994                                              const BlockDecl *BD) {
995   MangleContext &MangleCtx = getCXXABI().getMangleContext();
996   const Decl *D = GD.getDecl();
997 
998   SmallString<256> Buffer;
999   llvm::raw_svector_ostream Out(Buffer);
1000   if (!D)
1001     MangleCtx.mangleGlobalBlock(BD,
1002       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1003   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1004     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1005   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1006     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1007   else
1008     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1009 
1010   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1011   return Result.first->first();
1012 }
1013 
1014 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1015   return getModule().getNamedValue(Name);
1016 }
1017 
1018 /// AddGlobalCtor - Add a function to the list that will be called before
1019 /// main() runs.
1020 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1021                                   llvm::Constant *AssociatedData) {
1022   // FIXME: Type coercion of void()* types.
1023   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1024 }
1025 
1026 /// AddGlobalDtor - Add a function to the list that will be called
1027 /// when the module is unloaded.
1028 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1029   // FIXME: Type coercion of void()* types.
1030   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1031 }
1032 
1033 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1034   if (Fns.empty()) return;
1035 
1036   // Ctor function type is void()*.
1037   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1038   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1039 
1040   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1041   llvm::StructType *CtorStructTy = llvm::StructType::get(
1042       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1043 
1044   // Construct the constructor and destructor arrays.
1045   ConstantInitBuilder builder(*this);
1046   auto ctors = builder.beginArray(CtorStructTy);
1047   for (const auto &I : Fns) {
1048     auto ctor = ctors.beginStruct(CtorStructTy);
1049     ctor.addInt(Int32Ty, I.Priority);
1050     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1051     if (I.AssociatedData)
1052       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1053     else
1054       ctor.addNullPointer(VoidPtrTy);
1055     ctor.finishAndAddTo(ctors);
1056   }
1057 
1058   auto list =
1059     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1060                                 /*constant*/ false,
1061                                 llvm::GlobalValue::AppendingLinkage);
1062 
1063   // The LTO linker doesn't seem to like it when we set an alignment
1064   // on appending variables.  Take it off as a workaround.
1065   list->setAlignment(0);
1066 
1067   Fns.clear();
1068 }
1069 
1070 llvm::GlobalValue::LinkageTypes
1071 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1072   const auto *D = cast<FunctionDecl>(GD.getDecl());
1073 
1074   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1075 
1076   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1077     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1078 
1079   if (isa<CXXConstructorDecl>(D) &&
1080       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1081       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1082     // Our approach to inheriting constructors is fundamentally different from
1083     // that used by the MS ABI, so keep our inheriting constructor thunks
1084     // internal rather than trying to pick an unambiguous mangling for them.
1085     return llvm::GlobalValue::InternalLinkage;
1086   }
1087 
1088   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1089 }
1090 
1091 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1092   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1093   if (!MDS) return nullptr;
1094 
1095   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1096 }
1097 
1098 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1099                                               const CGFunctionInfo &Info,
1100                                               llvm::Function *F) {
1101   unsigned CallingConv;
1102   llvm::AttributeList PAL;
1103   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1104   F->setAttributes(PAL);
1105   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1106 }
1107 
1108 /// Determines whether the language options require us to model
1109 /// unwind exceptions.  We treat -fexceptions as mandating this
1110 /// except under the fragile ObjC ABI with only ObjC exceptions
1111 /// enabled.  This means, for example, that C with -fexceptions
1112 /// enables this.
1113 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1114   // If exceptions are completely disabled, obviously this is false.
1115   if (!LangOpts.Exceptions) return false;
1116 
1117   // If C++ exceptions are enabled, this is true.
1118   if (LangOpts.CXXExceptions) return true;
1119 
1120   // If ObjC exceptions are enabled, this depends on the ABI.
1121   if (LangOpts.ObjCExceptions) {
1122     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1123   }
1124 
1125   return true;
1126 }
1127 
1128 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1129                                                            llvm::Function *F) {
1130   llvm::AttrBuilder B;
1131 
1132   if (CodeGenOpts.UnwindTables)
1133     B.addAttribute(llvm::Attribute::UWTable);
1134 
1135   if (!hasUnwindExceptions(LangOpts))
1136     B.addAttribute(llvm::Attribute::NoUnwind);
1137 
1138   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1139     B.addAttribute(llvm::Attribute::StackProtect);
1140   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1141     B.addAttribute(llvm::Attribute::StackProtectStrong);
1142   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1143     B.addAttribute(llvm::Attribute::StackProtectReq);
1144 
1145   if (!D) {
1146     // If we don't have a declaration to control inlining, the function isn't
1147     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1148     // disabled, mark the function as noinline.
1149     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1150         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1151       B.addAttribute(llvm::Attribute::NoInline);
1152 
1153     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1154     return;
1155   }
1156 
1157   // Track whether we need to add the optnone LLVM attribute,
1158   // starting with the default for this optimization level.
1159   bool ShouldAddOptNone =
1160       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1161   // We can't add optnone in the following cases, it won't pass the verifier.
1162   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1163   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1164   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1165 
1166   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1167     B.addAttribute(llvm::Attribute::OptimizeNone);
1168 
1169     // OptimizeNone implies noinline; we should not be inlining such functions.
1170     B.addAttribute(llvm::Attribute::NoInline);
1171     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1172            "OptimizeNone and AlwaysInline on same function!");
1173 
1174     // We still need to handle naked functions even though optnone subsumes
1175     // much of their semantics.
1176     if (D->hasAttr<NakedAttr>())
1177       B.addAttribute(llvm::Attribute::Naked);
1178 
1179     // OptimizeNone wins over OptimizeForSize and MinSize.
1180     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1181     F->removeFnAttr(llvm::Attribute::MinSize);
1182   } else if (D->hasAttr<NakedAttr>()) {
1183     // Naked implies noinline: we should not be inlining such functions.
1184     B.addAttribute(llvm::Attribute::Naked);
1185     B.addAttribute(llvm::Attribute::NoInline);
1186   } else if (D->hasAttr<NoDuplicateAttr>()) {
1187     B.addAttribute(llvm::Attribute::NoDuplicate);
1188   } else if (D->hasAttr<NoInlineAttr>()) {
1189     B.addAttribute(llvm::Attribute::NoInline);
1190   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1191              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1192     // (noinline wins over always_inline, and we can't specify both in IR)
1193     B.addAttribute(llvm::Attribute::AlwaysInline);
1194   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1195     // If we're not inlining, then force everything that isn't always_inline to
1196     // carry an explicit noinline attribute.
1197     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1198       B.addAttribute(llvm::Attribute::NoInline);
1199   } else {
1200     // Otherwise, propagate the inline hint attribute and potentially use its
1201     // absence to mark things as noinline.
1202     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1203       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1204             return Redecl->isInlineSpecified();
1205           })) {
1206         B.addAttribute(llvm::Attribute::InlineHint);
1207       } else if (CodeGenOpts.getInlining() ==
1208                      CodeGenOptions::OnlyHintInlining &&
1209                  !FD->isInlined() &&
1210                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1211         B.addAttribute(llvm::Attribute::NoInline);
1212       }
1213     }
1214   }
1215 
1216   // Add other optimization related attributes if we are optimizing this
1217   // function.
1218   if (!D->hasAttr<OptimizeNoneAttr>()) {
1219     if (D->hasAttr<ColdAttr>()) {
1220       if (!ShouldAddOptNone)
1221         B.addAttribute(llvm::Attribute::OptimizeForSize);
1222       B.addAttribute(llvm::Attribute::Cold);
1223     }
1224 
1225     if (D->hasAttr<MinSizeAttr>())
1226       B.addAttribute(llvm::Attribute::MinSize);
1227   }
1228 
1229   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1230 
1231   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1232   if (alignment)
1233     F->setAlignment(alignment);
1234 
1235   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1236   // reserve a bit for differentiating between virtual and non-virtual member
1237   // functions. If the current target's C++ ABI requires this and this is a
1238   // member function, set its alignment accordingly.
1239   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1240     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1241       F->setAlignment(2);
1242   }
1243 
1244   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1245   if (CodeGenOpts.SanitizeCfiCrossDso)
1246     if (auto *FD = dyn_cast<FunctionDecl>(D))
1247       CreateFunctionTypeMetadata(FD, F);
1248 }
1249 
1250 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1251   const Decl *D = GD.getDecl();
1252   if (dyn_cast_or_null<NamedDecl>(D))
1253     setGVProperties(GV, GD);
1254   else
1255     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1256 
1257   if (D && D->hasAttr<UsedAttr>())
1258     addUsedGlobal(GV);
1259 }
1260 
1261 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1262                                                 llvm::AttrBuilder &Attrs) {
1263   // Add target-cpu and target-features attributes to functions. If
1264   // we have a decl for the function and it has a target attribute then
1265   // parse that and add it to the feature set.
1266   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1267   std::vector<std::string> Features;
1268   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1269   FD = FD ? FD->getMostRecentDecl() : FD;
1270   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1271   bool AddedAttr = false;
1272   if (TD) {
1273     llvm::StringMap<bool> FeatureMap;
1274     getFunctionFeatureMap(FeatureMap, FD);
1275 
1276     // Produce the canonical string for this set of features.
1277     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1278       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1279 
1280     // Now add the target-cpu and target-features to the function.
1281     // While we populated the feature map above, we still need to
1282     // get and parse the target attribute so we can get the cpu for
1283     // the function.
1284     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1285     if (ParsedAttr.Architecture != "" &&
1286         getTarget().isValidCPUName(ParsedAttr.Architecture))
1287       TargetCPU = ParsedAttr.Architecture;
1288   } else {
1289     // Otherwise just add the existing target cpu and target features to the
1290     // function.
1291     Features = getTarget().getTargetOpts().Features;
1292   }
1293 
1294   if (TargetCPU != "") {
1295     Attrs.addAttribute("target-cpu", TargetCPU);
1296     AddedAttr = true;
1297   }
1298   if (!Features.empty()) {
1299     llvm::sort(Features.begin(), Features.end());
1300     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1301     AddedAttr = true;
1302   }
1303 
1304   return AddedAttr;
1305 }
1306 
1307 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1308                                           llvm::GlobalObject *GO) {
1309   const Decl *D = GD.getDecl();
1310   SetCommonAttributes(GD, GO);
1311 
1312   if (D) {
1313     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1314       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1315         GV->addAttribute("bss-section", SA->getName());
1316       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1317         GV->addAttribute("data-section", SA->getName());
1318       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1319         GV->addAttribute("rodata-section", SA->getName());
1320     }
1321 
1322     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1323       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1324         if (!D->getAttr<SectionAttr>())
1325           F->addFnAttr("implicit-section-name", SA->getName());
1326 
1327       llvm::AttrBuilder Attrs;
1328       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1329         // We know that GetCPUAndFeaturesAttributes will always have the
1330         // newest set, since it has the newest possible FunctionDecl, so the
1331         // new ones should replace the old.
1332         F->removeFnAttr("target-cpu");
1333         F->removeFnAttr("target-features");
1334         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1335       }
1336     }
1337 
1338     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1339       GO->setSection(SA->getName());
1340   }
1341 
1342   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1343 }
1344 
1345 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1346                                                   llvm::Function *F,
1347                                                   const CGFunctionInfo &FI) {
1348   const Decl *D = GD.getDecl();
1349   SetLLVMFunctionAttributes(D, FI, F);
1350   SetLLVMFunctionAttributesForDefinition(D, F);
1351 
1352   F->setLinkage(llvm::Function::InternalLinkage);
1353 
1354   setNonAliasAttributes(GD, F);
1355 }
1356 
1357 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1358   // Set linkage and visibility in case we never see a definition.
1359   LinkageInfo LV = ND->getLinkageAndVisibility();
1360   // Don't set internal linkage on declarations.
1361   // "extern_weak" is overloaded in LLVM; we probably should have
1362   // separate linkage types for this.
1363   if (isExternallyVisible(LV.getLinkage()) &&
1364       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1365     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1366 }
1367 
1368 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1369                                                llvm::Function *F) {
1370   // Only if we are checking indirect calls.
1371   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1372     return;
1373 
1374   // Non-static class methods are handled via vtable pointer checks elsewhere.
1375   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1376     return;
1377 
1378   // Additionally, if building with cross-DSO support...
1379   if (CodeGenOpts.SanitizeCfiCrossDso) {
1380     // Skip available_externally functions. They won't be codegen'ed in the
1381     // current module anyway.
1382     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1383       return;
1384   }
1385 
1386   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1387   F->addTypeMetadata(0, MD);
1388   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1389 
1390   // Emit a hash-based bit set entry for cross-DSO calls.
1391   if (CodeGenOpts.SanitizeCfiCrossDso)
1392     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1393       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1394 }
1395 
1396 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1397                                           bool IsIncompleteFunction,
1398                                           bool IsThunk) {
1399 
1400   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1401     // If this is an intrinsic function, set the function's attributes
1402     // to the intrinsic's attributes.
1403     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1404     return;
1405   }
1406 
1407   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1408 
1409   if (!IsIncompleteFunction) {
1410     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1411     // Setup target-specific attributes.
1412     if (F->isDeclaration())
1413       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1414   }
1415 
1416   // Add the Returned attribute for "this", except for iOS 5 and earlier
1417   // where substantial code, including the libstdc++ dylib, was compiled with
1418   // GCC and does not actually return "this".
1419   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1420       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1421     assert(!F->arg_empty() &&
1422            F->arg_begin()->getType()
1423              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1424            "unexpected this return");
1425     F->addAttribute(1, llvm::Attribute::Returned);
1426   }
1427 
1428   // Only a few attributes are set on declarations; these may later be
1429   // overridden by a definition.
1430 
1431   setLinkageForGV(F, FD);
1432   setGVProperties(F, FD);
1433 
1434   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1435     F->addFnAttr("implicit-section-name");
1436   }
1437 
1438   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1439     F->setSection(SA->getName());
1440 
1441   if (FD->isReplaceableGlobalAllocationFunction()) {
1442     // A replaceable global allocation function does not act like a builtin by
1443     // default, only if it is invoked by a new-expression or delete-expression.
1444     F->addAttribute(llvm::AttributeList::FunctionIndex,
1445                     llvm::Attribute::NoBuiltin);
1446 
1447     // A sane operator new returns a non-aliasing pointer.
1448     // FIXME: Also add NonNull attribute to the return value
1449     // for the non-nothrow forms?
1450     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1451     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1452         (Kind == OO_New || Kind == OO_Array_New))
1453       F->addAttribute(llvm::AttributeList::ReturnIndex,
1454                       llvm::Attribute::NoAlias);
1455   }
1456 
1457   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1458     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1459   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1460     if (MD->isVirtual())
1461       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1462 
1463   // Don't emit entries for function declarations in the cross-DSO mode. This
1464   // is handled with better precision by the receiving DSO.
1465   if (!CodeGenOpts.SanitizeCfiCrossDso)
1466     CreateFunctionTypeMetadata(FD, F);
1467 
1468   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1469     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1470 }
1471 
1472 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1473   assert(!GV->isDeclaration() &&
1474          "Only globals with definition can force usage.");
1475   LLVMUsed.emplace_back(GV);
1476 }
1477 
1478 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1479   assert(!GV->isDeclaration() &&
1480          "Only globals with definition can force usage.");
1481   LLVMCompilerUsed.emplace_back(GV);
1482 }
1483 
1484 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1485                      std::vector<llvm::WeakTrackingVH> &List) {
1486   // Don't create llvm.used if there is no need.
1487   if (List.empty())
1488     return;
1489 
1490   // Convert List to what ConstantArray needs.
