1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary( 423 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 424 llvm::ProfileSummary::PSK_Instr); 425 if (PGOStats.hasDiagnostics()) 426 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 427 } 428 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 429 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 430 EmitGlobalAnnotations(); 431 EmitStaticExternCAliases(); 432 EmitDeferredUnusedCoverageMappings(); 433 if (CoverageMapping) 434 CoverageMapping->emit(); 435 if (CodeGenOpts.SanitizeCfiCrossDso) { 436 CodeGenFunction(*this).EmitCfiCheckFail(); 437 CodeGenFunction(*this).EmitCfiCheckStub(); 438 } 439 emitAtAvailableLinkGuard(); 440 emitLLVMUsed(); 441 if (SanStats) 442 SanStats->finish(); 443 444 if (CodeGenOpts.Autolink && 445 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 446 EmitModuleLinkOptions(); 447 } 448 449 // Record mregparm value now so it is visible through rest of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 454 if (CodeGenOpts.DwarfVersion) { 455 // We actually want the latest version when there are conflicts. 456 // We can change from Warning to Latest if such mode is supported. 457 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 458 CodeGenOpts.DwarfVersion); 459 } 460 if (CodeGenOpts.EmitCodeView) { 461 // Indicate that we want CodeView in the metadata. 462 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 463 } 464 if (CodeGenOpts.CodeViewGHash) { 465 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 466 } 467 if (CodeGenOpts.ControlFlowGuard) { 468 // We want function ID tables for Control Flow Guard. 469 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 470 } 471 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 472 // We don't support LTO with 2 with different StrictVTablePointers 473 // FIXME: we could support it by stripping all the information introduced 474 // by StrictVTablePointers. 475 476 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 477 478 llvm::Metadata *Ops[2] = { 479 llvm::MDString::get(VMContext, "StrictVTablePointers"), 480 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 481 llvm::Type::getInt32Ty(VMContext), 1))}; 482 483 getModule().addModuleFlag(llvm::Module::Require, 484 "StrictVTablePointersRequirement", 485 llvm::MDNode::get(VMContext, Ops)); 486 } 487 if (DebugInfo) 488 // We support a single version in the linked module. The LLVM 489 // parser will drop debug info with a different version number 490 // (and warn about it, too). 491 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 492 llvm::DEBUG_METADATA_VERSION); 493 494 // We need to record the widths of enums and wchar_t, so that we can generate 495 // the correct build attributes in the ARM backend. wchar_size is also used by 496 // TargetLibraryInfo. 497 uint64_t WCharWidth = 498 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 499 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 500 501 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 502 if ( Arch == llvm::Triple::arm 503 || Arch == llvm::Triple::armeb 504 || Arch == llvm::Triple::thumb 505 || Arch == llvm::Triple::thumbeb) { 506 // The minimum width of an enum in bytes 507 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 508 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 509 } 510 511 if (CodeGenOpts.SanitizeCfiCrossDso) { 512 // Indicate that we want cross-DSO control flow integrity checks. 513 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 514 } 515 516 if (CodeGenOpts.CFProtectionReturn && 517 Target.checkCFProtectionReturnSupported(getDiags())) { 518 // Indicate that we want to instrument return control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 520 1); 521 } 522 523 if (CodeGenOpts.CFProtectionBranch && 524 Target.checkCFProtectionBranchSupported(getDiags())) { 525 // Indicate that we want to instrument branch control flow protection. 526 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 527 1); 528 } 529 530 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 531 // Indicate whether __nvvm_reflect should be configured to flush denormal 532 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 533 // property.) 534 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 535 CodeGenOpts.FlushDenorm ? 1 : 0); 536 } 537 538 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 539 if (LangOpts.OpenCL) { 540 EmitOpenCLMetadata(); 541 // Emit SPIR version. 542 if (getTriple().getArch() == llvm::Triple::spir || 543 getTriple().getArch() == llvm::Triple::spir64) { 544 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 545 // opencl.spir.version named metadata. 546 llvm::Metadata *SPIRVerElts[] = { 547 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 548 Int32Ty, LangOpts.OpenCLVersion / 100)), 549 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 550 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 551 llvm::NamedMDNode *SPIRVerMD = 552 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 553 llvm::LLVMContext &Ctx = TheModule.getContext(); 554 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 555 } 556 } 557 558 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 559 assert(PLevel < 3 && "Invalid PIC Level"); 560 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 561 if (Context.getLangOpts().PIE) 562 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 563 } 564 565 if (getCodeGenOpts().CodeModel.size() > 0) { 566 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 567 .Case("tiny", llvm::CodeModel::Tiny) 568 .Case("small", llvm::CodeModel::Small) 569 .Case("kernel", llvm::CodeModel::Kernel) 570 .Case("medium", llvm::CodeModel::Medium) 571 .Case("large", llvm::CodeModel::Large) 572 .Default(~0u); 573 if (CM != ~0u) { 574 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 575 getModule().setCodeModel(codeModel); 576 } 577 } 578 579 if (CodeGenOpts.NoPLT) 580 getModule().setRtLibUseGOT(); 581 582 SimplifyPersonality(); 583 584 if (getCodeGenOpts().EmitDeclMetadata) 585 EmitDeclMetadata(); 586 587 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 588 EmitCoverageFile(); 589 590 if (DebugInfo) 591 DebugInfo->finalize(); 592 593 if (getCodeGenOpts().EmitVersionIdentMetadata) 594 EmitVersionIdentMetadata(); 595 596 if (!getCodeGenOpts().RecordCommandLine.empty()) 597 EmitCommandLineMetadata(); 598 599 EmitTargetMetadata(); 600 } 601 602 void CodeGenModule::EmitOpenCLMetadata() { 603 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 604 // opencl.ocl.version named metadata node. 605 llvm::Metadata *OCLVerElts[] = { 606 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 607 Int32Ty, LangOpts.OpenCLVersion / 100)), 608 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 609 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 610 llvm::NamedMDNode *OCLVerMD = 611 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 612 llvm::LLVMContext &Ctx = TheModule.getContext(); 613 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 614 } 615 616 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 617 // Make sure that this type is translated. 618 Types.UpdateCompletedType(TD); 619 } 620 621 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 622 // Make sure that this type is translated. 623 Types.RefreshTypeCacheForClass(RD); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getTypeInfo(QTy); 630 } 631 632 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 633 if (!TBAA) 634 return TBAAAccessInfo(); 635 return TBAA->getAccessInfo(AccessType); 636 } 637 638 TBAAAccessInfo 639 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 643 } 644 645 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 646 if (!TBAA) 647 return nullptr; 648 return TBAA->getTBAAStructInfo(QTy); 649 } 650 651 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 652 if (!TBAA) 653 return nullptr; 654 return TBAA->getBaseTypeInfo(QTy); 655 } 656 657 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 658 if (!TBAA) 659 return nullptr; 660 return TBAA->getAccessTagInfo(Info); 661 } 662 663 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 664 TBAAAccessInfo TargetInfo) { 665 if (!TBAA) 666 return TBAAAccessInfo(); 667 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 668 } 669 670 TBAAAccessInfo 671 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 672 TBAAAccessInfo InfoB) { 673 if (!TBAA) 674 return TBAAAccessInfo(); 675 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 676 } 677 678 TBAAAccessInfo 679 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 680 TBAAAccessInfo SrcInfo) { 681 if (!TBAA) 682 return TBAAAccessInfo(); 683 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 684 } 685 686 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 687 TBAAAccessInfo TBAAInfo) { 688 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 689 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 690 } 691 692 void CodeGenModule::DecorateInstructionWithInvariantGroup( 693 llvm::Instruction *I, const CXXRecordDecl *RD) { 694 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 695 llvm::MDNode::get(getLLVMContext(), {})); 696 } 697 698 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 699 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 700 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 701 } 702 703 /// ErrorUnsupported - Print out an error that codegen doesn't support the 704 /// specified stmt yet. 705 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 706 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 707 "cannot compile this %0 yet"); 708 std::string Msg = Type; 709 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 710 << Msg << S->getSourceRange(); 711 } 712 713 /// ErrorUnsupported - Print out an error that codegen doesn't support the 714 /// specified decl yet. 715 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 716 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 717 "cannot compile this %0 yet"); 718 std::string Msg = Type; 719 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 720 } 721 722 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 723 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 724 } 725 726 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 727 const NamedDecl *D) const { 728 if (GV->hasDLLImportStorageClass()) 729 return; 730 // Internal definitions always have default visibility. 731 if (GV->hasLocalLinkage()) { 732 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 733 return; 734 } 735 if (!D) 736 return; 737 // Set visibility for definitions, and for declarations if requested globally 738 // or set explicitly. 739 LinkageInfo LV = D->getLinkageAndVisibility(); 740 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 741 !GV->isDeclarationForLinker()) 742 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 743 } 744 745 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 746 llvm::GlobalValue *GV) { 747 if (GV->hasLocalLinkage()) 748 return true; 749 750 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 751 return true; 752 753 // DLLImport explicitly marks the GV as external. 754 if (GV->hasDLLImportStorageClass()) 755 return false; 756 757 const llvm::Triple &TT = CGM.getTriple(); 758 if (TT.isWindowsGNUEnvironment()) { 759 // In MinGW, variables without DLLImport can still be automatically 760 // imported from a DLL by the linker; don't mark variables that 761 // potentially could come from another DLL as DSO local. 762 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 763 !GV->isThreadLocal()) 764 return false; 765 } 766 // Every other GV is local on COFF. 767 // Make an exception for windows OS in the triple: Some firmware builds use 768 // *-win32-macho triples. This (accidentally?) produced windows relocations 769 // without GOT tables in older clang versions; Keep this behaviour. 770 // FIXME: even thread local variables? 771 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 772 return true; 773 774 // Only handle COFF and ELF for now. 775 if (!TT.isOSBinFormatELF()) 776 return false; 777 778 // If this is not an executable, don't assume anything is local. 779 const auto &CGOpts = CGM.getCodeGenOpts(); 780 llvm::Reloc::Model RM = CGOpts.RelocationModel; 781 const auto &LOpts = CGM.getLangOpts(); 782 if (RM != llvm::Reloc::Static && !LOpts.PIE) 783 return false; 784 785 // A definition cannot be preempted from an executable. 786 if (!GV->isDeclarationForLinker()) 787 return true; 788 789 // Most PIC code sequences that assume that a symbol is local cannot produce a 790 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 791 // depended, it seems worth it to handle it here. 792 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 793 return false; 794 795 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 796 llvm::Triple::ArchType Arch = TT.getArch(); 797 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 798 Arch == llvm::Triple::ppc64le) 799 return false; 800 801 // If we can use copy relocations we can assume it is local. 802 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 803 if (!Var->isThreadLocal() && 804 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 805 return true; 806 807 // If we can use a plt entry as the symbol address we can assume it 808 // is local. 809 // FIXME: This should work for PIE, but the gold linker doesn't support it. 810 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 811 return true; 812 813 // Otherwise don't assue it is local. 814 return false; 815 } 816 817 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 818 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 819 } 820 821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 822 GlobalDecl GD) const { 823 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 824 // C++ destructors have a few C++ ABI specific special cases. 825 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 826 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 827 return; 828 } 829 setDLLImportDLLExport(GV, D); 830 } 831 832 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 833 const NamedDecl *D) const { 834 if (D && D->isExternallyVisible()) { 835 if (D->hasAttr<DLLImportAttr>()) 836 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 837 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 838 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 839 } 840 } 841 842 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 843 GlobalDecl GD) const { 844 setDLLImportDLLExport(GV, GD); 845 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 846 } 847 848 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 849 const NamedDecl *D) const { 850 setDLLImportDLLExport(GV, D); 851 setGlobalVisibilityAndLocal(GV, D); 852 } 853 854 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 855 const NamedDecl *D) const { 856 setGlobalVisibility(GV, D); 857 setDSOLocal(GV); 858 } 859 860 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 861 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 862 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 863 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 864 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 865 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 866 } 867 868 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 869 CodeGenOptions::TLSModel M) { 870 switch (M) { 871 case CodeGenOptions::GeneralDynamicTLSModel: 872 return llvm::GlobalVariable::GeneralDynamicTLSModel; 873 case CodeGenOptions::LocalDynamicTLSModel: 874 return llvm::GlobalVariable::LocalDynamicTLSModel; 875 case CodeGenOptions::InitialExecTLSModel: 876 return llvm::GlobalVariable::InitialExecTLSModel; 877 case CodeGenOptions::LocalExecTLSModel: 878 return llvm::GlobalVariable::LocalExecTLSModel; 879 } 880 llvm_unreachable("Invalid TLS model!"); 881 } 882 883 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 884 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 885 886 llvm::GlobalValue::ThreadLocalMode TLM; 887 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 888 889 // Override the TLS model if it is explicitly specified. 890 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 891 TLM = GetLLVMTLSModel(Attr->getModel()); 892 } 893 894 GV->setThreadLocalMode(TLM); 895 } 896 897 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 898 StringRef Name) { 899 const TargetInfo &Target = CGM.getTarget(); 900 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 901 } 902 903 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 904 const CPUSpecificAttr *Attr, 905 unsigned CPUIndex, 906 raw_ostream &Out) { 907 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 908 // supported. 909 if (Attr) 910 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 911 else if (CGM.getTarget().supportsIFunc()) 912 Out << ".resolver"; 913 } 914 915 static void AppendTargetMangling(const CodeGenModule &CGM, 916 const TargetAttr *Attr, raw_ostream &Out) { 917 if (Attr->isDefaultVersion()) 918 return; 919 920 Out << '.'; 921 const TargetInfo &Target = CGM.getTarget(); 922 TargetAttr::ParsedTargetAttr Info = 923 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 924 // Multiversioning doesn't allow "no-${feature}", so we can 925 // only have "+" prefixes here. 926 assert(LHS.startswith("+") && RHS.startswith("+") && 927 "Features should always have a prefix."); 928 return Target.multiVersionSortPriority(LHS.substr(1)) > 929 Target.multiVersionSortPriority(RHS.substr(1)); 930 }); 931 932 bool IsFirst = true; 933 934 if (!Info.Architecture.empty()) { 935 IsFirst = false; 936 Out << "arch_" << Info.Architecture; 937 } 938 939 for (StringRef Feat : Info.Features) { 940 if (!IsFirst) 941 Out << '_'; 942 IsFirst = false; 943 Out << Feat.substr(1); 944 } 945 } 946 947 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 948 const NamedDecl *ND, 949 bool OmitMultiVersionMangling = false) { 950 SmallString<256> Buffer; 951 llvm::raw_svector_ostream Out(Buffer); 952 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 953 if (MC.shouldMangleDeclName(ND)) { 954 llvm::raw_svector_ostream Out(Buffer); 955 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 956 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 957 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 958 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 959 else 960 MC.mangleName(ND, Out); 961 } else { 962 IdentifierInfo *II = ND->getIdentifier(); 963 assert(II && "Attempt to mangle unnamed decl."); 964 const auto *FD = dyn_cast<FunctionDecl>(ND); 965 966 if (FD && 967 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 968 llvm::raw_svector_ostream Out(Buffer); 969 Out << "__regcall3__" << II->getName(); 970 } else { 971 Out << II->getName(); 972 } 973 } 974 975 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 976 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 977 switch (FD->getMultiVersionKind()) { 978 case MultiVersionKind::CPUDispatch: 979 case MultiVersionKind::CPUSpecific: 980 AppendCPUSpecificCPUDispatchMangling(CGM, 981 FD->getAttr<CPUSpecificAttr>(), 982 GD.getMultiVersionIndex(), Out); 983 break; 984 case MultiVersionKind::Target: 985 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 986 break; 987 case MultiVersionKind::None: 988 llvm_unreachable("None multiversion type isn't valid here"); 989 } 990 } 991 992 return Out.str(); 993 } 994 995 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 996 const FunctionDecl *FD) { 997 if (!FD->isMultiVersion()) 998 return; 999 1000 // Get the name of what this would be without the 'target' attribute. This 1001 // allows us to lookup the version that was emitted when this wasn't a 1002 // multiversion function. 1003 std::string NonTargetName = 1004 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1005 GlobalDecl OtherGD; 1006 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1007 assert(OtherGD.getCanonicalDecl() 1008 .getDecl() 1009 ->getAsFunction() 1010 ->isMultiVersion() && 1011 "Other GD should now be a multiversioned function"); 1012 // OtherFD is the version of this function that was mangled BEFORE 1013 // becoming a MultiVersion function. It potentially needs to be updated. 1014 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1015 .getDecl() 1016 ->getAsFunction() 1017 ->getMostRecentDecl(); 1018 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1019 // This is so that if the initial version was already the 'default' 1020 // version, we don't try to update it. 1021 if (OtherName != NonTargetName) { 1022 // Remove instead of erase, since others may have stored the StringRef 1023 // to this. 1024 const auto ExistingRecord = Manglings.find(NonTargetName); 1025 if (ExistingRecord != std::end(Manglings)) 1026 Manglings.remove(&(*ExistingRecord)); 1027 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1028 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1029 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1030 Entry->setName(OtherName); 1031 } 1032 } 1033 } 1034 1035 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1036 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1037 1038 // Some ABIs don't have constructor variants. Make sure that base and 1039 // complete constructors get mangled the same. 1040 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1041 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1042 CXXCtorType OrigCtorType = GD.getCtorType(); 1043 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1044 if (OrigCtorType == Ctor_Base) 1045 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1046 } 1047 } 1048 1049 auto FoundName = MangledDeclNames.find(CanonicalGD); 1050 if (FoundName != MangledDeclNames.end()) 1051 return FoundName->second; 1052 1053 // Keep the first result in the case of a mangling collision. 1054 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1055 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1056 1057 // Postfix kernel stub names with .stub to differentiate them from kernel 1058 // names in device binaries. This is to facilitate the debugger to find 1059 // the correct symbols for kernels in the device binary. 1060 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1061 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1062 FD->hasAttr<CUDAGlobalAttr>()) 1063 MangledName = MangledName + ".stub"; 1064 1065 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1066 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1067 } 1068 1069 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1070 const BlockDecl *BD) { 1071 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1072 const Decl *D = GD.getDecl(); 1073 1074 SmallString<256> Buffer; 1075 llvm::raw_svector_ostream Out(Buffer); 1076 if (!D) 1077 MangleCtx.mangleGlobalBlock(BD, 1078 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1079 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1080 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1081 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1082 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1083 else 1084 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1085 1086 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1087 return Result.first->first(); 1088 } 1089 1090 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1091 return getModule().getNamedValue(Name); 1092 } 1093 1094 /// AddGlobalCtor - Add a function to the list that will be called before 1095 /// main() runs. 1096 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1097 llvm::Constant *AssociatedData) { 1098 // FIXME: Type coercion of void()* types. 