1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 57 #include "llvm/IR/AttributeMask.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/ProfileSummary.h" 64 #include "llvm/ProfileData/InstrProfReader.h" 65 #include "llvm/ProfileData/SampleProf.h" 66 #include "llvm/Support/CRC.h" 67 #include "llvm/Support/CodeGen.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/ConvertUTF.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/RISCVISAInfo.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/Triple.h" 75 #include "llvm/TargetParser/X86TargetParser.h" 76 #include <optional> 77 78 using namespace clang; 79 using namespace CodeGen; 80 81 static llvm::cl::opt<bool> LimitedCoverage( 82 "limited-coverage-experimental", llvm::cl::Hidden, 83 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 84 85 static const char AnnotationSection[] = "llvm.metadata"; 86 87 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 88 switch (CGM.getContext().getCXXABIKind()) { 89 case TargetCXXABI::AppleARM64: 90 case TargetCXXABI::Fuchsia: 91 case TargetCXXABI::GenericAArch64: 92 case TargetCXXABI::GenericARM: 93 case TargetCXXABI::iOS: 94 case TargetCXXABI::WatchOS: 95 case TargetCXXABI::GenericMIPS: 96 case TargetCXXABI::GenericItanium: 97 case TargetCXXABI::WebAssembly: 98 case TargetCXXABI::XL: 99 return CreateItaniumCXXABI(CGM); 100 case TargetCXXABI::Microsoft: 101 return CreateMicrosoftCXXABI(CGM); 102 } 103 104 llvm_unreachable("invalid C++ ABI kind"); 105 } 106 107 static std::unique_ptr<TargetCodeGenInfo> 108 createTargetCodeGenInfo(CodeGenModule &CGM) { 109 const TargetInfo &Target = CGM.getTarget(); 110 const llvm::Triple &Triple = Target.getTriple(); 111 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 112 113 switch (Triple.getArch()) { 114 default: 115 return createDefaultTargetCodeGenInfo(CGM); 116 117 case llvm::Triple::le32: 118 return createPNaClTargetCodeGenInfo(CGM); 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 149 return createAArch64TargetCodeGenInfo(CGM, Kind); 150 } 151 152 case llvm::Triple::wasm32: 153 case llvm::Triple::wasm64: { 154 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 155 if (Target.getABI() == "experimental-mv") 156 Kind = WebAssemblyABIKind::ExperimentalMV; 157 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 158 } 159 160 case llvm::Triple::arm: 161 case llvm::Triple::armeb: 162 case llvm::Triple::thumb: 163 case llvm::Triple::thumbeb: { 164 if (Triple.getOS() == llvm::Triple::Win32) 165 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 166 167 ARMABIKind Kind = ARMABIKind::AAPCS; 168 StringRef ABIStr = Target.getABI(); 169 if (ABIStr == "apcs-gnu") 170 Kind = ARMABIKind::APCS; 171 else if (ABIStr == "aapcs16") 172 Kind = ARMABIKind::AAPCS16_VFP; 173 else if (CodeGenOpts.FloatABI == "hard" || 174 (CodeGenOpts.FloatABI != "soft" && 175 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 176 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 177 Triple.getEnvironment() == llvm::Triple::EABIHF))) 178 Kind = ARMABIKind::AAPCS_VFP; 179 180 return createARMTargetCodeGenInfo(CGM, Kind); 181 } 182 183 case llvm::Triple::ppc: { 184 if (Triple.isOSAIX()) 185 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 186 187 bool IsSoftFloat = 188 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 189 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 190 } 191 case llvm::Triple::ppcle: { 192 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppc64: 196 if (Triple.isOSAIX()) 197 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 198 199 if (Triple.isOSBinFormatELF()) { 200 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 201 if (Target.getABI() == "elfv2") 202 Kind = PPC64_SVR4_ABIKind::ELFv2; 203 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 204 205 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 206 } 207 return createPPC64TargetCodeGenInfo(CGM); 208 case llvm::Triple::ppc64le: { 209 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 210 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 211 if (Target.getABI() == "elfv1") 212 Kind = PPC64_SVR4_ABIKind::ELFv1; 213 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 214 215 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 216 } 217 218 case llvm::Triple::nvptx: 219 case llvm::Triple::nvptx64: 220 return createNVPTXTargetCodeGenInfo(CGM); 221 222 case llvm::Triple::msp430: 223 return createMSP430TargetCodeGenInfo(CGM); 224 225 case llvm::Triple::riscv32: 226 case llvm::Triple::riscv64: { 227 StringRef ABIStr = Target.getABI(); 228 unsigned XLen = Target.getPointerWidth(LangAS::Default); 229 unsigned ABIFLen = 0; 230 if (ABIStr.ends_with("f")) 231 ABIFLen = 32; 232 else if (ABIStr.ends_with("d")) 233 ABIFLen = 64; 234 bool EABI = ABIStr.ends_with("e"); 235 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 236 } 237 238 case llvm::Triple::systemz: { 239 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 240 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 241 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 242 } 243 244 case llvm::Triple::tce: 245 case llvm::Triple::tcele: 246 return createTCETargetCodeGenInfo(CGM); 247 248 case llvm::Triple::x86: { 249 bool IsDarwinVectorABI = Triple.isOSDarwin(); 250 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 251 252 if (Triple.getOS() == llvm::Triple::Win32) { 253 return createWinX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters); 256 } 257 return createX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 260 } 261 262 case llvm::Triple::x86_64: { 263 StringRef ABI = Target.getABI(); 264 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 265 : ABI == "avx" ? X86AVXABILevel::AVX 266 : X86AVXABILevel::None); 267 268 switch (Triple.getOS()) { 269 case llvm::Triple::Win32: 270 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 271 default: 272 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 273 } 274 } 275 case llvm::Triple::hexagon: 276 return createHexagonTargetCodeGenInfo(CGM); 277 case llvm::Triple::lanai: 278 return createLanaiTargetCodeGenInfo(CGM); 279 case llvm::Triple::r600: 280 return createAMDGPUTargetCodeGenInfo(CGM); 281 case llvm::Triple::amdgcn: 282 return createAMDGPUTargetCodeGenInfo(CGM); 283 case llvm::Triple::sparc: 284 return createSparcV8TargetCodeGenInfo(CGM); 285 case llvm::Triple::sparcv9: 286 return createSparcV9TargetCodeGenInfo(CGM); 287 case llvm::Triple::xcore: 288 return createXCoreTargetCodeGenInfo(CGM); 289 case llvm::Triple::arc: 290 return createARCTargetCodeGenInfo(CGM); 291 case llvm::Triple::spir: 292 case llvm::Triple::spir64: 293 return createCommonSPIRTargetCodeGenInfo(CGM); 294 case llvm::Triple::spirv32: 295 case llvm::Triple::spirv64: 296 return createSPIRVTargetCodeGenInfo(CGM); 297 case llvm::Triple::ve: 298 return createVETargetCodeGenInfo(CGM); 299 case llvm::Triple::csky: { 300 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 301 bool hasFP64 = 302 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 303 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 304 : hasFP64 ? 64 305 : 32); 306 } 307 case llvm::Triple::bpfeb: 308 case llvm::Triple::bpfel: 309 return createBPFTargetCodeGenInfo(CGM); 310 case llvm::Triple::loongarch32: 311 case llvm::Triple::loongarch64: { 312 StringRef ABIStr = Target.getABI(); 313 unsigned ABIFRLen = 0; 314 if (ABIStr.ends_with("f")) 315 ABIFRLen = 32; 316 else if (ABIStr.ends_with("d")) 317 ABIFRLen = 64; 318 return createLoongArchTargetCodeGenInfo( 319 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 320 } 321 } 322 } 323 324 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 325 if (!TheTargetCodeGenInfo) 326 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 327 return *TheTargetCodeGenInfo; 328 } 329 330 CodeGenModule::CodeGenModule(ASTContext &C, 331 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 332 const HeaderSearchOptions &HSO, 333 const PreprocessorOptions &PPO, 334 const CodeGenOptions &CGO, llvm::Module &M, 335 DiagnosticsEngine &diags, 336 CoverageSourceInfo *CoverageInfo) 337 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 338 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 339 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 340 VMContext(M.getContext()), Types(*this), VTables(*this), 341 SanitizerMD(new SanitizerMetadata(*this)) { 342 343 // Initialize the type cache. 344 llvm::LLVMContext &LLVMContext = M.getContext(); 345 VoidTy = llvm::Type::getVoidTy(LLVMContext); 346 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 347 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 348 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 349 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 350 HalfTy = llvm::Type::getHalfTy(LLVMContext); 351 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 352 FloatTy = llvm::Type::getFloatTy(LLVMContext); 353 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 354 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 355 PointerAlignInBytes = 356 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 357 .getQuantity(); 358 SizeSizeInBytes = 359 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 360 IntAlignInBytes = 361 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 362 CharTy = 363 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 364 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 365 IntPtrTy = llvm::IntegerType::get(LLVMContext, 366 C.getTargetInfo().getMaxPointerWidth()); 367 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 368 const llvm::DataLayout &DL = M.getDataLayout(); 369 AllocaInt8PtrTy = 370 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 371 GlobalsInt8PtrTy = 372 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 373 ConstGlobalsPtrTy = llvm::PointerType::get( 374 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 375 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 376 377 // Build C++20 Module initializers. 378 // TODO: Add Microsoft here once we know the mangling required for the 379 // initializers. 380 CXX20ModuleInits = 381 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 382 ItaniumMangleContext::MK_Itanium; 383 384 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 385 386 if (LangOpts.ObjC) 387 createObjCRuntime(); 388 if (LangOpts.OpenCL) 389 createOpenCLRuntime(); 390 if (LangOpts.OpenMP) 391 createOpenMPRuntime(); 392 if (LangOpts.CUDA) 393 createCUDARuntime(); 394 if (LangOpts.HLSL) 395 createHLSLRuntime(); 396 397 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 398 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 399 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 400 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 401 getLangOpts(), getCXXABI().getMangleContext())); 402 403 // If debug info or coverage generation is enabled, create the CGDebugInfo 404 // object. 405 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 406 CodeGenOpts.CoverageNotesFile.size() || 407 CodeGenOpts.CoverageDataFile.size()) 408 DebugInfo.reset(new CGDebugInfo(*this)); 409 410 Block.GlobalUniqueCount = 0; 411 412 if (C.getLangOpts().ObjC) 413 ObjCData.reset(new ObjCEntrypoints()); 414 415 if (CodeGenOpts.hasProfileClangUse()) { 416 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 417 CodeGenOpts.ProfileInstrumentUsePath, *FS, 418 CodeGenOpts.ProfileRemappingFile); 419 // We're checking for profile read errors in CompilerInvocation, so if 420 // there was an error it should've already been caught. If it hasn't been 421 // somehow, trip an assertion. 422 assert(ReaderOrErr); 423 PGOReader = std::move(ReaderOrErr.get()); 424 } 425 426 // If coverage mapping generation is enabled, create the 427 // CoverageMappingModuleGen object. 428 if (CodeGenOpts.CoverageMapping) 429 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 430 431 // Generate the module name hash here if needed. 432 if (CodeGenOpts.UniqueInternalLinkageNames && 433 !getModule().getSourceFileName().empty()) { 434 std::string Path = getModule().getSourceFileName(); 435 // Check if a path substitution is needed from the MacroPrefixMap. 436 for (const auto &Entry : LangOpts.MacroPrefixMap) 437 if (Path.rfind(Entry.first, 0) != std::string::npos) { 438 Path = Entry.second + Path.substr(Entry.first.size()); 439 break; 440 } 441 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 442 } 443 } 444 445 CodeGenModule::~CodeGenModule() {} 446 447 void CodeGenModule::createObjCRuntime() { 448 // This is just isGNUFamily(), but we want to force implementors of 449 // new ABIs to decide how best to do this. 450 switch (LangOpts.ObjCRuntime.getKind()) { 451 case ObjCRuntime::GNUstep: 452 case ObjCRuntime::GCC: 453 case ObjCRuntime::ObjFW: 454 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 455 return; 456 457 case ObjCRuntime::FragileMacOSX: 458 case ObjCRuntime::MacOSX: 459 case ObjCRuntime::iOS: 460 case ObjCRuntime::WatchOS: 461 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 462 return; 463 } 464 llvm_unreachable("bad runtime kind"); 465 } 466 467 void CodeGenModule::createOpenCLRuntime() { 468 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 469 } 470 471 void CodeGenModule::createOpenMPRuntime() { 472 // Select a specialized code generation class based on the target, if any. 473 // If it does not exist use the default implementation. 474 switch (getTriple().getArch()) { 475 case llvm::Triple::nvptx: 476 case llvm::Triple::nvptx64: 477 case llvm::Triple::amdgcn: 478 assert(getLangOpts().OpenMPIsTargetDevice && 479 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 480 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 481 break; 482 default: 483 if (LangOpts.OpenMPSimd) 484 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 485 else 486 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 487 break; 488 } 489 } 490 491 void CodeGenModule::createCUDARuntime() { 492 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 493 } 494 495 void CodeGenModule::createHLSLRuntime() { 496 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 497 } 498 499 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 500 Replacements[Name] = C; 501 } 502 503 void CodeGenModule::applyReplacements() { 504 for (auto &I : Replacements) { 505 StringRef MangledName = I.first; 506 llvm::Constant *Replacement = I.second; 507 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 508 if (!Entry) 509 continue; 510 auto *OldF = cast<llvm::Function>(Entry); 511 auto *NewF = dyn_cast<llvm::Function>(Replacement); 512 if (!NewF) { 513 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 514 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 515 } else { 516 auto *CE = cast<llvm::ConstantExpr>(Replacement); 517 assert(CE->getOpcode() == llvm::Instruction::BitCast || 518 CE->getOpcode() == llvm::Instruction::GetElementPtr); 519 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 520 } 521 } 522 523 // Replace old with new, but keep the old order. 524 OldF->replaceAllUsesWith(Replacement); 525 if (NewF) { 526 NewF->removeFromParent(); 527 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 528 NewF); 529 } 530 OldF->eraseFromParent(); 531 } 532 } 533 534 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 535 GlobalValReplacements.push_back(std::make_pair(GV, C)); 536 } 537 538 void CodeGenModule::applyGlobalValReplacements() { 539 for (auto &I : GlobalValReplacements) { 540 llvm::GlobalValue *GV = I.first; 541 llvm::Constant *C = I.second; 542 543 GV->replaceAllUsesWith(C); 544 GV->eraseFromParent(); 545 } 546 } 547 548 // This is only used in aliases that we created and we know they have a 549 // linear structure. 550 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 551 const llvm::Constant *C; 552 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 553 C = GA->getAliasee(); 554 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 555 C = GI->getResolver(); 556 else 557 return GV; 558 559 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 560 if (!AliaseeGV) 561 return nullptr; 562 563 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 564 if (FinalGV == GV) 565 return nullptr; 566 567 return FinalGV; 568 } 569 570 static bool checkAliasedGlobal( 571 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 572 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 573 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 574 SourceRange AliasRange) { 575 GV = getAliasedGlobal(Alias); 576 if (!GV) { 577 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 578 return false; 579 } 580 581 if (GV->hasCommonLinkage()) { 582 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 583 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 584 Diags.Report(Location, diag::err_alias_to_common); 585 return false; 586 } 587 } 588 589 if (GV->isDeclaration()) { 590 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 591 Diags.Report(Location, diag::note_alias_requires_mangled_name) 592 << IsIFunc << IsIFunc; 593 // Provide a note if the given function is not found and exists as a 594 // mangled name. 595 for (const auto &[Decl, Name] : MangledDeclNames) { 596 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 597 if (ND->getName() == GV->getName()) { 598 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 599 << Name 600 << FixItHint::CreateReplacement( 601 AliasRange, 602 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 603 .str()); 604 } 605 } 606 } 607 return false; 608 } 609 610 if (IsIFunc) { 611 // Check resolver function type. 612 const auto *F = dyn_cast<llvm::Function>(GV); 613 if (!F) { 614 Diags.Report(Location, diag::err_alias_to_undefined) 615 << IsIFunc << IsIFunc; 616 return false; 617 } 618 619 llvm::FunctionType *FTy = F->getFunctionType(); 620 if (!FTy->getReturnType()->isPointerTy()) { 621 Diags.Report(Location, diag::err_ifunc_resolver_return); 622 return false; 623 } 624 } 625 626 return true; 627 } 628 629 void CodeGenModule::checkAliases() { 630 // Check if the constructed aliases are well formed. It is really unfortunate 631 // that we have to do this in CodeGen, but we only construct mangled names 632 // and aliases during codegen. 633 bool Error = false; 634 DiagnosticsEngine &Diags = getDiags(); 635 for (const GlobalDecl &GD : Aliases) { 636 const auto *D = cast<ValueDecl>(GD.getDecl()); 637 SourceLocation Location; 638 SourceRange Range; 639 bool IsIFunc = D->hasAttr<IFuncAttr>(); 640 if (const Attr *A = D->getDefiningAttr()) { 641 Location = A->getLocation(); 642 Range = A->getRange(); 643 } else 644 llvm_unreachable("Not an alias or ifunc?"); 645 646 StringRef MangledName = getMangledName(GD); 647 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 648 const llvm::GlobalValue *GV = nullptr; 649 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 650 MangledDeclNames, Range)) { 651 Error = true; 652 continue; 653 } 654 655 llvm::Constant *Aliasee = 656 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 657 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 658 659 llvm::GlobalValue *AliaseeGV; 660 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 661 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 662 else 663 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 664 665 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 666 StringRef AliasSection = SA->getName(); 667 if (AliasSection != AliaseeGV->getSection()) 668 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 669 << AliasSection << IsIFunc << IsIFunc; 670 } 671 672 // We have to handle alias to weak aliases in here. LLVM itself disallows 673 // this since the object semantics would not match the IL one. For 674 // compatibility with gcc we implement it by just pointing the alias 675 // to its aliasee's aliasee. We also warn, since the user is probably 676 // expecting the link to be weak. 677 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 678 if (GA->isInterposable()) { 679 Diags.Report(Location, diag::warn_alias_to_weak_alias) 680 << GV->getName() << GA->getName() << IsIFunc; 681 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 682 GA->getAliasee(), Alias->getType()); 683 684 if (IsIFunc) 685 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 686 else 687 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 688 } 689 } 690 } 691 if (!Error) 692 return; 693 694 for (const GlobalDecl &GD : Aliases) { 695 StringRef MangledName = getMangledName(GD); 696 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 697 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 698 Alias->eraseFromParent(); 699 } 700 } 701 702 void CodeGenModule::clear() { 703 DeferredDeclsToEmit.clear(); 704 EmittedDeferredDecls.clear(); 705 DeferredAnnotations.clear(); 706 if (OpenMPRuntime) 707 OpenMPRuntime->clear(); 708 } 709 710 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 711 StringRef MainFile) { 712 if (!hasDiagnostics()) 713 return; 714 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 715 if (MainFile.empty()) 716 MainFile = "<stdin>"; 717 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 718 } else { 719 if (Mismatched > 0) 720 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 721 722 if (Missing > 0) 723 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 724 } 725 } 726 727 static std::optional<llvm::GlobalValue::VisibilityTypes> 728 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 729 // Map to LLVM visibility. 730 switch (K) { 731 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 732 return std::nullopt; 733 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 734 return llvm::GlobalValue::DefaultVisibility; 735 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 736 return llvm::GlobalValue::HiddenVisibility; 737 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 738 return llvm::GlobalValue::ProtectedVisibility; 739 } 740 llvm_unreachable("unknown option value!"); 741 } 742 743 void setLLVMVisibility(llvm::GlobalValue &GV, 744 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 745 if (!V) 746 return; 747 748 // Reset DSO locality before setting the visibility. This removes 749 // any effects that visibility options and annotations may have 750 // had on the DSO locality. Setting the visibility will implicitly set 751 // appropriate globals to DSO Local; however, this will be pessimistic 752 // w.r.t. to the normal compiler IRGen. 753 GV.setDSOLocal(false); 754 GV.setVisibility(*V); 755 } 756 757 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 758 llvm::Module &M) { 759 if (!LO.VisibilityFromDLLStorageClass) 760 return; 761 762 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 763 getLLVMVisibility(LO.getDLLExportVisibility()); 764 765 std::optional<llvm::GlobalValue::VisibilityTypes> 766 NoDLLStorageClassVisibility = 767 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 768 769 std::optional<llvm::GlobalValue::VisibilityTypes> 770 ExternDeclDLLImportVisibility = 771 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 772 773 std::optional<llvm::GlobalValue::VisibilityTypes> 774 ExternDeclNoDLLStorageClassVisibility = 775 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 776 777 for (llvm::GlobalValue &GV : M.global_values()) { 778 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 779 continue; 780 781 if (GV.isDeclarationForLinker()) 782 setLLVMVisibility(GV, GV.getDLLStorageClass() == 783 llvm::GlobalValue::DLLImportStorageClass 784 ? ExternDeclDLLImportVisibility 785 : ExternDeclNoDLLStorageClassVisibility); 786 else 787 setLLVMVisibility(GV, GV.getDLLStorageClass() == 788 llvm::GlobalValue::DLLExportStorageClass 789 ? DLLExportVisibility 790 : NoDLLStorageClassVisibility); 791 792 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 793 } 794 } 795 796 static bool isStackProtectorOn(const LangOptions &LangOpts, 797 const llvm::Triple &Triple, 798 clang::LangOptions::StackProtectorMode Mode) { 799 if (Triple.isAMDGPU() || Triple.isNVPTX()) 800 return false; 801 return LangOpts.getStackProtector() == Mode; 802 } 803 804 void CodeGenModule::Release() { 805 Module *Primary = getContext().getCurrentNamedModule(); 806 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 807 EmitModuleInitializers(Primary); 808 EmitDeferred(); 809 DeferredDecls.insert(EmittedDeferredDecls.begin(), 810 EmittedDeferredDecls.end()); 811 EmittedDeferredDecls.clear(); 812 EmitVTablesOpportunistically(); 813 applyGlobalValReplacements(); 814 applyReplacements(); 815 emitMultiVersionFunctions(); 816 817 if (Context.getLangOpts().IncrementalExtensions && 818 GlobalTopLevelStmtBlockInFlight.first) { 819 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 820 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 821 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 822 } 823 824 // Module implementations are initialized the same way as a regular TU that 825 // imports one or more modules. 826 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 827 EmitCXXModuleInitFunc(Primary); 828 else 829 EmitCXXGlobalInitFunc(); 830 EmitCXXGlobalCleanUpFunc(); 831 registerGlobalDtorsWithAtExit(); 832 EmitCXXThreadLocalInitFunc(); 833 if (ObjCRuntime) 834 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 835 AddGlobalCtor(ObjCInitFunction); 836 if (Context.getLangOpts().CUDA && CUDARuntime) { 837 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 838 AddGlobalCtor(CudaCtorFunction); 839 } 840 if (OpenMPRuntime) { 841 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 842 OpenMPRuntime->clear(); 843 } 844 if (PGOReader) { 845 getModule().setProfileSummary( 846 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 847 llvm::ProfileSummary::PSK_Instr); 848 if (PGOStats.hasDiagnostics()) 849 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 850 } 851 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 852 return L.LexOrder < R.LexOrder; 853 }); 854 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 855 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 856 EmitGlobalAnnotations(); 857 EmitStaticExternCAliases(); 858 checkAliases(); 859 EmitDeferredUnusedCoverageMappings(); 860 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 861 CodeGenPGO(*this).setProfileVersion(getModule()); 862 if (CoverageMapping) 863 CoverageMapping->emit(); 864 if (CodeGenOpts.SanitizeCfiCrossDso) { 865 CodeGenFunction(*this).EmitCfiCheckFail(); 866 CodeGenFunction(*this).EmitCfiCheckStub(); 867 } 868 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 869 finalizeKCFITypes(); 870 emitAtAvailableLinkGuard(); 871 if (Context.getTargetInfo().getTriple().isWasm()) 872 EmitMainVoidAlias(); 873 874 if (getTriple().isAMDGPU()) { 875 // Emit amdhsa_code_object_version module flag, which is code object version 876 // times 100. 877 if (getTarget().getTargetOpts().CodeObjectVersion != 878 llvm::CodeObjectVersionKind::COV_None) { 879 getModule().addModuleFlag(llvm::Module::Error, 880 "amdhsa_code_object_version", 881 getTarget().getTargetOpts().CodeObjectVersion); 882 } 883 884 // Currently, "-mprintf-kind" option is only supported for HIP 885 if (LangOpts.HIP) { 886 auto *MDStr = llvm::MDString::get( 887 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 888 TargetOptions::AMDGPUPrintfKind::Hostcall) 889 ? "hostcall" 890 : "buffered"); 891 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 892 MDStr); 893 } 894 } 895 896 // Emit a global array containing all external kernels or device variables 897 // used by host functions and mark it as used for CUDA/HIP. This is necessary 898 // to get kernels or device variables in archives linked in even if these 899 // kernels or device variables are only used in host functions. 900 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 901 SmallVector<llvm::Constant *, 8> UsedArray; 902 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 903 GlobalDecl GD; 904 if (auto *FD = dyn_cast<FunctionDecl>(D)) 905 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 906 else 907 GD = GlobalDecl(D); 908 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 909 GetAddrOfGlobal(GD), Int8PtrTy)); 910 } 911 912 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 913 914 auto *GV = new llvm::GlobalVariable( 915 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 916 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 917 addCompilerUsedGlobal(GV); 918 } 919 if (LangOpts.HIP) { 920 // Emit a unique ID so that host and device binaries from the same 921 // compilation unit can be associated. 922 auto *GV = new llvm::GlobalVariable( 923 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 924 llvm::Constant::getNullValue(Int8Ty), 925 "__hip_cuid_" + getContext().getCUIDHash()); 926 addCompilerUsedGlobal(GV); 927 } 928 emitLLVMUsed(); 929 if (SanStats) 930 SanStats->finish(); 931 932 if (CodeGenOpts.Autolink && 933 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 934 EmitModuleLinkOptions(); 935 } 936 937 // On ELF we pass the dependent library specifiers directly to the linker 938 // without manipulating them. This is in contrast to other platforms where 939 // they are mapped to a specific linker option by the compiler. This 940 // difference is a result of the greater variety of ELF linkers and the fact 941 // that ELF linkers tend to handle libraries in a more complicated fashion 942 // than on other platforms. This forces us to defer handling the dependent 943 // libs to the linker. 944 // 945 // CUDA/HIP device and host libraries are different. Currently there is no 946 // way to differentiate dependent libraries for host or device. Existing 947 // usage of #pragma comment(lib, *) is intended for host libraries on 948 // Windows. Therefore emit llvm.dependent-libraries only for host. 949 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 950 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 951 for (auto *MD : ELFDependentLibraries) 952 NMD->addOperand(MD); 953 } 954 955 // Record mregparm value now so it is visible through rest of codegen. 956 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 957 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 958 CodeGenOpts.NumRegisterParameters); 959 960 if (CodeGenOpts.DwarfVersion) { 961 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 962 CodeGenOpts.DwarfVersion); 963 } 964 965 if (CodeGenOpts.Dwarf64) 966 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 967 968 if (Context.getLangOpts().SemanticInterposition) 969 // Require various optimization to respect semantic interposition. 970 getModule().setSemanticInterposition(true); 971 972 if (CodeGenOpts.EmitCodeView) { 973 // Indicate that we want CodeView in the metadata. 974 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 975 } 976 if (CodeGenOpts.CodeViewGHash) { 977 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 978 } 979 if (CodeGenOpts.ControlFlowGuard) { 980 // Function ID tables and checks for Control Flow Guard (cfguard=2). 981 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 982 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 983 // Function ID tables for Control Flow Guard (cfguard=1). 984 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 985 } 986 if (CodeGenOpts.EHContGuard) { 987 // Function ID tables for EH Continuation Guard. 988 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 989 } 990 if (Context.getLangOpts().Kernel) { 991 // Note if we are compiling with /kernel. 992 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 993 } 994 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 995 // We don't support LTO with 2 with different StrictVTablePointers 996 // FIXME: we could support it by stripping all the information introduced 997 // by StrictVTablePointers. 998 999 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1000 1001 llvm::Metadata *Ops[2] = { 1002 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1003 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1004 llvm::Type::getInt32Ty(VMContext), 1))}; 1005 1006 getModule().addModuleFlag(llvm::Module::Require, 1007 "StrictVTablePointersRequirement", 1008 llvm::MDNode::get(VMContext, Ops)); 1009 } 1010 if (getModuleDebugInfo()) 1011 // We support a single version in the linked module. The LLVM 1012 // parser will drop debug info with a different version number 1013 // (and warn about it, too). 1014 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1015 llvm::DEBUG_METADATA_VERSION); 1016 1017 // We need to record the widths of enums and wchar_t, so that we can generate 1018 // the correct build attributes in the ARM backend. wchar_size is also used by 1019 // TargetLibraryInfo. 1020 uint64_t WCharWidth = 1021 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1022 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1023 1024 if (getTriple().isOSzOS()) { 1025 getModule().addModuleFlag(llvm::Module::Warning, 1026 "zos_product_major_version", 1027 uint32_t(CLANG_VERSION_MAJOR)); 1028 getModule().addModuleFlag(llvm::Module::Warning, 1029 "zos_product_minor_version", 1030 uint32_t(CLANG_VERSION_MINOR)); 1031 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1032 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1033 std::string ProductId = getClangVendor() + "clang"; 1034 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1035 llvm::MDString::get(VMContext, ProductId)); 1036 1037 // Record the language because we need it for the PPA2. 1038 StringRef lang_str = languageToString( 1039 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1040 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1041 llvm::MDString::get(VMContext, lang_str)); 1042 1043 time_t TT = PreprocessorOpts.SourceDateEpoch 1044 ? *PreprocessorOpts.SourceDateEpoch 1045 : std::time(nullptr); 1046 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1047 static_cast<uint64_t>(TT)); 1048 1049 // Multiple modes will be supported here. 1050 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1051 llvm::MDString::get(VMContext, "ascii")); 1052 } 1053 1054 llvm::Triple T = Context.getTargetInfo().getTriple(); 1055 if (T.isARM() || T.isThumb()) { 1056 // The minimum width of an enum in bytes 1057 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1058 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1059 } 1060 1061 if (T.isRISCV()) { 1062 StringRef ABIStr = Target.getABI(); 1063 llvm::LLVMContext &Ctx = TheModule.getContext(); 1064 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1065 llvm::MDString::get(Ctx, ABIStr)); 1066 1067 // Add the canonical ISA string as metadata so the backend can set the ELF 1068 // attributes correctly. We use AppendUnique so LTO will keep all of the 1069 // unique ISA strings that were linked together. 