xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 46288eff24ad0b4826690e598758ccf9e61d144c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 
92   Block.GlobalUniqueCount = 0;
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
97   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
99   PointerWidthInBits = C.Target.getPointerWidth(0);
100   PointerAlignInBytes =
101     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 }
107 
108 CodeGenModule::~CodeGenModule() {
109   delete Runtime;
110   delete &ABI;
111   delete TBAA;
112   delete DebugInfo;
113 }
114 
115 void CodeGenModule::createObjCRuntime() {
116   if (!Features.NeXTRuntime)
117     Runtime = CreateGNUObjCRuntime(*this);
118   else if (Features.ObjCNonFragileABI)
119     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
120   else
121     Runtime = CreateMacObjCRuntime(*this);
122 }
123 
124 void CodeGenModule::Release() {
125   EmitDeferred();
126   EmitCXXGlobalInitFunc();
127   EmitCXXGlobalDtorFunc();
128   if (Runtime)
129     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
130       AddGlobalCtor(ObjCInitFunction);
131   EmitCtorList(GlobalCtors, "llvm.global_ctors");
132   EmitCtorList(GlobalDtors, "llvm.global_dtors");
133   EmitAnnotations();
134   EmitLLVMUsed();
135 
136   SimplifyPersonality();
137 
138   if (getCodeGenOpts().EmitDeclMetadata)
139     EmitDeclMetadata();
140 }
141 
142 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
143   if (!TBAA)
144     return 0;
145   return TBAA->getTBAAInfo(QTy);
146 }
147 
148 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
149                                         llvm::MDNode *TBAAInfo) {
150   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
151 }
152 
153 bool CodeGenModule::isTargetDarwin() const {
154   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
155 }
156 
157 /// ErrorUnsupported - Print out an error that codegen doesn't support the
158 /// specified stmt yet.
159 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
160                                      bool OmitOnError) {
161   if (OmitOnError && getDiags().hasErrorOccurred())
162     return;
163   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
164                                                "cannot compile this %0 yet");
165   std::string Msg = Type;
166   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
167     << Msg << S->getSourceRange();
168 }
169 
170 /// ErrorUnsupported - Print out an error that codegen doesn't support the
171 /// specified decl yet.
172 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
173                                      bool OmitOnError) {
174   if (OmitOnError && getDiags().hasErrorOccurred())
175     return;
176   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
177                                                "cannot compile this %0 yet");
178   std::string Msg = Type;
179   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
180 }
181 
182 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
183                                         const NamedDecl *D) const {
184   // Internal definitions always have default visibility.
185   if (GV->hasLocalLinkage()) {
186     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
187     return;
188   }
189 
190   // Set visibility for definitions.
191   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
192   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
193     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
194 }
195 
196 /// Set the symbol visibility of type information (vtable and RTTI)
197 /// associated with the given type.
198 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
199                                       const CXXRecordDecl *RD,
200                                       TypeVisibilityKind TVK) const {
201   setGlobalVisibility(GV, RD);
202 
203   if (!CodeGenOpts.HiddenWeakVTables)
204     return;
205 
206   // We never want to drop the visibility for RTTI names.
207   if (TVK == TVK_ForRTTIName)
208     return;
209 
210   // We want to drop the visibility to hidden for weak type symbols.
211   // This isn't possible if there might be unresolved references
212   // elsewhere that rely on this symbol being visible.
213 
214   // This should be kept roughly in sync with setThunkVisibility
215   // in CGVTables.cpp.
216 
217   // Preconditions.
218   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
219       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
220     return;
221 
222   // Don't override an explicit visibility attribute.
223   if (RD->hasAttr<VisibilityAttr>())
224     return;
225 
226   switch (RD->getTemplateSpecializationKind()) {
227   // We have to disable the optimization if this is an EI definition
228   // because there might be EI declarations in other shared objects.
229   case TSK_ExplicitInstantiationDefinition:
230   case TSK_ExplicitInstantiationDeclaration:
231     return;
232 
233   // Every use of a non-template class's type information has to emit it.
234   case TSK_Undeclared:
235     break;
236 
237   // In theory, implicit instantiations can ignore the possibility of
238   // an explicit instantiation declaration because there necessarily
239   // must be an EI definition somewhere with default visibility.  In
240   // practice, it's possible to have an explicit instantiation for
241   // an arbitrary template class, and linkers aren't necessarily able
242   // to deal with mixed-visibility symbols.
243   case TSK_ExplicitSpecialization:
244   case TSK_ImplicitInstantiation:
245     if (!CodeGenOpts.HiddenWeakTemplateVTables)
246       return;
247     break;
248   }
249 
250   // If there's a key function, there may be translation units
251   // that don't have the key function's definition.  But ignore
252   // this if we're emitting RTTI under -fno-rtti.
253   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
254     if (Context.getKeyFunction(RD))
255       return;
256   }
257 
258   // Otherwise, drop the visibility to hidden.
259   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
260   GV->setUnnamedAddr(true);
261 }
262 
263 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
264   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
265 
266   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
267   if (!Str.empty())
268     return Str;
269 
270   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
271     IdentifierInfo *II = ND->getIdentifier();
272     assert(II && "Attempt to mangle unnamed decl.");
273 
274     Str = II->getName();
275     return Str;
276   }
277 
278   llvm::SmallString<256> Buffer;
279   llvm::raw_svector_ostream Out(Buffer);
280   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
281     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
282   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
283     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
284   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
285     getCXXABI().getMangleContext().mangleBlock(BD, Out);
286   else
287     getCXXABI().getMangleContext().mangleName(ND, Out);
288 
289   // Allocate space for the mangled name.
290   Out.flush();
291   size_t Length = Buffer.size();
292   char *Name = MangledNamesAllocator.Allocate<char>(Length);
293   std::copy(Buffer.begin(), Buffer.end(), Name);
294 
295   Str = llvm::StringRef(Name, Length);
296 
297   return Str;
298 }
299 
300 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
301                                         const BlockDecl *BD) {
302   MangleContext &MangleCtx = getCXXABI().getMangleContext();
303   const Decl *D = GD.getDecl();
304   llvm::raw_svector_ostream Out(Buffer.getBuffer());
305   if (D == 0)
306     MangleCtx.mangleGlobalBlock(BD, Out);
307   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
308     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
309   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
310     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
311   else
312     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
313 }
314 
315 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
316   return getModule().getNamedValue(Name);
317 }
318 
319 /// AddGlobalCtor - Add a function to the list that will be called before
320 /// main() runs.
321 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
322   // FIXME: Type coercion of void()* types.
323   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
324 }
325 
326 /// AddGlobalDtor - Add a function to the list that will be called
327 /// when the module is unloaded.
328 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
329   // FIXME: Type coercion of void()* types.
330   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
331 }
332 
333 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
334   // Ctor function type is void()*.
335   llvm::FunctionType* CtorFTy =
336     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
337   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
338 
339   // Get the type of a ctor entry, { i32, void ()* }.
340   llvm::StructType* CtorStructTy =
341     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
342                           llvm::PointerType::getUnqual(CtorFTy), NULL);
343 
344   // Construct the constructor and destructor arrays.
345   std::vector<llvm::Constant*> Ctors;
346   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
347     std::vector<llvm::Constant*> S;
348     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
349                 I->second, false));
350     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
351     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
352   }
353 
354   if (!Ctors.empty()) {
355     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
356     new llvm::GlobalVariable(TheModule, AT, false,
357                              llvm::GlobalValue::AppendingLinkage,
358                              llvm::ConstantArray::get(AT, Ctors),
359                              GlobalName);
360   }
361 }
362 
363 void CodeGenModule::EmitAnnotations() {
364   if (Annotations.empty())
365     return;
366 
367   // Create a new global variable for the ConstantStruct in the Module.
368   llvm::Constant *Array =
369   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
370                                                 Annotations.size()),
371                            Annotations);
372   llvm::GlobalValue *gv =
373   new llvm::GlobalVariable(TheModule, Array->getType(), false,
374                            llvm::GlobalValue::AppendingLinkage, Array,
375                            "llvm.global.annotations");
376   gv->setSection("llvm.metadata");
377 }
378 
379 llvm::GlobalValue::LinkageTypes
380 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
381   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
382 
383   if (Linkage == GVA_Internal)
384     return llvm::Function::InternalLinkage;
385 
386   if (D->hasAttr<DLLExportAttr>())
387     return llvm::Function::DLLExportLinkage;
388 
389   if (D->hasAttr<WeakAttr>())
390     return llvm::Function::WeakAnyLinkage;
391 
392   // In C99 mode, 'inline' functions are guaranteed to have a strong
393   // definition somewhere else, so we can use available_externally linkage.