1099 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1100 } 1101 1102 /// AddGlobalDtor - Add a function to the list that will be called 1103 /// when the module is unloaded. 1104 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1105 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1106 DtorsUsingAtExit[Priority].push_back(Dtor); 1107 return; 1108 } 1109 1110 // FIXME: Type coercion of void()* types. 1111 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1112 } 1113 1114 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1115 if (Fns.empty()) return; 1116 1117 // Ctor function type is void()*. 1118 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1119 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1120 TheModule.getDataLayout().getProgramAddressSpace()); 1121 1122 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1123 llvm::StructType *CtorStructTy = llvm::StructType::get( 1124 Int32Ty, CtorPFTy, VoidPtrTy); 1125 1126 // Construct the constructor and destructor arrays. 1127 ConstantInitBuilder builder(*this); 1128 auto ctors = builder.beginArray(CtorStructTy); 1129 for (const auto &I : Fns) { 1130 auto ctor = ctors.beginStruct(CtorStructTy); 1131 ctor.addInt(Int32Ty, I.Priority); 1132 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1133 if (I.AssociatedData) 1134 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1135 else 1136 ctor.addNullPointer(VoidPtrTy); 1137 ctor.finishAndAddTo(ctors); 1138 } 1139 1140 auto list = 1141 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1142 /*constant*/ false, 1143 llvm::GlobalValue::AppendingLinkage); 1144 1145 // The LTO linker doesn't seem to like it when we set an alignment 1146 // on appending variables. Take it off as a workaround. 1147 list->setAlignment(0); 1148 1149 Fns.clear(); 1150 } 1151 1152 llvm::GlobalValue::LinkageTypes 1153 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1154 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1155 1156 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1157 1158 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1159 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1160 1161 if (isa<CXXConstructorDecl>(D) && 1162 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1163 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1164 // Our approach to inheriting constructors is fundamentally different from 1165 // that used by the MS ABI, so keep our inheriting constructor thunks 1166 // internal rather than trying to pick an unambiguous mangling for them. 1167 return llvm::GlobalValue::InternalLinkage; 1168 } 1169 1170 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1171 } 1172 1173 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1174 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1175 if (!MDS) return nullptr; 1176 1177 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1178 } 1179 1180 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1181 const CGFunctionInfo &Info, 1182 llvm::Function *F) { 1183 unsigned CallingConv; 1184 llvm::AttributeList PAL; 1185 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1186 F->setAttributes(PAL); 1187 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1188 } 1189 1190 /// Determines whether the language options require us to model 1191 /// unwind exceptions. We treat -fexceptions as mandating this 1192 /// except under the fragile ObjC ABI with only ObjC exceptions 1193 /// enabled. This means, for example, that C with -fexceptions 1194 /// enables this. 1195 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1196 // If exceptions are completely disabled, obviously this is false. 1197 if (!LangOpts.Exceptions) return false; 1198 1199 // If C++ exceptions are enabled, this is true. 1200 if (LangOpts.CXXExceptions) return true; 1201 1202 // If ObjC exceptions are enabled, this depends on the ABI. 1203 if (LangOpts.ObjCExceptions) { 1204 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1205 } 1206 1207 return true; 1208 } 1209 1210 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1211 const CXXMethodDecl *MD) { 1212 // Check that the type metadata can ever actually be used by a call. 1213 if (!CGM.getCodeGenOpts().LTOUnit || 1214 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1215 return false; 1216 1217 // Only functions whose address can be taken with a member function pointer 1218 // need this sort of type metadata. 1219 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1220 !isa<CXXDestructorDecl>(MD); 1221 } 1222 1223 std::vector<const CXXRecordDecl *> 1224 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1225 llvm::SetVector<const CXXRecordDecl *> MostBases; 1226 1227 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1228 CollectMostBases = [&](const CXXRecordDecl *RD) { 1229 if (RD->getNumBases() == 0) 1230 MostBases.insert(RD); 1231 for (const CXXBaseSpecifier &B : RD->bases()) 1232 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1233 }; 1234 CollectMostBases(RD); 1235 return MostBases.takeVector(); 1236 } 1237 1238 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1239 llvm::Function *F) { 1240 llvm::AttrBuilder B; 1241 1242 if (CodeGenOpts.UnwindTables) 1243 B.addAttribute(llvm::Attribute::UWTable); 1244 1245 if (!hasUnwindExceptions(LangOpts)) 1246 B.addAttribute(llvm::Attribute::NoUnwind); 1247 1248 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1249 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1250 B.addAttribute(llvm::Attribute::StackProtect); 1251 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1252 B.addAttribute(llvm::Attribute::StackProtectStrong); 1253 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1254 B.addAttribute(llvm::Attribute::StackProtectReq); 1255 } 1256 1257 if (!D) { 1258 // If we don't have a declaration to control inlining, the function isn't 1259 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1260 // disabled, mark the function as noinline. 1261 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1262 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1263 B.addAttribute(llvm::Attribute::NoInline); 1264 1265 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1266 return; 1267 } 1268 1269 // Track whether we need to add the optnone LLVM attribute, 1270 // starting with the default for this optimization level. 1271 bool ShouldAddOptNone = 1272 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1273 // We can't add optnone in the following cases, it won't pass the verifier. 1274 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1275 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1276 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1277 1278 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1279 B.addAttribute(llvm::Attribute::OptimizeNone); 1280 1281 // OptimizeNone implies noinline; we should not be inlining such functions. 1282 B.addAttribute(llvm::Attribute::NoInline); 1283 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1284 "OptimizeNone and AlwaysInline on same function!"); 1285 1286 // We still need to handle naked functions even though optnone subsumes 1287 // much of their semantics. 1288 if (D->hasAttr<NakedAttr>()) 1289 B.addAttribute(llvm::Attribute::Naked); 1290 1291 // OptimizeNone wins over OptimizeForSize and MinSize. 1292 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1293 F->removeFnAttr(llvm::Attribute::MinSize); 1294 } else if (D->hasAttr<NakedAttr>()) { 1295 // Naked implies noinline: we should not be inlining such functions. 1296 B.addAttribute(llvm::Attribute::Naked); 1297 B.addAttribute(llvm::Attribute::NoInline); 1298 } else if (D->hasAttr<NoDuplicateAttr>()) { 1299 B.addAttribute(llvm::Attribute::NoDuplicate); 1300 } else if (D->hasAttr<NoInlineAttr>()) { 1301 B.addAttribute(llvm::Attribute::NoInline); 1302 } else if (D->hasAttr<AlwaysInlineAttr>() && 1303 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1304 // (noinline wins over always_inline, and we can't specify both in IR) 1305 B.addAttribute(llvm::Attribute::AlwaysInline); 1306 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1307 // If we're not inlining, then force everything that isn't always_inline to 1308 // carry an explicit noinline attribute. 1309 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1310 B.addAttribute(llvm::Attribute::NoInline); 1311 } else { 1312 // Otherwise, propagate the inline hint attribute and potentially use its 1313 // absence to mark things as noinline. 1314 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1315 // Search function and template pattern redeclarations for inline. 1316 auto CheckForInline = [](const FunctionDecl *FD) { 1317 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1318 return Redecl->isInlineSpecified(); 1319 }; 1320 if (any_of(FD->redecls(), CheckRedeclForInline)) 1321 return true; 1322 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1323 if (!Pattern) 1324 return false; 1325 return any_of(Pattern->redecls(), CheckRedeclForInline); 1326 }; 1327 if (CheckForInline(FD)) { 1328 B.addAttribute(llvm::Attribute::InlineHint); 1329 } else if (CodeGenOpts.getInlining() == 1330 CodeGenOptions::OnlyHintInlining && 1331 !FD->isInlined() && 1332 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1333 B.addAttribute(llvm::Attribute::NoInline); 1334 } 1335 } 1336 } 1337 1338 // Add other optimization related attributes if we are optimizing this 1339 // function. 1340 if (!D->hasAttr<OptimizeNoneAttr>()) { 1341 if (D->hasAttr<ColdAttr>()) { 1342 if (!ShouldAddOptNone) 1343 B.addAttribute(llvm::Attribute::OptimizeForSize); 1344 B.addAttribute(llvm::Attribute::Cold); 1345 } 1346 1347 if (D->hasAttr<MinSizeAttr>()) 1348 B.addAttribute(llvm::Attribute::MinSize); 1349 } 1350 1351 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1352 1353 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1354 if (alignment) 1355 F->setAlignment(alignment); 1356 1357 if (!D->hasAttr<AlignedAttr>()) 1358 if (LangOpts.FunctionAlignment) 1359 F->setAlignment(1 << LangOpts.FunctionAlignment); 1360 1361 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1362 // reserve a bit for differentiating between virtual and non-virtual member 1363 // functions. If the current target's C++ ABI requires this and this is a 1364 // member function, set its alignment accordingly. 1365 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1366 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1367 F->setAlignment(2); 1368 } 1369 1370 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1371 if (CodeGenOpts.SanitizeCfiCrossDso) 1372 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1373 CreateFunctionTypeMetadataForIcall(FD, F); 1374 1375 // Emit type metadata on member functions for member function pointer checks. 1376 // These are only ever necessary on definitions; we're guaranteed that the 1377 // definition will be present in the LTO unit as a result of LTO visibility. 1378 auto *MD = dyn_cast<CXXMethodDecl>(D); 1379 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1380 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1381 llvm::Metadata *Id = 1382 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1383 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1384 F->addTypeMetadata(0, Id); 1385 } 1386 } 1387 } 1388 1389 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1390 const Decl *D = GD.getDecl(); 1391 if (dyn_cast_or_null<NamedDecl>(D)) 1392 setGVProperties(GV, GD); 1393 else 1394 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1395 1396 if (D && D->hasAttr<UsedAttr>()) 1397 addUsedGlobal(GV); 1398 1399 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1400 const auto *VD = cast<VarDecl>(D); 1401 if (VD->getType().isConstQualified() && 1402 VD->getStorageDuration() == SD_Static) 1403 addUsedGlobal(GV); 1404 } 1405 } 1406 1407 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1408 llvm::AttrBuilder &Attrs) { 1409 // Add target-cpu and target-features attributes to functions. If 1410 // we have a decl for the function and it has a target attribute then 1411 // parse that and add it to the feature set. 1412 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1413 std::vector<std::string> Features; 1414 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1415 FD = FD ? FD->getMostRecentDecl() : FD; 1416 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1417 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1418 bool AddedAttr = false; 1419 if (TD || SD) { 1420 llvm::StringMap<bool> FeatureMap; 1421 getFunctionFeatureMap(FeatureMap, GD); 1422 1423 // Produce the canonical string for this set of features. 1424 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1425 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1426 1427 // Now add the target-cpu and target-features to the function. 1428 // While we populated the feature map above, we still need to 1429 // get and parse the target attribute so we can get the cpu for 1430 // the function. 1431 if (TD) { 1432 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1433 if (ParsedAttr.Architecture != "" && 1434 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1435 TargetCPU = ParsedAttr.Architecture; 1436 } 1437 } else { 1438 // Otherwise just add the existing target cpu and target features to the 1439 // function. 1440 Features = getTarget().getTargetOpts().Features; 1441 } 1442 1443 if (TargetCPU != "") { 1444 Attrs.addAttribute("target-cpu", TargetCPU); 1445 AddedAttr = true; 1446 } 1447 if (!Features.empty()) { 1448 llvm::sort(Features); 1449 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1450 AddedAttr = true; 1451 } 1452 1453 return AddedAttr; 1454 } 1455 1456 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1457 llvm::GlobalObject *GO) { 1458 const Decl *D = GD.getDecl(); 1459 SetCommonAttributes(GD, GO); 1460 1461 if (D) { 1462 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1463 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1464 GV->addAttribute("bss-section", SA->getName()); 1465 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1466 GV->addAttribute("data-section", SA->getName()); 1467 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1468 GV->addAttribute("rodata-section", SA->getName()); 1469 } 1470 1471 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1472 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1473 if (!D->getAttr<SectionAttr>()) 1474 F->addFnAttr("implicit-section-name", SA->getName()); 1475 1476 llvm::AttrBuilder Attrs; 1477 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1478 // We know that GetCPUAndFeaturesAttributes will always have the 1479 // newest set, since it has the newest possible FunctionDecl, so the 1480 // new ones should replace the old. 1481 F->removeFnAttr("target-cpu"); 1482 F->removeFnAttr("target-features"); 1483 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1484 } 1485 } 1486 1487 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1488 GO->setSection(CSA->getName()); 1489 else if (const auto *SA = D->getAttr<SectionAttr>()) 1490 GO->setSection(SA->getName()); 1491 } 1492 1493 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1494 } 1495 1496 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1497 llvm::Function *F, 1498 const CGFunctionInfo &FI) { 1499 const Decl *D = GD.getDecl(); 1500 SetLLVMFunctionAttributes(GD, FI, F); 1501 SetLLVMFunctionAttributesForDefinition(D, F); 1502 1503 F->setLinkage(llvm::Function::InternalLinkage); 1504 1505 setNonAliasAttributes(GD, F); 1506 } 1507 1508 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1509 // Set linkage and visibility in case we never see a definition. 1510 LinkageInfo LV = ND->getLinkageAndVisibility(); 1511 // Don't set internal linkage on declarations. 1512 // "extern_weak" is overloaded in LLVM; we probably should have 1513 // separate linkage types for this. 1514 if (isExternallyVisible(LV.getLinkage()) && 1515 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1516 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1517 } 1518 1519 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1520 llvm::Function *F) { 1521 // Only if we are checking indirect calls. 1522 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1523 return; 1524 1525 // Non-static class methods are handled via vtable or member function pointer 1526 // checks elsewhere. 1527 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1528 return; 1529 1530 // Additionally, if building with cross-DSO support... 1531 if (CodeGenOpts.SanitizeCfiCrossDso) { 1532 // Skip available_externally functions. They won't be codegen'ed in the 1533 // current module anyway. 1534 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1535 return; 1536 } 1537 1538 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1539 F->addTypeMetadata(0, MD); 1540 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1541 1542 // Emit a hash-based bit set entry for cross-DSO calls. 1543 if (CodeGenOpts.SanitizeCfiCrossDso) 1544 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1545 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1546 } 1547 1548 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1549 bool IsIncompleteFunction, 1550 bool IsThunk) { 1551 1552 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1553 // If this is an intrinsic function, set the function's attributes 1554 // to the intrinsic's attributes. 1555 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1556 return; 1557 } 1558 1559 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1560 1561 if (!IsIncompleteFunction) 1562 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1563 1564 // Add the Returned attribute for "this", except for iOS 5 and earlier 1565 // where substantial code, including the libstdc++ dylib, was compiled with 1566 // GCC and does not actually return "this". 1567 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1568 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1569 assert(!F->arg_empty() && 1570 F->arg_begin()->getType() 1571 ->canLosslesslyBitCastTo(F->getReturnType()) && 1572 "unexpected this return"); 1573 F->addAttribute(1, llvm::Attribute::Returned); 1574 } 1575 1576 // Only a few attributes are set on declarations; these may later be 1577 // overridden by a definition. 1578 1579 setLinkageForGV(F, FD); 1580 setGVProperties(F, FD); 1581 1582 // Setup target-specific attributes. 1583 if (!IsIncompleteFunction && F->isDeclaration()) 1584 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1585 1586 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1587 F->setSection(CSA->getName()); 1588 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1589 F->setSection(SA->getName()); 1590 1591 if (FD->isReplaceableGlobalAllocationFunction()) { 1592 // A replaceable global allocation function does not act like a builtin by 1593 // default, only if it is invoked by a new-expression or delete-expression. 1594 F->addAttribute(llvm::AttributeList::FunctionIndex, 1595 llvm::Attribute::NoBuiltin); 1596 1597 // A sane operator new returns a non-aliasing pointer. 1598 // FIXME: Also add NonNull attribute to the return value 1599 // for the non-nothrow forms? 1600 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1601 if (getCodeGenOpts().AssumeSaneOperatorNew && 1602 (Kind == OO_New || Kind == OO_Array_New)) 1603 F->addAttribute(llvm::AttributeList::ReturnIndex, 1604 llvm::Attribute::NoAlias); 1605 } 1606 1607 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1608 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1609 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1610 if (MD->isVirtual()) 1611 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1612 1613 // Don't emit entries for function declarations in the cross-DSO mode. This 1614 // is handled with better precision by the receiving DSO. 1615 if (!CodeGenOpts.SanitizeCfiCrossDso) 1616 CreateFunctionTypeMetadataForIcall(FD, F); 1617 1618 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1619 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1620 1621 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1622 // Annotate the callback behavior as metadata: 1623 // - The callback callee (as argument number). 1624 // - The callback payloads (as argument numbers). 1625 llvm::LLVMContext &Ctx = F->getContext(); 1626 llvm::MDBuilder MDB(Ctx); 1627 1628 // The payload indices are all but the first one in the encoding. The first 1629 // identifies the callback callee. 1630 int CalleeIdx = *CB->encoding_begin(); 1631 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1632 F->addMetadata(llvm::LLVMContext::MD_callback, 1633 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1634 CalleeIdx, PayloadIndices, 1635 /* VarArgsArePassed */ false)})); 1636 } 1637 } 1638 1639 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1640 assert(!GV->isDeclaration() && 1641 "Only globals with definition can force usage."); 1642 LLVMUsed.emplace_back(GV); 1643 } 1644 1645 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1646 assert(!GV->isDeclaration() && 1647 "Only globals with definition can force usage."); 1648 LLVMCompilerUsed.emplace_back(GV); 1649 } 1650 1651 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1652 std::vector<llvm::WeakTrackingVH> &List) { 1653 // Don't create llvm.used if there is no need. 1654 if (List.empty()) 1655 return; 1656 1657 // Convert List to what ConstantArray needs. 1658 SmallVector<llvm::Constant*, 8> UsedArray; 1659 UsedArray.resize(List.size()); 1660 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1661 UsedArray[i] = 1662 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1663 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1664 } 1665 1666 if (UsedArray.empty()) 1667 return; 1668 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1669 1670 auto *GV = new llvm::GlobalVariable( 1671 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1672 llvm::ConstantArray::get(ATy, UsedArray), Name); 1673 1674 GV->setSection("llvm.metadata"); 1675 } 1676 1677 void CodeGenModule::emitLLVMUsed() { 1678 emitUsed(*this, "llvm.used", LLVMUsed); 1679 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1680 } 1681 1682 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1683 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1684 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1685 } 1686 1687 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1688 llvm::SmallString<32> Opt; 1689 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1690 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1691 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1692 } 1693 1694 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1695 auto &C = getLLVMContext(); 1696 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1697 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1698 } 1699 1700 void CodeGenModule::AddDependentLib(StringRef Lib) { 1701 llvm::SmallString<24> Opt; 1702 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1703 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1704 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1705 } 1706 1707 /// Add link options implied by the given module, including modules 1708 /// it depends on, using a postorder walk. 1709 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1710 SmallVectorImpl<llvm::MDNode *> &Metadata, 1711 llvm::SmallPtrSet<Module *, 16> &Visited) { 1712 // Import this module's parent. 