1070 const std::vector<std::string> &Features = 1071 getTarget().getTargetOpts().Features; 1072 auto ParseResult = 1073 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1074 if (!errorToBool(ParseResult.takeError())) 1075 getModule().addModuleFlag( 1076 llvm::Module::AppendUnique, "riscv-isa", 1077 llvm::MDNode::get( 1078 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1079 } 1080 1081 if (CodeGenOpts.SanitizeCfiCrossDso) { 1082 // Indicate that we want cross-DSO control flow integrity checks. 1083 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1084 } 1085 1086 if (CodeGenOpts.WholeProgramVTables) { 1087 // Indicate whether VFE was enabled for this module, so that the 1088 // vcall_visibility metadata added under whole program vtables is handled 1089 // appropriately in the optimizer. 1090 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1091 CodeGenOpts.VirtualFunctionElimination); 1092 } 1093 1094 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1095 getModule().addModuleFlag(llvm::Module::Override, 1096 "CFI Canonical Jump Tables", 1097 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1098 } 1099 1100 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1101 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1102 // KCFI assumes patchable-function-prefix is the same for all indirectly 1103 // called functions. Store the expected offset for code generation. 1104 if (CodeGenOpts.PatchableFunctionEntryOffset) 1105 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1106 CodeGenOpts.PatchableFunctionEntryOffset); 1107 } 1108 1109 if (CodeGenOpts.CFProtectionReturn && 1110 Target.checkCFProtectionReturnSupported(getDiags())) { 1111 // Indicate that we want to instrument return control flow protection. 1112 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1113 1); 1114 } 1115 1116 if (CodeGenOpts.CFProtectionBranch && 1117 Target.checkCFProtectionBranchSupported(getDiags())) { 1118 // Indicate that we want to instrument branch control flow protection. 1119 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1120 1); 1121 } 1122 1123 if (CodeGenOpts.FunctionReturnThunks) 1124 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1125 1126 if (CodeGenOpts.IndirectBranchCSPrefix) 1127 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1128 1129 // Add module metadata for return address signing (ignoring 1130 // non-leaf/all) and stack tagging. These are actually turned on by function 1131 // attributes, but we use module metadata to emit build attributes. This is 1132 // needed for LTO, where the function attributes are inside bitcode 1133 // serialised into a global variable by the time build attributes are 1134 // emitted, so we can't access them. LTO objects could be compiled with 1135 // different flags therefore module flags are set to "Min" behavior to achieve 1136 // the same end result of the normal build where e.g BTI is off if any object 1137 // doesn't support it. 1138 if (Context.getTargetInfo().hasFeature("ptrauth") && 1139 LangOpts.getSignReturnAddressScope() != 1140 LangOptions::SignReturnAddressScopeKind::None) 1141 getModule().addModuleFlag(llvm::Module::Override, 1142 "sign-return-address-buildattr", 1); 1143 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1144 getModule().addModuleFlag(llvm::Module::Override, 1145 "tag-stack-memory-buildattr", 1); 1146 1147 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1148 if (LangOpts.BranchTargetEnforcement) 1149 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1150 1); 1151 if (LangOpts.BranchProtectionPAuthLR) 1152 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1153 1); 1154 if (LangOpts.GuardedControlStack) 1155 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1156 if (LangOpts.hasSignReturnAddress()) 1157 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1158 if (LangOpts.isSignReturnAddressScopeAll()) 1159 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1160 1); 1161 if (!LangOpts.isSignReturnAddressWithAKey()) 1162 getModule().addModuleFlag(llvm::Module::Min, 1163 "sign-return-address-with-bkey", 1); 1164 } 1165 1166 if (CodeGenOpts.StackClashProtector) 1167 getModule().addModuleFlag( 1168 llvm::Module::Override, "probe-stack", 1169 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1170 1171 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1172 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1173 CodeGenOpts.StackProbeSize); 1174 1175 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1176 llvm::LLVMContext &Ctx = TheModule.getContext(); 1177 getModule().addModuleFlag( 1178 llvm::Module::Error, "MemProfProfileFilename", 1179 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1180 } 1181 1182 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1183 // Indicate whether __nvvm_reflect should be configured to flush denormal 1184 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1185 // property.) 1186 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1187 CodeGenOpts.FP32DenormalMode.Output != 1188 llvm::DenormalMode::IEEE); 1189 } 1190 1191 if (LangOpts.EHAsynch) 1192 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1193 1194 // Indicate whether this Module was compiled with -fopenmp 1195 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1196 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1197 if (getLangOpts().OpenMPIsTargetDevice) 1198 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1199 LangOpts.OpenMP); 1200 1201 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1202 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1203 EmitOpenCLMetadata(); 1204 // Emit SPIR version. 1205 if (getTriple().isSPIR()) { 1206 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1207 // opencl.spir.version named metadata. 1208 // C++ for OpenCL has a distinct mapping for version compatibility with 1209 // OpenCL. 1210 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1211 llvm::Metadata *SPIRVerElts[] = { 1212 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1213 Int32Ty, Version / 100)), 1214 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1215 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1216 llvm::NamedMDNode *SPIRVerMD = 1217 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1218 llvm::LLVMContext &Ctx = TheModule.getContext(); 1219 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1220 } 1221 } 1222 1223 // HLSL related end of code gen work items. 1224 if (LangOpts.HLSL) 1225 getHLSLRuntime().finishCodeGen(); 1226 1227 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1228 assert(PLevel < 3 && "Invalid PIC Level"); 1229 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1230 if (Context.getLangOpts().PIE) 1231 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1232 } 1233 1234 if (getCodeGenOpts().CodeModel.size() > 0) { 1235 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1236 .Case("tiny", llvm::CodeModel::Tiny) 1237 .Case("small", llvm::CodeModel::Small) 1238 .Case("kernel", llvm::CodeModel::Kernel) 1239 .Case("medium", llvm::CodeModel::Medium) 1240 .Case("large", llvm::CodeModel::Large) 1241 .Default(~0u); 1242 if (CM != ~0u) { 1243 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1244 getModule().setCodeModel(codeModel); 1245 1246 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1247 Context.getTargetInfo().getTriple().getArch() == 1248 llvm::Triple::x86_64) { 1249 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1250 } 1251 } 1252 } 1253 1254 if (CodeGenOpts.NoPLT) 1255 getModule().setRtLibUseGOT(); 1256 if (getTriple().isOSBinFormatELF() && 1257 CodeGenOpts.DirectAccessExternalData != 1258 getModule().getDirectAccessExternalData()) { 1259 getModule().setDirectAccessExternalData( 1260 CodeGenOpts.DirectAccessExternalData); 1261 } 1262 if (CodeGenOpts.UnwindTables) 1263 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1264 1265 switch (CodeGenOpts.getFramePointer()) { 1266 case CodeGenOptions::FramePointerKind::None: 1267 // 0 ("none") is the default. 1268 break; 1269 case CodeGenOptions::FramePointerKind::NonLeaf: 1270 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1271 break; 1272 case CodeGenOptions::FramePointerKind::All: 1273 getModule().setFramePointer(llvm::FramePointerKind::All); 1274 break; 1275 } 1276 1277 SimplifyPersonality(); 1278 1279 if (getCodeGenOpts().EmitDeclMetadata) 1280 EmitDeclMetadata(); 1281 1282 if (getCodeGenOpts().CoverageNotesFile.size() || 1283 getCodeGenOpts().CoverageDataFile.size()) 1284 EmitCoverageFile(); 1285 1286 if (CGDebugInfo *DI = getModuleDebugInfo()) 1287 DI->finalize(); 1288 1289 if (getCodeGenOpts().EmitVersionIdentMetadata) 1290 EmitVersionIdentMetadata(); 1291 1292 if (!getCodeGenOpts().RecordCommandLine.empty()) 1293 EmitCommandLineMetadata(); 1294 1295 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1296 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1297 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1298 getModule().setStackProtectorGuardReg( 1299 getCodeGenOpts().StackProtectorGuardReg); 1300 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1301 getModule().setStackProtectorGuardSymbol( 1302 getCodeGenOpts().StackProtectorGuardSymbol); 1303 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1304 getModule().setStackProtectorGuardOffset( 1305 getCodeGenOpts().StackProtectorGuardOffset); 1306 if (getCodeGenOpts().StackAlignment) 1307 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1308 if (getCodeGenOpts().SkipRaxSetup) 1309 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1310 if (getLangOpts().RegCall4) 1311 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1312 1313 if (getContext().getTargetInfo().getMaxTLSAlign()) 1314 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1315 getContext().getTargetInfo().getMaxTLSAlign()); 1316 1317 getTargetCodeGenInfo().emitTargetGlobals(*this); 1318 1319 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1320 1321 EmitBackendOptionsMetadata(getCodeGenOpts()); 1322 1323 // If there is device offloading code embed it in the host now. 1324 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1325 1326 // Set visibility from DLL storage class 1327 // We do this at the end of LLVM IR generation; after any operation 1328 // that might affect the DLL storage class or the visibility, and 1329 // before anything that might act on these. 1330 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1331 } 1332 1333 void CodeGenModule::EmitOpenCLMetadata() { 1334 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1335 // opencl.ocl.version named metadata node. 1336 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1337 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1338 llvm::Metadata *OCLVerElts[] = { 1339 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1340 Int32Ty, Version / 100)), 1341 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1342 Int32Ty, (Version % 100) / 10))}; 1343 llvm::NamedMDNode *OCLVerMD = 1344 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1345 llvm::LLVMContext &Ctx = TheModule.getContext(); 1346 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1347 } 1348 1349 void CodeGenModule::EmitBackendOptionsMetadata( 1350 const CodeGenOptions &CodeGenOpts) { 1351 if (getTriple().isRISCV()) { 1352 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1353 CodeGenOpts.SmallDataLimit); 1354 } 1355 } 1356 1357 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1358 // Make sure that this type is translated. 1359 Types.UpdateCompletedType(TD); 1360 } 1361 1362 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1363 // Make sure that this type is translated. 1364 Types.RefreshTypeCacheForClass(RD); 1365 } 1366 1367 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1368 if (!TBAA) 1369 return nullptr; 1370 return TBAA->getTypeInfo(QTy); 1371 } 1372 1373 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1374 if (!TBAA) 1375 return TBAAAccessInfo(); 1376 if (getLangOpts().CUDAIsDevice) { 1377 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1378 // access info. 1379 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1380 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1381 nullptr) 1382 return TBAAAccessInfo(); 1383 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1384 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1385 nullptr) 1386 return TBAAAccessInfo(); 1387 } 1388 } 1389 return TBAA->getAccessInfo(AccessType); 1390 } 1391 1392 TBAAAccessInfo 1393 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1394 if (!TBAA) 1395 return TBAAAccessInfo(); 1396 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1397 } 1398 1399 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1400 if (!TBAA) 1401 return nullptr; 1402 return TBAA->getTBAAStructInfo(QTy); 1403 } 1404 1405 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1406 if (!TBAA) 1407 return nullptr; 1408 return TBAA->getBaseTypeInfo(QTy); 1409 } 1410 1411 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1412 if (!TBAA) 1413 return nullptr; 1414 return TBAA->getAccessTagInfo(Info); 1415 } 1416 1417 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1418 TBAAAccessInfo TargetInfo) { 1419 if (!TBAA) 1420 return TBAAAccessInfo(); 1421 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1422 } 1423 1424 TBAAAccessInfo 1425 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1426 TBAAAccessInfo InfoB) { 1427 if (!TBAA) 1428 return TBAAAccessInfo(); 1429 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1430 } 1431 1432 TBAAAccessInfo 1433 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1434 TBAAAccessInfo SrcInfo) { 1435 if (!TBAA) 1436 return TBAAAccessInfo(); 1437 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1438 } 1439 1440 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1441 TBAAAccessInfo TBAAInfo) { 1442 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1443 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1444 } 1445 1446 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1447 llvm::Instruction *I, const CXXRecordDecl *RD) { 1448 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1449 llvm::MDNode::get(getLLVMContext(), {})); 1450 } 1451 1452 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1453 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1454 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1455 } 1456 1457 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1458 /// specified stmt yet. 1459 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1460 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1461 "cannot compile this %0 yet"); 1462 std::string Msg = Type; 1463 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1464 << Msg << S->getSourceRange(); 1465 } 1466 1467 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1468 /// specified decl yet. 1469 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1470 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1471 "cannot compile this %0 yet"); 1472 std::string Msg = Type; 1473 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1474 } 1475 1476 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1477 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1478 } 1479 1480 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1481 const NamedDecl *D) const { 1482 // Internal definitions always have default visibility. 1483 if (GV->hasLocalLinkage()) { 1484 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1485 return; 1486 } 1487 if (!D) 1488 return; 1489 1490 // Set visibility for definitions, and for declarations if requested globally 1491 // or set explicitly. 1492 LinkageInfo LV = D->getLinkageAndVisibility(); 1493 1494 // OpenMP declare target variables must be visible to the host so they can 1495 // be registered. We require protected visibility unless the variable has 1496 // the DT_nohost modifier and does not need to be registered. 1497 if (Context.getLangOpts().OpenMP && 1498 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1499 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1500 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1501 OMPDeclareTargetDeclAttr::DT_NoHost && 1502 LV.getVisibility() == HiddenVisibility) { 1503 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1504 return; 1505 } 1506 1507 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1508 // Reject incompatible dlllstorage and visibility annotations. 1509 if (!LV.isVisibilityExplicit()) 1510 return; 1511 if (GV->hasDLLExportStorageClass()) { 1512 if (LV.getVisibility() == HiddenVisibility) 1513 getDiags().Report(D->getLocation(), 1514 diag::err_hidden_visibility_dllexport); 1515 } else if (LV.getVisibility() != DefaultVisibility) { 1516 getDiags().Report(D->getLocation(), 1517 diag::err_non_default_visibility_dllimport); 1518 } 1519 return; 1520 } 1521 1522 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1523 !GV->isDeclarationForLinker()) 1524 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1525 } 1526 1527 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1528 llvm::GlobalValue *GV) { 1529 if (GV->hasLocalLinkage()) 1530 return true; 1531 1532 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1533 return true; 1534 1535 // DLLImport explicitly marks the GV as external. 1536 if (GV->hasDLLImportStorageClass()) 1537 return false; 1538 1539 const llvm::Triple &TT = CGM.getTriple(); 1540 const auto &CGOpts = CGM.getCodeGenOpts(); 1541 if (TT.isWindowsGNUEnvironment()) { 1542 // In MinGW, variables without DLLImport can still be automatically 1543 // imported from a DLL by the linker; don't mark variables that 1544 // potentially could come from another DLL as DSO local. 1545 1546 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1547 // (and this actually happens in the public interface of libstdc++), so 1548 // such variables can't be marked as DSO local. (Native TLS variables 1549 // can't be dllimported at all, though.) 1550 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1551 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1552 CGOpts.AutoImport) 1553 return false; 1554 } 1555 1556 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1557 // remain unresolved in the link, they can be resolved to zero, which is 1558 // outside the current DSO. 1559 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1560 return false; 1561 1562 // Every other GV is local on COFF. 1563 // Make an exception for windows OS in the triple: Some firmware builds use 1564 // *-win32-macho triples. This (accidentally?) produced windows relocations 1565 // without GOT tables in older clang versions; Keep this behaviour. 1566 // FIXME: even thread local variables? 1567 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1568 return true; 1569 1570 // Only handle COFF and ELF for now. 1571 if (!TT.isOSBinFormatELF()) 1572 return false; 1573 1574 // If this is not an executable, don't assume anything is local. 1575 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1576 const auto &LOpts = CGM.getLangOpts(); 1577 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1578 // On ELF, if -fno-semantic-interposition is specified and the target 1579 // supports local aliases, there will be neither CC1 1580 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1581 // dso_local on the function if using a local alias is preferable (can avoid 1582 // PLT indirection). 1583 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1584 return false; 1585 return !(CGM.getLangOpts().SemanticInterposition || 1586 CGM.getLangOpts().HalfNoSemanticInterposition); 1587 } 1588 1589 // A definition cannot be preempted from an executable. 1590 if (!GV->isDeclarationForLinker()) 1591 return true; 1592 1593 // Most PIC code sequences that assume that a symbol is local cannot produce a 1594 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1595 // depended, it seems worth it to handle it here. 1596 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1597 return false; 1598 1599 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1600 if (TT.isPPC64()) 1601 return false; 1602 1603 if (CGOpts.DirectAccessExternalData) { 1604 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1605 // for non-thread-local variables. If the symbol is not defined in the 1606 // executable, a copy relocation will be needed at link time. dso_local is 1607 // excluded for thread-local variables because they generally don't support 1608 // copy relocations. 1609 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1610 if (!Var->isThreadLocal()) 1611 return true; 1612 1613 // -fno-pic sets dso_local on a function declaration to allow direct 1614 // accesses when taking its address (similar to a data symbol). If the 1615 // function is not defined in the executable, a canonical PLT entry will be 1616 // needed at link time. -fno-direct-access-external-data can avoid the 1617 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1618 // it could just cause trouble without providing perceptible benefits. 1619 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1620 return true; 1621 } 1622 1623 // If we can use copy relocations we can assume it is local. 1624 1625 // Otherwise don't assume it is local. 1626 return false; 1627 } 1628 1629 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1630 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1631 } 1632 1633 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1634 GlobalDecl GD) const { 1635 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1636 // C++ destructors have a few C++ ABI specific special cases. 1637 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1638 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1639 return; 1640 } 1641 setDLLImportDLLExport(GV, D); 1642 } 1643 1644 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1645 const NamedDecl *D) const { 1646 if (D && D->isExternallyVisible()) { 1647 if (D->hasAttr<DLLImportAttr>()) 1648 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1649 else if ((D->hasAttr<DLLExportAttr>() || 1650 shouldMapVisibilityToDLLExport(D)) && 1651 !GV->isDeclarationForLinker()) 1652 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1653 } 1654 } 1655 1656 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1657 GlobalDecl GD) const { 1658 setDLLImportDLLExport(GV, GD); 1659 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1660 } 1661 1662 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1663 const NamedDecl *D) const { 1664 setDLLImportDLLExport(GV, D); 1665 setGVPropertiesAux(GV, D); 1666 } 1667 1668 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1669 const NamedDecl *D) const { 1670 setGlobalVisibility(GV, D); 1671 setDSOLocal(GV); 1672 GV->setPartition(CodeGenOpts.SymbolPartition); 1673 } 1674 1675 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1676 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1677 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1678 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1679 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1680 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1681 } 1682 1683 llvm::GlobalVariable::ThreadLocalMode 1684 CodeGenModule::GetDefaultLLVMTLSModel() const { 1685 switch (CodeGenOpts.getDefaultTLSModel()) { 1686 case CodeGenOptions::GeneralDynamicTLSModel: 1687 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1688 case CodeGenOptions::LocalDynamicTLSModel: 1689 return llvm::GlobalVariable::LocalDynamicTLSModel; 1690 case CodeGenOptions::InitialExecTLSModel: 1691 return llvm::GlobalVariable::InitialExecTLSModel; 1692 case CodeGenOptions::LocalExecTLSModel: 1693 return llvm::GlobalVariable::LocalExecTLSModel; 1694 } 1695 llvm_unreachable("Invalid TLS model!"); 1696 } 1697 1698 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1699 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1700 1701 llvm::GlobalValue::ThreadLocalMode TLM; 1702 TLM = GetDefaultLLVMTLSModel(); 1703 1704 // Override the TLS model if it is explicitly specified. 1705 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1706 TLM = GetLLVMTLSModel(Attr->getModel()); 1707 } 1708 1709 GV->setThreadLocalMode(TLM); 1710 } 1711 1712 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1713 StringRef Name) { 1714 const TargetInfo &Target = CGM.getTarget(); 1715 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1716 } 1717 1718 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1719 const CPUSpecificAttr *Attr, 1720 unsigned CPUIndex, 1721 raw_ostream &Out) { 1722 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1723 // supported. 1724 if (Attr) 1725 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1726 else if (CGM.getTarget().supportsIFunc()) 1727 Out << ".resolver"; 1728 } 1729 1730 // Returns true if GD is a function decl with internal linkage and 1731 // needs a unique suffix after the mangled name. 1732 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1733 CodeGenModule &CGM) { 1734 const Decl *D = GD.getDecl(); 1735 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1736 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1737 } 1738 1739 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1740 const NamedDecl *ND, 1741 bool OmitMultiVersionMangling = false) { 1742 SmallString<256> Buffer; 1743 llvm::raw_svector_ostream Out(Buffer); 1744 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1745 if (!CGM.getModuleNameHash().empty()) 1746 MC.needsUniqueInternalLinkageNames(); 1747 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1748 if (ShouldMangle) 1749 MC.mangleName(GD.getWithDecl(ND), Out); 1750 else { 1751 IdentifierInfo *II = ND->getIdentifier(); 1752 assert(II && "Attempt to mangle unnamed decl."); 1753 const auto *FD = dyn_cast<FunctionDecl>(ND); 1754 1755 if (FD && 1756 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1757 if (CGM.getLangOpts().RegCall4) 1758 Out << "__regcall4__" << II->getName(); 1759 else 1760 Out << "__regcall3__" << II->getName(); 1761 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1762 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1763 Out << "__device_stub__" << II->getName(); 1764 } else { 1765 Out << II->getName(); 1766 } 1767 } 1768 1769 // Check if the module name hash should be appended for internal linkage 1770 // symbols. This should come before multi-version target suffixes are 1771 // appended. This is to keep the name and module hash suffix of the 1772 // internal linkage function together. The unique suffix should only be 1773 // added when name mangling is done to make sure that the final name can 1774 // be properly demangled. For example, for C functions without prototypes, 1775 // name mangling is not done and the unique suffix should not be appeneded 1776 // then. 1777 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1778 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1779 "Hash computed when not explicitly requested"); 1780 Out << CGM.getModuleNameHash(); 1781 } 1782 1783 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1784 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1785 switch (FD->getMultiVersionKind()) { 1786 case MultiVersionKind::CPUDispatch: 1787 case MultiVersionKind::CPUSpecific: 1788 AppendCPUSpecificCPUDispatchMangling(CGM, 1789 FD->getAttr<CPUSpecificAttr>(), 1790 GD.getMultiVersionIndex(), Out); 1791 break; 1792 case MultiVersionKind::Target: { 1793 auto *Attr = FD->getAttr<TargetAttr>(); 1794 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1795 Info.appendAttributeMangling(Attr, Out); 1796 break; 1797 } 1798 case MultiVersionKind::TargetVersion: { 1799 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1800 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1801 Info.appendAttributeMangling(Attr, Out); 1802 break; 1803 } 1804 case MultiVersionKind::TargetClones: { 1805 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1806 unsigned Index = GD.getMultiVersionIndex(); 1807 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1808 Info.appendAttributeMangling(Attr, Index, Out); 1809 break; 1810 } 1811 case MultiVersionKind::None: 1812 llvm_unreachable("None multiversion type isn't valid here"); 1813 } 1814 } 1815 1816 // Make unique name for device side static file-scope variable for HIP. 1817 if (CGM.getContext().shouldExternalize(ND) && 1818 CGM.getLangOpts().GPURelocatableDeviceCode && 1819 CGM.getLangOpts().CUDAIsDevice) 1820 CGM.printPostfixForExternalizedDecl(Out, ND); 1821 1822 return std::string(Out.str()); 1823 } 1824 1825 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1826 const FunctionDecl *FD, 1827 StringRef &CurName) { 1828 if (!FD->isMultiVersion()) 1829 return; 1830 1831 // Get the name of what this would be without the 'target' attribute. This 1832 // allows us to lookup the version that was emitted when this wasn't a 1833 // multiversion function. 1834 std::string NonTargetName = 1835 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1836 GlobalDecl OtherGD; 1837 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1838 assert(OtherGD.getCanonicalDecl() 1839 .getDecl() 1840 ->getAsFunction() 1841 ->isMultiVersion() && 1842 "Other GD should now be a multiversioned function"); 1843 // OtherFD is the version of this function that was mangled BEFORE 1844 // becoming a MultiVersion function. It potentially needs to be updated. 1845 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1846 .getDecl() 1847 ->getAsFunction() 1848 ->getMostRecentDecl(); 1849 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1850 // This is so that if the initial version was already the 'default' 1851 // version, we don't try to update it. 1852 if (OtherName != NonTargetName) { 1853 // Remove instead of erase, since others may have stored the StringRef 1854 // to this. 1855 const auto ExistingRecord = Manglings.find(NonTargetName); 1856 if (ExistingRecord != std::end(Manglings)) 1857 Manglings.remove(&(*ExistingRecord)); 1858 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1859 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1860 Result.first->first(); 1861 // If this is the current decl is being created, make sure we update the name. 1862 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1863 CurName = OtherNameRef; 1864 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1865 Entry->setName(OtherName); 1866 } 1867 } 1868 } 1869 1870 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1871 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1872 1873 // Some ABIs don't have constructor variants. Make sure that base and 1874 // complete constructors get mangled the same. 1875 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1876 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1877 CXXCtorType OrigCtorType = GD.getCtorType(); 1878 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1879 if (OrigCtorType == Ctor_Base) 1880 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1881 } 1882 } 1883 1884 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1885 // static device variable depends on whether the variable is referenced by 1886 // a host or device host function. Therefore the mangled name cannot be 1887 // cached. 1888 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1889 auto FoundName = MangledDeclNames.find(CanonicalGD); 1890 if (FoundName != MangledDeclNames.end()) 1891 return FoundName->second; 1892 } 1893 1894 // Keep the first result in the case of a mangling collision. 1895 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1896 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1897 1898 // Ensure either we have different ABIs between host and device compilations, 1899 // says host compilation following MSVC ABI but device compilation follows 1900 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1901 // mangling should be the same after name stubbing. The later checking is 1902 // very important as the device kernel name being mangled in host-compilation 1903 // is used to resolve the device binaries to be executed. Inconsistent naming 1904 // result in undefined behavior. Even though we cannot check that naming 1905 // directly between host- and device-compilations, the host- and 1906 // device-mangling in host compilation could help catching certain ones. 1907 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1908 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1909 (getContext().getAuxTargetInfo() && 1910 (getContext().getAuxTargetInfo()->getCXXABI() != 1911 getContext().getTargetInfo().getCXXABI())) || 1912 getCUDARuntime().getDeviceSideName(ND) == 1913 getMangledNameImpl( 1914 *this, 1915 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1916 ND)); 1917 1918 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1919 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1920 } 1921 1922 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1923 const BlockDecl *BD) { 1924 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1925 const Decl *D = GD.getDecl(); 1926 1927 SmallString<256> Buffer; 1928 llvm::raw_svector_ostream Out(Buffer); 1929 if (!D) 1930 MangleCtx.mangleGlobalBlock(BD, 1931 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1932 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1933 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1934 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1935 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1936 else 1937 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1938 1939 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1940 return Result.first->first(); 1941 } 1942 1943 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1944 auto it = MangledDeclNames.begin(); 1945 while (it != MangledDeclNames.end()) { 1946 if (it->second == Name) 1947 return it->first; 1948 it++; 1949 } 1950 return GlobalDecl(); 1951 } 1952 1953 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1954 return getModule().getNamedValue(Name); 1955 } 1956 1957 /// AddGlobalCtor - Add a function to the list that will be called before 1958 /// main() runs. 1959 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1960 unsigned LexOrder, 1961 llvm::Constant *AssociatedData) { 1962 // FIXME: Type coercion of void()* types. 1963 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1964 } 1965 1966 /// AddGlobalDtor - Add a function to the list that will be called 1967 /// when the module is unloaded. 1968 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1969 bool IsDtorAttrFunc) { 1970 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1971 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1972 DtorsUsingAtExit[Priority].push_back(Dtor); 1973 return; 1974 } 1975 1976 // FIXME: Type coercion of void()* types. 