1491   SmallVector<llvm::Constant*, 8> UsedArray;
1492   UsedArray.resize(List.size());
1493   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1494     UsedArray[i] =
1495         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1496             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1497   }
1498 
1499   if (UsedArray.empty())
1500     return;
1501   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1502 
1503   auto *GV = new llvm::GlobalVariable(
1504       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1505       llvm::ConstantArray::get(ATy, UsedArray), Name);
1506 
1507   GV->setSection("llvm.metadata");
1508 }
1509 
1510 void CodeGenModule::emitLLVMUsed() {
1511   emitUsed(*this, "llvm.used", LLVMUsed);
1512   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1513 }
1514 
1515 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1516   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1517   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1518 }
1519 
1520 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1521   llvm::SmallString<32> Opt;
1522   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1523   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1524   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1525 }
1526 
1527 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1528   auto &C = getLLVMContext();
1529   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1530       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1531 }
1532 
1533 void CodeGenModule::AddDependentLib(StringRef Lib) {
1534   llvm::SmallString<24> Opt;
1535   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1536   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1537   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1538 }
1539 
1540 /// \brief Add link options implied by the given module, including modules
1541 /// it depends on, using a postorder walk.
1542 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1543                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1544                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1545   // Import this module's parent.
1546   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1547     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1548   }
1549 
1550   // Import this module's dependencies.
1551   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1552     if (Visited.insert(Mod->Imports[I - 1]).second)
1553       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1554   }
1555 
1556   // Add linker options to link against the libraries/frameworks
1557   // described by this module.
1558   llvm::LLVMContext &Context = CGM.getLLVMContext();
1559   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1560     // Link against a framework.  Frameworks are currently Darwin only, so we
1561     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1562     if (Mod->LinkLibraries[I-1].IsFramework) {
1563       llvm::Metadata *Args[2] = {
1564           llvm::MDString::get(Context, "-framework"),
1565           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1566 
1567       Metadata.push_back(llvm::MDNode::get(Context, Args));
1568       continue;
1569     }
1570 
1571     // Link against a library.
1572     llvm::SmallString<24> Opt;
1573     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1574       Mod->LinkLibraries[I-1].Library, Opt);
1575     auto *OptString = llvm::MDString::get(Context, Opt);
1576     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1577   }
1578 }
1579 
1580 void CodeGenModule::EmitModuleLinkOptions() {
1581   // Collect the set of all of the modules we want to visit to emit link
1582   // options, which is essentially the imported modules and all of their
1583   // non-explicit child modules.
1584   llvm::SetVector<clang::Module *> LinkModules;
1585   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1586   SmallVector<clang::Module *, 16> Stack;
1587 
1588   // Seed the stack with imported modules.
1589   for (Module *M : ImportedModules) {
1590     // Do not add any link flags when an implementation TU of a module imports
1591     // a header of that same module.
1592     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1593         !getLangOpts().isCompilingModule())
1594       continue;
1595     if (Visited.insert(M).second)
1596       Stack.push_back(M);
1597   }
1598 
1599   // Find all of the modules to import, making a little effort to prune
1600   // non-leaf modules.
1601   while (!Stack.empty()) {
1602     clang::Module *Mod = Stack.pop_back_val();
1603 
1604     bool AnyChildren = false;
1605 
1606     // Visit the submodules of this module.
1607     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1608                                         SubEnd = Mod->submodule_end();
1609          Sub != SubEnd; ++Sub) {
1610       // Skip explicit children; they need to be explicitly imported to be
1611       // linked against.
1612       if ((*Sub)->IsExplicit)
1613         continue;
1614 
1615       if (Visited.insert(*Sub).second) {
1616         Stack.push_back(*Sub);
1617         AnyChildren = true;
1618       }
1619     }
1620 
1621     // We didn't find any children, so add this module to the list of
1622     // modules to link against.
1623     if (!AnyChildren) {
1624       LinkModules.insert(Mod);
1625     }
1626   }
1627 
1628   // Add link options for all of the imported modules in reverse topological
1629   // order.  We don't do anything to try to order import link flags with respect
1630   // to linker options inserted by things like #pragma comment().
1631   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1632   Visited.clear();
1633   for (Module *M : LinkModules)
1634     if (Visited.insert(M).second)
1635       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1636   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1637   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1638 
1639   // Add the linker options metadata flag.
1640   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1641   for (auto *MD : LinkerOptionsMetadata)
1642     NMD->addOperand(MD);
1643 }
1644 
1645 void CodeGenModule::EmitDeferred() {
1646   // Emit code for any potentially referenced deferred decls.  Since a
1647   // previously unused static decl may become used during the generation of code
1648   // for a static function, iterate until no changes are made.
1649 
1650   if (!DeferredVTables.empty()) {
1651     EmitDeferredVTables();
1652 
1653     // Emitting a vtable doesn't directly cause more vtables to
1654     // become deferred, although it can cause functions to be
1655     // emitted that then need those vtables.
1656     assert(DeferredVTables.empty());
1657   }
1658 
1659   // Stop if we're out of both deferred vtables and deferred declarations.
1660   if (DeferredDeclsToEmit.empty())
1661     return;
1662 
1663   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1664   // work, it will not interfere with this.
1665   std::vector<GlobalDecl> CurDeclsToEmit;
1666   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1667 
1668   for (GlobalDecl &D : CurDeclsToEmit) {
1669     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1670     // to get GlobalValue with exactly the type we need, not something that
1671     // might had been created for another decl with the same mangled name but
1672     // different type.
1673     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1674         GetAddrOfGlobal(D, ForDefinition));
1675 
1676     // In case of different address spaces, we may still get a cast, even with
1677     // IsForDefinition equal to true. Query mangled names table to get
1678     // GlobalValue.
1679     if (!GV)
1680       GV = GetGlobalValue(getMangledName(D));
1681 
1682     // Make sure GetGlobalValue returned non-null.
1683     assert(GV);
1684 
1685     // Check to see if we've already emitted this.  This is necessary
1686     // for a couple of reasons: first, decls can end up in the
1687     // deferred-decls queue multiple times, and second, decls can end
1688     // up with definitions in unusual ways (e.g. by an extern inline
1689     // function acquiring a strong function redefinition).  Just
1690     // ignore these cases.
1691     if (!GV->isDeclaration())
1692       continue;
1693 
1694     // Otherwise, emit the definition and move on to the next one.
1695     EmitGlobalDefinition(D, GV);
1696 
1697     // If we found out that we need to emit more decls, do that recursively.
1698     // This has the advantage that the decls are emitted in a DFS and related
1699     // ones are close together, which is convenient for testing.
1700     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1701       EmitDeferred();
1702       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1703     }
1704   }
1705 }
1706 
1707 void CodeGenModule::EmitVTablesOpportunistically() {
1708   // Try to emit external vtables as available_externally if they have emitted
1709   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1710   // is not allowed to create new references to things that need to be emitted
1711   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1712 
1713   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1714          && "Only emit opportunistic vtables with optimizations");
1715 
1716   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1717     assert(getVTables().isVTableExternal(RD) &&
1718            "This queue should only contain external vtables");
1719     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1720       VTables.GenerateClassData(RD);
1721   }
1722   OpportunisticVTables.clear();
1723 }
1724 
1725 void CodeGenModule::EmitGlobalAnnotations() {
1726   if (Annotations.empty())
1727     return;
1728 
1729   // Create a new global variable for the ConstantStruct in the Module.
1730   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1731     Annotations[0]->getType(), Annotations.size()), Annotations);
1732   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1733                                       llvm::GlobalValue::AppendingLinkage,
1734                                       Array, "llvm.global.annotations");
1735   gv->setSection(AnnotationSection);
1736 }
1737 
1738 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1739   llvm::Constant *&AStr = AnnotationStrings[Str];
1740   if (AStr)
1741     return AStr;
1742 
1743   // Not found yet, create a new global.
1744   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1745   auto *gv =
1746       new llvm::GlobalVariable(getModule(), s->getType(), true,
1747                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1748   gv->setSection(AnnotationSection);
1749   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1750   AStr = gv;
1751   return gv;
1752 }
1753 
1754 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1755   SourceManager &SM = getContext().getSourceManager();
1756   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1757   if (PLoc.isValid())
1758     return EmitAnnotationString(PLoc.getFilename());
1759   return EmitAnnotationString(SM.getBufferName(Loc));
1760 }
1761 
1762 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1763   SourceManager &SM = getContext().getSourceManager();
1764   PresumedLoc PLoc = SM.getPresumedLoc(L);
1765   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1766     SM.getExpansionLineNumber(L);
1767   return llvm::ConstantInt::get(Int32Ty, LineNo);
1768 }
1769 
1770 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1771                                                 const AnnotateAttr *AA,
1772                                                 SourceLocation L) {
1773   // Get the globals for file name, annotation, and the line number.
1774   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1775                  *UnitGV = EmitAnnotationUnit(L),
1776                  *LineNoCst = EmitAnnotationLineNo(L);
1777 
1778   // Create the ConstantStruct for the global annotation.
1779   llvm::Constant *Fields[4] = {
1780     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1781     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1782     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1783     LineNoCst
1784   };
1785   return llvm::ConstantStruct::getAnon(Fields);
1786 }
1787 
1788 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1789                                          llvm::GlobalValue *GV) {
1790   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1791   // Get the struct elements for these annotations.
1792   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1793     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1794 }
1795 
1796 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1797                                            llvm::Function *Fn,
1798                                            SourceLocation Loc) const {
1799   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1800   // Blacklist by function name.
1801   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1802     return true;
1803   // Blacklist by location.
1804   if (Loc.isValid())
1805     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1806   // If location is unknown, this may be a compiler-generated function. Assume
1807   // it's located in the main file.
1808   auto &SM = Context.getSourceManager();
1809   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1810     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1811   }
1812   return false;
1813 }
1814 
1815 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1816                                            SourceLocation Loc, QualType Ty,
1817                                            StringRef Category) const {
1818   // For now globals can be blacklisted only in ASan and KASan.
1819   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1820       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1821   if (!EnabledAsanMask)
1822     return false;
1823   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1824   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1825     return true;
1826   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1827     return true;
1828   // Check global type.
1829   if (!Ty.isNull()) {
1830     // Drill down the array types: if global variable of a fixed type is
1831     // blacklisted, we also don't instrument arrays of them.
1832     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1833       Ty = AT->getElementType();
1834     Ty = Ty.getCanonicalType().getUnqualifiedType();
1835     // We allow to blacklist only record types (classes, structs etc.)
1836     if (Ty->isRecordType()) {
1837       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1838       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1839         return true;
1840     }
1841   }
1842   return false;
1843 }
1844 
1845 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1846                                    StringRef Category) const {
1847   if (!LangOpts.XRayInstrument)
1848     return false;
1849 
1850   const auto &XRayFilter = getContext().getXRayFilter();
1851   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1852   auto Attr = ImbueAttr::NONE;
1853   if (Loc.isValid())
1854     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1855   if (Attr == ImbueAttr::NONE)
1856     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1857   switch (Attr) {
1858   case ImbueAttr::NONE:
1859     return false;
1860   case ImbueAttr::ALWAYS:
1861     Fn->addFnAttr("function-instrument", "xray-always");
1862     break;
1863   case ImbueAttr::ALWAYS_ARG1:
1864     Fn->addFnAttr("function-instrument", "xray-always");
1865     Fn->addFnAttr("xray-log-args", "1");
1866     break;
1867   case ImbueAttr::NEVER:
1868     Fn->addFnAttr("function-instrument", "xray-never");
1869     break;
1870   }
1871   return true;
1872 }
1873 
1874 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1875   // Never defer when EmitAllDecls is specified.
1876   if (LangOpts.EmitAllDecls)
1877     return true;
1878 
1879   return getContext().DeclMustBeEmitted(Global);
1880 }
1881 
1882 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1883   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1884     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1885       // Implicit template instantiations may change linkage if they are later
1886       // explicitly instantiated, so they should not be emitted eagerly.
1887       return false;
1888   if (const auto *VD = dyn_cast<VarDecl>(Global))
1889     if (Context.getInlineVariableDefinitionKind(VD) ==
1890         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1891       // A definition of an inline constexpr static data member may change
1892       // linkage later if it's redeclared outside the class.
1893       return false;
1894   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1895   // codegen for global variables, because they may be marked as threadprivate.
1896   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1897       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1898     return false;
1899 
1900   return true;
1901 }
1902 
1903 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1904     const CXXUuidofExpr* E) {
1905   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1906   // well-formed.
1907   StringRef Uuid = E->getUuidStr();
1908   std::string Name = "_GUID_" + Uuid.lower();
1909   std::replace(Name.begin(), Name.end(), '-', '_');
1910 
1911   // The UUID descriptor should be pointer aligned.
1912   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1913 
1914   // Look for an existing global.
1915   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1916     return ConstantAddress(GV, Alignment);
1917 
1918   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1919   assert(Init && "failed to initialize as constant");
1920 
1921   auto *GV = new llvm::GlobalVariable(
1922       getModule(), Init->getType(),
1923       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1924   if (supportsCOMDAT())
1925     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1926   setDSOLocal(GV);
1927   return ConstantAddress(GV, Alignment);
1928 }
1929 
1930 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1931   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1932   assert(AA && "No alias?");
1933 
1934   CharUnits Alignment = getContext().getDeclAlign(VD);
1935   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1936 
1937   // See if there is already something with the target's name in the module.
1938   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1939   if (Entry) {
1940     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1941     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1942     return ConstantAddress(Ptr, Alignment);
1943   }
1944 
1945   llvm::Constant *Aliasee;
1946   if (isa<llvm::FunctionType>(DeclTy))
1947     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1948                                       GlobalDecl(cast<FunctionDecl>(VD)),
1949                                       /*ForVTable=*/false);
1950   else
1951     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1952                                     llvm::PointerType::getUnqual(DeclTy),
1953                                     nullptr);
1954 
1955   auto *F = cast<llvm::GlobalValue>(Aliasee);
1956   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1957   WeakRefReferences.insert(F);
1958 
1959   return ConstantAddress(Aliasee, Alignment);
1960 }
1961 
1962 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1963   const auto *Global = cast<ValueDecl>(GD.getDecl());
1964 
1965   // Weak references don't produce any output by themselves.
1966   if (Global->hasAttr<WeakRefAttr>())
1967     return;
1968 
1969   // If this is an alias definition (which otherwise looks like a declaration)
1970   // emit it now.
1971   if (Global->hasAttr<AliasAttr>())
1972     return EmitAliasDefinition(GD);
1973 
1974   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1975   if (Global->hasAttr<IFuncAttr>())
1976     return emitIFuncDefinition(GD);
1977 
1978   // If this is CUDA, be selective about which declarations we emit.
1979   if (LangOpts.CUDA) {
1980     if (LangOpts.CUDAIsDevice) {
1981       if (!Global->hasAttr<CUDADeviceAttr>() &&
1982           !Global->hasAttr<CUDAGlobalAttr>() &&
1983           !Global->hasAttr<CUDAConstantAttr>() &&
1984           !Global->hasAttr<CUDASharedAttr>())
1985         return;
1986     } else {
1987       // We need to emit host-side 'shadows' for all global
1988       // device-side variables because the CUDA runtime needs their
1989       // size and host-side address in order to provide access to
1990       // their device-side incarnations.
1991 
1992       // So device-only functions are the only things we skip.
1993       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1994           Global->hasAttr<CUDADeviceAttr>())
1995         return;
1996 
1997       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1998              "Expected Variable or Function");
1999     }
2000   }
2001 
2002   if (LangOpts.OpenMP) {
2003     // If this is OpenMP device, check if it is legal to emit this global
2004     // normally.
2005     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2006       return;
2007     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2008       if (MustBeEmitted(Global))
2009         EmitOMPDeclareReduction(DRD);
2010       return;
2011     }
2012   }
2013 
2014   // Ignore declarations, they will be emitted on their first use.
2015   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2016     // Forward declarations are emitted lazily on first use.
2017     if (!FD->doesThisDeclarationHaveABody()) {
2018       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2019         return;
2020 
2021       StringRef MangledName = getMangledName(GD);
2022 
2023       // Compute the function info and LLVM type.
