xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 44731c530088704f091448429043136c81334f25)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallSite.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 
62 using namespace clang;
63 using namespace CodeGen;
64 
65 static llvm::cl::opt<bool> LimitedCoverage(
66     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
67     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
68     llvm::cl::init(false));
69 
70 static const char AnnotationSection[] = "llvm.metadata";
71 
72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
73   switch (CGM.getTarget().getCXXABI().getKind()) {
74   case TargetCXXABI::GenericAArch64:
75   case TargetCXXABI::GenericARM:
76   case TargetCXXABI::iOS:
77   case TargetCXXABI::iOS64:
78   case TargetCXXABI::WatchOS:
79   case TargetCXXABI::GenericMIPS:
80   case TargetCXXABI::GenericItanium:
81   case TargetCXXABI::WebAssembly:
82     return CreateItaniumCXXABI(CGM);
83   case TargetCXXABI::Microsoft:
84     return CreateMicrosoftCXXABI(CGM);
85   }
86 
87   llvm_unreachable("invalid C++ ABI kind");
88 }
89 
90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
91                              const PreprocessorOptions &PPO,
92                              const CodeGenOptions &CGO, llvm::Module &M,
93                              DiagnosticsEngine &diags,
94                              CoverageSourceInfo *CoverageInfo)
95     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
96       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
97       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
98       VMContext(M.getContext()), Types(*this), VTables(*this),
99       SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   HalfTy = llvm::Type::getHalfTy(LLVMContext);
109   FloatTy = llvm::Type::getFloatTy(LLVMContext);
110   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
111   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
112   PointerAlignInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
114   SizeSizeInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext,
120     C.getTargetInfo().getMaxPointerWidth());
121   Int8PtrTy = Int8Ty->getPointerTo(0);
122   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
123   AllocaInt8PtrTy = Int8Ty->getPointerTo(
124       M.getDataLayout().getAllocaAddrSpace());
125   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
126 
127   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
128 
129   if (LangOpts.ObjC)
130     createObjCRuntime();
131   if (LangOpts.OpenCL)
132     createOpenCLRuntime();
133   if (LangOpts.OpenMP)
134     createOpenMPRuntime();
135   if (LangOpts.CUDA)
136     createCUDARuntime();
137 
138   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
139   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
140       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
141     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
142                                getCXXABI().getMangleContext()));
143 
144   // If debug info or coverage generation is enabled, create the CGDebugInfo
145   // object.
146   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
147       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
148     DebugInfo.reset(new CGDebugInfo(*this));
149 
150   Block.GlobalUniqueCount = 0;
151 
152   if (C.getLangOpts().ObjC)
153     ObjCData.reset(new ObjCEntrypoints());
154 
155   if (CodeGenOpts.hasProfileClangUse()) {
156     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
157         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
158     if (auto E = ReaderOrErr.takeError()) {
159       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
160                                               "Could not read profile %0: %1");
161       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
162         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
163                                   << EI.message();
164       });
165     } else
166       PGOReader = std::move(ReaderOrErr.get());
167   }
168 
169   // If coverage mapping generation is enabled, create the
170   // CoverageMappingModuleGen object.
171   if (CodeGenOpts.CoverageMapping)
172     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
173 }
174 
175 CodeGenModule::~CodeGenModule() {}
176 
177 void CodeGenModule::createObjCRuntime() {
178   // This is just isGNUFamily(), but we want to force implementors of
179   // new ABIs to decide how best to do this.
180   switch (LangOpts.ObjCRuntime.getKind()) {
181   case ObjCRuntime::GNUstep:
182   case ObjCRuntime::GCC:
183   case ObjCRuntime::ObjFW:
184     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
185     return;
186 
187   case ObjCRuntime::FragileMacOSX:
188   case ObjCRuntime::MacOSX:
189   case ObjCRuntime::iOS:
190   case ObjCRuntime::WatchOS:
191     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
192     return;
193   }
194   llvm_unreachable("bad runtime kind");
195 }
196 
197 void CodeGenModule::createOpenCLRuntime() {
198   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
199 }
200 
201 void CodeGenModule::createOpenMPRuntime() {
202   // Select a specialized code generation class based on the target, if any.
203   // If it does not exist use the default implementation.
204   switch (getTriple().getArch()) {
205   case llvm::Triple::nvptx:
206   case llvm::Triple::nvptx64:
207     assert(getLangOpts().OpenMPIsDevice &&
208            "OpenMP NVPTX is only prepared to deal with device code.");
209     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
210     break;
211   default:
212     if (LangOpts.OpenMPSimd)
213       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
214     else
215       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
216     break;
217   }
218 }
219 
220 void CodeGenModule::createCUDARuntime() {
221   CUDARuntime.reset(CreateNVCUDARuntime(*this));
222 }
223 
224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
225   Replacements[Name] = C;
226 }
227 
228 void CodeGenModule::applyReplacements() {
229   for (auto &I : Replacements) {
230     StringRef MangledName = I.first();
231     llvm::Constant *Replacement = I.second;
232     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
233     if (!Entry)
234       continue;
235     auto *OldF = cast<llvm::Function>(Entry);
236     auto *NewF = dyn_cast<llvm::Function>(Replacement);
237     if (!NewF) {
238       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
239         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
240       } else {
241         auto *CE = cast<llvm::ConstantExpr>(Replacement);
242         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
243                CE->getOpcode() == llvm::Instruction::GetElementPtr);
244         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
245       }
246     }
247 
248     // Replace old with new, but keep the old order.