1977 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1978 } 1979 1980 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1981 if (Fns.empty()) return; 1982 1983 // Ctor function type is void()*. 1984 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1985 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1986 TheModule.getDataLayout().getProgramAddressSpace()); 1987 1988 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1989 llvm::StructType *CtorStructTy = llvm::StructType::get( 1990 Int32Ty, CtorPFTy, VoidPtrTy); 1991 1992 // Construct the constructor and destructor arrays. 1993 ConstantInitBuilder builder(*this); 1994 auto ctors = builder.beginArray(CtorStructTy); 1995 for (const auto &I : Fns) { 1996 auto ctor = ctors.beginStruct(CtorStructTy); 1997 ctor.addInt(Int32Ty, I.Priority); 1998 ctor.add(I.Initializer); 1999 if (I.AssociatedData) 2000 ctor.add(I.AssociatedData); 2001 else 2002 ctor.addNullPointer(VoidPtrTy); 2003 ctor.finishAndAddTo(ctors); 2004 } 2005 2006 auto list = 2007 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2008 /*constant*/ false, 2009 llvm::GlobalValue::AppendingLinkage); 2010 2011 // The LTO linker doesn't seem to like it when we set an alignment 2012 // on appending variables. Take it off as a workaround. 2013 list->setAlignment(std::nullopt); 2014 2015 Fns.clear(); 2016 } 2017 2018 llvm::GlobalValue::LinkageTypes 2019 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2020 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2021 2022 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2023 2024 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2025 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2026 2027 return getLLVMLinkageForDeclarator(D, Linkage); 2028 } 2029 2030 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2031 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2032 if (!MDS) return nullptr; 2033 2034 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2035 } 2036 2037 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2038 if (auto *FnType = T->getAs<FunctionProtoType>()) 2039 T = getContext().getFunctionType( 2040 FnType->getReturnType(), FnType->getParamTypes(), 2041 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2042 2043 std::string OutName; 2044 llvm::raw_string_ostream Out(OutName); 2045 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2046 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2047 2048 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2049 Out << ".normalized"; 2050 2051 return llvm::ConstantInt::get(Int32Ty, 2052 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2053 } 2054 2055 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2056 const CGFunctionInfo &Info, 2057 llvm::Function *F, bool IsThunk) { 2058 unsigned CallingConv; 2059 llvm::AttributeList PAL; 2060 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2061 /*AttrOnCallSite=*/false, IsThunk); 2062 F->setAttributes(PAL); 2063 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2064 } 2065 2066 static void removeImageAccessQualifier(std::string& TyName) { 2067 std::string ReadOnlyQual("__read_only"); 2068 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2069 if (ReadOnlyPos != std::string::npos) 2070 // "+ 1" for the space after access qualifier. 2071 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2072 else { 2073 std::string WriteOnlyQual("__write_only"); 2074 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2075 if (WriteOnlyPos != std::string::npos) 2076 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2077 else { 2078 std::string ReadWriteQual("__read_write"); 2079 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2080 if (ReadWritePos != std::string::npos) 2081 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2082 } 2083 } 2084 } 2085 2086 // Returns the address space id that should be produced to the 2087 // kernel_arg_addr_space metadata. This is always fixed to the ids 2088 // as specified in the SPIR 2.0 specification in order to differentiate 2089 // for example in clGetKernelArgInfo() implementation between the address 2090 // spaces with targets without unique mapping to the OpenCL address spaces 2091 // (basically all single AS CPUs). 2092 static unsigned ArgInfoAddressSpace(LangAS AS) { 2093 switch (AS) { 2094 case LangAS::opencl_global: 2095 return 1; 2096 case LangAS::opencl_constant: 2097 return 2; 2098 case LangAS::opencl_local: 2099 return 3; 2100 case LangAS::opencl_generic: 2101 return 4; // Not in SPIR 2.0 specs. 2102 case LangAS::opencl_global_device: 2103 return 5; 2104 case LangAS::opencl_global_host: 2105 return 6; 2106 default: 2107 return 0; // Assume private. 2108 } 2109 } 2110 2111 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2112 const FunctionDecl *FD, 2113 CodeGenFunction *CGF) { 2114 assert(((FD && CGF) || (!FD && !CGF)) && 2115 "Incorrect use - FD and CGF should either be both null or not!"); 2116 // Create MDNodes that represent the kernel arg metadata. 2117 // Each MDNode is a list in the form of "key", N number of values which is 2118 // the same number of values as their are kernel arguments. 2119 2120 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2121 2122 // MDNode for the kernel argument address space qualifiers. 2123 SmallVector<llvm::Metadata *, 8> addressQuals; 2124 2125 // MDNode for the kernel argument access qualifiers (images only). 2126 SmallVector<llvm::Metadata *, 8> accessQuals; 2127 2128 // MDNode for the kernel argument type names. 2129 SmallVector<llvm::Metadata *, 8> argTypeNames; 2130 2131 // MDNode for the kernel argument base type names. 2132 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2133 2134 // MDNode for the kernel argument type qualifiers. 2135 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2136 2137 // MDNode for the kernel argument names. 2138 SmallVector<llvm::Metadata *, 8> argNames; 2139 2140 if (FD && CGF) 2141 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2142 const ParmVarDecl *parm = FD->getParamDecl(i); 2143 // Get argument name. 2144 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2145 2146 if (!getLangOpts().OpenCL) 2147 continue; 2148 QualType ty = parm->getType(); 2149 std::string typeQuals; 2150 2151 // Get image and pipe access qualifier: 2152 if (ty->isImageType() || ty->isPipeType()) { 2153 const Decl *PDecl = parm; 2154 if (const auto *TD = ty->getAs<TypedefType>()) 2155 PDecl = TD->getDecl(); 2156 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2157 if (A && A->isWriteOnly()) 2158 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2159 else if (A && A->isReadWrite()) 2160 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2161 else 2162 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2163 } else 2164 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2165 2166 auto getTypeSpelling = [&](QualType Ty) { 2167 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2168 2169 if (Ty.isCanonical()) { 2170 StringRef typeNameRef = typeName; 2171 // Turn "unsigned type" to "utype" 2172 if (typeNameRef.consume_front("unsigned ")) 2173 return std::string("u") + typeNameRef.str(); 2174 if (typeNameRef.consume_front("signed ")) 2175 return typeNameRef.str(); 2176 } 2177 2178 return typeName; 2179 }; 2180 2181 if (ty->isPointerType()) { 2182 QualType pointeeTy = ty->getPointeeType(); 2183 2184 // Get address qualifier. 2185 addressQuals.push_back( 2186 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2187 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2188 2189 // Get argument type name. 2190 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2191 std::string baseTypeName = 2192 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2193 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2194 argBaseTypeNames.push_back( 2195 llvm::MDString::get(VMContext, baseTypeName)); 2196 2197 // Get argument type qualifiers: 2198 if (ty.isRestrictQualified()) 2199 typeQuals = "restrict"; 2200 if (pointeeTy.isConstQualified() || 2201 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2202 typeQuals += typeQuals.empty() ? "const" : " const"; 2203 if (pointeeTy.isVolatileQualified()) 2204 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2205 } else { 2206 uint32_t AddrSpc = 0; 2207 bool isPipe = ty->isPipeType(); 2208 if (ty->isImageType() || isPipe) 2209 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2210 2211 addressQuals.push_back( 2212 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2213 2214 // Get argument type name. 2215 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2216 std::string typeName = getTypeSpelling(ty); 2217 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2218 2219 // Remove access qualifiers on images 2220 // (as they are inseparable from type in clang implementation, 2221 // but OpenCL spec provides a special query to get access qualifier 2222 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2223 if (ty->isImageType()) { 2224 removeImageAccessQualifier(typeName); 2225 removeImageAccessQualifier(baseTypeName); 2226 } 2227 2228 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2229 argBaseTypeNames.push_back( 2230 llvm::MDString::get(VMContext, baseTypeName)); 2231 2232 if (isPipe) 2233 typeQuals = "pipe"; 2234 } 2235 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2236 } 2237 2238 if (getLangOpts().OpenCL) { 2239 Fn->setMetadata("kernel_arg_addr_space", 2240 llvm::MDNode::get(VMContext, addressQuals)); 2241 Fn->setMetadata("kernel_arg_access_qual", 2242 llvm::MDNode::get(VMContext, accessQuals)); 2243 Fn->setMetadata("kernel_arg_type", 2244 llvm::MDNode::get(VMContext, argTypeNames)); 2245 Fn->setMetadata("kernel_arg_base_type", 2246 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2247 Fn->setMetadata("kernel_arg_type_qual", 2248 llvm::MDNode::get(VMContext, argTypeQuals)); 2249 } 2250 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2251 getCodeGenOpts().HIPSaveKernelArgName) 2252 Fn->setMetadata("kernel_arg_name", 2253 llvm::MDNode::get(VMContext, argNames)); 2254 } 2255 2256 /// Determines whether the language options require us to model 2257 /// unwind exceptions. We treat -fexceptions as mandating this 2258 /// except under the fragile ObjC ABI with only ObjC exceptions 2259 /// enabled. This means, for example, that C with -fexceptions 2260 /// enables this. 2261 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2262 // If exceptions are completely disabled, obviously this is false. 2263 if (!LangOpts.Exceptions) return false; 2264 2265 // If C++ exceptions are enabled, this is true. 2266 if (LangOpts.CXXExceptions) return true; 2267 2268 // If ObjC exceptions are enabled, this depends on the ABI. 2269 if (LangOpts.ObjCExceptions) { 2270 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2271 } 2272 2273 return true; 2274 } 2275 2276 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2277 const CXXMethodDecl *MD) { 2278 // Check that the type metadata can ever actually be used by a call. 2279 if (!CGM.getCodeGenOpts().LTOUnit || 2280 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2281 return false; 2282 2283 // Only functions whose address can be taken with a member function pointer 2284 // need this sort of type metadata. 2285 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2286 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2287 } 2288 2289 SmallVector<const CXXRecordDecl *, 0> 2290 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2291 llvm::SetVector<const CXXRecordDecl *> MostBases; 2292 2293 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2294 CollectMostBases = [&](const CXXRecordDecl *RD) { 2295 if (RD->getNumBases() == 0) 2296 MostBases.insert(RD); 2297 for (const CXXBaseSpecifier &B : RD->bases()) 2298 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2299 }; 2300 CollectMostBases(RD); 2301 return MostBases.takeVector(); 2302 } 2303 2304 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2305 llvm::Function *F) { 2306 llvm::AttrBuilder B(F->getContext()); 2307 2308 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2309 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2310 2311 if (CodeGenOpts.StackClashProtector) 2312 B.addAttribute("probe-stack", "inline-asm"); 2313 2314 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2315 B.addAttribute("stack-probe-size", 2316 std::to_string(CodeGenOpts.StackProbeSize)); 2317 2318 if (!hasUnwindExceptions(LangOpts)) 2319 B.addAttribute(llvm::Attribute::NoUnwind); 2320 2321 if (D && D->hasAttr<NoStackProtectorAttr>()) 2322 ; // Do nothing. 2323 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2324 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2325 B.addAttribute(llvm::Attribute::StackProtectStrong); 2326 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2327 B.addAttribute(llvm::Attribute::StackProtect); 2328 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2329 B.addAttribute(llvm::Attribute::StackProtectStrong); 2330 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2331 B.addAttribute(llvm::Attribute::StackProtectReq); 2332 2333 if (!D) { 2334 // If we don't have a declaration to control inlining, the function isn't 2335 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2336 // disabled, mark the function as noinline. 2337 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2338 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2339 B.addAttribute(llvm::Attribute::NoInline); 2340 2341 F->addFnAttrs(B); 2342 return; 2343 } 2344 2345 // Handle SME attributes that apply to function definitions, 2346 // rather than to function prototypes. 2347 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2348 B.addAttribute("aarch64_pstate_sm_body"); 2349 2350 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2351 if (Attr->isNewZA()) 2352 B.addAttribute("aarch64_new_za"); 2353 if (Attr->isNewZT0()) 2354 B.addAttribute("aarch64_new_zt0"); 2355 } 2356 2357 // Track whether we need to add the optnone LLVM attribute, 2358 // starting with the default for this optimization level. 2359 bool ShouldAddOptNone = 2360 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2361 // We can't add optnone in the following cases, it won't pass the verifier. 2362 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2363 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2364 2365 // Add optnone, but do so only if the function isn't always_inline. 2366 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2367 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2368 B.addAttribute(llvm::Attribute::OptimizeNone); 2369 2370 // OptimizeNone implies noinline; we should not be inlining such functions. 2371 B.addAttribute(llvm::Attribute::NoInline); 2372 2373 // We still need to handle naked functions even though optnone subsumes 2374 // much of their semantics. 2375 if (D->hasAttr<NakedAttr>()) 2376 B.addAttribute(llvm::Attribute::Naked); 2377 2378 // OptimizeNone wins over OptimizeForSize and MinSize. 2379 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2380 F->removeFnAttr(llvm::Attribute::MinSize); 2381 } else if (D->hasAttr<NakedAttr>()) { 2382 // Naked implies noinline: we should not be inlining such functions. 2383 B.addAttribute(llvm::Attribute::Naked); 2384 B.addAttribute(llvm::Attribute::NoInline); 2385 } else if (D->hasAttr<NoDuplicateAttr>()) { 2386 B.addAttribute(llvm::Attribute::NoDuplicate); 2387 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2388 // Add noinline if the function isn't always_inline. 2389 B.addAttribute(llvm::Attribute::NoInline); 2390 } else if (D->hasAttr<AlwaysInlineAttr>() && 2391 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2392 // (noinline wins over always_inline, and we can't specify both in IR) 2393 B.addAttribute(llvm::Attribute::AlwaysInline); 2394 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2395 // If we're not inlining, then force everything that isn't always_inline to 2396 // carry an explicit noinline attribute. 2397 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2398 B.addAttribute(llvm::Attribute::NoInline); 2399 } else { 2400 // Otherwise, propagate the inline hint attribute and potentially use its 2401 // absence to mark things as noinline. 2402 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2403 // Search function and template pattern redeclarations for inline. 2404 auto CheckForInline = [](const FunctionDecl *FD) { 2405 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2406 return Redecl->isInlineSpecified(); 2407 }; 2408 if (any_of(FD->redecls(), CheckRedeclForInline)) 2409 return true; 2410 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2411 if (!Pattern) 2412 return false; 2413 return any_of(Pattern->redecls(), CheckRedeclForInline); 2414 }; 2415 if (CheckForInline(FD)) { 2416 B.addAttribute(llvm::Attribute::InlineHint); 2417 } else if (CodeGenOpts.getInlining() == 2418 CodeGenOptions::OnlyHintInlining && 2419 !FD->isInlined() && 2420 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2421 B.addAttribute(llvm::Attribute::NoInline); 2422 } 2423 } 2424 } 2425 2426 // Add other optimization related attributes if we are optimizing this 2427 // function. 2428 if (!D->hasAttr<OptimizeNoneAttr>()) { 2429 if (D->hasAttr<ColdAttr>()) { 2430 if (!ShouldAddOptNone) 2431 B.addAttribute(llvm::Attribute::OptimizeForSize); 2432 B.addAttribute(llvm::Attribute::Cold); 2433 } 2434 if (D->hasAttr<HotAttr>()) 2435 B.addAttribute(llvm::Attribute::Hot); 2436 if (D->hasAttr<MinSizeAttr>()) 2437 B.addAttribute(llvm::Attribute::MinSize); 2438 } 2439 2440 F->addFnAttrs(B); 2441 2442 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2443 if (alignment) 2444 F->setAlignment(llvm::Align(alignment)); 2445 2446 if (!D->hasAttr<AlignedAttr>()) 2447 if (LangOpts.FunctionAlignment) 2448 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2449 2450 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2451 // reserve a bit for differentiating between virtual and non-virtual member 2452 // functions. If the current target's C++ ABI requires this and this is a 2453 // member function, set its alignment accordingly. 2454 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2455 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2456 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2457 } 2458 2459 // In the cross-dso CFI mode with canonical jump tables, we want !type 2460 // attributes on definitions only. 2461 if (CodeGenOpts.SanitizeCfiCrossDso && 2462 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2463 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2464 // Skip available_externally functions. They won't be codegen'ed in the 2465 // current module anyway. 2466 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2467 CreateFunctionTypeMetadataForIcall(FD, F); 2468 } 2469 } 2470 2471 // Emit type metadata on member functions for member function pointer checks. 2472 // These are only ever necessary on definitions; we're guaranteed that the 2473 // definition will be present in the LTO unit as a result of LTO visibility. 2474 auto *MD = dyn_cast<CXXMethodDecl>(D); 2475 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2476 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2477 llvm::Metadata *Id = 2478 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2479 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2480 F->addTypeMetadata(0, Id); 2481 } 2482 } 2483 } 2484 2485 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2486 const Decl *D = GD.getDecl(); 2487 if (isa_and_nonnull<NamedDecl>(D)) 2488 setGVProperties(GV, GD); 2489 else 2490 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2491 2492 if (D && D->hasAttr<UsedAttr>()) 2493 addUsedOrCompilerUsedGlobal(GV); 2494 2495 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2496 VD && 2497 ((CodeGenOpts.KeepPersistentStorageVariables && 2498 (VD->getStorageDuration() == SD_Static || 2499 VD->getStorageDuration() == SD_Thread)) || 2500 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2501 VD->getType().isConstQualified()))) 2502 addUsedOrCompilerUsedGlobal(GV); 2503 } 2504 2505 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2506 llvm::AttrBuilder &Attrs, 2507 bool SetTargetFeatures) { 2508 // Add target-cpu and target-features attributes to functions. If 2509 // we have a decl for the function and it has a target attribute then 2510 // parse that and add it to the feature set. 2511 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2512 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2513 std::vector<std::string> Features; 2514 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2515 FD = FD ? FD->getMostRecentDecl() : FD; 2516 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2517 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2518 assert((!TD || !TV) && "both target_version and target specified"); 2519 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2520 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2521 bool AddedAttr = false; 2522 if (TD || TV || SD || TC) { 2523 llvm::StringMap<bool> FeatureMap; 2524 getContext().getFunctionFeatureMap(FeatureMap, GD); 2525 2526 // Produce the canonical string for this set of features. 2527 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2528 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2529 2530 // Now add the target-cpu and target-features to the function. 2531 // While we populated the feature map above, we still need to 2532 // get and parse the target attribute so we can get the cpu for 2533 // the function. 2534 if (TD) { 2535 ParsedTargetAttr ParsedAttr = 2536 Target.parseTargetAttr(TD->getFeaturesStr()); 2537 if (!ParsedAttr.CPU.empty() && 2538 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2539 TargetCPU = ParsedAttr.CPU; 2540 TuneCPU = ""; // Clear the tune CPU. 2541 } 2542 if (!ParsedAttr.Tune.empty() && 2543 getTarget().isValidCPUName(ParsedAttr.Tune)) 2544 TuneCPU = ParsedAttr.Tune; 2545 } 2546 2547 if (SD) { 2548 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2549 // favor this processor. 2550 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2551 } 2552 } else { 2553 // Otherwise just add the existing target cpu and target features to the 2554 // function. 2555 Features = getTarget().getTargetOpts().Features; 2556 } 2557 2558 if (!TargetCPU.empty()) { 2559 Attrs.addAttribute("target-cpu", TargetCPU); 2560 AddedAttr = true; 2561 } 2562 if (!TuneCPU.empty()) { 2563 Attrs.addAttribute("tune-cpu", TuneCPU); 2564 AddedAttr = true; 2565 } 2566 if (!Features.empty() && SetTargetFeatures) { 2567 llvm::erase_if(Features, [&](const std::string& F) { 2568 return getTarget().isReadOnlyFeature(F.substr(1)); 2569 }); 2570 llvm::sort(Features); 2571 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2572 AddedAttr = true; 2573 } 2574 2575 return AddedAttr; 2576 } 2577 2578 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2579 llvm::GlobalObject *GO) { 2580 const Decl *D = GD.getDecl(); 2581 SetCommonAttributes(GD, GO); 2582 2583 if (D) { 2584 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2585 if (D->hasAttr<RetainAttr>()) 2586 addUsedGlobal(GV); 2587 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2588 GV->addAttribute("bss-section", SA->getName()); 2589 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2590 GV->addAttribute("data-section", SA->getName()); 2591 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2592 GV->addAttribute("rodata-section", SA->getName()); 2593 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2594 GV->addAttribute("relro-section", SA->getName()); 2595 } 2596 2597 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2598 if (D->hasAttr<RetainAttr>()) 2599 addUsedGlobal(F); 2600 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2601 if (!D->getAttr<SectionAttr>()) 2602 F->addFnAttr("implicit-section-name", SA->getName()); 2603 2604 llvm::AttrBuilder Attrs(F->getContext()); 2605 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2606 // We know that GetCPUAndFeaturesAttributes will always have the 2607 // newest set, since it has the newest possible FunctionDecl, so the 2608 // new ones should replace the old. 2609 llvm::AttributeMask RemoveAttrs; 2610 RemoveAttrs.addAttribute("target-cpu"); 2611 RemoveAttrs.addAttribute("target-features"); 2612 RemoveAttrs.addAttribute("tune-cpu"); 2613 F->removeFnAttrs(RemoveAttrs); 2614 F->addFnAttrs(Attrs); 2615 } 2616 } 2617 2618 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2619 GO->setSection(CSA->getName()); 2620 else if (const auto *SA = D->getAttr<SectionAttr>()) 2621 GO->setSection(SA->getName()); 2622 } 2623 2624 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2625 } 2626 2627 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2628 llvm::Function *F, 2629 const CGFunctionInfo &FI) { 2630 const Decl *D = GD.getDecl(); 2631 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2632 SetLLVMFunctionAttributesForDefinition(D, F); 2633 2634 F->setLinkage(llvm::Function::InternalLinkage); 2635 2636 setNonAliasAttributes(GD, F); 2637 } 2638 2639 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2640 // Set linkage and visibility in case we never see a definition. 2641 LinkageInfo LV = ND->getLinkageAndVisibility(); 2642 // Don't set internal linkage on declarations. 2643 // "extern_weak" is overloaded in LLVM; we probably should have 2644 // separate linkage types for this. 2645 if (isExternallyVisible(LV.getLinkage()) && 2646 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2647 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2648 } 2649 2650 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2651 llvm::Function *F) { 2652 // Only if we are checking indirect calls. 2653 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2654 return; 2655 2656 // Non-static class methods are handled via vtable or member function pointer 2657 // checks elsewhere. 2658 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2659 return; 2660 2661 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2662 F->addTypeMetadata(0, MD); 2663 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2664 2665 // Emit a hash-based bit set entry for cross-DSO calls. 2666 if (CodeGenOpts.SanitizeCfiCrossDso) 2667 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2668 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2669 } 2670 2671 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2672 llvm::LLVMContext &Ctx = F->getContext(); 2673 llvm::MDBuilder MDB(Ctx); 2674 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2675 llvm::MDNode::get( 2676 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2677 } 2678 2679 static bool allowKCFIIdentifier(StringRef Name) { 2680 // KCFI type identifier constants are only necessary for external assembly 2681 // functions, which means it's safe to skip unusual names. Subset of 2682 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2683 return llvm::all_of(Name, [](const char &C) { 2684 return llvm::isAlnum(C) || C == '_' || C == '.'; 2685 }); 2686 } 2687 2688 void CodeGenModule::finalizeKCFITypes() { 2689 llvm::Module &M = getModule(); 2690 for (auto &F : M.functions()) { 2691 // Remove KCFI type metadata from non-address-taken local functions. 2692 bool AddressTaken = F.hasAddressTaken(); 2693 if (!AddressTaken && F.hasLocalLinkage()) 2694 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2695 2696 // Generate a constant with the expected KCFI type identifier for all 2697 // address-taken function declarations to support annotating indirectly 2698 // called assembly functions. 2699 if (!AddressTaken || !F.isDeclaration()) 2700 continue; 2701 2702 const llvm::ConstantInt *Type; 2703 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2704 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2705 else 2706 continue; 2707 2708 StringRef Name = F.getName(); 2709 if (!allowKCFIIdentifier(Name)) 2710 continue; 2711 2712 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2713 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2714 .str(); 2715 M.appendModuleInlineAsm(Asm); 2716 } 2717 } 2718 2719 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2720 bool IsIncompleteFunction, 2721 bool IsThunk) { 2722 2723 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2724 // If this is an intrinsic function, set the function's attributes 2725 // to the intrinsic's attributes. 2726 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2727 return; 2728 } 2729 2730 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2731 2732 if (!IsIncompleteFunction) 2733 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2734 IsThunk); 2735 2736 // Add the Returned attribute for "this", except for iOS 5 and earlier 2737 // where substantial code, including the libstdc++ dylib, was compiled with 2738 // GCC and does not actually return "this". 2739 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2740 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2741 assert(!F->arg_empty() && 2742 F->arg_begin()->getType() 2743 ->canLosslesslyBitCastTo(F->getReturnType()) && 2744 "unexpected this return"); 2745 F->addParamAttr(0, llvm::Attribute::Returned); 2746 } 2747 2748 // Only a few attributes are set on declarations; these may later be 2749 // overridden by a definition. 2750 2751 setLinkageForGV(F, FD); 2752 setGVProperties(F, FD); 2753 2754 // Setup target-specific attributes. 2755 if (!IsIncompleteFunction && F->isDeclaration()) 2756 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2757 2758 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2759 F->setSection(CSA->getName()); 2760 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2761 F->setSection(SA->getName()); 2762 2763 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2764 if (EA->isError()) 2765 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2766 else if (EA->isWarning()) 2767 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2768 } 2769 2770 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2771 if (FD->isInlineBuiltinDeclaration()) { 2772 const FunctionDecl *FDBody; 2773 bool HasBody = FD->hasBody(FDBody); 2774 (void)HasBody; 2775 assert(HasBody && "Inline builtin declarations should always have an " 2776 "available body!"); 2777 if (shouldEmitFunction(FDBody)) 2778 F->addFnAttr(llvm::Attribute::NoBuiltin); 2779 } 2780 2781 if (FD->isReplaceableGlobalAllocationFunction()) { 2782 // A replaceable global allocation function does not act like a builtin by 2783 // default, only if it is invoked by a new-expression or delete-expression. 2784 F->addFnAttr(llvm::Attribute::NoBuiltin); 2785 } 2786 2787 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2788 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2789 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2790 if (MD->isVirtual()) 2791 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2792 2793 // Don't emit entries for function declarations in the cross-DSO mode. This 2794 // is handled with better precision by the receiving DSO. But if jump tables 2795 // are non-canonical then we need type metadata in order to produce the local 2796 // jump table. 2797 if (!CodeGenOpts.SanitizeCfiCrossDso || 2798 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2799 CreateFunctionTypeMetadataForIcall(FD, F); 2800 2801 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2802 setKCFIType(FD, F); 2803 2804 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2805 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2806 2807 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2808 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2809 2810 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2811 // Annotate the callback behavior as metadata: 2812 // - The callback callee (as argument number). 2813 // - The callback payloads (as argument numbers). 2814 llvm::LLVMContext &Ctx = F->getContext(); 2815 llvm::MDBuilder MDB(Ctx); 2816 2817 // The payload indices are all but the first one in the encoding. The first 2818 // identifies the callback callee. 2819 int CalleeIdx = *CB->encoding_begin(); 2820 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2821 F->addMetadata(llvm::LLVMContext::MD_callback, 2822 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2823 CalleeIdx, PayloadIndices, 2824 /* VarArgsArePassed */ false)})); 2825 } 2826 } 2827 2828 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2829 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2830 "Only globals with definition can force usage."); 2831 LLVMUsed.emplace_back(GV); 2832 } 2833 2834 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2835 assert(!GV->isDeclaration() && 2836 "Only globals with definition can force usage."); 2837 LLVMCompilerUsed.emplace_back(GV); 2838 } 2839 2840 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2841 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2842 "Only globals with definition can force usage."); 2843 if (getTriple().isOSBinFormatELF()) 2844 LLVMCompilerUsed.emplace_back(GV); 2845 else 2846 LLVMUsed.emplace_back(GV); 2847 } 2848 2849 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2850 std::vector<llvm::WeakTrackingVH> &List) { 2851 // Don't create llvm.used if there is no need. 2852 if (List.empty()) 2853 return; 2854 2855 // Convert List to what ConstantArray needs. 2856 SmallVector<llvm::Constant*, 8> UsedArray; 2857 UsedArray.resize(List.size()); 2858 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2859 UsedArray[i] = 2860 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2861 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2862 } 2863 2864 if (UsedArray.empty()) 2865 return; 2866 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2867 2868 auto *GV = new llvm::GlobalVariable( 2869 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2870 llvm::ConstantArray::get(ATy, UsedArray), Name); 2871 2872 GV->setSection("llvm.metadata"); 2873 } 2874 2875 void CodeGenModule::emitLLVMUsed() { 2876 emitUsed(*this, "llvm.used", LLVMUsed); 2877 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2878 } 2879 2880 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2881 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2882 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2883 } 2884 2885 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2886 llvm::SmallString<32> Opt; 2887 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2888 if (Opt.empty()) 2889 return; 2890 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2891 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2892 } 2893 2894 void CodeGenModule::AddDependentLib(StringRef Lib) { 2895 auto &C = getLLVMContext(); 2896 if (getTarget().getTriple().isOSBinFormatELF()) { 2897 ELFDependentLibraries.push_back( 2898 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2899 return; 2900 } 2901 2902 llvm::SmallString<24> Opt; 2903 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2904 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2905 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2906 } 2907 2908 /// Add link options implied by the given module, including modules 2909 /// it depends on, using a postorder walk. 2910 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2911 SmallVectorImpl<llvm::MDNode *> &Metadata, 2912 llvm::SmallPtrSet<Module *, 16> &Visited) { 2913 // Import this module's parent. 