1713 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1714 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1715 } 1716 1717 // Import this module's dependencies. 1718 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1719 if (Visited.insert(Mod->Imports[I - 1]).second) 1720 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1721 } 1722 1723 // Add linker options to link against the libraries/frameworks 1724 // described by this module. 1725 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1726 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1727 bool IsPS4 = CGM.getTarget().getTriple().isPS4(); 1728 1729 // For modules that use export_as for linking, use that module 1730 // name instead. 1731 if (Mod->UseExportAsModuleLinkName) 1732 return; 1733 1734 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1735 // Link against a framework. Frameworks are currently Darwin only, so we 1736 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1737 if (Mod->LinkLibraries[I-1].IsFramework) { 1738 llvm::Metadata *Args[2] = { 1739 llvm::MDString::get(Context, "-framework"), 1740 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1741 1742 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1743 continue; 1744 } 1745 1746 // Link against a library. 1747 if (IsELF && !IsPS4) { 1748 llvm::Metadata *Args[2] = { 1749 llvm::MDString::get(Context, "lib"), 1750 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1751 }; 1752 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1753 } else { 1754 llvm::SmallString<24> Opt; 1755 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1756 Mod->LinkLibraries[I - 1].Library, Opt); 1757 auto *OptString = llvm::MDString::get(Context, Opt); 1758 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1759 } 1760 } 1761 } 1762 1763 void CodeGenModule::EmitModuleLinkOptions() { 1764 // Collect the set of all of the modules we want to visit to emit link 1765 // options, which is essentially the imported modules and all of their 1766 // non-explicit child modules. 1767 llvm::SetVector<clang::Module *> LinkModules; 1768 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1769 SmallVector<clang::Module *, 16> Stack; 1770 1771 // Seed the stack with imported modules. 1772 for (Module *M : ImportedModules) { 1773 // Do not add any link flags when an implementation TU of a module imports 1774 // a header of that same module. 1775 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1776 !getLangOpts().isCompilingModule()) 1777 continue; 1778 if (Visited.insert(M).second) 1779 Stack.push_back(M); 1780 } 1781 1782 // Find all of the modules to import, making a little effort to prune 1783 // non-leaf modules. 1784 while (!Stack.empty()) { 1785 clang::Module *Mod = Stack.pop_back_val(); 1786 1787 bool AnyChildren = false; 1788 1789 // Visit the submodules of this module. 1790 for (const auto &SM : Mod->submodules()) { 1791 // Skip explicit children; they need to be explicitly imported to be 1792 // linked against. 1793 if (SM->IsExplicit) 1794 continue; 1795 1796 if (Visited.insert(SM).second) { 1797 Stack.push_back(SM); 1798 AnyChildren = true; 1799 } 1800 } 1801 1802 // We didn't find any children, so add this module to the list of 1803 // modules to link against. 1804 if (!AnyChildren) { 1805 LinkModules.insert(Mod); 1806 } 1807 } 1808 1809 // Add link options for all of the imported modules in reverse topological 1810 // order. We don't do anything to try to order import link flags with respect 1811 // to linker options inserted by things like #pragma comment(). 1812 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1813 Visited.clear(); 1814 for (Module *M : LinkModules) 1815 if (Visited.insert(M).second) 1816 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1817 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1818 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1819 1820 // Add the linker options metadata flag. 1821 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1822 for (auto *MD : LinkerOptionsMetadata) 1823 NMD->addOperand(MD); 1824 } 1825 1826 void CodeGenModule::EmitDeferred() { 1827 // Emit deferred declare target declarations. 1828 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1829 getOpenMPRuntime().emitDeferredTargetDecls(); 1830 1831 // Emit code for any potentially referenced deferred decls. Since a 1832 // previously unused static decl may become used during the generation of code 1833 // for a static function, iterate until no changes are made. 1834 1835 if (!DeferredVTables.empty()) { 1836 EmitDeferredVTables(); 1837 1838 // Emitting a vtable doesn't directly cause more vtables to 1839 // become deferred, although it can cause functions to be 1840 // emitted that then need those vtables. 1841 assert(DeferredVTables.empty()); 1842 } 1843 1844 // Stop if we're out of both deferred vtables and deferred declarations. 1845 if (DeferredDeclsToEmit.empty()) 1846 return; 1847 1848 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1849 // work, it will not interfere with this. 1850 std::vector<GlobalDecl> CurDeclsToEmit; 1851 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1852 1853 for (GlobalDecl &D : CurDeclsToEmit) { 1854 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1855 // to get GlobalValue with exactly the type we need, not something that 1856 // might had been created for another decl with the same mangled name but 1857 // different type. 1858 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1859 GetAddrOfGlobal(D, ForDefinition)); 1860 1861 // In case of different address spaces, we may still get a cast, even with 1862 // IsForDefinition equal to true. Query mangled names table to get 1863 // GlobalValue. 1864 if (!GV) 1865 GV = GetGlobalValue(getMangledName(D)); 1866 1867 // Make sure GetGlobalValue returned non-null. 1868 assert(GV); 1869 1870 // Check to see if we've already emitted this. This is necessary 1871 // for a couple of reasons: first, decls can end up in the 1872 // deferred-decls queue multiple times, and second, decls can end 1873 // up with definitions in unusual ways (e.g. by an extern inline 1874 // function acquiring a strong function redefinition). Just 1875 // ignore these cases. 1876 if (!GV->isDeclaration()) 1877 continue; 1878 1879 // Otherwise, emit the definition and move on to the next one. 1880 EmitGlobalDefinition(D, GV); 1881 1882 // If we found out that we need to emit more decls, do that recursively. 1883 // This has the advantage that the decls are emitted in a DFS and related 1884 // ones are close together, which is convenient for testing. 1885 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1886 EmitDeferred(); 1887 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1888 } 1889 } 1890 } 1891 1892 void CodeGenModule::EmitVTablesOpportunistically() { 1893 // Try to emit external vtables as available_externally if they have emitted 1894 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1895 // is not allowed to create new references to things that need to be emitted 1896 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1897 1898 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1899 && "Only emit opportunistic vtables with optimizations"); 1900 1901 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1902 assert(getVTables().isVTableExternal(RD) && 1903 "This queue should only contain external vtables"); 1904 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1905 VTables.GenerateClassData(RD); 1906 } 1907 OpportunisticVTables.clear(); 1908 } 1909 1910 void CodeGenModule::EmitGlobalAnnotations() { 1911 if (Annotations.empty()) 1912 return; 1913 1914 // Create a new global variable for the ConstantStruct in the Module. 1915 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1916 Annotations[0]->getType(), Annotations.size()), Annotations); 1917 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1918 llvm::GlobalValue::AppendingLinkage, 1919 Array, "llvm.global.annotations"); 1920 gv->setSection(AnnotationSection); 1921 } 1922 1923 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1924 llvm::Constant *&AStr = AnnotationStrings[Str]; 1925 if (AStr) 1926 return AStr; 1927 1928 // Not found yet, create a new global. 1929 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1930 auto *gv = 1931 new llvm::GlobalVariable(getModule(), s->getType(), true, 1932 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1933 gv->setSection(AnnotationSection); 1934 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1935 AStr = gv; 1936 return gv; 1937 } 1938 1939 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1940 SourceManager &SM = getContext().getSourceManager(); 1941 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1942 if (PLoc.isValid()) 1943 return EmitAnnotationString(PLoc.getFilename()); 1944 return EmitAnnotationString(SM.getBufferName(Loc)); 1945 } 1946 1947 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1948 SourceManager &SM = getContext().getSourceManager(); 1949 PresumedLoc PLoc = SM.getPresumedLoc(L); 1950 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1951 SM.getExpansionLineNumber(L); 1952 return llvm::ConstantInt::get(Int32Ty, LineNo); 1953 } 1954 1955 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1956 const AnnotateAttr *AA, 1957 SourceLocation L) { 1958 // Get the globals for file name, annotation, and the line number. 1959 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1960 *UnitGV = EmitAnnotationUnit(L), 1961 *LineNoCst = EmitAnnotationLineNo(L); 1962 1963 // Create the ConstantStruct for the global annotation. 1964 llvm::Constant *Fields[4] = { 1965 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1966 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1967 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1968 LineNoCst 1969 }; 1970 return llvm::ConstantStruct::getAnon(Fields); 1971 } 1972 1973 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1974 llvm::GlobalValue *GV) { 1975 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1976 // Get the struct elements for these annotations. 1977 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1978 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1979 } 1980 1981 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1982 llvm::Function *Fn, 1983 SourceLocation Loc) const { 1984 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1985 // Blacklist by function name. 1986 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1987 return true; 1988 // Blacklist by location. 1989 if (Loc.isValid()) 1990 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1991 // If location is unknown, this may be a compiler-generated function. Assume 1992 // it's located in the main file. 1993 auto &SM = Context.getSourceManager(); 1994 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1995 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1996 } 1997 return false; 1998 } 1999 2000 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2001 SourceLocation Loc, QualType Ty, 2002 StringRef Category) const { 2003 // For now globals can be blacklisted only in ASan and KASan. 2004 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2005 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2006 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2007 if (!EnabledAsanMask) 2008 return false; 2009 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2010 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2011 return true; 2012 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2013 return true; 2014 // Check global type. 2015 if (!Ty.isNull()) { 2016 // Drill down the array types: if global variable of a fixed type is 2017 // blacklisted, we also don't instrument arrays of them. 2018 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2019 Ty = AT->getElementType(); 2020 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2021 // We allow to blacklist only record types (classes, structs etc.) 2022 if (Ty->isRecordType()) { 2023 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2024 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2025 return true; 2026 } 2027 } 2028 return false; 2029 } 2030 2031 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2032 StringRef Category) const { 2033 const auto &XRayFilter = getContext().getXRayFilter(); 2034 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2035 auto Attr = ImbueAttr::NONE; 2036 if (Loc.isValid()) 2037 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2038 if (Attr == ImbueAttr::NONE) 2039 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2040 switch (Attr) { 2041 case ImbueAttr::NONE: 2042 return false; 2043 case ImbueAttr::ALWAYS: 2044 Fn->addFnAttr("function-instrument", "xray-always"); 2045 break; 2046 case ImbueAttr::ALWAYS_ARG1: 2047 Fn->addFnAttr("function-instrument", "xray-always"); 2048 Fn->addFnAttr("xray-log-args", "1"); 2049 break; 2050 case ImbueAttr::NEVER: 2051 Fn->addFnAttr("function-instrument", "xray-never"); 2052 break; 2053 } 2054 return true; 2055 } 2056 2057 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2058 // Never defer when EmitAllDecls is specified. 2059 if (LangOpts.EmitAllDecls) 2060 return true; 2061 2062 if (CodeGenOpts.KeepStaticConsts) { 2063 const auto *VD = dyn_cast<VarDecl>(Global); 2064 if (VD && VD->getType().isConstQualified() && 2065 VD->getStorageDuration() == SD_Static) 2066 return true; 2067 } 2068 2069 return getContext().DeclMustBeEmitted(Global); 2070 } 2071 2072 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2073 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2074 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2075 // Implicit template instantiations may change linkage if they are later 2076 // explicitly instantiated, so they should not be emitted eagerly. 2077 return false; 2078 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2079 if (Context.getInlineVariableDefinitionKind(VD) == 2080 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2081 // A definition of an inline constexpr static data member may change 2082 // linkage later if it's redeclared outside the class. 2083 return false; 2084 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2085 // codegen for global variables, because they may be marked as threadprivate. 2086 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2087 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2088 !isTypeConstant(Global->getType(), false) && 2089 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2090 return false; 2091 2092 return true; 2093 } 2094 2095 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2096 const CXXUuidofExpr* E) { 2097 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2098 // well-formed. 2099 StringRef Uuid = E->getUuidStr(); 2100 std::string Name = "_GUID_" + Uuid.lower(); 2101 std::replace(Name.begin(), Name.end(), '-', '_'); 2102 2103 // The UUID descriptor should be pointer aligned. 2104 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2105 2106 // Look for an existing global. 2107 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2108 return ConstantAddress(GV, Alignment); 2109 2110 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2111 assert(Init && "failed to initialize as constant"); 2112 2113 auto *GV = new llvm::GlobalVariable( 2114 getModule(), Init->getType(), 2115 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2116 if (supportsCOMDAT()) 2117 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2118 setDSOLocal(GV); 2119 return ConstantAddress(GV, Alignment); 2120 } 2121 2122 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2123 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2124 assert(AA && "No alias?"); 2125 2126 CharUnits Alignment = getContext().getDeclAlign(VD); 2127 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2128 2129 // See if there is already something with the target's name in the module. 2130 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2131 if (Entry) { 2132 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2133 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2134 return ConstantAddress(Ptr, Alignment); 2135 } 2136 2137 llvm::Constant *Aliasee; 2138 if (isa<llvm::FunctionType>(DeclTy)) 2139 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2140 GlobalDecl(cast<FunctionDecl>(VD)), 2141 /*ForVTable=*/false); 2142 else 2143 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2144 llvm::PointerType::getUnqual(DeclTy), 2145 nullptr); 2146 2147 auto *F = cast<llvm::GlobalValue>(Aliasee); 2148 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2149 WeakRefReferences.insert(F); 2150 2151 return ConstantAddress(Aliasee, Alignment); 2152 } 2153 2154 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2155 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2156 2157 // Weak references don't produce any output by themselves. 2158 if (Global->hasAttr<WeakRefAttr>()) 2159 return; 2160 2161 // If this is an alias definition (which otherwise looks like a declaration) 2162 // emit it now. 2163 if (Global->hasAttr<AliasAttr>()) 2164 return EmitAliasDefinition(GD); 2165 2166 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2167 if (Global->hasAttr<IFuncAttr>()) 2168 return emitIFuncDefinition(GD); 2169 2170 // If this is a cpu_dispatch multiversion function, emit the resolver. 2171 if (Global->hasAttr<CPUDispatchAttr>()) 2172 return emitCPUDispatchDefinition(GD); 2173 2174 // If this is CUDA, be selective about which declarations we emit. 2175 if (LangOpts.CUDA) { 2176 if (LangOpts.CUDAIsDevice) { 2177 if (!Global->hasAttr<CUDADeviceAttr>() && 2178 !Global->hasAttr<CUDAGlobalAttr>() && 2179 !Global->hasAttr<CUDAConstantAttr>() && 2180 !Global->hasAttr<CUDASharedAttr>()) 2181 return; 2182 } else { 2183 // We need to emit host-side 'shadows' for all global 2184 // device-side variables because the CUDA runtime needs their 2185 // size and host-side address in order to provide access to 2186 // their device-side incarnations. 2187 2188 // So device-only functions are the only things we skip. 2189 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2190 Global->hasAttr<CUDADeviceAttr>()) 2191 return; 2192 2193 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2194 "Expected Variable or Function"); 2195 } 2196 } 2197 2198 if (LangOpts.OpenMP) { 2199 // If this is OpenMP device, check if it is legal to emit this global 2200 // normally. 2201 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2202 return; 2203 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2204 if (MustBeEmitted(Global)) 2205 EmitOMPDeclareReduction(DRD); 2206 return; 2207 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2208 if (MustBeEmitted(Global)) 2209 EmitOMPDeclareMapper(DMD); 2210 return; 2211 } 2212 } 2213 2214 // Ignore declarations, they will be emitted on their first use. 2215 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2216 // Forward declarations are emitted lazily on first use. 2217 if (!FD->doesThisDeclarationHaveABody()) { 2218 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2219 return; 2220 2221 StringRef MangledName = getMangledName(GD); 2222 2223 // Compute the function info and LLVM type. 2224 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2225 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2226 2227 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2228 /*DontDefer=*/false); 2229 return; 2230 } 2231 } else { 2232 const auto *VD = cast<VarDecl>(Global); 2233 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2234 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2235 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2236 if (LangOpts.OpenMP) { 2237 // Emit declaration of the must-be-emitted declare target variable. 2238 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2239 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2240 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2241 (void)GetAddrOfGlobalVar(VD); 2242 } else { 2243 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2244 "link claue expected."); 2245 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2246 } 2247 return; 2248 } 2249 } 2250 // If this declaration may have caused an inline variable definition to 2251 // change linkage, make sure that it's emitted. 2252 if (Context.getInlineVariableDefinitionKind(VD) == 2253 ASTContext::InlineVariableDefinitionKind::Strong) 2254 GetAddrOfGlobalVar(VD); 2255 return; 2256 } 2257 } 2258 2259 // Defer code generation to first use when possible, e.g. if this is an inline 2260 // function. If the global must always be emitted, do it eagerly if possible 2261 // to benefit from cache locality. 2262 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2263 // Emit the definition if it can't be deferred. 2264 EmitGlobalDefinition(GD); 2265 return; 2266 } 2267 2268 // If we're deferring emission of a C++ variable with an 2269 // initializer, remember the order in which it appeared in the file. 2270 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2271 cast<VarDecl>(Global)->hasInit()) { 2272 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2273 CXXGlobalInits.push_back(nullptr); 2274 } 2275 2276 StringRef MangledName = getMangledName(GD); 2277 if (GetGlobalValue(MangledName) != nullptr) { 2278 // The value has already been used and should therefore be emitted. 2279 addDeferredDeclToEmit(GD); 2280 } else if (MustBeEmitted(Global)) { 2281 // The value must be emitted, but cannot be emitted eagerly. 2282 assert(!MayBeEmittedEagerly(Global)); 2283 addDeferredDeclToEmit(GD); 2284 } else { 2285 // Otherwise, remember that we saw a deferred decl with this name. The 2286 // first use of the mangled name will cause it to move into 2287 // DeferredDeclsToEmit. 2288 DeferredDecls[MangledName] = GD; 2289 } 2290 } 2291 2292 // Check if T is a class type with a destructor that's not dllimport. 2293 static bool HasNonDllImportDtor(QualType T) { 2294 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2295 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2296 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2297 return true; 2298 2299 return false; 2300 } 2301 2302 namespace { 2303 struct FunctionIsDirectlyRecursive 2304 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2305 const StringRef Name; 2306 const Builtin::Context &BI; 2307 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2308 : Name(N), BI(C) {} 2309 2310 bool VisitCallExpr(const CallExpr *E) { 2311 const FunctionDecl *FD = E->getDirectCallee(); 2312 if (!FD) 2313 return false; 2314 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2315 if (Attr && Name == Attr->getLabel()) 2316 return true; 2317 unsigned BuiltinID = FD->getBuiltinID(); 2318 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2319 return false; 2320 StringRef BuiltinName = BI.getName(BuiltinID); 2321 if (BuiltinName.startswith("__builtin_") && 2322 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2323 return true; 2324 } 2325 return false; 2326 } 2327 2328 bool VisitStmt(const Stmt *S) { 2329 for (const Stmt *Child : S->children()) 2330 if (Child && this->Visit(Child)) 2331 return true; 2332 return false; 2333 } 2334 }; 2335 2336 // Make sure we're not referencing non-imported vars or functions. 2337 struct DLLImportFunctionVisitor 2338 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2339 bool SafeToInline = true; 2340 2341 bool shouldVisitImplicitCode() const { return true; } 2342 2343 bool VisitVarDecl(VarDecl *VD) { 2344 if (VD->getTLSKind()) { 2345 // A thread-local variable cannot be imported. 