394   if (Linkage == GVA_C99Inline)
395     return llvm::Function::AvailableExternallyLinkage;
396 
397   // In C++, the compiler has to emit a definition in every translation unit
398   // that references the function.  We should use linkonce_odr because
399   // a) if all references in this translation unit are optimized away, we
400   // don't need to codegen it.  b) if the function persists, it needs to be
401   // merged with other definitions. c) C++ has the ODR, so we know the
402   // definition is dependable.
403   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
404     return !Context.getLangOptions().AppleKext
405              ? llvm::Function::LinkOnceODRLinkage
406              : llvm::Function::InternalLinkage;
407 
408   // An explicit instantiation of a template has weak linkage, since
409   // explicit instantiations can occur in multiple translation units
410   // and must all be equivalent. However, we are not allowed to
411   // throw away these explicit instantiations.
412   if (Linkage == GVA_ExplicitTemplateInstantiation)
413     return !Context.getLangOptions().AppleKext
414              ? llvm::Function::WeakODRLinkage
415              : llvm::Function::InternalLinkage;
416 
417   // Otherwise, we have strong external linkage.
418   assert(Linkage == GVA_StrongExternal);
419   return llvm::Function::ExternalLinkage;
420 }
421 
422 
423 /// SetFunctionDefinitionAttributes - Set attributes for a global.
424 ///
425 /// FIXME: This is currently only done for aliases and functions, but not for
426 /// variables (these details are set in EmitGlobalVarDefinition for variables).
427 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
428                                                     llvm::GlobalValue *GV) {
429   SetCommonAttributes(D, GV);
430 }
431 
432 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
433                                               const CGFunctionInfo &Info,
434                                               llvm::Function *F) {
435   unsigned CallingConv;
436   AttributeListType AttributeList;
437   ConstructAttributeList(Info, D, AttributeList, CallingConv);
438   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
439                                           AttributeList.size()));
440   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
441 }
442 
443 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
444                                                            llvm::Function *F) {
445   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
446     F->addFnAttr(llvm::Attribute::NoUnwind);
447 
448   if (D->hasAttr<AlwaysInlineAttr>())
449     F->addFnAttr(llvm::Attribute::AlwaysInline);
450 
451   if (D->hasAttr<NakedAttr>())
452     F->addFnAttr(llvm::Attribute::Naked);
453 
454   if (D->hasAttr<NoInlineAttr>())
455     F->addFnAttr(llvm::Attribute::NoInline);
456 
457   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
458     F->setUnnamedAddr(true);
459 
460   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
461     F->addFnAttr(llvm::Attribute::StackProtect);
462   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
463     F->addFnAttr(llvm::Attribute::StackProtectReq);
464 
465   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
466   if (alignment)
467     F->setAlignment(alignment);
468 
469   // C++ ABI requires 2-byte alignment for member functions.
470   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
471     F->setAlignment(2);
472 }
473 
474 void CodeGenModule::SetCommonAttributes(const Decl *D,
475                                         llvm::GlobalValue *GV) {
476   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
477     setGlobalVisibility(GV, ND);
478   else
479     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
480 
481   if (D->hasAttr<UsedAttr>())
482     AddUsedGlobal(GV);
483 
484   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
485     GV->setSection(SA->getName());
486 
487   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
488 }
489 
490 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
491                                                   llvm::Function *F,
492                                                   const CGFunctionInfo &FI) {
493   SetLLVMFunctionAttributes(D, FI, F);
494   SetLLVMFunctionAttributesForDefinition(D, F);
495 
496   F->setLinkage(llvm::Function::InternalLinkage);
497 
498   SetCommonAttributes(D, F);
499 }
500 
501 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
502                                           llvm::Function *F,
503                                           bool IsIncompleteFunction) {
504   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
505 
506   if (!IsIncompleteFunction)
507     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
508 
509   // Only a few attributes are set on declarations; these may later be
510   // overridden by a definition.
511 
512   if (FD->hasAttr<DLLImportAttr>()) {
513     F->setLinkage(llvm::Function::DLLImportLinkage);
514   } else if (FD->hasAttr<WeakAttr>() ||
515              FD->hasAttr<WeakImportAttr>()) {
516     // "extern_weak" is overloaded in LLVM; we probably should have
517     // separate linkage types for this.
518     F->setLinkage(llvm::Function::ExternalWeakLinkage);
519   } else {
520     F->setLinkage(llvm::Function::ExternalLinkage);
521 
522     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
523     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
524       F->setVisibility(GetLLVMVisibility(LV.visibility()));
525     }
526   }
527 
528   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
529     F->setSection(SA->getName());
530 }
531 
532 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
533   assert(!GV->isDeclaration() &&
534          "Only globals with definition can force usage.");
535   LLVMUsed.push_back(GV);
536 }
537 
538 void CodeGenModule::EmitLLVMUsed() {
539   // Don't create llvm.used if there is no need.
540   if (LLVMUsed.empty())
541     return;
542 
543   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
544 
545   // Convert LLVMUsed to what ConstantArray needs.
546   std::vector<llvm::Constant*> UsedArray;
547   UsedArray.resize(LLVMUsed.size());
548   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
549     UsedArray[i] =
550      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
551                                       i8PTy);
552   }
553 
554   if (UsedArray.empty())
555     return;
556   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
557 
558   llvm::GlobalVariable *GV =
559     new llvm::GlobalVariable(getModule(), ATy, false,
560                              llvm::GlobalValue::AppendingLinkage,
561                              llvm::ConstantArray::get(ATy, UsedArray),
562                              "llvm.used");
563 
564   GV->setSection("llvm.metadata");
565 }
566 
567 void CodeGenModule::EmitDeferred() {
568   // Emit code for any potentially referenced deferred decls.  Since a
569   // previously unused static decl may become used during the generation of code
570   // for a static function, iterate until no  changes are made.
571 
572   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
573     if (!DeferredVTables.empty()) {
574       const CXXRecordDecl *RD = DeferredVTables.back();
575       DeferredVTables.pop_back();
576       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
577       continue;
578     }
579 
580     GlobalDecl D = DeferredDeclsToEmit.back();
581     DeferredDeclsToEmit.pop_back();
582 
583     // Check to see if we've already emitted this.  This is necessary
584     // for a couple of reasons: first, decls can end up in the
585     // deferred-decls queue multiple times, and second, decls can end
586     // up with definitions in unusual ways (e.g. by an extern inline
587     // function acquiring a strong function redefinition).  Just
588     // ignore these cases.
589     //
590     // TODO: That said, looking this up multiple times is very wasteful.
591     llvm::StringRef Name = getMangledName(D);
592     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
593     assert(CGRef && "Deferred decl wasn't referenced?");
594 
595     if (!CGRef->isDeclaration())
596       continue;
597 
598     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
599     // purposes an alias counts as a definition.
600     if (isa<llvm::GlobalAlias>(CGRef))
601       continue;
602 
603     // Otherwise, emit the definition and move on to the next one.
604     EmitGlobalDefinition(D);
605   }
606 }
607 
608 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
609 /// annotation information for a given GlobalValue.  The annotation struct is
610 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
611 /// GlobalValue being annotated.  The second field is the constant string
612 /// created from the AnnotateAttr's annotation.  The third field is a constant
613 /// string containing the name of the translation unit.  The fourth field is
614 /// the line number in the file of the annotated value declaration.
615 ///
616 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
617 ///        appears to.
618 ///
619 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
620                                                 const AnnotateAttr *AA,
621                                                 unsigned LineNo) {
622   llvm::Module *M = &getModule();
623 
624   // get [N x i8] constants for the annotation string, and the filename string
625   // which are the 2nd and 3rd elements of the global annotation structure.
626   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
627   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
628                                                   AA->getAnnotation(), true);
629   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
630                                                   M->getModuleIdentifier(),
631                                                   true);
632 
633   // Get the two global values corresponding to the ConstantArrays we just
634   // created to hold the bytes of the strings.
635   llvm::GlobalValue *annoGV =
636     new llvm::GlobalVariable(*M, anno->getType(), false,
637                              llvm::GlobalValue::PrivateLinkage, anno,
638                              GV->getName());
639   // translation unit name string, emitted into the llvm.metadata section.
640   llvm::GlobalValue *unitGV =
641     new llvm::GlobalVariable(*M, unit->getType(), false,
642                              llvm::GlobalValue::PrivateLinkage, unit,
643                              ".str");
644   unitGV->setUnnamedAddr(true);
645 
646   // Create the ConstantStruct for the global annotation.