2914 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2915 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2916 } 2917 2918 // Import this module's dependencies. 2919 for (Module *Import : llvm::reverse(Mod->Imports)) { 2920 if (Visited.insert(Import).second) 2921 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2922 } 2923 2924 // Add linker options to link against the libraries/frameworks 2925 // described by this module. 2926 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2927 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2928 2929 // For modules that use export_as for linking, use that module 2930 // name instead. 2931 if (Mod->UseExportAsModuleLinkName) 2932 return; 2933 2934 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2935 // Link against a framework. Frameworks are currently Darwin only, so we 2936 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2937 if (LL.IsFramework) { 2938 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2939 llvm::MDString::get(Context, LL.Library)}; 2940 2941 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2942 continue; 2943 } 2944 2945 // Link against a library. 2946 if (IsELF) { 2947 llvm::Metadata *Args[2] = { 2948 llvm::MDString::get(Context, "lib"), 2949 llvm::MDString::get(Context, LL.Library), 2950 }; 2951 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2952 } else { 2953 llvm::SmallString<24> Opt; 2954 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2955 auto *OptString = llvm::MDString::get(Context, Opt); 2956 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2957 } 2958 } 2959 } 2960 2961 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2962 assert(Primary->isNamedModuleUnit() && 2963 "We should only emit module initializers for named modules."); 2964 2965 // Emit the initializers in the order that sub-modules appear in the 2966 // source, first Global Module Fragments, if present. 2967 if (auto GMF = Primary->getGlobalModuleFragment()) { 2968 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2969 if (isa<ImportDecl>(D)) 2970 continue; 2971 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2972 EmitTopLevelDecl(D); 2973 } 2974 } 2975 // Second any associated with the module, itself. 2976 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2977 // Skip import decls, the inits for those are called explicitly. 2978 if (isa<ImportDecl>(D)) 2979 continue; 2980 EmitTopLevelDecl(D); 2981 } 2982 // Third any associated with the Privat eMOdule Fragment, if present. 2983 if (auto PMF = Primary->getPrivateModuleFragment()) { 2984 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2985 // Skip import decls, the inits for those are called explicitly. 2986 if (isa<ImportDecl>(D)) 2987 continue; 2988 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2989 EmitTopLevelDecl(D); 2990 } 2991 } 2992 } 2993 2994 void CodeGenModule::EmitModuleLinkOptions() { 2995 // Collect the set of all of the modules we want to visit to emit link 2996 // options, which is essentially the imported modules and all of their 2997 // non-explicit child modules. 2998 llvm::SetVector<clang::Module *> LinkModules; 2999 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3000 SmallVector<clang::Module *, 16> Stack; 3001 3002 // Seed the stack with imported modules. 3003 for (Module *M : ImportedModules) { 3004 // Do not add any link flags when an implementation TU of a module imports 3005 // a header of that same module. 3006 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3007 !getLangOpts().isCompilingModule()) 3008 continue; 3009 if (Visited.insert(M).second) 3010 Stack.push_back(M); 3011 } 3012 3013 // Find all of the modules to import, making a little effort to prune 3014 // non-leaf modules. 3015 while (!Stack.empty()) { 3016 clang::Module *Mod = Stack.pop_back_val(); 3017 3018 bool AnyChildren = false; 3019 3020 // Visit the submodules of this module. 3021 for (const auto &SM : Mod->submodules()) { 3022 // Skip explicit children; they need to be explicitly imported to be 3023 // linked against. 3024 if (SM->IsExplicit) 3025 continue; 3026 3027 if (Visited.insert(SM).second) { 3028 Stack.push_back(SM); 3029 AnyChildren = true; 3030 } 3031 } 3032 3033 // We didn't find any children, so add this module to the list of 3034 // modules to link against. 3035 if (!AnyChildren) { 3036 LinkModules.insert(Mod); 3037 } 3038 } 3039 3040 // Add link options for all of the imported modules in reverse topological 3041 // order. We don't do anything to try to order import link flags with respect 3042 // to linker options inserted by things like #pragma comment(). 3043 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3044 Visited.clear(); 3045 for (Module *M : LinkModules) 3046 if (Visited.insert(M).second) 3047 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3048 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3049 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3050 3051 // Add the linker options metadata flag. 3052 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3053 for (auto *MD : LinkerOptionsMetadata) 3054 NMD->addOperand(MD); 3055 } 3056 3057 void CodeGenModule::EmitDeferred() { 3058 // Emit deferred declare target declarations. 3059 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3060 getOpenMPRuntime().emitDeferredTargetDecls(); 3061 3062 // Emit code for any potentially referenced deferred decls. Since a 3063 // previously unused static decl may become used during the generation of code 3064 // for a static function, iterate until no changes are made. 3065 3066 if (!DeferredVTables.empty()) { 3067 EmitDeferredVTables(); 3068 3069 // Emitting a vtable doesn't directly cause more vtables to 3070 // become deferred, although it can cause functions to be 3071 // emitted that then need those vtables. 3072 assert(DeferredVTables.empty()); 3073 } 3074 3075 // Emit CUDA/HIP static device variables referenced by host code only. 3076 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3077 // needed for further handling. 3078 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3079 llvm::append_range(DeferredDeclsToEmit, 3080 getContext().CUDADeviceVarODRUsedByHost); 3081 3082 // Stop if we're out of both deferred vtables and deferred declarations. 3083 if (DeferredDeclsToEmit.empty()) 3084 return; 3085 3086 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3087 // work, it will not interfere with this. 3088 std::vector<GlobalDecl> CurDeclsToEmit; 3089 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3090 3091 for (GlobalDecl &D : CurDeclsToEmit) { 3092 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3093 // to get GlobalValue with exactly the type we need, not something that 3094 // might had been created for another decl with the same mangled name but 3095 // different type. 3096 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3097 GetAddrOfGlobal(D, ForDefinition)); 3098 3099 // In case of different address spaces, we may still get a cast, even with 3100 // IsForDefinition equal to true. Query mangled names table to get 3101 // GlobalValue. 3102 if (!GV) 3103 GV = GetGlobalValue(getMangledName(D)); 3104 3105 // Make sure GetGlobalValue returned non-null. 3106 assert(GV); 3107 3108 // Check to see if we've already emitted this. This is necessary 3109 // for a couple of reasons: first, decls can end up in the 3110 // deferred-decls queue multiple times, and second, decls can end 3111 // up with definitions in unusual ways (e.g. by an extern inline 3112 // function acquiring a strong function redefinition). Just 3113 // ignore these cases. 3114 if (!GV->isDeclaration()) 3115 continue; 3116 3117 // If this is OpenMP, check if it is legal to emit this global normally. 3118 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3119 continue; 3120 3121 // Otherwise, emit the definition and move on to the next one. 3122 EmitGlobalDefinition(D, GV); 3123 3124 // If we found out that we need to emit more decls, do that recursively. 3125 // This has the advantage that the decls are emitted in a DFS and related 3126 // ones are close together, which is convenient for testing. 3127 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3128 EmitDeferred(); 3129 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3130 } 3131 } 3132 } 3133 3134 void CodeGenModule::EmitVTablesOpportunistically() { 3135 // Try to emit external vtables as available_externally if they have emitted 3136 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3137 // is not allowed to create new references to things that need to be emitted 3138 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3139 3140 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3141 && "Only emit opportunistic vtables with optimizations"); 3142 3143 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3144 assert(getVTables().isVTableExternal(RD) && 3145 "This queue should only contain external vtables"); 3146 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3147 VTables.GenerateClassData(RD); 3148 } 3149 OpportunisticVTables.clear(); 3150 } 3151 3152 void CodeGenModule::EmitGlobalAnnotations() { 3153 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3154 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3155 if (GV) 3156 AddGlobalAnnotations(VD, GV); 3157 } 3158 DeferredAnnotations.clear(); 3159 3160 if (Annotations.empty()) 3161 return; 3162 3163 // Create a new global variable for the ConstantStruct in the Module. 3164 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3165 Annotations[0]->getType(), Annotations.size()), Annotations); 3166 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3167 llvm::GlobalValue::AppendingLinkage, 3168 Array, "llvm.global.annotations"); 3169 gv->setSection(AnnotationSection); 3170 } 3171 3172 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3173 llvm::Constant *&AStr = AnnotationStrings[Str]; 3174 if (AStr) 3175 return AStr; 3176 3177 // Not found yet, create a new global. 3178 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3179 auto *gv = new llvm::GlobalVariable( 3180 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3181 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3182 ConstGlobalsPtrTy->getAddressSpace()); 3183 gv->setSection(AnnotationSection); 3184 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3185 AStr = gv; 3186 return gv; 3187 } 3188 3189 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3190 SourceManager &SM = getContext().getSourceManager(); 3191 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3192 if (PLoc.isValid()) 3193 return EmitAnnotationString(PLoc.getFilename()); 3194 return EmitAnnotationString(SM.getBufferName(Loc)); 3195 } 3196 3197 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3198 SourceManager &SM = getContext().getSourceManager(); 3199 PresumedLoc PLoc = SM.getPresumedLoc(L); 3200 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3201 SM.getExpansionLineNumber(L); 3202 return llvm::ConstantInt::get(Int32Ty, LineNo); 3203 } 3204 3205 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3206 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3207 if (Exprs.empty()) 3208 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3209 3210 llvm::FoldingSetNodeID ID; 3211 for (Expr *E : Exprs) { 3212 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3213 } 3214 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3215 if (Lookup) 3216 return Lookup; 3217 3218 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3219 LLVMArgs.reserve(Exprs.size()); 3220 ConstantEmitter ConstEmiter(*this); 3221 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3222 const auto *CE = cast<clang::ConstantExpr>(E); 3223 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3224 CE->getType()); 3225 }); 3226 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3227 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3228 llvm::GlobalValue::PrivateLinkage, Struct, 3229 ".args"); 3230 GV->setSection(AnnotationSection); 3231 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3232 3233 Lookup = GV; 3234 return GV; 3235 } 3236 3237 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3238 const AnnotateAttr *AA, 3239 SourceLocation L) { 3240 // Get the globals for file name, annotation, and the line number. 3241 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3242 *UnitGV = EmitAnnotationUnit(L), 3243 *LineNoCst = EmitAnnotationLineNo(L), 3244 *Args = EmitAnnotationArgs(AA); 3245 3246 llvm::Constant *GVInGlobalsAS = GV; 3247 if (GV->getAddressSpace() != 3248 getDataLayout().getDefaultGlobalsAddressSpace()) { 3249 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3250 GV, 3251 llvm::PointerType::get( 3252 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3253 } 3254 3255 // Create the ConstantStruct for the global annotation. 3256 llvm::Constant *Fields[] = { 3257 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3258 }; 3259 return llvm::ConstantStruct::getAnon(Fields); 3260 } 3261 3262 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3263 llvm::GlobalValue *GV) { 3264 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3265 // Get the struct elements for these annotations. 3266 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3267 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3268 } 3269 3270 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3271 SourceLocation Loc) const { 3272 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3273 // NoSanitize by function name. 3274 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3275 return true; 3276 // NoSanitize by location. Check "mainfile" prefix. 3277 auto &SM = Context.getSourceManager(); 3278 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3279 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3280 return true; 3281 3282 // Check "src" prefix. 3283 if (Loc.isValid()) 3284 return NoSanitizeL.containsLocation(Kind, Loc); 3285 // If location is unknown, this may be a compiler-generated function. Assume 3286 // it's located in the main file. 3287 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3288 } 3289 3290 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3291 llvm::GlobalVariable *GV, 3292 SourceLocation Loc, QualType Ty, 3293 StringRef Category) const { 3294 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3295 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3296 return true; 3297 auto &SM = Context.getSourceManager(); 3298 if (NoSanitizeL.containsMainFile( 3299 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3300 Category)) 3301 return true; 3302 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3303 return true; 3304 3305 // Check global type. 3306 if (!Ty.isNull()) { 3307 // Drill down the array types: if global variable of a fixed type is 3308 // not sanitized, we also don't instrument arrays of them. 3309 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3310 Ty = AT->getElementType(); 3311 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3312 // Only record types (classes, structs etc.) are ignored. 3313 if (Ty->isRecordType()) { 3314 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3315 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3316 return true; 3317 } 3318 } 3319 return false; 3320 } 3321 3322 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3323 StringRef Category) const { 3324 const auto &XRayFilter = getContext().getXRayFilter(); 3325 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3326 auto Attr = ImbueAttr::NONE; 3327 if (Loc.isValid()) 3328 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3329 if (Attr == ImbueAttr::NONE) 3330 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3331 switch (Attr) { 3332 case ImbueAttr::NONE: 3333 return false; 3334 case ImbueAttr::ALWAYS: 3335 Fn->addFnAttr("function-instrument", "xray-always"); 3336 break; 3337 case ImbueAttr::ALWAYS_ARG1: 3338 Fn->addFnAttr("function-instrument", "xray-always"); 3339 Fn->addFnAttr("xray-log-args", "1"); 3340 break; 3341 case ImbueAttr::NEVER: 3342 Fn->addFnAttr("function-instrument", "xray-never"); 3343 break; 3344 } 3345 return true; 3346 } 3347 3348 ProfileList::ExclusionType 3349 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3350 SourceLocation Loc) const { 3351 const auto &ProfileList = getContext().getProfileList(); 3352 // If the profile list is empty, then instrument everything. 3353 if (ProfileList.isEmpty()) 3354 return ProfileList::Allow; 3355 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3356 // First, check the function name. 3357 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3358 return *V; 3359 // Next, check the source location. 3360 if (Loc.isValid()) 3361 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3362 return *V; 3363 // If location is unknown, this may be a compiler-generated function. Assume 3364 // it's located in the main file. 3365 auto &SM = Context.getSourceManager(); 3366 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3367 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3368 return *V; 3369 return ProfileList.getDefault(Kind); 3370 } 3371 3372 ProfileList::ExclusionType 3373 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3374 SourceLocation Loc) const { 3375 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3376 if (V != ProfileList::Allow) 3377 return V; 3378 3379 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3380 if (NumGroups > 1) { 3381 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3382 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3383 return ProfileList::Skip; 3384 } 3385 return ProfileList::Allow; 3386 } 3387 3388 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3389 // Never defer when EmitAllDecls is specified. 3390 if (LangOpts.EmitAllDecls) 3391 return true; 3392 3393 const auto *VD = dyn_cast<VarDecl>(Global); 3394 if (VD && 3395 ((CodeGenOpts.KeepPersistentStorageVariables && 3396 (VD->getStorageDuration() == SD_Static || 3397 VD->getStorageDuration() == SD_Thread)) || 3398 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3399 VD->getType().isConstQualified()))) 3400 return true; 3401 3402 return getContext().DeclMustBeEmitted(Global); 3403 } 3404 3405 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3406 // In OpenMP 5.0 variables and function may be marked as 3407 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3408 // that they must be emitted on the host/device. To be sure we need to have 3409 // seen a declare target with an explicit mentioning of the function, we know 3410 // we have if the level of the declare target attribute is -1. Note that we 3411 // check somewhere else if we should emit this at all. 3412 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3413 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3414 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3415 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3416 return false; 3417 } 3418 3419 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3420 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3421 // Implicit template instantiations may change linkage if they are later 3422 // explicitly instantiated, so they should not be emitted eagerly. 3423 return false; 3424 } 3425 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3426 if (Context.getInlineVariableDefinitionKind(VD) == 3427 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3428 // A definition of an inline constexpr static data member may change 3429 // linkage later if it's redeclared outside the class. 3430 return false; 3431 if (CXX20ModuleInits && VD->getOwningModule() && 3432 !VD->getOwningModule()->isModuleMapModule()) { 3433 // For CXX20, module-owned initializers need to be deferred, since it is 3434 // not known at this point if they will be run for the current module or 3435 // as part of the initializer for an imported one. 3436 return false; 3437 } 3438 } 3439 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3440 // codegen for global variables, because they may be marked as threadprivate. 3441 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3442 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3443 !Global->getType().isConstantStorage(getContext(), false, false) && 3444 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3445 return false; 3446 3447 return true; 3448 } 3449 3450 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3451 StringRef Name = getMangledName(GD); 3452 3453 // The UUID descriptor should be pointer aligned. 3454 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3455 3456 // Look for an existing global. 3457 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3458 return ConstantAddress(GV, GV->getValueType(), Alignment); 3459 3460 ConstantEmitter Emitter(*this); 3461 llvm::Constant *Init; 3462 3463 APValue &V = GD->getAsAPValue(); 3464 if (!V.isAbsent()) { 3465 // If possible, emit the APValue version of the initializer. In particular, 3466 // this gets the type of the constant right. 3467 Init = Emitter.emitForInitializer( 3468 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3469 } else { 3470 // As a fallback, directly construct the constant. 3471 // FIXME: This may get padding wrong under esoteric struct layout rules. 3472 // MSVC appears to create a complete type 'struct __s_GUID' that it 3473 // presumably uses to represent these constants. 3474 MSGuidDecl::Parts Parts = GD->getParts(); 3475 llvm::Constant *Fields[4] = { 3476 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3477 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3478 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3479 llvm::ConstantDataArray::getRaw( 3480 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3481 Int8Ty)}; 3482 Init = llvm::ConstantStruct::getAnon(Fields); 3483 } 3484 3485 auto *GV = new llvm::GlobalVariable( 3486 getModule(), Init->getType(), 3487 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3488 if (supportsCOMDAT()) 3489 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3490 setDSOLocal(GV); 3491 3492 if (!V.isAbsent()) { 3493 Emitter.finalize(GV); 3494 return ConstantAddress(GV, GV->getValueType(), Alignment); 3495 } 3496 3497 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3498 return ConstantAddress(GV, Ty, Alignment); 3499 } 3500 3501 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3502 const UnnamedGlobalConstantDecl *GCD) { 3503 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3504 3505 llvm::GlobalVariable **Entry = nullptr; 3506 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3507 if (*Entry) 3508 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3509 3510 ConstantEmitter Emitter(*this); 3511 llvm::Constant *Init; 3512 3513 const APValue &V = GCD->getValue(); 3514 3515 assert(!V.isAbsent()); 3516 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3517 GCD->getType()); 3518 3519 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3520 /*isConstant=*/true, 3521 llvm::GlobalValue::PrivateLinkage, Init, 3522 ".constant"); 3523 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3524 GV->setAlignment(Alignment.getAsAlign()); 3525 3526 Emitter.finalize(GV); 3527 3528 *Entry = GV; 3529 return ConstantAddress(GV, GV->getValueType(), Alignment); 3530 } 3531 3532 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3533 const TemplateParamObjectDecl *TPO) { 3534 StringRef Name = getMangledName(TPO); 3535 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3536 3537 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3538 return ConstantAddress(GV, GV->getValueType(), Alignment); 3539 3540 ConstantEmitter Emitter(*this); 3541 llvm::Constant *Init = Emitter.emitForInitializer( 3542 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3543 3544 if (!Init) { 3545 ErrorUnsupported(TPO, "template parameter object"); 3546 return ConstantAddress::invalid(); 3547 } 3548 3549 llvm::GlobalValue::LinkageTypes Linkage = 3550 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3551 ? llvm::GlobalValue::LinkOnceODRLinkage 3552 : llvm::GlobalValue::InternalLinkage; 3553 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3554 /*isConstant=*/true, Linkage, Init, Name); 3555 setGVProperties(GV, TPO); 3556 if (supportsCOMDAT()) 3557 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3558 Emitter.finalize(GV); 3559 3560 return ConstantAddress(GV, GV->getValueType(), Alignment); 3561 } 3562 3563 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3564 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3565 assert(AA && "No alias?"); 3566 3567 CharUnits Alignment = getContext().getDeclAlign(VD); 3568 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3569 3570 // See if there is already something with the target's name in the module. 3571 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3572 if (Entry) 3573 return ConstantAddress(Entry, DeclTy, Alignment); 3574 3575 llvm::Constant *Aliasee; 3576 if (isa<llvm::FunctionType>(DeclTy)) 3577 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3578 GlobalDecl(cast<FunctionDecl>(VD)), 3579 /*ForVTable=*/false); 3580 else 3581 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3582 nullptr); 3583 3584 auto *F = cast<llvm::GlobalValue>(Aliasee); 3585 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3586 WeakRefReferences.insert(F); 3587 3588 return ConstantAddress(Aliasee, DeclTy, Alignment); 3589 } 3590 3591 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3592 if (!D) 3593 return false; 3594 if (auto *A = D->getAttr<AttrT>()) 3595 return A->isImplicit(); 3596 return D->isImplicit(); 3597 } 3598 3599 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3600 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3601 3602 // Weak references don't produce any output by themselves. 3603 if (Global->hasAttr<WeakRefAttr>()) 3604 return; 3605 3606 // If this is an alias definition (which otherwise looks like a declaration) 3607 // emit it now. 3608 if (Global->hasAttr<AliasAttr>()) 3609 return EmitAliasDefinition(GD); 3610 3611 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3612 if (Global->hasAttr<IFuncAttr>()) 3613 return emitIFuncDefinition(GD); 3614 3615 // If this is a cpu_dispatch multiversion function, emit the resolver. 3616 if (Global->hasAttr<CPUDispatchAttr>()) 3617 return emitCPUDispatchDefinition(GD); 3618 3619 // If this is CUDA, be selective about which declarations we emit. 3620 // Non-constexpr non-lambda implicit host device functions are not emitted 3621 // unless they are used on device side. 3622 if (LangOpts.CUDA) { 3623 if (LangOpts.CUDAIsDevice) { 3624 const auto *FD = dyn_cast<FunctionDecl>(Global); 3625 if ((!Global->hasAttr<CUDADeviceAttr>() || 3626 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3627 hasImplicitAttr<CUDAHostAttr>(FD) && 3628 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3629 !isLambdaCallOperator(FD) && 3630 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3631 !Global->hasAttr<CUDAGlobalAttr>() && 3632 !Global->hasAttr<CUDAConstantAttr>() && 3633 !Global->hasAttr<CUDASharedAttr>() && 3634 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3635 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3636 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3637 !Global->hasAttr<CUDAHostAttr>())) 3638 return; 3639 } else { 3640 // We need to emit host-side 'shadows' for all global 3641 // device-side variables because the CUDA runtime needs their 3642 // size and host-side address in order to provide access to 3643 // their device-side incarnations. 3644 3645 // So device-only functions are the only things we skip. 3646 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3647 Global->hasAttr<CUDADeviceAttr>()) 3648 return; 3649 3650 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3651 "Expected Variable or Function"); 3652 } 3653 } 3654 3655 if (LangOpts.OpenMP) { 3656 // If this is OpenMP, check if it is legal to emit this global normally. 3657 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3658 return; 3659 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3660 if (MustBeEmitted(Global)) 3661 EmitOMPDeclareReduction(DRD); 3662 return; 3663 } 3664 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3665 if (MustBeEmitted(Global)) 3666 EmitOMPDeclareMapper(DMD); 3667 return; 3668 } 3669 } 3670 3671 // Ignore declarations, they will be emitted on their first use. 3672 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3673 // Update deferred annotations with the latest declaration if the function 3674 // function was already used or defined. 3675 if (FD->hasAttr<AnnotateAttr>()) { 3676 StringRef MangledName = getMangledName(GD); 3677 if (GetGlobalValue(MangledName)) 3678 DeferredAnnotations[MangledName] = FD; 3679 } 3680 3681 // Forward declarations are emitted lazily on first use. 3682 if (!FD->doesThisDeclarationHaveABody()) { 3683 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3684 return; 3685 3686 StringRef MangledName = getMangledName(GD); 3687 3688 // Compute the function info and LLVM type. 3689 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3690 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3691 3692 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3693 /*DontDefer=*/false); 3694 return; 3695 } 3696 } else { 3697 const auto *VD = cast<VarDecl>(Global); 3698 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3699 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3700 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3701 if (LangOpts.OpenMP) { 3702 // Emit declaration of the must-be-emitted declare target variable. 3703 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3704 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3705 3706 // If this variable has external storage and doesn't require special 3707 // link handling we defer to its canonical definition. 3708 if (VD->hasExternalStorage() && 3709 Res != OMPDeclareTargetDeclAttr::MT_Link) 3710 return; 3711 3712 bool UnifiedMemoryEnabled = 3713 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3714 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3715 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3716 !UnifiedMemoryEnabled) { 3717 (void)GetAddrOfGlobalVar(VD); 3718 } else { 3719 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3720 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3721 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3722 UnifiedMemoryEnabled)) && 3723 "Link clause or to clause with unified memory expected."); 3724 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3725 } 3726 3727 return; 3728 } 3729 } 3730 // If this declaration may have caused an inline variable definition to 3731 // change linkage, make sure that it's emitted. 3732 if (Context.getInlineVariableDefinitionKind(VD) == 3733 ASTContext::InlineVariableDefinitionKind::Strong) 3734 GetAddrOfGlobalVar(VD); 3735 return; 3736 } 3737 } 3738 3739 // Defer code generation to first use when possible, e.g. if this is an inline 3740 // function. If the global must always be emitted, do it eagerly if possible 3741 // to benefit from cache locality. 3742 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3743 // Emit the definition if it can't be deferred. 3744 EmitGlobalDefinition(GD); 3745 addEmittedDeferredDecl(GD); 3746 return; 3747 } 3748 3749 // If we're deferring emission of a C++ variable with an 3750 // initializer, remember the order in which it appeared in the file. 3751 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3752 cast<VarDecl>(Global)->hasInit()) { 3753 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3754 CXXGlobalInits.push_back(nullptr); 3755 } 3756 3757 StringRef MangledName = getMangledName(GD); 3758 if (GetGlobalValue(MangledName) != nullptr) { 3759 // The value has already been used and should therefore be emitted. 3760 addDeferredDeclToEmit(GD); 3761 } else if (MustBeEmitted(Global)) { 3762 // The value must be emitted, but cannot be emitted eagerly. 3763 assert(!MayBeEmittedEagerly(Global)); 3764 addDeferredDeclToEmit(GD); 3765 } else { 3766 // Otherwise, remember that we saw a deferred decl with this name. The 3767 // first use of the mangled name will cause it to move into 3768 // DeferredDeclsToEmit. 3769 DeferredDecls[MangledName] = GD; 3770 } 3771 } 3772 3773 // Check if T is a class type with a destructor that's not dllimport. 3774 static bool HasNonDllImportDtor(QualType T) { 3775 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3776 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3777 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3778 return true; 3779 3780 return false; 3781 } 3782 3783 namespace { 3784 struct FunctionIsDirectlyRecursive 3785 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3786 const StringRef Name; 3787 const Builtin::Context &BI; 3788 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3789 : Name(N), BI(C) {} 3790 3791 bool VisitCallExpr(const CallExpr *E) { 3792 const FunctionDecl *FD = E->getDirectCallee(); 3793 if (!FD) 3794 return false; 3795 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3796 if (Attr && Name == Attr->getLabel()) 3797 return true; 3798 unsigned BuiltinID = FD->getBuiltinID(); 3799 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3800 return false; 3801 StringRef BuiltinName = BI.getName(BuiltinID); 3802 if (BuiltinName.starts_with("__builtin_") && 3803 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3804 return true; 3805 } 3806 return false; 3807 } 3808 3809 bool VisitStmt(const Stmt *S) { 3810 for (const Stmt *Child : S->children()) 3811 if (Child && this->Visit(Child)) 3812 return true; 3813 return false; 3814 } 3815 }; 3816 3817 // Make sure we're not referencing non-imported vars or functions. 