1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 92 Block.GlobalUniqueCount = 0; 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 PointerWidthInBits = C.Target.getPointerWidth(0); 100 PointerAlignInBytes = 101 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 102 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 103 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 104 Int8PtrTy = Int8Ty->getPointerTo(0); 105 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 106 } 107 108 CodeGenModule::~CodeGenModule() { 109 delete Runtime; 110 delete &ABI; 111 delete TBAA; 112 delete DebugInfo; 113 } 114 115 void CodeGenModule::createObjCRuntime() { 116 if (!Features.NeXTRuntime) 117 Runtime = CreateGNUObjCRuntime(*this); 118 else if (Features.ObjCNonFragileABI) 119 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 120 else 121 Runtime = CreateMacObjCRuntime(*this); 122 } 123 124 void CodeGenModule::Release() { 125 EmitDeferred(); 126 EmitCXXGlobalInitFunc(); 127 EmitCXXGlobalDtorFunc(); 128 if (Runtime) 129 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 130 AddGlobalCtor(ObjCInitFunction); 131 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 132 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 133 EmitAnnotations(); 134 EmitLLVMUsed(); 135 136 SimplifyPersonality(); 137 138 if (getCodeGenOpts().EmitDeclMetadata) 139 EmitDeclMetadata(); 140 } 141 142 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 143 if (!TBAA) 144 return 0; 145 return TBAA->getTBAAInfo(QTy); 146 } 147 148 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 149 llvm::MDNode *TBAAInfo) { 150 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 151 } 152 153 bool CodeGenModule::isTargetDarwin() const { 154 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 155 } 156 157 /// ErrorUnsupported - Print out an error that codegen doesn't support the 158 /// specified stmt yet. 159 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 160 bool OmitOnError) { 161 if (OmitOnError && getDiags().hasErrorOccurred()) 162 return; 163 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 164 "cannot compile this %0 yet"); 165 std::string Msg = Type; 166 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 167 << Msg << S->getSourceRange(); 168 } 169 170 /// ErrorUnsupported - Print out an error that codegen doesn't support the 171 /// specified decl yet. 172 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 173 bool OmitOnError) { 174 if (OmitOnError && getDiags().hasErrorOccurred()) 175 return; 176 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 177 "cannot compile this %0 yet"); 178 std::string Msg = Type; 179 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 180 } 181 182 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 183 const NamedDecl *D) const { 184 // Internal definitions always have default visibility. 185 if (GV->hasLocalLinkage()) { 186 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 187 return; 188 } 189 190 // Set visibility for definitions. 191 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 192 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 193 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 194 } 195 196 /// Set the symbol visibility of type information (vtable and RTTI) 197 /// associated with the given type. 198 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 199 const CXXRecordDecl *RD, 200 TypeVisibilityKind TVK) const { 201 setGlobalVisibility(GV, RD); 202 203 if (!CodeGenOpts.HiddenWeakVTables) 204 return; 205 206 // We never want to drop the visibility for RTTI names. 207 if (TVK == TVK_ForRTTIName) 208 return; 209 210 // We want to drop the visibility to hidden for weak type symbols. 211 // This isn't possible if there might be unresolved references 212 // elsewhere that rely on this symbol being visible. 213 214 // This should be kept roughly in sync with setThunkVisibility 215 // in CGVTables.cpp. 216 217 // Preconditions. 218 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 219 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 220 return; 221 222 // Don't override an explicit visibility attribute. 223 if (RD->hasAttr<VisibilityAttr>()) 224 return; 225 226 switch (RD->getTemplateSpecializationKind()) { 227 // We have to disable the optimization if this is an EI definition 228 // because there might be EI declarations in other shared objects. 229 case TSK_ExplicitInstantiationDefinition: 230 case TSK_ExplicitInstantiationDeclaration: 231 return; 232 233 // Every use of a non-template class's type information has to emit it. 234 case TSK_Undeclared: 235 break; 236 237 // In theory, implicit instantiations can ignore the possibility of 238 // an explicit instantiation declaration because there necessarily 239 // must be an EI definition somewhere with default visibility. In 240 // practice, it's possible to have an explicit instantiation for 241 // an arbitrary template class, and linkers aren't necessarily able 242 // to deal with mixed-visibility symbols. 243 case TSK_ExplicitSpecialization: 244 case TSK_ImplicitInstantiation: 245 if (!CodeGenOpts.HiddenWeakTemplateVTables) 246 return; 247 break; 248 } 249 250 // If there's a key function, there may be translation units 251 // that don't have the key function's definition. But ignore 252 // this if we're emitting RTTI under -fno-rtti. 253 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 254 if (Context.getKeyFunction(RD)) 255 return; 256 } 257 258 // Otherwise, drop the visibility to hidden. 259 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 260 GV->setUnnamedAddr(true); 261 } 262 263 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 264 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 265 266 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 267 if (!Str.empty()) 268 return Str; 269 270 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 271 IdentifierInfo *II = ND->getIdentifier(); 272 assert(II && "Attempt to mangle unnamed decl."); 273 274 Str = II->getName(); 275 return Str; 276 } 277 278 llvm::SmallString<256> Buffer; 279 llvm::raw_svector_ostream Out(Buffer); 280 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 281 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 282 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 283 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 284 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 285 getCXXABI().getMangleContext().mangleBlock(BD, Out); 286 else 287 getCXXABI().getMangleContext().mangleName(ND, Out); 288 289 // Allocate space for the mangled name. 290 Out.flush(); 291 size_t Length = Buffer.size(); 292 char *Name = MangledNamesAllocator.Allocate<char>(Length); 293 std::copy(Buffer.begin(), Buffer.end(), Name); 294 295 Str = llvm::StringRef(Name, Length); 296 297 return Str; 298 } 299 300 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 301 const BlockDecl *BD) { 302 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 303 const Decl *D = GD.getDecl(); 304 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 305 if (D == 0) 306 MangleCtx.mangleGlobalBlock(BD, Out); 307 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 308 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 309 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 310 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 311 else 312 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 313 } 314 315 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 316 return getModule().getNamedValue(Name); 317 } 318 319 /// AddGlobalCtor - Add a function to the list that will be called before 320 /// main() runs. 321 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 322 // FIXME: Type coercion of void()* types. 323 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 324 } 325 326 /// AddGlobalDtor - Add a function to the list that will be called 327 /// when the module is unloaded. 328 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 329 // FIXME: Type coercion of void()* types. 330 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 331 } 332 333 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 334 // Ctor function type is void()*. 335 llvm::FunctionType* CtorFTy = 336 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 337 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 338 339 // Get the type of a ctor entry, { i32, void ()* }. 340 llvm::StructType* CtorStructTy = 341 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 342 llvm::PointerType::getUnqual(CtorFTy), NULL); 343 344 // Construct the constructor and destructor arrays. 345 std::vector<llvm::Constant*> Ctors; 346 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 347 std::vector<llvm::Constant*> S; 348 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 349 I->second, false)); 350 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 351 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 352 } 353 354 if (!Ctors.empty()) { 355 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 356 new llvm::GlobalVariable(TheModule, AT, false, 357 llvm::GlobalValue::AppendingLinkage, 358 llvm::ConstantArray::get(AT, Ctors), 359 GlobalName); 360 } 361 } 362 363 void CodeGenModule::EmitAnnotations() { 364 if (Annotations.empty()) 365 return; 366 367 // Create a new global variable for the ConstantStruct in the Module. 