2024       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2025       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2026 
2027       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2028                               /*DontDefer=*/false);
2029       return;
2030     }
2031   } else {
2032     const auto *VD = cast<VarDecl>(Global);
2033     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2034     // We need to emit device-side global CUDA variables even if a
2035     // variable does not have a definition -- we still need to define
2036     // host-side shadow for it.
2037     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2038                            !VD->hasDefinition() &&
2039                            (VD->hasAttr<CUDAConstantAttr>() ||
2040                             VD->hasAttr<CUDADeviceAttr>());
2041     if (!MustEmitForCuda &&
2042         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2043         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2044       // If this declaration may have caused an inline variable definition to
2045       // change linkage, make sure that it's emitted.
2046       if (Context.getInlineVariableDefinitionKind(VD) ==
2047           ASTContext::InlineVariableDefinitionKind::Strong)
2048         GetAddrOfGlobalVar(VD);
2049       return;
2050     }
2051   }
2052 
2053   // Defer code generation to first use when possible, e.g. if this is an inline
2054   // function. If the global must always be emitted, do it eagerly if possible
2055   // to benefit from cache locality.
2056   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2057     // Emit the definition if it can't be deferred.
2058     EmitGlobalDefinition(GD);
2059     return;
2060   }
2061 
2062   // If we're deferring emission of a C++ variable with an
2063   // initializer, remember the order in which it appeared in the file.
2064   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2065       cast<VarDecl>(Global)->hasInit()) {
2066     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2067     CXXGlobalInits.push_back(nullptr);
2068   }
2069 
2070   StringRef MangledName = getMangledName(GD);
2071   if (GetGlobalValue(MangledName) != nullptr) {
2072     // The value has already been used and should therefore be emitted.
2073     addDeferredDeclToEmit(GD);
2074   } else if (MustBeEmitted(Global)) {
2075     // The value must be emitted, but cannot be emitted eagerly.
2076     assert(!MayBeEmittedEagerly(Global));
2077     addDeferredDeclToEmit(GD);
2078   } else {
2079     // Otherwise, remember that we saw a deferred decl with this name.  The
2080     // first use of the mangled name will cause it to move into
2081     // DeferredDeclsToEmit.
2082     DeferredDecls[MangledName] = GD;
2083   }
2084 }
2085 
2086 // Check if T is a class type with a destructor that's not dllimport.
2087 static bool HasNonDllImportDtor(QualType T) {
2088   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2089     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2090       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2091         return true;
2092 
2093   return false;
2094 }
2095 
2096 namespace {
2097   struct FunctionIsDirectlyRecursive :
2098     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2099     const StringRef Name;
2100     const Builtin::Context &BI;
2101     bool Result;
2102     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2103       Name(N), BI(C), Result(false) {
2104     }
2105     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2106 
2107     bool TraverseCallExpr(CallExpr *E) {
2108       const FunctionDecl *FD = E->getDirectCallee();
2109       if (!FD)
2110         return true;
2111       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2112       if (Attr && Name == Attr->getLabel()) {
2113         Result = true;
2114         return false;
2115       }
2116       unsigned BuiltinID = FD->getBuiltinID();
2117       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2118         return true;
2119       StringRef BuiltinName = BI.getName(BuiltinID);
2120       if (BuiltinName.startswith("__builtin_") &&
2121           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2122         Result = true;
2123         return false;
2124       }
2125       return true;
2126     }
2127   };
2128 
2129   // Make sure we're not referencing non-imported vars or functions.
2130   struct DLLImportFunctionVisitor
2131       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2132     bool SafeToInline = true;
2133 
2134     bool shouldVisitImplicitCode() const { return true; }
2135 
2136     bool VisitVarDecl(VarDecl *VD) {
2137       if (VD->getTLSKind()) {
2138         // A thread-local variable cannot be imported.
2139         SafeToInline = false;
2140         return SafeToInline;
2141       }
2142 
2143       // A variable definition might imply a destructor call.
2144       if (VD->isThisDeclarationADefinition())
2145         SafeToInline = !HasNonDllImportDtor(VD->getType());
2146 
2147       return SafeToInline;
2148     }
2149 
2150     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2151       if (const auto *D = E->getTemporary()->getDestructor())
2152         SafeToInline = D->hasAttr<DLLImportAttr>();
2153       return SafeToInline;
2154     }
2155 
2156     bool VisitDeclRefExpr(DeclRefExpr *E) {
2157       ValueDecl *VD = E->getDecl();
2158       if (isa<FunctionDecl>(VD))
2159         SafeToInline = VD->hasAttr<DLLImportAttr>();
2160       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2161         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2162       return SafeToInline;
2163     }
2164 
2165     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2166       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2167       return SafeToInline;
2168     }
2169 
2170     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2171       CXXMethodDecl *M = E->getMethodDecl();
2172       if (!M) {
2173         // Call through a pointer to member function. This is safe to inline.
2174         SafeToInline = true;
2175       } else {
2176         SafeToInline = M->hasAttr<DLLImportAttr>();
2177       }
2178       return SafeToInline;
2179     }
2180 
2181     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2182       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2183       return SafeToInline;
2184     }
2185 
2186     bool VisitCXXNewExpr(CXXNewExpr *E) {
2187       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2188       return SafeToInline;
2189     }
2190   };
2191 }
2192 
2193 // isTriviallyRecursive - Check if this function calls another
2194 // decl that, because of the asm attribute or the other decl being a builtin,
2195 // ends up pointing to itself.
2196 bool
2197 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2198   StringRef Name;
2199   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2200     // asm labels are a special kind of mangling we have to support.
2201     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2202     if (!Attr)
2203       return false;
2204     Name = Attr->getLabel();
2205   } else {
2206     Name = FD->getName();
2207   }
2208 
2209   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2210   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2211   return Walker.Result;
2212 }
2213 
2214 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2215   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2216     return true;
2217   const auto *F = cast<FunctionDecl>(GD.getDecl());
2218   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2219     return false;
2220 
2221   if (F->hasAttr<DLLImportAttr>()) {
2222     // Check whether it would be safe to inline this dllimport function.
2223     DLLImportFunctionVisitor Visitor;
2224     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2225     if (!Visitor.SafeToInline)
2226       return false;
2227 
2228     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2229       // Implicit destructor invocations aren't captured in the AST, so the
2230       // check above can't see them. Check for them manually here.
2231       for (const Decl *Member : Dtor->getParent()->decls())
2232         if (isa<FieldDecl>(Member))
2233           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2234             return false;
2235       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2236         if (HasNonDllImportDtor(B.getType()))
2237           return false;
2238     }
2239   }
2240 
2241   // PR9614. Avoid cases where the source code is lying to us. An available
2242   // externally function should have an equivalent function somewhere else,
2243   // but a function that calls itself is clearly not equivalent to the real
2244   // implementation.
2245   // This happens in glibc's btowc and in some configure checks.
2246   return !isTriviallyRecursive(F);
2247 }
2248 
2249 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2250   return CodeGenOpts.OptimizationLevel > 0;
2251 }
2252 
2253 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2254   const auto *D = cast<ValueDecl>(GD.getDecl());
2255 
2256   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2257                                  Context.getSourceManager(),
2258                                  "Generating code for declaration");
2259 
2260   if (isa<FunctionDecl>(D)) {
2261     // At -O0, don't generate IR for functions with available_externally
2262     // linkage.
2263     if (!shouldEmitFunction(GD))
2264       return;
2265 
2266     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2267       // Make sure to emit the definition(s) before we emit the thunks.
2268       // This is necessary for the generation of certain thunks.
2269       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2270         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2271       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2272         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2273       else
2274         EmitGlobalFunctionDefinition(GD, GV);
2275 
2276       if (Method->isVirtual())
2277         getVTables().EmitThunks(GD);
2278 
2279       return;
2280     }
2281 
2282     return EmitGlobalFunctionDefinition(GD, GV);
2283   }
2284 
2285   if (const auto *VD = dyn_cast<VarDecl>(D))
2286     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2287 
2288   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2289 }
2290 
2291 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2292                                                       llvm::Function *NewFn);
2293 
2294 void CodeGenModule::emitMultiVersionFunctions() {
2295   for (GlobalDecl GD : MultiVersionFuncs) {
2296     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2297     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2298     getContext().forEachMultiversionedFunctionVersion(
2299         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2300           GlobalDecl CurGD{
2301               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2302           StringRef MangledName = getMangledName(CurGD);
2303           llvm::Constant *Func = GetGlobalValue(MangledName);
2304           if (!Func) {
2305             if (CurFD->isDefined()) {
2306               EmitGlobalFunctionDefinition(CurGD, nullptr);
2307               Func = GetGlobalValue(MangledName);
2308             } else {
2309               const CGFunctionInfo &FI =
2310                   getTypes().arrangeGlobalDeclaration(GD);
2311               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2312               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2313                                        /*DontDefer=*/false, ForDefinition);
2314             }
2315             assert(Func && "This should have just been created");
2316           }
2317           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2318                                CurFD->getAttr<TargetAttr>()->parse());
2319         });
2320 
2321     llvm::Function *ResolverFunc = cast<llvm::Function>(
2322         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2323     if (supportsCOMDAT())
2324       ResolverFunc->setComdat(
2325           getModule().getOrInsertComdat(ResolverFunc->getName()));
2326     std::stable_sort(
2327         Options.begin(), Options.end(),
2328         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2329     CodeGenFunction CGF(*this);
2330     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2331   }
2332 }
2333 
2334 /// If an ifunc for the specified mangled name is not in the module, create and
2335 /// return an llvm IFunc Function with the specified type.
2336 llvm::Constant *
2337 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2338                                             StringRef MangledName,
2339                                             const FunctionDecl *FD) {
2340   std::string IFuncName = (MangledName + ".ifunc").str();
2341   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2342     return IFuncGV;
2343 
2344   // Since this is the first time we've created this IFunc, make sure
2345   // that we put this multiversioned function into the list to be
2346   // replaced later.
2347   MultiVersionFuncs.push_back(GD);
2348 
2349   std::string ResolverName = (MangledName + ".resolver").str();
2350   llvm::Type *ResolverType = llvm::FunctionType::get(
2351       llvm::PointerType::get(DeclTy,
2352                              Context.getTargetAddressSpace(FD->getType())),
2353       false);
2354   llvm::Constant *Resolver =
2355       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2356                               /*ForVTable=*/false);
2357   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2358       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2359   GIF->setName(IFuncName);
2360   SetCommonAttributes(FD, GIF);
2361 
2362   return GIF;
2363 }
2364 
2365 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2366 /// module, create and return an llvm Function with the specified type. If there
2367 /// is something in the module with the specified name, return it potentially
2368 /// bitcasted to the right type.
2369 ///
2370 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2371 /// to set the attributes on the function when it is first created.
2372 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2373     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2374     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2375     ForDefinition_t IsForDefinition) {
2376   const Decl *D = GD.getDecl();
2377 
2378   // Any attempts to use a MultiVersion function should result in retrieving
2379   // the iFunc instead. Name Mangling will handle the rest of the changes.
2380   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2381     // For the device mark the function as one that should be emitted.
2382     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2383         !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() &&
2384         !DontDefer && !IsForDefinition)
2385       addDeferredDeclToEmit(GD);
2386 
2387     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2388       UpdateMultiVersionNames(GD, FD);
2389       if (!IsForDefinition)
2390         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2391     }
2392   }
2393 
2394   // Lookup the entry, lazily creating it if necessary.
2395   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2396   if (Entry) {
2397     if (WeakRefReferences.erase(Entry)) {
2398       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2399       if (FD && !FD->hasAttr<WeakAttr>())
2400         Entry->setLinkage(llvm::Function::ExternalLinkage);
2401     }
2402 
2403     // Handle dropped DLL attributes.
2404     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2405       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2406       setDSOLocal(Entry);
2407     }
2408 
2409     // If there are two attempts to define the same mangled name, issue an
2410     // error.
2411     if (IsForDefinition && !Entry->isDeclaration()) {
2412       GlobalDecl OtherGD;
2413       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2414       // to make sure that we issue an error only once.
2415       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2416           (GD.getCanonicalDecl().getDecl() !=
2417            OtherGD.getCanonicalDecl().getDecl()) &&
2418           DiagnosedConflictingDefinitions.insert(GD).second) {
2419         getDiags().Report(D->getLocation(),
2420                           diag::err_duplicate_mangled_name);
2421         getDiags().Report(OtherGD.getDecl()->getLocation(),
2422                           diag::note_previous_definition);
2423       }
2424     }
2425 
2426     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2427         (Entry->getType()->getElementType() == Ty)) {
2428       return Entry;
2429     }
2430 
2431     // Make sure the result is of the correct type.
2432     // (If function is requested for a definition, we always need to create a new
2433     // function, not just return a bitcast.)
2434     if (!IsForDefinition)
2435       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2436   }
2437 
2438   // This function doesn't have a complete type (for example, the return
2439   // type is an incomplete struct). Use a fake type instead, and make
2440   // sure not to try to set attributes.
2441   bool IsIncompleteFunction = false;
2442 
2443   llvm::FunctionType *FTy;
2444   if (isa<llvm::FunctionType>(Ty)) {
2445     FTy = cast<llvm::FunctionType>(Ty);
2446   } else {
2447     FTy = llvm::FunctionType::get(VoidTy, false);
2448     IsIncompleteFunction = true;
2449   }
2450 
2451   llvm::Function *F =
2452       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2453                              Entry ? StringRef() : MangledName, &getModule());
2454 
2455   // If we already created a function with the same mangled name (but different
2456   // type) before, take its name and add it to the list of functions to be
2457   // replaced with F at the end of CodeGen.
2458   //
2459   // This happens if there is a prototype for a function (e.g. "int f()") and
2460   // then a definition of a different type (e.g. "int f(int x)").
2461   if (Entry) {
2462     F->takeName(Entry);
2463 
2464     // This might be an implementation of a function without a prototype, in
2465     // which case, try to do special replacement of calls which match the new
2466     // prototype.  The really key thing here is that we also potentially drop
2467     // arguments from the call site so as to make a direct call, which makes the
2468     // inliner happier and suppresses a number of optimizer warnings (!) about
2469     // dropping arguments.
2470     if (!Entry->use_empty()) {
2471       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2472       Entry->removeDeadConstantUsers();
2473     }
2474 
2475     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2476         F, Entry->getType()->getElementType()->getPointerTo());
2477     addGlobalValReplacement(Entry, BC);
2478   }
2479 
2480   assert(F->getName() == MangledName && "name was uniqued!");
2481   if (D)
2482     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2483   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2484     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2485     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2486   }
2487 
2488   if (!DontDefer) {
2489     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2490     // each other bottoming out with the base dtor.  Therefore we emit non-base
2491     // dtors on usage, even if there is no dtor definition in the TU.
2492     if (D && isa<CXXDestructorDecl>(D) &&
2493         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2494                                            GD.getDtorType()))
2495       addDeferredDeclToEmit(GD);
2496 
2497     // This is the first use or definition of a mangled name.  If there is a
2498     // deferred decl with this name, remember that we need to emit it at the end
2499     // of the file.
2500     auto DDI = DeferredDecls.find(MangledName);
2501     if (DDI != DeferredDecls.end()) {
2502       // Move the potentially referenced deferred decl to the
2503       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2504       // don't need it anymore).
2505       addDeferredDeclToEmit(DDI->second);
2506       DeferredDecls.erase(DDI);
2507 
2508       // Otherwise, there are cases we have to worry about where we're
2509       // using a declaration for which we must emit a definition but where
2510       // we might not find a top-level definition:
2511       //   - member functions defined inline in their classes
2512       //   - friend functions defined inline in some class
2513       //   - special member functions with implicit definitions
2514       // If we ever change our AST traversal to walk into class methods,
2515       // this will be unnecessary.
2516       //
2517       // We also don't emit a definition for a function if it's going to be an
2518       // entry in a vtable, unless it's already marked as used.