3818 struct DLLImportFunctionVisitor 3819 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3820 bool SafeToInline = true; 3821 3822 bool shouldVisitImplicitCode() const { return true; } 3823 3824 bool VisitVarDecl(VarDecl *VD) { 3825 if (VD->getTLSKind()) { 3826 // A thread-local variable cannot be imported. 3827 SafeToInline = false; 3828 return SafeToInline; 3829 } 3830 3831 // A variable definition might imply a destructor call. 3832 if (VD->isThisDeclarationADefinition()) 3833 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3834 3835 return SafeToInline; 3836 } 3837 3838 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3839 if (const auto *D = E->getTemporary()->getDestructor()) 3840 SafeToInline = D->hasAttr<DLLImportAttr>(); 3841 return SafeToInline; 3842 } 3843 3844 bool VisitDeclRefExpr(DeclRefExpr *E) { 3845 ValueDecl *VD = E->getDecl(); 3846 if (isa<FunctionDecl>(VD)) 3847 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3848 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3849 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3850 return SafeToInline; 3851 } 3852 3853 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3854 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3855 return SafeToInline; 3856 } 3857 3858 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3859 CXXMethodDecl *M = E->getMethodDecl(); 3860 if (!M) { 3861 // Call through a pointer to member function. This is safe to inline. 3862 SafeToInline = true; 3863 } else { 3864 SafeToInline = M->hasAttr<DLLImportAttr>(); 3865 } 3866 return SafeToInline; 3867 } 3868 3869 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3870 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3871 return SafeToInline; 3872 } 3873 3874 bool VisitCXXNewExpr(CXXNewExpr *E) { 3875 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3876 return SafeToInline; 3877 } 3878 }; 3879 } 3880 3881 // isTriviallyRecursive - Check if this function calls another 3882 // decl that, because of the asm attribute or the other decl being a builtin, 3883 // ends up pointing to itself. 3884 bool 3885 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3886 StringRef Name; 3887 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3888 // asm labels are a special kind of mangling we have to support. 3889 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3890 if (!Attr) 3891 return false; 3892 Name = Attr->getLabel(); 3893 } else { 3894 Name = FD->getName(); 3895 } 3896 3897 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3898 const Stmt *Body = FD->getBody(); 3899 return Body ? Walker.Visit(Body) : false; 3900 } 3901 3902 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3903 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3904 return true; 3905 3906 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3907 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3908 return false; 3909 3910 // We don't import function bodies from other named module units since that 3911 // behavior may break ABI compatibility of the current unit. 3912 if (const Module *M = F->getOwningModule(); 3913 M && M->getTopLevelModule()->isNamedModule() && 3914 getContext().getCurrentNamedModule() != M->getTopLevelModule()) 3915 return false; 3916 3917 if (F->hasAttr<NoInlineAttr>()) 3918 return false; 3919 3920 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3921 // Check whether it would be safe to inline this dllimport function. 3922 DLLImportFunctionVisitor Visitor; 3923 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3924 if (!Visitor.SafeToInline) 3925 return false; 3926 3927 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3928 // Implicit destructor invocations aren't captured in the AST, so the 3929 // check above can't see them. Check for them manually here. 3930 for (const Decl *Member : Dtor->getParent()->decls()) 3931 if (isa<FieldDecl>(Member)) 3932 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3933 return false; 3934 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3935 if (HasNonDllImportDtor(B.getType())) 3936 return false; 3937 } 3938 } 3939 3940 // Inline builtins declaration must be emitted. They often are fortified 3941 // functions. 3942 if (F->isInlineBuiltinDeclaration()) 3943 return true; 3944 3945 // PR9614. Avoid cases where the source code is lying to us. An available 3946 // externally function should have an equivalent function somewhere else, 3947 // but a function that calls itself through asm label/`__builtin_` trickery is 3948 // clearly not equivalent to the real implementation. 3949 // This happens in glibc's btowc and in some configure checks. 3950 return !isTriviallyRecursive(F); 3951 } 3952 3953 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3954 return CodeGenOpts.OptimizationLevel > 0; 3955 } 3956 3957 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3958 llvm::GlobalValue *GV) { 3959 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3960 3961 if (FD->isCPUSpecificMultiVersion()) { 3962 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3963 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3964 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3965 } else if (FD->isTargetClonesMultiVersion()) { 3966 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3967 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3968 if (Clone->isFirstOfVersion(I)) 3969 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3970 // Ensure that the resolver function is also emitted. 3971 GetOrCreateMultiVersionResolver(GD); 3972 } else if (FD->hasAttr<TargetVersionAttr>()) { 3973 GetOrCreateMultiVersionResolver(GD); 3974 } else 3975 EmitGlobalFunctionDefinition(GD, GV); 3976 } 3977 3978 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3979 const auto *D = cast<ValueDecl>(GD.getDecl()); 3980 3981 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3982 Context.getSourceManager(), 3983 "Generating code for declaration"); 3984 3985 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3986 // At -O0, don't generate IR for functions with available_externally 3987 // linkage. 3988 if (!shouldEmitFunction(GD)) 3989 return; 3990 3991 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3992 std::string Name; 3993 llvm::raw_string_ostream OS(Name); 3994 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3995 /*Qualified=*/true); 3996 return Name; 3997 }); 3998 3999 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4000 // Make sure to emit the definition(s) before we emit the thunks. 4001 // This is necessary for the generation of certain thunks. 4002 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4003 ABI->emitCXXStructor(GD); 4004 else if (FD->isMultiVersion()) 4005 EmitMultiVersionFunctionDefinition(GD, GV); 4006 else 4007 EmitGlobalFunctionDefinition(GD, GV); 4008 4009 if (Method->isVirtual()) 4010 getVTables().EmitThunks(GD); 4011 4012 return; 4013 } 4014 4015 if (FD->isMultiVersion()) 4016 return EmitMultiVersionFunctionDefinition(GD, GV); 4017 return EmitGlobalFunctionDefinition(GD, GV); 4018 } 4019 4020 if (const auto *VD = dyn_cast<VarDecl>(D)) 4021 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4022 4023 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4024 } 4025 4026 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4027 llvm::Function *NewFn); 4028 4029 static unsigned 4030 TargetMVPriority(const TargetInfo &TI, 4031 const CodeGenFunction::MultiVersionResolverOption &RO) { 4032 unsigned Priority = 0; 4033 unsigned NumFeatures = 0; 4034 for (StringRef Feat : RO.Conditions.Features) { 4035 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4036 NumFeatures++; 4037 } 4038 4039 if (!RO.Conditions.Architecture.empty()) 4040 Priority = std::max( 4041 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4042 4043 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4044 4045 return Priority; 4046 } 4047 4048 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4049 // TU can forward declare the function without causing problems. Particularly 4050 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4051 // work with internal linkage functions, so that the same function name can be 4052 // used with internal linkage in multiple TUs. 4053 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4054 GlobalDecl GD) { 4055 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4056 if (FD->getFormalLinkage() == Linkage::Internal) 4057 return llvm::GlobalValue::InternalLinkage; 4058 return llvm::GlobalValue::WeakODRLinkage; 4059 } 4060 4061 void CodeGenModule::emitMultiVersionFunctions() { 4062 std::vector<GlobalDecl> MVFuncsToEmit; 4063 MultiVersionFuncs.swap(MVFuncsToEmit); 4064 for (GlobalDecl GD : MVFuncsToEmit) { 4065 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4066 assert(FD && "Expected a FunctionDecl"); 4067 4068 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4069 if (FD->isTargetMultiVersion()) { 4070 getContext().forEachMultiversionedFunctionVersion( 4071 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4072 GlobalDecl CurGD{ 4073 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4074 StringRef MangledName = getMangledName(CurGD); 4075 llvm::Constant *Func = GetGlobalValue(MangledName); 4076 if (!Func) { 4077 if (CurFD->isDefined()) { 4078 EmitGlobalFunctionDefinition(CurGD, nullptr); 4079 Func = GetGlobalValue(MangledName); 4080 } else { 4081 const CGFunctionInfo &FI = 4082 getTypes().arrangeGlobalDeclaration(GD); 4083 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4084 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4085 /*DontDefer=*/false, ForDefinition); 4086 } 4087 assert(Func && "This should have just been created"); 4088 } 4089 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4090 const auto *TA = CurFD->getAttr<TargetAttr>(); 4091 llvm::SmallVector<StringRef, 8> Feats; 4092 TA->getAddedFeatures(Feats); 4093 Options.emplace_back(cast<llvm::Function>(Func), 4094 TA->getArchitecture(), Feats); 4095 } else { 4096 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4097 llvm::SmallVector<StringRef, 8> Feats; 4098 TVA->getFeatures(Feats); 4099 Options.emplace_back(cast<llvm::Function>(Func), 4100 /*Architecture*/ "", Feats); 4101 } 4102 }); 4103 } else if (FD->isTargetClonesMultiVersion()) { 4104 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4105 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4106 ++VersionIndex) { 4107 if (!TC->isFirstOfVersion(VersionIndex)) 4108 continue; 4109 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4110 VersionIndex}; 4111 StringRef Version = TC->getFeatureStr(VersionIndex); 4112 StringRef MangledName = getMangledName(CurGD); 4113 llvm::Constant *Func = GetGlobalValue(MangledName); 4114 if (!Func) { 4115 if (FD->isDefined()) { 4116 EmitGlobalFunctionDefinition(CurGD, nullptr); 4117 Func = GetGlobalValue(MangledName); 4118 } else { 4119 const CGFunctionInfo &FI = 4120 getTypes().arrangeGlobalDeclaration(CurGD); 4121 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4122 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4123 /*DontDefer=*/false, ForDefinition); 4124 } 4125 assert(Func && "This should have just been created"); 4126 } 4127 4128 StringRef Architecture; 4129 llvm::SmallVector<StringRef, 1> Feature; 4130 4131 if (getTarget().getTriple().isAArch64()) { 4132 if (Version != "default") { 4133 llvm::SmallVector<StringRef, 8> VerFeats; 4134 Version.split(VerFeats, "+"); 4135 for (auto &CurFeat : VerFeats) 4136 Feature.push_back(CurFeat.trim()); 4137 } 4138 } else { 4139 if (Version.starts_with("arch=")) 4140 Architecture = Version.drop_front(sizeof("arch=") - 1); 4141 else if (Version != "default") 4142 Feature.push_back(Version); 4143 } 4144 4145 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4146 } 4147 } else { 4148 assert(0 && "Expected a target or target_clones multiversion function"); 4149 continue; 4150 } 4151 4152 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4153 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4154 ResolverConstant = IFunc->getResolver(); 4155 if (FD->isTargetClonesMultiVersion() || 4156 FD->isTargetVersionMultiVersion()) { 4157 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4158 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4159 std::string MangledName = getMangledNameImpl( 4160 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4161 // In prior versions of Clang, the mangling for ifuncs incorrectly 4162 // included an .ifunc suffix. This alias is generated for backward 4163 // compatibility. It is deprecated, and may be removed in the future. 4164 auto *Alias = llvm::GlobalAlias::create( 4165 DeclTy, 0, getMultiversionLinkage(*this, GD), 4166 MangledName + ".ifunc", IFunc, &getModule()); 4167 SetCommonAttributes(FD, Alias); 4168 } 4169 } 4170 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4171 4172 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4173 4174 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4175 ResolverFunc->setComdat( 4176 getModule().getOrInsertComdat(ResolverFunc->getName())); 4177 4178 const TargetInfo &TI = getTarget(); 4179 llvm::stable_sort( 4180 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4181 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4182 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4183 }); 4184 CodeGenFunction CGF(*this); 4185 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4186 } 4187 4188 // Ensure that any additions to the deferred decls list caused by emitting a 4189 // variant are emitted. This can happen when the variant itself is inline and 4190 // calls a function without linkage. 4191 if (!MVFuncsToEmit.empty()) 4192 EmitDeferred(); 4193 4194 // Ensure that any additions to the multiversion funcs list from either the 4195 // deferred decls or the multiversion functions themselves are emitted. 4196 if (!MultiVersionFuncs.empty()) 4197 emitMultiVersionFunctions(); 4198 } 4199 4200 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4201 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4202 assert(FD && "Not a FunctionDecl?"); 4203 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4204 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4205 assert(DD && "Not a cpu_dispatch Function?"); 4206 4207 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4208 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4209 4210 StringRef ResolverName = getMangledName(GD); 4211 UpdateMultiVersionNames(GD, FD, ResolverName); 4212 4213 llvm::Type *ResolverType; 4214 GlobalDecl ResolverGD; 4215 if (getTarget().supportsIFunc()) { 4216 ResolverType = llvm::FunctionType::get( 4217 llvm::PointerType::get(DeclTy, 4218 getTypes().getTargetAddressSpace(FD->getType())), 4219 false); 4220 } 4221 else { 4222 ResolverType = DeclTy; 4223 ResolverGD = GD; 4224 } 4225 4226 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4227 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4228 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4229 if (supportsCOMDAT()) 4230 ResolverFunc->setComdat( 4231 getModule().getOrInsertComdat(ResolverFunc->getName())); 4232 4233 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4234 const TargetInfo &Target = getTarget(); 4235 unsigned Index = 0; 4236 for (const IdentifierInfo *II : DD->cpus()) { 4237 // Get the name of the target function so we can look it up/create it. 4238 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4239 getCPUSpecificMangling(*this, II->getName()); 4240 4241 llvm::Constant *Func = GetGlobalValue(MangledName); 4242 4243 if (!Func) { 4244 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4245 if (ExistingDecl.getDecl() && 4246 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4247 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4248 Func = GetGlobalValue(MangledName); 4249 } else { 4250 if (!ExistingDecl.getDecl()) 4251 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4252 4253 Func = GetOrCreateLLVMFunction( 4254 MangledName, DeclTy, ExistingDecl, 4255 /*ForVTable=*/false, /*DontDefer=*/true, 4256 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4257 } 4258 } 4259 4260 llvm::SmallVector<StringRef, 32> Features; 4261 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4262 llvm::transform(Features, Features.begin(), 4263 [](StringRef Str) { return Str.substr(1); }); 4264 llvm::erase_if(Features, [&Target](StringRef Feat) { 4265 return !Target.validateCpuSupports(Feat); 4266 }); 4267 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4268 ++Index; 4269 } 4270 4271 llvm::stable_sort( 4272 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4273 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4274 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4275 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4276 }); 4277 4278 // If the list contains multiple 'default' versions, such as when it contains 4279 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4280 // always run on at least a 'pentium'). We do this by deleting the 'least 4281 // advanced' (read, lowest mangling letter). 4282 while (Options.size() > 1 && 4283 llvm::all_of(llvm::X86::getCpuSupportsMask( 4284 (Options.end() - 2)->Conditions.Features), 4285 [](auto X) { return X == 0; })) { 4286 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4287 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4288 if (LHSName.compare(RHSName) < 0) 4289 Options.erase(Options.end() - 2); 4290 else 4291 Options.erase(Options.end() - 1); 4292 } 4293 4294 CodeGenFunction CGF(*this); 4295 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4296 4297 if (getTarget().supportsIFunc()) { 4298 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4299 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4300 4301 // Fix up function declarations that were created for cpu_specific before 4302 // cpu_dispatch was known 4303 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4304 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4305 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4306 &getModule()); 4307 GI->takeName(IFunc); 4308 IFunc->replaceAllUsesWith(GI); 4309 IFunc->eraseFromParent(); 4310 IFunc = GI; 4311 } 4312 4313 std::string AliasName = getMangledNameImpl( 4314 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4315 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4316 if (!AliasFunc) { 4317 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4318 &getModule()); 4319 SetCommonAttributes(GD, GA); 4320 } 4321 } 4322 } 4323 4324 /// If a dispatcher for the specified mangled name is not in the module, create 4325 /// and return an llvm Function with the specified type. 4326 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4327 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4328 assert(FD && "Not a FunctionDecl?"); 4329 4330 std::string MangledName = 4331 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4332 4333 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4334 // a separate resolver). 4335 std::string ResolverName = MangledName; 4336 if (getTarget().supportsIFunc()) { 4337 switch (FD->getMultiVersionKind()) { 4338 case MultiVersionKind::None: 4339 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4340 case MultiVersionKind::Target: 4341 case MultiVersionKind::CPUSpecific: 4342 case MultiVersionKind::CPUDispatch: 4343 ResolverName += ".ifunc"; 4344 break; 4345 case MultiVersionKind::TargetClones: 4346 case MultiVersionKind::TargetVersion: 4347 break; 4348 } 4349 } else if (FD->isTargetMultiVersion()) { 4350 ResolverName += ".resolver"; 4351 } 4352 4353 // If the resolver has already been created, just return it. 4354 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4355 return ResolverGV; 4356 4357 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4358 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4359 4360 // The resolver needs to be created. For target and target_clones, defer 4361 // creation until the end of the TU. 4362 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4363 MultiVersionFuncs.push_back(GD); 4364 4365 // For cpu_specific, don't create an ifunc yet because we don't know if the 4366 // cpu_dispatch will be emitted in this translation unit. 4367 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4368 llvm::Type *ResolverType = llvm::FunctionType::get( 4369 llvm::PointerType::get(DeclTy, 4370 getTypes().getTargetAddressSpace(FD->getType())), 4371 false); 4372 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4373 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4374 /*ForVTable=*/false); 4375 llvm::GlobalIFunc *GIF = 4376 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4377 "", Resolver, &getModule()); 4378 GIF->setName(ResolverName); 4379 SetCommonAttributes(FD, GIF); 4380 4381 return GIF; 4382 } 4383 4384 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4385 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4386 assert(isa<llvm::GlobalValue>(Resolver) && 4387 "Resolver should be created for the first time"); 4388 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4389 return Resolver; 4390 } 4391 4392 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4393 /// module, create and return an llvm Function with the specified type. If there 4394 /// is something in the module with the specified name, return it potentially 4395 /// bitcasted to the right type. 4396 /// 4397 /// If D is non-null, it specifies a decl that correspond to this. This is used 4398 /// to set the attributes on the function when it is first created. 4399 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4400 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4401 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4402 ForDefinition_t IsForDefinition) { 4403 const Decl *D = GD.getDecl(); 4404 4405 // Any attempts to use a MultiVersion function should result in retrieving 4406 // the iFunc instead. Name Mangling will handle the rest of the changes. 4407 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4408 // For the device mark the function as one that should be emitted. 4409 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4410 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4411 !DontDefer && !IsForDefinition) { 4412 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4413 GlobalDecl GDDef; 4414 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4415 GDDef = GlobalDecl(CD, GD.getCtorType()); 4416 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4417 GDDef = GlobalDecl(DD, GD.getDtorType()); 4418 else 4419 GDDef = GlobalDecl(FDDef); 4420 EmitGlobal(GDDef); 4421 } 4422 } 4423 4424 if (FD->isMultiVersion()) { 4425 UpdateMultiVersionNames(GD, FD, MangledName); 4426 if (!IsForDefinition) 4427 return GetOrCreateMultiVersionResolver(GD); 4428 } 4429 } 4430 4431 // Lookup the entry, lazily creating it if necessary. 4432 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4433 if (Entry) { 4434 if (WeakRefReferences.erase(Entry)) { 4435 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4436 if (FD && !FD->hasAttr<WeakAttr>()) 4437 Entry->setLinkage(llvm::Function::ExternalLinkage); 4438 } 4439 4440 // Handle dropped DLL attributes. 4441 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4442 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4443 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4444 setDSOLocal(Entry); 4445 } 4446 4447 // If there are two attempts to define the same mangled name, issue an 4448 // error. 4449 if (IsForDefinition && !Entry->isDeclaration()) { 4450 GlobalDecl OtherGD; 4451 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4452 // to make sure that we issue an error only once. 4453 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4454 (GD.getCanonicalDecl().getDecl() != 4455 OtherGD.getCanonicalDecl().getDecl()) && 4456 DiagnosedConflictingDefinitions.insert(GD).second) { 4457 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4458 << MangledName; 4459 getDiags().Report(OtherGD.getDecl()->getLocation(), 4460 diag::note_previous_definition); 4461 } 4462 } 4463 4464 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4465 (Entry->getValueType() == Ty)) { 4466 return Entry; 4467 } 4468 4469 // Make sure the result is of the correct type. 4470 // (If function is requested for a definition, we always need to create a new 4471 // function, not just return a bitcast.) 4472 if (!IsForDefinition) 4473 return Entry; 4474 } 4475 4476 // This function doesn't have a complete type (for example, the return 4477 // type is an incomplete struct). Use a fake type instead, and make 4478 // sure not to try to set attributes. 4479 bool IsIncompleteFunction = false; 4480 4481 llvm::FunctionType *FTy; 4482 if (isa<llvm::FunctionType>(Ty)) { 4483 FTy = cast<llvm::FunctionType>(Ty); 4484 } else { 4485 FTy = llvm::FunctionType::get(VoidTy, false); 4486 IsIncompleteFunction = true; 4487 } 4488 4489 llvm::Function *F = 4490 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4491 Entry ? StringRef() : MangledName, &getModule()); 4492 4493 // Store the declaration associated with this function so it is potentially 4494 // updated by further declarations or definitions and emitted at the end. 4495 if (D && D->hasAttr<AnnotateAttr>()) 4496 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4497 4498 // If we already created a function with the same mangled name (but different 4499 // type) before, take its name and add it to the list of functions to be 4500 // replaced with F at the end of CodeGen. 4501 // 4502 // This happens if there is a prototype for a function (e.g. "int f()") and 4503 // then a definition of a different type (e.g. "int f(int x)"). 4504 if (Entry) { 4505 F->takeName(Entry); 4506 4507 // This might be an implementation of a function without a prototype, in 4508 // which case, try to do special replacement of calls which match the new 4509 // prototype. The really key thing here is that we also potentially drop 4510 // arguments from the call site so as to make a direct call, which makes the 4511 // inliner happier and suppresses a number of optimizer warnings (!) about 4512 // dropping arguments. 4513 if (!Entry->use_empty()) { 4514 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4515 Entry->removeDeadConstantUsers(); 4516 } 4517 4518 addGlobalValReplacement(Entry, F); 4519 } 4520 4521 assert(F->getName() == MangledName && "name was uniqued!"); 4522 if (D) 4523 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4524 if (ExtraAttrs.hasFnAttrs()) { 4525 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4526 F->addFnAttrs(B); 4527 } 4528 4529 if (!DontDefer) { 4530 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4531 // each other bottoming out with the base dtor. Therefore we emit non-base 4532 // dtors on usage, even if there is no dtor definition in the TU. 4533 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4534 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4535 GD.getDtorType())) 4536 addDeferredDeclToEmit(GD); 4537 4538 // This is the first use or definition of a mangled name. If there is a 4539 // deferred decl with this name, remember that we need to emit it at the end 4540 // of the file. 4541 auto DDI = DeferredDecls.find(MangledName); 4542 if (DDI != DeferredDecls.end()) { 4543 // Move the potentially referenced deferred decl to the 4544 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4545 // don't need it anymore). 4546 addDeferredDeclToEmit(DDI->second); 4547 DeferredDecls.erase(DDI); 4548 4549 // Otherwise, there are cases we have to worry about where we're 4550 // using a declaration for which we must emit a definition but where 4551 // we might not find a top-level definition: 4552 // - member functions defined inline in their classes 4553 // - friend functions defined inline in some class 4554 // - special member functions with implicit definitions 4555 // If we ever change our AST traversal to walk into class methods, 4556 // this will be unnecessary. 4557 // 4558 // We also don't emit a definition for a function if it's going to be an 4559 // entry in a vtable, unless it's already marked as used. 4560 } else if (getLangOpts().CPlusPlus && D) { 4561 // Look for a declaration that's lexically in a record. 4562 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4563 FD = FD->getPreviousDecl()) { 4564 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4565 if (FD->doesThisDeclarationHaveABody()) { 4566 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4567 break; 4568 } 4569 } 4570 } 4571 } 4572 } 4573 4574 // Make sure the result is of the requested type. 4575 if (!IsIncompleteFunction) { 4576 assert(F->getFunctionType() == Ty); 4577 return F; 4578 } 4579 4580 return F; 4581 } 4582 4583 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4584 /// non-null, then this function will use the specified type if it has to 4585 /// create it (this occurs when we see a definition of the function). 4586 llvm::Constant * 4587 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4588 bool DontDefer, 4589 ForDefinition_t IsForDefinition) { 4590 // If there was no specific requested type, just convert it now. 4591 if (!Ty) { 4592 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4593 Ty = getTypes().ConvertType(FD->getType()); 4594 } 4595 4596 // Devirtualized destructor calls may come through here instead of via 4597 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4598 // of the complete destructor when necessary. 4599 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4600 if (getTarget().getCXXABI().isMicrosoft() && 4601 GD.getDtorType() == Dtor_Complete && 4602 DD->getParent()->getNumVBases() == 0) 4603 GD = GlobalDecl(DD, Dtor_Base); 4604 } 4605 4606 StringRef MangledName = getMangledName(GD); 4607 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4608 /*IsThunk=*/false, llvm::AttributeList(), 4609 IsForDefinition); 4610 // Returns kernel handle for HIP kernel stub function. 4611 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4612 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4613 auto *Handle = getCUDARuntime().getKernelHandle( 4614 cast<llvm::Function>(F->stripPointerCasts()), GD); 4615 if (IsForDefinition) 4616 return F; 4617 return Handle; 4618 } 4619 return F; 4620 } 4621 4622 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4623 llvm::GlobalValue *F = 4624 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4625 4626 return llvm::NoCFIValue::get(F); 4627 } 4628 4629 static const FunctionDecl * 4630 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4631 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4632 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4633 4634 IdentifierInfo &CII = C.Idents.get(Name); 4635 for (const auto *Result : DC->lookup(&CII)) 4636 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4637 return FD; 4638 4639 if (!C.getLangOpts().CPlusPlus) 4640 return nullptr; 4641 4642 // Demangle the premangled name from getTerminateFn() 4643 IdentifierInfo &CXXII = 4644 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4645 ? C.Idents.get("terminate") 4646 : C.Idents.get(Name); 4647 4648 for (const auto &N : {"__cxxabiv1", "std"}) { 4649 IdentifierInfo &NS = C.Idents.get(N); 4650 for (const auto *Result : DC->lookup(&NS)) { 4651 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4652 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4653 for (const auto *Result : LSD->lookup(&NS)) 4654 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4655 break; 4656 4657 if (ND) 4658 for (const auto *Result : ND->lookup(&CXXII)) 4659 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4660 return FD; 4661 } 4662 } 4663 4664 return nullptr; 4665 } 4666 4667 /// CreateRuntimeFunction - Create a new runtime function with the specified 4668 /// type and name. 4669 llvm::FunctionCallee 4670 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4671 llvm::AttributeList ExtraAttrs, bool Local, 4672 bool AssumeConvergent) { 4673 if (AssumeConvergent) { 4674 ExtraAttrs = 4675 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4676 } 4677 4678 llvm::Constant *C = 4679 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4680 /*DontDefer=*/false, /*IsThunk=*/false, 4681 ExtraAttrs); 4682 4683 if (auto *F = dyn_cast<llvm::Function>(C)) { 4684 if (F->empty()) { 4685 F->setCallingConv(getRuntimeCC()); 4686 4687 // In Windows Itanium environments, try to mark runtime functions 4688 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4689 // will link their standard library statically or dynamically. Marking 4690 // functions imported when they are not imported can cause linker errors 4691 // and warnings. 4692 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4693 !getCodeGenOpts().LTOVisibilityPublicStd) { 4694 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4695 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4696 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4697 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4698 } 4699 } 4700 setDSOLocal(F); 4701 } 4702 } 4703 4704 return {FTy, C}; 4705 } 4706 4707 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4708 /// create and return an llvm GlobalVariable with the specified type and address 4709 /// space. If there is something in the module with the specified name, return 4710 /// it potentially bitcasted to the right type. 4711 /// 4712 /// If D is non-null, it specifies a decl that correspond to this. This is used 4713 /// to set the attributes on the global when it is first created. 4714 /// 4715 /// If IsForDefinition is true, it is guaranteed that an actual global with 4716 /// type Ty will be returned, not conversion of a variable with the same 4717 /// mangled name but some other type. 4718 llvm::Constant * 4719 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4720 LangAS AddrSpace, const VarDecl *D, 4721 ForDefinition_t IsForDefinition) { 4722 // Lookup the entry, lazily creating it if necessary. 4723 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4724 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4725 if (Entry) { 4726 if (WeakRefReferences.erase(Entry)) { 4727 if (D && !D->hasAttr<WeakAttr>()) 4728 Entry->setLinkage(llvm::Function::ExternalLinkage); 4729 } 4730 4731 // Handle dropped DLL attributes. 4732 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4733 !shouldMapVisibilityToDLLExport(D)) 4734 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4735 4736 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4737 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4738 4739 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4740 return Entry; 4741 4742 // If there are two attempts to define the same mangled name, issue an 4743 // error. 