2346 SafeToInline = false; 2347 return SafeToInline; 2348 } 2349 2350 // A variable definition might imply a destructor call. 2351 if (VD->isThisDeclarationADefinition()) 2352 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2353 2354 return SafeToInline; 2355 } 2356 2357 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2358 if (const auto *D = E->getTemporary()->getDestructor()) 2359 SafeToInline = D->hasAttr<DLLImportAttr>(); 2360 return SafeToInline; 2361 } 2362 2363 bool VisitDeclRefExpr(DeclRefExpr *E) { 2364 ValueDecl *VD = E->getDecl(); 2365 if (isa<FunctionDecl>(VD)) 2366 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2367 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2368 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2369 return SafeToInline; 2370 } 2371 2372 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2373 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2374 return SafeToInline; 2375 } 2376 2377 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2378 CXXMethodDecl *M = E->getMethodDecl(); 2379 if (!M) { 2380 // Call through a pointer to member function. This is safe to inline. 2381 SafeToInline = true; 2382 } else { 2383 SafeToInline = M->hasAttr<DLLImportAttr>(); 2384 } 2385 return SafeToInline; 2386 } 2387 2388 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2389 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2390 return SafeToInline; 2391 } 2392 2393 bool VisitCXXNewExpr(CXXNewExpr *E) { 2394 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2395 return SafeToInline; 2396 } 2397 }; 2398 } 2399 2400 // isTriviallyRecursive - Check if this function calls another 2401 // decl that, because of the asm attribute or the other decl being a builtin, 2402 // ends up pointing to itself. 2403 bool 2404 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2405 StringRef Name; 2406 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2407 // asm labels are a special kind of mangling we have to support. 2408 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2409 if (!Attr) 2410 return false; 2411 Name = Attr->getLabel(); 2412 } else { 2413 Name = FD->getName(); 2414 } 2415 2416 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2417 const Stmt *Body = FD->getBody(); 2418 return Body ? Walker.Visit(Body) : false; 2419 } 2420 2421 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2422 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2423 return true; 2424 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2425 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2426 return false; 2427 2428 if (F->hasAttr<DLLImportAttr>()) { 2429 // Check whether it would be safe to inline this dllimport function. 2430 DLLImportFunctionVisitor Visitor; 2431 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2432 if (!Visitor.SafeToInline) 2433 return false; 2434 2435 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2436 // Implicit destructor invocations aren't captured in the AST, so the 2437 // check above can't see them. Check for them manually here. 2438 for (const Decl *Member : Dtor->getParent()->decls()) 2439 if (isa<FieldDecl>(Member)) 2440 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2441 return false; 2442 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2443 if (HasNonDllImportDtor(B.getType())) 2444 return false; 2445 } 2446 } 2447 2448 // PR9614. Avoid cases where the source code is lying to us. An available 2449 // externally function should have an equivalent function somewhere else, 2450 // but a function that calls itself is clearly not equivalent to the real 2451 // implementation. 2452 // This happens in glibc's btowc and in some configure checks. 2453 return !isTriviallyRecursive(F); 2454 } 2455 2456 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2457 return CodeGenOpts.OptimizationLevel > 0; 2458 } 2459 2460 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2461 llvm::GlobalValue *GV) { 2462 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2463 2464 if (FD->isCPUSpecificMultiVersion()) { 2465 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2466 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2467 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2468 // Requires multiple emits. 2469 } else 2470 EmitGlobalFunctionDefinition(GD, GV); 2471 } 2472 2473 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2474 const auto *D = cast<ValueDecl>(GD.getDecl()); 2475 2476 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2477 Context.getSourceManager(), 2478 "Generating code for declaration"); 2479 2480 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2481 // At -O0, don't generate IR for functions with available_externally 2482 // linkage. 2483 if (!shouldEmitFunction(GD)) 2484 return; 2485 2486 llvm::TimeTraceScope TimeScope( 2487 "CodeGen Function", [&]() { return FD->getQualifiedNameAsString(); }); 2488 2489 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2490 // Make sure to emit the definition(s) before we emit the thunks. 2491 // This is necessary for the generation of certain thunks. 2492 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2493 ABI->emitCXXStructor(GD); 2494 else if (FD->isMultiVersion()) 2495 EmitMultiVersionFunctionDefinition(GD, GV); 2496 else 2497 EmitGlobalFunctionDefinition(GD, GV); 2498 2499 if (Method->isVirtual()) 2500 getVTables().EmitThunks(GD); 2501 2502 return; 2503 } 2504 2505 if (FD->isMultiVersion()) 2506 return EmitMultiVersionFunctionDefinition(GD, GV); 2507 return EmitGlobalFunctionDefinition(GD, GV); 2508 } 2509 2510 if (const auto *VD = dyn_cast<VarDecl>(D)) 2511 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2512 2513 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2514 } 2515 2516 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2517 llvm::Function *NewFn); 2518 2519 static unsigned 2520 TargetMVPriority(const TargetInfo &TI, 2521 const CodeGenFunction::MultiVersionResolverOption &RO) { 2522 unsigned Priority = 0; 2523 for (StringRef Feat : RO.Conditions.Features) 2524 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2525 2526 if (!RO.Conditions.Architecture.empty()) 2527 Priority = std::max( 2528 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2529 return Priority; 2530 } 2531 2532 void CodeGenModule::emitMultiVersionFunctions() { 2533 for (GlobalDecl GD : MultiVersionFuncs) { 2534 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2535 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2536 getContext().forEachMultiversionedFunctionVersion( 2537 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2538 GlobalDecl CurGD{ 2539 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2540 StringRef MangledName = getMangledName(CurGD); 2541 llvm::Constant *Func = GetGlobalValue(MangledName); 2542 if (!Func) { 2543 if (CurFD->isDefined()) { 2544 EmitGlobalFunctionDefinition(CurGD, nullptr); 2545 Func = GetGlobalValue(MangledName); 2546 } else { 2547 const CGFunctionInfo &FI = 2548 getTypes().arrangeGlobalDeclaration(GD); 2549 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2550 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2551 /*DontDefer=*/false, ForDefinition); 2552 } 2553 assert(Func && "This should have just been created"); 2554 } 2555 2556 const auto *TA = CurFD->getAttr<TargetAttr>(); 2557 llvm::SmallVector<StringRef, 8> Feats; 2558 TA->getAddedFeatures(Feats); 2559 2560 Options.emplace_back(cast<llvm::Function>(Func), 2561 TA->getArchitecture(), Feats); 2562 }); 2563 2564 llvm::Function *ResolverFunc; 2565 const TargetInfo &TI = getTarget(); 2566 2567 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2568 ResolverFunc = cast<llvm::Function>( 2569 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2570 else 2571 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2572 2573 if (supportsCOMDAT()) 2574 ResolverFunc->setComdat( 2575 getModule().getOrInsertComdat(ResolverFunc->getName())); 2576 2577 llvm::stable_sort( 2578 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2579 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2580 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2581 }); 2582 CodeGenFunction CGF(*this); 2583 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2584 } 2585 } 2586 2587 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2588 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2589 assert(FD && "Not a FunctionDecl?"); 2590 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2591 assert(DD && "Not a cpu_dispatch Function?"); 2592 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2593 2594 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2595 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2596 DeclTy = getTypes().GetFunctionType(FInfo); 2597 } 2598 2599 StringRef ResolverName = getMangledName(GD); 2600 2601 llvm::Type *ResolverType; 2602 GlobalDecl ResolverGD; 2603 if (getTarget().supportsIFunc()) 2604 ResolverType = llvm::FunctionType::get( 2605 llvm::PointerType::get(DeclTy, 2606 Context.getTargetAddressSpace(FD->getType())), 2607 false); 2608 else { 2609 ResolverType = DeclTy; 2610 ResolverGD = GD; 2611 } 2612 2613 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2614 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2615 2616 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2617 const TargetInfo &Target = getTarget(); 2618 unsigned Index = 0; 2619 for (const IdentifierInfo *II : DD->cpus()) { 2620 // Get the name of the target function so we can look it up/create it. 2621 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2622 getCPUSpecificMangling(*this, II->getName()); 2623 2624 llvm::Constant *Func = GetGlobalValue(MangledName); 2625 2626 if (!Func) { 2627 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2628 if (ExistingDecl.getDecl() && 2629 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2630 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2631 Func = GetGlobalValue(MangledName); 2632 } else { 2633 if (!ExistingDecl.getDecl()) 2634 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2635 2636 Func = GetOrCreateLLVMFunction( 2637 MangledName, DeclTy, ExistingDecl, 2638 /*ForVTable=*/false, /*DontDefer=*/true, 2639 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2640 } 2641 } 2642 2643 llvm::SmallVector<StringRef, 32> Features; 2644 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2645 llvm::transform(Features, Features.begin(), 2646 [](StringRef Str) { return Str.substr(1); }); 2647 Features.erase(std::remove_if( 2648 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2649 return !Target.validateCpuSupports(Feat); 2650 }), Features.end()); 2651 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2652 ++Index; 2653 } 2654 2655 llvm::sort( 2656 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2657 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2658 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2659 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2660 }); 2661 2662 // If the list contains multiple 'default' versions, such as when it contains 2663 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2664 // always run on at least a 'pentium'). We do this by deleting the 'least 2665 // advanced' (read, lowest mangling letter). 2666 while (Options.size() > 1 && 2667 CodeGenFunction::GetX86CpuSupportsMask( 2668 (Options.end() - 2)->Conditions.Features) == 0) { 2669 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2670 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2671 if (LHSName.compare(RHSName) < 0) 2672 Options.erase(Options.end() - 2); 2673 else 2674 Options.erase(Options.end() - 1); 2675 } 2676 2677 CodeGenFunction CGF(*this); 2678 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2679 } 2680 2681 /// If a dispatcher for the specified mangled name is not in the module, create 2682 /// and return an llvm Function with the specified type. 2683 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2684 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2685 std::string MangledName = 2686 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2687 2688 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2689 // a separate resolver). 2690 std::string ResolverName = MangledName; 2691 if (getTarget().supportsIFunc()) 2692 ResolverName += ".ifunc"; 2693 else if (FD->isTargetMultiVersion()) 2694 ResolverName += ".resolver"; 2695 2696 // If this already exists, just return that one. 2697 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2698 return ResolverGV; 2699 2700 // Since this is the first time we've created this IFunc, make sure 2701 // that we put this multiversioned function into the list to be 2702 // replaced later if necessary (target multiversioning only). 2703 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2704 MultiVersionFuncs.push_back(GD); 2705 2706 if (getTarget().supportsIFunc()) { 2707 llvm::Type *ResolverType = llvm::FunctionType::get( 2708 llvm::PointerType::get( 2709 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2710 false); 2711 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2712 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2713 /*ForVTable=*/false); 2714 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2715 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2716 GIF->setName(ResolverName); 2717 SetCommonAttributes(FD, GIF); 2718 2719 return GIF; 2720 } 2721 2722 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2723 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2724 assert(isa<llvm::GlobalValue>(Resolver) && 2725 "Resolver should be created for the first time"); 2726 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2727 return Resolver; 2728 } 2729 2730 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2731 /// module, create and return an llvm Function with the specified type. If there 2732 /// is something in the module with the specified name, return it potentially 2733 /// bitcasted to the right type. 2734 /// 2735 /// If D is non-null, it specifies a decl that correspond to this. This is used 2736 /// to set the attributes on the function when it is first created. 2737 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2738 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2739 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2740 ForDefinition_t IsForDefinition) { 2741 const Decl *D = GD.getDecl(); 2742 2743 // Any attempts to use a MultiVersion function should result in retrieving 2744 // the iFunc instead. Name Mangling will handle the rest of the changes. 2745 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2746 // For the device mark the function as one that should be emitted. 2747 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2748 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2749 !DontDefer && !IsForDefinition) { 2750 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2751 GlobalDecl GDDef; 2752 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2753 GDDef = GlobalDecl(CD, GD.getCtorType()); 2754 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2755 GDDef = GlobalDecl(DD, GD.getDtorType()); 2756 else 2757 GDDef = GlobalDecl(FDDef); 2758 EmitGlobal(GDDef); 2759 } 2760 } 2761 2762 if (FD->isMultiVersion()) { 2763 const auto *TA = FD->getAttr<TargetAttr>(); 2764 if (TA && TA->isDefaultVersion()) 2765 UpdateMultiVersionNames(GD, FD); 2766 if (!IsForDefinition) 2767 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2768 } 2769 } 2770 2771 // Lookup the entry, lazily creating it if necessary. 2772 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2773 if (Entry) { 2774 if (WeakRefReferences.erase(Entry)) { 2775 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2776 if (FD && !FD->hasAttr<WeakAttr>()) 2777 Entry->setLinkage(llvm::Function::ExternalLinkage); 2778 } 2779 2780 // Handle dropped DLL attributes. 2781 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2782 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2783 setDSOLocal(Entry); 2784 } 2785 2786 // If there are two attempts to define the same mangled name, issue an 2787 // error. 2788 if (IsForDefinition && !Entry->isDeclaration()) { 2789 GlobalDecl OtherGD; 2790 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2791 // to make sure that we issue an error only once. 2792 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2793 (GD.getCanonicalDecl().getDecl() != 2794 OtherGD.getCanonicalDecl().getDecl()) && 2795 DiagnosedConflictingDefinitions.insert(GD).second) { 2796 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2797 << MangledName; 2798 getDiags().Report(OtherGD.getDecl()->getLocation(), 2799 diag::note_previous_definition); 2800 } 2801 } 2802 2803 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2804 (Entry->getType()->getElementType() == Ty)) { 2805 return Entry; 2806 } 2807 2808 // Make sure the result is of the correct type. 2809 // (If function is requested for a definition, we always need to create a new 2810 // function, not just return a bitcast.) 2811 if (!IsForDefinition) 2812 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2813 } 2814 2815 // This function doesn't have a complete type (for example, the return 2816 // type is an incomplete struct). Use a fake type instead, and make 2817 // sure not to try to set attributes. 2818 bool IsIncompleteFunction = false; 2819 2820 llvm::FunctionType *FTy; 2821 if (isa<llvm::FunctionType>(Ty)) { 2822 FTy = cast<llvm::FunctionType>(Ty); 2823 } else { 2824 FTy = llvm::FunctionType::get(VoidTy, false); 2825 IsIncompleteFunction = true; 2826 } 2827 2828 llvm::Function *F = 2829 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2830 Entry ? StringRef() : MangledName, &getModule()); 2831 2832 // If we already created a function with the same mangled name (but different 2833 // type) before, take its name and add it to the list of functions to be 2834 // replaced with F at the end of CodeGen. 2835 // 2836 // This happens if there is a prototype for a function (e.g. "int f()") and 2837 // then a definition of a different type (e.g. "int f(int x)"). 2838 if (Entry) { 2839 F->takeName(Entry); 2840 2841 // This might be an implementation of a function without a prototype, in 2842 // which case, try to do special replacement of calls which match the new 2843 // prototype. The really key thing here is that we also potentially drop 2844 // arguments from the call site so as to make a direct call, which makes the 2845 // inliner happier and suppresses a number of optimizer warnings (!) about 2846 // dropping arguments. 2847 if (!Entry->use_empty()) { 2848 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2849 Entry->removeDeadConstantUsers(); 2850 } 2851 2852 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2853 F, Entry->getType()->getElementType()->getPointerTo()); 2854 addGlobalValReplacement(Entry, BC); 2855 } 2856 2857 assert(F->getName() == MangledName && "name was uniqued!"); 2858 if (D) 2859 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2860 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2861 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2862 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2863 } 2864 2865 if (!DontDefer) { 2866 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2867 // each other bottoming out with the base dtor. Therefore we emit non-base 2868 // dtors on usage, even if there is no dtor definition in the TU. 2869 if (D && isa<CXXDestructorDecl>(D) && 2870 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2871 GD.getDtorType())) 2872 addDeferredDeclToEmit(GD); 2873 2874 // This is the first use or definition of a mangled name. If there is a 2875 // deferred decl with this name, remember that we need to emit it at the end 2876 // of the file. 2877 auto DDI = DeferredDecls.find(MangledName); 2878 if (DDI != DeferredDecls.end()) { 2879 // Move the potentially referenced deferred decl to the 2880 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2881 // don't need it anymore). 2882 addDeferredDeclToEmit(DDI->second); 2883 DeferredDecls.erase(DDI); 2884 2885 // Otherwise, there are cases we have to worry about where we're 2886 // using a declaration for which we must emit a definition but where 2887 // we might not find a top-level definition: 2888 // - member functions defined inline in their classes 2889 // - friend functions defined inline in some class 2890 // - special member functions with implicit definitions 2891 // If we ever change our AST traversal to walk into class methods, 2892 // this will be unnecessary. 2893 // 2894 // We also don't emit a definition for a function if it's going to be an 2895 // entry in a vtable, unless it's already marked as used. 2896 } else if (getLangOpts().CPlusPlus && D) { 2897 // Look for a declaration that's lexically in a record. 2898 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2899 FD = FD->getPreviousDecl()) { 2900 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2901 if (FD->doesThisDeclarationHaveABody()) { 2902 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2903 break; 2904 } 2905 } 2906 } 2907 } 2908 } 2909 2910 // Make sure the result is of the requested type. 2911 if (!IsIncompleteFunction) { 2912 assert(F->getType()->getElementType() == Ty); 2913 return F; 2914 } 2915 2916 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2917 return llvm::ConstantExpr::getBitCast(F, PTy); 2918 } 2919 2920 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2921 /// non-null, then this function will use the specified type if it has to 2922 /// create it (this occurs when we see a definition of the function). 2923 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2924 llvm::Type *Ty, 2925 bool ForVTable, 2926 bool DontDefer, 2927 ForDefinition_t IsForDefinition) { 2928 // If there was no specific requested type, just convert it now. 2929 if (!Ty) { 2930 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2931 Ty = getTypes().ConvertType(FD->getType()); 2932 } 2933 2934 // Devirtualized destructor calls may come through here instead of via 2935 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2936 // of the complete destructor when necessary. 2937 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2938 if (getTarget().getCXXABI().isMicrosoft() && 2939 GD.getDtorType() == Dtor_Complete && 2940 DD->getParent()->getNumVBases() == 0) 2941 GD = GlobalDecl(DD, Dtor_Base); 2942 } 2943 2944 StringRef MangledName = getMangledName(GD); 2945 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2946 /*IsThunk=*/false, llvm::AttributeList(), 2947 IsForDefinition); 2948 } 2949 2950 static const FunctionDecl * 2951 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2952 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2953 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2954 2955 IdentifierInfo &CII = C.Idents.get(Name); 2956 for (const auto &Result : DC->lookup(&CII)) 2957 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2958 return FD; 2959 2960 if (!C.getLangOpts().CPlusPlus) 2961 return nullptr; 2962 2963 // Demangle the premangled name from getTerminateFn() 2964 IdentifierInfo &CXXII = 2965 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2966 ? C.Idents.get("terminate") 2967 : C.Idents.get(Name); 2968 2969 for (const auto &N : {"__cxxabiv1", "std"}) { 2970 IdentifierInfo &NS = C.Idents.get(N); 2971 for (const auto &Result : DC->lookup(&NS)) { 2972 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2973 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2974 for (const auto &Result : LSD->lookup(&NS)) 2975 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2976 break; 2977 2978 if (ND) 2979 for (const auto &Result : ND->lookup(&CXXII)) 2980 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2981 return FD; 2982 } 2983 } 2984 2985 return nullptr; 2986 } 2987 2988 /// CreateRuntimeFunction - Create a new runtime function with the specified 2989 /// type and name. 2990 llvm::FunctionCallee 2991 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2992 llvm::AttributeList ExtraAttrs, 2993 bool Local) { 2994 llvm::Constant *C = 2995 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2996 /*DontDefer=*/false, /*IsThunk=*/false, 2997 ExtraAttrs); 2998 2999 if (auto *F = dyn_cast<llvm::Function>(C)) { 3000 if (F->empty()) { 3001 F->setCallingConv(getRuntimeCC()); 3002 3003 // In Windows Itanium environments, try to mark runtime functions 3004 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3005 // will link their standard library statically or dynamically. Marking 3006 // functions imported when they are not imported can cause linker errors 3007 // and warnings. 