249     OldF->replaceAllUsesWith(Replacement);
250     if (NewF) {
251       NewF->removeFromParent();
252       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
253                                                        NewF);
254     }
255     OldF->eraseFromParent();
256   }
257 }
258 
259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
260   GlobalValReplacements.push_back(std::make_pair(GV, C));
261 }
262 
263 void CodeGenModule::applyGlobalValReplacements() {
264   for (auto &I : GlobalValReplacements) {
265     llvm::GlobalValue *GV = I.first;
266     llvm::Constant *C = I.second;
267 
268     GV->replaceAllUsesWith(C);
269     GV->eraseFromParent();
270   }
271 }
272 
273 // This is only used in aliases that we created and we know they have a
274 // linear structure.
275 static const llvm::GlobalObject *getAliasedGlobal(
276     const llvm::GlobalIndirectSymbol &GIS) {
277   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
278   const llvm::Constant *C = &GIS;
279   for (;;) {
280     C = C->stripPointerCasts();
281     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
282       return GO;
283     // stripPointerCasts will not walk over weak aliases.
284     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
285     if (!GIS2)
286       return nullptr;
287     if (!Visited.insert(GIS2).second)
288       return nullptr;
289     C = GIS2->getIndirectSymbol();
290   }
291 }
292 
293 void CodeGenModule::checkAliases() {
294   // Check if the constructed aliases are well formed. It is really unfortunate
295   // that we have to do this in CodeGen, but we only construct mangled names
296   // and aliases during codegen.
297   bool Error = false;
298   DiagnosticsEngine &Diags = getDiags();
299   for (const GlobalDecl &GD : Aliases) {
300     const auto *D = cast<ValueDecl>(GD.getDecl());
301     SourceLocation Location;
302     bool IsIFunc = D->hasAttr<IFuncAttr>();
303     if (const Attr *A = D->getDefiningAttr())
304       Location = A->getLocation();
305     else
306       llvm_unreachable("Not an alias or ifunc?");
307     StringRef MangledName = getMangledName(GD);
308     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
309     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
310     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
311     if (!GV) {
312       Error = true;
313       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
314     } else if (GV->isDeclaration()) {
315       Error = true;
316       Diags.Report(Location, diag::err_alias_to_undefined)
317           << IsIFunc << IsIFunc;
318     } else if (IsIFunc) {
319       // Check resolver function type.
320       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
321           GV->getType()->getPointerElementType());
322       assert(FTy);
323       if (!FTy->getReturnType()->isPointerTy())
324         Diags.Report(Location, diag::err_ifunc_resolver_return);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.ControlFlowGuard) {
462     // We want function ID tables for Control Flow Guard.
463     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
464   }
465   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466     // We don't support LTO with 2 with different StrictVTablePointers
467     // FIXME: we could support it by stripping all the information introduced
468     // by StrictVTablePointers.
469 
470     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471 
472     llvm::Metadata *Ops[2] = {
473               llvm::MDString::get(VMContext, "StrictVTablePointers"),
474               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475                   llvm::Type::getInt32Ty(VMContext), 1))};
476 
477     getModule().addModuleFlag(llvm::Module::Require,
478                               "StrictVTablePointersRequirement",
479                               llvm::MDNode::get(VMContext, Ops));
480   }
481   if (DebugInfo)
482     // We support a single version in the linked module. The LLVM
483     // parser will drop debug info with a different version number
484     // (and warn about it, too).
485     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486                               llvm::DEBUG_METADATA_VERSION);
487 
488   // We need to record the widths of enums and wchar_t, so that we can generate
489   // the correct build attributes in the ARM backend. wchar_size is also used by
490   // TargetLibraryInfo.
491   uint64_t WCharWidth =
492       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494 
495   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496   if (   Arch == llvm::Triple::arm
497       || Arch == llvm::Triple::armeb
498       || Arch == llvm::Triple::thumb
499       || Arch == llvm::Triple::thumbeb) {
500     // The minimum width of an enum in bytes
501     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503   }
504 
505   if (CodeGenOpts.SanitizeCfiCrossDso) {
506     // Indicate that we want cross-DSO control flow integrity checks.
507     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508   }
509 
510   if (CodeGenOpts.CFProtectionReturn &&
511       Target.checkCFProtectionReturnSupported(getDiags())) {
512     // Indicate that we want to instrument return control flow protection.