647   llvm::Constant *Fields[4] = {
648     llvm::ConstantExpr::getBitCast(GV, SBP),
649     llvm::ConstantExpr::getBitCast(annoGV, SBP),
650     llvm::ConstantExpr::getBitCast(unitGV, SBP),
651     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
652   };
653   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
654 }
655 
656 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
657   // Never defer when EmitAllDecls is specified.
658   if (Features.EmitAllDecls)
659     return false;
660 
661   return !getContext().DeclMustBeEmitted(Global);
662 }
663 
664 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
665   const AliasAttr *AA = VD->getAttr<AliasAttr>();
666   assert(AA && "No alias?");
667 
668   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
669 
670   // See if there is already something with the target's name in the module.
671   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
672 
673   llvm::Constant *Aliasee;
674   if (isa<llvm::FunctionType>(DeclTy))
675     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
676                                       /*ForVTable=*/false);
677   else
678     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
679                                     llvm::PointerType::getUnqual(DeclTy), 0);
680   if (!Entry) {
681     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
682     F->setLinkage(llvm::Function::ExternalWeakLinkage);
683     WeakRefReferences.insert(F);
684   }
685 
686   return Aliasee;
687 }
688 
689 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
690   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
691 
692   // Weak references don't produce any output by themselves.
693   if (Global->hasAttr<WeakRefAttr>())
694     return;
695 
696   // If this is an alias definition (which otherwise looks like a declaration)
697   // emit it now.
698   if (Global->hasAttr<AliasAttr>())
699     return EmitAliasDefinition(GD);
700 
701   // Ignore declarations, they will be emitted on their first use.
702   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
703     if (FD->getIdentifier()) {
704       llvm::StringRef Name = FD->getName();
705       if (Name == "_Block_object_assign") {
706         BlockObjectAssignDecl = FD;
707       } else if (Name == "_Block_object_dispose") {
708         BlockObjectDisposeDecl = FD;
709       }
710     }
711 
712     // Forward declarations are emitted lazily on first use.
713     if (!FD->isThisDeclarationADefinition())
714       return;
715   } else {
716     const VarDecl *VD = cast<VarDecl>(Global);
717     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
718 
719     if (VD->getIdentifier()) {
720       llvm::StringRef Name = VD->getName();
721       if (Name == "_NSConcreteGlobalBlock") {
722         NSConcreteGlobalBlockDecl = VD;
723       } else if (Name == "_NSConcreteStackBlock") {
724         NSConcreteStackBlockDecl = VD;
725       }
726     }
727 
728 
729     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
730       return;
731   }
732 
733   // Defer code generation when possible if this is a static definition, inline
734   // function etc.  These we only want to emit if they are used.
735   if (!MayDeferGeneration(Global)) {
736     // Emit the definition if it can't be deferred.
737     EmitGlobalDefinition(GD);
738     return;
739   }
740 
741   // If we're deferring emission of a C++ variable with an
742   // initializer, remember the order in which it appeared in the file.
743   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
744       cast<VarDecl>(Global)->hasInit()) {
745     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
746     CXXGlobalInits.push_back(0);
747   }
748 
749   // If the value has already been used, add it directly to the
750   // DeferredDeclsToEmit list.
751   llvm::StringRef MangledName = getMangledName(GD);
752   if (GetGlobalValue(MangledName))
753     DeferredDeclsToEmit.push_back(GD);
754   else {
755     // Otherwise, remember that we saw a deferred decl with this name.  The
756     // first use of the mangled name will cause it to move into
757     // DeferredDeclsToEmit.
758     DeferredDecls[MangledName] = GD;
759   }
760 }
761 
762 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
763   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
764 
765   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
766                                  Context.getSourceManager(),
767                                  "Generating code for declaration");
768 
769   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
770     // At -O0, don't generate IR for functions with available_externally
771     // linkage.
772     if (CodeGenOpts.OptimizationLevel == 0 &&
773         !Function->hasAttr<AlwaysInlineAttr>() &&
774         getFunctionLinkage(Function)
775                                   == llvm::Function::AvailableExternallyLinkage)
776       return;
777 
778     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
779       if (Method->isVirtual())
780         getVTables().EmitThunks(GD);
781 
782       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
783         return EmitCXXConstructor(CD, GD.getCtorType());
784 
785       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
786         return EmitCXXDestructor(DD, GD.getDtorType());
787     }
788 
789     return EmitGlobalFunctionDefinition(GD);
790   }
791 
792   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
793     return EmitGlobalVarDefinition(VD);
794 
795   assert(0 && "Invalid argument to EmitGlobalDefinition()");
796 }
797 
798 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
799 /// module, create and return an llvm Function with the specified type. If there
800 /// is something in the module with the specified name, return it potentially
801 /// bitcasted to the right type.
802 ///
803 /// If D is non-null, it specifies a decl that correspond to this.  This is used
804 /// to set the attributes on the function when it is first created.
805 llvm::Constant *
806 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
807                                        const llvm::Type *Ty,
808                                        GlobalDecl D, bool ForVTable) {
809   // Lookup the entry, lazily creating it if necessary.
810   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
811   if (Entry) {
812     if (WeakRefReferences.count(Entry)) {
813       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
814       if (FD && !FD->hasAttr<WeakAttr>())
815         Entry->setLinkage(llvm::Function::ExternalLinkage);
816 
817       WeakRefReferences.erase(Entry);
818     }
819 
820     if (Entry->getType()->getElementType() == Ty)
821       return Entry;
822 
823     // Make sure the result is of the correct type.
824     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
825     return llvm::ConstantExpr::getBitCast(Entry, PTy);
826   }
827 
828   // This function doesn't have a complete type (for example, the return
829   // type is an incomplete struct). Use a fake type instead, and make
830   // sure not to try to set attributes.
831   bool IsIncompleteFunction = false;
832 
833   const llvm::FunctionType *FTy;
834   if (isa<llvm::FunctionType>(Ty)) {
835     FTy = cast<llvm::FunctionType>(Ty);
836   } else {
837     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
838     IsIncompleteFunction = true;
839   }
840 
841   llvm::Function *F = llvm::Function::Create(FTy,
842                                              llvm::Function::ExternalLinkage,
843                                              MangledName, &getModule());
844   assert(F->getName() == MangledName && "name was uniqued!");
845   if (D.getDecl())
846     SetFunctionAttributes(D, F, IsIncompleteFunction);
847 
848   // This is the first use or definition of a mangled name.  If there is a
849   // deferred decl with this name, remember that we need to emit it at the end
850   // of the file.
851   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
852   if (DDI != DeferredDecls.end()) {
853     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
854     // list, and remove it from DeferredDecls (since we don't need it anymore).
855     DeferredDeclsToEmit.push_back(DDI->second);
856     DeferredDecls.erase(DDI);
857 
858   // Otherwise, there are cases we have to worry about where we're
859   // using a declaration for which we must emit a definition but where
860   // we might not find a top-level definition:
861   //   - member functions defined inline in their classes
862   //   - friend functions defined inline in some class
863   //   - special member functions with implicit definitions
864   // If we ever change our AST traversal to walk into class methods,
865   // this will be unnecessary.
866   //
867   // We also don't emit a definition for a function if it's going to be an entry
868   // in a vtable, unless it's already marked as used.
869   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
870     // Look for a declaration that's lexically in a record.
871     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
872     do {
873       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
874         if (FD->isImplicit() && !ForVTable) {
875           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
876           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
877           break;
878         } else if (FD->isThisDeclarationADefinition()) {
879           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
880           break;
881         }
882       }
883       FD = FD->getPreviousDeclaration();
884     } while (FD);
885   }
886 
887   // Make sure the result is of the requested type.
888   if (!IsIncompleteFunction) {
889     assert(F->getType()->getElementType() == Ty);
890     return F;
891   }
892 
893   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
894   return llvm::ConstantExpr::getBitCast(F, PTy);
895 }
896 
897 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
898 /// non-null, then this function will use the specified type if it has to
899 /// create it (this occurs when we see a definition of the function).
900 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
901                                                  const llvm::Type *Ty,
902                                                  bool ForVTable) {
903   // If there was no specific requested type, just convert it now.
904   if (!Ty)
905     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
906 
907   llvm::StringRef MangledName = getMangledName(GD);
908   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
909 }
910 
911 /// CreateRuntimeFunction - Create a new runtime function with the specified
912 /// type and name.
913 llvm::Constant *
914 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
915                                      llvm::StringRef Name) {
916   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
917 }
918 
919 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
920   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
921     return false;
922   if (Context.getLangOptions().CPlusPlus &&
923       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
924     // FIXME: We should do something fancier here!