368 llvm::Constant *Array = 369 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 370 Annotations.size()), 371 Annotations); 372 llvm::GlobalValue *gv = 373 new llvm::GlobalVariable(TheModule, Array->getType(), false, 374 llvm::GlobalValue::AppendingLinkage, Array, 375 "llvm.global.annotations"); 376 gv->setSection("llvm.metadata"); 377 } 378 379 llvm::GlobalValue::LinkageTypes 380 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 381 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 382 383 if (Linkage == GVA_Internal) 384 return llvm::Function::InternalLinkage; 385 386 if (D->hasAttr<DLLExportAttr>()) 387 return llvm::Function::DLLExportLinkage; 388 389 if (D->hasAttr<WeakAttr>()) 390 return llvm::Function::WeakAnyLinkage; 391 392 // In C99 mode, 'inline' functions are guaranteed to have a strong 393 // definition somewhere else, so we can use available_externally linkage. 394 if (Linkage == GVA_C99Inline) 395 return llvm::Function::AvailableExternallyLinkage; 396 397 // In C++, the compiler has to emit a definition in every translation unit 398 // that references the function. We should use linkonce_odr because 399 // a) if all references in this translation unit are optimized away, we 400 // don't need to codegen it. b) if the function persists, it needs to be 401 // merged with other definitions. c) C++ has the ODR, so we know the 402 // definition is dependable. 403 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 404 return !Context.getLangOptions().AppleKext 405 ? llvm::Function::LinkOnceODRLinkage 406 : llvm::Function::InternalLinkage; 407 408 // An explicit instantiation of a template has weak linkage, since 409 // explicit instantiations can occur in multiple translation units 410 // and must all be equivalent. However, we are not allowed to 411 // throw away these explicit instantiations. 412 if (Linkage == GVA_ExplicitTemplateInstantiation) 413 return !Context.getLangOptions().AppleKext 414 ? llvm::Function::WeakODRLinkage 415 : llvm::Function::InternalLinkage; 416 417 // Otherwise, we have strong external linkage. 418 assert(Linkage == GVA_StrongExternal); 419 return llvm::Function::ExternalLinkage; 420 } 421 422 423 /// SetFunctionDefinitionAttributes - Set attributes for a global. 424 /// 425 /// FIXME: This is currently only done for aliases and functions, but not for 426 /// variables (these details are set in EmitGlobalVarDefinition for variables). 427 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 428 llvm::GlobalValue *GV) { 429 SetCommonAttributes(D, GV); 430 } 431 432 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 433 const CGFunctionInfo &Info, 434 llvm::Function *F) { 435 unsigned CallingConv; 436 AttributeListType AttributeList; 437 ConstructAttributeList(Info, D, AttributeList, CallingConv); 438 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 439 AttributeList.size())); 440 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 441 } 442 443 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 444 llvm::Function *F) { 445 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 446 F->addFnAttr(llvm::Attribute::NoUnwind); 447 448 if (D->hasAttr<AlwaysInlineAttr>()) 449 F->addFnAttr(llvm::Attribute::AlwaysInline); 450 451 if (D->hasAttr<NakedAttr>()) 452 F->addFnAttr(llvm::Attribute::Naked); 453 454 if (D->hasAttr<NoInlineAttr>()) 455 F->addFnAttr(llvm::Attribute::NoInline); 456 457 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 458 F->setUnnamedAddr(true); 459 460 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 461 F->addFnAttr(llvm::Attribute::StackProtect); 462 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 463 F->addFnAttr(llvm::Attribute::StackProtectReq); 464 465 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 466 if (alignment) 467 F->setAlignment(alignment); 468 469 // C++ ABI requires 2-byte alignment for member functions. 470 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 471 F->setAlignment(2); 472 } 473 474 void CodeGenModule::SetCommonAttributes(const Decl *D, 475 llvm::GlobalValue *GV) { 476 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 477 setGlobalVisibility(GV, ND); 478 else 479 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 480 481 if (D->hasAttr<UsedAttr>()) 482 AddUsedGlobal(GV); 483 484 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 485 GV->setSection(SA->getName()); 486 487 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 488 } 489 490 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 491 llvm::Function *F, 492 const CGFunctionInfo &FI) { 493 SetLLVMFunctionAttributes(D, FI, F); 494 SetLLVMFunctionAttributesForDefinition(D, F); 495 496 F->setLinkage(llvm::Function::InternalLinkage); 497 498 SetCommonAttributes(D, F); 499 } 500 501 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 502 llvm::Function *F, 503 bool IsIncompleteFunction) { 504 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 505 506 if (!IsIncompleteFunction) 507 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 508 509 // Only a few attributes are set on declarations; these may later be 510 // overridden by a definition. 511 512 if (FD->hasAttr<DLLImportAttr>()) { 513 F->setLinkage(llvm::Function::DLLImportLinkage); 514 } else if (FD->hasAttr<WeakAttr>() || 515 FD->hasAttr<WeakImportAttr>()) { 516 // "extern_weak" is overloaded in LLVM; we probably should have 517 // separate linkage types for this. 518 F->setLinkage(llvm::Function::ExternalWeakLinkage); 519 } else { 520 F->setLinkage(llvm::Function::ExternalLinkage); 521 522 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 523 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 524 F->setVisibility(GetLLVMVisibility(LV.visibility())); 525 } 526 } 527 528 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 529 F->setSection(SA->getName()); 530 } 531 532 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 533 assert(!GV->isDeclaration() && 534 "Only globals with definition can force usage."); 535 LLVMUsed.push_back(GV); 536 } 537 538 void CodeGenModule::EmitLLVMUsed() { 539 // Don't create llvm.used if there is no need. 540 if (LLVMUsed.empty()) 541 return; 542 543 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 544 545 // Convert LLVMUsed to what ConstantArray needs. 546 std::vector<llvm::Constant*> UsedArray; 547 UsedArray.resize(LLVMUsed.size()); 548 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 549 UsedArray[i] = 550 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 551 i8PTy); 552 } 553 554 if (UsedArray.empty()) 555 return; 556 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 557 558 llvm::GlobalVariable *GV = 559 new llvm::GlobalVariable(getModule(), ATy, false, 560 llvm::GlobalValue::AppendingLinkage, 561 llvm::ConstantArray::get(ATy, UsedArray), 562 "llvm.used"); 563 564 GV->setSection("llvm.metadata"); 565 } 566 567 void CodeGenModule::EmitDeferred() { 568 // Emit code for any potentially referenced deferred decls. Since a 569 // previously unused static decl may become used during the generation of code 570 // for a static function, iterate until no changes are made. 571 572 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 573 if (!DeferredVTables.empty()) { 574 const CXXRecordDecl *RD = DeferredVTables.back(); 575 DeferredVTables.pop_back(); 576 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 577 continue; 578 } 579 580 GlobalDecl D = DeferredDeclsToEmit.back(); 581 DeferredDeclsToEmit.pop_back(); 582 583 // Check to see if we've already emitted this. This is necessary 584 // for a couple of reasons: first, decls can end up in the 585 // deferred-decls queue multiple times, and second, decls can end 586 // up with definitions in unusual ways (e.g. by an extern inline 587 // function acquiring a strong function redefinition). Just 588 // ignore these cases. 589 // 590 // TODO: That said, looking this up multiple times is very wasteful. 591 llvm::StringRef Name = getMangledName(D); 592 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 593 assert(CGRef && "Deferred decl wasn't referenced?"); 594 595 if (!CGRef->isDeclaration()) 596 continue; 597 598 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 599 // purposes an alias counts as a definition. 600 if (isa<llvm::GlobalAlias>(CGRef)) 601 continue; 602 603 // Otherwise, emit the definition and move on to the next one. 604 EmitGlobalDefinition(D); 605 } 606 } 607 608 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 609 /// annotation information for a given GlobalValue. The annotation struct is 610 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 611 /// GlobalValue being annotated. The second field is the constant string 612 /// created from the AnnotateAttr's annotation. The third field is a constant 613 /// string containing the name of the translation unit. The fourth field is 614 /// the line number in the file of the annotated value declaration. 615 /// 616 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 617 /// appears to. 618 /// 619 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 620 const AnnotateAttr *AA, 621 unsigned LineNo) { 622 llvm::Module *M = &getModule(); 623 624 // get [N x i8] constants for the annotation string, and the filename string 625 // which are the 2nd and 3rd elements of the global annotation structure. 626 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 627 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 628 AA->getAnnotation(), true); 629 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 630 M->getModuleIdentifier(), 631 true); 632 633 // Get the two global values corresponding to the ConstantArrays we just 634 // created to hold the bytes of the strings. 635 llvm::GlobalValue *annoGV = 636 new llvm::GlobalVariable(*M, anno->getType(), false, 637 llvm::GlobalValue::PrivateLinkage, anno, 638 GV->getName()); 639 // translation unit name string, emitted into the llvm.metadata section. 