4744 if (IsForDefinition && !Entry->isDeclaration()) { 4745 GlobalDecl OtherGD; 4746 const VarDecl *OtherD; 4747 4748 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4749 // to make sure that we issue an error only once. 4750 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4751 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4752 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4753 OtherD->hasInit() && 4754 DiagnosedConflictingDefinitions.insert(D).second) { 4755 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4756 << MangledName; 4757 getDiags().Report(OtherGD.getDecl()->getLocation(), 4758 diag::note_previous_definition); 4759 } 4760 } 4761 4762 // Make sure the result is of the correct type. 4763 if (Entry->getType()->getAddressSpace() != TargetAS) 4764 return llvm::ConstantExpr::getAddrSpaceCast( 4765 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4766 4767 // (If global is requested for a definition, we always need to create a new 4768 // global, not just return a bitcast.) 4769 if (!IsForDefinition) 4770 return Entry; 4771 } 4772 4773 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4774 4775 auto *GV = new llvm::GlobalVariable( 4776 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4777 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4778 getContext().getTargetAddressSpace(DAddrSpace)); 4779 4780 // If we already created a global with the same mangled name (but different 4781 // type) before, take its name and remove it from its parent. 4782 if (Entry) { 4783 GV->takeName(Entry); 4784 4785 if (!Entry->use_empty()) { 4786 Entry->replaceAllUsesWith(GV); 4787 } 4788 4789 Entry->eraseFromParent(); 4790 } 4791 4792 // This is the first use or definition of a mangled name. If there is a 4793 // deferred decl with this name, remember that we need to emit it at the end 4794 // of the file. 4795 auto DDI = DeferredDecls.find(MangledName); 4796 if (DDI != DeferredDecls.end()) { 4797 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4798 // list, and remove it from DeferredDecls (since we don't need it anymore). 4799 addDeferredDeclToEmit(DDI->second); 4800 DeferredDecls.erase(DDI); 4801 } 4802 4803 // Handle things which are present even on external declarations. 4804 if (D) { 4805 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4806 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4807 4808 // FIXME: This code is overly simple and should be merged with other global 4809 // handling. 4810 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4811 4812 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4813 4814 setLinkageForGV(GV, D); 4815 4816 if (D->getTLSKind()) { 4817 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4818 CXXThreadLocals.push_back(D); 4819 setTLSMode(GV, *D); 4820 } 4821 4822 setGVProperties(GV, D); 4823 4824 // If required by the ABI, treat declarations of static data members with 4825 // inline initializers as definitions. 4826 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4827 EmitGlobalVarDefinition(D); 4828 } 4829 4830 // Emit section information for extern variables. 4831 if (D->hasExternalStorage()) { 4832 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4833 GV->setSection(SA->getName()); 4834 } 4835 4836 // Handle XCore specific ABI requirements. 4837 if (getTriple().getArch() == llvm::Triple::xcore && 4838 D->getLanguageLinkage() == CLanguageLinkage && 4839 D->getType().isConstant(Context) && 4840 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4841 GV->setSection(".cp.rodata"); 4842 4843 // Handle code model attribute 4844 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4845 GV->setCodeModel(CMA->getModel()); 4846 4847 // Check if we a have a const declaration with an initializer, we may be 4848 // able to emit it as available_externally to expose it's value to the 4849 // optimizer. 4850 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4851 D->getType().isConstQualified() && !GV->hasInitializer() && 4852 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4853 const auto *Record = 4854 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4855 bool HasMutableFields = Record && Record->hasMutableFields(); 4856 if (!HasMutableFields) { 4857 const VarDecl *InitDecl; 4858 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4859 if (InitExpr) { 4860 ConstantEmitter emitter(*this); 4861 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4862 if (Init) { 4863 auto *InitType = Init->getType(); 4864 if (GV->getValueType() != InitType) { 4865 // The type of the initializer does not match the definition. 4866 // This happens when an initializer has a different type from 4867 // the type of the global (because of padding at the end of a 4868 // structure for instance). 4869 GV->setName(StringRef()); 4870 // Make a new global with the correct type, this is now guaranteed 4871 // to work. 4872 auto *NewGV = cast<llvm::GlobalVariable>( 4873 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4874 ->stripPointerCasts()); 4875 4876 // Erase the old global, since it is no longer used. 4877 GV->eraseFromParent(); 4878 GV = NewGV; 4879 } else { 4880 GV->setInitializer(Init); 4881 GV->setConstant(true); 4882 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4883 } 4884 emitter.finalize(GV); 4885 } 4886 } 4887 } 4888 } 4889 } 4890 4891 if (D && 4892 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4893 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4894 // External HIP managed variables needed to be recorded for transformation 4895 // in both device and host compilations. 4896 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4897 D->hasExternalStorage()) 4898 getCUDARuntime().handleVarRegistration(D, *GV); 4899 } 4900 4901 if (D) 4902 SanitizerMD->reportGlobal(GV, *D); 4903 4904 LangAS ExpectedAS = 4905 D ? D->getType().getAddressSpace() 4906 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4907 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4908 if (DAddrSpace != ExpectedAS) { 4909 return getTargetCodeGenInfo().performAddrSpaceCast( 4910 *this, GV, DAddrSpace, ExpectedAS, 4911 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4912 } 4913 4914 return GV; 4915 } 4916 4917 llvm::Constant * 4918 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4919 const Decl *D = GD.getDecl(); 4920 4921 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4922 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4923 /*DontDefer=*/false, IsForDefinition); 4924 4925 if (isa<CXXMethodDecl>(D)) { 4926 auto FInfo = 4927 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4928 auto Ty = getTypes().GetFunctionType(*FInfo); 4929 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4930 IsForDefinition); 4931 } 4932 4933 if (isa<FunctionDecl>(D)) { 4934 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4935 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4936 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4937 IsForDefinition); 4938 } 4939 4940 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4941 } 4942 4943 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4944 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4945 llvm::Align Alignment) { 4946 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4947 llvm::GlobalVariable *OldGV = nullptr; 4948 4949 if (GV) { 4950 // Check if the variable has the right type. 4951 if (GV->getValueType() == Ty) 4952 return GV; 4953 4954 // Because C++ name mangling, the only way we can end up with an already 4955 // existing global with the same name is if it has been declared extern "C". 4956 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4957 OldGV = GV; 4958 } 4959 4960 // Create a new variable. 4961 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4962 Linkage, nullptr, Name); 4963 4964 if (OldGV) { 4965 // Replace occurrences of the old variable if needed. 4966 GV->takeName(OldGV); 4967 4968 if (!OldGV->use_empty()) { 4969 OldGV->replaceAllUsesWith(GV); 4970 } 4971 4972 OldGV->eraseFromParent(); 4973 } 4974 4975 if (supportsCOMDAT() && GV->isWeakForLinker() && 4976 !GV->hasAvailableExternallyLinkage()) 4977 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4978 4979 GV->setAlignment(Alignment); 4980 4981 return GV; 4982 } 4983 4984 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4985 /// given global variable. If Ty is non-null and if the global doesn't exist, 4986 /// then it will be created with the specified type instead of whatever the 4987 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4988 /// that an actual global with type Ty will be returned, not conversion of a 4989 /// variable with the same mangled name but some other type. 4990 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4991 llvm::Type *Ty, 4992 ForDefinition_t IsForDefinition) { 4993 assert(D->hasGlobalStorage() && "Not a global variable"); 4994 QualType ASTTy = D->getType(); 4995 if (!Ty) 4996 Ty = getTypes().ConvertTypeForMem(ASTTy); 4997 4998 StringRef MangledName = getMangledName(D); 4999 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5000 IsForDefinition); 5001 } 5002 5003 /// CreateRuntimeVariable - Create a new runtime global variable with the 5004 /// specified type and name. 5005 llvm::Constant * 5006 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5007 StringRef Name) { 5008 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5009 : LangAS::Default; 5010 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5011 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5012 return Ret; 5013 } 5014 5015 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5016 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5017 5018 StringRef MangledName = getMangledName(D); 5019 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5020 5021 // We already have a definition, not declaration, with the same mangled name. 5022 // Emitting of declaration is not required (and actually overwrites emitted 5023 // definition). 5024 if (GV && !GV->isDeclaration()) 5025 return; 5026 5027 // If we have not seen a reference to this variable yet, place it into the 5028 // deferred declarations table to be emitted if needed later. 5029 if (!MustBeEmitted(D) && !GV) { 5030 DeferredDecls[MangledName] = D; 5031 return; 5032 } 5033 5034 // The tentative definition is the only definition. 5035 EmitGlobalVarDefinition(D); 5036 } 5037 5038 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5039 EmitExternalVarDeclaration(D); 5040 } 5041 5042 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5043 return Context.toCharUnitsFromBits( 5044 getDataLayout().getTypeStoreSizeInBits(Ty)); 5045 } 5046 5047 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5048 if (LangOpts.OpenCL) { 5049 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5050 assert(AS == LangAS::opencl_global || 5051 AS == LangAS::opencl_global_device || 5052 AS == LangAS::opencl_global_host || 5053 AS == LangAS::opencl_constant || 5054 AS == LangAS::opencl_local || 5055 AS >= LangAS::FirstTargetAddressSpace); 5056 return AS; 5057 } 5058 5059 if (LangOpts.SYCLIsDevice && 5060 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5061 return LangAS::sycl_global; 5062 5063 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5064 if (D) { 5065 if (D->hasAttr<CUDAConstantAttr>()) 5066 return LangAS::cuda_constant; 5067 if (D->hasAttr<CUDASharedAttr>()) 5068 return LangAS::cuda_shared; 5069 if (D->hasAttr<CUDADeviceAttr>()) 5070 return LangAS::cuda_device; 5071 if (D->getType().isConstQualified()) 5072 return LangAS::cuda_constant; 5073 } 5074 return LangAS::cuda_device; 5075 } 5076 5077 if (LangOpts.OpenMP) { 5078 LangAS AS; 5079 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5080 return AS; 5081 } 5082 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5083 } 5084 5085 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5086 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5087 if (LangOpts.OpenCL) 5088 return LangAS::opencl_constant; 5089 if (LangOpts.SYCLIsDevice) 5090 return LangAS::sycl_global; 5091 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5092 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5093 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5094 // with OpVariable instructions with Generic storage class which is not 5095 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5096 // UniformConstant storage class is not viable as pointers to it may not be 5097 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5098 return LangAS::cuda_device; 5099 if (auto AS = getTarget().getConstantAddressSpace()) 5100 return *AS; 5101 return LangAS::Default; 5102 } 5103 5104 // In address space agnostic languages, string literals are in default address 5105 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5106 // emitted in constant address space in LLVM IR. To be consistent with other 5107 // parts of AST, string literal global variables in constant address space 5108 // need to be casted to default address space before being put into address 5109 // map and referenced by other part of CodeGen. 5110 // In OpenCL, string literals are in constant address space in AST, therefore 5111 // they should not be casted to default address space. 5112 static llvm::Constant * 5113 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5114 llvm::GlobalVariable *GV) { 5115 llvm::Constant *Cast = GV; 5116 if (!CGM.getLangOpts().OpenCL) { 5117 auto AS = CGM.GetGlobalConstantAddressSpace(); 5118 if (AS != LangAS::Default) 5119 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5120 CGM, GV, AS, LangAS::Default, 5121 llvm::PointerType::get( 5122 CGM.getLLVMContext(), 5123 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5124 } 5125 return Cast; 5126 } 5127 5128 template<typename SomeDecl> 5129 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5130 llvm::GlobalValue *GV) { 5131 if (!getLangOpts().CPlusPlus) 5132 return; 5133 5134 // Must have 'used' attribute, or else inline assembly can't rely on 5135 // the name existing. 5136 if (!D->template hasAttr<UsedAttr>()) 5137 return; 5138 5139 // Must have internal linkage and an ordinary name. 5140 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5141 return; 5142 5143 // Must be in an extern "C" context. Entities declared directly within 5144 // a record are not extern "C" even if the record is in such a context. 5145 const SomeDecl *First = D->getFirstDecl(); 5146 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5147 return; 5148 5149 // OK, this is an internal linkage entity inside an extern "C" linkage 5150 // specification. Make a note of that so we can give it the "expected" 5151 // mangled name if nothing else is using that name. 5152 std::pair<StaticExternCMap::iterator, bool> R = 5153 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5154 5155 // If we have multiple internal linkage entities with the same name 5156 // in extern "C" regions, none of them gets that name. 5157 if (!R.second) 5158 R.first->second = nullptr; 5159 } 5160 5161 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5162 if (!CGM.supportsCOMDAT()) 5163 return false; 5164 5165 if (D.hasAttr<SelectAnyAttr>()) 5166 return true; 5167 5168 GVALinkage Linkage; 5169 if (auto *VD = dyn_cast<VarDecl>(&D)) 5170 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5171 else 5172 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5173 5174 switch (Linkage) { 5175 case GVA_Internal: 5176 case GVA_AvailableExternally: 5177 case GVA_StrongExternal: 5178 return false; 5179 case GVA_DiscardableODR: 5180 case GVA_StrongODR: 5181 return true; 5182 } 5183 llvm_unreachable("No such linkage"); 5184 } 5185 5186 bool CodeGenModule::supportsCOMDAT() const { 5187 return getTriple().supportsCOMDAT(); 5188 } 5189 5190 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5191 llvm::GlobalObject &GO) { 5192 if (!shouldBeInCOMDAT(*this, D)) 5193 return; 5194 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5195 } 5196 5197 /// Pass IsTentative as true if you want to create a tentative definition. 5198 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5199 bool IsTentative) { 5200 // OpenCL global variables of sampler type are translated to function calls, 5201 // therefore no need to be translated. 5202 QualType ASTTy = D->getType(); 5203 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5204 return; 5205 5206 // If this is OpenMP device, check if it is legal to emit this global 5207 // normally. 5208 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5209 OpenMPRuntime->emitTargetGlobalVariable(D)) 5210 return; 5211 5212 llvm::TrackingVH<llvm::Constant> Init; 5213 bool NeedsGlobalCtor = false; 5214 // Whether the definition of the variable is available externally. 5215 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5216 // since this is the job for its original source. 5217 bool IsDefinitionAvailableExternally = 5218 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5219 bool NeedsGlobalDtor = 5220 !IsDefinitionAvailableExternally && 5221 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5222 5223 const VarDecl *InitDecl; 5224 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5225 5226 std::optional<ConstantEmitter> emitter; 5227 5228 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5229 // as part of their declaration." Sema has already checked for 5230 // error cases, so we just need to set Init to UndefValue. 5231 bool IsCUDASharedVar = 5232 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5233 // Shadows of initialized device-side global variables are also left 5234 // undefined. 5235 // Managed Variables should be initialized on both host side and device side. 5236 bool IsCUDAShadowVar = 5237 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5238 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5239 D->hasAttr<CUDASharedAttr>()); 5240 bool IsCUDADeviceShadowVar = 5241 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5242 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5243 D->getType()->isCUDADeviceBuiltinTextureType()); 5244 if (getLangOpts().CUDA && 5245 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5246 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5247 else if (D->hasAttr<LoaderUninitializedAttr>()) 5248 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5249 else if (!InitExpr) { 5250 // This is a tentative definition; tentative definitions are 5251 // implicitly initialized with { 0 }. 5252 // 5253 // Note that tentative definitions are only emitted at the end of 5254 // a translation unit, so they should never have incomplete 5255 // type. In addition, EmitTentativeDefinition makes sure that we 5256 // never attempt to emit a tentative definition if a real one 5257 // exists. A use may still exists, however, so we still may need 5258 // to do a RAUW. 5259 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5260 Init = EmitNullConstant(D->getType()); 5261 } else { 5262 initializedGlobalDecl = GlobalDecl(D); 5263 emitter.emplace(*this); 5264 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5265 if (!Initializer) { 5266 QualType T = InitExpr->getType(); 5267 if (D->getType()->isReferenceType()) 5268 T = D->getType(); 5269 5270 if (getLangOpts().CPlusPlus) { 5271 if (InitDecl->hasFlexibleArrayInit(getContext())) 5272 ErrorUnsupported(D, "flexible array initializer"); 5273 Init = EmitNullConstant(T); 5274 5275 if (!IsDefinitionAvailableExternally) 5276 NeedsGlobalCtor = true; 5277 } else { 5278 ErrorUnsupported(D, "static initializer"); 5279 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5280 } 5281 } else { 5282 Init = Initializer; 5283 // We don't need an initializer, so remove the entry for the delayed 5284 // initializer position (just in case this entry was delayed) if we 5285 // also don't need to register a destructor. 5286 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5287 DelayedCXXInitPosition.erase(D); 5288 5289 #ifndef NDEBUG 5290 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5291 InitDecl->getFlexibleArrayInitChars(getContext()); 5292 CharUnits CstSize = CharUnits::fromQuantity( 5293 getDataLayout().getTypeAllocSize(Init->getType())); 5294 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5295 #endif 5296 } 5297 } 5298 5299 llvm::Type* InitType = Init->getType(); 5300 llvm::Constant *Entry = 5301 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5302 5303 // Strip off pointer casts if we got them. 5304 Entry = Entry->stripPointerCasts(); 5305 5306 // Entry is now either a Function or GlobalVariable. 5307 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5308 5309 // We have a definition after a declaration with the wrong type. 5310 // We must make a new GlobalVariable* and update everything that used OldGV 5311 // (a declaration or tentative definition) with the new GlobalVariable* 5312 // (which will be a definition). 5313 // 5314 // This happens if there is a prototype for a global (e.g. 5315 // "extern int x[];") and then a definition of a different type (e.g. 5316 // "int x[10];"). This also happens when an initializer has a different type 5317 // from the type of the global (this happens with unions). 5318 if (!GV || GV->getValueType() != InitType || 5319 GV->getType()->getAddressSpace() != 5320 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5321 5322 // Move the old entry aside so that we'll create a new one. 5323 Entry->setName(StringRef()); 5324 5325 // Make a new global with the correct type, this is now guaranteed to work. 5326 GV = cast<llvm::GlobalVariable>( 5327 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5328 ->stripPointerCasts()); 5329 5330 // Replace all uses of the old global with the new global 5331 llvm::Constant *NewPtrForOldDecl = 5332 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5333 Entry->getType()); 5334 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5335 5336 // Erase the old global, since it is no longer used. 5337 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5338 } 5339 5340 MaybeHandleStaticInExternC(D, GV); 5341 5342 if (D->hasAttr<AnnotateAttr>()) 5343 AddGlobalAnnotations(D, GV); 5344 5345 // Set the llvm linkage type as appropriate. 5346 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5347 5348 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5349 // the device. [...]" 5350 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5351 // __device__, declares a variable that: [...] 5352 // Is accessible from all the threads within the grid and from the host 5353 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5354 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5355 if (LangOpts.CUDA) { 5356 if (LangOpts.CUDAIsDevice) { 5357 if (Linkage != llvm::GlobalValue::InternalLinkage && 5358 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5359 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5360 D->getType()->isCUDADeviceBuiltinTextureType())) 5361 GV->setExternallyInitialized(true); 5362 } else { 5363 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5364 } 5365 getCUDARuntime().handleVarRegistration(D, *GV); 5366 } 5367 5368 GV->setInitializer(Init); 5369 if (emitter) 5370 emitter->finalize(GV); 5371 5372 // If it is safe to mark the global 'constant', do so now. 5373 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5374 D->getType().isConstantStorage(getContext(), true, true)); 5375 5376 // If it is in a read-only section, mark it 'constant'. 5377 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5378 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5379 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5380 GV->setConstant(true); 5381 } 5382 5383 CharUnits AlignVal = getContext().getDeclAlign(D); 5384 // Check for alignment specifed in an 'omp allocate' directive. 5385 if (std::optional<CharUnits> AlignValFromAllocate = 5386 getOMPAllocateAlignment(D)) 5387 AlignVal = *AlignValFromAllocate; 5388 GV->setAlignment(AlignVal.getAsAlign()); 5389 5390 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5391 // function is only defined alongside the variable, not also alongside 5392 // callers. Normally, all accesses to a thread_local go through the 5393 // thread-wrapper in order to ensure initialization has occurred, underlying 5394 // variable will never be used other than the thread-wrapper, so it can be 5395 // converted to internal linkage. 5396 // 5397 // However, if the variable has the 'constinit' attribute, it _can_ be 5398 // referenced directly, without calling the thread-wrapper, so the linkage 5399 // must not be changed. 5400 // 5401 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5402 // weak or linkonce, the de-duplication semantics are important to preserve, 5403 // so we don't change the linkage. 5404 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5405 Linkage == llvm::GlobalValue::ExternalLinkage && 5406 Context.getTargetInfo().getTriple().isOSDarwin() && 5407 !D->hasAttr<ConstInitAttr>()) 5408 Linkage = llvm::GlobalValue::InternalLinkage; 5409 5410 GV->setLinkage(Linkage); 5411 if (D->hasAttr<DLLImportAttr>()) 5412 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5413 else if (D->hasAttr<DLLExportAttr>()) 5414 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5415 else 5416 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5417 5418 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5419 // common vars aren't constant even if declared const. 5420 GV->setConstant(false); 5421 // Tentative definition of global variables may be initialized with 5422 // non-zero null pointers. In this case they should have weak linkage 5423 // since common linkage must have zero initializer and must not have 5424 // explicit section therefore cannot have non-zero initial value. 5425 if (!GV->getInitializer()->isNullValue()) 5426 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5427 } 5428 5429 setNonAliasAttributes(D, GV); 5430 5431 if (D->getTLSKind() && !GV->isThreadLocal()) { 5432 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5433 CXXThreadLocals.push_back(D); 5434 setTLSMode(GV, *D); 5435 } 5436 5437 maybeSetTrivialComdat(*D, *GV); 5438 5439 // Emit the initializer function if necessary. 5440 if (NeedsGlobalCtor || NeedsGlobalDtor) 5441 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5442 5443 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5444 5445 // Emit global variable debug information. 5446 if (CGDebugInfo *DI = getModuleDebugInfo()) 5447 if (getCodeGenOpts().hasReducedDebugInfo()) 5448 DI->EmitGlobalVariable(GV, D); 5449 } 5450 5451 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5452 if (CGDebugInfo *DI = getModuleDebugInfo()) 5453 if (getCodeGenOpts().hasReducedDebugInfo()) { 5454 QualType ASTTy = D->getType(); 5455 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5456 llvm::Constant *GV = 5457 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5458 DI->EmitExternalVariable( 5459 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5460 } 5461 } 5462 5463 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5464 CodeGenModule &CGM, const VarDecl *D, 5465 bool NoCommon) { 5466 // Don't give variables common linkage if -fno-common was specified unless it 5467 // was overridden by a NoCommon attribute. 5468 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5469 return true; 5470 5471 // C11 6.9.2/2: 5472 // A declaration of an identifier for an object that has file scope without 5473 // an initializer, and without a storage-class specifier or with the 5474 // storage-class specifier static, constitutes a tentative definition. 5475 if (D->getInit() || D->hasExternalStorage()) 5476 return true; 5477 5478 // A variable cannot be both common and exist in a section. 5479 if (D->hasAttr<SectionAttr>()) 5480 return true; 5481 5482 // A variable cannot be both common and exist in a section. 5483 // We don't try to determine which is the right section in the front-end. 5484 // If no specialized section name is applicable, it will resort to default. 5485 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5486 D->hasAttr<PragmaClangDataSectionAttr>() || 5487 D->hasAttr<PragmaClangRelroSectionAttr>() || 5488 D->hasAttr<PragmaClangRodataSectionAttr>()) 5489 return true; 5490 5491 // Thread local vars aren't considered common linkage. 5492 if (D->getTLSKind()) 5493 return true; 5494 5495 // Tentative definitions marked with WeakImportAttr are true definitions. 5496 if (D->hasAttr<WeakImportAttr>()) 5497 return true; 5498 5499 // A variable cannot be both common and exist in a comdat. 5500 if (shouldBeInCOMDAT(CGM, *D)) 5501 return true; 5502 5503 // Declarations with a required alignment do not have common linkage in MSVC 5504 // mode. 5505 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5506 if (D->hasAttr<AlignedAttr>()) 5507 return true; 5508 QualType VarType = D->getType(); 5509 if (Context.isAlignmentRequired(VarType)) 5510 return true; 5511 5512 if (const auto *RT = VarType->getAs<RecordType>()) { 5513 const RecordDecl *RD = RT->getDecl(); 5514 for (const FieldDecl *FD : RD->fields()) { 5515 if (FD->isBitField()) 5516 continue; 5517 if (FD->hasAttr<AlignedAttr>()) 5518 return true; 5519 if (Context.isAlignmentRequired(FD->getType())) 5520 return true; 5521 } 5522 } 5523 } 5524 5525 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5526 // common symbols, so symbols with greater alignment requirements cannot be 5527 // common. 5528 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5529 // alignments for common symbols via the aligncomm directive, so this 5530 // restriction only applies to MSVC environments. 5531 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5532 Context.getTypeAlignIfKnown(D->getType()) > 5533 Context.toBits(CharUnits::fromQuantity(32))) 5534 return true; 5535 5536 return false; 5537 } 5538 5539 llvm::GlobalValue::LinkageTypes 5540 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5541 GVALinkage Linkage) { 5542 if (Linkage == GVA_Internal) 5543 return llvm::Function::InternalLinkage; 5544 5545 if (D->hasAttr<WeakAttr>()) 5546 return llvm::GlobalVariable::WeakAnyLinkage; 5547 5548 if (const auto *FD = D->getAsFunction()) 5549 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5550 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5551 5552 // We are guaranteed to have a strong definition somewhere else, 5553 // so we can use available_externally linkage. 5554 if (Linkage == GVA_AvailableExternally) 5555 return llvm::GlobalValue::AvailableExternallyLinkage; 5556 5557 // Note that Apple's kernel linker doesn't support symbol 5558 // coalescing, so we need to avoid linkonce and weak linkages there. 5559 // Normally, this means we just map to internal, but for explicit 5560 // instantiations we'll map to external. 5561 5562 // In C++, the compiler has to emit a definition in every translation unit 5563 // that references the function. We should use linkonce_odr because 5564 // a) if all references in this translation unit are optimized away, we 5565 // don't need to codegen it. b) if the function persists, it needs to be 5566 // merged with other definitions. c) C++ has the ODR, so we know the 5567 // definition is dependable. 5568 if (Linkage == GVA_DiscardableODR) 5569 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5570 : llvm::Function::InternalLinkage; 5571 5572 // An explicit instantiation of a template has weak linkage, since 5573 // explicit instantiations can occur in multiple translation units 5574 // and must all be equivalent. However, we are not allowed to 5575 // throw away these explicit instantiations. 5576 // 5577 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5578 // so say that CUDA templates are either external (for kernels) or internal. 5579 // This lets llvm perform aggressive inter-procedural optimizations. For 5580 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5581 // therefore we need to follow the normal linkage paradigm. 5582 if (Linkage == GVA_StrongODR) { 5583 if (getLangOpts().AppleKext) 5584 return llvm::Function::ExternalLinkage; 5585 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5586 !getLangOpts().GPURelocatableDeviceCode) 5587 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5588 : llvm::Function::InternalLinkage; 5589 return llvm::Function::WeakODRLinkage; 5590 } 5591 5592 // C++ doesn't have tentative definitions and thus cannot have common 5593 // linkage. 5594 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5595 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5596 CodeGenOpts.NoCommon)) 5597 return llvm::GlobalVariable::CommonLinkage; 5598 5599 // selectany symbols are externally visible, so use weak instead of 5600 // linkonce. MSVC optimizes away references to const selectany globals, so 5601 // all definitions should be the same and ODR linkage should be used. 5602 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5603 if (D->hasAttr<SelectAnyAttr>()) 5604 return llvm::GlobalVariable::WeakODRLinkage; 5605 5606 // Otherwise, we have strong external linkage. 5607 assert(Linkage == GVA_StrongExternal); 5608 return llvm::GlobalVariable::ExternalLinkage; 5609 } 5610 5611 llvm::GlobalValue::LinkageTypes 5612 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5613 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5614 return getLLVMLinkageForDeclarator(VD, Linkage); 5615 } 5616 5617 /// Replace the uses of a function that was declared with a non-proto type. 5618 /// We want to silently drop extra arguments from call sites 5619 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5620 llvm::Function *newFn) { 5621 // Fast path. 5622 if (old->use_empty()) return; 5623 5624 llvm::Type *newRetTy = newFn->getReturnType(); 5625 SmallVector<llvm::Value*, 4> newArgs; 5626 5627 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5628 ui != ue; ) { 5629 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5630 llvm::User *user = use->getUser(); 5631 5632 // Recognize and replace uses of bitcasts. Most calls to 5633 // unprototyped functions will use bitcasts. 5634 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5635 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5636 replaceUsesOfNonProtoConstant(bitcast, newFn); 5637 continue; 5638 } 5639 5640 // Recognize calls to the function. 