3008 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3009 !getCodeGenOpts().LTOVisibilityPublicStd) { 3010 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3011 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3012 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3013 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3014 } 3015 } 3016 setDSOLocal(F); 3017 } 3018 } 3019 3020 return {FTy, C}; 3021 } 3022 3023 /// isTypeConstant - Determine whether an object of this type can be emitted 3024 /// as a constant. 3025 /// 3026 /// If ExcludeCtor is true, the duration when the object's constructor runs 3027 /// will not be considered. The caller will need to verify that the object is 3028 /// not written to during its construction. 3029 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3030 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3031 return false; 3032 3033 if (Context.getLangOpts().CPlusPlus) { 3034 if (const CXXRecordDecl *Record 3035 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3036 return ExcludeCtor && !Record->hasMutableFields() && 3037 Record->hasTrivialDestructor(); 3038 } 3039 3040 return true; 3041 } 3042 3043 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3044 /// create and return an llvm GlobalVariable with the specified type. If there 3045 /// is something in the module with the specified name, return it potentially 3046 /// bitcasted to the right type. 3047 /// 3048 /// If D is non-null, it specifies a decl that correspond to this. This is used 3049 /// to set the attributes on the global when it is first created. 3050 /// 3051 /// If IsForDefinition is true, it is guaranteed that an actual global with 3052 /// type Ty will be returned, not conversion of a variable with the same 3053 /// mangled name but some other type. 3054 llvm::Constant * 3055 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3056 llvm::PointerType *Ty, 3057 const VarDecl *D, 3058 ForDefinition_t IsForDefinition) { 3059 // Lookup the entry, lazily creating it if necessary. 3060 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3061 if (Entry) { 3062 if (WeakRefReferences.erase(Entry)) { 3063 if (D && !D->hasAttr<WeakAttr>()) 3064 Entry->setLinkage(llvm::Function::ExternalLinkage); 3065 } 3066 3067 // Handle dropped DLL attributes. 3068 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3069 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3070 3071 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3072 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3073 3074 if (Entry->getType() == Ty) 3075 return Entry; 3076 3077 // If there are two attempts to define the same mangled name, issue an 3078 // error. 3079 if (IsForDefinition && !Entry->isDeclaration()) { 3080 GlobalDecl OtherGD; 3081 const VarDecl *OtherD; 3082 3083 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3084 // to make sure that we issue an error only once. 3085 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3086 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3087 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3088 OtherD->hasInit() && 3089 DiagnosedConflictingDefinitions.insert(D).second) { 3090 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3091 << MangledName; 3092 getDiags().Report(OtherGD.getDecl()->getLocation(), 3093 diag::note_previous_definition); 3094 } 3095 } 3096 3097 // Make sure the result is of the correct type. 3098 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3099 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3100 3101 // (If global is requested for a definition, we always need to create a new 3102 // global, not just return a bitcast.) 3103 if (!IsForDefinition) 3104 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3105 } 3106 3107 auto AddrSpace = GetGlobalVarAddressSpace(D); 3108 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3109 3110 auto *GV = new llvm::GlobalVariable( 3111 getModule(), Ty->getElementType(), false, 3112 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3113 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3114 3115 // If we already created a global with the same mangled name (but different 3116 // type) before, take its name and remove it from its parent. 3117 if (Entry) { 3118 GV->takeName(Entry); 3119 3120 if (!Entry->use_empty()) { 3121 llvm::Constant *NewPtrForOldDecl = 3122 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3123 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3124 } 3125 3126 Entry->eraseFromParent(); 3127 } 3128 3129 // This is the first use or definition of a mangled name. If there is a 3130 // deferred decl with this name, remember that we need to emit it at the end 3131 // of the file. 3132 auto DDI = DeferredDecls.find(MangledName); 3133 if (DDI != DeferredDecls.end()) { 3134 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3135 // list, and remove it from DeferredDecls (since we don't need it anymore). 3136 addDeferredDeclToEmit(DDI->second); 3137 DeferredDecls.erase(DDI); 3138 } 3139 3140 // Handle things which are present even on external declarations. 3141 if (D) { 3142 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3143 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3144 3145 // FIXME: This code is overly simple and should be merged with other global 3146 // handling. 3147 GV->setConstant(isTypeConstant(D->getType(), false)); 3148 3149 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3150 3151 setLinkageForGV(GV, D); 3152 3153 if (D->getTLSKind()) { 3154 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3155 CXXThreadLocals.push_back(D); 3156 setTLSMode(GV, *D); 3157 } 3158 3159 setGVProperties(GV, D); 3160 3161 // If required by the ABI, treat declarations of static data members with 3162 // inline initializers as definitions. 3163 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3164 EmitGlobalVarDefinition(D); 3165 } 3166 3167 // Emit section information for extern variables. 3168 if (D->hasExternalStorage()) { 3169 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3170 GV->setSection(SA->getName()); 3171 } 3172 3173 // Handle XCore specific ABI requirements. 3174 if (getTriple().getArch() == llvm::Triple::xcore && 3175 D->getLanguageLinkage() == CLanguageLinkage && 3176 D->getType().isConstant(Context) && 3177 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3178 GV->setSection(".cp.rodata"); 3179 3180 // Check if we a have a const declaration with an initializer, we may be 3181 // able to emit it as available_externally to expose it's value to the 3182 // optimizer. 3183 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3184 D->getType().isConstQualified() && !GV->hasInitializer() && 3185 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3186 const auto *Record = 3187 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3188 bool HasMutableFields = Record && Record->hasMutableFields(); 3189 if (!HasMutableFields) { 3190 const VarDecl *InitDecl; 3191 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3192 if (InitExpr) { 3193 ConstantEmitter emitter(*this); 3194 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3195 if (Init) { 3196 auto *InitType = Init->getType(); 3197 if (GV->getType()->getElementType() != InitType) { 3198 // The type of the initializer does not match the definition. 3199 // This happens when an initializer has a different type from 3200 // the type of the global (because of padding at the end of a 3201 // structure for instance). 3202 GV->setName(StringRef()); 3203 // Make a new global with the correct type, this is now guaranteed 3204 // to work. 3205 auto *NewGV = cast<llvm::GlobalVariable>( 3206 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3207 3208 // Erase the old global, since it is no longer used. 3209 GV->eraseFromParent(); 3210 GV = NewGV; 3211 } else { 3212 GV->setInitializer(Init); 3213 GV->setConstant(true); 3214 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3215 } 3216 emitter.finalize(GV); 3217 } 3218 } 3219 } 3220 } 3221 } 3222 3223 LangAS ExpectedAS = 3224 D ? D->getType().getAddressSpace() 3225 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3226 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3227 Ty->getPointerAddressSpace()); 3228 if (AddrSpace != ExpectedAS) 3229 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3230 ExpectedAS, Ty); 3231 3232 if (GV->isDeclaration()) 3233 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3234 3235 return GV; 3236 } 3237 3238 llvm::Constant * 3239 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3240 ForDefinition_t IsForDefinition) { 3241 const Decl *D = GD.getDecl(); 3242 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3243 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3244 /*DontDefer=*/false, IsForDefinition); 3245 else if (isa<CXXMethodDecl>(D)) { 3246 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3247 cast<CXXMethodDecl>(D)); 3248 auto Ty = getTypes().GetFunctionType(*FInfo); 3249 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3250 IsForDefinition); 3251 } else if (isa<FunctionDecl>(D)) { 3252 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3253 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3254 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3255 IsForDefinition); 3256 } else 3257 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3258 IsForDefinition); 3259 } 3260 3261 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3262 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3263 unsigned Alignment) { 3264 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3265 llvm::GlobalVariable *OldGV = nullptr; 3266 3267 if (GV) { 3268 // Check if the variable has the right type. 3269 if (GV->getType()->getElementType() == Ty) 3270 return GV; 3271 3272 // Because C++ name mangling, the only way we can end up with an already 3273 // existing global with the same name is if it has been declared extern "C". 3274 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3275 OldGV = GV; 3276 } 3277 3278 // Create a new variable. 3279 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3280 Linkage, nullptr, Name); 3281 3282 if (OldGV) { 3283 // Replace occurrences of the old variable if needed. 3284 GV->takeName(OldGV); 3285 3286 if (!OldGV->use_empty()) { 3287 llvm::Constant *NewPtrForOldDecl = 3288 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3289 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3290 } 3291 3292 OldGV->eraseFromParent(); 3293 } 3294 3295 if (supportsCOMDAT() && GV->isWeakForLinker() && 3296 !GV->hasAvailableExternallyLinkage()) 3297 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3298 3299 GV->setAlignment(Alignment); 3300 3301 return GV; 3302 } 3303 3304 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3305 /// given global variable. If Ty is non-null and if the global doesn't exist, 3306 /// then it will be created with the specified type instead of whatever the 3307 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3308 /// that an actual global with type Ty will be returned, not conversion of a 3309 /// variable with the same mangled name but some other type. 3310 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3311 llvm::Type *Ty, 3312 ForDefinition_t IsForDefinition) { 3313 assert(D->hasGlobalStorage() && "Not a global variable"); 3314 QualType ASTTy = D->getType(); 3315 if (!Ty) 3316 Ty = getTypes().ConvertTypeForMem(ASTTy); 3317 3318 llvm::PointerType *PTy = 3319 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3320 3321 StringRef MangledName = getMangledName(D); 3322 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3323 } 3324 3325 /// CreateRuntimeVariable - Create a new runtime global variable with the 3326 /// specified type and name. 3327 llvm::Constant * 3328 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3329 StringRef Name) { 3330 auto *Ret = 3331 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3332 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3333 return Ret; 3334 } 3335 3336 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3337 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3338 3339 StringRef MangledName = getMangledName(D); 3340 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3341 3342 // We already have a definition, not declaration, with the same mangled name. 3343 // Emitting of declaration is not required (and actually overwrites emitted 3344 // definition). 3345 if (GV && !GV->isDeclaration()) 3346 return; 3347 3348 // If we have not seen a reference to this variable yet, place it into the 3349 // deferred declarations table to be emitted if needed later. 3350 if (!MustBeEmitted(D) && !GV) { 3351 DeferredDecls[MangledName] = D; 3352 return; 3353 } 3354 3355 // The tentative definition is the only definition. 3356 EmitGlobalVarDefinition(D); 3357 } 3358 3359 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3360 return Context.toCharUnitsFromBits( 3361 getDataLayout().getTypeStoreSizeInBits(Ty)); 3362 } 3363 3364 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3365 LangAS AddrSpace = LangAS::Default; 3366 if (LangOpts.OpenCL) { 3367 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3368 assert(AddrSpace == LangAS::opencl_global || 3369 AddrSpace == LangAS::opencl_constant || 3370 AddrSpace == LangAS::opencl_local || 3371 AddrSpace >= LangAS::FirstTargetAddressSpace); 3372 return AddrSpace; 3373 } 3374 3375 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3376 if (D && D->hasAttr<CUDAConstantAttr>()) 3377 return LangAS::cuda_constant; 3378 else if (D && D->hasAttr<CUDASharedAttr>()) 3379 return LangAS::cuda_shared; 3380 else if (D && D->hasAttr<CUDADeviceAttr>()) 3381 return LangAS::cuda_device; 3382 else if (D && D->getType().isConstQualified()) 3383 return LangAS::cuda_constant; 3384 else 3385 return LangAS::cuda_device; 3386 } 3387 3388 if (LangOpts.OpenMP) { 3389 LangAS AS; 3390 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3391 return AS; 3392 } 3393 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3394 } 3395 3396 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3397 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3398 if (LangOpts.OpenCL) 3399 return LangAS::opencl_constant; 3400 if (auto AS = getTarget().getConstantAddressSpace()) 3401 return AS.getValue(); 3402 return LangAS::Default; 3403 } 3404 3405 // In address space agnostic languages, string literals are in default address 3406 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3407 // emitted in constant address space in LLVM IR. To be consistent with other 3408 // parts of AST, string literal global variables in constant address space 3409 // need to be casted to default address space before being put into address 3410 // map and referenced by other part of CodeGen. 3411 // In OpenCL, string literals are in constant address space in AST, therefore 3412 // they should not be casted to default address space. 3413 static llvm::Constant * 3414 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3415 llvm::GlobalVariable *GV) { 3416 llvm::Constant *Cast = GV; 3417 if (!CGM.getLangOpts().OpenCL) { 3418 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3419 if (AS != LangAS::Default) 3420 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3421 CGM, GV, AS.getValue(), LangAS::Default, 3422 GV->getValueType()->getPointerTo( 3423 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3424 } 3425 } 3426 return Cast; 3427 } 3428 3429 template<typename SomeDecl> 3430 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3431 llvm::GlobalValue *GV) { 3432 if (!getLangOpts().CPlusPlus) 3433 return; 3434 3435 // Must have 'used' attribute, or else inline assembly can't rely on 3436 // the name existing. 3437 if (!D->template hasAttr<UsedAttr>()) 3438 return; 3439 3440 // Must have internal linkage and an ordinary name. 3441 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3442 return; 3443 3444 // Must be in an extern "C" context. Entities declared directly within 3445 // a record are not extern "C" even if the record is in such a context. 3446 const SomeDecl *First = D->getFirstDecl(); 3447 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3448 return; 3449 3450 // OK, this is an internal linkage entity inside an extern "C" linkage 3451 // specification. Make a note of that so we can give it the "expected" 3452 // mangled name if nothing else is using that name. 3453 std::pair<StaticExternCMap::iterator, bool> R = 3454 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3455 3456 // If we have multiple internal linkage entities with the same name 3457 // in extern "C" regions, none of them gets that name. 3458 if (!R.second) 3459 R.first->second = nullptr; 3460 } 3461 3462 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3463 if (!CGM.supportsCOMDAT()) 3464 return false; 3465 3466 if (D.hasAttr<SelectAnyAttr>()) 3467 return true; 3468 3469 GVALinkage Linkage; 3470 if (auto *VD = dyn_cast<VarDecl>(&D)) 3471 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3472 else 3473 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3474 3475 switch (Linkage) { 3476 case GVA_Internal: 3477 case GVA_AvailableExternally: 3478 case GVA_StrongExternal: 3479 return false; 3480 case GVA_DiscardableODR: 3481 case GVA_StrongODR: 3482 return true; 3483 } 3484 llvm_unreachable("No such linkage"); 3485 } 3486 3487 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3488 llvm::GlobalObject &GO) { 3489 if (!shouldBeInCOMDAT(*this, D)) 3490 return; 3491 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3492 } 3493 3494 /// Pass IsTentative as true if you want to create a tentative definition. 3495 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3496 bool IsTentative) { 3497 // OpenCL global variables of sampler type are translated to function calls, 3498 // therefore no need to be translated. 3499 QualType ASTTy = D->getType(); 3500 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3501 return; 3502 3503 // If this is OpenMP device, check if it is legal to emit this global 3504 // normally. 3505 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3506 OpenMPRuntime->emitTargetGlobalVariable(D)) 3507 return; 3508 3509 llvm::Constant *Init = nullptr; 3510 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3511 bool NeedsGlobalCtor = false; 3512 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3513 3514 const VarDecl *InitDecl; 3515 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3516 3517 Optional<ConstantEmitter> emitter; 3518 3519 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3520 // as part of their declaration." Sema has already checked for 3521 // error cases, so we just need to set Init to UndefValue. 3522 bool IsCUDASharedVar = 3523 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3524 // Shadows of initialized device-side global variables are also left 3525 // undefined. 3526 bool IsCUDAShadowVar = 3527 !getLangOpts().CUDAIsDevice && 3528 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3529 D->hasAttr<CUDASharedAttr>()); 3530 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3531 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3532 else if (!InitExpr) { 3533 // This is a tentative definition; tentative definitions are 3534 // implicitly initialized with { 0 }. 3535 // 3536 // Note that tentative definitions are only emitted at the end of 3537 // a translation unit, so they should never have incomplete 3538 // type. In addition, EmitTentativeDefinition makes sure that we 3539 // never attempt to emit a tentative definition if a real one 3540 // exists. A use may still exists, however, so we still may need 3541 // to do a RAUW. 3542 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3543 Init = EmitNullConstant(D->getType()); 3544 } else { 3545 initializedGlobalDecl = GlobalDecl(D); 3546 emitter.emplace(*this); 3547 Init = emitter->tryEmitForInitializer(*InitDecl); 3548 3549 if (!Init) { 3550 QualType T = InitExpr->getType(); 3551 if (D->getType()->isReferenceType()) 3552 T = D->getType(); 3553 3554 if (getLangOpts().CPlusPlus) { 3555 Init = EmitNullConstant(T); 3556 NeedsGlobalCtor = true; 3557 } else { 3558 ErrorUnsupported(D, "static initializer"); 3559 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3560 } 3561 } else { 3562 // We don't need an initializer, so remove the entry for the delayed 3563 // initializer position (just in case this entry was delayed) if we 3564 // also don't need to register a destructor. 3565 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3566 DelayedCXXInitPosition.erase(D); 3567 } 3568 } 3569 3570 llvm::Type* InitType = Init->getType(); 3571 llvm::Constant *Entry = 3572 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3573 3574 // Strip off a bitcast if we got one back. 3575 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3576 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3577 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3578 // All zero index gep. 3579 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3580 Entry = CE->getOperand(0); 3581 } 3582 3583 // Entry is now either a Function or GlobalVariable. 3584 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3585 3586 // We have a definition after a declaration with the wrong type. 3587 // We must make a new GlobalVariable* and update everything that used OldGV 3588 // (a declaration or tentative definition) with the new GlobalVariable* 3589 // (which will be a definition). 3590 // 3591 // This happens if there is a prototype for a global (e.g. 3592 // "extern int x[];") and then a definition of a different type (e.g. 3593 // "int x[10];"). This also happens when an initializer has a different type 3594 // from the type of the global (this happens with unions). 3595 if (!GV || GV->getType()->getElementType() != InitType || 3596 GV->getType()->getAddressSpace() != 3597 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3598 3599 // Move the old entry aside so that we'll create a new one. 3600 Entry->setName(StringRef()); 3601 3602 // Make a new global with the correct type, this is now guaranteed to work. 3603 GV = cast<llvm::GlobalVariable>( 3604 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3605 3606 // Replace all uses of the old global with the new global 3607 llvm::Constant *NewPtrForOldDecl = 3608 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3609 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3610 3611 // Erase the old global, since it is no longer used. 3612 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3613 } 3614 3615 MaybeHandleStaticInExternC(D, GV); 3616 3617 if (D->hasAttr<AnnotateAttr>()) 3618 AddGlobalAnnotations(D, GV); 3619 3620 // Set the llvm linkage type as appropriate. 