xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 481e3a87febe1c711a8de7a41904a1588a558218)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/Diagnostic.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Basic/ConvertUTF.h"
31 #include "llvm/CallingConv.h"
32 #include "llvm/Module.h"
33 #include "llvm/Intrinsics.h"
34 #include "llvm/LLVMContext.h"
35 #include "llvm/Target/TargetData.h"
36 #include "llvm/Support/ErrorHandling.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 
41 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
42                              llvm::Module &M, const llvm::TargetData &TD,
43                              Diagnostic &diags)
44   : BlockModule(C, M, TD, Types, *this), Context(C),
45     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
46     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
47     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
48     MangleCtx(C), VtableInfo(*this), Runtime(0),
49     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
50     VMContext(M.getContext()) {
51 
52   if (!Features.ObjC1)
53     Runtime = 0;
54   else if (!Features.NeXTRuntime)
55     Runtime = CreateGNUObjCRuntime(*this);
56   else if (Features.ObjCNonFragileABI)
57     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
58   else
59     Runtime = CreateMacObjCRuntime(*this);
60 
61   // If debug info generation is enabled, create the CGDebugInfo object.
62   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
63 }
64 
65 CodeGenModule::~CodeGenModule() {
66   delete Runtime;
67   delete DebugInfo;
68 }
69 
70 void CodeGenModule::createObjCRuntime() {
71   if (!Features.NeXTRuntime)
72     Runtime = CreateGNUObjCRuntime(*this);
73   else if (Features.ObjCNonFragileABI)
74     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
75   else
76     Runtime = CreateMacObjCRuntime(*this);
77 }
78 
79 void CodeGenModule::Release() {
80   EmitDeferred();
81   EmitCXXGlobalInitFunc();
82   if (Runtime)
83     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
84       AddGlobalCtor(ObjCInitFunction);
85   EmitCtorList(GlobalCtors, "llvm.global_ctors");
86   EmitCtorList(GlobalDtors, "llvm.global_dtors");
87   EmitAnnotations();
88   EmitLLVMUsed();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified stmt yet.
93 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
101     << Msg << S->getSourceRange();
102 }
103 
104 /// ErrorUnsupported - Print out an error that codegen doesn't support the
105 /// specified decl yet.
106 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
107                                      bool OmitOnError) {
108   if (OmitOnError && getDiags().hasErrorOccurred())
109     return;
110   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
111                                                "cannot compile this %0 yet");
112   std::string Msg = Type;
113   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
114 }
115 
116 LangOptions::VisibilityMode
117 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
118   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
119     if (VD->getStorageClass() == VarDecl::PrivateExtern)
120       return LangOptions::Hidden;
121 
122   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
123     switch (attr->getVisibility()) {
124     default: assert(0 && "Unknown visibility!");
125     case VisibilityAttr::DefaultVisibility:
126       return LangOptions::Default;
127     case VisibilityAttr::HiddenVisibility:
128       return LangOptions::Hidden;
129     case VisibilityAttr::ProtectedVisibility:
130       return LangOptions::Protected;
131     }
132   }
133 
134   return getLangOptions().getVisibilityMode();
135 }
136 
137 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
138                                         const Decl *D) const {
139   // Internal definitions always have default visibility.
140   if (GV->hasLocalLinkage()) {
141     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
142     return;
143   }
144 
145   switch (getDeclVisibilityMode(D)) {
146   default: assert(0 && "Unknown visibility!");
147   case LangOptions::Default:
148     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
149   case LangOptions::Hidden:
150     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
151   case LangOptions::Protected:
152     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
153   }
154 }
155 
156 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
157   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
158 
159   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
160     return getMangledCXXCtorName(D, GD.getCtorType());
161   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
162     return getMangledCXXDtorName(D, GD.getDtorType());
163 
164   return getMangledName(ND);
165 }
166 
167 /// \brief Retrieves the mangled name for the given declaration.
168 ///
169 /// If the given declaration requires a mangled name, returns an
170 /// const char* containing the mangled name.  Otherwise, returns
171 /// the unmangled name.
172 ///
173 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
174   if (!getMangleContext().shouldMangleDeclName(ND)) {
175     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
176     return ND->getNameAsCString();
177   }
178 
179   llvm::SmallString<256> Name;
180   getMangleContext().mangleName(ND, Name);
181   Name += '\0';
182   return UniqueMangledName(Name.begin(), Name.end());
183 }
184 
185 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
186                                              const char *NameEnd) {
187   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
188 
189   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
190 }
191 
192 /// AddGlobalCtor - Add a function to the list that will be called before
193 /// main() runs.
194 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
197 }
198 
199 /// AddGlobalDtor - Add a function to the list that will be called
200 /// when the module is unloaded.
201 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
202   // FIXME: Type coercion of void()* types.
203   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
204 }
205 
206 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
207   // Ctor function type is void()*.
208   llvm::FunctionType* CtorFTy =
209     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
210                             std::vector<const llvm::Type*>(),
211                             false);
212   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
213 
214   // Get the type of a ctor entry, { i32, void ()* }.
215   llvm::StructType* CtorStructTy =
216     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
217                           llvm::PointerType::getUnqual(CtorFTy), NULL);
218 
219   // Construct the constructor and destructor arrays.
220   std::vector<llvm::Constant*> Ctors;
221   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
222     std::vector<llvm::Constant*> S;
223     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
224                 I->second, false));
225     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
226     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
227   }
228 
229   if (!Ctors.empty()) {
230     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
231     new llvm::GlobalVariable(TheModule, AT, false,
232                              llvm::GlobalValue::AppendingLinkage,
233                              llvm::ConstantArray::get(AT, Ctors),
234                              GlobalName);
235   }
236 }
237 
238 void CodeGenModule::EmitAnnotations() {
239   if (Annotations.empty())
240     return;
241 
242   // Create a new global variable for the ConstantStruct in the Module.
243   llvm::Constant *Array =
244   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
245                                                 Annotations.size()),
246                            Annotations);
247   llvm::GlobalValue *gv =
248   new llvm::GlobalVariable(TheModule, Array->getType(), false,
249                            llvm::GlobalValue::AppendingLinkage, Array,
250                            "llvm.global.annotations");
251   gv->setSection("llvm.metadata");
252 }
253 
254 static CodeGenModule::GVALinkage
255 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
256                       const LangOptions &Features) {
257   // Everything located semantically within an anonymous namespace is
258   // always internal.
259   if (FD->isInAnonymousNamespace())
260     return CodeGenModule::GVA_Internal;
261 
262   // "static" functions get internal linkage.
263   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
264     return CodeGenModule::GVA_Internal;
265 
266   // The kind of external linkage this function will have, if it is not
267   // inline or static.
268   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
269   if (Context.getLangOptions().CPlusPlus) {
270     TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
271 
272     if (TSK == TSK_ExplicitInstantiationDefinition) {
273       // If a function has been explicitly instantiated, then it should
274       // always have strong external linkage.