640 llvm::GlobalValue *unitGV = 641 new llvm::GlobalVariable(*M, unit->getType(), false, 642 llvm::GlobalValue::PrivateLinkage, unit, 643 ".str"); 644 unitGV->setUnnamedAddr(true); 645 646 // Create the ConstantStruct for the global annotation. 647 llvm::Constant *Fields[4] = { 648 llvm::ConstantExpr::getBitCast(GV, SBP), 649 llvm::ConstantExpr::getBitCast(annoGV, SBP), 650 llvm::ConstantExpr::getBitCast(unitGV, SBP), 651 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 652 }; 653 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 654 } 655 656 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 657 // Never defer when EmitAllDecls is specified. 658 if (Features.EmitAllDecls) 659 return false; 660 661 return !getContext().DeclMustBeEmitted(Global); 662 } 663 664 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 665 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 666 assert(AA && "No alias?"); 667 668 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 669 670 // See if there is already something with the target's name in the module. 671 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 672 673 llvm::Constant *Aliasee; 674 if (isa<llvm::FunctionType>(DeclTy)) 675 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 676 /*ForVTable=*/false); 677 else 678 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 679 llvm::PointerType::getUnqual(DeclTy), 0); 680 if (!Entry) { 681 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 682 F->setLinkage(llvm::Function::ExternalWeakLinkage); 683 WeakRefReferences.insert(F); 684 } 685 686 return Aliasee; 687 } 688 689 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 690 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 691 692 // Weak references don't produce any output by themselves. 693 if (Global->hasAttr<WeakRefAttr>()) 694 return; 695 696 // If this is an alias definition (which otherwise looks like a declaration) 697 // emit it now. 698 if (Global->hasAttr<AliasAttr>()) 699 return EmitAliasDefinition(GD); 700 701 // Ignore declarations, they will be emitted on their first use. 702 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 703 if (FD->getIdentifier()) { 704 llvm::StringRef Name = FD->getName(); 705 if (Name == "_Block_object_assign") { 706 BlockObjectAssignDecl = FD; 707 } else if (Name == "_Block_object_dispose") { 708 BlockObjectDisposeDecl = FD; 709 } 710 } 711 712 // Forward declarations are emitted lazily on first use. 713 if (!FD->isThisDeclarationADefinition()) 714 return; 715 } else { 716 const VarDecl *VD = cast<VarDecl>(Global); 717 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 718 719 if (VD->getIdentifier()) { 720 llvm::StringRef Name = VD->getName(); 721 if (Name == "_NSConcreteGlobalBlock") { 722 NSConcreteGlobalBlockDecl = VD; 723 } else if (Name == "_NSConcreteStackBlock") { 724 NSConcreteStackBlockDecl = VD; 725 } 726 } 727 728 729 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 730 return; 731 } 732 733 // Defer code generation when possible if this is a static definition, inline 734 // function etc. These we only want to emit if they are used. 735 if (!MayDeferGeneration(Global)) { 736 // Emit the definition if it can't be deferred. 737 EmitGlobalDefinition(GD); 738 return; 739 } 740 741 // If we're deferring emission of a C++ variable with an 742 // initializer, remember the order in which it appeared in the file. 743 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 744 cast<VarDecl>(Global)->hasInit()) { 745 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 746 CXXGlobalInits.push_back(0); 747 } 748 749 // If the value has already been used, add it directly to the 750 // DeferredDeclsToEmit list. 751 llvm::StringRef MangledName = getMangledName(GD); 752 if (GetGlobalValue(MangledName)) 753 DeferredDeclsToEmit.push_back(GD); 754 else { 755 // Otherwise, remember that we saw a deferred decl with this name. The 756 // first use of the mangled name will cause it to move into 757 // DeferredDeclsToEmit. 758 DeferredDecls[MangledName] = GD; 759 } 760 } 761 762 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 763 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 764 765 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 766 Context.getSourceManager(), 767 "Generating code for declaration"); 768 769 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 770 // At -O0, don't generate IR for functions with available_externally 771 // linkage. 772 if (CodeGenOpts.OptimizationLevel == 0 && 773 !Function->hasAttr<AlwaysInlineAttr>() && 774 getFunctionLinkage(Function) 775 == llvm::Function::AvailableExternallyLinkage) 776 return; 777 778 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 779 if (Method->isVirtual()) 780 getVTables().EmitThunks(GD); 781 782 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 783 return EmitCXXConstructor(CD, GD.getCtorType()); 784 785 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 786 return EmitCXXDestructor(DD, GD.getDtorType()); 787 } 788 789 return EmitGlobalFunctionDefinition(GD); 790 } 791 792 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 793 return EmitGlobalVarDefinition(VD); 794 795 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 796 } 797 798 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 799 /// module, create and return an llvm Function with the specified type. If there 800 /// is something in the module with the specified name, return it potentially 801 /// bitcasted to the right type. 802 /// 803 /// If D is non-null, it specifies a decl that correspond to this. This is used 804 /// to set the attributes on the function when it is first created. 805 llvm::Constant * 806 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 807 const llvm::Type *Ty, 808 GlobalDecl D, bool ForVTable) { 809 // Lookup the entry, lazily creating it if necessary. 810 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 811 if (Entry) { 812 if (WeakRefReferences.count(Entry)) { 813 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 814 if (FD && !FD->hasAttr<WeakAttr>()) 815 Entry->setLinkage(llvm::Function::ExternalLinkage); 816 817 WeakRefReferences.erase(Entry); 818 } 819 820 if (Entry->getType()->getElementType() == Ty) 821 return Entry; 822 823 // Make sure the result is of the correct type. 824 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 825 return llvm::ConstantExpr::getBitCast(Entry, PTy); 826 } 827 828 // This function doesn't have a complete type (for example, the return 829 // type is an incomplete struct). Use a fake type instead, and make 830 // sure not to try to set attributes. 831 bool IsIncompleteFunction = false; 832 833 const llvm::FunctionType *FTy; 834 if (isa<llvm::FunctionType>(Ty)) { 835 FTy = cast<llvm::FunctionType>(Ty); 836 } else { 837 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 838 IsIncompleteFunction = true; 839 } 840 841 llvm::Function *F = llvm::Function::Create(FTy, 842 llvm::Function::ExternalLinkage, 843 MangledName, &getModule()); 844 assert(F->getName() == MangledName && "name was uniqued!"); 845 if (D.getDecl()) 846 SetFunctionAttributes(D, F, IsIncompleteFunction); 847 848 // This is the first use or definition of a mangled name. If there is a 849 // deferred decl with this name, remember that we need to emit it at the end 850 // of the file. 851 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 852 if (DDI != DeferredDecls.end()) { 853 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 854 // list, and remove it from DeferredDecls (since we don't need it anymore). 855 DeferredDeclsToEmit.push_back(DDI->second); 856 DeferredDecls.erase(DDI); 857 858 // Otherwise, there are cases we have to worry about where we're 859 // using a declaration for which we must emit a definition but where 860 // we might not find a top-level definition: 861 // - member functions defined inline in their classes 862 // - friend functions defined inline in some class 863 // - special member functions with implicit definitions 864 // If we ever change our AST traversal to walk into class methods, 865 // this will be unnecessary. 866 // 867 // We also don't emit a definition for a function if it's going to be an entry 868 // in a vtable, unless it's already marked as used. 869 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 870 // Look for a declaration that's lexically in a record. 871 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 872 do { 873 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 874 if (FD->isImplicit() && !ForVTable) { 875 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 876 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 877 break; 878 } else if (FD->isThisDeclarationADefinition()) { 879 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 880 break; 881 } 882 } 883 FD = FD->getPreviousDeclaration(); 884 } while (FD); 885 } 886 887 // Make sure the result is of the requested type. 888 if (!IsIncompleteFunction) { 889 assert(F->getType()->getElementType() == Ty); 890 return F; 891 } 892 893 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 894 return llvm::ConstantExpr::getBitCast(F, PTy); 895 } 896 897 /// GetAddrOfFunction - Return the address of the given function. If Ty is 898 /// non-null, then this function will use the specified type if it has to 899 /// create it (this occurs when we see a definition of the function). 