3621 llvm::GlobalValue::LinkageTypes Linkage = 3622 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3623 3624 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3625 // the device. [...]" 3626 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3627 // __device__, declares a variable that: [...] 3628 // Is accessible from all the threads within the grid and from the host 3629 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3630 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3631 if (GV && LangOpts.CUDA) { 3632 if (LangOpts.CUDAIsDevice) { 3633 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3634 GV->setExternallyInitialized(true); 3635 } else { 3636 // Host-side shadows of external declarations of device-side 3637 // global variables become internal definitions. These have to 3638 // be internal in order to prevent name conflicts with global 3639 // host variables with the same name in a different TUs. 3640 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3641 Linkage = llvm::GlobalValue::InternalLinkage; 3642 3643 // Shadow variables and their properties must be registered 3644 // with CUDA runtime. 3645 unsigned Flags = 0; 3646 if (!D->hasDefinition()) 3647 Flags |= CGCUDARuntime::ExternDeviceVar; 3648 if (D->hasAttr<CUDAConstantAttr>()) 3649 Flags |= CGCUDARuntime::ConstantDeviceVar; 3650 // Extern global variables will be registered in the TU where they are 3651 // defined. 3652 if (!D->hasExternalStorage()) 3653 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3654 } else if (D->hasAttr<CUDASharedAttr>()) 3655 // __shared__ variables are odd. Shadows do get created, but 3656 // they are not registered with the CUDA runtime, so they 3657 // can't really be used to access their device-side 3658 // counterparts. It's not clear yet whether it's nvcc's bug or 3659 // a feature, but we've got to do the same for compatibility. 3660 Linkage = llvm::GlobalValue::InternalLinkage; 3661 } 3662 } 3663 3664 GV->setInitializer(Init); 3665 if (emitter) emitter->finalize(GV); 3666 3667 // If it is safe to mark the global 'constant', do so now. 3668 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3669 isTypeConstant(D->getType(), true)); 3670 3671 // If it is in a read-only section, mark it 'constant'. 3672 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3673 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3674 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3675 GV->setConstant(true); 3676 } 3677 3678 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3679 3680 3681 // On Darwin, if the normal linkage of a C++ thread_local variable is 3682 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3683 // copies within a linkage unit; otherwise, the backing variable has 3684 // internal linkage and all accesses should just be calls to the 3685 // Itanium-specified entry point, which has the normal linkage of the 3686 // variable. This is to preserve the ability to change the implementation 3687 // behind the scenes. 3688 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3689 Context.getTargetInfo().getTriple().isOSDarwin() && 3690 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3691 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3692 Linkage = llvm::GlobalValue::InternalLinkage; 3693 3694 GV->setLinkage(Linkage); 3695 if (D->hasAttr<DLLImportAttr>()) 3696 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3697 else if (D->hasAttr<DLLExportAttr>()) 3698 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3699 else 3700 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3701 3702 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3703 // common vars aren't constant even if declared const. 3704 GV->setConstant(false); 3705 // Tentative definition of global variables may be initialized with 3706 // non-zero null pointers. In this case they should have weak linkage 3707 // since common linkage must have zero initializer and must not have 3708 // explicit section therefore cannot have non-zero initial value. 3709 if (!GV->getInitializer()->isNullValue()) 3710 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3711 } 3712 3713 setNonAliasAttributes(D, GV); 3714 3715 if (D->getTLSKind() && !GV->isThreadLocal()) { 3716 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3717 CXXThreadLocals.push_back(D); 3718 setTLSMode(GV, *D); 3719 } 3720 3721 maybeSetTrivialComdat(*D, *GV); 3722 3723 // Emit the initializer function if necessary. 3724 if (NeedsGlobalCtor || NeedsGlobalDtor) 3725 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3726 3727 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3728 3729 // Emit global variable debug information. 3730 if (CGDebugInfo *DI = getModuleDebugInfo()) 3731 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3732 DI->EmitGlobalVariable(GV, D); 3733 } 3734 3735 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3736 CodeGenModule &CGM, const VarDecl *D, 3737 bool NoCommon) { 3738 // Don't give variables common linkage if -fno-common was specified unless it 3739 // was overridden by a NoCommon attribute. 3740 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3741 return true; 3742 3743 // C11 6.9.2/2: 3744 // A declaration of an identifier for an object that has file scope without 3745 // an initializer, and without a storage-class specifier or with the 3746 // storage-class specifier static, constitutes a tentative definition. 3747 if (D->getInit() || D->hasExternalStorage()) 3748 return true; 3749 3750 // A variable cannot be both common and exist in a section. 3751 if (D->hasAttr<SectionAttr>()) 3752 return true; 3753 3754 // A variable cannot be both common and exist in a section. 3755 // We don't try to determine which is the right section in the front-end. 3756 // If no specialized section name is applicable, it will resort to default. 3757 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3758 D->hasAttr<PragmaClangDataSectionAttr>() || 3759 D->hasAttr<PragmaClangRodataSectionAttr>()) 3760 return true; 3761 3762 // Thread local vars aren't considered common linkage. 3763 if (D->getTLSKind()) 3764 return true; 3765 3766 // Tentative definitions marked with WeakImportAttr are true definitions. 3767 if (D->hasAttr<WeakImportAttr>()) 3768 return true; 3769 3770 // A variable cannot be both common and exist in a comdat. 3771 if (shouldBeInCOMDAT(CGM, *D)) 3772 return true; 3773 3774 // Declarations with a required alignment do not have common linkage in MSVC 3775 // mode. 3776 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3777 if (D->hasAttr<AlignedAttr>()) 3778 return true; 3779 QualType VarType = D->getType(); 3780 if (Context.isAlignmentRequired(VarType)) 3781 return true; 3782 3783 if (const auto *RT = VarType->getAs<RecordType>()) { 3784 const RecordDecl *RD = RT->getDecl(); 3785 for (const FieldDecl *FD : RD->fields()) { 3786 if (FD->isBitField()) 3787 continue; 3788 if (FD->hasAttr<AlignedAttr>()) 3789 return true; 3790 if (Context.isAlignmentRequired(FD->getType())) 3791 return true; 3792 } 3793 } 3794 } 3795 3796 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 3797 // common symbols, so symbols with greater alignment requirements cannot be 3798 // common. 3799 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 3800 // alignments for common symbols via the aligncomm directive, so this 3801 // restriction only applies to MSVC environments. 3802 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 3803 Context.getTypeAlignIfKnown(D->getType()) > 3804 Context.toBits(CharUnits::fromQuantity(32))) 3805 return true; 3806 3807 return false; 3808 } 3809 3810 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3811 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3812 if (Linkage == GVA_Internal) 3813 return llvm::Function::InternalLinkage; 3814 3815 if (D->hasAttr<WeakAttr>()) { 3816 if (IsConstantVariable) 3817 return llvm::GlobalVariable::WeakODRLinkage; 3818 else 3819 return llvm::GlobalVariable::WeakAnyLinkage; 3820 } 3821 3822 if (const auto *FD = D->getAsFunction()) 3823 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3824 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3825 3826 // We are guaranteed to have a strong definition somewhere else, 3827 // so we can use available_externally linkage. 3828 if (Linkage == GVA_AvailableExternally) 3829 return llvm::GlobalValue::AvailableExternallyLinkage; 3830 3831 // Note that Apple's kernel linker doesn't support symbol 3832 // coalescing, so we need to avoid linkonce and weak linkages there. 3833 // Normally, this means we just map to internal, but for explicit 3834 // instantiations we'll map to external. 3835 3836 // In C++, the compiler has to emit a definition in every translation unit 3837 // that references the function. We should use linkonce_odr because 3838 // a) if all references in this translation unit are optimized away, we 3839 // don't need to codegen it. b) if the function persists, it needs to be 3840 // merged with other definitions. c) C++ has the ODR, so we know the 3841 // definition is dependable. 3842 if (Linkage == GVA_DiscardableODR) 3843 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3844 : llvm::Function::InternalLinkage; 3845 3846 // An explicit instantiation of a template has weak linkage, since 3847 // explicit instantiations can occur in multiple translation units 3848 // and must all be equivalent. However, we are not allowed to 3849 // throw away these explicit instantiations. 3850 // 3851 // We don't currently support CUDA device code spread out across multiple TUs, 3852 // so say that CUDA templates are either external (for kernels) or internal. 3853 // This lets llvm perform aggressive inter-procedural optimizations. 3854 if (Linkage == GVA_StrongODR) { 3855 if (Context.getLangOpts().AppleKext) 3856 return llvm::Function::ExternalLinkage; 3857 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3858 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3859 : llvm::Function::InternalLinkage; 3860 return llvm::Function::WeakODRLinkage; 3861 } 3862 3863 // C++ doesn't have tentative definitions and thus cannot have common 3864 // linkage. 3865 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3866 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3867 CodeGenOpts.NoCommon)) 3868 return llvm::GlobalVariable::CommonLinkage; 3869 3870 // selectany symbols are externally visible, so use weak instead of 3871 // linkonce. MSVC optimizes away references to const selectany globals, so 3872 // all definitions should be the same and ODR linkage should be used. 3873 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3874 if (D->hasAttr<SelectAnyAttr>()) 3875 return llvm::GlobalVariable::WeakODRLinkage; 3876 3877 // Otherwise, we have strong external linkage. 3878 assert(Linkage == GVA_StrongExternal); 3879 return llvm::GlobalVariable::ExternalLinkage; 3880 } 3881 3882 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3883 const VarDecl *VD, bool IsConstant) { 3884 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3885 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3886 } 3887 3888 /// Replace the uses of a function that was declared with a non-proto type. 3889 /// We want to silently drop extra arguments from call sites 3890 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3891 llvm::Function *newFn) { 3892 // Fast path. 3893 if (old->use_empty()) return; 3894 3895 llvm::Type *newRetTy = newFn->getReturnType(); 3896 SmallVector<llvm::Value*, 4> newArgs; 3897 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3898 3899 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3900 ui != ue; ) { 3901 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3902 llvm::User *user = use->getUser(); 3903 3904 // Recognize and replace uses of bitcasts. Most calls to 3905 // unprototyped functions will use bitcasts. 3906 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3907 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3908 replaceUsesOfNonProtoConstant(bitcast, newFn); 3909 continue; 3910 } 3911 3912 // Recognize calls to the function. 3913 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 3914 if (!callSite) continue; 3915 if (!callSite->isCallee(&*use)) 3916 continue; 3917 3918 // If the return types don't match exactly, then we can't 3919 // transform this call unless it's dead. 3920 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3921 continue; 3922 3923 // Get the call site's attribute list. 3924 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3925 llvm::AttributeList oldAttrs = callSite->getAttributes(); 3926 3927 // If the function was passed too few arguments, don't transform. 3928 unsigned newNumArgs = newFn->arg_size(); 3929 if (callSite->arg_size() < newNumArgs) 3930 continue; 3931 3932 // If extra arguments were passed, we silently drop them. 3933 // If any of the types mismatch, we don't transform. 3934 unsigned argNo = 0; 3935 bool dontTransform = false; 3936 for (llvm::Argument &A : newFn->args()) { 3937 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 3938 dontTransform = true; 3939 break; 3940 } 3941 3942 // Add any parameter attributes. 3943 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3944 argNo++; 3945 } 3946 if (dontTransform) 3947 continue; 3948 3949 // Okay, we can transform this. Create the new call instruction and copy 3950 // over the required information. 3951 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 3952 3953 // Copy over any operand bundles. 3954 callSite->getOperandBundlesAsDefs(newBundles); 3955 3956 llvm::CallBase *newCall; 3957 if (dyn_cast<llvm::CallInst>(callSite)) { 3958 newCall = 3959 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 3960 } else { 3961 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 3962 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 3963 oldInvoke->getUnwindDest(), newArgs, 3964 newBundles, "", callSite); 3965 } 3966 newArgs.clear(); // for the next iteration 3967 3968 if (!newCall->getType()->isVoidTy()) 3969 newCall->takeName(callSite); 3970 newCall->setAttributes(llvm::AttributeList::get( 3971 newFn->getContext(), oldAttrs.getFnAttributes(), 3972 oldAttrs.getRetAttributes(), newArgAttrs)); 3973 newCall->setCallingConv(callSite->getCallingConv()); 3974 3975 // Finally, remove the old call, replacing any uses with the new one. 3976 if (!callSite->use_empty()) 3977 callSite->replaceAllUsesWith(newCall); 3978 3979 // Copy debug location attached to CI. 3980 if (callSite->getDebugLoc()) 3981 newCall->setDebugLoc(callSite->getDebugLoc()); 3982 3983 callSite->eraseFromParent(); 3984 } 3985 } 3986 3987 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3988 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3989 /// existing call uses of the old function in the module, this adjusts them to 3990 /// call the new function directly. 3991 /// 3992 /// This is not just a cleanup: the always_inline pass requires direct calls to 3993 /// functions to be able to inline them. If there is a bitcast in the way, it 3994 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3995 /// run at -O0. 3996 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3997 llvm::Function *NewFn) { 3998 // If we're redefining a global as a function, don't transform it. 3999 if (!isa<llvm::Function>(Old)) return; 4000 4001 replaceUsesOfNonProtoConstant(Old, NewFn); 4002 } 4003 4004 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4005 auto DK = VD->isThisDeclarationADefinition(); 4006 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4007 return; 4008 4009 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4010 // If we have a definition, this might be a deferred decl. If the 4011 // instantiation is explicit, make sure we emit it at the end. 4012 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4013 GetAddrOfGlobalVar(VD); 4014 4015 EmitTopLevelDecl(VD); 4016 } 4017 4018 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4019 llvm::GlobalValue *GV) { 4020 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4021 4022 // Compute the function info and LLVM type. 4023 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4024 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4025 4026 // Get or create the prototype for the function. 4027 if (!GV || (GV->getType()->getElementType() != Ty)) 4028 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4029 /*DontDefer=*/true, 4030 ForDefinition)); 4031 4032 // Already emitted. 4033 if (!GV->isDeclaration()) 4034 return; 4035 4036 // We need to set linkage and visibility on the function before 4037 // generating code for it because various parts of IR generation 4038 // want to propagate this information down (e.g. to local static 4039 // declarations). 4040 auto *Fn = cast<llvm::Function>(GV); 4041 setFunctionLinkage(GD, Fn); 4042 4043 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4044 setGVProperties(Fn, GD); 4045 4046 MaybeHandleStaticInExternC(D, Fn); 4047 4048 4049 maybeSetTrivialComdat(*D, *Fn); 4050 4051 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4052 4053 setNonAliasAttributes(GD, Fn); 4054 SetLLVMFunctionAttributesForDefinition(D, Fn); 4055 4056 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4057 AddGlobalCtor(Fn, CA->getPriority()); 4058 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4059 AddGlobalDtor(Fn, DA->getPriority()); 4060 if (D->hasAttr<AnnotateAttr>()) 4061 AddGlobalAnnotations(D, Fn); 4062 } 4063 4064 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4065 const auto *D = cast<ValueDecl>(GD.getDecl()); 4066 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4067 assert(AA && "Not an alias?"); 4068 4069 StringRef MangledName = getMangledName(GD); 4070 4071 if (AA->getAliasee() == MangledName) { 4072 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4073 return; 4074 } 4075 4076 // If there is a definition in the module, then it wins over the alias. 4077 // This is dubious, but allow it to be safe. Just ignore the alias. 4078 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4079 if (Entry && !Entry->isDeclaration()) 4080 return; 4081 4082 Aliases.push_back(GD); 4083 4084 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4085 4086 // Create a reference to the named value. This ensures that it is emitted 4087 // if a deferred decl. 4088 llvm::Constant *Aliasee; 4089 if (isa<llvm::FunctionType>(DeclTy)) 4090 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4091 /*ForVTable=*/false); 4092 else 4093 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4094 llvm::PointerType::getUnqual(DeclTy), 4095 /*D=*/nullptr); 4096 4097 // Create the new alias itself, but don't set a name yet. 4098 auto *GA = llvm::GlobalAlias::create( 4099 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4100 4101 if (Entry) { 4102 if (GA->getAliasee() == Entry) { 4103 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4104 return; 4105 } 4106 4107 assert(Entry->isDeclaration()); 4108 4109 // If there is a declaration in the module, then we had an extern followed 4110 // by the alias, as in: 4111 // extern int test6(); 4112 // ... 4113 // int test6() __attribute__((alias("test7"))); 4114 // 4115 // Remove it and replace uses of it with the alias. 4116 GA->takeName(Entry); 4117 4118 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4119 Entry->getType())); 4120 Entry->eraseFromParent(); 4121 } else { 4122 GA->setName(MangledName); 4123 } 4124 4125 // Set attributes which are particular to an alias; this is a 4126 // specialization of the attributes which may be set on a global 4127 // variable/function. 4128 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4129 D->isWeakImported()) { 4130 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4131 } 4132 4133 if (const auto *VD = dyn_cast<VarDecl>(D)) 4134 if (VD->getTLSKind()) 4135 setTLSMode(GA, *VD); 4136 4137 SetCommonAttributes(GD, GA); 4138 } 4139 4140 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4141 const auto *D = cast<ValueDecl>(GD.getDecl()); 4142 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4143 assert(IFA && "Not an ifunc?"); 4144 4145 StringRef MangledName = getMangledName(GD); 4146 4147 if (IFA->getResolver() == MangledName) { 4148 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4149 return; 4150 } 4151 4152 // Report an error if some definition overrides ifunc. 4153 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4154 if (Entry && !Entry->isDeclaration()) { 4155 GlobalDecl OtherGD; 4156 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4157 DiagnosedConflictingDefinitions.insert(GD).second) { 4158 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4159 << MangledName; 4160 Diags.Report(OtherGD.getDecl()->getLocation(), 4161 diag::note_previous_definition); 4162 } 4163 return; 4164 } 4165 4166 Aliases.push_back(GD); 4167 4168 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4169 llvm::Constant *Resolver = 4170 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4171 /*ForVTable=*/false); 4172 llvm::GlobalIFunc *GIF = 4173 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4174 "", Resolver, &getModule()); 4175 if (Entry) { 4176 if (GIF->getResolver() == Entry) { 4177 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4178 return; 4179 } 4180 assert(Entry->isDeclaration()); 4181 4182 // If there is a declaration in the module, then we had an extern followed 4183 // by the ifunc, as in: 4184 // extern int test(); 4185 // ... 4186 // int test() __attribute__((ifunc("resolver"))); 4187 // 4188 // Remove it and replace uses of it with the ifunc. 4189 GIF->takeName(Entry); 4190 4191 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4192 Entry->getType())); 4193 Entry->eraseFromParent(); 4194 } else 4195 GIF->setName(MangledName); 4196 4197 SetCommonAttributes(GD, GIF); 4198 } 4199 4200 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4201 ArrayRef<llvm::Type*> Tys) { 4202 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4203 Tys); 4204 } 4205 4206 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4207 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4208 const StringLiteral *Literal, bool TargetIsLSB, 4209 bool &IsUTF16, unsigned &StringLength) { 4210 StringRef String = Literal->getString(); 4211 unsigned NumBytes = String.size(); 4212 4213 // Check for simple case. 4214 if (!Literal->containsNonAsciiOrNull()) { 4215 StringLength = NumBytes; 4216 return *Map.insert(std::make_pair(String, nullptr)).first; 4217 } 4218 4219 // Otherwise, convert the UTF8 literals into a string of shorts. 4220 IsUTF16 = true; 4221 4222 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4223 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4224 llvm::UTF16 *ToPtr = &ToBuf[0]; 4225 4226 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4227 ToPtr + NumBytes, llvm::strictConversion); 4228 4229 // ConvertUTF8toUTF16 returns the length in ToPtr. 