513     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514                               1);
515   }
516 
517   if (CodeGenOpts.CFProtectionBranch &&
518       Target.checkCFProtectionBranchSupported(getDiags())) {
519     // Indicate that we want to instrument branch control flow protection.
520     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521                               1);
522   }
523 
524   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525     // Indicate whether __nvvm_reflect should be configured to flush denormal
526     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
527     // property.)
528     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529                               CodeGenOpts.FlushDenorm ? 1 : 0);
530   }
531 
532   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533   if (LangOpts.OpenCL) {
534     EmitOpenCLMetadata();
535     // Emit SPIR version.
536     if (getTriple().getArch() == llvm::Triple::spir ||
537         getTriple().getArch() == llvm::Triple::spir64) {
538       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539       // opencl.spir.version named metadata.
540       llvm::Metadata *SPIRVerElts[] = {
541           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542               Int32Ty, LangOpts.OpenCLVersion / 100)),
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545       llvm::NamedMDNode *SPIRVerMD =
546           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547       llvm::LLVMContext &Ctx = TheModule.getContext();
548       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549     }
550   }
551 
552   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553     assert(PLevel < 3 && "Invalid PIC Level");
554     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555     if (Context.getLangOpts().PIE)
556       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557   }
558 
559   if (getCodeGenOpts().CodeModel.size() > 0) {
560     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
561                   .Case("tiny", llvm::CodeModel::Tiny)
562                   .Case("small", llvm::CodeModel::Small)
563                   .Case("kernel", llvm::CodeModel::Kernel)
564                   .Case("medium", llvm::CodeModel::Medium)
565                   .Case("large", llvm::CodeModel::Large)
566                   .Default(~0u);
567     if (CM != ~0u) {
568       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
569       getModule().setCodeModel(codeModel);
570     }
571   }
572 
573   if (CodeGenOpts.NoPLT)
574     getModule().setRtLibUseGOT();
575 
576   SimplifyPersonality();
577 
578   if (getCodeGenOpts().EmitDeclMetadata)
579     EmitDeclMetadata();
580 
581   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
582     EmitCoverageFile();
583 
584   if (DebugInfo)
585     DebugInfo->finalize();
586 
587   if (getCodeGenOpts().EmitVersionIdentMetadata)
588     EmitVersionIdentMetadata();
589 
590   EmitTargetMetadata();
591 }
592 
593 void CodeGenModule::EmitOpenCLMetadata() {
594   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
595   // opencl.ocl.version named metadata node.
596   llvm::Metadata *OCLVerElts[] = {
597       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598           Int32Ty, LangOpts.OpenCLVersion / 100)),
599       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
600           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
601   llvm::NamedMDNode *OCLVerMD =
602       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
603   llvm::LLVMContext &Ctx = TheModule.getContext();
604   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
605 }
606 
607 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
608   // Make sure that this type is translated.
609   Types.UpdateCompletedType(TD);
610 }
611 
612 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
613   // Make sure that this type is translated.
614   Types.RefreshTypeCacheForClass(RD);
615 }
616 
617 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
618   if (!TBAA)
619     return nullptr;
620   return TBAA->getTypeInfo(QTy);
621 }
622 
623 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
624   if (!TBAA)
625     return TBAAAccessInfo();
626   return TBAA->getAccessInfo(AccessType);
627 }
628 
629 TBAAAccessInfo
630 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
631   if (!TBAA)
632     return TBAAAccessInfo();
633   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
634 }
635 
636 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
637   if (!TBAA)
638     return nullptr;
639   return TBAA->getTBAAStructInfo(QTy);
640 }
641 
642 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
643   if (!TBAA)
644     return nullptr;
645   return TBAA->getBaseTypeInfo(QTy);
646 }
647 
648 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
649   if (!TBAA)
650     return nullptr;
651   return TBAA->getAccessTagInfo(Info);
652 }
653 
654 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
655                                                    TBAAAccessInfo TargetInfo) {
656   if (!TBAA)
657     return TBAAAccessInfo();
658   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
659 }
660 
661 TBAAAccessInfo
662 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
663                                                    TBAAAccessInfo InfoB) {
664   if (!TBAA)
665     return TBAAAccessInfo();
666   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
667 }
668 
669 TBAAAccessInfo
670 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
671                                               TBAAAccessInfo SrcInfo) {
672   if (!TBAA)
673     return TBAAAccessInfo();
674   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
675 }
676 
677 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
678                                                 TBAAAccessInfo TBAAInfo) {
679   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
680     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
681 }
682 
683 void CodeGenModule::DecorateInstructionWithInvariantGroup(
684     llvm::Instruction *I, const CXXRecordDecl *RD) {
685   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
686                  llvm::MDNode::get(getLLVMContext(), {}));
687 }
688 
689 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
690   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
691   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
692 }
693 
694 /// ErrorUnsupported - Print out an error that codegen doesn't support the
695 /// specified stmt yet.