2519     } else if (getLangOpts().CPlusPlus && D) {
2520       // Look for a declaration that's lexically in a record.
2521       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2522            FD = FD->getPreviousDecl()) {
2523         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2524           if (FD->doesThisDeclarationHaveABody()) {
2525             addDeferredDeclToEmit(GD.getWithDecl(FD));
2526             break;
2527           }
2528         }
2529       }
2530     }
2531   }
2532 
2533   // Make sure the result is of the requested type.
2534   if (!IsIncompleteFunction) {
2535     assert(F->getType()->getElementType() == Ty);
2536     return F;
2537   }
2538 
2539   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2540   return llvm::ConstantExpr::getBitCast(F, PTy);
2541 }
2542 
2543 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2544 /// non-null, then this function will use the specified type if it has to
2545 /// create it (this occurs when we see a definition of the function).
2546 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2547                                                  llvm::Type *Ty,
2548                                                  bool ForVTable,
2549                                                  bool DontDefer,
2550                                               ForDefinition_t IsForDefinition) {
2551   // If there was no specific requested type, just convert it now.
2552   if (!Ty) {
2553     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2554     auto CanonTy = Context.getCanonicalType(FD->getType());
2555     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2556   }
2557 
2558   // Devirtualized destructor calls may come through here instead of via
2559   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2560   // of the complete destructor when necessary.
2561   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2562     if (getTarget().getCXXABI().isMicrosoft() &&
2563         GD.getDtorType() == Dtor_Complete &&
2564         DD->getParent()->getNumVBases() == 0)
2565       GD = GlobalDecl(DD, Dtor_Base);
2566   }
2567 
2568   StringRef MangledName = getMangledName(GD);
2569   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2570                                  /*IsThunk=*/false, llvm::AttributeList(),
2571                                  IsForDefinition);
2572 }
2573 
2574 static const FunctionDecl *
2575 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2576   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2577   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2578 
2579   IdentifierInfo &CII = C.Idents.get(Name);
2580   for (const auto &Result : DC->lookup(&CII))
2581     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2582       return FD;
2583 
2584   if (!C.getLangOpts().CPlusPlus)
2585     return nullptr;
2586 
2587   // Demangle the premangled name from getTerminateFn()
2588   IdentifierInfo &CXXII =
2589       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2590           ? C.Idents.get("terminate")
2591           : C.Idents.get(Name);
2592 
2593   for (const auto &N : {"__cxxabiv1", "std"}) {
2594     IdentifierInfo &NS = C.Idents.get(N);
2595     for (const auto &Result : DC->lookup(&NS)) {
2596       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2597       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2598         for (const auto &Result : LSD->lookup(&NS))
2599           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2600             break;
2601 
2602       if (ND)
2603         for (const auto &Result : ND->lookup(&CXXII))
2604           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2605             return FD;
2606     }
2607   }
2608 
2609   return nullptr;
2610 }
2611 
2612 /// CreateRuntimeFunction - Create a new runtime function with the specified
2613 /// type and name.
2614 llvm::Constant *
2615 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2616                                      llvm::AttributeList ExtraAttrs,
2617                                      bool Local) {
2618   llvm::Constant *C =
2619       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2620                               /*DontDefer=*/false, /*IsThunk=*/false,
2621                               ExtraAttrs);
2622 
2623   if (auto *F = dyn_cast<llvm::Function>(C)) {
2624     if (F->empty()) {
2625       F->setCallingConv(getRuntimeCC());
2626 
2627       if (!Local && getTriple().isOSBinFormatCOFF() &&
2628           !getCodeGenOpts().LTOVisibilityPublicStd &&
2629           !getTriple().isWindowsGNUEnvironment()) {
2630         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2631         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2632           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2633           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2634         }
2635       }
2636       setDSOLocal(F);
2637     }
2638   }
2639 
2640   return C;
2641 }
2642 
2643 /// CreateBuiltinFunction - Create a new builtin function with the specified
2644 /// type and name.
2645 llvm::Constant *
2646 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2647                                      llvm::AttributeList ExtraAttrs) {
2648   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2649 }
2650 
2651 /// isTypeConstant - Determine whether an object of this type can be emitted
2652 /// as a constant.
2653 ///
2654 /// If ExcludeCtor is true, the duration when the object's constructor runs
2655 /// will not be considered. The caller will need to verify that the object is
2656 /// not written to during its construction.
2657 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2658   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2659     return false;
2660 
2661   if (Context.getLangOpts().CPlusPlus) {
2662     if (const CXXRecordDecl *Record
2663           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2664       return ExcludeCtor && !Record->hasMutableFields() &&
2665              Record->hasTrivialDestructor();
2666   }
2667 
2668   return true;
2669 }
2670 
2671 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2672 /// create and return an llvm GlobalVariable with the specified type.  If there
2673 /// is something in the module with the specified name, return it potentially
2674 /// bitcasted to the right type.
2675 ///
2676 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2677 /// to set the attributes on the global when it is first created.
2678 ///
2679 /// If IsForDefinition is true, it is guaranteed that an actual global with
2680 /// type Ty will be returned, not conversion of a variable with the same
2681 /// mangled name but some other type.
2682 llvm::Constant *
2683 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2684                                      llvm::PointerType *Ty,
2685                                      const VarDecl *D,
2686                                      ForDefinition_t IsForDefinition) {
2687   // Lookup the entry, lazily creating it if necessary.
2688   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2689   if (Entry) {
2690     if (WeakRefReferences.erase(Entry)) {
2691       if (D && !D->hasAttr<WeakAttr>())
2692         Entry->setLinkage(llvm::Function::ExternalLinkage);
2693     }
2694 
2695     // Handle dropped DLL attributes.
2696     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2697       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2698 
2699     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2700       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2701 
2702     if (Entry->getType() == Ty)
2703       return Entry;
2704 
2705     // If there are two attempts to define the same mangled name, issue an
2706     // error.
2707     if (IsForDefinition && !Entry->isDeclaration()) {
2708       GlobalDecl OtherGD;
2709       const VarDecl *OtherD;
2710 
2711       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2712       // to make sure that we issue an error only once.
2713       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2714           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2715           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2716           OtherD->hasInit() &&
2717           DiagnosedConflictingDefinitions.insert(D).second) {
2718         getDiags().Report(D->getLocation(),
2719                           diag::err_duplicate_mangled_name);
2720         getDiags().Report(OtherGD.getDecl()->getLocation(),
2721                           diag::note_previous_definition);
2722       }
2723     }
2724 
2725     // Make sure the result is of the correct type.
2726     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2727       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2728 
2729     // (If global is requested for a definition, we always need to create a new
2730     // global, not just return a bitcast.)
2731     if (!IsForDefinition)
2732       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2733   }
2734 
2735   auto AddrSpace = GetGlobalVarAddressSpace(D);
2736   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2737 
2738   auto *GV = new llvm::GlobalVariable(
2739       getModule(), Ty->getElementType(), false,
2740       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2741       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2742 
2743   // If we already created a global with the same mangled name (but different
2744   // type) before, take its name and remove it from its parent.
2745   if (Entry) {
2746     GV->takeName(Entry);
2747 
2748     if (!Entry->use_empty()) {
2749       llvm::Constant *NewPtrForOldDecl =
2750           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2751       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2752     }
2753 
2754     Entry->eraseFromParent();
2755   }
2756 
2757   // This is the first use or definition of a mangled name.  If there is a
2758   // deferred decl with this name, remember that we need to emit it at the end
2759   // of the file.
2760   auto DDI = DeferredDecls.find(MangledName);
2761   if (DDI != DeferredDecls.end()) {
2762     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2763     // list, and remove it from DeferredDecls (since we don't need it anymore).
2764     addDeferredDeclToEmit(DDI->second);
2765     DeferredDecls.erase(DDI);
2766   }
2767 
2768   // Handle things which are present even on external declarations.
2769   if (D) {
2770     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2771       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2772 
2773     // FIXME: This code is overly simple and should be merged with other global
2774     // handling.
2775     GV->setConstant(isTypeConstant(D->getType(), false));
2776 
2777     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2778 
2779     setLinkageForGV(GV, D);
2780 
2781     if (D->getTLSKind()) {
2782       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2783         CXXThreadLocals.push_back(D);
2784       setTLSMode(GV, *D);
2785     }
2786 
2787     setGVProperties(GV, D);
2788 
2789     // If required by the ABI, treat declarations of static data members with
2790     // inline initializers as definitions.
2791     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2792       EmitGlobalVarDefinition(D);
2793     }
2794 
2795     // Emit section information for extern variables.
2796     if (D->hasExternalStorage()) {
2797       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2798         GV->setSection(SA->getName());
2799     }
2800 
2801     // Handle XCore specific ABI requirements.
2802     if (getTriple().getArch() == llvm::Triple::xcore &&
2803         D->getLanguageLinkage() == CLanguageLinkage &&
2804         D->getType().isConstant(Context) &&
2805         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2806       GV->setSection(".cp.rodata");
2807 
2808     // Check if we a have a const declaration with an initializer, we may be
2809     // able to emit it as available_externally to expose it's value to the
2810     // optimizer.
2811     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2812         D->getType().isConstQualified() && !GV->hasInitializer() &&
2813         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2814       const auto *Record =
2815           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2816       bool HasMutableFields = Record && Record->hasMutableFields();
2817       if (!HasMutableFields) {
2818         const VarDecl *InitDecl;
2819         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2820         if (InitExpr) {
2821           ConstantEmitter emitter(*this);
2822           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2823           if (Init) {
2824             auto *InitType = Init->getType();
2825             if (GV->getType()->getElementType() != InitType) {
2826               // The type of the initializer does not match the definition.
2827               // This happens when an initializer has a different type from
2828               // the type of the global (because of padding at the end of a
2829               // structure for instance).
2830               GV->setName(StringRef());
2831               // Make a new global with the correct type, this is now guaranteed
2832               // to work.
2833               auto *NewGV = cast<llvm::GlobalVariable>(
2834                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2835 
2836               // Erase the old global, since it is no longer used.
2837               GV->eraseFromParent();
2838               GV = NewGV;
2839             } else {
2840               GV->setInitializer(Init);
2841               GV->setConstant(true);
2842               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2843             }
2844             emitter.finalize(GV);
2845           }
2846         }
2847       }
2848     }
2849   }
2850 
2851   LangAS ExpectedAS =
2852       D ? D->getType().getAddressSpace()
2853         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2854   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2855          Ty->getPointerAddressSpace());
2856   if (AddrSpace != ExpectedAS)
2857     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2858                                                        ExpectedAS, Ty);
2859 
2860   return GV;
2861 }
2862 
2863 llvm::Constant *
2864 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2865                                ForDefinition_t IsForDefinition) {
2866   const Decl *D = GD.getDecl();
2867   if (isa<CXXConstructorDecl>(D))
2868     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2869                                 getFromCtorType(GD.getCtorType()),
2870                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2871                                 /*DontDefer=*/false, IsForDefinition);
2872   else if (isa<CXXDestructorDecl>(D))
2873     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2874                                 getFromDtorType(GD.getDtorType()),
2875                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2876                                 /*DontDefer=*/false, IsForDefinition);
2877   else if (isa<CXXMethodDecl>(D)) {
2878     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2879         cast<CXXMethodDecl>(D));
2880     auto Ty = getTypes().GetFunctionType(*FInfo);
2881     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2882                              IsForDefinition);
2883   } else if (isa<FunctionDecl>(D)) {
2884     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2885     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2886     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2887                              IsForDefinition);
2888   } else
2889     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2890                               IsForDefinition);
2891 }
2892 
2893 llvm::GlobalVariable *
2894 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2895                                       llvm::Type *Ty,
2896                                       llvm::GlobalValue::LinkageTypes Linkage) {
2897   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2898   llvm::GlobalVariable *OldGV = nullptr;
2899 
2900   if (GV) {
2901     // Check if the variable has the right type.
2902     if (GV->getType()->getElementType() == Ty)
2903       return GV;
2904 
2905     // Because C++ name mangling, the only way we can end up with an already
2906     // existing global with the same name is if it has been declared extern "C".
2907     assert(GV->isDeclaration() && "Declaration has wrong type!");
2908     OldGV = GV;
2909   }
2910 
2911   // Create a new variable.
2912   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2913                                 Linkage, nullptr, Name);
2914 
2915   if (OldGV) {
2916     // Replace occurrences of the old variable if needed.
2917     GV->takeName(OldGV);
2918 
2919     if (!OldGV->use_empty()) {
2920       llvm::Constant *NewPtrForOldDecl =
2921       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2922       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2923     }
2924 
2925     OldGV->eraseFromParent();
2926   }
2927 
2928   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2929       !GV->hasAvailableExternallyLinkage())
2930     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2931 
2932   return GV;
2933 }
2934 
2935 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2936 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2937 /// then it will be created with the specified type instead of whatever the
2938 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
2939 /// that an actual global with type Ty will be returned, not conversion of a
2940 /// variable with the same mangled name but some other type.
2941 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2942                                                   llvm::Type *Ty,
2943                                            ForDefinition_t IsForDefinition) {
2944   assert(D->hasGlobalStorage() && "Not a global variable");
2945   QualType ASTTy = D->getType();
2946   if (!Ty)
2947     Ty = getTypes().ConvertTypeForMem(ASTTy);
2948 
2949   llvm::PointerType *PTy =
2950     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2951 
2952   StringRef MangledName = getMangledName(D);
2953   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2954 }
2955 
2956 /// CreateRuntimeVariable - Create a new runtime global variable with the
2957 /// specified type and name.
2958 llvm::Constant *
2959 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2960                                      StringRef Name) {
2961   auto *Ret =
2962       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2963   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
2964   return Ret;
2965 }
2966 
2967 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2968   assert(!D->getInit() && "Cannot emit definite definitions here!");
2969 
2970   StringRef MangledName = getMangledName(D);
2971   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2972 
2973   // We already have a definition, not declaration, with the same mangled name.
2974   // Emitting of declaration is not required (and actually overwrites emitted
2975   // definition).
2976   if (GV && !GV->isDeclaration())
2977     return;
2978 
2979   // If we have not seen a reference to this variable yet, place it into the
2980   // deferred declarations table to be emitted if needed later.
2981   if (!MustBeEmitted(D) && !GV) {
2982       DeferredDecls[MangledName] = D;
2983       return;
2984   }
2985 
2986   // The tentative definition is the only definition.
2987   EmitGlobalVarDefinition(D);
2988 }
2989 
2990 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2991   return Context.toCharUnitsFromBits(
2992       getDataLayout().getTypeStoreSizeInBits(Ty));
2993 }
2994 
2995 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2996   LangAS AddrSpace = LangAS::Default;
2997   if (LangOpts.OpenCL) {
2998     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2999     assert(AddrSpace == LangAS::opencl_global ||
3000            AddrSpace == LangAS::opencl_constant ||
3001            AddrSpace == LangAS::opencl_local ||
3002            AddrSpace >= LangAS::FirstTargetAddressSpace);
3003     return AddrSpace;
3004   }
3005 
3006   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3007     if (D && D->hasAttr<CUDAConstantAttr>())
3008       return LangAS::cuda_constant;
3009     else if (D && D->hasAttr<CUDASharedAttr>())
3010       return LangAS::cuda_shared;
3011     else
3012       return LangAS::cuda_device;
3013   }
3014 
3015   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3016 }
3017 
3018 template<typename SomeDecl>
3019 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3020                                                llvm::GlobalValue *GV) {
3021   if (!getLangOpts().CPlusPlus)
3022     return;
3023 
3024   // Must have 'used' attribute, or else inline assembly can't rely on
3025   // the name existing.
3026   if (!D->template hasAttr<UsedAttr>())
3027     return;
3028 
3029   // Must have internal linkage and an ordinary name.
3030   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3031     return;
3032 
3033   // Must be in an extern "C" context. Entities declared directly within
3034   // a record are not extern "C" even if the record is in such a context.