925     return false;
926   }
927   return true;
928 }
929 
930 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
931 /// create and return an llvm GlobalVariable with the specified type.  If there
932 /// is something in the module with the specified name, return it potentially
933 /// bitcasted to the right type.
934 ///
935 /// If D is non-null, it specifies a decl that correspond to this.  This is used
936 /// to set the attributes on the global when it is first created.
937 llvm::Constant *
938 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
939                                      const llvm::PointerType *Ty,
940                                      const VarDecl *D,
941                                      bool UnnamedAddr) {
942   // Lookup the entry, lazily creating it if necessary.
943   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
944   if (Entry) {
945     if (WeakRefReferences.count(Entry)) {
946       if (D && !D->hasAttr<WeakAttr>())
947         Entry->setLinkage(llvm::Function::ExternalLinkage);
948 
949       WeakRefReferences.erase(Entry);
950     }
951 
952     if (UnnamedAddr)
953       Entry->setUnnamedAddr(true);
954 
955     if (Entry->getType() == Ty)
956       return Entry;
957 
958     // Make sure the result is of the correct type.
959     return llvm::ConstantExpr::getBitCast(Entry, Ty);
960   }
961 
962   // This is the first use or definition of a mangled name.  If there is a
963   // deferred decl with this name, remember that we need to emit it at the end
964   // of the file.
965   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
966   if (DDI != DeferredDecls.end()) {
967     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
968     // list, and remove it from DeferredDecls (since we don't need it anymore).
969     DeferredDeclsToEmit.push_back(DDI->second);
970     DeferredDecls.erase(DDI);
971   }
972 
973   llvm::GlobalVariable *GV =
974     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
975                              llvm::GlobalValue::ExternalLinkage,
976                              0, MangledName, 0,
977                              false, Ty->getAddressSpace());
978 
979   // Handle things which are present even on external declarations.
980   if (D) {
981     // FIXME: This code is overly simple and should be merged with other global
982     // handling.
983     GV->setConstant(DeclIsConstantGlobal(Context, D));
984 
985     // Set linkage and visibility in case we never see a definition.
986     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
987     if (LV.linkage() != ExternalLinkage) {
988       // Don't set internal linkage on declarations.
989     } else {
990       if (D->hasAttr<DLLImportAttr>())
991         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
992       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
993         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
994 
995       // Set visibility on a declaration only if it's explicit.
996       if (LV.visibilityExplicit())
997         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
998     }
999 
1000     GV->setThreadLocal(D->isThreadSpecified());
1001   }
1002 
1003   return GV;
1004 }
1005 
1006 
1007 llvm::GlobalVariable *
1008 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1009                                       const llvm::Type *Ty,
1010                                       llvm::GlobalValue::LinkageTypes Linkage) {
1011   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1012   llvm::GlobalVariable *OldGV = 0;
1013 
1014 
1015   if (GV) {
1016     // Check if the variable has the right type.
1017     if (GV->getType()->getElementType() == Ty)
1018       return GV;
1019 
1020     // Because C++ name mangling, the only way we can end up with an already
1021     // existing global with the same name is if it has been declared extern "C".
1022       assert(GV->isDeclaration() && "Declaration has wrong type!");
1023     OldGV = GV;
1024   }
1025 
1026   // Create a new variable.
1027   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1028                                 Linkage, 0, Name);
1029 
1030   if (OldGV) {
1031     // Replace occurrences of the old variable if needed.
1032     GV->takeName(OldGV);
1033 
1034     if (!OldGV->use_empty()) {
1035       llvm::Constant *NewPtrForOldDecl =
1036       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1037       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1038     }
1039 
1040     OldGV->eraseFromParent();
1041   }
1042 
1043   return GV;
1044 }
1045 
1046 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1047 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1048 /// then it will be greated with the specified type instead of whatever the
1049 /// normal requested type would be.
1050 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1051                                                   const llvm::Type *Ty) {
1052   assert(D->hasGlobalStorage() && "Not a global variable");
1053   QualType ASTTy = D->getType();
1054   if (Ty == 0)
1055     Ty = getTypes().ConvertTypeForMem(ASTTy);
1056 
1057   const llvm::PointerType *PTy =
1058     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1059 
1060   llvm::StringRef MangledName = getMangledName(D);
1061   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1062 }
1063 
1064 /// CreateRuntimeVariable - Create a new runtime global variable with the
1065 /// specified type and name.
1066 llvm::Constant *
1067 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1068                                      llvm::StringRef Name) {
1069   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1070                                true);
1071 }
1072 
1073 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1074   assert(!D->getInit() && "Cannot emit definite definitions here!");
1075 
1076   if (MayDeferGeneration(D)) {
1077     // If we have not seen a reference to this variable yet, place it
1078     // into the deferred declarations table to be emitted if needed
1079     // later.
1080     llvm::StringRef MangledName = getMangledName(D);
1081     if (!GetGlobalValue(MangledName)) {
1082       DeferredDecls[MangledName] = D;
1083       return;
1084     }
1085   }
1086 
1087   // The tentative definition is the only definition.
1088   EmitGlobalVarDefinition(D);
1089 }
1090 
1091 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1092   if (DefinitionRequired)
1093     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1094 }
1095 
1096 llvm::GlobalVariable::LinkageTypes
1097 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1098   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1099     return llvm::GlobalVariable::InternalLinkage;
1100 
1101   if (const CXXMethodDecl *KeyFunction
1102                                     = RD->getASTContext().getKeyFunction(RD)) {
1103     // If this class has a key function, use that to determine the linkage of
1104     // the vtable.
1105     const FunctionDecl *Def = 0;
1106     if (KeyFunction->hasBody(Def))
1107       KeyFunction = cast<CXXMethodDecl>(Def);
1108 
1109     switch (KeyFunction->getTemplateSpecializationKind()) {
1110       case TSK_Undeclared:
1111       case TSK_ExplicitSpecialization:
1112         // When compiling with optimizations turned on, we emit all vtables,
1113         // even if the key function is not defined in the current translation
1114         // unit. If this is the case, use available_externally linkage.
1115         if (!Def && CodeGenOpts.OptimizationLevel)
1116           return llvm::GlobalVariable::AvailableExternallyLinkage;
1117 
1118         if (KeyFunction->isInlined())
1119           return !Context.getLangOptions().AppleKext ?
1120                    llvm::GlobalVariable::LinkOnceODRLinkage :
1121                    llvm::Function::InternalLinkage;
1122 
1123         return llvm::GlobalVariable::ExternalLinkage;
1124 
1125       case TSK_ImplicitInstantiation:
1126         return !Context.getLangOptions().AppleKext ?
1127                  llvm::GlobalVariable::LinkOnceODRLinkage :
1128                  llvm::Function::InternalLinkage;
1129 
1130       case TSK_ExplicitInstantiationDefinition:
1131         return !Context.getLangOptions().AppleKext ?
1132                  llvm::GlobalVariable::WeakODRLinkage :
1133                  llvm::Function::InternalLinkage;
1134 
1135       case TSK_ExplicitInstantiationDeclaration:
1136         // FIXME: Use available_externally linkage. However, this currently
1137         // breaks LLVM's build due to undefined symbols.
1138         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1139         return !Context.getLangOptions().AppleKext ?
1140                  llvm::GlobalVariable::LinkOnceODRLinkage :
1141                  llvm::Function::InternalLinkage;
1142     }
1143   }
1144 
1145   if (Context.getLangOptions().AppleKext)
1146     return llvm::Function::InternalLinkage;
1147 
1148   switch (RD->getTemplateSpecializationKind()) {
1149   case TSK_Undeclared:
1150   case TSK_ExplicitSpecialization:
1151   case TSK_ImplicitInstantiation:
1152     // FIXME: Use available_externally linkage. However, this currently
1153     // breaks LLVM's build due to undefined symbols.
1154     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1155   case TSK_ExplicitInstantiationDeclaration:
1156     return llvm::GlobalVariable::LinkOnceODRLinkage;
1157 
1158   case TSK_ExplicitInstantiationDefinition:
1159       return llvm::GlobalVariable::WeakODRLinkage;
1160   }
1161 
1162   // Silence GCC warning.
1163   return llvm::GlobalVariable::LinkOnceODRLinkage;
1164 }
1165 
1166 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1167     return Context.toCharUnitsFromBits(
1168       TheTargetData.getTypeStoreSizeInBits(Ty));
1169 }
1170 
1171 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1172   llvm::Constant *Init = 0;
1173   QualType ASTTy = D->getType();
1174   bool NonConstInit = false;
1175 
1176   const Expr *InitExpr = D->getAnyInitializer();
1177 
1178   if (!InitExpr) {
1179     // This is a tentative definition; tentative definitions are
1180     // implicitly initialized with { 0 }.