696 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
697   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
698                                                "cannot compile this %0 yet");
699   std::string Msg = Type;
700   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
701       << Msg << S->getSourceRange();
702 }
703 
704 /// ErrorUnsupported - Print out an error that codegen doesn't support the
705 /// specified decl yet.
706 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
707   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
708                                                "cannot compile this %0 yet");
709   std::string Msg = Type;
710   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
711 }
712 
713 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
714   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
715 }
716 
717 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
718                                         const NamedDecl *D) const {
719   if (GV->hasDLLImportStorageClass())
720     return;
721   // Internal definitions always have default visibility.
722   if (GV->hasLocalLinkage()) {
723     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
724     return;
725   }
726   if (!D)
727     return;
728   // Set visibility for definitions.
729   LinkageInfo LV = D->getLinkageAndVisibility();
730   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
731     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
732 }
733 
734 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
735                                  llvm::GlobalValue *GV) {
736   if (GV->hasLocalLinkage())
737     return true;
738 
739   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
740     return true;
741 
742   // DLLImport explicitly marks the GV as external.
743   if (GV->hasDLLImportStorageClass())
744     return false;
745 
746   const llvm::Triple &TT = CGM.getTriple();
747   if (TT.isWindowsGNUEnvironment()) {
748     // In MinGW, variables without DLLImport can still be automatically
749     // imported from a DLL by the linker; don't mark variables that
750     // potentially could come from another DLL as DSO local.
751     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
752         !GV->isThreadLocal())
753       return false;
754   }
755   // Every other GV is local on COFF.
756   // Make an exception for windows OS in the triple: Some firmware builds use
757   // *-win32-macho triples. This (accidentally?) produced windows relocations
758   // without GOT tables in older clang versions; Keep this behaviour.
759   // FIXME: even thread local variables?
760   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
761     return true;
762 
763   // Only handle COFF and ELF for now.
764   if (!TT.isOSBinFormatELF())
765     return false;
766 
767   // If this is not an executable, don't assume anything is local.
768   const auto &CGOpts = CGM.getCodeGenOpts();
769   llvm::Reloc::Model RM = CGOpts.RelocationModel;
770   const auto &LOpts = CGM.getLangOpts();
771   if (RM != llvm::Reloc::Static && !LOpts.PIE)
772     return false;
773 
774   // A definition cannot be preempted from an executable.
775   if (!GV->isDeclarationForLinker())
776     return true;
777 
778   // Most PIC code sequences that assume that a symbol is local cannot produce a
779   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
780   // depended, it seems worth it to handle it here.
781   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
782     return false;
783 
784   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
785   llvm::Triple::ArchType Arch = TT.getArch();
786   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
787       Arch == llvm::Triple::ppc64le)
788     return false;
789 
790   // If we can use copy relocations we can assume it is local.
791   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
792     if (!Var->isThreadLocal() &&
793         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
794       return true;
795 
796   // If we can use a plt entry as the symbol address we can assume it
797   // is local.
798   // FIXME: This should work for PIE, but the gold linker doesn't support it.
799   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
800     return true;
801 
802   // Otherwise don't assue it is local.
803   return false;
804 }
805 
806 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
807   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
808 }
809 
810 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
811                                           GlobalDecl GD) const {
812   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
813   // C++ destructors have a few C++ ABI specific special cases.
814   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
815     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
816     return;
817   }
818   setDLLImportDLLExport(GV, D);
819 }
820 
821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
822                                           const NamedDecl *D) const {
823   if (D && D->isExternallyVisible()) {
824     if (D->hasAttr<DLLImportAttr>())
825       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
826     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
827       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
828   }
829 }
830 
831 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
832                                     GlobalDecl GD) const {
833   setDLLImportDLLExport(GV, GD);
834   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
835 }
836 
837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
838                                     const NamedDecl *D) const {
839   setDLLImportDLLExport(GV, D);
840   setGlobalVisibilityAndLocal(GV, D);
841 }
842 
843 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
844                                                 const NamedDecl *D) const {
845   setGlobalVisibility(GV, D);
846   setDSOLocal(GV);
847 }
848 
849 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
850   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
851       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
852       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
853       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
854       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
855 }
856 
857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
858     CodeGenOptions::TLSModel M) {
859   switch (M) {
860   case CodeGenOptions::GeneralDynamicTLSModel:
861     return llvm::GlobalVariable::GeneralDynamicTLSModel;
862   case CodeGenOptions::LocalDynamicTLSModel:
863     return llvm::GlobalVariable::LocalDynamicTLSModel;
864   case CodeGenOptions::InitialExecTLSModel:
865     return llvm::GlobalVariable::InitialExecTLSModel;
866   case CodeGenOptions::LocalExecTLSModel:
867     return llvm::GlobalVariable::LocalExecTLSModel;
868   }
869   llvm_unreachable("Invalid TLS model!");
870 }
871 
872 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
873   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
874 
875   llvm::GlobalValue::ThreadLocalMode TLM;
876   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
877 
878   // Override the TLS model if it is explicitly specified.