275       return CodeGenModule::GVA_StrongExternal;
276     }
277 
278     if (TSK == TSK_ImplicitInstantiation)
279       External = CodeGenModule::GVA_TemplateInstantiation;
280   }
281 
282   if (!FD->isInlined())
283     return External;
284 
285   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
286     // GNU or C99 inline semantics. Determine whether this symbol should be
287     // externally visible.
288     if (FD->isInlineDefinitionExternallyVisible())
289       return External;
290 
291     // C99 inline semantics, where the symbol is not externally visible.
292     return CodeGenModule::GVA_C99Inline;
293   }
294 
295   // C++0x [temp.explicit]p9:
296   //   [ Note: The intent is that an inline function that is the subject of
297   //   an explicit instantiation declaration will still be implicitly
298   //   instantiated when used so that the body can be considered for
299   //   inlining, but that no out-of-line copy of the inline function would be
300   //   generated in the translation unit. -- end note ]
301   if (FD->getTemplateSpecializationKind()
302                                        == TSK_ExplicitInstantiationDeclaration)
303     return CodeGenModule::GVA_C99Inline;
304 
305   return CodeGenModule::GVA_CXXInline;
306 }
307 
308 /// SetFunctionDefinitionAttributes - Set attributes for a global.
309 ///
310 /// FIXME: This is currently only done for aliases and functions, but not for
311 /// variables (these details are set in EmitGlobalVarDefinition for variables).
312 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
313                                                     llvm::GlobalValue *GV) {
314   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
315 
316   if (Linkage == GVA_Internal) {
317     GV->setLinkage(llvm::Function::InternalLinkage);
318   } else if (D->hasAttr<DLLExportAttr>()) {
319     GV->setLinkage(llvm::Function::DLLExportLinkage);
320   } else if (D->hasAttr<WeakAttr>()) {
321     GV->setLinkage(llvm::Function::WeakAnyLinkage);
322   } else if (Linkage == GVA_C99Inline) {
323     // In C99 mode, 'inline' functions are guaranteed to have a strong
324     // definition somewhere else, so we can use available_externally linkage.
325     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
326   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
327     // In C++, the compiler has to emit a definition in every translation unit
328     // that references the function.  We should use linkonce_odr because
329     // a) if all references in this translation unit are optimized away, we
330     // don't need to codegen it.  b) if the function persists, it needs to be
331     // merged with other definitions. c) C++ has the ODR, so we know the
332     // definition is dependable.
333     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
334   } else {
335     assert(Linkage == GVA_StrongExternal);
336     // Otherwise, we have strong external linkage.
337     GV->setLinkage(llvm::Function::ExternalLinkage);
338   }
339 
340   SetCommonAttributes(D, GV);
341 }
342 
343 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
344                                               const CGFunctionInfo &Info,
345                                               llvm::Function *F) {
346   unsigned CallingConv;
347   AttributeListType AttributeList;
348   ConstructAttributeList(Info, D, AttributeList, CallingConv);
349   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
350                                           AttributeList.size()));
351   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
352 }
353 
354 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
355                                                            llvm::Function *F) {
356   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
357     F->addFnAttr(llvm::Attribute::NoUnwind);
358 
359   if (D->hasAttr<AlwaysInlineAttr>())
360     F->addFnAttr(llvm::Attribute::AlwaysInline);
361 
362   if (D->hasAttr<NoInlineAttr>())
363     F->addFnAttr(llvm::Attribute::NoInline);
364 
365   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
366     F->addFnAttr(llvm::Attribute::StackProtect);
367   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
368     F->addFnAttr(llvm::Attribute::StackProtectReq);
369 
370   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
371     unsigned width = Context.Target.getCharWidth();
372     F->setAlignment(AA->getAlignment() / width);
373     while ((AA = AA->getNext<AlignedAttr>()))
374       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
375   }
376   // C++ ABI requires 2-byte alignment for member functions.
377   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
378     F->setAlignment(2);
379 }
380 
381 void CodeGenModule::SetCommonAttributes(const Decl *D,
382                                         llvm::GlobalValue *GV) {
383   setGlobalVisibility(GV, D);
384 
385   if (D->hasAttr<UsedAttr>())
386     AddUsedGlobal(GV);
387 
388   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
389     GV->setSection(SA->getName());
390 
391   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
392 }
393 
394 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
395                                                   llvm::Function *F,
396                                                   const CGFunctionInfo &FI) {
397   SetLLVMFunctionAttributes(D, FI, F);
398   SetLLVMFunctionAttributesForDefinition(D, F);
399 
400   F->setLinkage(llvm::Function::InternalLinkage);
401 
402   SetCommonAttributes(D, F);
403 }
404 
405 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
406                                           llvm::Function *F,
407                                           bool IsIncompleteFunction) {
408   if (!IsIncompleteFunction)
409     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
410 
411   // Only a few attributes are set on declarations; these may later be
412   // overridden by a definition.
413 
414   if (FD->hasAttr<DLLImportAttr>()) {
415     F->setLinkage(llvm::Function::DLLImportLinkage);
416   } else if (FD->hasAttr<WeakAttr>() ||
417              FD->hasAttr<WeakImportAttr>()) {
418     // "extern_weak" is overloaded in LLVM; we probably should have
419     // separate linkage types for this.
420     F->setLinkage(llvm::Function::ExternalWeakLinkage);
421   } else {
422     F->setLinkage(llvm::Function::ExternalLinkage);
423   }
424 
425   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
426     F->setSection(SA->getName());
427 }
428 
429 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
430   assert(!GV->isDeclaration() &&
431          "Only globals with definition can force usage.");
432   LLVMUsed.push_back(GV);
433 }
434 
435 void CodeGenModule::EmitLLVMUsed() {
436   // Don't create llvm.used if there is no need.
437   if (LLVMUsed.empty())
438     return;
439 
440   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
441 
442   // Convert LLVMUsed to what ConstantArray needs.
443   std::vector<llvm::Constant*> UsedArray;
444   UsedArray.resize(LLVMUsed.size());
445   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
446     UsedArray[i] =
447      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
448                                       i8PTy);
449   }
450 
451   if (UsedArray.empty())
452     return;
453   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
454 
455   llvm::GlobalVariable *GV =
456     new llvm::GlobalVariable(getModule(), ATy, false,
457                              llvm::GlobalValue::AppendingLinkage,
458                              llvm::ConstantArray::get(ATy, UsedArray),
459                              "llvm.used");
460 
461   GV->setSection("llvm.metadata");
462 }
463 
464 void CodeGenModule::EmitDeferred() {
465   // Emit code for any potentially referenced deferred decls.  Since a
466   // previously unused static decl may become used during the generation of code
467   // for a static function, iterate until no  changes are made.
468   while (!DeferredDeclsToEmit.empty()) {
469     GlobalDecl D = DeferredDeclsToEmit.back();
470     DeferredDeclsToEmit.pop_back();
471 
472     // The mangled name for the decl must have been emitted in GlobalDeclMap.