900 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 901 const llvm::Type *Ty, 902 bool ForVTable) { 903 // If there was no specific requested type, just convert it now. 904 if (!Ty) 905 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 906 907 llvm::StringRef MangledName = getMangledName(GD); 908 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 909 } 910 911 /// CreateRuntimeFunction - Create a new runtime function with the specified 912 /// type and name. 913 llvm::Constant * 914 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 915 llvm::StringRef Name) { 916 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); 917 } 918 919 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 920 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 921 return false; 922 if (Context.getLangOptions().CPlusPlus && 923 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 924 // FIXME: We should do something fancier here! 925 return false; 926 } 927 return true; 928 } 929 930 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 931 /// create and return an llvm GlobalVariable with the specified type. If there 932 /// is something in the module with the specified name, return it potentially 933 /// bitcasted to the right type. 934 /// 935 /// If D is non-null, it specifies a decl that correspond to this. This is used 936 /// to set the attributes on the global when it is first created. 937 llvm::Constant * 938 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 939 const llvm::PointerType *Ty, 940 const VarDecl *D, 941 bool UnnamedAddr) { 942 // Lookup the entry, lazily creating it if necessary. 943 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 944 if (Entry) { 945 if (WeakRefReferences.count(Entry)) { 946 if (D && !D->hasAttr<WeakAttr>()) 947 Entry->setLinkage(llvm::Function::ExternalLinkage); 948 949 WeakRefReferences.erase(Entry); 950 } 951 952 if (UnnamedAddr) 953 Entry->setUnnamedAddr(true); 954 955 if (Entry->getType() == Ty) 956 return Entry; 957 958 // Make sure the result is of the correct type. 959 return llvm::ConstantExpr::getBitCast(Entry, Ty); 960 } 961 962 // This is the first use or definition of a mangled name. If there is a 963 // deferred decl with this name, remember that we need to emit it at the end 964 // of the file. 965 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 966 if (DDI != DeferredDecls.end()) { 967 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 968 // list, and remove it from DeferredDecls (since we don't need it anymore). 969 DeferredDeclsToEmit.push_back(DDI->second); 970 DeferredDecls.erase(DDI); 971 } 972 973 llvm::GlobalVariable *GV = 974 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 975 llvm::GlobalValue::ExternalLinkage, 976 0, MangledName, 0, 977 false, Ty->getAddressSpace()); 978 979 // Handle things which are present even on external declarations. 980 if (D) { 981 // FIXME: This code is overly simple and should be merged with other global 982 // handling. 983 GV->setConstant(DeclIsConstantGlobal(Context, D)); 984 985 // Set linkage and visibility in case we never see a definition. 986 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 987 if (LV.linkage() != ExternalLinkage) { 988 // Don't set internal linkage on declarations. 989 } else { 990 if (D->hasAttr<DLLImportAttr>()) 991 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 992 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 993 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 994 995 // Set visibility on a declaration only if it's explicit. 996 if (LV.visibilityExplicit()) 997 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 998 } 999 1000 GV->setThreadLocal(D->isThreadSpecified()); 1001 } 1002 1003 return GV; 1004 } 1005 1006 1007 llvm::GlobalVariable * 1008 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 1009 const llvm::Type *Ty, 1010 llvm::GlobalValue::LinkageTypes Linkage) { 1011 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1012 llvm::GlobalVariable *OldGV = 0; 1013 1014 1015 if (GV) { 1016 // Check if the variable has the right type. 1017 if (GV->getType()->getElementType() == Ty) 1018 return GV; 1019 1020 // Because C++ name mangling, the only way we can end up with an already 1021 // existing global with the same name is if it has been declared extern "C". 1022 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1023 OldGV = GV; 1024 } 1025 1026 // Create a new variable. 1027 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1028 Linkage, 0, Name); 1029 1030 if (OldGV) { 1031 // Replace occurrences of the old variable if needed. 1032 GV->takeName(OldGV); 1033 1034 if (!OldGV->use_empty()) { 1035 llvm::Constant *NewPtrForOldDecl = 1036 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1037 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1038 } 1039 1040 OldGV->eraseFromParent(); 1041 } 1042 1043 return GV; 1044 } 1045 1046 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1047 /// given global variable. If Ty is non-null and if the global doesn't exist, 1048 /// then it will be greated with the specified type instead of whatever the 1049 /// normal requested type would be. 1050 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1051 const llvm::Type *Ty) { 1052 assert(D->hasGlobalStorage() && "Not a global variable"); 1053 QualType ASTTy = D->getType(); 1054 if (Ty == 0) 1055 Ty = getTypes().ConvertTypeForMem(ASTTy); 1056 1057 const llvm::PointerType *PTy = 1058 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1059 1060 llvm::StringRef MangledName = getMangledName(D); 1061 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1062 } 1063 1064 /// CreateRuntimeVariable - Create a new runtime global variable with the 1065 /// specified type and name. 1066 llvm::Constant * 1067 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1068 llvm::StringRef Name) { 1069 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1070 true); 1071 } 1072 1073 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1074 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1075 1076 if (MayDeferGeneration(D)) { 1077 // If we have not seen a reference to this variable yet, place it 1078 // into the deferred declarations table to be emitted if needed 1079 // later. 1080 llvm::StringRef MangledName = getMangledName(D); 1081 if (!GetGlobalValue(MangledName)) { 1082 DeferredDecls[MangledName] = D; 1083 return; 1084 } 1085 } 1086 1087 // The tentative definition is the only definition. 1088 EmitGlobalVarDefinition(D); 1089 } 1090 1091 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1092 if (DefinitionRequired) 1093 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1094 } 1095 1096 llvm::GlobalVariable::LinkageTypes 1097 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1098 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1099 return llvm::GlobalVariable::InternalLinkage; 1100 1101 if (const CXXMethodDecl *KeyFunction 1102 = RD->getASTContext().getKeyFunction(RD)) { 1103 // If this class has a key function, use that to determine the linkage of 1104 // the vtable. 1105 const FunctionDecl *Def = 0; 1106 if (KeyFunction->hasBody(Def)) 1107 KeyFunction = cast<CXXMethodDecl>(Def); 1108 1109 switch (KeyFunction->getTemplateSpecializationKind()) { 1110 case TSK_Undeclared: 1111 case TSK_ExplicitSpecialization: 1112 // When compiling with optimizations turned on, we emit all vtables, 1113 // even if the key function is not defined in the current translation 1114 // unit. If this is the case, use available_externally linkage. 1115 if (!Def && CodeGenOpts.OptimizationLevel) 1116 return llvm::GlobalVariable::AvailableExternallyLinkage; 1117 1118 if (KeyFunction->isInlined()) 1119 return !Context.getLangOptions().AppleKext ? 1120 llvm::GlobalVariable::LinkOnceODRLinkage : 1121 llvm::Function::InternalLinkage; 1122 1123 return llvm::GlobalVariable::ExternalLinkage; 1124 1125 case TSK_ImplicitInstantiation: 1126 return !Context.getLangOptions().AppleKext ? 1127 llvm::GlobalVariable::LinkOnceODRLinkage : 1128 llvm::Function::InternalLinkage; 1129 1130 case TSK_ExplicitInstantiationDefinition: 1131 return !Context.getLangOptions().AppleKext ? 1132 llvm::GlobalVariable::WeakODRLinkage : 1133 llvm::Function::InternalLinkage; 1134 1135 case TSK_ExplicitInstantiationDeclaration: 1136 // FIXME: Use available_externally linkage. However, this currently 1137 // breaks LLVM's build due to undefined symbols. 1138 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1139 return !Context.getLangOptions().AppleKext ? 1140 llvm::GlobalVariable::LinkOnceODRLinkage : 1141 llvm::Function::InternalLinkage; 1142 } 1143 } 1144 1145 if (Context.getLangOptions().AppleKext) 1146 return llvm::Function::InternalLinkage; 1147 1148 switch (RD->getTemplateSpecializationKind()) { 1149 case TSK_Undeclared: 1150 case TSK_ExplicitSpecialization: 1151 case TSK_ImplicitInstantiation: 1152 // FIXME: Use available_externally linkage. However, this currently 1153 // breaks LLVM's build due to undefined symbols. 1154 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1155 case TSK_ExplicitInstantiationDeclaration: 1156 return llvm::GlobalVariable::LinkOnceODRLinkage; 1157 1158 case TSK_ExplicitInstantiationDefinition: 1159 return llvm::GlobalVariable::WeakODRLinkage; 1160 } 1161 1162 // Silence GCC warning. 1163 return llvm::GlobalVariable::LinkOnceODRLinkage; 1164 } 1165 1166 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1167 return Context.toCharUnitsFromBits( 1168 TheTargetData.getTypeStoreSizeInBits(Ty)); 1169 } 1170 1171 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1172 llvm::Constant *Init = 0; 1173 QualType ASTTy = D->getType(); 1174 bool NonConstInit = false; 1175 1176 const Expr *InitExpr = D->getAnyInitializer(); 1177 1178 if (!InitExpr) { 1179 // This is a tentative definition; tentative definitions are 1180 // implicitly initialized with { 0 }. 