4230 StringLength = ToPtr - &ToBuf[0]; 4231 4232 // Add an explicit null. 4233 *ToPtr = 0; 4234 return *Map.insert(std::make_pair( 4235 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4236 (StringLength + 1) * 2), 4237 nullptr)).first; 4238 } 4239 4240 ConstantAddress 4241 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4242 unsigned StringLength = 0; 4243 bool isUTF16 = false; 4244 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4245 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4246 getDataLayout().isLittleEndian(), isUTF16, 4247 StringLength); 4248 4249 if (auto *C = Entry.second) 4250 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4251 4252 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4253 llvm::Constant *Zeros[] = { Zero, Zero }; 4254 4255 const ASTContext &Context = getContext(); 4256 const llvm::Triple &Triple = getTriple(); 4257 4258 const auto CFRuntime = getLangOpts().CFRuntime; 4259 const bool IsSwiftABI = 4260 static_cast<unsigned>(CFRuntime) >= 4261 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4262 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4263 4264 // If we don't already have it, get __CFConstantStringClassReference. 4265 if (!CFConstantStringClassRef) { 4266 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4267 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4268 Ty = llvm::ArrayType::get(Ty, 0); 4269 4270 switch (CFRuntime) { 4271 default: break; 4272 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4273 case LangOptions::CoreFoundationABI::Swift5_0: 4274 CFConstantStringClassName = 4275 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4276 : "$s10Foundation19_NSCFConstantStringCN"; 4277 Ty = IntPtrTy; 4278 break; 4279 case LangOptions::CoreFoundationABI::Swift4_2: 4280 CFConstantStringClassName = 4281 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4282 : "$S10Foundation19_NSCFConstantStringCN"; 4283 Ty = IntPtrTy; 4284 break; 4285 case LangOptions::CoreFoundationABI::Swift4_1: 4286 CFConstantStringClassName = 4287 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4288 : "__T010Foundation19_NSCFConstantStringCN"; 4289 Ty = IntPtrTy; 4290 break; 4291 } 4292 4293 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4294 4295 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4296 llvm::GlobalValue *GV = nullptr; 4297 4298 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4299 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4300 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4301 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4302 4303 const VarDecl *VD = nullptr; 4304 for (const auto &Result : DC->lookup(&II)) 4305 if ((VD = dyn_cast<VarDecl>(Result))) 4306 break; 4307 4308 if (Triple.isOSBinFormatELF()) { 4309 if (!VD) 4310 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4311 } else { 4312 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4313 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4314 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4315 else 4316 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4317 } 4318 4319 setDSOLocal(GV); 4320 } 4321 } 4322 4323 // Decay array -> ptr 4324 CFConstantStringClassRef = 4325 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4326 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4327 } 4328 4329 QualType CFTy = Context.getCFConstantStringType(); 4330 4331 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4332 4333 ConstantInitBuilder Builder(*this); 4334 auto Fields = Builder.beginStruct(STy); 4335 4336 // Class pointer. 4337 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4338 4339 // Flags. 4340 if (IsSwiftABI) { 4341 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4342 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4343 } else { 4344 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4345 } 4346 4347 // String pointer. 4348 llvm::Constant *C = nullptr; 4349 if (isUTF16) { 4350 auto Arr = llvm::makeArrayRef( 4351 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4352 Entry.first().size() / 2); 4353 C = llvm::ConstantDataArray::get(VMContext, Arr); 4354 } else { 4355 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4356 } 4357 4358 // Note: -fwritable-strings doesn't make the backing store strings of 4359 // CFStrings writable. (See <rdar://problem/10657500>) 4360 auto *GV = 4361 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4362 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4363 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4364 // Don't enforce the target's minimum global alignment, since the only use 4365 // of the string is via this class initializer. 4366 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4367 : Context.getTypeAlignInChars(Context.CharTy); 4368 GV->setAlignment(Align.getQuantity()); 4369 4370 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4371 // Without it LLVM can merge the string with a non unnamed_addr one during 4372 // LTO. Doing that changes the section it ends in, which surprises ld64. 4373 if (Triple.isOSBinFormatMachO()) 4374 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4375 : "__TEXT,__cstring,cstring_literals"); 4376 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4377 // the static linker to adjust permissions to read-only later on. 4378 else if (Triple.isOSBinFormatELF()) 4379 GV->setSection(".rodata"); 4380 4381 // String. 4382 llvm::Constant *Str = 4383 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4384 4385 if (isUTF16) 4386 // Cast the UTF16 string to the correct type. 4387 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4388 Fields.add(Str); 4389 4390 // String length. 4391 llvm::IntegerType *LengthTy = 4392 llvm::IntegerType::get(getModule().getContext(), 4393 Context.getTargetInfo().getLongWidth()); 4394 if (IsSwiftABI) { 4395 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4396 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4397 LengthTy = Int32Ty; 4398 else 4399 LengthTy = IntPtrTy; 4400 } 4401 Fields.addInt(LengthTy, StringLength); 4402 4403 CharUnits Alignment = getPointerAlign(); 4404 4405 // The struct. 4406 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4407 /*isConstant=*/false, 4408 llvm::GlobalVariable::PrivateLinkage); 4409 switch (Triple.getObjectFormat()) { 4410 case llvm::Triple::UnknownObjectFormat: 4411 llvm_unreachable("unknown file format"); 4412 case llvm::Triple::XCOFF: 4413 llvm_unreachable("XCOFF is not yet implemented"); 4414 case llvm::Triple::COFF: 4415 case llvm::Triple::ELF: 4416 case llvm::Triple::Wasm: 4417 GV->setSection("cfstring"); 4418 break; 4419 case llvm::Triple::MachO: 4420 GV->setSection("__DATA,__cfstring"); 4421 break; 4422 } 4423 Entry.second = GV; 4424 4425 return ConstantAddress(GV, Alignment); 4426 } 4427 4428 bool CodeGenModule::getExpressionLocationsEnabled() const { 4429 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4430 } 4431 4432 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4433 if (ObjCFastEnumerationStateType.isNull()) { 4434 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4435 D->startDefinition(); 4436 4437 QualType FieldTypes[] = { 4438 Context.UnsignedLongTy, 4439 Context.getPointerType(Context.getObjCIdType()), 4440 Context.getPointerType(Context.UnsignedLongTy), 4441 Context.getConstantArrayType(Context.UnsignedLongTy, 4442 llvm::APInt(32, 5), ArrayType::Normal, 0) 4443 }; 4444 4445 for (size_t i = 0; i < 4; ++i) { 4446 FieldDecl *Field = FieldDecl::Create(Context, 4447 D, 4448 SourceLocation(), 4449 SourceLocation(), nullptr, 4450 FieldTypes[i], /*TInfo=*/nullptr, 4451 /*BitWidth=*/nullptr, 4452 /*Mutable=*/false, 4453 ICIS_NoInit); 4454 Field->setAccess(AS_public); 4455 D->addDecl(Field); 4456 } 4457 4458 D->completeDefinition(); 4459 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4460 } 4461 4462 return ObjCFastEnumerationStateType; 4463 } 4464 4465 llvm::Constant * 4466 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4467 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4468 4469 // Don't emit it as the address of the string, emit the string data itself 4470 // as an inline array. 4471 if (E->getCharByteWidth() == 1) { 4472 SmallString<64> Str(E->getString()); 4473 4474 // Resize the string to the right size, which is indicated by its type. 4475 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4476 Str.resize(CAT->getSize().getZExtValue()); 4477 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4478 } 4479 4480 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4481 llvm::Type *ElemTy = AType->getElementType(); 4482 unsigned NumElements = AType->getNumElements(); 4483 4484 // Wide strings have either 2-byte or 4-byte elements. 4485 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4486 SmallVector<uint16_t, 32> Elements; 4487 Elements.reserve(NumElements); 4488 4489 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4490 Elements.push_back(E->getCodeUnit(i)); 4491 Elements.resize(NumElements); 4492 return llvm::ConstantDataArray::get(VMContext, Elements); 4493 } 4494 4495 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4496 SmallVector<uint32_t, 32> Elements; 4497 Elements.reserve(NumElements); 4498 4499 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4500 Elements.push_back(E->getCodeUnit(i)); 4501 Elements.resize(NumElements); 4502 return llvm::ConstantDataArray::get(VMContext, Elements); 4503 } 4504 4505 static llvm::GlobalVariable * 4506 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4507 CodeGenModule &CGM, StringRef GlobalName, 4508 CharUnits Alignment) { 4509 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4510 CGM.getStringLiteralAddressSpace()); 4511 4512 llvm::Module &M = CGM.getModule(); 4513 // Create a global variable for this string 4514 auto *GV = new llvm::GlobalVariable( 4515 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4516 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4517 GV->setAlignment(Alignment.getQuantity()); 4518 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4519 if (GV->isWeakForLinker()) { 4520 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4521 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4522 } 4523 CGM.setDSOLocal(GV); 4524 4525 return GV; 4526 } 4527 4528 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4529 /// constant array for the given string literal. 4530 ConstantAddress 4531 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4532 StringRef Name) { 4533 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4534 4535 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4536 llvm::GlobalVariable **Entry = nullptr; 4537 if (!LangOpts.WritableStrings) { 4538 Entry = &ConstantStringMap[C]; 4539 if (auto GV = *Entry) { 4540 if (Alignment.getQuantity() > GV->getAlignment()) 4541 GV->setAlignment(Alignment.getQuantity()); 4542 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4543 Alignment); 4544 } 4545 } 4546 4547 SmallString<256> MangledNameBuffer; 4548 StringRef GlobalVariableName; 4549 llvm::GlobalValue::LinkageTypes LT; 4550 4551 // Mangle the string literal if that's how the ABI merges duplicate strings. 4552 // Don't do it if they are writable, since we don't want writes in one TU to 4553 // affect strings in another. 4554 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4555 !LangOpts.WritableStrings) { 4556 llvm::raw_svector_ostream Out(MangledNameBuffer); 4557 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4558 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4559 GlobalVariableName = MangledNameBuffer; 4560 } else { 4561 LT = llvm::GlobalValue::PrivateLinkage; 4562 GlobalVariableName = Name; 4563 } 4564 4565 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4566 if (Entry) 4567 *Entry = GV; 4568 4569 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4570 QualType()); 4571 4572 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4573 Alignment); 4574 } 4575 4576 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4577 /// array for the given ObjCEncodeExpr node. 4578 ConstantAddress 4579 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4580 std::string Str; 4581 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4582 4583 return GetAddrOfConstantCString(Str); 4584 } 4585 4586 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4587 /// the literal and a terminating '\0' character. 4588 /// The result has pointer to array type. 4589 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4590 const std::string &Str, const char *GlobalName) { 4591 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4592 CharUnits Alignment = 4593 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4594 4595 llvm::Constant *C = 4596 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4597 4598 // Don't share any string literals if strings aren't constant. 4599 llvm::GlobalVariable **Entry = nullptr; 4600 if (!LangOpts.WritableStrings) { 4601 Entry = &ConstantStringMap[C]; 4602 if (auto GV = *Entry) { 4603 if (Alignment.getQuantity() > GV->getAlignment()) 4604 GV->setAlignment(Alignment.getQuantity()); 4605 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4606 Alignment); 4607 } 4608 } 4609 4610 // Get the default prefix if a name wasn't specified. 4611 if (!GlobalName) 4612 GlobalName = ".str"; 4613 // Create a global variable for this. 4614 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4615 GlobalName, Alignment); 4616 if (Entry) 4617 *Entry = GV; 4618 4619 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4620 Alignment); 4621 } 4622 4623 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4624 const MaterializeTemporaryExpr *E, const Expr *Init) { 4625 assert((E->getStorageDuration() == SD_Static || 4626 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4627 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4628 4629 // If we're not materializing a subobject of the temporary, keep the 4630 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4631 QualType MaterializedType = Init->getType(); 4632 if (Init == E->GetTemporaryExpr()) 4633 MaterializedType = E->getType(); 4634 4635 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4636 4637 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4638 return ConstantAddress(Slot, Align); 4639 4640 // FIXME: If an externally-visible declaration extends multiple temporaries, 4641 // we need to give each temporary the same name in every translation unit (and 4642 // we also need to make the temporaries externally-visible). 4643 SmallString<256> Name; 4644 llvm::raw_svector_ostream Out(Name); 4645 getCXXABI().getMangleContext().mangleReferenceTemporary( 4646 VD, E->getManglingNumber(), Out); 4647 4648 APValue *Value = nullptr; 4649 if (E->getStorageDuration() == SD_Static) { 4650 // We might have a cached constant initializer for this temporary. Note 4651 // that this might have a different value from the value computed by 4652 // evaluating the initializer if the surrounding constant expression 4653 // modifies the temporary. 4654 Value = getContext().getMaterializedTemporaryValue(E, false); 4655 if (Value && Value->isUninit()) 4656 Value = nullptr; 4657 } 4658 4659 // Try evaluating it now, it might have a constant initializer. 4660 Expr::EvalResult EvalResult; 4661 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4662 !EvalResult.hasSideEffects()) 4663 Value = &EvalResult.Val; 4664 4665 LangAS AddrSpace = 4666 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4667 4668 Optional<ConstantEmitter> emitter; 4669 llvm::Constant *InitialValue = nullptr; 4670 bool Constant = false; 4671 llvm::Type *Type; 4672 if (Value) { 4673 // The temporary has a constant initializer, use it. 4674 emitter.emplace(*this); 4675 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4676 MaterializedType); 4677 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4678 Type = InitialValue->getType(); 4679 } else { 4680 // No initializer, the initialization will be provided when we 4681 // initialize the declaration which performed lifetime extension. 4682 Type = getTypes().ConvertTypeForMem(MaterializedType); 4683 } 4684 4685 // Create a global variable for this lifetime-extended temporary. 4686 llvm::GlobalValue::LinkageTypes Linkage = 4687 getLLVMLinkageVarDefinition(VD, Constant); 4688 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4689 const VarDecl *InitVD; 4690 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4691 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4692 // Temporaries defined inside a class get linkonce_odr linkage because the 4693 // class can be defined in multiple translation units. 4694 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4695 } else { 4696 // There is no need for this temporary to have external linkage if the 4697 // VarDecl has external linkage. 4698 Linkage = llvm::GlobalVariable::InternalLinkage; 4699 } 4700 } 4701 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4702 auto *GV = new llvm::GlobalVariable( 4703 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4704 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4705 if (emitter) emitter->finalize(GV); 4706 setGVProperties(GV, VD); 4707 GV->setAlignment(Align.getQuantity()); 4708 if (supportsCOMDAT() && GV->isWeakForLinker()) 4709 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4710 if (VD->getTLSKind()) 4711 setTLSMode(GV, *VD); 4712 llvm::Constant *CV = GV; 4713 if (AddrSpace != LangAS::Default) 4714 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4715 *this, GV, AddrSpace, LangAS::Default, 4716 Type->getPointerTo( 4717 getContext().getTargetAddressSpace(LangAS::Default))); 4718 MaterializedGlobalTemporaryMap[E] = CV; 4719 return ConstantAddress(CV, Align); 4720 } 4721 4722 /// EmitObjCPropertyImplementations - Emit information for synthesized 4723 /// properties for an implementation. 4724 void CodeGenModule::EmitObjCPropertyImplementations(const 4725 ObjCImplementationDecl *D) { 4726 for (const auto *PID : D->property_impls()) { 4727 // Dynamic is just for type-checking. 4728 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4729 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4730 4731 // Determine which methods need to be implemented, some may have 4732 // been overridden. Note that ::isPropertyAccessor is not the method 4733 // we want, that just indicates if the decl came from a 4734 // property. What we want to know is if the method is defined in 4735 // this implementation. 4736 if (!D->getInstanceMethod(PD->getGetterName())) 4737 CodeGenFunction(*this).GenerateObjCGetter( 4738 const_cast<ObjCImplementationDecl *>(D), PID); 4739 if (!PD->isReadOnly() && 4740 !D->getInstanceMethod(PD->getSetterName())) 4741 CodeGenFunction(*this).GenerateObjCSetter( 4742 const_cast<ObjCImplementationDecl *>(D), PID); 4743 } 4744 } 4745 } 4746 4747 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4748 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4749 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4750 ivar; ivar = ivar->getNextIvar()) 4751 if (ivar->getType().isDestructedType()) 4752 return true; 4753 4754 return false; 4755 } 4756 4757 static bool AllTrivialInitializers(CodeGenModule &CGM, 4758 ObjCImplementationDecl *D) { 4759 CodeGenFunction CGF(CGM); 4760 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4761 E = D->init_end(); B != E; ++B) { 4762 CXXCtorInitializer *CtorInitExp = *B; 4763 Expr *Init = CtorInitExp->getInit(); 4764 if (!CGF.isTrivialInitializer(Init)) 4765 return false; 4766 } 4767 return true; 4768 } 4769 4770 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4771 /// for an implementation. 4772 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4773 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4774 if (needsDestructMethod(D)) { 4775 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4776 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4777 ObjCMethodDecl *DTORMethod = 4778 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4779 cxxSelector, getContext().VoidTy, nullptr, D, 4780 /*isInstance=*/true, /*isVariadic=*/false, 4781 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4782 /*isDefined=*/false, ObjCMethodDecl::Required); 4783 D->addInstanceMethod(DTORMethod); 4784 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4785 D->setHasDestructors(true); 4786 } 4787 4788 // If the implementation doesn't have any ivar initializers, we don't need 4789 // a .cxx_construct. 4790 if (D->getNumIvarInitializers() == 0 || 4791 AllTrivialInitializers(*this, D)) 4792 return; 4793 4794 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4795 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4796 // The constructor returns 'self'. 4797 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4798 D->getLocation(), 4799 D->getLocation(), 4800 cxxSelector, 4801 getContext().getObjCIdType(), 4802 nullptr, D, /*isInstance=*/true, 4803 /*isVariadic=*/false, 4804 /*isPropertyAccessor=*/true, 4805 /*isImplicitlyDeclared=*/true, 4806 /*isDefined=*/false, 4807 ObjCMethodDecl::Required); 4808 D->addInstanceMethod(CTORMethod); 4809 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4810 D->setHasNonZeroConstructors(true); 4811 } 4812 4813 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4814 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4815 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4816 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4817 ErrorUnsupported(LSD, "linkage spec"); 4818 return; 4819 } 4820 4821 EmitDeclContext(LSD); 4822 } 4823 4824 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4825 for (auto *I : DC->decls()) { 4826 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4827 // are themselves considered "top-level", so EmitTopLevelDecl on an 4828 // ObjCImplDecl does not recursively visit them. We need to do that in 4829 // case they're nested inside another construct (LinkageSpecDecl / 4830 // ExportDecl) that does stop them from being considered "top-level". 4831 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4832 for (auto *M : OID->methods()) 4833 EmitTopLevelDecl(M); 4834 } 4835 4836 EmitTopLevelDecl(I); 4837 } 4838 } 4839 4840 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4841 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4842 // Ignore dependent declarations. 4843 if (D->isTemplated()) 4844 return; 4845 4846 switch (D->getKind()) { 4847 case Decl::CXXConversion: 4848 case Decl::CXXMethod: 4849 case Decl::Function: 4850 EmitGlobal(cast<FunctionDecl>(D)); 4851 // Always provide some coverage mapping 4852 // even for the functions that aren't emitted. 4853 AddDeferredUnusedCoverageMapping(D); 4854 break; 4855 4856 case Decl::CXXDeductionGuide: 4857 // Function-like, but does not result in code emission. 4858 break; 4859 4860 case Decl::Var: 4861 case Decl::Decomposition: 4862 case Decl::VarTemplateSpecialization: 4863 EmitGlobal(cast<VarDecl>(D)); 4864 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4865 for (auto *B : DD->bindings()) 4866 if (auto *HD = B->getHoldingVar()) 4867 EmitGlobal(HD); 4868 break; 4869 4870 // Indirect fields from global anonymous structs and unions can be 4871 // ignored; only the actual variable requires IR gen support. 4872 case Decl::IndirectField: 4873 break; 4874 4875 // C++ Decls 4876 case Decl::Namespace: 4877 EmitDeclContext(cast<NamespaceDecl>(D)); 4878 break; 4879 case Decl::ClassTemplateSpecialization: { 4880 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4881 if (DebugInfo && 4882 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4883 Spec->hasDefinition()) 4884 DebugInfo->completeTemplateDefinition(*Spec); 4885 } LLVM_FALLTHROUGH; 4886 case Decl::CXXRecord: 4887 if (DebugInfo) { 4888 if (auto *ES = D->getASTContext().getExternalSource()) 4889 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4890 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4891 } 4892 // Emit any static data members, they may be definitions. 