879   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
880     TLM = GetLLVMTLSModel(Attr->getModel());
881   }
882 
883   GV->setThreadLocalMode(TLM);
884 }
885 
886 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
887                                           StringRef Name) {
888   const TargetInfo &Target = CGM.getTarget();
889   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
890 }
891 
892 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
893                                                  const CPUSpecificAttr *Attr,
894                                                  raw_ostream &Out) {
895   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
896   // supported.
897   if (Attr)
898     Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName());
899   else if (CGM.getTarget().supportsIFunc())
900     Out << ".resolver";
901 }
902 
903 static void AppendTargetMangling(const CodeGenModule &CGM,
904                                  const TargetAttr *Attr, raw_ostream &Out) {
905   if (Attr->isDefaultVersion())
906     return;
907 
908   Out << '.';
909   const TargetInfo &Target = CGM.getTarget();
910   TargetAttr::ParsedTargetAttr Info =
911       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
912         // Multiversioning doesn't allow "no-${feature}", so we can
913         // only have "+" prefixes here.
914         assert(LHS.startswith("+") && RHS.startswith("+") &&
915                "Features should always have a prefix.");
916         return Target.multiVersionSortPriority(LHS.substr(1)) >
917                Target.multiVersionSortPriority(RHS.substr(1));
918       });
919 
920   bool IsFirst = true;
921 
922   if (!Info.Architecture.empty()) {
923     IsFirst = false;
924     Out << "arch_" << Info.Architecture;
925   }
926 
927   for (StringRef Feat : Info.Features) {
928     if (!IsFirst)
929       Out << '_';
930     IsFirst = false;
931     Out << Feat.substr(1);
932   }
933 }
934 
935 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
936                                       const NamedDecl *ND,
937                                       bool OmitMultiVersionMangling = false) {
938   SmallString<256> Buffer;
939   llvm::raw_svector_ostream Out(Buffer);
940   MangleContext &MC = CGM.getCXXABI().getMangleContext();
941   if (MC.shouldMangleDeclName(ND)) {
942     llvm::raw_svector_ostream Out(Buffer);
943     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
944       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
945     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
946       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
947     else
948       MC.mangleName(ND, Out);
949   } else {
950     IdentifierInfo *II = ND->getIdentifier();
951     assert(II && "Attempt to mangle unnamed decl.");
952     const auto *FD = dyn_cast<FunctionDecl>(ND);
953 
954     if (FD &&
955         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
956       llvm::raw_svector_ostream Out(Buffer);
957       Out << "__regcall3__" << II->getName();
958     } else {
959       Out << II->getName();
960     }
961   }
962 
963   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
964     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
965       if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())
966         AppendCPUSpecificCPUDispatchMangling(
967             CGM, FD->getAttr<CPUSpecificAttr>(), Out);
968       else
969         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
970     }
971 
972   return Out.str();
973 }
974 
975 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
976                                             const FunctionDecl *FD) {
977   if (!FD->isMultiVersion())
978     return;
979 
980   // Get the name of what this would be without the 'target' attribute.  This
981   // allows us to lookup the version that was emitted when this wasn't a
982   // multiversion function.
983   std::string NonTargetName =
984       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
985   GlobalDecl OtherGD;
986   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
987     assert(OtherGD.getCanonicalDecl()
988                .getDecl()
989                ->getAsFunction()
990                ->isMultiVersion() &&
991            "Other GD should now be a multiversioned function");
992     // OtherFD is the version of this function that was mangled BEFORE
993     // becoming a MultiVersion function.  It potentially needs to be updated.
994     const FunctionDecl *OtherFD =
995         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
996     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
997     // This is so that if the initial version was already the 'default'
998     // version, we don't try to update it.
999     if (OtherName != NonTargetName) {
1000       // Remove instead of erase, since others may have stored the StringRef
1001       // to this.
1002       const auto ExistingRecord = Manglings.find(NonTargetName);
1003       if (ExistingRecord != std::end(Manglings))
1004         Manglings.remove(&(*ExistingRecord));
1005       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1006       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1007       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1008         Entry->setName(OtherName);
1009     }
1010   }
1011 }
1012 
1013 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1014   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1015 
1016   // Some ABIs don't have constructor variants.  Make sure that base and
1017   // complete constructors get mangled the same.
1018   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1019     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1020       CXXCtorType OrigCtorType = GD.getCtorType();
1021       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1022       if (OrigCtorType == Ctor_Base)
1023         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1024     }
1025   }
1026 
1027   const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl());
1028   // Since CPUSpecific can require multiple emits per decl, store the manglings
1029   // separately.