1181 // 1182 // Note that tentative definitions are only emitted at the end of 1183 // a translation unit, so they should never have incomplete 1184 // type. In addition, EmitTentativeDefinition makes sure that we 1185 // never attempt to emit a tentative definition if a real one 1186 // exists. A use may still exists, however, so we still may need 1187 // to do a RAUW. 1188 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1189 Init = EmitNullConstant(D->getType()); 1190 } else { 1191 Init = EmitConstantExpr(InitExpr, D->getType()); 1192 if (!Init) { 1193 QualType T = InitExpr->getType(); 1194 if (D->getType()->isReferenceType()) 1195 T = D->getType(); 1196 1197 if (getLangOptions().CPlusPlus) { 1198 Init = EmitNullConstant(T); 1199 NonConstInit = true; 1200 } else { 1201 ErrorUnsupported(D, "static initializer"); 1202 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1203 } 1204 } else { 1205 // We don't need an initializer, so remove the entry for the delayed 1206 // initializer position (just in case this entry was delayed). 1207 if (getLangOptions().CPlusPlus) 1208 DelayedCXXInitPosition.erase(D); 1209 } 1210 } 1211 1212 const llvm::Type* InitType = Init->getType(); 1213 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1214 1215 // Strip off a bitcast if we got one back. 1216 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1217 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1218 // all zero index gep. 1219 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1220 Entry = CE->getOperand(0); 1221 } 1222 1223 // Entry is now either a Function or GlobalVariable. 1224 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1225 1226 // We have a definition after a declaration with the wrong type. 1227 // We must make a new GlobalVariable* and update everything that used OldGV 1228 // (a declaration or tentative definition) with the new GlobalVariable* 1229 // (which will be a definition). 1230 // 1231 // This happens if there is a prototype for a global (e.g. 1232 // "extern int x[];") and then a definition of a different type (e.g. 1233 // "int x[10];"). This also happens when an initializer has a different type 1234 // from the type of the global (this happens with unions). 1235 if (GV == 0 || 1236 GV->getType()->getElementType() != InitType || 1237 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1238 1239 // Move the old entry aside so that we'll create a new one. 1240 Entry->setName(llvm::StringRef()); 1241 1242 // Make a new global with the correct type, this is now guaranteed to work. 1243 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1244 1245 // Replace all uses of the old global with the new global 1246 llvm::Constant *NewPtrForOldDecl = 1247 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1248 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1249 1250 // Erase the old global, since it is no longer used. 1251 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1252 } 1253 1254 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1255 SourceManager &SM = Context.getSourceManager(); 1256 AddAnnotation(EmitAnnotateAttr(GV, AA, 1257 SM.getInstantiationLineNumber(D->getLocation()))); 1258 } 1259 1260 GV->setInitializer(Init); 1261 1262 // If it is safe to mark the global 'constant', do so now. 1263 GV->setConstant(false); 1264 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1265 GV->setConstant(true); 1266 1267 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1268 1269 // Set the llvm linkage type as appropriate. 1270 llvm::GlobalValue::LinkageTypes Linkage = 1271 GetLLVMLinkageVarDefinition(D, GV); 1272 GV->setLinkage(Linkage); 1273 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1274 // common vars aren't constant even if declared const. 1275 GV->setConstant(false); 1276 1277 SetCommonAttributes(D, GV); 1278 1279 // Emit the initializer function if necessary. 1280 if (NonConstInit) 1281 EmitCXXGlobalVarDeclInitFunc(D, GV); 1282 1283 // Emit global variable debug information. 1284 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1285 DI->setLocation(D->getLocation()); 1286 DI->EmitGlobalVariable(GV, D); 1287 } 1288 } 1289 1290 llvm::GlobalValue::LinkageTypes 1291 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1292 llvm::GlobalVariable *GV) { 1293 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1294 if (Linkage == GVA_Internal) 1295 return llvm::Function::InternalLinkage; 1296 else if (D->hasAttr<DLLImportAttr>()) 1297 return llvm::Function::DLLImportLinkage; 1298 else if (D->hasAttr<DLLExportAttr>()) 1299 return llvm::Function::DLLExportLinkage; 1300 else if (D->hasAttr<WeakAttr>()) { 1301 if (GV->isConstant()) 1302 return llvm::GlobalVariable::WeakODRLinkage; 1303 else 1304 return llvm::GlobalVariable::WeakAnyLinkage; 1305 } else if (Linkage == GVA_TemplateInstantiation || 1306 Linkage == GVA_ExplicitTemplateInstantiation) 1307 // FIXME: It seems like we can provide more specific linkage here 1308 // (LinkOnceODR, WeakODR). 1309 return llvm::GlobalVariable::WeakAnyLinkage; 1310 else if (!getLangOptions().CPlusPlus && 1311 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1312 D->getAttr<CommonAttr>()) && 1313 !D->hasExternalStorage() && !D->getInit() && 1314 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1315 // Thread local vars aren't considered common linkage. 1316 return llvm::GlobalVariable::CommonLinkage; 1317 } 1318 return llvm::GlobalVariable::ExternalLinkage; 1319 } 1320 1321 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1322 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1323 /// existing call uses of the old function in the module, this adjusts them to 1324 /// call the new function directly. 1325 /// 1326 /// This is not just a cleanup: the always_inline pass requires direct calls to 1327 /// functions to be able to inline them. If there is a bitcast in the way, it 1328 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1329 /// run at -O0. 1330 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1331 llvm::Function *NewFn) { 1332 // If we're redefining a global as a function, don't transform it. 1333 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1334 if (OldFn == 0) return; 1335 1336 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1337 llvm::SmallVector<llvm::Value*, 4> ArgList; 1338 1339 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1340 UI != E; ) { 1341 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1342 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1343 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1344 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1345 llvm::CallSite CS(CI); 1346 if (!CI || !CS.isCallee(I)) continue; 1347 1348 // If the return types don't match exactly, and if the call isn't dead, then 1349 // we can't transform this call. 1350 if (CI->getType() != NewRetTy && !CI->use_empty()) 1351 continue; 1352 1353 // If the function was passed too few arguments, don't transform. If extra 1354 // arguments were passed, we silently drop them. If any of the types 1355 // mismatch, we don't transform. 1356 unsigned ArgNo = 0; 1357 bool DontTransform = false; 1358 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1359 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1360 if (CS.arg_size() == ArgNo || 1361 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1362 DontTransform = true; 1363 break; 1364 } 1365 } 1366 if (DontTransform) 1367 continue; 1368 1369 // Okay, we can transform this. Create the new call instruction and copy 1370 // over the required information. 1371 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1372 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1373 ArgList.end(), "", CI); 1374 ArgList.clear(); 1375 if (!NewCall->getType()->isVoidTy()) 1376 NewCall->takeName(CI); 1377 NewCall->setAttributes(CI->getAttributes()); 1378 NewCall->setCallingConv(CI->getCallingConv()); 1379 1380 // Finally, remove the old call, replacing any uses with the new one. 1381 if (!CI->use_empty()) 1382 CI->replaceAllUsesWith(NewCall); 1383 1384 // Copy debug location attached to CI. 1385 if (!CI->getDebugLoc().isUnknown()) 1386 NewCall->setDebugLoc(CI->getDebugLoc()); 1387 CI->eraseFromParent(); 1388 } 1389 } 1390 1391 1392 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1393 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1394 1395 // Compute the function info and LLVM type. 1396 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1397 bool variadic = false; 1398 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1399 variadic = fpt->isVariadic(); 1400 const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false); 1401 1402 // Get or create the prototype for the function. 1403 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1404 1405 // Strip off a bitcast if we got one back. 1406 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1407 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1408 Entry = CE->getOperand(0); 1409 } 1410 1411 1412 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1413 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1414 1415 // If the types mismatch then we have to rewrite the definition. 1416 assert(OldFn->isDeclaration() && 1417 "Shouldn't replace non-declaration"); 1418 1419 // F is the Function* for the one with the wrong type, we must make a new 1420 // Function* and update everything that used F (a declaration) with the new 1421 // Function* (which will be a definition). 