3035   const SomeDecl *First = D->getFirstDecl();
3036   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3037     return;
3038 
3039   // OK, this is an internal linkage entity inside an extern "C" linkage
3040   // specification. Make a note of that so we can give it the "expected"
3041   // mangled name if nothing else is using that name.
3042   std::pair<StaticExternCMap::iterator, bool> R =
3043       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3044 
3045   // If we have multiple internal linkage entities with the same name
3046   // in extern "C" regions, none of them gets that name.
3047   if (!R.second)
3048     R.first->second = nullptr;
3049 }
3050 
3051 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3052   if (!CGM.supportsCOMDAT())
3053     return false;
3054 
3055   if (D.hasAttr<SelectAnyAttr>())
3056     return true;
3057 
3058   GVALinkage Linkage;
3059   if (auto *VD = dyn_cast<VarDecl>(&D))
3060     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3061   else
3062     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3063 
3064   switch (Linkage) {
3065   case GVA_Internal:
3066   case GVA_AvailableExternally:
3067   case GVA_StrongExternal:
3068     return false;
3069   case GVA_DiscardableODR:
3070   case GVA_StrongODR:
3071     return true;
3072   }
3073   llvm_unreachable("No such linkage");
3074 }
3075 
3076 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3077                                           llvm::GlobalObject &GO) {
3078   if (!shouldBeInCOMDAT(*this, D))
3079     return;
3080   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3081 }
3082 
3083 /// Pass IsTentative as true if you want to create a tentative definition.
3084 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3085                                             bool IsTentative) {
3086   // OpenCL global variables of sampler type are translated to function calls,
3087   // therefore no need to be translated.
3088   QualType ASTTy = D->getType();
3089   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3090     return;
3091 
3092   // If this is OpenMP device, check if it is legal to emit this global
3093   // normally.
3094   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3095       OpenMPRuntime->emitTargetGlobalVariable(D))
3096     return;
3097 
3098   llvm::Constant *Init = nullptr;
3099   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3100   bool NeedsGlobalCtor = false;
3101   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3102 
3103   const VarDecl *InitDecl;
3104   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3105 
3106   Optional<ConstantEmitter> emitter;
3107 
3108   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3109   // as part of their declaration."  Sema has already checked for
3110   // error cases, so we just need to set Init to UndefValue.
3111   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3112       D->hasAttr<CUDASharedAttr>())
3113     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3114   else if (!InitExpr) {
3115     // This is a tentative definition; tentative definitions are
3116     // implicitly initialized with { 0 }.
3117     //
3118     // Note that tentative definitions are only emitted at the end of
3119     // a translation unit, so they should never have incomplete
3120     // type. In addition, EmitTentativeDefinition makes sure that we
3121     // never attempt to emit a tentative definition if a real one
3122     // exists. A use may still exists, however, so we still may need
3123     // to do a RAUW.
3124     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3125     Init = EmitNullConstant(D->getType());
3126   } else {
3127     initializedGlobalDecl = GlobalDecl(D);
3128     emitter.emplace(*this);
3129     Init = emitter->tryEmitForInitializer(*InitDecl);
3130 
3131     if (!Init) {
3132       QualType T = InitExpr->getType();
3133       if (D->getType()->isReferenceType())
3134         T = D->getType();
3135 
3136       if (getLangOpts().CPlusPlus) {
3137         Init = EmitNullConstant(T);
3138         NeedsGlobalCtor = true;
3139       } else {
3140         ErrorUnsupported(D, "static initializer");
3141         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3142       }
3143     } else {
3144       // We don't need an initializer, so remove the entry for the delayed
3145       // initializer position (just in case this entry was delayed) if we
3146       // also don't need to register a destructor.
3147       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3148         DelayedCXXInitPosition.erase(D);
3149     }
3150   }
3151 
3152   llvm::Type* InitType = Init->getType();
3153   llvm::Constant *Entry =
3154       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3155 
3156   // Strip off a bitcast if we got one back.
3157   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3158     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3159            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3160            // All zero index gep.
3161            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3162     Entry = CE->getOperand(0);
3163   }
3164 
3165   // Entry is now either a Function or GlobalVariable.
3166   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3167 
3168   // We have a definition after a declaration with the wrong type.
3169   // We must make a new GlobalVariable* and update everything that used OldGV
3170   // (a declaration or tentative definition) with the new GlobalVariable*
3171   // (which will be a definition).
3172   //
3173   // This happens if there is a prototype for a global (e.g.
3174   // "extern int x[];") and then a definition of a different type (e.g.
3175   // "int x[10];"). This also happens when an initializer has a different type
3176   // from the type of the global (this happens with unions).
3177   if (!GV || GV->getType()->getElementType() != InitType ||
3178       GV->getType()->getAddressSpace() !=
3179           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3180 
3181     // Move the old entry aside so that we'll create a new one.
3182     Entry->setName(StringRef());
3183 
3184     // Make a new global with the correct type, this is now guaranteed to work.
3185     GV = cast<llvm::GlobalVariable>(
3186         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3187 
3188     // Replace all uses of the old global with the new global
3189     llvm::Constant *NewPtrForOldDecl =
3190         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3191     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3192 
3193     // Erase the old global, since it is no longer used.
3194     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3195   }
3196 
3197   MaybeHandleStaticInExternC(D, GV);
3198 
3199   if (D->hasAttr<AnnotateAttr>())
3200     AddGlobalAnnotations(D, GV);
3201 
3202   // Set the llvm linkage type as appropriate.
3203   llvm::GlobalValue::LinkageTypes Linkage =
3204       getLLVMLinkageVarDefinition(D, GV->isConstant());
3205 
3206   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3207   // the device. [...]"
3208   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3209   // __device__, declares a variable that: [...]
3210   // Is accessible from all the threads within the grid and from the host
3211   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3212   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3213   if (GV && LangOpts.CUDA) {
3214     if (LangOpts.CUDAIsDevice) {
3215       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3216         GV->setExternallyInitialized(true);
3217     } else {
3218       // Host-side shadows of external declarations of device-side
3219       // global variables become internal definitions. These have to
3220       // be internal in order to prevent name conflicts with global
3221       // host variables with the same name in a different TUs.
3222       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3223         Linkage = llvm::GlobalValue::InternalLinkage;
3224 
3225         // Shadow variables and their properties must be registered
3226         // with CUDA runtime.
3227         unsigned Flags = 0;
3228         if (!D->hasDefinition())
3229           Flags |= CGCUDARuntime::ExternDeviceVar;
3230         if (D->hasAttr<CUDAConstantAttr>())
3231           Flags |= CGCUDARuntime::ConstantDeviceVar;
3232         getCUDARuntime().registerDeviceVar(*GV, Flags);
3233       } else if (D->hasAttr<CUDASharedAttr>())
3234         // __shared__ variables are odd. Shadows do get created, but
3235         // they are not registered with the CUDA runtime, so they
3236         // can't really be used to access their device-side
3237         // counterparts. It's not clear yet whether it's nvcc's bug or
3238         // a feature, but we've got to do the same for compatibility.
3239         Linkage = llvm::GlobalValue::InternalLinkage;
3240     }
3241   }
3242 
3243   GV->setInitializer(Init);
3244   if (emitter) emitter->finalize(GV);
3245 
3246   // If it is safe to mark the global 'constant', do so now.
3247   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3248                   isTypeConstant(D->getType(), true));
3249 
3250   // If it is in a read-only section, mark it 'constant'.
3251   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3252     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3253     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3254       GV->setConstant(true);
3255   }
3256 
3257   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3258 
3259 
3260   // On Darwin, if the normal linkage of a C++ thread_local variable is
3261   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3262   // copies within a linkage unit; otherwise, the backing variable has
3263   // internal linkage and all accesses should just be calls to the
3264   // Itanium-specified entry point, which has the normal linkage of the
3265   // variable. This is to preserve the ability to change the implementation
3266   // behind the scenes.
3267   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3268       Context.getTargetInfo().getTriple().isOSDarwin() &&
3269       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3270       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3271     Linkage = llvm::GlobalValue::InternalLinkage;
3272 
3273   GV->setLinkage(Linkage);
3274   if (D->hasAttr<DLLImportAttr>())
3275     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3276   else if (D->hasAttr<DLLExportAttr>())
3277     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3278   else
3279     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3280 
3281   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3282     // common vars aren't constant even if declared const.
3283     GV->setConstant(false);
3284     // Tentative definition of global variables may be initialized with
3285     // non-zero null pointers. In this case they should have weak linkage
3286     // since common linkage must have zero initializer and must not have
3287     // explicit section therefore cannot have non-zero initial value.
3288     if (!GV->getInitializer()->isNullValue())
3289       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3290   }
3291 
3292   setNonAliasAttributes(D, GV);
3293 
3294   if (D->getTLSKind() && !GV->isThreadLocal()) {
3295     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3296       CXXThreadLocals.push_back(D);
3297     setTLSMode(GV, *D);
3298   }
3299 
3300   maybeSetTrivialComdat(*D, *GV);
3301 
3302   // Emit the initializer function if necessary.
3303   if (NeedsGlobalCtor || NeedsGlobalDtor)
3304     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3305 
3306   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3307 
3308   // Emit global variable debug information.
3309   if (CGDebugInfo *DI = getModuleDebugInfo())
3310     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3311       DI->EmitGlobalVariable(GV, D);
3312 }
3313 
3314 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3315                                       CodeGenModule &CGM, const VarDecl *D,
3316                                       bool NoCommon) {
3317   // Don't give variables common linkage if -fno-common was specified unless it
3318   // was overridden by a NoCommon attribute.
3319   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3320     return true;
3321 
3322   // C11 6.9.2/2:
3323   //   A declaration of an identifier for an object that has file scope without
3324   //   an initializer, and without a storage-class specifier or with the
3325   //   storage-class specifier static, constitutes a tentative definition.
3326   if (D->getInit() || D->hasExternalStorage())
3327     return true;
3328 
3329   // A variable cannot be both common and exist in a section.
3330   if (D->hasAttr<SectionAttr>())
3331     return true;
3332 
3333   // A variable cannot be both common and exist in a section.
3334   // We don't try to determine which is the right section in the front-end.
3335   // If no specialized section name is applicable, it will resort to default.
3336   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3337       D->hasAttr<PragmaClangDataSectionAttr>() ||
3338       D->hasAttr<PragmaClangRodataSectionAttr>())
3339     return true;
3340 
3341   // Thread local vars aren't considered common linkage.
3342   if (D->getTLSKind())
3343     return true;
3344 
3345   // Tentative definitions marked with WeakImportAttr are true definitions.
3346   if (D->hasAttr<WeakImportAttr>())
3347     return true;
3348 
3349   // A variable cannot be both common and exist in a comdat.
3350   if (shouldBeInCOMDAT(CGM, *D))
3351     return true;
3352 
3353   // Declarations with a required alignment do not have common linkage in MSVC
3354   // mode.
3355   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3356     if (D->hasAttr<AlignedAttr>())
3357       return true;
3358     QualType VarType = D->getType();
3359     if (Context.isAlignmentRequired(VarType))
3360       return true;
3361 
3362     if (const auto *RT = VarType->getAs<RecordType>()) {
3363       const RecordDecl *RD = RT->getDecl();
3364       for (const FieldDecl *FD : RD->fields()) {
3365         if (FD->isBitField())
3366           continue;
3367         if (FD->hasAttr<AlignedAttr>())
3368           return true;
3369         if (Context.isAlignmentRequired(FD->getType()))
3370           return true;
3371       }
3372     }
3373   }
3374 
3375   return false;
3376 }
3377 
3378 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3379     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3380   if (Linkage == GVA_Internal)
3381     return llvm::Function::InternalLinkage;
3382 
3383   if (D->hasAttr<WeakAttr>()) {
3384     if (IsConstantVariable)
3385       return llvm::GlobalVariable::WeakODRLinkage;
3386     else
3387       return llvm::GlobalVariable::WeakAnyLinkage;
3388   }
3389 
3390   // We are guaranteed to have a strong definition somewhere else,
3391   // so we can use available_externally linkage.
3392   if (Linkage == GVA_AvailableExternally)
3393     return llvm::GlobalValue::AvailableExternallyLinkage;
3394 
3395   // Note that Apple's kernel linker doesn't support symbol
3396   // coalescing, so we need to avoid linkonce and weak linkages there.
3397   // Normally, this means we just map to internal, but for explicit
3398   // instantiations we'll map to external.
3399 
3400   // In C++, the compiler has to emit a definition in every translation unit
3401   // that references the function.  We should use linkonce_odr because
3402   // a) if all references in this translation unit are optimized away, we
3403   // don't need to codegen it.  b) if the function persists, it needs to be
3404   // merged with other definitions. c) C++ has the ODR, so we know the
3405   // definition is dependable.
3406   if (Linkage == GVA_DiscardableODR)
3407     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3408                                             : llvm::Function::InternalLinkage;
3409 
3410   // An explicit instantiation of a template has weak linkage, since
3411   // explicit instantiations can occur in multiple translation units
3412   // and must all be equivalent. However, we are not allowed to
3413   // throw away these explicit instantiations.
3414   //
3415   // We don't currently support CUDA device code spread out across multiple TUs,
3416   // so say that CUDA templates are either external (for kernels) or internal.
3417   // This lets llvm perform aggressive inter-procedural optimizations.
3418   if (Linkage == GVA_StrongODR) {
3419     if (Context.getLangOpts().AppleKext)
3420       return llvm::Function::ExternalLinkage;
3421     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3422       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3423                                           : llvm::Function::InternalLinkage;
3424     return llvm::Function::WeakODRLinkage;
3425   }
3426 
3427   // C++ doesn't have tentative definitions and thus cannot have common
3428   // linkage.
3429   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3430       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3431                                  CodeGenOpts.NoCommon))
3432     return llvm::GlobalVariable::CommonLinkage;
3433 
3434   // selectany symbols are externally visible, so use weak instead of
3435   // linkonce.  MSVC optimizes away references to const selectany globals, so
3436   // all definitions should be the same and ODR linkage should be used.
3437   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3438   if (D->hasAttr<SelectAnyAttr>())
3439     return llvm::GlobalVariable::WeakODRLinkage;
3440 
3441   // Otherwise, we have strong external linkage.
3442   assert(Linkage == GVA_StrongExternal);
3443   return llvm::GlobalVariable::ExternalLinkage;
3444 }
3445 
3446 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3447     const VarDecl *VD, bool IsConstant) {
3448   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3449   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3450 }
3451 
3452 /// Replace the uses of a function that was declared with a non-proto type.
3453 /// We want to silently drop extra arguments from call sites
3454 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3455                                           llvm::Function *newFn) {
3456   // Fast path.
3457   if (old->use_empty()) return;
3458 
3459   llvm::Type *newRetTy = newFn->getReturnType();
3460   SmallVector<llvm::Value*, 4> newArgs;
3461   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3462 
3463   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3464          ui != ue; ) {
3465     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3466     llvm::User *user = use->getUser();
3467 
3468     // Recognize and replace uses of bitcasts.  Most calls to
3469     // unprototyped functions will use bitcasts.
3470     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3471       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3472         replaceUsesOfNonProtoConstant(bitcast, newFn);
3473       continue;
3474     }
3475 
3476     // Recognize calls to the function.
3477     llvm::CallSite callSite(user);
3478     if (!callSite) continue;
3479     if (!callSite.isCallee(&*use)) continue;
3480 
3481     // If the return types don't match exactly, then we can't
3482     // transform this call unless it's dead.
3483     if (callSite->getType() != newRetTy && !callSite->use_empty())
3484       continue;
3485 
3486     // Get the call site's attribute list.
3487     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3488     llvm::AttributeList oldAttrs = callSite.getAttributes();
3489 
3490     // If the function was passed too few arguments, don't transform.