1030   if (FD &&
1031       (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) {
1032     const auto *SD = FD->getAttr<CPUSpecificAttr>();
1033 
1034     std::pair<GlobalDecl, unsigned> SpecCanonicalGD{
1035         CanonicalGD,
1036         SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()};
1037 
1038     auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD);
1039     if (FoundName != CPUSpecificMangledDeclNames.end())
1040       return FoundName->second;
1041 
1042     auto Result = CPUSpecificManglings.insert(
1043         std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD));
1044     return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first();
1045   }
1046 
1047   auto FoundName = MangledDeclNames.find(CanonicalGD);
1048   if (FoundName != MangledDeclNames.end())
1049     return FoundName->second;
1050 
1051   // Keep the first result in the case of a mangling collision.
1052   const auto *ND = cast<NamedDecl>(GD.getDecl());
1053   auto Result =
1054       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1055   return MangledDeclNames[CanonicalGD] = Result.first->first();
1056 }
1057 
1058 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1059                                              const BlockDecl *BD) {
1060   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1061   const Decl *D = GD.getDecl();
1062 
1063   SmallString<256> Buffer;
1064   llvm::raw_svector_ostream Out(Buffer);
1065   if (!D)
1066     MangleCtx.mangleGlobalBlock(BD,
1067       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1068   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1069     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1070   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1071     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1072   else
1073     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1074 
1075   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1076   return Result.first->first();
1077 }
1078 
1079 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1080   return getModule().getNamedValue(Name);
1081 }
1082 
1083 /// AddGlobalCtor - Add a function to the list that will be called before
1084 /// main() runs.
1085 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1086                                   llvm::Constant *AssociatedData) {
1087   // FIXME: Type coercion of void()* types.
1088   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1089 }
1090 
1091 /// AddGlobalDtor - Add a function to the list that will be called
1092 /// when the module is unloaded.
1093 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1094   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1095     DtorsUsingAtExit[Priority].push_back(Dtor);
1096     return;
1097   }
1098 
1099   // FIXME: Type coercion of void()* types.
1100   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1101 }
1102 
1103 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1104   if (Fns.empty()) return;
1105 
1106   // Ctor function type is void()*.
1107   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1108   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1109 
1110   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1111   llvm::StructType *CtorStructTy = llvm::StructType::get(
1112       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1113 
1114   // Construct the constructor and destructor arrays.
1115   ConstantInitBuilder builder(*this);
1116   auto ctors = builder.beginArray(CtorStructTy);
1117   for (const auto &I : Fns) {
1118     auto ctor = ctors.beginStruct(CtorStructTy);
1119     ctor.addInt(Int32Ty, I.Priority);
1120     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1121     if (I.AssociatedData)
1122       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1123     else
1124       ctor.addNullPointer(VoidPtrTy);
1125     ctor.finishAndAddTo(ctors);
1126   }
1127 
1128   auto list =
1129     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1130                                 /*constant*/ false,
1131                                 llvm::GlobalValue::AppendingLinkage);
1132 
1133   // The LTO linker doesn't seem to like it when we set an alignment
1134   // on appending variables.  Take it off as a workaround.
1135   list->setAlignment(0);
1136 
1137   Fns.clear();
1138 }
1139 
1140 llvm::GlobalValue::LinkageTypes
1141 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1142   const auto *D = cast<FunctionDecl>(GD.getDecl());
1143 
1144   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1145 
1146   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1147     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1148 
1149   if (isa<CXXConstructorDecl>(D) &&
1150       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1151       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1152     // Our approach to inheriting constructors is fundamentally different from
1153     // that used by the MS ABI, so keep our inheriting constructor thunks
1154     // internal rather than trying to pick an unambiguous mangling for them.
1155     return llvm::GlobalValue::InternalLinkage;
1156   }
1157 
1158   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1159 }
1160 
1161 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1162   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1163   if (!MDS) return nullptr;
1164 
1165   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1166 }
1167 
1168 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1169                                               const CGFunctionInfo &Info,
1170                                               llvm::Function *F) {
1171   unsigned CallingConv;
1172   llvm::AttributeList PAL;
1173   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1174   F->setAttributes(PAL);
1175   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1176 }
1177 
1178 /// Determines whether the language options require us to model
1179 /// unwind exceptions.  We treat -fexceptions as mandating this
1180 /// except under the fragile ObjC ABI with only ObjC exceptions
1181 /// enabled.  This means, for example, that C with -fexceptions
1182 /// enables this.
1183 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1184   // If exceptions are completely disabled, obviously this is false.
1185   if (!LangOpts.Exceptions) return false;
1186 
1187   // If C++ exceptions are enabled, this is true.
1188   if (LangOpts.CXXExceptions) return true;
1189 
1190   // If ObjC exceptions are enabled, this depends on the ABI.
1191   if (LangOpts.ObjCExceptions) {
1192     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1193   }
1194 
1195   return true;
1196 }
1197 
1198 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1199                                                       const CXXMethodDecl *MD) {
1200   // Check that the type metadata can ever actually be used by a call.