1422 // 1423 // This happens if there is a prototype for a function 1424 // (e.g. "int f()") and then a definition of a different type 1425 // (e.g. "int f(int x)"). Move the old function aside so that it 1426 // doesn't interfere with GetAddrOfFunction. 1427 OldFn->setName(llvm::StringRef()); 1428 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1429 1430 // If this is an implementation of a function without a prototype, try to 1431 // replace any existing uses of the function (which may be calls) with uses 1432 // of the new function 1433 if (D->getType()->isFunctionNoProtoType()) { 1434 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1435 OldFn->removeDeadConstantUsers(); 1436 } 1437 1438 // Replace uses of F with the Function we will endow with a body. 1439 if (!Entry->use_empty()) { 1440 llvm::Constant *NewPtrForOldDecl = 1441 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1442 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1443 } 1444 1445 // Ok, delete the old function now, which is dead. 1446 OldFn->eraseFromParent(); 1447 1448 Entry = NewFn; 1449 } 1450 1451 // We need to set linkage and visibility on the function before 1452 // generating code for it because various parts of IR generation 1453 // want to propagate this information down (e.g. to local static 1454 // declarations). 1455 llvm::Function *Fn = cast<llvm::Function>(Entry); 1456 setFunctionLinkage(D, Fn); 1457 1458 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1459 setGlobalVisibility(Fn, D); 1460 1461 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1462 1463 SetFunctionDefinitionAttributes(D, Fn); 1464 SetLLVMFunctionAttributesForDefinition(D, Fn); 1465 1466 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1467 AddGlobalCtor(Fn, CA->getPriority()); 1468 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1469 AddGlobalDtor(Fn, DA->getPriority()); 1470 } 1471 1472 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1473 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1474 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1475 assert(AA && "Not an alias?"); 1476 1477 llvm::StringRef MangledName = getMangledName(GD); 1478 1479 // If there is a definition in the module, then it wins over the alias. 1480 // This is dubious, but allow it to be safe. Just ignore the alias. 1481 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1482 if (Entry && !Entry->isDeclaration()) 1483 return; 1484 1485 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1486 1487 // Create a reference to the named value. This ensures that it is emitted 1488 // if a deferred decl. 1489 llvm::Constant *Aliasee; 1490 if (isa<llvm::FunctionType>(DeclTy)) 1491 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1492 /*ForVTable=*/false); 1493 else 1494 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1495 llvm::PointerType::getUnqual(DeclTy), 0); 1496 1497 // Create the new alias itself, but don't set a name yet. 1498 llvm::GlobalValue *GA = 1499 new llvm::GlobalAlias(Aliasee->getType(), 1500 llvm::Function::ExternalLinkage, 1501 "", Aliasee, &getModule()); 1502 1503 if (Entry) { 1504 assert(Entry->isDeclaration()); 1505 1506 // If there is a declaration in the module, then we had an extern followed 1507 // by the alias, as in: 1508 // extern int test6(); 1509 // ... 1510 // int test6() __attribute__((alias("test7"))); 1511 // 1512 // Remove it and replace uses of it with the alias. 1513 GA->takeName(Entry); 1514 1515 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1516 Entry->getType())); 1517 Entry->eraseFromParent(); 1518 } else { 1519 GA->setName(MangledName); 1520 } 1521 1522 // Set attributes which are particular to an alias; this is a 1523 // specialization of the attributes which may be set on a global 1524 // variable/function. 1525 if (D->hasAttr<DLLExportAttr>()) { 1526 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1527 // The dllexport attribute is ignored for undefined symbols. 1528 if (FD->hasBody()) 1529 GA->setLinkage(llvm::Function::DLLExportLinkage); 1530 } else { 1531 GA->setLinkage(llvm::Function::DLLExportLinkage); 1532 } 1533 } else if (D->hasAttr<WeakAttr>() || 1534 D->hasAttr<WeakRefAttr>() || 1535 D->hasAttr<WeakImportAttr>()) { 1536 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1537 } 1538 1539 SetCommonAttributes(D, GA); 1540 } 1541 1542 /// getBuiltinLibFunction - Given a builtin id for a function like 1543 /// "__builtin_fabsf", return a Function* for "fabsf". 1544 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1545 unsigned BuiltinID) { 1546 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1547 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1548 "isn't a lib fn"); 1549 1550 // Get the name, skip over the __builtin_ prefix (if necessary). 1551 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1552 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1553 Name += 10; 1554 1555 const llvm::FunctionType *Ty = 1556 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1557 1558 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); 1559 } 1560 1561 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1562 unsigned NumTys) { 1563 return llvm::Intrinsic::getDeclaration(&getModule(), 1564 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1565 } 1566 1567 static llvm::StringMapEntry<llvm::Constant*> & 1568 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1569 const StringLiteral *Literal, 1570 bool TargetIsLSB, 1571 bool &IsUTF16, 1572 unsigned &StringLength) { 1573 llvm::StringRef String = Literal->getString(); 1574 unsigned NumBytes = String.size(); 1575 1576 // Check for simple case. 1577 if (!Literal->containsNonAsciiOrNull()) { 1578 StringLength = NumBytes; 1579 return Map.GetOrCreateValue(String); 1580 } 1581 1582 // Otherwise, convert the UTF8 literals into a byte string. 1583 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1584 const UTF8 *FromPtr = (UTF8 *)String.data(); 1585 UTF16 *ToPtr = &ToBuf[0]; 1586 1587 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1588 &ToPtr, ToPtr + NumBytes, 1589 strictConversion); 1590 1591 // ConvertUTF8toUTF16 returns the length in ToPtr. 1592 StringLength = ToPtr - &ToBuf[0]; 1593 1594 // Render the UTF-16 string into a byte array and convert to the target byte 1595 // order. 1596 // 1597 // FIXME: This isn't something we should need to do here. 1598 llvm::SmallString<128> AsBytes; 1599 AsBytes.reserve(StringLength * 2); 1600 for (unsigned i = 0; i != StringLength; ++i) { 1601 unsigned short Val = ToBuf[i]; 1602 if (TargetIsLSB) { 1603 AsBytes.push_back(Val & 0xFF); 1604 AsBytes.push_back(Val >> 8); 1605 } else { 1606 AsBytes.push_back(Val >> 8); 1607 AsBytes.push_back(Val & 0xFF); 1608 } 1609 } 1610 // Append one extra null character, the second is automatically added by our 1611 // caller. 1612 AsBytes.push_back(0); 1613 1614 IsUTF16 = true; 1615 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1616 } 1617 1618 llvm::Constant * 1619 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1620 unsigned StringLength = 0; 1621 bool isUTF16 = false; 1622 llvm::StringMapEntry<llvm::Constant*> &Entry = 1623 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1624 getTargetData().isLittleEndian(), 1625 isUTF16, StringLength); 1626 1627 if (llvm::Constant *C = Entry.getValue()) 1628 return C; 1629 1630 llvm::Constant *Zero = 1631 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1632 llvm::Constant *Zeros[] = { Zero, Zero }; 1633 1634 // If we don't already have it, get __CFConstantStringClassReference. 1635 if (!CFConstantStringClassRef) { 1636 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1637 Ty = llvm::ArrayType::get(Ty, 0); 1638 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1639 "__CFConstantStringClassReference"); 1640 // Decay array -> ptr 1641 CFConstantStringClassRef = 1642 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1643 } 1644 1645 QualType CFTy = getContext().getCFConstantStringType(); 1646 1647 const llvm::StructType *STy = 1648 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1649 1650 std::vector<llvm::Constant*> Fields(4); 1651 1652 // Class pointer. 1653 Fields[0] = CFConstantStringClassRef; 1654 1655 // Flags. 1656 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1657 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1658 llvm::ConstantInt::get(Ty, 0x07C8); 1659 1660 // String pointer. 1661 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1662 1663 llvm::GlobalValue::LinkageTypes Linkage; 1664 bool isConstant; 1665 if (isUTF16) { 1666 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1667 Linkage = llvm::GlobalValue::InternalLinkage; 1668 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1669 // does make plain ascii ones writable. 1670 isConstant = true; 1671 } else { 1672 Linkage = llvm::GlobalValue::PrivateLinkage; 1673 isConstant = !Features.WritableStrings; 1674 } 1675 1676 llvm::GlobalVariable *GV = 1677 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1678 ".str"); 1679 GV->setUnnamedAddr(true); 1680 if (isUTF16) { 1681 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1682 GV->setAlignment(Align.getQuantity()); 1683 } 1684 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1685 1686 // String length. 1687 Ty = getTypes().ConvertType(getContext().LongTy); 1688 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1689 1690 // The struct. 