3491     unsigned newNumArgs = newFn->arg_size();
3492     if (callSite.arg_size() < newNumArgs) continue;
3493 
3494     // If extra arguments were passed, we silently drop them.
3495     // If any of the types mismatch, we don't transform.
3496     unsigned argNo = 0;
3497     bool dontTransform = false;
3498     for (llvm::Argument &A : newFn->args()) {
3499       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3500         dontTransform = true;
3501         break;
3502       }
3503 
3504       // Add any parameter attributes.
3505       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3506       argNo++;
3507     }
3508     if (dontTransform)
3509       continue;
3510 
3511     // Okay, we can transform this.  Create the new call instruction and copy
3512     // over the required information.
3513     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3514 
3515     // Copy over any operand bundles.
3516     callSite.getOperandBundlesAsDefs(newBundles);
3517 
3518     llvm::CallSite newCall;
3519     if (callSite.isCall()) {
3520       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3521                                        callSite.getInstruction());
3522     } else {
3523       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3524       newCall = llvm::InvokeInst::Create(newFn,
3525                                          oldInvoke->getNormalDest(),
3526                                          oldInvoke->getUnwindDest(),
3527                                          newArgs, newBundles, "",
3528                                          callSite.getInstruction());
3529     }
3530     newArgs.clear(); // for the next iteration
3531 
3532     if (!newCall->getType()->isVoidTy())
3533       newCall->takeName(callSite.getInstruction());
3534     newCall.setAttributes(llvm::AttributeList::get(
3535         newFn->getContext(), oldAttrs.getFnAttributes(),
3536         oldAttrs.getRetAttributes(), newArgAttrs));
3537     newCall.setCallingConv(callSite.getCallingConv());
3538 
3539     // Finally, remove the old call, replacing any uses with the new one.
3540     if (!callSite->use_empty())
3541       callSite->replaceAllUsesWith(newCall.getInstruction());
3542 
3543     // Copy debug location attached to CI.
3544     if (callSite->getDebugLoc())
3545       newCall->setDebugLoc(callSite->getDebugLoc());
3546 
3547     callSite->eraseFromParent();
3548   }
3549 }
3550 
3551 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3552 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3553 /// existing call uses of the old function in the module, this adjusts them to
3554 /// call the new function directly.
3555 ///
3556 /// This is not just a cleanup: the always_inline pass requires direct calls to
3557 /// functions to be able to inline them.  If there is a bitcast in the way, it
3558 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3559 /// run at -O0.
3560 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3561                                                       llvm::Function *NewFn) {
3562   // If we're redefining a global as a function, don't transform it.
3563   if (!isa<llvm::Function>(Old)) return;
3564 
3565   replaceUsesOfNonProtoConstant(Old, NewFn);
3566 }
3567 
3568 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3569   auto DK = VD->isThisDeclarationADefinition();
3570   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3571     return;
3572 
3573   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3574   // If we have a definition, this might be a deferred decl. If the
3575   // instantiation is explicit, make sure we emit it at the end.
3576   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3577     GetAddrOfGlobalVar(VD);
3578 
3579   EmitTopLevelDecl(VD);
3580 }
3581 
3582 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3583                                                  llvm::GlobalValue *GV) {
3584   const auto *D = cast<FunctionDecl>(GD.getDecl());
3585 
3586   // Compute the function info and LLVM type.
3587   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3588   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3589 
3590   // Get or create the prototype for the function.
3591   if (!GV || (GV->getType()->getElementType() != Ty))
3592     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3593                                                    /*DontDefer=*/true,
3594                                                    ForDefinition));
3595 
3596   // Already emitted.
3597   if (!GV->isDeclaration())
3598     return;
3599 
3600   // We need to set linkage and visibility on the function before
3601   // generating code for it because various parts of IR generation
3602   // want to propagate this information down (e.g. to local static
3603   // declarations).
3604   auto *Fn = cast<llvm::Function>(GV);
3605   setFunctionLinkage(GD, Fn);
3606 
3607   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3608   setGVProperties(Fn, GD);
3609 
3610   MaybeHandleStaticInExternC(D, Fn);
3611 
3612   maybeSetTrivialComdat(*D, *Fn);
3613 
3614   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3615 
3616   setNonAliasAttributes(GD, Fn);
3617   SetLLVMFunctionAttributesForDefinition(D, Fn);
3618 
3619   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3620     AddGlobalCtor(Fn, CA->getPriority());
3621   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3622     AddGlobalDtor(Fn, DA->getPriority());
3623   if (D->hasAttr<AnnotateAttr>())
3624     AddGlobalAnnotations(D, Fn);
3625 }
3626 
3627 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3628   const auto *D = cast<ValueDecl>(GD.getDecl());
3629   const AliasAttr *AA = D->getAttr<AliasAttr>();
3630   assert(AA && "Not an alias?");
3631 
3632   StringRef MangledName = getMangledName(GD);
3633 
3634   if (AA->getAliasee() == MangledName) {
3635     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3636     return;
3637   }
3638 
3639   // If there is a definition in the module, then it wins over the alias.
3640   // This is dubious, but allow it to be safe.  Just ignore the alias.
3641   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3642   if (Entry && !Entry->isDeclaration())
3643     return;
3644 
3645   Aliases.push_back(GD);
3646 
3647   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3648 
3649   // Create a reference to the named value.  This ensures that it is emitted
3650   // if a deferred decl.
3651   llvm::Constant *Aliasee;
3652   if (isa<llvm::FunctionType>(DeclTy))
3653     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3654                                       /*ForVTable=*/false);
3655   else
3656     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3657                                     llvm::PointerType::getUnqual(DeclTy),
3658                                     /*D=*/nullptr);
3659 
3660   // Create the new alias itself, but don't set a name yet.
3661   auto *GA = llvm::GlobalAlias::create(
3662       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3663 
3664   if (Entry) {
3665     if (GA->getAliasee() == Entry) {
3666       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3667       return;
3668     }
3669 
3670     assert(Entry->isDeclaration());
3671 
3672     // If there is a declaration in the module, then we had an extern followed
3673     // by the alias, as in:
3674     //   extern int test6();
3675     //   ...
3676     //   int test6() __attribute__((alias("test7")));
3677     //
3678     // Remove it and replace uses of it with the alias.
3679     GA->takeName(Entry);
3680 
3681     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3682                                                           Entry->getType()));
3683     Entry->eraseFromParent();
3684   } else {
3685     GA->setName(MangledName);
3686   }
3687 
3688   // Set attributes which are particular to an alias; this is a
3689   // specialization of the attributes which may be set on a global
3690   // variable/function.
3691   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3692       D->isWeakImported()) {
3693     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3694   }
3695 
3696   if (const auto *VD = dyn_cast<VarDecl>(D))
3697     if (VD->getTLSKind())
3698       setTLSMode(GA, *VD);
3699 
3700   SetCommonAttributes(GD, GA);
3701 }
3702 
3703 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3704   const auto *D = cast<ValueDecl>(GD.getDecl());
3705   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3706   assert(IFA && "Not an ifunc?");
3707 
3708   StringRef MangledName = getMangledName(GD);
3709 
3710   if (IFA->getResolver() == MangledName) {
3711     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3712     return;
3713   }
3714 
3715   // Report an error if some definition overrides ifunc.
3716   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3717   if (Entry && !Entry->isDeclaration()) {
3718     GlobalDecl OtherGD;
3719     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3720         DiagnosedConflictingDefinitions.insert(GD).second) {
3721       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3722       Diags.Report(OtherGD.getDecl()->getLocation(),
3723                    diag::note_previous_definition);
3724     }
3725     return;
3726   }
3727 
3728   Aliases.push_back(GD);
3729 
3730   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3731   llvm::Constant *Resolver =
3732       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3733                               /*ForVTable=*/false);
3734   llvm::GlobalIFunc *GIF =
3735       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3736                                 "", Resolver, &getModule());
3737   if (Entry) {
3738     if (GIF->getResolver() == Entry) {
3739       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3740       return;
3741     }
3742     assert(Entry->isDeclaration());
3743 
3744     // If there is a declaration in the module, then we had an extern followed
3745     // by the ifunc, as in:
3746     //   extern int test();
3747     //   ...
3748     //   int test() __attribute__((ifunc("resolver")));
3749     //
3750     // Remove it and replace uses of it with the ifunc.
3751     GIF->takeName(Entry);
3752 
3753     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3754                                                           Entry->getType()));
3755     Entry->eraseFromParent();
3756   } else
3757     GIF->setName(MangledName);
3758 
3759   SetCommonAttributes(GD, GIF);
3760 }
3761 
3762 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3763                                             ArrayRef<llvm::Type*> Tys) {
3764   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3765                                          Tys);
3766 }
3767 
3768 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3769 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3770                          const StringLiteral *Literal, bool TargetIsLSB,
3771                          bool &IsUTF16, unsigned &StringLength) {
3772   StringRef String = Literal->getString();
3773   unsigned NumBytes = String.size();
3774 
3775   // Check for simple case.
3776   if (!Literal->containsNonAsciiOrNull()) {
3777     StringLength = NumBytes;
3778     return *Map.insert(std::make_pair(String, nullptr)).first;
3779   }
3780 
3781   // Otherwise, convert the UTF8 literals into a string of shorts.
3782   IsUTF16 = true;
3783 
3784   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3785   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3786   llvm::UTF16 *ToPtr = &ToBuf[0];
3787 
3788   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3789                                  ToPtr + NumBytes, llvm::strictConversion);
3790 
3791   // ConvertUTF8toUTF16 returns the length in ToPtr.
3792   StringLength = ToPtr - &ToBuf[0];
3793 
3794   // Add an explicit null.
3795   *ToPtr = 0;
3796   return *Map.insert(std::make_pair(
3797                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3798                                    (StringLength + 1) * 2),
3799                          nullptr)).first;
3800 }
3801 
3802 ConstantAddress
3803 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3804   unsigned StringLength = 0;
3805   bool isUTF16 = false;
3806   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3807       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3808                                getDataLayout().isLittleEndian(), isUTF16,
3809                                StringLength);
3810 
3811   if (auto *C = Entry.second)
3812     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3813 
3814   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3815   llvm::Constant *Zeros[] = { Zero, Zero };
3816 
3817   // If we don't already have it, get __CFConstantStringClassReference.
3818   if (!CFConstantStringClassRef) {
3819     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3820     Ty = llvm::ArrayType::get(Ty, 0);
3821     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3822         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3823 
3824     if (getTriple().isOSBinFormatCOFF()) {
3825       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3826       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3827       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3828 
3829       const VarDecl *VD = nullptr;
3830       for (const auto &Result : DC->lookup(&II))
3831         if ((VD = dyn_cast<VarDecl>(Result)))
3832           break;
3833 
3834       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3835         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3836         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3837       } else {
3838         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3839         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3840       }
3841     }
3842     setDSOLocal(GV);
3843 
3844     // Decay array -> ptr
3845     CFConstantStringClassRef =
3846         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3847   }
3848 
3849   QualType CFTy = getContext().getCFConstantStringType();
3850 
3851   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3852 
3853   ConstantInitBuilder Builder(*this);
3854   auto Fields = Builder.beginStruct(STy);
3855 
3856   // Class pointer.
3857   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3858 
3859   // Flags.
3860   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3861 
3862   // String pointer.
3863   llvm::Constant *C = nullptr;
3864   if (isUTF16) {
3865     auto Arr = llvm::makeArrayRef(
3866         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3867         Entry.first().size() / 2);
3868     C = llvm::ConstantDataArray::get(VMContext, Arr);
3869   } else {
3870     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3871   }
3872 
3873   // Note: -fwritable-strings doesn't make the backing store strings of
3874   // CFStrings writable. (See <rdar://problem/10657500>)
3875   auto *GV =
3876       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3877                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3878   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3879   // Don't enforce the target's minimum global alignment, since the only use
3880   // of the string is via this class initializer.
3881   CharUnits Align = isUTF16
3882                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3883                         : getContext().getTypeAlignInChars(getContext().CharTy);
3884   GV->setAlignment(Align.getQuantity());
3885 
3886   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3887   // Without it LLVM can merge the string with a non unnamed_addr one during
3888   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3889   if (getTriple().isOSBinFormatMachO())
3890     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3891                            : "__TEXT,__cstring,cstring_literals");
3892 
3893   // String.
3894   llvm::Constant *Str =
3895       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3896 
3897   if (isUTF16)
3898     // Cast the UTF16 string to the correct type.
3899     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3900   Fields.add(Str);
3901 
3902   // String length.
3903   auto Ty = getTypes().ConvertType(getContext().LongTy);
3904   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3905 
3906   CharUnits Alignment = getPointerAlign();
3907 
3908   // The struct.
3909   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3910                                     /*isConstant=*/false,
3911                                     llvm::GlobalVariable::PrivateLinkage);
3912   switch (getTriple().getObjectFormat()) {
3913   case llvm::Triple::UnknownObjectFormat:
3914     llvm_unreachable("unknown file format");
3915   case llvm::Triple::COFF:
3916   case llvm::Triple::ELF:
3917   case llvm::Triple::Wasm:
3918     GV->setSection("cfstring");
3919     break;
3920   case llvm::Triple::MachO:
3921     GV->setSection("__DATA,__cfstring");
3922     break;
3923   }
3924   Entry.second = GV;
3925 
3926   return ConstantAddress(GV, Alignment);
3927 }
3928 
3929 bool CodeGenModule::getExpressionLocationsEnabled() const {
3930   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3931 }
3932 
3933 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3934   if (ObjCFastEnumerationStateType.isNull()) {
3935     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3936     D->startDefinition();
3937 
3938     QualType FieldTypes[] = {
3939       Context.UnsignedLongTy,
3940       Context.getPointerType(Context.getObjCIdType()),
3941       Context.getPointerType(Context.UnsignedLongTy),
3942       Context.getConstantArrayType(Context.UnsignedLongTy,
3943                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3944     };
3945 
3946     for (size_t i = 0; i < 4; ++i) {
3947       FieldDecl *Field = FieldDecl::Create(Context,
3948                                            D,
3949                                            SourceLocation(),
3950                                            SourceLocation(), nullptr,
3951                                            FieldTypes[i], /*TInfo=*/nullptr,
3952                                            /*BitWidth=*/nullptr,
3953                                            /*Mutable=*/false,
3954                                            ICIS_NoInit);
3955       Field->setAccess(AS_public);
3956       D->addDecl(Field);
3957     }
3958 
3959     D->completeDefinition();
3960     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3961   }
3962 
3963   return ObjCFastEnumerationStateType;
3964 }
3965 
3966 llvm::Constant *
3967 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3968   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3969 
3970   // Don't emit it as the address of the string, emit the string data itself
3971   // as an inline array.
3972   if (E->getCharByteWidth() == 1) {
3973     SmallString<64> Str(E->getString());
3974 
3975     // Resize the string to the right size, which is indicated by its type.
3976     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3977     Str.resize(CAT->getSize().getZExtValue());
3978     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3979   }
3980 
3981   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3982   llvm::Type *ElemTy = AType->getElementType();
3983   unsigned NumElements = AType->getNumElements();
3984 
3985   // Wide strings have either 2-byte or 4-byte elements.
3986   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3987     SmallVector<uint16_t, 32> Elements;
3988     Elements.reserve(NumElements);
3989 
3990     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3991       Elements.push_back(E->getCodeUnit(i));
3992     Elements.resize(NumElements);
3993     return llvm::ConstantDataArray::get(VMContext, Elements);
3994   }
3995 
3996   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3997   SmallVector<uint32_t, 32> Elements;
3998   Elements.reserve(NumElements);
3999 
4000   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4001     Elements.push_back(E->getCodeUnit(i));
4002   Elements.resize(NumElements);
4003   return llvm::ConstantDataArray::get(VMContext, Elements);
4004 }
4005 
4006 static llvm::GlobalVariable *
4007 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4008                       CodeGenModule &CGM, StringRef GlobalName,
4009                       CharUnits Alignment) {
4010   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4011   unsigned AddrSpace = 0;
4012   if (CGM.getLangOpts().OpenCL)
4013     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
4014 
4015   llvm::Module &M = CGM.getModule();
4016   // Create a global variable for this string
4017   auto *GV = new llvm::GlobalVariable(
4018       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4019       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4020   GV->setAlignment(Alignment.getQuantity());
4021   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4022   if (GV->isWeakForLinker()) {
4023     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4024     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4025   }
4026   CGM.setDSOLocal(GV);
4027 
4028   return GV;
4029 }
4030 
4031 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4032 /// constant array for the given string literal.