473     // Look it up to see if it was defined with a stronger definition (e.g. an
474     // extern inline function with a strong function redefinition).  If so,
475     // just ignore the deferred decl.
476     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
477     assert(CGRef && "Deferred decl wasn't referenced?");
478 
479     if (!CGRef->isDeclaration())
480       continue;
481 
482     // Otherwise, emit the definition and move on to the next one.
483     EmitGlobalDefinition(D);
484   }
485 }
486 
487 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
488 /// annotation information for a given GlobalValue.  The annotation struct is
489 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
490 /// GlobalValue being annotated.  The second field is the constant string
491 /// created from the AnnotateAttr's annotation.  The third field is a constant
492 /// string containing the name of the translation unit.  The fourth field is
493 /// the line number in the file of the annotated value declaration.
494 ///
495 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
496 ///        appears to.
497 ///
498 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
499                                                 const AnnotateAttr *AA,
500                                                 unsigned LineNo) {
501   llvm::Module *M = &getModule();
502 
503   // get [N x i8] constants for the annotation string, and the filename string
504   // which are the 2nd and 3rd elements of the global annotation structure.
505   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
506   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
507                                                   AA->getAnnotation(), true);
508   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
509                                                   M->getModuleIdentifier(),
510                                                   true);
511 
512   // Get the two global values corresponding to the ConstantArrays we just
513   // created to hold the bytes of the strings.
514   llvm::GlobalValue *annoGV =
515     new llvm::GlobalVariable(*M, anno->getType(), false,
516                              llvm::GlobalValue::PrivateLinkage, anno,
517                              GV->getName());
518   // translation unit name string, emitted into the llvm.metadata section.
519   llvm::GlobalValue *unitGV =
520     new llvm::GlobalVariable(*M, unit->getType(), false,
521                              llvm::GlobalValue::PrivateLinkage, unit,
522                              ".str");
523 
524   // Create the ConstantStruct for the global annotation.
525   llvm::Constant *Fields[4] = {
526     llvm::ConstantExpr::getBitCast(GV, SBP),
527     llvm::ConstantExpr::getBitCast(annoGV, SBP),
528     llvm::ConstantExpr::getBitCast(unitGV, SBP),
529     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
530   };
531   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
532 }
533 
534 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
535   // Never defer when EmitAllDecls is specified or the decl has
536   // attribute used.
537   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
538     return false;
539 
540   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
541     // Constructors and destructors should never be deferred.
542     if (FD->hasAttr<ConstructorAttr>() ||
543         FD->hasAttr<DestructorAttr>())
544       return false;
545 
546     // The key function for a class must never be deferred.
547     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
548       const CXXRecordDecl *RD = MD->getParent();
549       if (MD->isOutOfLine() && RD->isDynamicClass()) {
550         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
551         if (KeyFunction &&
552             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
553           return false;
554       }
555     }
556 
557     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
558 
559     // static, static inline, always_inline, and extern inline functions can
560     // always be deferred.  Normal inline functions can be deferred in C99/C++.
561     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
562         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
563       return true;
564     return false;
565   }
566 
567   const VarDecl *VD = cast<VarDecl>(Global);
568   assert(VD->isFileVarDecl() && "Invalid decl");
569 
570   // We never want to defer structs that have non-trivial constructors or
571   // destructors.
572 
573   // FIXME: Handle references.
574   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
575     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
576       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
577         return false;
578     }
579   }
580 
581   // Static data may be deferred, but out-of-line static data members
582   // cannot be.
583   if (VD->isInAnonymousNamespace())
584     return true;
585   if (VD->getLinkage() == VarDecl::InternalLinkage) {
586     // Initializer has side effects?
587     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
588       return false;
589     return !(VD->isStaticDataMember() && VD->isOutOfLine());
590   }
591   return false;
592 }
593 
594 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
595   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
596 
597   // If this is an alias definition (which otherwise looks like a declaration)
598   // emit it now.
599   if (Global->hasAttr<AliasAttr>())
600     return EmitAliasDefinition(Global);
601 
602   // Ignore declarations, they will be emitted on their first use.
603   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
604     // Forward declarations are emitted lazily on first use.
605     if (!FD->isThisDeclarationADefinition())
606       return;
607   } else {
608     const VarDecl *VD = cast<VarDecl>(Global);
609     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
610 
611     if (getLangOptions().CPlusPlus && !VD->getInit()) {
612       // In C++, if this is marked "extern", defer code generation.
613       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
614         return;
615 
616       // If this is a declaration of an explicit specialization of a static
617       // data member in a class template, don't emit it.
618       if (VD->isStaticDataMember() &&
619           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
620         return;
621     }
622 
623     // In C, if this isn't a definition, defer code generation.
624     if (!getLangOptions().CPlusPlus && !VD->getInit())
625       return;
626   }
627 
628   // Defer code generation when possible if this is a static definition, inline
629   // function etc.  These we only want to emit if they are used.
630   if (MayDeferGeneration(Global)) {
631     // If the value has already been used, add it directly to the
632     // DeferredDeclsToEmit list.
633     const char *MangledName = getMangledName(GD);
634     if (GlobalDeclMap.count(MangledName))
635       DeferredDeclsToEmit.push_back(GD);
636     else {
637       // Otherwise, remember that we saw a deferred decl with this name.  The
638       // first use of the mangled name will cause it to move into
639       // DeferredDeclsToEmit.
640       DeferredDecls[MangledName] = GD;
641     }
642     return;
643   }
644 
645   // Otherwise emit the definition.
646   EmitGlobalDefinition(GD);
647 }
648 
649 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
650   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
651 
652   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
653                                  Context.getSourceManager(),
654                                  "Generating code for declaration");
655 
656   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
657     getVtableInfo().MaybeEmitVtable(GD);
658     if (MD->isVirtual() && MD->isOutOfLine() &&
659         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
660       if (isa<CXXDestructorDecl>(D)) {
661         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
662                            GD.getDtorType());
663         BuildThunksForVirtual(CanonGD);
664       } else {
665         BuildThunksForVirtual(MD->getCanonicalDecl());
666       }
667     }
668   }
669 
670   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
671     EmitCXXConstructor(CD, GD.getCtorType());
672   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
673     EmitCXXDestructor(DD, GD.getDtorType());
674   else if (isa<FunctionDecl>(D))
675     EmitGlobalFunctionDefinition(GD);
676   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
677     EmitGlobalVarDefinition(VD);
678   else {
679     assert(0 && "Invalid argument to EmitGlobalDefinition()");
680   }
681 }
682 
683 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
684 /// module, create and return an llvm Function with the specified type. If there
685 /// is something in the module with the specified name, return it potentially
686 /// bitcasted to the right type.
687 ///
688 /// If D is non-null, it specifies a decl that correspond to this.  This is used
689 /// to set the attributes on the function when it is first created.
690 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
691                                                        const llvm::Type *Ty,
692                                                        GlobalDecl D) {
693   // Lookup the entry, lazily creating it if necessary.
694   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
695   if (Entry) {
696     if (Entry->getType()->getElementType() == Ty)
697       return Entry;
698 
699     // Make sure the result is of the correct type.