5641 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5642 if (!callSite) continue; 5643 if (!callSite->isCallee(&*use)) 5644 continue; 5645 5646 // If the return types don't match exactly, then we can't 5647 // transform this call unless it's dead. 5648 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5649 continue; 5650 5651 // Get the call site's attribute list. 5652 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5653 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5654 5655 // If the function was passed too few arguments, don't transform. 5656 unsigned newNumArgs = newFn->arg_size(); 5657 if (callSite->arg_size() < newNumArgs) 5658 continue; 5659 5660 // If extra arguments were passed, we silently drop them. 5661 // If any of the types mismatch, we don't transform. 5662 unsigned argNo = 0; 5663 bool dontTransform = false; 5664 for (llvm::Argument &A : newFn->args()) { 5665 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5666 dontTransform = true; 5667 break; 5668 } 5669 5670 // Add any parameter attributes. 5671 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5672 argNo++; 5673 } 5674 if (dontTransform) 5675 continue; 5676 5677 // Okay, we can transform this. Create the new call instruction and copy 5678 // over the required information. 5679 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5680 5681 // Copy over any operand bundles. 5682 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5683 callSite->getOperandBundlesAsDefs(newBundles); 5684 5685 llvm::CallBase *newCall; 5686 if (isa<llvm::CallInst>(callSite)) { 5687 newCall = 5688 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5689 } else { 5690 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5691 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5692 oldInvoke->getUnwindDest(), newArgs, 5693 newBundles, "", callSite); 5694 } 5695 newArgs.clear(); // for the next iteration 5696 5697 if (!newCall->getType()->isVoidTy()) 5698 newCall->takeName(callSite); 5699 newCall->setAttributes( 5700 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5701 oldAttrs.getRetAttrs(), newArgAttrs)); 5702 newCall->setCallingConv(callSite->getCallingConv()); 5703 5704 // Finally, remove the old call, replacing any uses with the new one. 5705 if (!callSite->use_empty()) 5706 callSite->replaceAllUsesWith(newCall); 5707 5708 // Copy debug location attached to CI. 5709 if (callSite->getDebugLoc()) 5710 newCall->setDebugLoc(callSite->getDebugLoc()); 5711 5712 callSite->eraseFromParent(); 5713 } 5714 } 5715 5716 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5717 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5718 /// existing call uses of the old function in the module, this adjusts them to 5719 /// call the new function directly. 5720 /// 5721 /// This is not just a cleanup: the always_inline pass requires direct calls to 5722 /// functions to be able to inline them. If there is a bitcast in the way, it 5723 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5724 /// run at -O0. 5725 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5726 llvm::Function *NewFn) { 5727 // If we're redefining a global as a function, don't transform it. 5728 if (!isa<llvm::Function>(Old)) return; 5729 5730 replaceUsesOfNonProtoConstant(Old, NewFn); 5731 } 5732 5733 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5734 auto DK = VD->isThisDeclarationADefinition(); 5735 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5736 return; 5737 5738 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5739 // If we have a definition, this might be a deferred decl. If the 5740 // instantiation is explicit, make sure we emit it at the end. 5741 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5742 GetAddrOfGlobalVar(VD); 5743 5744 EmitTopLevelDecl(VD); 5745 } 5746 5747 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5748 llvm::GlobalValue *GV) { 5749 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5750 5751 // Compute the function info and LLVM type. 5752 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5753 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5754 5755 // Get or create the prototype for the function. 5756 if (!GV || (GV->getValueType() != Ty)) 5757 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5758 /*DontDefer=*/true, 5759 ForDefinition)); 5760 5761 // Already emitted. 5762 if (!GV->isDeclaration()) 5763 return; 5764 5765 // We need to set linkage and visibility on the function before 5766 // generating code for it because various parts of IR generation 5767 // want to propagate this information down (e.g. to local static 5768 // declarations). 5769 auto *Fn = cast<llvm::Function>(GV); 5770 setFunctionLinkage(GD, Fn); 5771 5772 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5773 setGVProperties(Fn, GD); 5774 5775 MaybeHandleStaticInExternC(D, Fn); 5776 5777 maybeSetTrivialComdat(*D, *Fn); 5778 5779 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5780 5781 setNonAliasAttributes(GD, Fn); 5782 SetLLVMFunctionAttributesForDefinition(D, Fn); 5783 5784 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5785 AddGlobalCtor(Fn, CA->getPriority()); 5786 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5787 AddGlobalDtor(Fn, DA->getPriority(), true); 5788 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5789 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5790 } 5791 5792 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5793 const auto *D = cast<ValueDecl>(GD.getDecl()); 5794 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5795 assert(AA && "Not an alias?"); 5796 5797 StringRef MangledName = getMangledName(GD); 5798 5799 if (AA->getAliasee() == MangledName) { 5800 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5801 return; 5802 } 5803 5804 // If there is a definition in the module, then it wins over the alias. 5805 // This is dubious, but allow it to be safe. Just ignore the alias. 5806 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5807 if (Entry && !Entry->isDeclaration()) 5808 return; 5809 5810 Aliases.push_back(GD); 5811 5812 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5813 5814 // Create a reference to the named value. This ensures that it is emitted 5815 // if a deferred decl. 5816 llvm::Constant *Aliasee; 5817 llvm::GlobalValue::LinkageTypes LT; 5818 if (isa<llvm::FunctionType>(DeclTy)) { 5819 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5820 /*ForVTable=*/false); 5821 LT = getFunctionLinkage(GD); 5822 } else { 5823 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5824 /*D=*/nullptr); 5825 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5826 LT = getLLVMLinkageVarDefinition(VD); 5827 else 5828 LT = getFunctionLinkage(GD); 5829 } 5830 5831 // Create the new alias itself, but don't set a name yet. 5832 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5833 auto *GA = 5834 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5835 5836 if (Entry) { 5837 if (GA->getAliasee() == Entry) { 5838 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5839 return; 5840 } 5841 5842 assert(Entry->isDeclaration()); 5843 5844 // If there is a declaration in the module, then we had an extern followed 5845 // by the alias, as in: 5846 // extern int test6(); 5847 // ... 5848 // int test6() __attribute__((alias("test7"))); 5849 // 5850 // Remove it and replace uses of it with the alias. 5851 GA->takeName(Entry); 5852 5853 Entry->replaceAllUsesWith(GA); 5854 Entry->eraseFromParent(); 5855 } else { 5856 GA->setName(MangledName); 5857 } 5858 5859 // Set attributes which are particular to an alias; this is a 5860 // specialization of the attributes which may be set on a global 5861 // variable/function. 5862 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5863 D->isWeakImported()) { 5864 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5865 } 5866 5867 if (const auto *VD = dyn_cast<VarDecl>(D)) 5868 if (VD->getTLSKind()) 5869 setTLSMode(GA, *VD); 5870 5871 SetCommonAttributes(GD, GA); 5872 5873 // Emit global alias debug information. 5874 if (isa<VarDecl>(D)) 5875 if (CGDebugInfo *DI = getModuleDebugInfo()) 5876 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5877 } 5878 5879 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5880 const auto *D = cast<ValueDecl>(GD.getDecl()); 5881 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5882 assert(IFA && "Not an ifunc?"); 5883 5884 StringRef MangledName = getMangledName(GD); 5885 5886 if (IFA->getResolver() == MangledName) { 5887 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5888 return; 5889 } 5890 5891 // Report an error if some definition overrides ifunc. 5892 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5893 if (Entry && !Entry->isDeclaration()) { 5894 GlobalDecl OtherGD; 5895 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5896 DiagnosedConflictingDefinitions.insert(GD).second) { 5897 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5898 << MangledName; 5899 Diags.Report(OtherGD.getDecl()->getLocation(), 5900 diag::note_previous_definition); 5901 } 5902 return; 5903 } 5904 5905 Aliases.push_back(GD); 5906 5907 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5908 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5909 llvm::Constant *Resolver = 5910 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5911 /*ForVTable=*/false); 5912 llvm::GlobalIFunc *GIF = 5913 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5914 "", Resolver, &getModule()); 5915 if (Entry) { 5916 if (GIF->getResolver() == Entry) { 5917 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5918 return; 5919 } 5920 assert(Entry->isDeclaration()); 5921 5922 // If there is a declaration in the module, then we had an extern followed 5923 // by the ifunc, as in: 5924 // extern int test(); 5925 // ... 5926 // int test() __attribute__((ifunc("resolver"))); 5927 // 5928 // Remove it and replace uses of it with the ifunc. 5929 GIF->takeName(Entry); 5930 5931 Entry->replaceAllUsesWith(GIF); 5932 Entry->eraseFromParent(); 5933 } else 5934 GIF->setName(MangledName); 5935 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5936 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5937 } 5938 SetCommonAttributes(GD, GIF); 5939 } 5940 5941 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5942 ArrayRef<llvm::Type*> Tys) { 5943 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5944 Tys); 5945 } 5946 5947 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5948 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5949 const StringLiteral *Literal, bool TargetIsLSB, 5950 bool &IsUTF16, unsigned &StringLength) { 5951 StringRef String = Literal->getString(); 5952 unsigned NumBytes = String.size(); 5953 5954 // Check for simple case. 5955 if (!Literal->containsNonAsciiOrNull()) { 5956 StringLength = NumBytes; 5957 return *Map.insert(std::make_pair(String, nullptr)).first; 5958 } 5959 5960 // Otherwise, convert the UTF8 literals into a string of shorts. 5961 IsUTF16 = true; 5962 5963 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5964 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5965 llvm::UTF16 *ToPtr = &ToBuf[0]; 5966 5967 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5968 ToPtr + NumBytes, llvm::strictConversion); 5969 5970 // ConvertUTF8toUTF16 returns the length in ToPtr. 5971 StringLength = ToPtr - &ToBuf[0]; 5972 5973 // Add an explicit null. 5974 *ToPtr = 0; 5975 return *Map.insert(std::make_pair( 5976 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5977 (StringLength + 1) * 2), 5978 nullptr)).first; 5979 } 5980 5981 ConstantAddress 5982 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5983 unsigned StringLength = 0; 5984 bool isUTF16 = false; 5985 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5986 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5987 getDataLayout().isLittleEndian(), isUTF16, 5988 StringLength); 5989 5990 if (auto *C = Entry.second) 5991 return ConstantAddress( 5992 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5993 5994 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5995 llvm::Constant *Zeros[] = { Zero, Zero }; 5996 5997 const ASTContext &Context = getContext(); 5998 const llvm::Triple &Triple = getTriple(); 5999 6000 const auto CFRuntime = getLangOpts().CFRuntime; 6001 const bool IsSwiftABI = 6002 static_cast<unsigned>(CFRuntime) >= 6003 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6004 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6005 6006 // If we don't already have it, get __CFConstantStringClassReference. 6007 if (!CFConstantStringClassRef) { 6008 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6009 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6010 Ty = llvm::ArrayType::get(Ty, 0); 6011 6012 switch (CFRuntime) { 6013 default: break; 6014 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6015 case LangOptions::CoreFoundationABI::Swift5_0: 6016 CFConstantStringClassName = 6017 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6018 : "$s10Foundation19_NSCFConstantStringCN"; 6019 Ty = IntPtrTy; 6020 break; 6021 case LangOptions::CoreFoundationABI::Swift4_2: 6022 CFConstantStringClassName = 6023 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6024 : "$S10Foundation19_NSCFConstantStringCN"; 6025 Ty = IntPtrTy; 6026 break; 6027 case LangOptions::CoreFoundationABI::Swift4_1: 6028 CFConstantStringClassName = 6029 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6030 : "__T010Foundation19_NSCFConstantStringCN"; 6031 Ty = IntPtrTy; 6032 break; 6033 } 6034 6035 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6036 6037 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6038 llvm::GlobalValue *GV = nullptr; 6039 6040 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6041 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6042 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6043 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6044 6045 const VarDecl *VD = nullptr; 6046 for (const auto *Result : DC->lookup(&II)) 6047 if ((VD = dyn_cast<VarDecl>(Result))) 6048 break; 6049 6050 if (Triple.isOSBinFormatELF()) { 6051 if (!VD) 6052 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6053 } else { 6054 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6055 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6056 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6057 else 6058 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6059 } 6060 6061 setDSOLocal(GV); 6062 } 6063 } 6064 6065 // Decay array -> ptr 6066 CFConstantStringClassRef = 6067 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6068 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6069 } 6070 6071 QualType CFTy = Context.getCFConstantStringType(); 6072 6073 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6074 6075 ConstantInitBuilder Builder(*this); 6076 auto Fields = Builder.beginStruct(STy); 6077 6078 // Class pointer. 6079 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6080 6081 // Flags. 6082 if (IsSwiftABI) { 6083 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6084 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6085 } else { 6086 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6087 } 6088 6089 // String pointer. 6090 llvm::Constant *C = nullptr; 6091 if (isUTF16) { 6092 auto Arr = llvm::ArrayRef( 6093 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6094 Entry.first().size() / 2); 6095 C = llvm::ConstantDataArray::get(VMContext, Arr); 6096 } else { 6097 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6098 } 6099 6100 // Note: -fwritable-strings doesn't make the backing store strings of 6101 // CFStrings writable. 6102 auto *GV = 6103 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6104 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6105 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6106 // Don't enforce the target's minimum global alignment, since the only use 6107 // of the string is via this class initializer. 6108 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6109 : Context.getTypeAlignInChars(Context.CharTy); 6110 GV->setAlignment(Align.getAsAlign()); 6111 6112 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6113 // Without it LLVM can merge the string with a non unnamed_addr one during 6114 // LTO. Doing that changes the section it ends in, which surprises ld64. 6115 if (Triple.isOSBinFormatMachO()) 6116 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6117 : "__TEXT,__cstring,cstring_literals"); 6118 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6119 // the static linker to adjust permissions to read-only later on. 6120 else if (Triple.isOSBinFormatELF()) 6121 GV->setSection(".rodata"); 6122 6123 // String. 6124 llvm::Constant *Str = 6125 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6126 6127 Fields.add(Str); 6128 6129 // String length. 6130 llvm::IntegerType *LengthTy = 6131 llvm::IntegerType::get(getModule().getContext(), 6132 Context.getTargetInfo().getLongWidth()); 6133 if (IsSwiftABI) { 6134 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6135 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6136 LengthTy = Int32Ty; 6137 else 6138 LengthTy = IntPtrTy; 6139 } 6140 Fields.addInt(LengthTy, StringLength); 6141 6142 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6143 // properly aligned on 32-bit platforms. 6144 CharUnits Alignment = 6145 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6146 6147 // The struct. 6148 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6149 /*isConstant=*/false, 6150 llvm::GlobalVariable::PrivateLinkage); 6151 GV->addAttribute("objc_arc_inert"); 6152 switch (Triple.getObjectFormat()) { 6153 case llvm::Triple::UnknownObjectFormat: 6154 llvm_unreachable("unknown file format"); 6155 case llvm::Triple::DXContainer: 6156 case llvm::Triple::GOFF: 6157 case llvm::Triple::SPIRV: 6158 case llvm::Triple::XCOFF: 6159 llvm_unreachable("unimplemented"); 6160 case llvm::Triple::COFF: 6161 case llvm::Triple::ELF: 6162 case llvm::Triple::Wasm: 6163 GV->setSection("cfstring"); 6164 break; 6165 case llvm::Triple::MachO: 6166 GV->setSection("__DATA,__cfstring"); 6167 break; 6168 } 6169 Entry.second = GV; 6170 6171 return ConstantAddress(GV, GV->getValueType(), Alignment); 6172 } 6173 6174 bool CodeGenModule::getExpressionLocationsEnabled() const { 6175 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6176 } 6177 6178 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6179 if (ObjCFastEnumerationStateType.isNull()) { 6180 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6181 D->startDefinition(); 6182 6183 QualType FieldTypes[] = { 6184 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6185 Context.getPointerType(Context.UnsignedLongTy), 6186 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6187 nullptr, ArraySizeModifier::Normal, 0)}; 6188 6189 for (size_t i = 0; i < 4; ++i) { 6190 FieldDecl *Field = FieldDecl::Create(Context, 6191 D, 6192 SourceLocation(), 6193 SourceLocation(), nullptr, 6194 FieldTypes[i], /*TInfo=*/nullptr, 6195 /*BitWidth=*/nullptr, 6196 /*Mutable=*/false, 6197 ICIS_NoInit); 6198 Field->setAccess(AS_public); 6199 D->addDecl(Field); 6200 } 6201 6202 D->completeDefinition(); 6203 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6204 } 6205 6206 return ObjCFastEnumerationStateType; 6207 } 6208 6209 llvm::Constant * 6210 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6211 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6212 6213 // Don't emit it as the address of the string, emit the string data itself 6214 // as an inline array. 6215 if (E->getCharByteWidth() == 1) { 6216 SmallString<64> Str(E->getString()); 6217 6218 // Resize the string to the right size, which is indicated by its type. 6219 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6220 assert(CAT && "String literal not of constant array type!"); 6221 Str.resize(CAT->getSize().getZExtValue()); 6222 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6223 } 6224 6225 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6226 llvm::Type *ElemTy = AType->getElementType(); 6227 unsigned NumElements = AType->getNumElements(); 6228 6229 // Wide strings have either 2-byte or 4-byte elements. 6230 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6231 SmallVector<uint16_t, 32> Elements; 6232 Elements.reserve(NumElements); 6233 6234 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6235 Elements.push_back(E->getCodeUnit(i)); 6236 Elements.resize(NumElements); 6237 return llvm::ConstantDataArray::get(VMContext, Elements); 6238 } 6239 6240 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6241 SmallVector<uint32_t, 32> Elements; 6242 Elements.reserve(NumElements); 6243 6244 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6245 Elements.push_back(E->getCodeUnit(i)); 6246 Elements.resize(NumElements); 6247 return llvm::ConstantDataArray::get(VMContext, Elements); 6248 } 6249 6250 static llvm::GlobalVariable * 6251 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6252 CodeGenModule &CGM, StringRef GlobalName, 6253 CharUnits Alignment) { 6254 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6255 CGM.GetGlobalConstantAddressSpace()); 6256 6257 llvm::Module &M = CGM.getModule(); 6258 // Create a global variable for this string 6259 auto *GV = new llvm::GlobalVariable( 6260 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6261 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6262 GV->setAlignment(Alignment.getAsAlign()); 6263 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6264 if (GV->isWeakForLinker()) { 6265 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6266 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6267 } 6268 CGM.setDSOLocal(GV); 6269 6270 return GV; 6271 } 6272 6273 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6274 /// constant array for the given string literal. 6275 ConstantAddress 6276 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6277 StringRef Name) { 6278 CharUnits Alignment = 6279 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6280 6281 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6282 llvm::GlobalVariable **Entry = nullptr; 6283 if (!LangOpts.WritableStrings) { 6284 Entry = &ConstantStringMap[C]; 6285 if (auto GV = *Entry) { 6286 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6287 GV->setAlignment(Alignment.getAsAlign()); 6288 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6289 GV->getValueType(), Alignment); 6290 } 6291 } 6292 6293 SmallString<256> MangledNameBuffer; 6294 StringRef GlobalVariableName; 6295 llvm::GlobalValue::LinkageTypes LT; 6296 6297 // Mangle the string literal if that's how the ABI merges duplicate strings. 6298 // Don't do it if they are writable, since we don't want writes in one TU to 6299 // affect strings in another. 6300 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6301 !LangOpts.WritableStrings) { 6302 llvm::raw_svector_ostream Out(MangledNameBuffer); 6303 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6304 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6305 GlobalVariableName = MangledNameBuffer; 6306 } else { 6307 LT = llvm::GlobalValue::PrivateLinkage; 6308 GlobalVariableName = Name; 6309 } 6310 6311 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6312 6313 CGDebugInfo *DI = getModuleDebugInfo(); 6314 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6315 DI->AddStringLiteralDebugInfo(GV, S); 6316 6317 if (Entry) 6318 *Entry = GV; 6319 6320 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6321 6322 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6323 GV->getValueType(), Alignment); 6324 } 6325 6326 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6327 /// array for the given ObjCEncodeExpr node. 6328 ConstantAddress 6329 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6330 std::string Str; 6331 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6332 6333 return GetAddrOfConstantCString(Str); 6334 } 6335 6336 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6337 /// the literal and a terminating '\0' character. 6338 /// The result has pointer to array type. 6339 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6340 const std::string &Str, const char *GlobalName) { 6341 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6342 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6343 getContext().CharTy, /*VD=*/nullptr); 6344 6345 llvm::Constant *C = 6346 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6347 6348 // Don't share any string literals if strings aren't constant. 6349 llvm::GlobalVariable **Entry = nullptr; 6350 if (!LangOpts.WritableStrings) { 6351 Entry = &ConstantStringMap[C]; 6352 if (auto GV = *Entry) { 6353 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6354 GV->setAlignment(Alignment.getAsAlign()); 6355 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6356 GV->getValueType(), Alignment); 6357 } 6358 } 6359 6360 // Get the default prefix if a name wasn't specified. 6361 if (!GlobalName) 6362 GlobalName = ".str"; 6363 // Create a global variable for this. 6364 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6365 GlobalName, Alignment); 6366 if (Entry) 6367 *Entry = GV; 6368 6369 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6370 GV->getValueType(), Alignment); 6371 } 6372 6373 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6374 const MaterializeTemporaryExpr *E, const Expr *Init) { 6375 assert((E->getStorageDuration() == SD_Static || 6376 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6377 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6378 6379 // If we're not materializing a subobject of the temporary, keep the 6380 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6381 QualType MaterializedType = Init->getType(); 6382 if (Init == E->getSubExpr()) 6383 MaterializedType = E->getType(); 6384 6385 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6386 6387 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6388 if (!InsertResult.second) { 6389 // We've seen this before: either we already created it or we're in the 6390 // process of doing so. 6391 if (!InsertResult.first->second) { 6392 // We recursively re-entered this function, probably during emission of 6393 // the initializer. Create a placeholder. We'll clean this up in the 6394 // outer call, at the end of this function. 6395 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6396 InsertResult.first->second = new llvm::GlobalVariable( 6397 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6398 nullptr); 6399 } 6400 return ConstantAddress(InsertResult.first->second, 6401 llvm::cast<llvm::GlobalVariable>( 6402 InsertResult.first->second->stripPointerCasts()) 6403 ->getValueType(), 6404 Align); 6405 } 6406 6407 // FIXME: If an externally-visible declaration extends multiple temporaries, 6408 // we need to give each temporary the same name in every translation unit (and 6409 // we also need to make the temporaries externally-visible). 6410 SmallString<256> Name; 6411 llvm::raw_svector_ostream Out(Name); 6412 getCXXABI().getMangleContext().mangleReferenceTemporary( 6413 VD, E->getManglingNumber(), Out); 6414 6415 APValue *Value = nullptr; 6416 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6417 // If the initializer of the extending declaration is a constant 6418 // initializer, we should have a cached constant initializer for this 6419 // temporary. Note that this might have a different value from the value 6420 // computed by evaluating the initializer if the surrounding constant 6421 // expression modifies the temporary. 6422 Value = E->getOrCreateValue(false); 6423 } 6424 6425 // Try evaluating it now, it might have a constant initializer. 6426 Expr::EvalResult EvalResult; 6427 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6428 !EvalResult.hasSideEffects()) 6429 Value = &EvalResult.Val; 6430 6431 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6432 6433 std::optional<ConstantEmitter> emitter; 6434 llvm::Constant *InitialValue = nullptr; 6435 bool Constant = false; 6436 llvm::Type *Type; 6437 if (Value) { 6438 // The temporary has a constant initializer, use it. 6439 emitter.emplace(*this); 6440 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6441 MaterializedType); 6442 Constant = 6443 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6444 /*ExcludeDtor*/ false); 6445 Type = InitialValue->getType(); 6446 } else { 6447 // No initializer, the initialization will be provided when we 6448 // initialize the declaration which performed lifetime extension. 6449 Type = getTypes().ConvertTypeForMem(MaterializedType); 6450 } 6451 6452 // Create a global variable for this lifetime-extended temporary. 6453 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6454 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6455 const VarDecl *InitVD; 6456 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6457 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6458 // Temporaries defined inside a class get linkonce_odr linkage because the 6459 // class can be defined in multiple translation units. 6460 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6461 } else { 6462 // There is no need for this temporary to have external linkage if the 6463 // VarDecl has external linkage. 6464 Linkage = llvm::GlobalVariable::InternalLinkage; 6465 } 6466 } 6467 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6468 auto *GV = new llvm::GlobalVariable( 6469 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6470 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6471 if (emitter) emitter->finalize(GV); 6472 // Don't assign dllimport or dllexport to local linkage globals. 6473 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6474 setGVProperties(GV, VD); 6475 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6476 // The reference temporary should never be dllexport. 6477 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6478 } 6479 GV->setAlignment(Align.getAsAlign()); 6480 if (supportsCOMDAT() && GV->isWeakForLinker()) 6481 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6482 if (VD->getTLSKind()) 6483 setTLSMode(GV, *VD); 6484 llvm::Constant *CV = GV; 6485 if (AddrSpace != LangAS::Default) 6486 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6487 *this, GV, AddrSpace, LangAS::Default, 6488 llvm::PointerType::get( 6489 getLLVMContext(), 6490 getContext().getTargetAddressSpace(LangAS::Default))); 6491 6492 // Update the map with the new temporary. If we created a placeholder above, 6493 // replace it with the new global now. 6494 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6495 if (Entry) { 6496 Entry->replaceAllUsesWith(CV); 6497 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6498 } 6499 Entry = CV; 6500 6501 return ConstantAddress(CV, Type, Align); 6502 } 6503 6504 /// EmitObjCPropertyImplementations - Emit information for synthesized 6505 /// properties for an implementation. 6506 void CodeGenModule::EmitObjCPropertyImplementations(const 6507 ObjCImplementationDecl *D) { 6508 for (const auto *PID : D->property_impls()) { 6509 // Dynamic is just for type-checking. 6510 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6511 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6512 6513 // Determine which methods need to be implemented, some may have 6514 // been overridden. Note that ::isPropertyAccessor is not the method 6515 // we want, that just indicates if the decl came from a 6516 // property. What we want to know is if the method is defined in 6517 // this implementation. 6518 auto *Getter = PID->getGetterMethodDecl(); 6519 if (!Getter || Getter->isSynthesizedAccessorStub()) 6520 CodeGenFunction(*this).GenerateObjCGetter( 6521 const_cast<ObjCImplementationDecl *>(D), PID); 6522 auto *Setter = PID->getSetterMethodDecl(); 6523 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6524 CodeGenFunction(*this).GenerateObjCSetter( 6525 const_cast<ObjCImplementationDecl *>(D), PID); 6526 } 6527 } 6528 } 6529 6530 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6531 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6532 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6533 ivar; ivar = ivar->getNextIvar()) 6534 if (ivar->getType().isDestructedType()) 6535 return true; 6536 6537 return false; 6538 } 6539 6540 static bool AllTrivialInitializers(CodeGenModule &CGM, 6541 ObjCImplementationDecl *D) { 6542 CodeGenFunction CGF(CGM); 6543 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6544 E = D->init_end(); B != E; ++B) { 6545 CXXCtorInitializer *CtorInitExp = *B; 6546 Expr *Init = CtorInitExp->getInit(); 6547 if (!CGF.isTrivialInitializer(Init)) 6548 return false; 6549 } 6550 return true; 6551 } 6552 6553 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6554 /// for an implementation. 6555 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6556 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6557 if (needsDestructMethod(D)) { 6558 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6559 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6560 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6561 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6562 getContext().VoidTy, nullptr, D, 6563 /*isInstance=*/true, /*isVariadic=*/false, 6564 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6565 /*isImplicitlyDeclared=*/true, 6566 /*isDefined=*/false, ObjCImplementationControl::Required); 6567 D->addInstanceMethod(DTORMethod); 6568 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6569 D->setHasDestructors(true); 6570 } 6571 6572 // If the implementation doesn't have any ivar initializers, we don't need 6573 // a .cxx_construct. 6574 if (D->getNumIvarInitializers() == 0 || 6575 AllTrivialInitializers(*this, D)) 6576 return; 6577 6578 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6579 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6580 // The constructor returns 'self'. 6581 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6582 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6583 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6584 /*isVariadic=*/false, 6585 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6586 /*isImplicitlyDeclared=*/true, 6587 /*isDefined=*/false, ObjCImplementationControl::Required); 6588 D->addInstanceMethod(CTORMethod); 6589 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6590 D->setHasNonZeroConstructors(true); 6591 } 6592 6593 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6594 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6595 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6596 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6597 ErrorUnsupported(LSD, "linkage spec"); 6598 return; 6599 } 6600 6601 EmitDeclContext(LSD); 6602 } 6603 6604 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6605 // Device code should not be at top level. 