1201   if (!CGM.getCodeGenOpts().LTOUnit ||
1202       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1203     return false;
1204 
1205   // Only functions whose address can be taken with a member function pointer
1206   // need this sort of type metadata.
1207   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1208          !isa<CXXDestructorDecl>(MD);
1209 }
1210 
1211 std::vector<const CXXRecordDecl *>
1212 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1213   llvm::SetVector<const CXXRecordDecl *> MostBases;
1214 
1215   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1216   CollectMostBases = [&](const CXXRecordDecl *RD) {
1217     if (RD->getNumBases() == 0)
1218       MostBases.insert(RD);
1219     for (const CXXBaseSpecifier &B : RD->bases())
1220       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1221   };
1222   CollectMostBases(RD);
1223   return MostBases.takeVector();
1224 }
1225 
1226 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1227                                                            llvm::Function *F) {
1228   llvm::AttrBuilder B;
1229 
1230   if (CodeGenOpts.UnwindTables)
1231     B.addAttribute(llvm::Attribute::UWTable);
1232 
1233   if (!hasUnwindExceptions(LangOpts))
1234     B.addAttribute(llvm::Attribute::NoUnwind);
1235 
1236   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1237     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1238       B.addAttribute(llvm::Attribute::StackProtect);
1239     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1240       B.addAttribute(llvm::Attribute::StackProtectStrong);
1241     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1242       B.addAttribute(llvm::Attribute::StackProtectReq);
1243   }
1244 
1245   if (!D) {
1246     // If we don't have a declaration to control inlining, the function isn't
1247     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1248     // disabled, mark the function as noinline.
1249     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1250         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1251       B.addAttribute(llvm::Attribute::NoInline);
1252 
1253     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1254     return;
1255   }
1256 
1257   // Track whether we need to add the optnone LLVM attribute,
1258   // starting with the default for this optimization level.
1259   bool ShouldAddOptNone =
1260       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1261   // We can't add optnone in the following cases, it won't pass the verifier.
1262   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1263   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1264   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1265 
1266   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1267     B.addAttribute(llvm::Attribute::OptimizeNone);
1268 
1269     // OptimizeNone implies noinline; we should not be inlining such functions.
1270     B.addAttribute(llvm::Attribute::NoInline);
1271     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1272            "OptimizeNone and AlwaysInline on same function!");
1273 
1274     // We still need to handle naked functions even though optnone subsumes
1275     // much of their semantics.
1276     if (D->hasAttr<NakedAttr>())
1277       B.addAttribute(llvm::Attribute::Naked);
1278 
1279     // OptimizeNone wins over OptimizeForSize and MinSize.
1280     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1281     F->removeFnAttr(llvm::Attribute::MinSize);
1282   } else if (D->hasAttr<NakedAttr>()) {
1283     // Naked implies noinline: we should not be inlining such functions.
1284     B.addAttribute(llvm::Attribute::Naked);
1285     B.addAttribute(llvm::Attribute::NoInline);
1286   } else if (D->hasAttr<NoDuplicateAttr>()) {
1287     B.addAttribute(llvm::Attribute::NoDuplicate);
1288   } else if (D->hasAttr<NoInlineAttr>()) {
1289     B.addAttribute(llvm::Attribute::NoInline);
1290   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1291              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1292     // (noinline wins over always_inline, and we can't specify both in IR)
1293     B.addAttribute(llvm::Attribute::AlwaysInline);
1294   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1295     // If we're not inlining, then force everything that isn't always_inline to
1296     // carry an explicit noinline attribute.
1297     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1298       B.addAttribute(llvm::Attribute::NoInline);
1299   } else {
1300     // Otherwise, propagate the inline hint attribute and potentially use its
1301     // absence to mark things as noinline.
1302     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1303       // Search function and template pattern redeclarations for inline.
1304       auto CheckForInline = [](const FunctionDecl *FD) {
1305         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1306           return Redecl->isInlineSpecified();
1307         };
1308         if (any_of(FD->redecls(), CheckRedeclForInline))
1309           return true;
1310         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1311         if (!Pattern)
1312           return false;
1313         return any_of(Pattern->redecls(), CheckRedeclForInline);
1314       };
1315       if (CheckForInline(FD)) {
1316         B.addAttribute(llvm::Attribute::InlineHint);
1317       } else if (CodeGenOpts.getInlining() ==
1318                      CodeGenOptions::OnlyHintInlining &&
1319                  !FD->isInlined() &&
1320                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1321         B.addAttribute(llvm::Attribute::NoInline);
1322       }
1323     }
1324   }
1325 
1326   // Add other optimization related attributes if we are optimizing this
1327   // function.