700     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
701     return llvm::ConstantExpr::getBitCast(Entry, PTy);
702   }
703 
704   // This function doesn't have a complete type (for example, the return
705   // type is an incomplete struct). Use a fake type instead, and make
706   // sure not to try to set attributes.
707   bool IsIncompleteFunction = false;
708   if (!isa<llvm::FunctionType>(Ty)) {
709     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
710                                  std::vector<const llvm::Type*>(), false);
711     IsIncompleteFunction = true;
712   }
713   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
714                                              llvm::Function::ExternalLinkage,
715                                              "", &getModule());
716   F->setName(MangledName);
717   if (D.getDecl())
718     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
719                           IsIncompleteFunction);
720   Entry = F;
721 
722   // This is the first use or definition of a mangled name.  If there is a
723   // deferred decl with this name, remember that we need to emit it at the end
724   // of the file.
725   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
726     DeferredDecls.find(MangledName);
727   if (DDI != DeferredDecls.end()) {
728     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
729     // list, and remove it from DeferredDecls (since we don't need it anymore).
730     DeferredDeclsToEmit.push_back(DDI->second);
731     DeferredDecls.erase(DDI);
732   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
733     // If this the first reference to a C++ inline function in a class, queue up
734     // the deferred function body for emission.  These are not seen as
735     // top-level declarations.
736     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
737       DeferredDeclsToEmit.push_back(D);
738     // A called constructor which has no definition or declaration need be
739     // synthesized.
740     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
741       if (CD->isImplicit())
742         DeferredDeclsToEmit.push_back(D);
743     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
744       if (DD->isImplicit())
745         DeferredDeclsToEmit.push_back(D);
746     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
747       if (MD->isCopyAssignment() && MD->isImplicit())
748         DeferredDeclsToEmit.push_back(D);
749     }
750   }
751 
752   return F;
753 }
754 
755 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
756 /// non-null, then this function will use the specified type if it has to
757 /// create it (this occurs when we see a definition of the function).
758 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
759                                                  const llvm::Type *Ty) {
760   // If there was no specific requested type, just convert it now.
761   if (!Ty)
762     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
763   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
764 }
765 
766 /// CreateRuntimeFunction - Create a new runtime function with the specified
767 /// type and name.
768 llvm::Constant *
769 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
770                                      const char *Name) {
771   // Convert Name to be a uniqued string from the IdentifierInfo table.
772   Name = getContext().Idents.get(Name).getNameStart();
773   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
774 }
775 
776 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
777   if (!D->getType().isConstant(Context))
778     return false;
779   if (Context.getLangOptions().CPlusPlus &&
780       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
781     // FIXME: We should do something fancier here!
782     return false;
783   }
784   return true;
785 }
786 
787 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
788 /// create and return an llvm GlobalVariable with the specified type.  If there
789 /// is something in the module with the specified name, return it potentially
790 /// bitcasted to the right type.
791 ///
792 /// If D is non-null, it specifies a decl that correspond to this.  This is used
793 /// to set the attributes on the global when it is first created.
794 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
795                                                      const llvm::PointerType*Ty,
796                                                      const VarDecl *D) {
797   // Lookup the entry, lazily creating it if necessary.
798   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
799   if (Entry) {
800     if (Entry->getType() == Ty)
801       return Entry;
802 
803     // Make sure the result is of the correct type.
804     return llvm::ConstantExpr::getBitCast(Entry, Ty);
805   }
806 
807   // This is the first use or definition of a mangled name.  If there is a
808   // deferred decl with this name, remember that we need to emit it at the end
809   // of the file.
810   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
811     DeferredDecls.find(MangledName);
812   if (DDI != DeferredDecls.end()) {
813     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
814     // list, and remove it from DeferredDecls (since we don't need it anymore).
815     DeferredDeclsToEmit.push_back(DDI->second);
816     DeferredDecls.erase(DDI);
817   }
818 
819   llvm::GlobalVariable *GV =
820     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
821                              llvm::GlobalValue::ExternalLinkage,
822                              0, "", 0,
823                              false, Ty->getAddressSpace());
824   GV->setName(MangledName);
825 
826   // Handle things which are present even on external declarations.
827   if (D) {
828     // FIXME: This code is overly simple and should be merged with other global
829     // handling.
830     GV->setConstant(DeclIsConstantGlobal(Context, D));
831 
832     // FIXME: Merge with other attribute handling code.
833     if (D->getStorageClass() == VarDecl::PrivateExtern)
834       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
835 
836     if (D->hasAttr<WeakAttr>() ||
837         D->hasAttr<WeakImportAttr>())
838       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
839 
840     GV->setThreadLocal(D->isThreadSpecified());
841   }
842 
843   return Entry = GV;
844 }
845 
846 
847 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
848 /// given global variable.  If Ty is non-null and if the global doesn't exist,
849 /// then it will be greated with the specified type instead of whatever the
850 /// normal requested type would be.
851 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
852                                                   const llvm::Type *Ty) {
853   assert(D->hasGlobalStorage() && "Not a global variable");
854   QualType ASTTy = D->getType();
855   if (Ty == 0)
856     Ty = getTypes().ConvertTypeForMem(ASTTy);
857 
858   const llvm::PointerType *PTy =
859     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
860   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
861 }
862 
863 /// CreateRuntimeVariable - Create a new runtime global variable with the
864 /// specified type and name.
865 llvm::Constant *
866 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
867                                      const char *Name) {
868   // Convert Name to be a uniqued string from the IdentifierInfo table.
869   Name = getContext().Idents.get(Name).getNameStart();
870   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
871 }
872 
873 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
874   assert(!D->getInit() && "Cannot emit definite definitions here!");
875 
876   if (MayDeferGeneration(D)) {
877     // If we have not seen a reference to this variable yet, place it
878     // into the deferred declarations table to be emitted if needed
879     // later.
880     const char *MangledName = getMangledName(D);
881     if (GlobalDeclMap.count(MangledName) == 0) {
882       DeferredDecls[MangledName] = D;
883       return;
884     }
885   }
886 
887   // The tentative definition is the only definition.
888   EmitGlobalVarDefinition(D);
889 }
890 
891 llvm::GlobalVariable::LinkageTypes
892 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
893   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
894     return llvm::GlobalVariable::InternalLinkage;
895 
896   if (const CXXMethodDecl *KeyFunction
897                                     = RD->getASTContext().getKeyFunction(RD)) {
898     // If this class has a key function, use that to determine the linkage of
899     // the vtable.
900     const FunctionDecl *Def = 0;
901     if (KeyFunction->getBody(Def))
902       KeyFunction = cast<CXXMethodDecl>(Def);
903 
904     switch (KeyFunction->getTemplateSpecializationKind()) {
905       case TSK_Undeclared:
906       case TSK_ExplicitSpecialization:
907         if (KeyFunction->isInlined())
908           return llvm::GlobalVariable::WeakODRLinkage;
909 
910         return llvm::GlobalVariable::ExternalLinkage;
911 
912       case TSK_ImplicitInstantiation:
913       case TSK_ExplicitInstantiationDefinition:
914         return llvm::GlobalVariable::WeakODRLinkage;
915 
916       case TSK_ExplicitInstantiationDeclaration:
917         // FIXME: Use available_externally linkage. However, this currently
918         // breaks LLVM's build due to undefined symbols.