4033 ConstantAddress
4034 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4035                                                   StringRef Name) {
4036   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4037 
4038   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4039   llvm::GlobalVariable **Entry = nullptr;
4040   if (!LangOpts.WritableStrings) {
4041     Entry = &ConstantStringMap[C];
4042     if (auto GV = *Entry) {
4043       if (Alignment.getQuantity() > GV->getAlignment())
4044         GV->setAlignment(Alignment.getQuantity());
4045       return ConstantAddress(GV, Alignment);
4046     }
4047   }
4048 
4049   SmallString<256> MangledNameBuffer;
4050   StringRef GlobalVariableName;
4051   llvm::GlobalValue::LinkageTypes LT;
4052 
4053   // Mangle the string literal if the ABI allows for it.  However, we cannot
4054   // do this if  we are compiling with ASan or -fwritable-strings because they
4055   // rely on strings having normal linkage.
4056   if (!LangOpts.WritableStrings &&
4057       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4058       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4059     llvm::raw_svector_ostream Out(MangledNameBuffer);
4060     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4061 
4062     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4063     GlobalVariableName = MangledNameBuffer;
4064   } else {
4065     LT = llvm::GlobalValue::PrivateLinkage;
4066     GlobalVariableName = Name;
4067   }
4068 
4069   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4070   if (Entry)
4071     *Entry = GV;
4072 
4073   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4074                                   QualType());
4075   return ConstantAddress(GV, Alignment);
4076 }
4077 
4078 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4079 /// array for the given ObjCEncodeExpr node.
4080 ConstantAddress
4081 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4082   std::string Str;
4083   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4084 
4085   return GetAddrOfConstantCString(Str);
4086 }
4087 
4088 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4089 /// the literal and a terminating '\0' character.
4090 /// The result has pointer to array type.
4091 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4092     const std::string &Str, const char *GlobalName) {
4093   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4094   CharUnits Alignment =
4095     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4096 
4097   llvm::Constant *C =
4098       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4099 
4100   // Don't share any string literals if strings aren't constant.
4101   llvm::GlobalVariable **Entry = nullptr;
4102   if (!LangOpts.WritableStrings) {
4103     Entry = &ConstantStringMap[C];
4104     if (auto GV = *Entry) {
4105       if (Alignment.getQuantity() > GV->getAlignment())
4106         GV->setAlignment(Alignment.getQuantity());
4107       return ConstantAddress(GV, Alignment);
4108     }
4109   }
4110 
4111   // Get the default prefix if a name wasn't specified.
4112   if (!GlobalName)
4113     GlobalName = ".str";
4114   // Create a global variable for this.
4115   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4116                                   GlobalName, Alignment);
4117   if (Entry)
4118     *Entry = GV;
4119   return ConstantAddress(GV, Alignment);
4120 }
4121 
4122 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4123     const MaterializeTemporaryExpr *E, const Expr *Init) {
4124   assert((E->getStorageDuration() == SD_Static ||
4125           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4126   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4127 
4128   // If we're not materializing a subobject of the temporary, keep the
4129   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4130   QualType MaterializedType = Init->getType();
4131   if (Init == E->GetTemporaryExpr())
4132     MaterializedType = E->getType();
4133 
4134   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4135 
4136   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4137     return ConstantAddress(Slot, Align);
4138 
4139   // FIXME: If an externally-visible declaration extends multiple temporaries,
4140   // we need to give each temporary the same name in every translation unit (and
4141   // we also need to make the temporaries externally-visible).
4142   SmallString<256> Name;
4143   llvm::raw_svector_ostream Out(Name);
4144   getCXXABI().getMangleContext().mangleReferenceTemporary(
4145       VD, E->getManglingNumber(), Out);
4146 
4147   APValue *Value = nullptr;
4148   if (E->getStorageDuration() == SD_Static) {
4149     // We might have a cached constant initializer for this temporary. Note
4150     // that this might have a different value from the value computed by
4151     // evaluating the initializer if the surrounding constant expression
4152     // modifies the temporary.
4153     Value = getContext().getMaterializedTemporaryValue(E, false);
4154     if (Value && Value->isUninit())
4155       Value = nullptr;
4156   }
4157 
4158   // Try evaluating it now, it might have a constant initializer.
4159   Expr::EvalResult EvalResult;
4160   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4161       !EvalResult.hasSideEffects())
4162     Value = &EvalResult.Val;
4163 
4164   LangAS AddrSpace =
4165       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4166 
4167   Optional<ConstantEmitter> emitter;
4168   llvm::Constant *InitialValue = nullptr;
4169   bool Constant = false;
4170   llvm::Type *Type;
4171   if (Value) {
4172     // The temporary has a constant initializer, use it.
4173     emitter.emplace(*this);
4174     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4175                                                MaterializedType);
4176     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4177     Type = InitialValue->getType();
4178   } else {
4179     // No initializer, the initialization will be provided when we
4180     // initialize the declaration which performed lifetime extension.
4181     Type = getTypes().ConvertTypeForMem(MaterializedType);
4182   }
4183 
4184   // Create a global variable for this lifetime-extended temporary.
4185   llvm::GlobalValue::LinkageTypes Linkage =
4186       getLLVMLinkageVarDefinition(VD, Constant);
4187   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4188     const VarDecl *InitVD;
4189     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4190         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4191       // Temporaries defined inside a class get linkonce_odr linkage because the
4192       // class can be defined in multiple translation units.
4193       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4194     } else {
4195       // There is no need for this temporary to have external linkage if the
4196       // VarDecl has external linkage.
4197       Linkage = llvm::GlobalVariable::InternalLinkage;
4198     }
4199   }
4200   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4201   auto *GV = new llvm::GlobalVariable(
4202       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4203       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4204   if (emitter) emitter->finalize(GV);
4205   setGVProperties(GV, VD);
4206   GV->setAlignment(Align.getQuantity());
4207   if (supportsCOMDAT() && GV->isWeakForLinker())
4208     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4209   if (VD->getTLSKind())
4210     setTLSMode(GV, *VD);
4211   llvm::Constant *CV = GV;
4212   if (AddrSpace != LangAS::Default)
4213     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4214         *this, GV, AddrSpace, LangAS::Default,
4215         Type->getPointerTo(
4216             getContext().getTargetAddressSpace(LangAS::Default)));
4217   MaterializedGlobalTemporaryMap[E] = CV;
4218   return ConstantAddress(CV, Align);
4219 }
4220 
4221 /// EmitObjCPropertyImplementations - Emit information for synthesized
4222 /// properties for an implementation.
4223 void CodeGenModule::EmitObjCPropertyImplementations(const
4224                                                     ObjCImplementationDecl *D) {
4225   for (const auto *PID : D->property_impls()) {
4226     // Dynamic is just for type-checking.
4227     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4228       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4229 
4230       // Determine which methods need to be implemented, some may have
4231       // been overridden. Note that ::isPropertyAccessor is not the method
4232       // we want, that just indicates if the decl came from a
4233       // property. What we want to know is if the method is defined in
4234       // this implementation.
4235       if (!D->getInstanceMethod(PD->getGetterName()))
4236         CodeGenFunction(*this).GenerateObjCGetter(
4237                                  const_cast<ObjCImplementationDecl *>(D), PID);
4238       if (!PD->isReadOnly() &&
4239           !D->getInstanceMethod(PD->getSetterName()))
4240         CodeGenFunction(*this).GenerateObjCSetter(
4241                                  const_cast<ObjCImplementationDecl *>(D), PID);
4242     }
4243   }
4244 }
4245 
4246 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4247   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4248   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4249        ivar; ivar = ivar->getNextIvar())
4250     if (ivar->getType().isDestructedType())
4251       return true;
4252 
4253   return false;
4254 }
4255 
4256 static bool AllTrivialInitializers(CodeGenModule &CGM,
4257                                    ObjCImplementationDecl *D) {
4258   CodeGenFunction CGF(CGM);
4259   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4260        E = D->init_end(); B != E; ++B) {
4261     CXXCtorInitializer *CtorInitExp = *B;
4262     Expr *Init = CtorInitExp->getInit();
4263     if (!CGF.isTrivialInitializer(Init))
4264       return false;
4265   }
4266   return true;
4267 }
4268 
4269 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4270 /// for an implementation.
4271 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4272   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4273   if (needsDestructMethod(D)) {
4274     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4275     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4276     ObjCMethodDecl *DTORMethod =
4277       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4278                              cxxSelector, getContext().VoidTy, nullptr, D,
4279                              /*isInstance=*/true, /*isVariadic=*/false,
4280                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4281                              /*isDefined=*/false, ObjCMethodDecl::Required);
4282     D->addInstanceMethod(DTORMethod);
4283     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4284     D->setHasDestructors(true);
4285   }
4286 
4287   // If the implementation doesn't have any ivar initializers, we don't need
4288   // a .cxx_construct.
4289   if (D->getNumIvarInitializers() == 0 ||
4290       AllTrivialInitializers(*this, D))
4291     return;
4292 
4293   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4294   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4295   // The constructor returns 'self'.
4296   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4297                                                 D->getLocation(),
4298                                                 D->getLocation(),
4299                                                 cxxSelector,
4300                                                 getContext().getObjCIdType(),
4301                                                 nullptr, D, /*isInstance=*/true,
4302                                                 /*isVariadic=*/false,
4303                                                 /*isPropertyAccessor=*/true,
4304                                                 /*isImplicitlyDeclared=*/true,
4305                                                 /*isDefined=*/false,
4306                                                 ObjCMethodDecl::Required);
4307   D->addInstanceMethod(CTORMethod);
4308   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4309   D->setHasNonZeroConstructors(true);
4310 }
4311 
4312 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4313 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4314   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4315       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4316     ErrorUnsupported(LSD, "linkage spec");
4317     return;
4318   }
4319 
4320   EmitDeclContext(LSD);
4321 }
4322 
4323 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4324   for (auto *I : DC->decls()) {
4325     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4326     // are themselves considered "top-level", so EmitTopLevelDecl on an
4327     // ObjCImplDecl does not recursively visit them. We need to do that in
4328     // case they're nested inside another construct (LinkageSpecDecl /
4329     // ExportDecl) that does stop them from being considered "top-level".
4330     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4331       for (auto *M : OID->methods())
4332         EmitTopLevelDecl(M);
4333     }
4334 
4335     EmitTopLevelDecl(I);
4336   }
4337 }
4338 
4339 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4340 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4341   // Ignore dependent declarations.
4342   if (D->isTemplated())
4343     return;
4344 
4345   switch (D->getKind()) {
4346   case Decl::CXXConversion:
4347   case Decl::CXXMethod:
4348   case Decl::Function:
4349     EmitGlobal(cast<FunctionDecl>(D));
4350     // Always provide some coverage mapping
4351     // even for the functions that aren't emitted.
4352     AddDeferredUnusedCoverageMapping(D);
4353     break;
4354 
4355   case Decl::CXXDeductionGuide:
4356     // Function-like, but does not result in code emission.
4357     break;
4358 
4359   case Decl::Var:
4360   case Decl::Decomposition:
4361   case Decl::VarTemplateSpecialization:
4362     EmitGlobal(cast<VarDecl>(D));
4363     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4364       for (auto *B : DD->bindings())
4365         if (auto *HD = B->getHoldingVar())
4366           EmitGlobal(HD);
4367     break;
4368 
4369   // Indirect fields from global anonymous structs and unions can be
4370   // ignored; only the actual variable requires IR gen support.
4371   case Decl::IndirectField:
4372     break;
4373 
4374   // C++ Decls
4375   case Decl::Namespace:
4376     EmitDeclContext(cast<NamespaceDecl>(D));
4377     break;
4378   case Decl::ClassTemplateSpecialization: {
4379     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4380     if (DebugInfo &&
4381         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4382         Spec->hasDefinition())
4383       DebugInfo->completeTemplateDefinition(*Spec);
4384   } LLVM_FALLTHROUGH;
4385   case Decl::CXXRecord:
4386     if (DebugInfo) {
4387       if (auto *ES = D->getASTContext().getExternalSource())
4388         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4389           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4390     }
4391     // Emit any static data members, they may be definitions.
4392     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4393       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4394         EmitTopLevelDecl(I);
4395     break;
4396     // No code generation needed.
4397   case Decl::UsingShadow:
4398   case Decl::ClassTemplate:
4399   case Decl::VarTemplate:
4400   case Decl::VarTemplatePartialSpecialization:
4401   case Decl::FunctionTemplate:
4402   case Decl::TypeAliasTemplate:
4403   case Decl::Block:
4404   case Decl::Empty:
4405     break;
4406   case Decl::Using:          // using X; [C++]
4407     if (CGDebugInfo *DI = getModuleDebugInfo())
4408         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4409     return;
4410   case Decl::NamespaceAlias:
4411     if (CGDebugInfo *DI = getModuleDebugInfo())
4412         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4413     return;
4414   case Decl::UsingDirective: // using namespace X; [C++]
4415     if (CGDebugInfo *DI = getModuleDebugInfo())
4416       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4417     return;
4418   case Decl::CXXConstructor:
4419     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4420     break;
4421   case Decl::CXXDestructor:
4422     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4423     break;
4424 
4425   case Decl::StaticAssert:
4426     // Nothing to do.
4427     break;
4428 
4429   // Objective-C Decls
4430 
4431   // Forward declarations, no (immediate) code generation.
4432   case Decl::ObjCInterface:
4433   case Decl::ObjCCategory:
4434     break;
4435 
4436   case Decl::ObjCProtocol: {
4437     auto *Proto = cast<ObjCProtocolDecl>(D);
4438     if (Proto->isThisDeclarationADefinition())
4439       ObjCRuntime->GenerateProtocol(Proto);
4440     break;
4441   }
4442 
4443   case Decl::ObjCCategoryImpl:
4444     // Categories have properties but don't support synthesize so we
4445     // can ignore them here.
4446     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4447     break;
4448 
4449   case Decl::ObjCImplementation: {
4450     auto *OMD = cast<ObjCImplementationDecl>(D);
4451     EmitObjCPropertyImplementations(OMD);
4452     EmitObjCIvarInitializations(OMD);
4453     ObjCRuntime->GenerateClass(OMD);
4454     // Emit global variable debug information.
4455     if (CGDebugInfo *DI = getModuleDebugInfo())
4456       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4457         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4458             OMD->getClassInterface()), OMD->getLocation());
4459     break;
4460   }
4461   case Decl::ObjCMethod: {
4462     auto *OMD = cast<ObjCMethodDecl>(D);
4463     // If this is not a prototype, emit the body.
4464     if (OMD->getBody())
4465       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4466     break;
4467   }
4468   case Decl::ObjCCompatibleAlias:
4469     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4470     break;
4471 
4472   case Decl::PragmaComment: {
4473     const auto *PCD = cast<PragmaCommentDecl>(D);
4474     switch (PCD->getCommentKind()) {
4475     case PCK_Unknown:
4476       llvm_unreachable("unexpected pragma comment kind");
4477     case PCK_Linker:
4478       AppendLinkerOptions(PCD->getArg());
4479       break;
4480     case PCK_Lib:
4481       if (getTarget().getTriple().isOSBinFormatELF() &&
4482           !getTarget().getTriple().isPS4())
4483         AddELFLibDirective(PCD->getArg());
4484       else
4485         AddDependentLib(PCD->getArg());
4486       break;
4487     case PCK_Compiler:
4488     case PCK_ExeStr:
4489     case PCK_User:
4490       break; // We ignore all of these.