1181     //
1182     // Note that tentative definitions are only emitted at the end of
1183     // a translation unit, so they should never have incomplete
1184     // type. In addition, EmitTentativeDefinition makes sure that we
1185     // never attempt to emit a tentative definition if a real one
1186     // exists. A use may still exists, however, so we still may need
1187     // to do a RAUW.
1188     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1189     Init = EmitNullConstant(D->getType());
1190   } else {
1191     Init = EmitConstantExpr(InitExpr, D->getType());
1192     if (!Init) {
1193       QualType T = InitExpr->getType();
1194       if (D->getType()->isReferenceType())
1195         T = D->getType();
1196 
1197       if (getLangOptions().CPlusPlus) {
1198         Init = EmitNullConstant(T);
1199         NonConstInit = true;
1200       } else {
1201         ErrorUnsupported(D, "static initializer");
1202         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1203       }
1204     } else {
1205       // We don't need an initializer, so remove the entry for the delayed
1206       // initializer position (just in case this entry was delayed).
1207       if (getLangOptions().CPlusPlus)
1208         DelayedCXXInitPosition.erase(D);
1209     }
1210   }
1211 
1212   const llvm::Type* InitType = Init->getType();
1213   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1214 
1215   // Strip off a bitcast if we got one back.
1216   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1217     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1218            // all zero index gep.
1219            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1220     Entry = CE->getOperand(0);
1221   }
1222 
1223   // Entry is now either a Function or GlobalVariable.
1224   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1225 
1226   // We have a definition after a declaration with the wrong type.
1227   // We must make a new GlobalVariable* and update everything that used OldGV
1228   // (a declaration or tentative definition) with the new GlobalVariable*
1229   // (which will be a definition).
1230   //
1231   // This happens if there is a prototype for a global (e.g.
1232   // "extern int x[];") and then a definition of a different type (e.g.
1233   // "int x[10];"). This also happens when an initializer has a different type
1234   // from the type of the global (this happens with unions).
1235   if (GV == 0 ||
1236       GV->getType()->getElementType() != InitType ||
1237       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1238 
1239     // Move the old entry aside so that we'll create a new one.
1240     Entry->setName(llvm::StringRef());
1241 
1242     // Make a new global with the correct type, this is now guaranteed to work.
1243     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1244 
1245     // Replace all uses of the old global with the new global
1246     llvm::Constant *NewPtrForOldDecl =
1247         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1248     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1249 
1250     // Erase the old global, since it is no longer used.
1251     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1252   }
1253 
1254   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1255     SourceManager &SM = Context.getSourceManager();
1256     AddAnnotation(EmitAnnotateAttr(GV, AA,
1257                               SM.getInstantiationLineNumber(D->getLocation())));
1258   }
1259 
1260   GV->setInitializer(Init);
1261 
1262   // If it is safe to mark the global 'constant', do so now.
1263   GV->setConstant(false);
1264   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1265     GV->setConstant(true);
1266 
1267   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1268 
1269   // Set the llvm linkage type as appropriate.
1270   llvm::GlobalValue::LinkageTypes Linkage =
1271     GetLLVMLinkageVarDefinition(D, GV);
1272   GV->setLinkage(Linkage);
1273   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1274     // common vars aren't constant even if declared const.
1275     GV->setConstant(false);
1276 
1277   SetCommonAttributes(D, GV);
1278 
1279   // Emit the initializer function if necessary.
1280   if (NonConstInit)
1281     EmitCXXGlobalVarDeclInitFunc(D, GV);
1282 
1283   // Emit global variable debug information.
1284   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1285     DI->setLocation(D->getLocation());
1286     DI->EmitGlobalVariable(GV, D);
1287   }
1288 }
1289 
1290 llvm::GlobalValue::LinkageTypes
1291 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1292                                            llvm::GlobalVariable *GV) {
1293   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1294   if (Linkage == GVA_Internal)
1295     return llvm::Function::InternalLinkage;
1296   else if (D->hasAttr<DLLImportAttr>())
1297     return llvm::Function::DLLImportLinkage;
1298   else if (D->hasAttr<DLLExportAttr>())
1299     return llvm::Function::DLLExportLinkage;
1300   else if (D->hasAttr<WeakAttr>()) {
1301     if (GV->isConstant())
1302       return llvm::GlobalVariable::WeakODRLinkage;
1303     else
1304       return llvm::GlobalVariable::WeakAnyLinkage;
1305   } else if (Linkage == GVA_TemplateInstantiation ||
1306              Linkage == GVA_ExplicitTemplateInstantiation)
1307     // FIXME: It seems like we can provide more specific linkage here
1308     // (LinkOnceODR, WeakODR).
1309     return llvm::GlobalVariable::WeakAnyLinkage;
1310   else if (!getLangOptions().CPlusPlus &&
1311            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1312              D->getAttr<CommonAttr>()) &&
1313            !D->hasExternalStorage() && !D->getInit() &&
1314            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1315     // Thread local vars aren't considered common linkage.
1316     return llvm::GlobalVariable::CommonLinkage;
1317   }
1318   return llvm::GlobalVariable::ExternalLinkage;
1319 }
1320 
1321 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1322 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1323 /// existing call uses of the old function in the module, this adjusts them to
1324 /// call the new function directly.
1325 ///
1326 /// This is not just a cleanup: the always_inline pass requires direct calls to
1327 /// functions to be able to inline them.  If there is a bitcast in the way, it
1328 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1329 /// run at -O0.
1330 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1331                                                       llvm::Function *NewFn) {
1332   // If we're redefining a global as a function, don't transform it.
1333   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1334   if (OldFn == 0) return;
1335 
1336   const llvm::Type *NewRetTy = NewFn->getReturnType();
1337   llvm::SmallVector<llvm::Value*, 4> ArgList;
1338 
1339   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1340        UI != E; ) {
1341     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1342     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1343     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1344     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1345     llvm::CallSite CS(CI);
1346     if (!CI || !CS.isCallee(I)) continue;
1347 
1348     // If the return types don't match exactly, and if the call isn't dead, then
1349     // we can't transform this call.
1350     if (CI->getType() != NewRetTy && !CI->use_empty())
1351       continue;
1352 
1353     // If the function was passed too few arguments, don't transform.  If extra
1354     // arguments were passed, we silently drop them.  If any of the types
1355     // mismatch, we don't transform.
1356     unsigned ArgNo = 0;
1357     bool DontTransform = false;
1358     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1359          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1360       if (CS.arg_size() == ArgNo ||
1361           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1362         DontTransform = true;
1363         break;
1364       }
1365     }
1366     if (DontTransform)
1367       continue;
1368 
1369     // Okay, we can transform this.  Create the new call instruction and copy
1370     // over the required information.
1371     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1372     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1373                                                      ArgList.end(), "", CI);
1374     ArgList.clear();
1375     if (!NewCall->getType()->isVoidTy())
1376       NewCall->takeName(CI);
1377     NewCall->setAttributes(CI->getAttributes());
1378     NewCall->setCallingConv(CI->getCallingConv());
1379 
1380     // Finally, remove the old call, replacing any uses with the new one.
1381     if (!CI->use_empty())
1382       CI->replaceAllUsesWith(NewCall);
1383 
1384     // Copy debug location attached to CI.
1385     if (!CI->getDebugLoc().isUnknown())
1386       NewCall->setDebugLoc(CI->getDebugLoc());
1387     CI->eraseFromParent();
1388   }
1389 }
1390 
1391 
1392 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1393   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1394 
1395   // Compute the function info and LLVM type.
1396   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1397   bool variadic = false;
1398   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1399     variadic = fpt->isVariadic();
1400   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1401 
1402   // Get or create the prototype for the function.
1403   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1404 
1405   // Strip off a bitcast if we got one back.
1406   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1407     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1408     Entry = CE->getOperand(0);
1409   }
1410 
1411 
1412   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1413     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1414 
1415     // If the types mismatch then we have to rewrite the definition.
1416     assert(OldFn->isDeclaration() &&
1417            "Shouldn't replace non-declaration");
1418 
1419     // F is the Function* for the one with the wrong type, we must make a new
1420     // Function* and update everything that used F (a declaration) with the new
1421     // Function* (which will be a definition).
1422     //
1423     // This happens if there is a prototype for a function
1424     // (e.g. "int f()") and then a definition of a different type
1425     // (e.g. "int f(int x)").  Move the old function aside so that it
1426     // doesn't interfere with GetAddrOfFunction.