919         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
920         return llvm::GlobalVariable::WeakODRLinkage;
921     }
922   }
923 
924   switch (RD->getTemplateSpecializationKind()) {
925   case TSK_Undeclared:
926   case TSK_ExplicitSpecialization:
927   case TSK_ImplicitInstantiation:
928   case TSK_ExplicitInstantiationDefinition:
929     return llvm::GlobalVariable::WeakODRLinkage;
930 
931   case TSK_ExplicitInstantiationDeclaration:
932     // FIXME: Use available_externally linkage. However, this currently
933     // breaks LLVM's build due to undefined symbols.
934     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
935     return llvm::GlobalVariable::WeakODRLinkage;
936   }
937 
938   // Silence GCC warning.
939   return llvm::GlobalVariable::WeakODRLinkage;
940 }
941 
942 static CodeGenModule::GVALinkage
943 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
944   // Everything located semantically within an anonymous namespace is
945   // always internal.
946   if (VD->isInAnonymousNamespace())
947     return CodeGenModule::GVA_Internal;
948 
949   // Handle linkage for static data members.
950   if (VD->isStaticDataMember()) {
951     switch (VD->getTemplateSpecializationKind()) {
952     case TSK_Undeclared:
953     case TSK_ExplicitSpecialization:
954     case TSK_ExplicitInstantiationDefinition:
955       return CodeGenModule::GVA_StrongExternal;
956 
957     case TSK_ExplicitInstantiationDeclaration:
958       llvm_unreachable("Variable should not be instantiated");
959       // Fall through to treat this like any other instantiation.
960 
961     case TSK_ImplicitInstantiation:
962       return CodeGenModule::GVA_TemplateInstantiation;
963     }
964   }
965 
966   if (VD->getLinkage() == VarDecl::InternalLinkage)
967     return CodeGenModule::GVA_Internal;
968 
969   return CodeGenModule::GVA_StrongExternal;
970 }
971 
972 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
973   llvm::Constant *Init = 0;
974   QualType ASTTy = D->getType();
975   bool NonConstInit = false;
976 
977   if (D->getInit() == 0) {
978     // This is a tentative definition; tentative definitions are
979     // implicitly initialized with { 0 }.
980     //
981     // Note that tentative definitions are only emitted at the end of
982     // a translation unit, so they should never have incomplete
983     // type. In addition, EmitTentativeDefinition makes sure that we
984     // never attempt to emit a tentative definition if a real one
985     // exists. A use may still exists, however, so we still may need
986     // to do a RAUW.
987     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
988     Init = EmitNullConstant(D->getType());
989   } else {
990     Init = EmitConstantExpr(D->getInit(), D->getType());
991 
992     if (!Init) {
993       QualType T = D->getInit()->getType();
994       if (getLangOptions().CPlusPlus) {
995         EmitCXXGlobalVarDeclInitFunc(D);
996         Init = EmitNullConstant(T);
997         NonConstInit = true;
998       } else {
999         ErrorUnsupported(D, "static initializer");
1000         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1001       }
1002     }
1003   }
1004 
1005   const llvm::Type* InitType = Init->getType();
1006   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1007 
1008   // Strip off a bitcast if we got one back.
1009   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1010     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1011            // all zero index gep.
1012            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1013     Entry = CE->getOperand(0);
1014   }
1015 
1016   // Entry is now either a Function or GlobalVariable.
1017   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1018 
1019   // We have a definition after a declaration with the wrong type.
1020   // We must make a new GlobalVariable* and update everything that used OldGV
1021   // (a declaration or tentative definition) with the new GlobalVariable*
1022   // (which will be a definition).
1023   //
1024   // This happens if there is a prototype for a global (e.g.
1025   // "extern int x[];") and then a definition of a different type (e.g.
1026   // "int x[10];"). This also happens when an initializer has a different type
1027   // from the type of the global (this happens with unions).
1028   if (GV == 0 ||
1029       GV->getType()->getElementType() != InitType ||
1030       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1031 
1032     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1033     GlobalDeclMap.erase(getMangledName(D));
1034 
1035     // Make a new global with the correct type, this is now guaranteed to work.
1036     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1037     GV->takeName(cast<llvm::GlobalValue>(Entry));
1038 
1039     // Replace all uses of the old global with the new global
1040     llvm::Constant *NewPtrForOldDecl =
1041         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1042     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1043 
1044     // Erase the old global, since it is no longer used.
1045     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1046   }
1047 
1048   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1049     SourceManager &SM = Context.getSourceManager();
1050     AddAnnotation(EmitAnnotateAttr(GV, AA,
1051                               SM.getInstantiationLineNumber(D->getLocation())));
1052   }
1053 
1054   GV->setInitializer(Init);
1055 
1056   // If it is safe to mark the global 'constant', do so now.
1057   GV->setConstant(false);
1058   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1059     GV->setConstant(true);
1060 
1061   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1062 
1063   // Set the llvm linkage type as appropriate.
1064   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1065   if (Linkage == GVA_Internal)
1066     GV->setLinkage(llvm::Function::InternalLinkage);
1067   else if (D->hasAttr<DLLImportAttr>())
1068     GV->setLinkage(llvm::Function::DLLImportLinkage);
1069   else if (D->hasAttr<DLLExportAttr>())
1070     GV->setLinkage(llvm::Function::DLLExportLinkage);
1071   else if (D->hasAttr<WeakAttr>()) {
1072     if (GV->isConstant())
1073       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1074     else
1075       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1076   } else if (Linkage == GVA_TemplateInstantiation)
1077     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1078   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1079            !D->hasExternalStorage() && !D->getInit() &&
1080            !D->getAttr<SectionAttr>()) {
1081     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1082     // common vars aren't constant even if declared const.
1083     GV->setConstant(false);
1084   } else
1085     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1086 
1087   SetCommonAttributes(D, GV);
1088 
1089   // Emit global variable debug information.
1090   if (CGDebugInfo *DI = getDebugInfo()) {
1091     DI->setLocation(D->getLocation());
1092     DI->EmitGlobalVariable(GV, D);
1093   }
1094 }
1095 
1096 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1097 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1098 /// existing call uses of the old function in the module, this adjusts them to
1099 /// call the new function directly.
1100 ///
1101 /// This is not just a cleanup: the always_inline pass requires direct calls to
1102 /// functions to be able to inline them.  If there is a bitcast in the way, it
1103 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1104 /// run at -O0.
1105 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1106                                                       llvm::Function *NewFn) {
1107   // If we're redefining a global as a function, don't transform it.