1691 C = llvm::ConstantStruct::get(STy, Fields); 1692 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1693 llvm::GlobalVariable::PrivateLinkage, C, 1694 "_unnamed_cfstring_"); 1695 if (const char *Sect = getContext().Target.getCFStringSection()) 1696 GV->setSection(Sect); 1697 Entry.setValue(GV); 1698 1699 return GV; 1700 } 1701 1702 llvm::Constant * 1703 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1704 unsigned StringLength = 0; 1705 bool isUTF16 = false; 1706 llvm::StringMapEntry<llvm::Constant*> &Entry = 1707 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1708 getTargetData().isLittleEndian(), 1709 isUTF16, StringLength); 1710 1711 if (llvm::Constant *C = Entry.getValue()) 1712 return C; 1713 1714 llvm::Constant *Zero = 1715 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1716 llvm::Constant *Zeros[] = { Zero, Zero }; 1717 1718 // If we don't already have it, get _NSConstantStringClassReference. 1719 if (!ConstantStringClassRef) { 1720 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1721 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1722 Ty = llvm::ArrayType::get(Ty, 0); 1723 llvm::Constant *GV; 1724 if (StringClass.empty()) 1725 GV = CreateRuntimeVariable(Ty, 1726 Features.ObjCNonFragileABI ? 1727 "OBJC_CLASS_$_NSConstantString" : 1728 "_NSConstantStringClassReference"); 1729 else { 1730 std::string str; 1731 if (Features.ObjCNonFragileABI) 1732 str = "OBJC_CLASS_$_" + StringClass; 1733 else 1734 str = "_" + StringClass + "ClassReference"; 1735 GV = CreateRuntimeVariable(Ty, str); 1736 } 1737 // Decay array -> ptr 1738 ConstantStringClassRef = 1739 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1740 } 1741 1742 QualType NSTy = getContext().getNSConstantStringType(); 1743 1744 const llvm::StructType *STy = 1745 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1746 1747 std::vector<llvm::Constant*> Fields(3); 1748 1749 // Class pointer. 1750 Fields[0] = ConstantStringClassRef; 1751 1752 // String pointer. 1753 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1754 1755 llvm::GlobalValue::LinkageTypes Linkage; 1756 bool isConstant; 1757 if (isUTF16) { 1758 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1759 Linkage = llvm::GlobalValue::InternalLinkage; 1760 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1761 // does make plain ascii ones writable. 1762 isConstant = true; 1763 } else { 1764 Linkage = llvm::GlobalValue::PrivateLinkage; 1765 isConstant = !Features.WritableStrings; 1766 } 1767 1768 llvm::GlobalVariable *GV = 1769 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1770 ".str"); 1771 GV->setUnnamedAddr(true); 1772 if (isUTF16) { 1773 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1774 GV->setAlignment(Align.getQuantity()); 1775 } 1776 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1777 1778 // String length. 1779 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1780 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1781 1782 // The struct. 1783 C = llvm::ConstantStruct::get(STy, Fields); 1784 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1785 llvm::GlobalVariable::PrivateLinkage, C, 1786 "_unnamed_nsstring_"); 1787 // FIXME. Fix section. 1788 if (const char *Sect = 1789 Features.ObjCNonFragileABI 1790 ? getContext().Target.getNSStringNonFragileABISection() 1791 : getContext().Target.getNSStringSection()) 1792 GV->setSection(Sect); 1793 Entry.setValue(GV); 1794 1795 return GV; 1796 } 1797 1798 /// GetStringForStringLiteral - Return the appropriate bytes for a 1799 /// string literal, properly padded to match the literal type. 1800 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1801 const ASTContext &Context = getContext(); 1802 const ConstantArrayType *CAT = 1803 Context.getAsConstantArrayType(E->getType()); 1804 assert(CAT && "String isn't pointer or array!"); 1805 1806 // Resize the string to the right size. 1807 uint64_t RealLen = CAT->getSize().getZExtValue(); 1808 1809 if (E->isWide()) 1810 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1811 1812 std::string Str = E->getString().str(); 1813 Str.resize(RealLen, '\0'); 1814 1815 return Str; 1816 } 1817 1818 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1819 /// constant array for the given string literal. 1820 llvm::Constant * 1821 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1822 // FIXME: This can be more efficient. 1823 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1824 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1825 if (S->isWide()) { 1826 llvm::Type *DestTy = 1827 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1828 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1829 } 1830 return C; 1831 } 1832 1833 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1834 /// array for the given ObjCEncodeExpr node. 1835 llvm::Constant * 1836 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1837 std::string Str; 1838 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1839 1840 return GetAddrOfConstantCString(Str); 1841 } 1842 1843 1844 /// GenerateWritableString -- Creates storage for a string literal. 1845 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str, 1846 bool constant, 1847 CodeGenModule &CGM, 1848 const char *GlobalName) { 1849 // Create Constant for this string literal. Don't add a '\0'. 1850 llvm::Constant *C = 1851 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1852 1853 // Create a global variable for this string 1854 llvm::GlobalVariable *GV = 1855 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1856 llvm::GlobalValue::PrivateLinkage, 1857 C, GlobalName); 1858 GV->setUnnamedAddr(true); 1859 return GV; 1860 } 1861 1862 /// GetAddrOfConstantString - Returns a pointer to a character array 1863 /// containing the literal. This contents are exactly that of the 1864 /// given string, i.e. it will not be null terminated automatically; 1865 /// see GetAddrOfConstantCString. Note that whether the result is 1866 /// actually a pointer to an LLVM constant depends on 1867 /// Feature.WriteableStrings. 1868 /// 1869 /// The result has pointer to array type. 1870 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str, 1871 const char *GlobalName) { 1872 bool IsConstant = !Features.WritableStrings; 1873 1874 // Get the default prefix if a name wasn't specified. 1875 if (!GlobalName) 1876 GlobalName = ".str"; 1877 1878 // Don't share any string literals if strings aren't constant. 1879 if (!IsConstant) 1880 return GenerateStringLiteral(Str, false, *this, GlobalName); 1881 1882 llvm::StringMapEntry<llvm::Constant *> &Entry = 1883 ConstantStringMap.GetOrCreateValue(Str); 1884 1885 if (Entry.getValue()) 1886 return Entry.getValue(); 1887 1888 // Create a global variable for this. 1889 llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName); 1890 Entry.setValue(C); 1891 return C; 1892 } 1893 1894 /// GetAddrOfConstantCString - Returns a pointer to a character 1895 /// array containing the literal and a terminating '\0' 1896 /// character. The result has pointer to array type. 1897 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 1898 const char *GlobalName){ 1899 llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1); 1900 return GetAddrOfConstantString(StrWithNull, GlobalName); 1901 } 1902 1903 /// EmitObjCPropertyImplementations - Emit information for synthesized 1904 /// properties for an implementation. 1905 void CodeGenModule::EmitObjCPropertyImplementations(const 1906 ObjCImplementationDecl *D) { 1907 for (ObjCImplementationDecl::propimpl_iterator 1908 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1909 ObjCPropertyImplDecl *PID = *i; 1910 1911 // Dynamic is just for type-checking. 1912 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1913 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1914 1915 // Determine which methods need to be implemented, some may have 1916 // been overridden. Note that ::isSynthesized is not the method 1917 // we want, that just indicates if the decl came from a 1918 // property. What we want to know is if the method is defined in 1919 // this implementation. 1920 if (!D->getInstanceMethod(PD->getGetterName())) 1921 CodeGenFunction(*this).GenerateObjCGetter( 1922 const_cast<ObjCImplementationDecl *>(D), PID); 1923 if (!PD->isReadOnly() && 1924 !D->getInstanceMethod(PD->getSetterName())) 1925 CodeGenFunction(*this).GenerateObjCSetter( 1926 const_cast<ObjCImplementationDecl *>(D), PID); 1927 } 1928 } 1929 } 1930 1931 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1932 /// for an implementation. 1933 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1934 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1935 return; 1936 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1937 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1938 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1939 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1940 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1941 D->getLocation(), 1942 D->getLocation(), cxxSelector, 1943 getContext().VoidTy, 0, 1944 DC, true, false, true, false, 1945 ObjCMethodDecl::Required); 1946 D->addInstanceMethod(DTORMethod); 1947 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1948 1949 II = &getContext().Idents.get(".cxx_construct"); 1950 cxxSelector = getContext().Selectors.getSelector(0, &II); 1951 // The constructor returns 'self'. 1952 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1953 D->getLocation(), 1954 D->getLocation(), cxxSelector, 1955 getContext().getObjCIdType(), 0, 1956 DC, true, false, true, false, 1957 ObjCMethodDecl::Required); 1958 D->addInstanceMethod(CTORMethod); 1959 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1960 1961 1962 } 1963 1964 /// EmitNamespace - Emit all declarations in a namespace. 