1427     OldFn->setName(llvm::StringRef());
1428     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1429 
1430     // If this is an implementation of a function without a prototype, try to
1431     // replace any existing uses of the function (which may be calls) with uses
1432     // of the new function
1433     if (D->getType()->isFunctionNoProtoType()) {
1434       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1435       OldFn->removeDeadConstantUsers();
1436     }
1437 
1438     // Replace uses of F with the Function we will endow with a body.
1439     if (!Entry->use_empty()) {
1440       llvm::Constant *NewPtrForOldDecl =
1441         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1442       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1443     }
1444 
1445     // Ok, delete the old function now, which is dead.
1446     OldFn->eraseFromParent();
1447 
1448     Entry = NewFn;
1449   }
1450 
1451   // We need to set linkage and visibility on the function before
1452   // generating code for it because various parts of IR generation
1453   // want to propagate this information down (e.g. to local static
1454   // declarations).
1455   llvm::Function *Fn = cast<llvm::Function>(Entry);
1456   setFunctionLinkage(D, Fn);
1457 
1458   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1459   setGlobalVisibility(Fn, D);
1460 
1461   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1462 
1463   SetFunctionDefinitionAttributes(D, Fn);
1464   SetLLVMFunctionAttributesForDefinition(D, Fn);
1465 
1466   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1467     AddGlobalCtor(Fn, CA->getPriority());
1468   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1469     AddGlobalDtor(Fn, DA->getPriority());
1470 }
1471 
1472 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1473   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1474   const AliasAttr *AA = D->getAttr<AliasAttr>();
1475   assert(AA && "Not an alias?");
1476 
1477   llvm::StringRef MangledName = getMangledName(GD);
1478 
1479   // If there is a definition in the module, then it wins over the alias.
1480   // This is dubious, but allow it to be safe.  Just ignore the alias.
1481   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1482   if (Entry && !Entry->isDeclaration())
1483     return;
1484 
1485   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1486 
1487   // Create a reference to the named value.  This ensures that it is emitted
1488   // if a deferred decl.
1489   llvm::Constant *Aliasee;
1490   if (isa<llvm::FunctionType>(DeclTy))
1491     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1492                                       /*ForVTable=*/false);
1493   else
1494     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1495                                     llvm::PointerType::getUnqual(DeclTy), 0);
1496 
1497   // Create the new alias itself, but don't set a name yet.
1498   llvm::GlobalValue *GA =
1499     new llvm::GlobalAlias(Aliasee->getType(),
1500                           llvm::Function::ExternalLinkage,
1501                           "", Aliasee, &getModule());
1502 
1503   if (Entry) {
1504     assert(Entry->isDeclaration());
1505 
1506     // If there is a declaration in the module, then we had an extern followed
1507     // by the alias, as in:
1508     //   extern int test6();
1509     //   ...
1510     //   int test6() __attribute__((alias("test7")));
1511     //
1512     // Remove it and replace uses of it with the alias.
1513     GA->takeName(Entry);
1514 
1515     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1516                                                           Entry->getType()));
1517     Entry->eraseFromParent();
1518   } else {
1519     GA->setName(MangledName);
1520   }
1521 
1522   // Set attributes which are particular to an alias; this is a
1523   // specialization of the attributes which may be set on a global
1524   // variable/function.
1525   if (D->hasAttr<DLLExportAttr>()) {
1526     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1527       // The dllexport attribute is ignored for undefined symbols.
1528       if (FD->hasBody())
1529         GA->setLinkage(llvm::Function::DLLExportLinkage);
1530     } else {
1531       GA->setLinkage(llvm::Function::DLLExportLinkage);
1532     }
1533   } else if (D->hasAttr<WeakAttr>() ||
1534              D->hasAttr<WeakRefAttr>() ||
1535              D->hasAttr<WeakImportAttr>()) {
1536     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1537   }
1538 
1539   SetCommonAttributes(D, GA);
1540 }
1541 
1542 /// getBuiltinLibFunction - Given a builtin id for a function like
1543 /// "__builtin_fabsf", return a Function* for "fabsf".
1544 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1545                                                   unsigned BuiltinID) {
1546   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1547           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1548          "isn't a lib fn");
1549 
1550   // Get the name, skip over the __builtin_ prefix (if necessary).
1551   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1552   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1553     Name += 10;
1554 
1555   const llvm::FunctionType *Ty =
1556     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1557 
1558   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1559 }
1560 
1561 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1562                                             unsigned NumTys) {
1563   return llvm::Intrinsic::getDeclaration(&getModule(),
1564                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1565 }
1566 
1567 static llvm::StringMapEntry<llvm::Constant*> &
1568 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1569                          const StringLiteral *Literal,
1570                          bool TargetIsLSB,
1571                          bool &IsUTF16,
1572                          unsigned &StringLength) {
1573   llvm::StringRef String = Literal->getString();
1574   unsigned NumBytes = String.size();
1575 
1576   // Check for simple case.
1577   if (!Literal->containsNonAsciiOrNull()) {
1578     StringLength = NumBytes;
1579     return Map.GetOrCreateValue(String);
1580   }
1581 
1582   // Otherwise, convert the UTF8 literals into a byte string.
1583   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1584   const UTF8 *FromPtr = (UTF8 *)String.data();
1585   UTF16 *ToPtr = &ToBuf[0];
1586 
1587   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1588                            &ToPtr, ToPtr + NumBytes,
1589                            strictConversion);
1590 
1591   // ConvertUTF8toUTF16 returns the length in ToPtr.
1592   StringLength = ToPtr - &ToBuf[0];
1593 
1594   // Render the UTF-16 string into a byte array and convert to the target byte
1595   // order.
1596   //
1597   // FIXME: This isn't something we should need to do here.
1598   llvm::SmallString<128> AsBytes;
1599   AsBytes.reserve(StringLength * 2);
1600   for (unsigned i = 0; i != StringLength; ++i) {
1601     unsigned short Val = ToBuf[i];
1602     if (TargetIsLSB) {
1603       AsBytes.push_back(Val & 0xFF);
1604       AsBytes.push_back(Val >> 8);
1605     } else {
1606       AsBytes.push_back(Val >> 8);
1607       AsBytes.push_back(Val & 0xFF);
1608     }
1609   }
1610   // Append one extra null character, the second is automatically added by our
1611   // caller.
1612   AsBytes.push_back(0);
1613 
1614   IsUTF16 = true;
1615   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1616 }
1617 
1618 llvm::Constant *
1619 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1620   unsigned StringLength = 0;
1621   bool isUTF16 = false;
1622   llvm::StringMapEntry<llvm::Constant*> &Entry =
1623     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1624                              getTargetData().isLittleEndian(),
1625                              isUTF16, StringLength);
1626 
1627   if (llvm::Constant *C = Entry.getValue())
1628     return C;
1629 
1630   llvm::Constant *Zero =
1631       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1632   llvm::Constant *Zeros[] = { Zero, Zero };
1633 
1634   // If we don't already have it, get __CFConstantStringClassReference.
1635   if (!CFConstantStringClassRef) {
1636     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1637     Ty = llvm::ArrayType::get(Ty, 0);
1638     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1639                                            "__CFConstantStringClassReference");
1640     // Decay array -> ptr
1641     CFConstantStringClassRef =
1642       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1643   }
1644 
1645   QualType CFTy = getContext().getCFConstantStringType();
1646 
1647   const llvm::StructType *STy =
1648     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1649 
1650   std::vector<llvm::Constant*> Fields(4);
1651 
1652   // Class pointer.
1653   Fields[0] = CFConstantStringClassRef;
1654 
1655   // Flags.
1656   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1657   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1658     llvm::ConstantInt::get(Ty, 0x07C8);
1659 
1660   // String pointer.
1661   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1662 
1663   llvm::GlobalValue::LinkageTypes Linkage;
1664   bool isConstant;
1665   if (isUTF16) {
1666     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1667     Linkage = llvm::GlobalValue::InternalLinkage;
1668     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1669     // does make plain ascii ones writable.
1670     isConstant = true;
1671   } else {
1672     Linkage = llvm::GlobalValue::PrivateLinkage;
1673     isConstant = !Features.WritableStrings;
1674   }
1675 
1676   llvm::GlobalVariable *GV =
1677     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1678                              ".str");
1679   GV->setUnnamedAddr(true);
1680   if (isUTF16) {
1681     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1682     GV->setAlignment(Align.getQuantity());
1683   }
1684   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1685 
1686   // String length.
1687   Ty = getTypes().ConvertType(getContext().LongTy);
1688   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1689 
1690   // The struct.