1108   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1109   if (OldFn == 0) return;
1110 
1111   const llvm::Type *NewRetTy = NewFn->getReturnType();
1112   llvm::SmallVector<llvm::Value*, 4> ArgList;
1113 
1114   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1115        UI != E; ) {
1116     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1117     unsigned OpNo = UI.getOperandNo();
1118     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1119     if (!CI || OpNo != 0) continue;
1120 
1121     // If the return types don't match exactly, and if the call isn't dead, then
1122     // we can't transform this call.
1123     if (CI->getType() != NewRetTy && !CI->use_empty())
1124       continue;
1125 
1126     // If the function was passed too few arguments, don't transform.  If extra
1127     // arguments were passed, we silently drop them.  If any of the types
1128     // mismatch, we don't transform.
1129     unsigned ArgNo = 0;
1130     bool DontTransform = false;
1131     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1132          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1133       if (CI->getNumOperands()-1 == ArgNo ||
1134           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1135         DontTransform = true;
1136         break;
1137       }
1138     }
1139     if (DontTransform)
1140       continue;
1141 
1142     // Okay, we can transform this.  Create the new call instruction and copy
1143     // over the required information.
1144     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1145     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1146                                                      ArgList.end(), "", CI);
1147     ArgList.clear();
1148     if (!NewCall->getType()->isVoidTy())
1149       NewCall->takeName(CI);
1150     NewCall->setAttributes(CI->getAttributes());
1151     NewCall->setCallingConv(CI->getCallingConv());
1152 
1153     // Finally, remove the old call, replacing any uses with the new one.
1154     if (!CI->use_empty())
1155       CI->replaceAllUsesWith(NewCall);
1156 
1157     // Copy any custom metadata attached with CI.
1158     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1159       NewCall->setMetadata("dbg", DbgNode);
1160     CI->eraseFromParent();
1161   }
1162 }
1163 
1164 
1165 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1166   const llvm::FunctionType *Ty;
1167   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1168 
1169   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1170     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1171 
1172     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1173   } else {
1174     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1175 
1176     // As a special case, make sure that definitions of K&R function
1177     // "type foo()" aren't declared as varargs (which forces the backend
1178     // to do unnecessary work).
1179     if (D->getType()->isFunctionNoProtoType()) {
1180       assert(Ty->isVarArg() && "Didn't lower type as expected");
1181       // Due to stret, the lowered function could have arguments.
1182       // Just create the same type as was lowered by ConvertType
1183       // but strip off the varargs bit.
1184       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1185       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1186     }
1187   }
1188 
1189   // Get or create the prototype for the function.
1190   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1191 
1192   // Strip off a bitcast if we got one back.
1193   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1194     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1195     Entry = CE->getOperand(0);
1196   }
1197 
1198 
1199   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1200     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1201 
1202     // If the types mismatch then we have to rewrite the definition.
1203     assert(OldFn->isDeclaration() &&
1204            "Shouldn't replace non-declaration");
1205 
1206     // F is the Function* for the one with the wrong type, we must make a new
1207     // Function* and update everything that used F (a declaration) with the new
1208     // Function* (which will be a definition).
1209     //
1210     // This happens if there is a prototype for a function
1211     // (e.g. "int f()") and then a definition of a different type
1212     // (e.g. "int f(int x)").  Start by making a new function of the
1213     // correct type, RAUW, then steal the name.
1214     GlobalDeclMap.erase(getMangledName(D));
1215     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1216     NewFn->takeName(OldFn);
1217 
1218     // If this is an implementation of a function without a prototype, try to
1219     // replace any existing uses of the function (which may be calls) with uses
1220     // of the new function
1221     if (D->getType()->isFunctionNoProtoType()) {
1222       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1223       OldFn->removeDeadConstantUsers();
1224     }
1225 
1226     // Replace uses of F with the Function we will endow with a body.
1227     if (!Entry->use_empty()) {
1228       llvm::Constant *NewPtrForOldDecl =
1229         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1230       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1231     }
1232 
1233     // Ok, delete the old function now, which is dead.
1234     OldFn->eraseFromParent();
1235 
1236     Entry = NewFn;
1237   }
1238 
1239   llvm::Function *Fn = cast<llvm::Function>(Entry);
1240 
1241   CodeGenFunction(*this).GenerateCode(D, Fn);
1242 
1243   SetFunctionDefinitionAttributes(D, Fn);
1244   SetLLVMFunctionAttributesForDefinition(D, Fn);
1245 
1246   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1247     AddGlobalCtor(Fn, CA->getPriority());
1248   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1249     AddGlobalDtor(Fn, DA->getPriority());
1250 }
1251 
1252 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1253   const AliasAttr *AA = D->getAttr<AliasAttr>();
1254   assert(AA && "Not an alias?");
1255 
1256   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1257 
1258   // Unique the name through the identifier table.
1259   const char *AliaseeName = AA->getAliasee().c_str();
1260   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1261 
1262   // Create a reference to the named value.  This ensures that it is emitted
1263   // if a deferred decl.
1264   llvm::Constant *Aliasee;
1265   if (isa<llvm::FunctionType>(DeclTy))
1266     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1267   else
1268     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1269                                     llvm::PointerType::getUnqual(DeclTy), 0);
1270 
1271   // Create the new alias itself, but don't set a name yet.
1272   llvm::GlobalValue *GA =
1273     new llvm::GlobalAlias(Aliasee->getType(),
1274                           llvm::Function::ExternalLinkage,
1275                           "", Aliasee, &getModule());
1276 
1277   // See if there is already something with the alias' name in the module.
1278   const char *MangledName = getMangledName(D);
1279   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1280 
1281   if (Entry && !Entry->isDeclaration()) {
1282     // If there is a definition in the module, then it wins over the alias.
1283     // This is dubious, but allow it to be safe.  Just ignore the alias.
1284     GA->eraseFromParent();
1285     return;
1286   }
1287 
1288   if (Entry) {
1289     // If there is a declaration in the module, then we had an extern followed
1290     // by the alias, as in:
1291     //   extern int test6();
1292     //   ...
1293     //   int test6() __attribute__((alias("test7")));
1294     //
1295     // Remove it and replace uses of it with the alias.
1296 
1297     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1298                                                           Entry->getType()));
1299     Entry->eraseFromParent();
1300   }
1301 
1302   // Now we know that there is no conflict, set the name.
1303   Entry = GA;
1304   GA->setName(MangledName);
1305 
1306   // Set attributes which are particular to an alias; this is a
1307   // specialization of the attributes which may be set on a global
1308   // variable/function.
1309   if (D->hasAttr<DLLExportAttr>()) {
1310     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1311       // The dllexport attribute is ignored for undefined symbols.
1312       if (FD->getBody())
1313         GA->setLinkage(llvm::Function::DLLExportLinkage);
1314     } else {
1315       GA->setLinkage(llvm::Function::DLLExportLinkage);
1316     }
1317   } else if (D->hasAttr<WeakAttr>() ||
1318              D->hasAttr<WeakImportAttr>()) {
1319     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1320   }
1321 
1322   SetCommonAttributes(D, GA);
1323 }
1324 
1325 /// getBuiltinLibFunction - Given a builtin id for a function like
1326 /// "__builtin_fabsf", return a Function* for "fabsf".