6606 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6607 return; 6608 6609 std::unique_ptr<CodeGenFunction> &CurCGF = 6610 GlobalTopLevelStmtBlockInFlight.first; 6611 6612 // We emitted a top-level stmt but after it there is initialization. 6613 // Stop squashing the top-level stmts into a single function. 6614 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6615 CurCGF->FinishFunction(D->getEndLoc()); 6616 CurCGF = nullptr; 6617 } 6618 6619 if (!CurCGF) { 6620 // void __stmts__N(void) 6621 // FIXME: Ask the ABI name mangler to pick a name. 6622 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6623 FunctionArgList Args; 6624 QualType RetTy = getContext().VoidTy; 6625 const CGFunctionInfo &FnInfo = 6626 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6627 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6628 llvm::Function *Fn = llvm::Function::Create( 6629 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6630 6631 CurCGF.reset(new CodeGenFunction(*this)); 6632 GlobalTopLevelStmtBlockInFlight.second = D; 6633 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6634 D->getBeginLoc(), D->getBeginLoc()); 6635 CXXGlobalInits.push_back(Fn); 6636 } 6637 6638 CurCGF->EmitStmt(D->getStmt()); 6639 } 6640 6641 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6642 for (auto *I : DC->decls()) { 6643 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6644 // are themselves considered "top-level", so EmitTopLevelDecl on an 6645 // ObjCImplDecl does not recursively visit them. We need to do that in 6646 // case they're nested inside another construct (LinkageSpecDecl / 6647 // ExportDecl) that does stop them from being considered "top-level". 6648 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6649 for (auto *M : OID->methods()) 6650 EmitTopLevelDecl(M); 6651 } 6652 6653 EmitTopLevelDecl(I); 6654 } 6655 } 6656 6657 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6658 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6659 // Ignore dependent declarations. 6660 if (D->isTemplated()) 6661 return; 6662 6663 // Consteval function shouldn't be emitted. 6664 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6665 return; 6666 6667 switch (D->getKind()) { 6668 case Decl::CXXConversion: 6669 case Decl::CXXMethod: 6670 case Decl::Function: 6671 EmitGlobal(cast<FunctionDecl>(D)); 6672 // Always provide some coverage mapping 6673 // even for the functions that aren't emitted. 6674 AddDeferredUnusedCoverageMapping(D); 6675 break; 6676 6677 case Decl::CXXDeductionGuide: 6678 // Function-like, but does not result in code emission. 6679 break; 6680 6681 case Decl::Var: 6682 case Decl::Decomposition: 6683 case Decl::VarTemplateSpecialization: 6684 EmitGlobal(cast<VarDecl>(D)); 6685 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6686 for (auto *B : DD->bindings()) 6687 if (auto *HD = B->getHoldingVar()) 6688 EmitGlobal(HD); 6689 break; 6690 6691 // Indirect fields from global anonymous structs and unions can be 6692 // ignored; only the actual variable requires IR gen support. 6693 case Decl::IndirectField: 6694 break; 6695 6696 // C++ Decls 6697 case Decl::Namespace: 6698 EmitDeclContext(cast<NamespaceDecl>(D)); 6699 break; 6700 case Decl::ClassTemplateSpecialization: { 6701 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6702 if (CGDebugInfo *DI = getModuleDebugInfo()) 6703 if (Spec->getSpecializationKind() == 6704 TSK_ExplicitInstantiationDefinition && 6705 Spec->hasDefinition()) 6706 DI->completeTemplateDefinition(*Spec); 6707 } [[fallthrough]]; 6708 case Decl::CXXRecord: { 6709 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6710 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6711 if (CRD->hasDefinition()) 6712 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6713 if (auto *ES = D->getASTContext().getExternalSource()) 6714 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6715 DI->completeUnusedClass(*CRD); 6716 } 6717 // Emit any static data members, they may be definitions. 6718 for (auto *I : CRD->decls()) 6719 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6720 EmitTopLevelDecl(I); 6721 break; 6722 } 6723 // No code generation needed. 6724 case Decl::UsingShadow: 6725 case Decl::ClassTemplate: 6726 case Decl::VarTemplate: 6727 case Decl::Concept: 6728 case Decl::VarTemplatePartialSpecialization: 6729 case Decl::FunctionTemplate: 6730 case Decl::TypeAliasTemplate: 6731 case Decl::Block: 6732 case Decl::Empty: 6733 case Decl::Binding: 6734 break; 6735 case Decl::Using: // using X; [C++] 6736 if (CGDebugInfo *DI = getModuleDebugInfo()) 6737 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6738 break; 6739 case Decl::UsingEnum: // using enum X; [C++] 6740 if (CGDebugInfo *DI = getModuleDebugInfo()) 6741 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6742 break; 6743 case Decl::NamespaceAlias: 6744 if (CGDebugInfo *DI = getModuleDebugInfo()) 6745 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6746 break; 6747 case Decl::UsingDirective: // using namespace X; [C++] 6748 if (CGDebugInfo *DI = getModuleDebugInfo()) 6749 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6750 break; 6751 case Decl::CXXConstructor: 6752 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6753 break; 6754 case Decl::CXXDestructor: 6755 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6756 break; 6757 6758 case Decl::StaticAssert: 6759 // Nothing to do. 6760 break; 6761 6762 // Objective-C Decls 6763 6764 // Forward declarations, no (immediate) code generation. 6765 case Decl::ObjCInterface: 6766 case Decl::ObjCCategory: 6767 break; 6768 6769 case Decl::ObjCProtocol: { 6770 auto *Proto = cast<ObjCProtocolDecl>(D); 6771 if (Proto->isThisDeclarationADefinition()) 6772 ObjCRuntime->GenerateProtocol(Proto); 6773 break; 6774 } 6775 6776 case Decl::ObjCCategoryImpl: 6777 // Categories have properties but don't support synthesize so we 6778 // can ignore them here. 6779 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6780 break; 6781 6782 case Decl::ObjCImplementation: { 6783 auto *OMD = cast<ObjCImplementationDecl>(D); 6784 EmitObjCPropertyImplementations(OMD); 6785 EmitObjCIvarInitializations(OMD); 6786 ObjCRuntime->GenerateClass(OMD); 6787 // Emit global variable debug information. 6788 if (CGDebugInfo *DI = getModuleDebugInfo()) 6789 if (getCodeGenOpts().hasReducedDebugInfo()) 6790 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6791 OMD->getClassInterface()), OMD->getLocation()); 6792 break; 6793 } 6794 case Decl::ObjCMethod: { 6795 auto *OMD = cast<ObjCMethodDecl>(D); 6796 // If this is not a prototype, emit the body. 6797 if (OMD->getBody()) 6798 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6799 break; 6800 } 6801 case Decl::ObjCCompatibleAlias: 6802 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6803 break; 6804 6805 case Decl::PragmaComment: { 6806 const auto *PCD = cast<PragmaCommentDecl>(D); 6807 switch (PCD->getCommentKind()) { 6808 case PCK_Unknown: 6809 llvm_unreachable("unexpected pragma comment kind"); 6810 case PCK_Linker: 6811 AppendLinkerOptions(PCD->getArg()); 6812 break; 6813 case PCK_Lib: 6814 AddDependentLib(PCD->getArg()); 6815 break; 6816 case PCK_Compiler: 6817 case PCK_ExeStr: 6818 case PCK_User: 6819 break; // We ignore all of these. 6820 } 6821 break; 6822 } 6823 6824 case Decl::PragmaDetectMismatch: { 6825 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6826 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6827 break; 6828 } 6829 6830 case Decl::LinkageSpec: 6831 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6832 break; 6833 6834 case Decl::FileScopeAsm: { 6835 // File-scope asm is ignored during device-side CUDA compilation. 6836 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6837 break; 6838 // File-scope asm is ignored during device-side OpenMP compilation. 6839 if (LangOpts.OpenMPIsTargetDevice) 6840 break; 6841 // File-scope asm is ignored during device-side SYCL compilation. 6842 if (LangOpts.SYCLIsDevice) 6843 break; 6844 auto *AD = cast<FileScopeAsmDecl>(D); 6845 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6846 break; 6847 } 6848 6849 case Decl::TopLevelStmt: 6850 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6851 break; 6852 6853 case Decl::Import: { 6854 auto *Import = cast<ImportDecl>(D); 6855 6856 // If we've already imported this module, we're done. 6857 if (!ImportedModules.insert(Import->getImportedModule())) 6858 break; 6859 6860 // Emit debug information for direct imports. 6861 if (!Import->getImportedOwningModule()) { 6862 if (CGDebugInfo *DI = getModuleDebugInfo()) 6863 DI->EmitImportDecl(*Import); 6864 } 6865 6866 // For C++ standard modules we are done - we will call the module 6867 // initializer for imported modules, and that will likewise call those for 6868 // any imports it has. 6869 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6870 !Import->getImportedOwningModule()->isModuleMapModule()) 6871 break; 6872 6873 // For clang C++ module map modules the initializers for sub-modules are 6874 // emitted here. 6875 6876 // Find all of the submodules and emit the module initializers. 6877 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6878 SmallVector<clang::Module *, 16> Stack; 6879 Visited.insert(Import->getImportedModule()); 6880 Stack.push_back(Import->getImportedModule()); 6881 6882 while (!Stack.empty()) { 6883 clang::Module *Mod = Stack.pop_back_val(); 6884 if (!EmittedModuleInitializers.insert(Mod).second) 6885 continue; 6886 6887 for (auto *D : Context.getModuleInitializers(Mod)) 6888 EmitTopLevelDecl(D); 6889 6890 // Visit the submodules of this module. 6891 for (auto *Submodule : Mod->submodules()) { 6892 // Skip explicit children; they need to be explicitly imported to emit 6893 // the initializers. 6894 if (Submodule->IsExplicit) 6895 continue; 6896 6897 if (Visited.insert(Submodule).second) 6898 Stack.push_back(Submodule); 6899 } 6900 } 6901 break; 6902 } 6903 6904 case Decl::Export: 6905 EmitDeclContext(cast<ExportDecl>(D)); 6906 break; 6907 6908 case Decl::OMPThreadPrivate: 6909 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6910 break; 6911 6912 case Decl::OMPAllocate: 6913 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6914 break; 6915 6916 case Decl::OMPDeclareReduction: 6917 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6918 break; 6919 6920 case Decl::OMPDeclareMapper: 6921 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6922 break; 6923 6924 case Decl::OMPRequires: 6925 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6926 break; 6927 6928 case Decl::Typedef: 6929 case Decl::TypeAlias: // using foo = bar; [C++11] 6930 if (CGDebugInfo *DI = getModuleDebugInfo()) 6931 DI->EmitAndRetainType( 6932 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6933 break; 6934 6935 case Decl::Record: 6936 if (CGDebugInfo *DI = getModuleDebugInfo()) 6937 if (cast<RecordDecl>(D)->getDefinition()) 6938 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6939 break; 6940 6941 case Decl::Enum: 6942 if (CGDebugInfo *DI = getModuleDebugInfo()) 6943 if (cast<EnumDecl>(D)->getDefinition()) 6944 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6945 break; 6946 6947 case Decl::HLSLBuffer: 6948 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6949 break; 6950 6951 default: 6952 // Make sure we handled everything we should, every other kind is a 6953 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6954 // function. Need to recode Decl::Kind to do that easily. 6955 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6956 break; 6957 } 6958 } 6959 6960 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6961 // Do we need to generate coverage mapping? 6962 if (!CodeGenOpts.CoverageMapping) 6963 return; 6964 switch (D->getKind()) { 6965 case Decl::CXXConversion: 6966 case Decl::CXXMethod: 6967 case Decl::Function: 6968 case Decl::ObjCMethod: 6969 case Decl::CXXConstructor: 6970 case Decl::CXXDestructor: { 6971 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6972 break; 6973 SourceManager &SM = getContext().getSourceManager(); 6974 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6975 break; 6976 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 6977 break; 6978 } 6979 default: 6980 break; 6981 }; 6982 } 6983 6984 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6985 // Do we need to generate coverage mapping? 6986 if (!CodeGenOpts.CoverageMapping) 6987 return; 6988 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6989 if (Fn->isTemplateInstantiation()) 6990 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6991 } 6992 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 6993 } 6994 6995 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6996 // We call takeVector() here to avoid use-after-free. 6997 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6998 // we deserialize function bodies to emit coverage info for them, and that 6999 // deserializes more declarations. How should we handle that case? 7000 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7001 if (!Entry.second) 7002 continue; 7003 const Decl *D = Entry.first; 7004 switch (D->getKind()) { 7005 case Decl::CXXConversion: 7006 case Decl::CXXMethod: 7007 case Decl::Function: 7008 case Decl::ObjCMethod: { 7009 CodeGenPGO PGO(*this); 7010 GlobalDecl GD(cast<FunctionDecl>(D)); 7011 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7012 getFunctionLinkage(GD)); 7013 break; 7014 } 7015 case Decl::CXXConstructor: { 7016 CodeGenPGO PGO(*this); 7017 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7018 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7019 getFunctionLinkage(GD)); 7020 break; 7021 } 7022 case Decl::CXXDestructor: { 7023 CodeGenPGO PGO(*this); 7024 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7025 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7026 getFunctionLinkage(GD)); 7027 break; 7028 } 7029 default: 7030 break; 7031 }; 7032 } 7033 } 7034 7035 void CodeGenModule::EmitMainVoidAlias() { 7036 // In order to transition away from "__original_main" gracefully, emit an 7037 // alias for "main" in the no-argument case so that libc can detect when 7038 // new-style no-argument main is in used. 7039 if (llvm::Function *F = getModule().getFunction("main")) { 7040 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7041 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7042 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7043 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7044 } 7045 } 7046 } 7047 7048 /// Turns the given pointer into a constant. 7049 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7050 const void *Ptr) { 7051 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7052 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7053 return llvm::ConstantInt::get(i64, PtrInt); 7054 } 7055 7056 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7057 llvm::NamedMDNode *&GlobalMetadata, 7058 GlobalDecl D, 7059 llvm::GlobalValue *Addr) { 7060 if (!GlobalMetadata) 7061 GlobalMetadata = 7062 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7063 7064 // TODO: should we report variant information for ctors/dtors? 7065 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7066 llvm::ConstantAsMetadata::get(GetPointerConstant( 7067 CGM.getLLVMContext(), D.getDecl()))}; 7068 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7069 } 7070 7071 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7072 llvm::GlobalValue *CppFunc) { 7073 // Store the list of ifuncs we need to replace uses in. 7074 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7075 // List of ConstantExprs that we should be able to delete when we're done 7076 // here. 7077 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7078 7079 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7080 if (Elem == CppFunc) 7081 return false; 7082 7083 // First make sure that all users of this are ifuncs (or ifuncs via a 7084 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7085 // later. 7086 for (llvm::User *User : Elem->users()) { 7087 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7088 // ifunc directly. In any other case, just give up, as we don't know what we 7089 // could break by changing those. 7090 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7091 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7092 return false; 7093 7094 for (llvm::User *CEUser : ConstExpr->users()) { 7095 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7096 IFuncs.push_back(IFunc); 7097 } else { 7098 return false; 7099 } 7100 } 7101 CEs.push_back(ConstExpr); 7102 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7103 IFuncs.push_back(IFunc); 7104 } else { 7105 // This user is one we don't know how to handle, so fail redirection. This 7106 // will result in an ifunc retaining a resolver name that will ultimately 7107 // fail to be resolved to a defined function. 7108 return false; 7109 } 7110 } 7111 7112 // Now we know this is a valid case where we can do this alias replacement, we 7113 // need to remove all of the references to Elem (and the bitcasts!) so we can 7114 // delete it. 7115 for (llvm::GlobalIFunc *IFunc : IFuncs) 7116 IFunc->setResolver(nullptr); 7117 for (llvm::ConstantExpr *ConstExpr : CEs) 7118 ConstExpr->destroyConstant(); 7119 7120 // We should now be out of uses for the 'old' version of this function, so we 7121 // can erase it as well. 7122 Elem->eraseFromParent(); 7123 7124 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7125 // The type of the resolver is always just a function-type that returns the 7126 // type of the IFunc, so create that here. If the type of the actual 7127 // resolver doesn't match, it just gets bitcast to the right thing. 7128 auto *ResolverTy = 7129 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7130 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7131 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7132 IFunc->setResolver(Resolver); 7133 } 7134 return true; 7135 } 7136 7137 /// For each function which is declared within an extern "C" region and marked 7138 /// as 'used', but has internal linkage, create an alias from the unmangled 7139 /// name to the mangled name if possible. People expect to be able to refer 7140 /// to such functions with an unmangled name from inline assembly within the 7141 /// same translation unit. 7142 void CodeGenModule::EmitStaticExternCAliases() { 7143 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7144 return; 7145 for (auto &I : StaticExternCValues) { 7146 IdentifierInfo *Name = I.first; 7147 llvm::GlobalValue *Val = I.second; 7148 7149 // If Val is null, that implies there were multiple declarations that each 7150 // had a claim to the unmangled name. In this case, generation of the alias 7151 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7152 if (!Val) 7153 break; 7154 7155 llvm::GlobalValue *ExistingElem = 7156 getModule().getNamedValue(Name->getName()); 7157 7158 // If there is either not something already by this name, or we were able to 7159 // replace all uses from IFuncs, create the alias. 7160 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7161 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7162 } 7163 } 7164 7165 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7166 GlobalDecl &Result) const { 7167 auto Res = Manglings.find(MangledName); 7168 if (Res == Manglings.end()) 7169 return false; 7170 Result = Res->getValue(); 7171 return true; 7172 } 7173 7174 /// Emits metadata nodes associating all the global values in the 7175 /// current module with the Decls they came from. This is useful for 7176 /// projects using IR gen as a subroutine. 7177 /// 7178 /// Since there's currently no way to associate an MDNode directly 7179 /// with an llvm::GlobalValue, we create a global named metadata 7180 /// with the name 'clang.global.decl.ptrs'. 7181 void CodeGenModule::EmitDeclMetadata() { 7182 llvm::NamedMDNode *GlobalMetadata = nullptr; 7183 7184 for (auto &I : MangledDeclNames) { 7185 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7186 // Some mangled names don't necessarily have an associated GlobalValue 7187 // in this module, e.g. if we mangled it for DebugInfo. 7188 if (Addr) 7189 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7190 } 7191 } 7192 7193 /// Emits metadata nodes for all the local variables in the current 7194 /// function. 7195 void CodeGenFunction::EmitDeclMetadata() { 7196 if (LocalDeclMap.empty()) return; 7197 7198 llvm::LLVMContext &Context = getLLVMContext(); 7199 7200 // Find the unique metadata ID for this name. 7201 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7202 7203 llvm::NamedMDNode *GlobalMetadata = nullptr; 7204 7205 for (auto &I : LocalDeclMap) { 7206 const Decl *D = I.first; 7207 llvm::Value *Addr = I.second.getPointer(); 7208 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7209 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7210 Alloca->setMetadata( 7211 DeclPtrKind, llvm::MDNode::get( 7212 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7213 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7214 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7215 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7216 } 7217 } 7218 } 7219 7220 void CodeGenModule::EmitVersionIdentMetadata() { 7221 llvm::NamedMDNode *IdentMetadata = 7222 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7223 std::string Version = getClangFullVersion(); 7224 llvm::LLVMContext &Ctx = TheModule.getContext(); 7225 7226 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7227 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7228 } 7229 7230 void CodeGenModule::EmitCommandLineMetadata() { 7231 llvm::NamedMDNode *CommandLineMetadata = 7232 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7233 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7234 llvm::LLVMContext &Ctx = TheModule.getContext(); 7235 7236 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7237 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7238 } 7239 7240 void CodeGenModule::EmitCoverageFile() { 7241 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7242 if (!CUNode) 7243 return; 7244 7245 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7246 llvm::LLVMContext &Ctx = TheModule.getContext(); 7247 auto *CoverageDataFile = 7248 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7249 auto *CoverageNotesFile = 7250 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7251 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7252 llvm::MDNode *CU = CUNode->getOperand(i); 7253 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7254 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7255 } 7256 } 7257 7258 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7259 bool ForEH) { 7260 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7261 // FIXME: should we even be calling this method if RTTI is disabled 7262 // and it's not for EH? 7263 if (!shouldEmitRTTI(ForEH)) 7264 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7265 7266 if (ForEH && Ty->isObjCObjectPointerType() && 7267 LangOpts.ObjCRuntime.isGNUFamily()) 7268 return ObjCRuntime->GetEHType(Ty); 7269 7270 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7271 } 7272 7273 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7274 // Do not emit threadprivates in simd-only mode. 7275 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7276 return; 7277 for (auto RefExpr : D->varlists()) { 7278 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7279 bool PerformInit = 7280 VD->getAnyInitializer() && 7281 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7282 /*ForRef=*/false); 7283 7284 Address Addr(GetAddrOfGlobalVar(VD), 7285 getTypes().ConvertTypeForMem(VD->getType()), 7286 getContext().getDeclAlign(VD)); 7287 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7288 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7289 CXXGlobalInits.push_back(InitFunction); 7290 } 7291 } 7292 7293 llvm::Metadata * 7294 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7295 StringRef Suffix) { 7296 if (auto *FnType = T->getAs<FunctionProtoType>()) 7297 T = getContext().getFunctionType( 7298 FnType->getReturnType(), FnType->getParamTypes(), 7299 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7300 7301 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7302 if (InternalId) 7303 return InternalId; 7304 7305 if (isExternallyVisible(T->getLinkage())) { 7306 std::string OutName; 7307 llvm::raw_string_ostream Out(OutName); 7308 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7309 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7310 7311 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7312 Out << ".normalized"; 7313 7314 Out << Suffix; 7315 7316 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7317 } else { 7318 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7319 llvm::ArrayRef<llvm::Metadata *>()); 7320 } 7321 7322 return InternalId; 7323 } 7324 7325 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7326 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7327 } 7328 7329 llvm::Metadata * 7330 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7331 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7332 } 7333 7334 // Generalize pointer types to a void pointer with the qualifiers of the 7335 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7336 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7337 // 'void *'. 7338 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7339 if (!Ty->isPointerType()) 7340 return Ty; 7341 7342 return Ctx.getPointerType( 7343 QualType(Ctx.VoidTy).withCVRQualifiers( 7344 Ty->getPointeeType().getCVRQualifiers())); 7345 } 7346 7347 // Apply type generalization to a FunctionType's return and argument types 7348 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7349 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7350 SmallVector<QualType, 8> GeneralizedParams; 7351 for (auto &Param : FnType->param_types()) 7352 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7353 7354 return Ctx.getFunctionType( 7355 GeneralizeType(Ctx, FnType->getReturnType()), 7356 GeneralizedParams, FnType->getExtProtoInfo()); 7357 } 7358 7359 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7360 return Ctx.getFunctionNoProtoType( 7361 GeneralizeType(Ctx, FnType->getReturnType())); 7362 7363 llvm_unreachable("Encountered unknown FunctionType"); 7364 } 7365 7366 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7367 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7368 GeneralizedMetadataIdMap, ".generalized"); 7369 } 7370 7371 /// Returns whether this module needs the "all-vtables" type identifier. 7372 bool CodeGenModule::NeedAllVtablesTypeId() const { 7373 // Returns true if at least one of vtable-based CFI checkers is enabled and 7374 // is not in the trapping mode. 7375 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7376 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7377 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7378 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7379 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7380 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7381 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7382 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7383 } 7384 7385 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7386 CharUnits Offset, 7387 const CXXRecordDecl *RD) { 7388 llvm::Metadata *MD = 7389 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7390 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7391 7392 if (CodeGenOpts.SanitizeCfiCrossDso) 7393 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7394 VTable->addTypeMetadata(Offset.getQuantity(), 7395 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7396 7397 if (NeedAllVtablesTypeId()) { 7398 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7399 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7400 } 7401 } 7402 7403 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7404 if (!SanStats) 7405 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7406 7407 return *SanStats; 7408 } 7409 7410 llvm::Value * 7411 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7412 CodeGenFunction &CGF) { 7413 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7414 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7415 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7416 auto *Call = CGF.EmitRuntimeCall( 7417 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7418 return Call; 7419 } 7420 7421 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7422 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7423 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7424 /* forPointeeType= */ true); 7425 } 7426 7427 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7428 LValueBaseInfo *BaseInfo, 7429 TBAAAccessInfo *TBAAInfo, 7430 bool forPointeeType) { 7431 if (TBAAInfo) 7432 *TBAAInfo = getTBAAAccessInfo(T); 7433 7434 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7435 // that doesn't return the information we need to compute BaseInfo. 7436 7437 // Honor alignment typedef attributes even on incomplete types. 7438 // We also honor them straight for C++ class types, even as pointees; 7439 // there's an expressivity gap here. 7440 if (auto TT = T->getAs<TypedefType>()) { 7441 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7442 if (BaseInfo) 7443 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7444 return getContext().toCharUnitsFromBits(Align); 7445 } 7446 } 7447 7448 bool AlignForArray = T->isArrayType(); 7449 7450 // Analyze the base element type, so we don't get confused by incomplete 7451 // array types. 7452 T = getContext().getBaseElementType(T); 7453 7454 if (T->isIncompleteType()) { 7455 // We could try to replicate the logic from 7456 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7457 // type is incomplete, so it's impossible to test. We could try to reuse 7458 // getTypeAlignIfKnown, but that doesn't return the information we need 7459 // to set BaseInfo. So just ignore the possibility that the alignment is 7460 // greater than one. 7461 if (BaseInfo) 7462 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7463 return CharUnits::One(); 7464 } 7465 7466 if (BaseInfo) 7467 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7468 7469 CharUnits Alignment; 7470 const CXXRecordDecl *RD; 7471 if (T.getQualifiers().hasUnaligned()) { 7472 Alignment = CharUnits::One(); 7473 } else if (forPointeeType && !AlignForArray && 7474 (RD = T->getAsCXXRecordDecl())) { 7475 // For C++ class pointees, we don't know whether we're pointing at a 7476 // base or a complete object, so we generally need to use the 7477 // non-virtual alignment. 7478 Alignment = getClassPointerAlignment(RD); 7479 } else { 7480 Alignment = getContext().getTypeAlignInChars(T); 7481 } 7482 7483 // Cap to the global maximum type alignment unless the alignment 7484 // was somehow explicit on the type. 7485 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7486 if (Alignment.getQuantity() > MaxAlign && 7487 !getContext().isAlignmentRequired(T)) 7488 Alignment = CharUnits::fromQuantity(MaxAlign); 7489 } 7490 return Alignment; 7491 } 7492 7493 bool CodeGenModule::stopAutoInit() { 7494 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7495 if (StopAfter) { 7496 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7497 // used 7498 if (NumAutoVarInit >= StopAfter) { 7499 return true; 7500 } 7501 if (!NumAutoVarInit) { 7502 unsigned DiagID = getDiags().getCustomDiagID( 7503 DiagnosticsEngine::Warning, 7504 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7505 "number of times ftrivial-auto-var-init=%1 gets applied."); 7506 getDiags().Report(DiagID) 7507 << StopAfter 7508 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7509 LangOptions::TrivialAutoVarInitKind::Zero 7510 ? "zero" 7511 : "pattern"); 7512 } 7513 ++NumAutoVarInit; 7514 } 7515 return false; 7516 } 7517 7518 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7519 const Decl *D) const { 7520 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7521 // postfix beginning with '.' since the symbol name can be demangled. 7522 if (LangOpts.HIP) 7523 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7524 else 7525 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7526 7527 // If the CUID is not specified we try to generate a unique postfix. 7528 if (getLangOpts().CUID.empty()) { 7529 SourceManager &SM = getContext().getSourceManager(); 7530 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7531 assert(PLoc.isValid() && "Source location is expected to be valid."); 7532 7533 // Get the hash of the user defined macros. 7534 llvm::MD5 Hash; 7535 llvm::MD5::MD5Result Result; 7536 for (const auto &Arg : PreprocessorOpts.Macros) 7537 Hash.update(Arg.first); 7538 Hash.final(Result); 7539 7540 // Get the UniqueID for the file containing the decl. 7541 llvm::sys::fs::UniqueID ID; 7542 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7543 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7544 assert(PLoc.isValid() && "Source location is expected to be valid."); 7545 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7546 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7547 << PLoc.getFilename() << EC.message(); 7548 } 7549 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7550 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7551 } else { 7552 OS << getContext().getCUIDHash(); 7553 } 7554 } 7555 7556 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7557 assert(DeferredDeclsToEmit.empty() && 7558 "Should have emitted all decls deferred to emit."); 7559 assert(NewBuilder->DeferredDecls.empty() && 7560 "Newly created module should not have deferred decls"); 7561 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7562 assert(EmittedDeferredDecls.empty() && 7563 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7564 7565 assert(NewBuilder->DeferredVTables.empty() && 7566 "Newly created module should not have deferred vtables"); 7567 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7568 7569 assert(NewBuilder->MangledDeclNames.empty() && 7570 "Newly created module should not have mangled decl names"); 7571 assert(NewBuilder->Manglings.empty() && 7572 "Newly created module should not have manglings"); 7573 NewBuilder->Manglings = std::move(Manglings); 7574 7575 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7576 7577 NewBuilder->TBAA = std::move(TBAA); 7578 7579 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7580 } 7581