4893 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4894 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4895 EmitTopLevelDecl(I); 4896 break; 4897 // No code generation needed. 4898 case Decl::UsingShadow: 4899 case Decl::ClassTemplate: 4900 case Decl::VarTemplate: 4901 case Decl::VarTemplatePartialSpecialization: 4902 case Decl::FunctionTemplate: 4903 case Decl::TypeAliasTemplate: 4904 case Decl::Block: 4905 case Decl::Empty: 4906 case Decl::Binding: 4907 break; 4908 case Decl::Using: // using X; [C++] 4909 if (CGDebugInfo *DI = getModuleDebugInfo()) 4910 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4911 return; 4912 case Decl::NamespaceAlias: 4913 if (CGDebugInfo *DI = getModuleDebugInfo()) 4914 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4915 return; 4916 case Decl::UsingDirective: // using namespace X; [C++] 4917 if (CGDebugInfo *DI = getModuleDebugInfo()) 4918 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4919 return; 4920 case Decl::CXXConstructor: 4921 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4922 break; 4923 case Decl::CXXDestructor: 4924 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4925 break; 4926 4927 case Decl::StaticAssert: 4928 // Nothing to do. 4929 break; 4930 4931 // Objective-C Decls 4932 4933 // Forward declarations, no (immediate) code generation. 4934 case Decl::ObjCInterface: 4935 case Decl::ObjCCategory: 4936 break; 4937 4938 case Decl::ObjCProtocol: { 4939 auto *Proto = cast<ObjCProtocolDecl>(D); 4940 if (Proto->isThisDeclarationADefinition()) 4941 ObjCRuntime->GenerateProtocol(Proto); 4942 break; 4943 } 4944 4945 case Decl::ObjCCategoryImpl: 4946 // Categories have properties but don't support synthesize so we 4947 // can ignore them here. 4948 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4949 break; 4950 4951 case Decl::ObjCImplementation: { 4952 auto *OMD = cast<ObjCImplementationDecl>(D); 4953 EmitObjCPropertyImplementations(OMD); 4954 EmitObjCIvarInitializations(OMD); 4955 ObjCRuntime->GenerateClass(OMD); 4956 // Emit global variable debug information. 4957 if (CGDebugInfo *DI = getModuleDebugInfo()) 4958 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4959 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4960 OMD->getClassInterface()), OMD->getLocation()); 4961 break; 4962 } 4963 case Decl::ObjCMethod: { 4964 auto *OMD = cast<ObjCMethodDecl>(D); 4965 // If this is not a prototype, emit the body. 4966 if (OMD->getBody()) 4967 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4968 break; 4969 } 4970 case Decl::ObjCCompatibleAlias: 4971 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4972 break; 4973 4974 case Decl::PragmaComment: { 4975 const auto *PCD = cast<PragmaCommentDecl>(D); 4976 switch (PCD->getCommentKind()) { 4977 case PCK_Unknown: 4978 llvm_unreachable("unexpected pragma comment kind"); 4979 case PCK_Linker: 4980 AppendLinkerOptions(PCD->getArg()); 4981 break; 4982 case PCK_Lib: 4983 if (getTarget().getTriple().isOSBinFormatELF() && 4984 !getTarget().getTriple().isPS4()) 4985 AddELFLibDirective(PCD->getArg()); 4986 else 4987 AddDependentLib(PCD->getArg()); 4988 break; 4989 case PCK_Compiler: 4990 case PCK_ExeStr: 4991 case PCK_User: 4992 break; // We ignore all of these. 4993 } 4994 break; 4995 } 4996 4997 case Decl::PragmaDetectMismatch: { 4998 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4999 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5000 break; 5001 } 5002 5003 case Decl::LinkageSpec: 5004 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5005 break; 5006 5007 case Decl::FileScopeAsm: { 5008 // File-scope asm is ignored during device-side CUDA compilation. 5009 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5010 break; 5011 // File-scope asm is ignored during device-side OpenMP compilation. 5012 if (LangOpts.OpenMPIsDevice) 5013 break; 5014 auto *AD = cast<FileScopeAsmDecl>(D); 5015 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5016 break; 5017 } 5018 5019 case Decl::Import: { 5020 auto *Import = cast<ImportDecl>(D); 5021 5022 // If we've already imported this module, we're done. 5023 if (!ImportedModules.insert(Import->getImportedModule())) 5024 break; 5025 5026 // Emit debug information for direct imports. 5027 if (!Import->getImportedOwningModule()) { 5028 if (CGDebugInfo *DI = getModuleDebugInfo()) 5029 DI->EmitImportDecl(*Import); 5030 } 5031 5032 // Find all of the submodules and emit the module initializers. 5033 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5034 SmallVector<clang::Module *, 16> Stack; 5035 Visited.insert(Import->getImportedModule()); 5036 Stack.push_back(Import->getImportedModule()); 5037 5038 while (!Stack.empty()) { 5039 clang::Module *Mod = Stack.pop_back_val(); 5040 if (!EmittedModuleInitializers.insert(Mod).second) 5041 continue; 5042 5043 for (auto *D : Context.getModuleInitializers(Mod)) 5044 EmitTopLevelDecl(D); 5045 5046 // Visit the submodules of this module. 5047 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5048 SubEnd = Mod->submodule_end(); 5049 Sub != SubEnd; ++Sub) { 5050 // Skip explicit children; they need to be explicitly imported to emit 5051 // the initializers. 5052 if ((*Sub)->IsExplicit) 5053 continue; 5054 5055 if (Visited.insert(*Sub).second) 5056 Stack.push_back(*Sub); 5057 } 5058 } 5059 break; 5060 } 5061 5062 case Decl::Export: 5063 EmitDeclContext(cast<ExportDecl>(D)); 5064 break; 5065 5066 case Decl::OMPThreadPrivate: 5067 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5068 break; 5069 5070 case Decl::OMPAllocate: 5071 break; 5072 5073 case Decl::OMPDeclareReduction: 5074 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5075 break; 5076 5077 case Decl::OMPDeclareMapper: 5078 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5079 break; 5080 5081 case Decl::OMPRequires: 5082 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5083 break; 5084 5085 default: 5086 // Make sure we handled everything we should, every other kind is a 5087 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5088 // function. Need to recode Decl::Kind to do that easily. 5089 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5090 break; 5091 } 5092 } 5093 5094 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5095 // Do we need to generate coverage mapping? 5096 if (!CodeGenOpts.CoverageMapping) 5097 return; 5098 switch (D->getKind()) { 5099 case Decl::CXXConversion: 5100 case Decl::CXXMethod: 5101 case Decl::Function: 5102 case Decl::ObjCMethod: 5103 case Decl::CXXConstructor: 5104 case Decl::CXXDestructor: { 5105 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5106 return; 5107 SourceManager &SM = getContext().getSourceManager(); 5108 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5109 return; 5110 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5111 if (I == DeferredEmptyCoverageMappingDecls.end()) 5112 DeferredEmptyCoverageMappingDecls[D] = true; 5113 break; 5114 } 5115 default: 5116 break; 5117 }; 5118 } 5119 5120 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5121 // Do we need to generate coverage mapping? 5122 if (!CodeGenOpts.CoverageMapping) 5123 return; 5124 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5125 if (Fn->isTemplateInstantiation()) 5126 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5127 } 5128 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5129 if (I == DeferredEmptyCoverageMappingDecls.end()) 5130 DeferredEmptyCoverageMappingDecls[D] = false; 5131 else 5132 I->second = false; 5133 } 5134 5135 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5136 // We call takeVector() here to avoid use-after-free. 5137 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5138 // we deserialize function bodies to emit coverage info for them, and that 5139 // deserializes more declarations. How should we handle that case? 5140 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5141 if (!Entry.second) 5142 continue; 5143 const Decl *D = Entry.first; 5144 switch (D->getKind()) { 5145 case Decl::CXXConversion: 5146 case Decl::CXXMethod: 5147 case Decl::Function: 5148 case Decl::ObjCMethod: { 5149 CodeGenPGO PGO(*this); 5150 GlobalDecl GD(cast<FunctionDecl>(D)); 5151 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5152 getFunctionLinkage(GD)); 5153 break; 5154 } 5155 case Decl::CXXConstructor: { 5156 CodeGenPGO PGO(*this); 5157 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5158 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5159 getFunctionLinkage(GD)); 5160 break; 5161 } 5162 case Decl::CXXDestructor: { 5163 CodeGenPGO PGO(*this); 5164 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5165 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5166 getFunctionLinkage(GD)); 5167 break; 5168 } 5169 default: 5170 break; 5171 }; 5172 } 5173 } 5174 5175 /// Turns the given pointer into a constant. 5176 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5177 const void *Ptr) { 5178 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5179 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5180 return llvm::ConstantInt::get(i64, PtrInt); 5181 } 5182 5183 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5184 llvm::NamedMDNode *&GlobalMetadata, 5185 GlobalDecl D, 5186 llvm::GlobalValue *Addr) { 5187 if (!GlobalMetadata) 5188 GlobalMetadata = 5189 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5190 5191 // TODO: should we report variant information for ctors/dtors? 5192 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5193 llvm::ConstantAsMetadata::get(GetPointerConstant( 5194 CGM.getLLVMContext(), D.getDecl()))}; 5195 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5196 } 5197 5198 /// For each function which is declared within an extern "C" region and marked 5199 /// as 'used', but has internal linkage, create an alias from the unmangled 5200 /// name to the mangled name if possible. People expect to be able to refer 5201 /// to such functions with an unmangled name from inline assembly within the 5202 /// same translation unit. 5203 void CodeGenModule::EmitStaticExternCAliases() { 5204 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5205 return; 5206 for (auto &I : StaticExternCValues) { 5207 IdentifierInfo *Name = I.first; 5208 llvm::GlobalValue *Val = I.second; 5209 if (Val && !getModule().getNamedValue(Name->getName())) 5210 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5211 } 5212 } 5213 5214 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5215 GlobalDecl &Result) const { 5216 auto Res = Manglings.find(MangledName); 5217 if (Res == Manglings.end()) 5218 return false; 5219 Result = Res->getValue(); 5220 return true; 5221 } 5222 5223 /// Emits metadata nodes associating all the global values in the 5224 /// current module with the Decls they came from. This is useful for 5225 /// projects using IR gen as a subroutine. 5226 /// 5227 /// Since there's currently no way to associate an MDNode directly 5228 /// with an llvm::GlobalValue, we create a global named metadata 5229 /// with the name 'clang.global.decl.ptrs'. 5230 void CodeGenModule::EmitDeclMetadata() { 5231 llvm::NamedMDNode *GlobalMetadata = nullptr; 5232 5233 for (auto &I : MangledDeclNames) { 5234 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5235 // Some mangled names don't necessarily have an associated GlobalValue 5236 // in this module, e.g. if we mangled it for DebugInfo. 5237 if (Addr) 5238 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5239 } 5240 } 5241 5242 /// Emits metadata nodes for all the local variables in the current 5243 /// function. 5244 void CodeGenFunction::EmitDeclMetadata() { 5245 if (LocalDeclMap.empty()) return; 5246 5247 llvm::LLVMContext &Context = getLLVMContext(); 5248 5249 // Find the unique metadata ID for this name. 5250 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5251 5252 llvm::NamedMDNode *GlobalMetadata = nullptr; 5253 5254 for (auto &I : LocalDeclMap) { 5255 const Decl *D = I.first; 5256 llvm::Value *Addr = I.second.getPointer(); 5257 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5258 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5259 Alloca->setMetadata( 5260 DeclPtrKind, llvm::MDNode::get( 5261 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5262 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5263 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5264 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5265 } 5266 } 5267 } 5268 5269 void CodeGenModule::EmitVersionIdentMetadata() { 5270 llvm::NamedMDNode *IdentMetadata = 5271 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5272 std::string Version = getClangFullVersion(); 5273 llvm::LLVMContext &Ctx = TheModule.getContext(); 5274 5275 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5276 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5277 } 5278 5279 void CodeGenModule::EmitCommandLineMetadata() { 5280 llvm::NamedMDNode *CommandLineMetadata = 5281 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5282 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5283 llvm::LLVMContext &Ctx = TheModule.getContext(); 5284 5285 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5286 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5287 } 5288 5289 void CodeGenModule::EmitTargetMetadata() { 5290 // Warning, new MangledDeclNames may be appended within this loop. 5291 // We rely on MapVector insertions adding new elements to the end 5292 // of the container. 5293 // FIXME: Move this loop into the one target that needs it, and only 5294 // loop over those declarations for which we couldn't emit the target 5295 // metadata when we emitted the declaration. 5296 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5297 auto Val = *(MangledDeclNames.begin() + I); 5298 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5299 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5300 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5301 } 5302 } 5303 5304 void CodeGenModule::EmitCoverageFile() { 5305 if (getCodeGenOpts().CoverageDataFile.empty() && 5306 getCodeGenOpts().CoverageNotesFile.empty()) 5307 return; 5308 5309 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5310 if (!CUNode) 5311 return; 5312 5313 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5314 llvm::LLVMContext &Ctx = TheModule.getContext(); 5315 auto *CoverageDataFile = 5316 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5317 auto *CoverageNotesFile = 5318 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5319 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5320 llvm::MDNode *CU = CUNode->getOperand(i); 5321 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5322 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5323 } 5324 } 5325 5326 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5327 // Sema has checked that all uuid strings are of the form 5328 // "12345678-1234-1234-1234-1234567890ab". 5329 assert(Uuid.size() == 36); 5330 for (unsigned i = 0; i < 36; ++i) { 5331 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5332 else assert(isHexDigit(Uuid[i])); 5333 } 5334 5335 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5336 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5337 5338 llvm::Constant *Field3[8]; 5339 for (unsigned Idx = 0; Idx < 8; ++Idx) 5340 Field3[Idx] = llvm::ConstantInt::get( 5341 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5342 5343 llvm::Constant *Fields[4] = { 5344 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5345 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5346 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5347 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5348 }; 5349 5350 return llvm::ConstantStruct::getAnon(Fields); 5351 } 5352 5353 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5354 bool ForEH) { 5355 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5356 // FIXME: should we even be calling this method if RTTI is disabled 5357 // and it's not for EH? 5358 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5359 return llvm::Constant::getNullValue(Int8PtrTy); 5360 5361 if (ForEH && Ty->isObjCObjectPointerType() && 5362 LangOpts.ObjCRuntime.isGNUFamily()) 5363 return ObjCRuntime->GetEHType(Ty); 5364 5365 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5366 } 5367 5368 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5369 // Do not emit threadprivates in simd-only mode. 5370 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5371 return; 5372 for (auto RefExpr : D->varlists()) { 5373 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5374 bool PerformInit = 5375 VD->getAnyInitializer() && 5376 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5377 /*ForRef=*/false); 5378 5379 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5380 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5381 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5382 CXXGlobalInits.push_back(InitFunction); 5383 } 5384 } 5385 5386 llvm::Metadata * 5387 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5388 StringRef Suffix) { 5389 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5390 if (InternalId) 5391 return InternalId; 5392 5393 if (isExternallyVisible(T->getLinkage())) { 5394 std::string OutName; 5395 llvm::raw_string_ostream Out(OutName); 5396 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5397 Out << Suffix; 5398 5399 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5400 } else { 5401 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5402 llvm::ArrayRef<llvm::Metadata *>()); 5403 } 5404 5405 return InternalId; 5406 } 5407 5408 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5409 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5410 } 5411 5412 llvm::Metadata * 5413 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5414 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5415 } 5416 5417 // Generalize pointer types to a void pointer with the qualifiers of the 5418 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5419 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5420 // 'void *'. 5421 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5422 if (!Ty->isPointerType()) 5423 return Ty; 5424 5425 return Ctx.getPointerType( 5426 QualType(Ctx.VoidTy).withCVRQualifiers( 5427 Ty->getPointeeType().getCVRQualifiers())); 5428 } 5429 5430 // Apply type generalization to a FunctionType's return and argument types 5431 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5432 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5433 SmallVector<QualType, 8> GeneralizedParams; 5434 for (auto &Param : FnType->param_types()) 5435 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5436 5437 return Ctx.getFunctionType( 5438 GeneralizeType(Ctx, FnType->getReturnType()), 5439 GeneralizedParams, FnType->getExtProtoInfo()); 5440 } 5441 5442 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5443 return Ctx.getFunctionNoProtoType( 5444 GeneralizeType(Ctx, FnType->getReturnType())); 5445 5446 llvm_unreachable("Encountered unknown FunctionType"); 5447 } 5448 5449 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5450 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5451 GeneralizedMetadataIdMap, ".generalized"); 5452 } 5453 5454 /// Returns whether this module needs the "all-vtables" type identifier. 5455 bool CodeGenModule::NeedAllVtablesTypeId() const { 5456 // Returns true if at least one of vtable-based CFI checkers is enabled and 5457 // is not in the trapping mode. 5458 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5459 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5460 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5461 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5462 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5463 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5464 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5465 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5466 } 5467 5468 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5469 CharUnits Offset, 5470 const CXXRecordDecl *RD) { 5471 llvm::Metadata *MD = 5472 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5473 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5474 5475 if (CodeGenOpts.SanitizeCfiCrossDso) 5476 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5477 VTable->addTypeMetadata(Offset.getQuantity(), 5478 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5479 5480 if (NeedAllVtablesTypeId()) { 5481 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5482 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5483 } 5484 } 5485 5486 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5487 assert(TD != nullptr); 5488 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5489 5490 ParsedAttr.Features.erase( 5491 llvm::remove_if(ParsedAttr.Features, 5492 [&](const std::string &Feat) { 5493 return !Target.isValidFeatureName( 5494 StringRef{Feat}.substr(1)); 5495 }), 5496 ParsedAttr.Features.end()); 5497 return ParsedAttr; 5498 } 5499 5500 5501 // Fills in the supplied string map with the set of target features for the 5502 // passed in function. 5503 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5504 GlobalDecl GD) { 5505 StringRef TargetCPU = Target.getTargetOpts().CPU; 5506 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5507 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5508 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5509 5510 // Make a copy of the features as passed on the command line into the 5511 // beginning of the additional features from the function to override. 5512 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5513 Target.getTargetOpts().FeaturesAsWritten.begin(), 5514 Target.getTargetOpts().FeaturesAsWritten.end()); 5515 5516 if (ParsedAttr.Architecture != "" && 5517 Target.isValidCPUName(ParsedAttr.Architecture)) 5518 TargetCPU = ParsedAttr.Architecture; 5519 5520 // Now populate the feature map, first with the TargetCPU which is either 5521 // the default or a new one from the target attribute string. Then we'll use 5522 // the passed in features (FeaturesAsWritten) along with the new ones from 5523 // the attribute. 5524 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5525 ParsedAttr.Features); 5526 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5527 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5528 Target.getCPUSpecificCPUDispatchFeatures( 5529 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5530 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5531 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5532 } else { 5533 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5534 Target.getTargetOpts().Features); 5535 } 5536 } 5537 5538 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5539 if (!SanStats) 5540 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5541 5542 return *SanStats; 5543 } 5544 llvm::Value * 5545 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5546 CodeGenFunction &CGF) { 5547 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5548 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5549 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5550 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5551 "__translate_sampler_initializer"), 5552 {C}); 5553 } 5554