1327 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1328                                                   unsigned BuiltinID) {
1329   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1330           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1331          "isn't a lib fn");
1332 
1333   // Get the name, skip over the __builtin_ prefix (if necessary).
1334   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1335   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1336     Name += 10;
1337 
1338   const llvm::FunctionType *Ty =
1339     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1340 
1341   // Unique the name through the identifier table.
1342   Name = getContext().Idents.get(Name).getNameStart();
1343   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1344 }
1345 
1346 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1347                                             unsigned NumTys) {
1348   return llvm::Intrinsic::getDeclaration(&getModule(),
1349                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1350 }
1351 
1352 llvm::Function *CodeGenModule::getMemCpyFn() {
1353   if (MemCpyFn) return MemCpyFn;
1354   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1355   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1356 }
1357 
1358 llvm::Function *CodeGenModule::getMemMoveFn() {
1359   if (MemMoveFn) return MemMoveFn;
1360   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1361   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1362 }
1363 
1364 llvm::Function *CodeGenModule::getMemSetFn() {
1365   if (MemSetFn) return MemSetFn;
1366   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1367   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1368 }
1369 
1370 static llvm::StringMapEntry<llvm::Constant*> &
1371 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1372                          const StringLiteral *Literal,
1373                          bool TargetIsLSB,
1374                          bool &IsUTF16,
1375                          unsigned &StringLength) {
1376   unsigned NumBytes = Literal->getByteLength();
1377 
1378   // Check for simple case.
1379   if (!Literal->containsNonAsciiOrNull()) {
1380     StringLength = NumBytes;
1381     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1382                                                 StringLength));
1383   }
1384 
1385   // Otherwise, convert the UTF8 literals into a byte string.
1386   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1387   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1388   UTF16 *ToPtr = &ToBuf[0];
1389 
1390   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1391                                                &ToPtr, ToPtr + NumBytes,
1392                                                strictConversion);
1393 
1394   // Check for conversion failure.
1395   if (Result != conversionOK) {
1396     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1397     // this duplicate code.
1398     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1399     StringLength = NumBytes;
1400     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1401                                                 StringLength));
1402   }
1403 
1404   // ConvertUTF8toUTF16 returns the length in ToPtr.
1405   StringLength = ToPtr - &ToBuf[0];
1406 
1407   // Render the UTF-16 string into a byte array and convert to the target byte
1408   // order.
1409   //
1410   // FIXME: This isn't something we should need to do here.
1411   llvm::SmallString<128> AsBytes;
1412   AsBytes.reserve(StringLength * 2);
1413   for (unsigned i = 0; i != StringLength; ++i) {
1414     unsigned short Val = ToBuf[i];
1415     if (TargetIsLSB) {
1416       AsBytes.push_back(Val & 0xFF);
1417       AsBytes.push_back(Val >> 8);
1418     } else {
1419       AsBytes.push_back(Val >> 8);
1420       AsBytes.push_back(Val & 0xFF);
1421     }
1422   }
1423   // Append one extra null character, the second is automatically added by our
1424   // caller.
1425   AsBytes.push_back(0);
1426 
1427   IsUTF16 = true;
1428   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1429 }
1430 
1431 llvm::Constant *
1432 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1433   unsigned StringLength = 0;
1434   bool isUTF16 = false;
1435   llvm::StringMapEntry<llvm::Constant*> &Entry =
1436     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1437                              getTargetData().isLittleEndian(),
1438                              isUTF16, StringLength);
1439 
1440   if (llvm::Constant *C = Entry.getValue())
1441     return C;
1442 
1443   llvm::Constant *Zero =
1444       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1445   llvm::Constant *Zeros[] = { Zero, Zero };
1446 
1447   // If we don't already have it, get __CFConstantStringClassReference.
1448   if (!CFConstantStringClassRef) {
1449     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1450     Ty = llvm::ArrayType::get(Ty, 0);
1451     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1452                                            "__CFConstantStringClassReference");
1453     // Decay array -> ptr
1454     CFConstantStringClassRef =
1455       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1456   }
1457 
1458   QualType CFTy = getContext().getCFConstantStringType();
1459 
1460   const llvm::StructType *STy =
1461     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1462 
1463   std::vector<llvm::Constant*> Fields(4);
1464 
1465   // Class pointer.
1466   Fields[0] = CFConstantStringClassRef;
1467 
1468   // Flags.
1469   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1470   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1471     llvm::ConstantInt::get(Ty, 0x07C8);
1472 
1473   // String pointer.
1474   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1475 
1476   const char *Sect = 0;
1477   llvm::GlobalValue::LinkageTypes Linkage;
1478   bool isConstant;
1479   if (isUTF16) {
1480     Sect = getContext().Target.getUnicodeStringSection();
1481     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1482     Linkage = llvm::GlobalValue::InternalLinkage;
1483     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1484     // does make plain ascii ones writable.
1485     isConstant = true;
1486   } else {
1487     Linkage = llvm::GlobalValue::PrivateLinkage;
1488     isConstant = !Features.WritableStrings;
1489   }
1490 
1491   llvm::GlobalVariable *GV =
1492     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1493                              ".str");
1494   if (Sect)
1495     GV->setSection(Sect);
1496   if (isUTF16) {
1497     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1498     GV->setAlignment(Align);
1499   }
1500   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1501 
1502   // String length.
1503   Ty = getTypes().ConvertType(getContext().LongTy);
1504   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1505 
1506   // The struct.
1507   C = llvm::ConstantStruct::get(STy, Fields);
1508   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1509                                 llvm::GlobalVariable::PrivateLinkage, C,
1510                                 "_unnamed_cfstring_");
1511   if (const char *Sect = getContext().Target.getCFStringSection())
1512     GV->setSection(Sect);
1513   Entry.setValue(GV);
1514 
1515   return GV;
1516 }
1517 
1518 /// GetStringForStringLiteral - Return the appropriate bytes for a
1519 /// string literal, properly padded to match the literal type.
1520 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1521   const char *StrData = E->getStrData();
1522   unsigned Len = E->getByteLength();
1523 
1524   const ConstantArrayType *CAT =
1525     getContext().getAsConstantArrayType(E->getType());
1526   assert(CAT && "String isn't pointer or array!");
1527 
1528   // Resize the string to the right size.
1529   std::string Str(StrData, StrData+Len);
1530   uint64_t RealLen = CAT->getSize().getZExtValue();
1531 
1532   if (E->isWide())
1533     RealLen *= getContext().Target.getWCharWidth()/8;
1534 
1535   Str.resize(RealLen, '\0');
1536 
1537   return Str;
1538 }
1539 
1540 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1541 /// constant array for the given string literal.
1542 llvm::Constant *
1543 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1544   // FIXME: This can be more efficient.