1691   C = llvm::ConstantStruct::get(STy, Fields);
1692   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1693                                 llvm::GlobalVariable::PrivateLinkage, C,
1694                                 "_unnamed_cfstring_");
1695   if (const char *Sect = getContext().Target.getCFStringSection())
1696     GV->setSection(Sect);
1697   Entry.setValue(GV);
1698 
1699   return GV;
1700 }
1701 
1702 llvm::Constant *
1703 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1704   unsigned StringLength = 0;
1705   bool isUTF16 = false;
1706   llvm::StringMapEntry<llvm::Constant*> &Entry =
1707     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1708                              getTargetData().isLittleEndian(),
1709                              isUTF16, StringLength);
1710 
1711   if (llvm::Constant *C = Entry.getValue())
1712     return C;
1713 
1714   llvm::Constant *Zero =
1715   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1716   llvm::Constant *Zeros[] = { Zero, Zero };
1717 
1718   // If we don't already have it, get _NSConstantStringClassReference.
1719   if (!ConstantStringClassRef) {
1720     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1721     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1722     Ty = llvm::ArrayType::get(Ty, 0);
1723     llvm::Constant *GV;
1724     if (StringClass.empty())
1725       GV = CreateRuntimeVariable(Ty,
1726                                  Features.ObjCNonFragileABI ?
1727                                  "OBJC_CLASS_$_NSConstantString" :
1728                                  "_NSConstantStringClassReference");
1729     else {
1730       std::string str;
1731       if (Features.ObjCNonFragileABI)
1732         str = "OBJC_CLASS_$_" + StringClass;
1733       else
1734         str = "_" + StringClass + "ClassReference";
1735       GV = CreateRuntimeVariable(Ty, str);
1736     }
1737     // Decay array -> ptr
1738     ConstantStringClassRef =
1739     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1740   }
1741 
1742   QualType NSTy = getContext().getNSConstantStringType();
1743 
1744   const llvm::StructType *STy =
1745   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1746 
1747   std::vector<llvm::Constant*> Fields(3);
1748 
1749   // Class pointer.
1750   Fields[0] = ConstantStringClassRef;
1751 
1752   // String pointer.
1753   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1754 
1755   llvm::GlobalValue::LinkageTypes Linkage;
1756   bool isConstant;
1757   if (isUTF16) {
1758     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1759     Linkage = llvm::GlobalValue::InternalLinkage;
1760     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1761     // does make plain ascii ones writable.
1762     isConstant = true;
1763   } else {
1764     Linkage = llvm::GlobalValue::PrivateLinkage;
1765     isConstant = !Features.WritableStrings;
1766   }
1767 
1768   llvm::GlobalVariable *GV =
1769   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1770                            ".str");
1771   GV->setUnnamedAddr(true);
1772   if (isUTF16) {
1773     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1774     GV->setAlignment(Align.getQuantity());
1775   }
1776   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1777 
1778   // String length.
1779   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1780   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1781 
1782   // The struct.
1783   C = llvm::ConstantStruct::get(STy, Fields);
1784   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1785                                 llvm::GlobalVariable::PrivateLinkage, C,
1786                                 "_unnamed_nsstring_");
1787   // FIXME. Fix section.
1788   if (const char *Sect =
1789         Features.ObjCNonFragileABI
1790           ? getContext().Target.getNSStringNonFragileABISection()
1791           : getContext().Target.getNSStringSection())
1792     GV->setSection(Sect);
1793   Entry.setValue(GV);
1794 
1795   return GV;
1796 }
1797 
1798 /// GetStringForStringLiteral - Return the appropriate bytes for a
1799 /// string literal, properly padded to match the literal type.
1800 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1801   const ASTContext &Context = getContext();
1802   const ConstantArrayType *CAT =
1803     Context.getAsConstantArrayType(E->getType());
1804   assert(CAT && "String isn't pointer or array!");
1805 
1806   // Resize the string to the right size.
1807   uint64_t RealLen = CAT->getSize().getZExtValue();
1808 
1809   if (E->isWide())
1810     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1811 
1812   std::string Str = E->getString().str();
1813   Str.resize(RealLen, '\0');
1814 
1815   return Str;
1816 }
1817 
1818 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1819 /// constant array for the given string literal.
1820 llvm::Constant *
1821 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1822   // FIXME: This can be more efficient.
1823   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1824   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1825   if (S->isWide()) {
1826     llvm::Type *DestTy =
1827         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1828     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1829   }
1830   return C;
1831 }
1832 
1833 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1834 /// array for the given ObjCEncodeExpr node.
1835 llvm::Constant *
1836 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1837   std::string Str;
1838   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1839 
1840   return GetAddrOfConstantCString(Str);
1841 }
1842 
1843 
1844 /// GenerateWritableString -- Creates storage for a string literal.
1845 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1846                                              bool constant,
1847                                              CodeGenModule &CGM,
1848                                              const char *GlobalName) {
1849   // Create Constant for this string literal. Don't add a '\0'.
1850   llvm::Constant *C =
1851       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1852 
1853   // Create a global variable for this string
1854   llvm::GlobalVariable *GV =
1855     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1856                              llvm::GlobalValue::PrivateLinkage,
1857                              C, GlobalName);
1858   GV->setUnnamedAddr(true);
1859   return GV;
1860 }
1861 
1862 /// GetAddrOfConstantString - Returns a pointer to a character array
1863 /// containing the literal. This contents are exactly that of the
1864 /// given string, i.e. it will not be null terminated automatically;
1865 /// see GetAddrOfConstantCString. Note that whether the result is
1866 /// actually a pointer to an LLVM constant depends on
1867 /// Feature.WriteableStrings.
1868 ///
1869 /// The result has pointer to array type.
1870 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1871                                                        const char *GlobalName) {
1872   bool IsConstant = !Features.WritableStrings;
1873 
1874   // Get the default prefix if a name wasn't specified.
1875   if (!GlobalName)
1876     GlobalName = ".str";
1877 
1878   // Don't share any string literals if strings aren't constant.
1879   if (!IsConstant)
1880     return GenerateStringLiteral(Str, false, *this, GlobalName);
1881 
1882   llvm::StringMapEntry<llvm::Constant *> &Entry =
1883     ConstantStringMap.GetOrCreateValue(Str);
1884 
1885   if (Entry.getValue())
1886     return Entry.getValue();
1887 
1888   // Create a global variable for this.
1889   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1890   Entry.setValue(C);
1891   return C;
1892 }
1893 
1894 /// GetAddrOfConstantCString - Returns a pointer to a character
1895 /// array containing the literal and a terminating '\0'
1896 /// character. The result has pointer to array type.
1897 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1898                                                         const char *GlobalName){
1899   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1900   return GetAddrOfConstantString(StrWithNull, GlobalName);
1901 }
1902 
1903 /// EmitObjCPropertyImplementations - Emit information for synthesized
1904 /// properties for an implementation.
1905 void CodeGenModule::EmitObjCPropertyImplementations(const
1906                                                     ObjCImplementationDecl *D) {
1907   for (ObjCImplementationDecl::propimpl_iterator
1908          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1909     ObjCPropertyImplDecl *PID = *i;
1910 
1911     // Dynamic is just for type-checking.
1912     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1913       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1914 
1915       // Determine which methods need to be implemented, some may have
1916       // been overridden. Note that ::isSynthesized is not the method
1917       // we want, that just indicates if the decl came from a
1918       // property. What we want to know is if the method is defined in
1919       // this implementation.
1920       if (!D->getInstanceMethod(PD->getGetterName()))
1921         CodeGenFunction(*this).GenerateObjCGetter(
1922                                  const_cast<ObjCImplementationDecl *>(D), PID);
1923       if (!PD->isReadOnly() &&
1924           !D->getInstanceMethod(PD->getSetterName()))
1925         CodeGenFunction(*this).GenerateObjCSetter(
1926                                  const_cast<ObjCImplementationDecl *>(D), PID);
1927     }
1928   }
1929 }
1930 
1931 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1932 /// for an implementation.
1933 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1934   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1935     return;
1936   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1937   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1938   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1939   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1940   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1941                                                   D->getLocation(),
1942                                                   D->getLocation(), cxxSelector,
1943                                                   getContext().VoidTy, 0,
1944                                                   DC, true, false, true, false,
1945                                                   ObjCMethodDecl::Required);
1946   D->addInstanceMethod(DTORMethod);
1947   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1948 
1949   II = &getContext().Idents.get(".cxx_construct");
1950   cxxSelector = getContext().Selectors.getSelector(0, &II);
1951   // The constructor returns 'self'.