1965 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1966 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1967 I != E; ++I) 1968 EmitTopLevelDecl(*I); 1969 } 1970 1971 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1972 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1973 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1974 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1975 ErrorUnsupported(LSD, "linkage spec"); 1976 return; 1977 } 1978 1979 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1980 I != E; ++I) 1981 EmitTopLevelDecl(*I); 1982 } 1983 1984 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1985 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1986 // If an error has occurred, stop code generation, but continue 1987 // parsing and semantic analysis (to ensure all warnings and errors 1988 // are emitted). 1989 if (Diags.hasErrorOccurred()) 1990 return; 1991 1992 // Ignore dependent declarations. 1993 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1994 return; 1995 1996 switch (D->getKind()) { 1997 case Decl::CXXConversion: 1998 case Decl::CXXMethod: 1999 case Decl::Function: 2000 // Skip function templates 2001 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2002 return; 2003 2004 EmitGlobal(cast<FunctionDecl>(D)); 2005 break; 2006 2007 case Decl::Var: 2008 EmitGlobal(cast<VarDecl>(D)); 2009 break; 2010 2011 // C++ Decls 2012 case Decl::Namespace: 2013 EmitNamespace(cast<NamespaceDecl>(D)); 2014 break; 2015 // No code generation needed. 2016 case Decl::UsingShadow: 2017 case Decl::Using: 2018 case Decl::UsingDirective: 2019 case Decl::ClassTemplate: 2020 case Decl::FunctionTemplate: 2021 case Decl::NamespaceAlias: 2022 break; 2023 case Decl::CXXConstructor: 2024 // Skip function templates 2025 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2026 return; 2027 2028 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2029 break; 2030 case Decl::CXXDestructor: 2031 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2032 break; 2033 2034 case Decl::StaticAssert: 2035 // Nothing to do. 2036 break; 2037 2038 // Objective-C Decls 2039 2040 // Forward declarations, no (immediate) code generation. 2041 case Decl::ObjCClass: 2042 case Decl::ObjCForwardProtocol: 2043 case Decl::ObjCInterface: 2044 break; 2045 2046 case Decl::ObjCCategory: { 2047 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2048 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2049 Context.ResetObjCLayout(CD->getClassInterface()); 2050 break; 2051 } 2052 2053 2054 case Decl::ObjCProtocol: 2055 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2056 break; 2057 2058 case Decl::ObjCCategoryImpl: 2059 // Categories have properties but don't support synthesize so we 2060 // can ignore them here. 2061 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2062 break; 2063 2064 case Decl::ObjCImplementation: { 2065 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2066 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2067 Context.ResetObjCLayout(OMD->getClassInterface()); 2068 EmitObjCPropertyImplementations(OMD); 2069 EmitObjCIvarInitializations(OMD); 2070 Runtime->GenerateClass(OMD); 2071 break; 2072 } 2073 case Decl::ObjCMethod: { 2074 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2075 // If this is not a prototype, emit the body. 2076 if (OMD->getBody()) 2077 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2078 break; 2079 } 2080 case Decl::ObjCCompatibleAlias: 2081 // compatibility-alias is a directive and has no code gen. 2082 break; 2083 2084 case Decl::LinkageSpec: 2085 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2086 break; 2087 2088 case Decl::FileScopeAsm: { 2089 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2090 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2091 2092 const std::string &S = getModule().getModuleInlineAsm(); 2093 if (S.empty()) 2094 getModule().setModuleInlineAsm(AsmString); 2095 else 2096 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2097 break; 2098 } 2099 2100 default: 2101 // Make sure we handled everything we should, every other kind is a 2102 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2103 // function. Need to recode Decl::Kind to do that easily. 2104 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2105 } 2106 } 2107 2108 /// Turns the given pointer into a constant. 2109 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2110 const void *Ptr) { 2111 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2112 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2113 return llvm::ConstantInt::get(i64, PtrInt); 2114 } 2115 2116 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2117 llvm::NamedMDNode *&GlobalMetadata, 2118 GlobalDecl D, 2119 llvm::GlobalValue *Addr) { 2120 if (!GlobalMetadata) 2121 GlobalMetadata = 2122 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2123 2124 // TODO: should we report variant information for ctors/dtors? 2125 llvm::Value *Ops[] = { 2126 Addr, 2127 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2128 }; 2129 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2130 } 2131 2132 /// Emits metadata nodes associating all the global values in the 2133 /// current module with the Decls they came from. This is useful for 2134 /// projects using IR gen as a subroutine. 2135 /// 2136 /// Since there's currently no way to associate an MDNode directly 2137 /// with an llvm::GlobalValue, we create a global named metadata 2138 /// with the name 'clang.global.decl.ptrs'. 2139 void CodeGenModule::EmitDeclMetadata() { 2140 llvm::NamedMDNode *GlobalMetadata = 0; 2141 2142 // StaticLocalDeclMap 2143 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2144 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2145 I != E; ++I) { 2146 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2147 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2148 } 2149 } 2150 2151 /// Emits metadata nodes for all the local variables in the current 2152 /// function. 2153 void CodeGenFunction::EmitDeclMetadata() { 2154 if (LocalDeclMap.empty()) return; 2155 2156 llvm::LLVMContext &Context = getLLVMContext(); 2157 2158 // Find the unique metadata ID for this name. 2159 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2160 2161 llvm::NamedMDNode *GlobalMetadata = 0; 2162 2163 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2164 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2165 const Decl *D = I->first; 2166 llvm::Value *Addr = I->second; 2167 2168 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2169 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2170 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2171 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2172 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2173 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2174 } 2175 } 2176 } 2177 2178 ///@name Custom Runtime Function Interfaces 2179 ///@{ 2180 // 2181 // FIXME: These can be eliminated once we can have clients just get the required 2182 // AST nodes from the builtin tables. 2183 2184 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2185 if (BlockObjectDispose) 2186 return BlockObjectDispose; 2187 2188 // If we saw an explicit decl, use that. 2189 if (BlockObjectDisposeDecl) { 2190 return BlockObjectDispose = GetAddrOfFunction( 2191 BlockObjectDisposeDecl, 2192 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2193 } 2194 2195 // Otherwise construct the function by hand. 2196 const llvm::FunctionType *FTy; 2197 std::vector<const llvm::Type*> ArgTys; 2198 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2199 ArgTys.push_back(Int8PtrTy); 2200 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2201 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2202 return BlockObjectDispose = 2203 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2204 } 2205 2206 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2207 if (BlockObjectAssign) 2208 return BlockObjectAssign; 2209 2210 // If we saw an explicit decl, use that. 2211 if (BlockObjectAssignDecl) { 2212 return BlockObjectAssign = GetAddrOfFunction( 2213 BlockObjectAssignDecl, 2214 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2215 } 2216 2217 // Otherwise construct the function by hand. 2218 const llvm::FunctionType *FTy; 2219 std::vector<const llvm::Type*> ArgTys; 2220 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2221 ArgTys.push_back(Int8PtrTy); 2222 ArgTys.push_back(Int8PtrTy); 2223 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2224 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2225 return BlockObjectAssign = 2226 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2227 } 2228 2229 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2230 if (NSConcreteGlobalBlock) 2231 return NSConcreteGlobalBlock; 2232 2233 // If we saw an explicit decl, use that. 2234 if (NSConcreteGlobalBlockDecl) { 2235 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2236 NSConcreteGlobalBlockDecl, 2237 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2238 } 2239 2240 // Otherwise construct the variable by hand. 2241 return NSConcreteGlobalBlock = 2242 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2243 } 2244 2245 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2246 if (NSConcreteStackBlock) 2247 return NSConcreteStackBlock; 2248 2249 // If we saw an explicit decl, use that. 2250 if (NSConcreteStackBlockDecl) { 2251 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2252 NSConcreteStackBlockDecl, 2253 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2254 } 2255 2256 // Otherwise construct the variable by hand. 2257 return NSConcreteStackBlock = 2258 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2259 } 2260 2261 ///@} 2262