1545   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1546   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1547   if (S->isWide()) {
1548     llvm::Type *DestTy =
1549         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1550     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1551   }
1552   return C;
1553 }
1554 
1555 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1556 /// array for the given ObjCEncodeExpr node.
1557 llvm::Constant *
1558 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1559   std::string Str;
1560   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1561 
1562   return GetAddrOfConstantCString(Str);
1563 }
1564 
1565 
1566 /// GenerateWritableString -- Creates storage for a string literal.
1567 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1568                                              bool constant,
1569                                              CodeGenModule &CGM,
1570                                              const char *GlobalName) {
1571   // Create Constant for this string literal. Don't add a '\0'.
1572   llvm::Constant *C =
1573       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1574 
1575   // Create a global variable for this string
1576   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1577                                   llvm::GlobalValue::PrivateLinkage,
1578                                   C, GlobalName);
1579 }
1580 
1581 /// GetAddrOfConstantString - Returns a pointer to a character array
1582 /// containing the literal. This contents are exactly that of the
1583 /// given string, i.e. it will not be null terminated automatically;
1584 /// see GetAddrOfConstantCString. Note that whether the result is
1585 /// actually a pointer to an LLVM constant depends on
1586 /// Feature.WriteableStrings.
1587 ///
1588 /// The result has pointer to array type.
1589 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1590                                                        const char *GlobalName) {
1591   bool IsConstant = !Features.WritableStrings;
1592 
1593   // Get the default prefix if a name wasn't specified.
1594   if (!GlobalName)
1595     GlobalName = ".str";
1596 
1597   // Don't share any string literals if strings aren't constant.
1598   if (!IsConstant)
1599     return GenerateStringLiteral(str, false, *this, GlobalName);
1600 
1601   llvm::StringMapEntry<llvm::Constant *> &Entry =
1602     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1603 
1604   if (Entry.getValue())
1605     return Entry.getValue();
1606 
1607   // Create a global variable for this.
1608   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1609   Entry.setValue(C);
1610   return C;
1611 }
1612 
1613 /// GetAddrOfConstantCString - Returns a pointer to a character
1614 /// array containing the literal and a terminating '\-'
1615 /// character. The result has pointer to array type.
1616 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1617                                                         const char *GlobalName){
1618   return GetAddrOfConstantString(str + '\0', GlobalName);
1619 }
1620 
1621 /// EmitObjCPropertyImplementations - Emit information for synthesized
1622 /// properties for an implementation.
1623 void CodeGenModule::EmitObjCPropertyImplementations(const
1624                                                     ObjCImplementationDecl *D) {
1625   for (ObjCImplementationDecl::propimpl_iterator
1626          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1627     ObjCPropertyImplDecl *PID = *i;
1628 
1629     // Dynamic is just for type-checking.
1630     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1631       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1632 
1633       // Determine which methods need to be implemented, some may have
1634       // been overridden. Note that ::isSynthesized is not the method
1635       // we want, that just indicates if the decl came from a
1636       // property. What we want to know is if the method is defined in
1637       // this implementation.
1638       if (!D->getInstanceMethod(PD->getGetterName()))
1639         CodeGenFunction(*this).GenerateObjCGetter(
1640                                  const_cast<ObjCImplementationDecl *>(D), PID);
1641       if (!PD->isReadOnly() &&
1642           !D->getInstanceMethod(PD->getSetterName()))
1643         CodeGenFunction(*this).GenerateObjCSetter(
1644                                  const_cast<ObjCImplementationDecl *>(D), PID);
1645     }
1646   }
1647 }
1648 
1649 /// EmitNamespace - Emit all declarations in a namespace.
1650 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1651   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1652        I != E; ++I)
1653     EmitTopLevelDecl(*I);
1654 }
1655 
1656 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1657 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1658   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1659       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1660     ErrorUnsupported(LSD, "linkage spec");
1661     return;
1662   }
1663 
1664   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1665        I != E; ++I)
1666     EmitTopLevelDecl(*I);
1667 }
1668 
1669 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1670 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1671   // If an error has occurred, stop code generation, but continue
1672   // parsing and semantic analysis (to ensure all warnings and errors
1673   // are emitted).
1674   if (Diags.hasErrorOccurred())
1675     return;
1676 
1677   // Ignore dependent declarations.
1678   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1679     return;
1680 
1681   switch (D->getKind()) {
1682   case Decl::CXXConversion:
1683   case Decl::CXXMethod:
1684   case Decl::Function:
1685     // Skip function templates
1686     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1687       return;
1688 
1689     EmitGlobal(cast<FunctionDecl>(D));
1690     break;
1691 
1692   case Decl::Var:
1693     EmitGlobal(cast<VarDecl>(D));
1694     break;
1695 
1696   // C++ Decls
1697   case Decl::Namespace:
1698     EmitNamespace(cast<NamespaceDecl>(D));
1699     break;
1700     // No code generation needed.
1701   case Decl::UsingShadow:
1702   case Decl::Using:
1703   case Decl::UsingDirective:
1704   case Decl::ClassTemplate:
1705   case Decl::FunctionTemplate:
1706   case Decl::NamespaceAlias:
1707     break;
1708   case Decl::CXXConstructor:
1709     // Skip function templates
1710     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1711       return;
1712 
1713     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1714     break;
1715   case Decl::CXXDestructor:
1716     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1717     break;
1718 
1719   case Decl::StaticAssert:
1720     // Nothing to do.
1721     break;
1722 
1723   // Objective-C Decls
1724 
1725   // Forward declarations, no (immediate) code generation.
1726   case Decl::ObjCClass:
1727   case Decl::ObjCForwardProtocol:
1728   case Decl::ObjCCategory:
1729   case Decl::ObjCInterface:
1730     break;
1731 
1732   case Decl::ObjCProtocol:
1733     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1734     break;
1735 
1736   case Decl::ObjCCategoryImpl:
1737     // Categories have properties but don't support synthesize so we
1738     // can ignore them here.
1739     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1740     break;
1741 
1742   case Decl::ObjCImplementation: {
1743     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1744     EmitObjCPropertyImplementations(OMD);
1745     Runtime->GenerateClass(OMD);
1746     break;
1747   }
1748   case Decl::ObjCMethod: {
1749     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1750     // If this is not a prototype, emit the body.
1751     if (OMD->getBody())
1752       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1753     break;
1754   }
1755   case Decl::ObjCCompatibleAlias:
1756     // compatibility-alias is a directive and has no code gen.
1757     break;
1758 
1759   case Decl::LinkageSpec:
1760     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1761     break;
1762 
1763   case Decl::FileScopeAsm: {
1764     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1765     llvm::StringRef AsmString = AD->getAsmString()->getString();
1766 
1767     const std::string &S = getModule().getModuleInlineAsm();
1768     if (S.empty())
1769       getModule().setModuleInlineAsm(AsmString);
1770     else
1771       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1772     break;
1773   }
1774 
1775   default:
1776     // Make sure we handled everything we should, every other kind is a
1777     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1778     // function. Need to recode Decl::Kind to do that easily.
1779     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1780   }
1781 }
1782