4491     }
4492     break;
4493   }
4494 
4495   case Decl::PragmaDetectMismatch: {
4496     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4497     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4498     break;
4499   }
4500 
4501   case Decl::LinkageSpec:
4502     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4503     break;
4504 
4505   case Decl::FileScopeAsm: {
4506     // File-scope asm is ignored during device-side CUDA compilation.
4507     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4508       break;
4509     // File-scope asm is ignored during device-side OpenMP compilation.
4510     if (LangOpts.OpenMPIsDevice)
4511       break;
4512     auto *AD = cast<FileScopeAsmDecl>(D);
4513     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4514     break;
4515   }
4516 
4517   case Decl::Import: {
4518     auto *Import = cast<ImportDecl>(D);
4519 
4520     // If we've already imported this module, we're done.
4521     if (!ImportedModules.insert(Import->getImportedModule()))
4522       break;
4523 
4524     // Emit debug information for direct imports.
4525     if (!Import->getImportedOwningModule()) {
4526       if (CGDebugInfo *DI = getModuleDebugInfo())
4527         DI->EmitImportDecl(*Import);
4528     }
4529 
4530     // Find all of the submodules and emit the module initializers.
4531     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4532     SmallVector<clang::Module *, 16> Stack;
4533     Visited.insert(Import->getImportedModule());
4534     Stack.push_back(Import->getImportedModule());
4535 
4536     while (!Stack.empty()) {
4537       clang::Module *Mod = Stack.pop_back_val();
4538       if (!EmittedModuleInitializers.insert(Mod).second)
4539         continue;
4540 
4541       for (auto *D : Context.getModuleInitializers(Mod))
4542         EmitTopLevelDecl(D);
4543 
4544       // Visit the submodules of this module.
4545       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4546                                              SubEnd = Mod->submodule_end();
4547            Sub != SubEnd; ++Sub) {
4548         // Skip explicit children; they need to be explicitly imported to emit
4549         // the initializers.
4550         if ((*Sub)->IsExplicit)
4551           continue;
4552 
4553         if (Visited.insert(*Sub).second)
4554           Stack.push_back(*Sub);
4555       }
4556     }
4557     break;
4558   }
4559 
4560   case Decl::Export:
4561     EmitDeclContext(cast<ExportDecl>(D));
4562     break;
4563 
4564   case Decl::OMPThreadPrivate:
4565     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4566     break;
4567 
4568   case Decl::OMPDeclareReduction:
4569     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4570     break;
4571 
4572   default:
4573     // Make sure we handled everything we should, every other kind is a
4574     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4575     // function. Need to recode Decl::Kind to do that easily.
4576     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4577     break;
4578   }
4579 }
4580 
4581 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4582   // Do we need to generate coverage mapping?
4583   if (!CodeGenOpts.CoverageMapping)
4584     return;
4585   switch (D->getKind()) {
4586   case Decl::CXXConversion:
4587   case Decl::CXXMethod:
4588   case Decl::Function:
4589   case Decl::ObjCMethod:
4590   case Decl::CXXConstructor:
4591   case Decl::CXXDestructor: {
4592     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4593       return;
4594     SourceManager &SM = getContext().getSourceManager();
4595     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4596       return;
4597     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4598     if (I == DeferredEmptyCoverageMappingDecls.end())
4599       DeferredEmptyCoverageMappingDecls[D] = true;
4600     break;
4601   }
4602   default:
4603     break;
4604   };
4605 }
4606 
4607 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4608   // Do we need to generate coverage mapping?
4609   if (!CodeGenOpts.CoverageMapping)
4610     return;
4611   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4612     if (Fn->isTemplateInstantiation())
4613       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4614   }
4615   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4616   if (I == DeferredEmptyCoverageMappingDecls.end())
4617     DeferredEmptyCoverageMappingDecls[D] = false;
4618   else
4619     I->second = false;
4620 }
4621 
4622 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4623   // We call takeVector() here to avoid use-after-free.
4624   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4625   // we deserialize function bodies to emit coverage info for them, and that
4626   // deserializes more declarations. How should we handle that case?
4627   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4628     if (!Entry.second)
4629       continue;
4630     const Decl *D = Entry.first;
4631     switch (D->getKind()) {
4632     case Decl::CXXConversion:
4633     case Decl::CXXMethod:
4634     case Decl::Function:
4635     case Decl::ObjCMethod: {
4636       CodeGenPGO PGO(*this);
4637       GlobalDecl GD(cast<FunctionDecl>(D));
4638       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4639                                   getFunctionLinkage(GD));
4640       break;
4641     }
4642     case Decl::CXXConstructor: {
4643       CodeGenPGO PGO(*this);
4644       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4645       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4646                                   getFunctionLinkage(GD));
4647       break;
4648     }
4649     case Decl::CXXDestructor: {
4650       CodeGenPGO PGO(*this);
4651       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4652       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4653                                   getFunctionLinkage(GD));
4654       break;
4655     }
4656     default:
4657       break;
4658     };
4659   }
4660 }
4661 
4662 /// Turns the given pointer into a constant.
4663 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4664                                           const void *Ptr) {
4665   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4666   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4667   return llvm::ConstantInt::get(i64, PtrInt);
4668 }
4669 
4670 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4671                                    llvm::NamedMDNode *&GlobalMetadata,
4672                                    GlobalDecl D,
4673                                    llvm::GlobalValue *Addr) {
4674   if (!GlobalMetadata)
4675     GlobalMetadata =
4676       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4677 
4678   // TODO: should we report variant information for ctors/dtors?
4679   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4680                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4681                                CGM.getLLVMContext(), D.getDecl()))};
4682   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4683 }
4684 
4685 /// For each function which is declared within an extern "C" region and marked
4686 /// as 'used', but has internal linkage, create an alias from the unmangled
4687 /// name to the mangled name if possible. People expect to be able to refer
4688 /// to such functions with an unmangled name from inline assembly within the
4689 /// same translation unit.
4690 void CodeGenModule::EmitStaticExternCAliases() {
4691   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4692     return;
4693   for (auto &I : StaticExternCValues) {
4694     IdentifierInfo *Name = I.first;
4695     llvm::GlobalValue *Val = I.second;
4696     if (Val && !getModule().getNamedValue(Name->getName()))
4697       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4698   }
4699 }
4700 
4701 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4702                                              GlobalDecl &Result) const {
4703   auto Res = Manglings.find(MangledName);
4704   if (Res == Manglings.end())
4705     return false;
4706   Result = Res->getValue();
4707   return true;
4708 }
4709 
4710 /// Emits metadata nodes associating all the global values in the
4711 /// current module with the Decls they came from.  This is useful for
4712 /// projects using IR gen as a subroutine.
4713 ///
4714 /// Since there's currently no way to associate an MDNode directly
4715 /// with an llvm::GlobalValue, we create a global named metadata
4716 /// with the name 'clang.global.decl.ptrs'.
4717 void CodeGenModule::EmitDeclMetadata() {
4718   llvm::NamedMDNode *GlobalMetadata = nullptr;
4719 
4720   for (auto &I : MangledDeclNames) {
4721     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4722     // Some mangled names don't necessarily have an associated GlobalValue
4723     // in this module, e.g. if we mangled it for DebugInfo.
4724     if (Addr)
4725       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4726   }
4727 }
4728 
4729 /// Emits metadata nodes for all the local variables in the current
4730 /// function.
4731 void CodeGenFunction::EmitDeclMetadata() {
4732   if (LocalDeclMap.empty()) return;
4733 
4734   llvm::LLVMContext &Context = getLLVMContext();
4735 
4736   // Find the unique metadata ID for this name.
4737   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4738 
4739   llvm::NamedMDNode *GlobalMetadata = nullptr;
4740 
4741   for (auto &I : LocalDeclMap) {
4742     const Decl *D = I.first;
4743     llvm::Value *Addr = I.second.getPointer();
4744     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4745       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4746       Alloca->setMetadata(
4747           DeclPtrKind, llvm::MDNode::get(
4748                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4749     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4750       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4751       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4752     }
4753   }
4754 }
4755 
4756 void CodeGenModule::EmitVersionIdentMetadata() {
4757   llvm::NamedMDNode *IdentMetadata =
4758     TheModule.getOrInsertNamedMetadata("llvm.ident");
4759   std::string Version = getClangFullVersion();
4760   llvm::LLVMContext &Ctx = TheModule.getContext();
4761 
4762   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4763   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4764 }
4765 
4766 void CodeGenModule::EmitTargetMetadata() {
4767   // Warning, new MangledDeclNames may be appended within this loop.
4768   // We rely on MapVector insertions adding new elements to the end
4769   // of the container.
4770   // FIXME: Move this loop into the one target that needs it, and only
4771   // loop over those declarations for which we couldn't emit the target
4772   // metadata when we emitted the declaration.
4773   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4774     auto Val = *(MangledDeclNames.begin() + I);
4775     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4776     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4777     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4778   }
4779 }
4780 
4781 void CodeGenModule::EmitCoverageFile() {
4782   if (getCodeGenOpts().CoverageDataFile.empty() &&
4783       getCodeGenOpts().CoverageNotesFile.empty())
4784     return;
4785 
4786   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4787   if (!CUNode)
4788     return;
4789 
4790   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4791   llvm::LLVMContext &Ctx = TheModule.getContext();
4792   auto *CoverageDataFile =
4793       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4794   auto *CoverageNotesFile =
4795       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4796   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4797     llvm::MDNode *CU = CUNode->getOperand(i);
4798     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4799     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4800   }
4801 }
4802 
4803 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4804   // Sema has checked that all uuid strings are of the form
4805   // "12345678-1234-1234-1234-1234567890ab".
4806   assert(Uuid.size() == 36);
4807   for (unsigned i = 0; i < 36; ++i) {
4808     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4809     else                                         assert(isHexDigit(Uuid[i]));
4810   }
4811 
4812   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4813   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4814 
4815   llvm::Constant *Field3[8];
4816   for (unsigned Idx = 0; Idx < 8; ++Idx)
4817     Field3[Idx] = llvm::ConstantInt::get(
4818         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4819 
4820   llvm::Constant *Fields[4] = {
4821     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4822     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4823     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4824     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4825   };
4826 
4827   return llvm::ConstantStruct::getAnon(Fields);
4828 }
4829 
4830 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4831                                                        bool ForEH) {
4832   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4833   // FIXME: should we even be calling this method if RTTI is disabled
4834   // and it's not for EH?
4835   if (!ForEH && !getLangOpts().RTTI)
4836     return llvm::Constant::getNullValue(Int8PtrTy);
4837 
4838   if (ForEH && Ty->isObjCObjectPointerType() &&
4839       LangOpts.ObjCRuntime.isGNUFamily())
4840     return ObjCRuntime->GetEHType(Ty);
4841 
4842   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4843 }
4844 
4845 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4846   // Do not emit threadprivates in simd-only mode.
4847   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4848     return;
4849   for (auto RefExpr : D->varlists()) {
4850     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4851     bool PerformInit =
4852         VD->getAnyInitializer() &&
4853         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4854                                                         /*ForRef=*/false);
4855 
4856     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4857     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4858             VD, Addr, RefExpr->getLocStart(), PerformInit))
4859       CXXGlobalInits.push_back(InitFunction);
4860   }
4861 }
4862 
4863 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4864   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4865   if (InternalId)
4866     return InternalId;
4867 
4868   if (isExternallyVisible(T->getLinkage())) {
4869     std::string OutName;
4870     llvm::raw_string_ostream Out(OutName);
4871     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4872 
4873     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4874   } else {
4875     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4876                                            llvm::ArrayRef<llvm::Metadata *>());
4877   }
4878 
4879   return InternalId;
4880 }
4881 
4882 // Generalize pointer types to a void pointer with the qualifiers of the
4883 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4884 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4885 // 'void *'.
4886 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4887   if (!Ty->isPointerType())
4888     return Ty;
4889 
4890   return Ctx.getPointerType(
4891       QualType(Ctx.VoidTy).withCVRQualifiers(
4892           Ty->getPointeeType().getCVRQualifiers()));
4893 }
4894 
4895 // Apply type generalization to a FunctionType's return and argument types
4896 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4897   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4898     SmallVector<QualType, 8> GeneralizedParams;
4899     for (auto &Param : FnType->param_types())
4900       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4901 
4902     return Ctx.getFunctionType(
4903         GeneralizeType(Ctx, FnType->getReturnType()),
4904         GeneralizedParams, FnType->getExtProtoInfo());
4905   }
4906 
4907   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4908     return Ctx.getFunctionNoProtoType(
4909         GeneralizeType(Ctx, FnType->getReturnType()));
4910 
4911   llvm_unreachable("Encountered unknown FunctionType");
4912 }
4913 
4914 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4915   T = GeneralizeFunctionType(getContext(), T);
4916 
4917   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4918   if (InternalId)
4919     return InternalId;
4920 
4921   if (isExternallyVisible(T->getLinkage())) {
4922     std::string OutName;
4923     llvm::raw_string_ostream Out(OutName);
4924     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4925     Out << ".generalized";
4926 
4927     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4928   } else {
4929     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4930                                            llvm::ArrayRef<llvm::Metadata *>());
4931   }
4932 
4933   return InternalId;
4934 }
4935 
4936 /// Returns whether this module needs the "all-vtables" type identifier.
4937 bool CodeGenModule::NeedAllVtablesTypeId() const {
4938   // Returns true if at least one of vtable-based CFI checkers is enabled and
4939   // is not in the trapping mode.
4940   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4941            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4942           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4943            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4944           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4945            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4946           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4947            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4948 }
4949 
4950 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4951                                           CharUnits Offset,
4952                                           const CXXRecordDecl *RD) {
4953   llvm::Metadata *MD =
4954       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4955   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4956 
4957   if (CodeGenOpts.SanitizeCfiCrossDso)
4958     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4959       VTable->addTypeMetadata(Offset.getQuantity(),
4960                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4961 
4962   if (NeedAllVtablesTypeId()) {
4963     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4964     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4965   }
4966 }
4967 
4968 // Fills in the supplied string map with the set of target features for the
4969 // passed in function.
4970 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4971                                           const FunctionDecl *FD) {
4972   StringRef TargetCPU = Target.getTargetOpts().CPU;
4973   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4974     // If we have a TargetAttr build up the feature map based on that.
4975     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4976 
4977     ParsedAttr.Features.erase(
4978         llvm::remove_if(ParsedAttr.Features,
4979                         [&](const std::string &Feat) {
4980                           return !Target.isValidFeatureName(
4981                               StringRef{Feat}.substr(1));
4982                         }),
4983         ParsedAttr.Features.end());
4984 
4985     // Make a copy of the features as passed on the command line into the
4986     // beginning of the additional features from the function to override.
4987     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4988                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4989                             Target.getTargetOpts().FeaturesAsWritten.end());
4990 
4991     if (ParsedAttr.Architecture != "" &&
4992         Target.isValidCPUName(ParsedAttr.Architecture))
4993       TargetCPU = ParsedAttr.Architecture;
4994 
4995     // Now populate the feature map, first with the TargetCPU which is either
4996     // the default or a new one from the target attribute string. Then we'll use
4997     // the passed in features (FeaturesAsWritten) along with the new ones from
4998     // the attribute.
4999     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5000                           ParsedAttr.Features);
5001   } else {
5002     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5003                           Target.getTargetOpts().Features);
5004   }
5005 }
5006 
5007 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5008   if (!SanStats)
5009     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5010 
5011   return *SanStats;
5012 }
5013 llvm::Value *
5014 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5015                                                   CodeGenFunction &CGF) {
5016   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5017   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5018   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5019   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5020                                 "__translate_sampler_initializer"),
5021                                 {C});
5022 }
5023