1952   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1953                                                 D->getLocation(),
1954                                                 D->getLocation(), cxxSelector,
1955                                                 getContext().getObjCIdType(), 0,
1956                                                 DC, true, false, true, false,
1957                                                 ObjCMethodDecl::Required);
1958   D->addInstanceMethod(CTORMethod);
1959   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1960 
1961 
1962 }
1963 
1964 /// EmitNamespace - Emit all declarations in a namespace.
1965 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1966   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1967        I != E; ++I)
1968     EmitTopLevelDecl(*I);
1969 }
1970 
1971 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1972 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1973   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1974       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1975     ErrorUnsupported(LSD, "linkage spec");
1976     return;
1977   }
1978 
1979   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1980        I != E; ++I)
1981     EmitTopLevelDecl(*I);
1982 }
1983 
1984 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1985 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1986   // If an error has occurred, stop code generation, but continue
1987   // parsing and semantic analysis (to ensure all warnings and errors
1988   // are emitted).
1989   if (Diags.hasErrorOccurred())
1990     return;
1991 
1992   // Ignore dependent declarations.
1993   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1994     return;
1995 
1996   switch (D->getKind()) {
1997   case Decl::CXXConversion:
1998   case Decl::CXXMethod:
1999   case Decl::Function:
2000     // Skip function templates
2001     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2002       return;
2003 
2004     EmitGlobal(cast<FunctionDecl>(D));
2005     break;
2006 
2007   case Decl::Var:
2008     EmitGlobal(cast<VarDecl>(D));
2009     break;
2010 
2011   // C++ Decls
2012   case Decl::Namespace:
2013     EmitNamespace(cast<NamespaceDecl>(D));
2014     break;
2015     // No code generation needed.
2016   case Decl::UsingShadow:
2017   case Decl::Using:
2018   case Decl::UsingDirective:
2019   case Decl::ClassTemplate:
2020   case Decl::FunctionTemplate:
2021   case Decl::NamespaceAlias:
2022     break;
2023   case Decl::CXXConstructor:
2024     // Skip function templates
2025     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2026       return;
2027 
2028     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2029     break;
2030   case Decl::CXXDestructor:
2031     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2032     break;
2033 
2034   case Decl::StaticAssert:
2035     // Nothing to do.
2036     break;
2037 
2038   // Objective-C Decls
2039 
2040   // Forward declarations, no (immediate) code generation.
2041   case Decl::ObjCClass:
2042   case Decl::ObjCForwardProtocol:
2043   case Decl::ObjCInterface:
2044     break;
2045 
2046     case Decl::ObjCCategory: {
2047       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2048       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2049         Context.ResetObjCLayout(CD->getClassInterface());
2050       break;
2051     }
2052 
2053 
2054   case Decl::ObjCProtocol:
2055     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2056     break;
2057 
2058   case Decl::ObjCCategoryImpl:
2059     // Categories have properties but don't support synthesize so we
2060     // can ignore them here.
2061     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2062     break;
2063 
2064   case Decl::ObjCImplementation: {
2065     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2066     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2067       Context.ResetObjCLayout(OMD->getClassInterface());
2068     EmitObjCPropertyImplementations(OMD);
2069     EmitObjCIvarInitializations(OMD);
2070     Runtime->GenerateClass(OMD);
2071     break;
2072   }
2073   case Decl::ObjCMethod: {
2074     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2075     // If this is not a prototype, emit the body.
2076     if (OMD->getBody())
2077       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2078     break;
2079   }
2080   case Decl::ObjCCompatibleAlias:
2081     // compatibility-alias is a directive and has no code gen.
2082     break;
2083 
2084   case Decl::LinkageSpec:
2085     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2086     break;
2087 
2088   case Decl::FileScopeAsm: {
2089     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2090     llvm::StringRef AsmString = AD->getAsmString()->getString();
2091 
2092     const std::string &S = getModule().getModuleInlineAsm();
2093     if (S.empty())
2094       getModule().setModuleInlineAsm(AsmString);
2095     else
2096       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2097     break;
2098   }
2099 
2100   default:
2101     // Make sure we handled everything we should, every other kind is a
2102     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2103     // function. Need to recode Decl::Kind to do that easily.
2104     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2105   }
2106 }
2107 
2108 /// Turns the given pointer into a constant.
2109 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2110                                           const void *Ptr) {
2111   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2112   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2113   return llvm::ConstantInt::get(i64, PtrInt);
2114 }
2115 
2116 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2117                                    llvm::NamedMDNode *&GlobalMetadata,
2118                                    GlobalDecl D,
2119                                    llvm::GlobalValue *Addr) {
2120   if (!GlobalMetadata)
2121     GlobalMetadata =
2122       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2123 
2124   // TODO: should we report variant information for ctors/dtors?
2125   llvm::Value *Ops[] = {
2126     Addr,
2127     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2128   };
2129   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2130 }
2131 
2132 /// Emits metadata nodes associating all the global values in the
2133 /// current module with the Decls they came from.  This is useful for
2134 /// projects using IR gen as a subroutine.
2135 ///
2136 /// Since there's currently no way to associate an MDNode directly
2137 /// with an llvm::GlobalValue, we create a global named metadata
2138 /// with the name 'clang.global.decl.ptrs'.
2139 void CodeGenModule::EmitDeclMetadata() {
2140   llvm::NamedMDNode *GlobalMetadata = 0;
2141 
2142   // StaticLocalDeclMap
2143   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2144          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2145        I != E; ++I) {
2146     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2147     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2148   }
2149 }
2150 
2151 /// Emits metadata nodes for all the local variables in the current
2152 /// function.
2153 void CodeGenFunction::EmitDeclMetadata() {
2154   if (LocalDeclMap.empty()) return;
2155 
2156   llvm::LLVMContext &Context = getLLVMContext();
2157 
2158   // Find the unique metadata ID for this name.
2159   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2160 
2161   llvm::NamedMDNode *GlobalMetadata = 0;
2162 
2163   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2164          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2165     const Decl *D = I->first;
2166     llvm::Value *Addr = I->second;
2167 
2168     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2169       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2170       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2171     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2172       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2173       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2174     }
2175   }
2176 }
2177 
2178 ///@name Custom Runtime Function Interfaces
2179 ///@{
2180 //
2181 // FIXME: These can be eliminated once we can have clients just get the required
2182 // AST nodes from the builtin tables.
2183 
2184 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2185   if (BlockObjectDispose)
2186     return BlockObjectDispose;
2187 
2188   // If we saw an explicit decl, use that.
2189   if (BlockObjectDisposeDecl) {
2190     return BlockObjectDispose = GetAddrOfFunction(
2191       BlockObjectDisposeDecl,
2192       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2193   }
2194 
2195   // Otherwise construct the function by hand.
2196   const llvm::FunctionType *FTy;
2197   std::vector<const llvm::Type*> ArgTys;
2198   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2199   ArgTys.push_back(Int8PtrTy);
2200   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2201   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2202   return BlockObjectDispose =
2203     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2204 }
2205 
2206 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2207   if (BlockObjectAssign)
2208     return BlockObjectAssign;
2209 
2210   // If we saw an explicit decl, use that.
2211   if (BlockObjectAssignDecl) {
2212     return BlockObjectAssign = GetAddrOfFunction(
2213       BlockObjectAssignDecl,
2214       getTypes().GetFunctionType(BlockObjectAssignDecl));
2215   }
2216 
2217   // Otherwise construct the function by hand.
2218   const llvm::FunctionType *FTy;
2219   std::vector<const llvm::Type*> ArgTys;
2220   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2221   ArgTys.push_back(Int8PtrTy);
2222   ArgTys.push_back(Int8PtrTy);
2223   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2224   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2225   return BlockObjectAssign =
2226     CreateRuntimeFunction(FTy, "_Block_object_assign");
2227 }
2228 
2229 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2230   if (NSConcreteGlobalBlock)
2231     return NSConcreteGlobalBlock;
2232 
2233   // If we saw an explicit decl, use that.
2234   if (NSConcreteGlobalBlockDecl) {
2235     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2236       NSConcreteGlobalBlockDecl,
2237       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2238   }
2239 
2240   // Otherwise construct the variable by hand.
2241   return NSConcreteGlobalBlock =
2242     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2243 }
2244 
2245 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2246   if (NSConcreteStackBlock)
2247     return NSConcreteStackBlock;
2248 
2249   // If we saw an explicit decl, use that.
2250   if (NSConcreteStackBlockDecl) {
2251     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2252       NSConcreteStackBlockDecl,
2253       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2254   }
2255 
2256   // Otherwise construct the variable by hand.
2257   return NSConcreteStackBlock =
2258     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2259 }
2260 
2261 ///@}
2262