1328   if (!D->hasAttr<OptimizeNoneAttr>()) {
1329     if (D->hasAttr<ColdAttr>()) {
1330       if (!ShouldAddOptNone)
1331         B.addAttribute(llvm::Attribute::OptimizeForSize);
1332       B.addAttribute(llvm::Attribute::Cold);
1333     }
1334 
1335     if (D->hasAttr<MinSizeAttr>())
1336       B.addAttribute(llvm::Attribute::MinSize);
1337   }
1338 
1339   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1340 
1341   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1342   if (alignment)
1343     F->setAlignment(alignment);
1344 
1345   if (!D->hasAttr<AlignedAttr>())
1346     if (LangOpts.FunctionAlignment)
1347       F->setAlignment(1 << LangOpts.FunctionAlignment);
1348 
1349   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1350   // reserve a bit for differentiating between virtual and non-virtual member
1351   // functions. If the current target's C++ ABI requires this and this is a
1352   // member function, set its alignment accordingly.
1353   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1354     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1355       F->setAlignment(2);
1356   }
1357 
1358   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1359   if (CodeGenOpts.SanitizeCfiCrossDso)
1360     if (auto *FD = dyn_cast<FunctionDecl>(D))
1361       CreateFunctionTypeMetadataForIcall(FD, F);
1362 
1363   // Emit type metadata on member functions for member function pointer checks.
1364   // These are only ever necessary on definitions; we're guaranteed that the
1365   // definition will be present in the LTO unit as a result of LTO visibility.
1366   auto *MD = dyn_cast<CXXMethodDecl>(D);
1367   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1368     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1369       llvm::Metadata *Id =
1370           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1371               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1372       F->addTypeMetadata(0, Id);
1373     }
1374   }
1375 }
1376 
1377 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1378   const Decl *D = GD.getDecl();
1379   if (dyn_cast_or_null<NamedDecl>(D))
1380     setGVProperties(GV, GD);
1381   else
1382     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1383 
1384   if (D && D->hasAttr<UsedAttr>())
1385     addUsedGlobal(GV);
1386 
1387   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1388     const auto *VD = cast<VarDecl>(D);
1389     if (VD->getType().isConstQualified() &&
1390         VD->getStorageDuration() == SD_Static)
1391       addUsedGlobal(GV);
1392   }
1393 }
1394 
1395 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1396                                                 llvm::AttrBuilder &Attrs) {
1397   // Add target-cpu and target-features attributes to functions. If
1398   // we have a decl for the function and it has a target attribute then
1399   // parse that and add it to the feature set.
1400   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1401   std::vector<std::string> Features;
1402   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1403   FD = FD ? FD->getMostRecentDecl() : FD;
1404   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1405   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1406   bool AddedAttr = false;
1407   if (TD || SD) {
1408     llvm::StringMap<bool> FeatureMap;
1409     getFunctionFeatureMap(FeatureMap, FD);
1410 
1411     // Produce the canonical string for this set of features.
1412     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1413       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1414 
1415     // Now add the target-cpu and target-features to the function.
1416     // While we populated the feature map above, we still need to
1417     // get and parse the target attribute so we can get the cpu for
1418     // the function.
1419     if (TD) {
1420       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1421       if (ParsedAttr.Architecture != "" &&
1422           getTarget().isValidCPUName(ParsedAttr.Architecture))
1423         TargetCPU = ParsedAttr.Architecture;
1424     }
1425   } else {
1426     // Otherwise just add the existing target cpu and target features to the
1427     // function.
1428     Features = getTarget().getTargetOpts().Features;
1429   }
1430 
1431   if (TargetCPU != "") {
1432     Attrs.addAttribute("target-cpu", TargetCPU);
1433     AddedAttr = true;
1434   }
1435   if (!Features.empty()) {
1436     llvm::sort(Features);
1437     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1438     AddedAttr = true;
1439   }
1440 
1441   return AddedAttr;
1442 }
1443 
1444 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1445                                           llvm::GlobalObject *GO) {
1446   const Decl *D = GD.getDecl();
1447   SetCommonAttributes(GD, GO);
1448 
1449   if (D) {
1450     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1451       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1452         GV->addAttribute("bss-section", SA->getName());
1453       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1454         GV->addAttribute("data-section", SA->getName());
1455       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1456         GV->addAttribute("rodata-section", SA->getName());
1457     }
1458 
1459     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1460       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1461         if (!D->getAttr<SectionAttr>())
1462           F->addFnAttr("implicit-section-name", SA->getName());
1463 
1464       llvm::AttrBuilder Attrs;
1465       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1466         // We know that GetCPUAndFeaturesAttributes will always have the
1467         // newest set, since it has the newest possible FunctionDecl, so the
1468         // new ones should replace the old.
1469         F->removeFnAttr("target-cpu");
1470         F->removeFnAttr("target-features");
1471         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1472       }
1473     }
1474 
1475     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1476       GO->setSection(CSA->getName());
1477     else if (const auto *SA = D->getAttr<SectionAttr>())
1478       GO->setSection(SA->getName());
1479   }
1480 
1481   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1482 }
1483 
1484 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1485                                                   llvm::Function *F,
1486                                                   const CGFunctionInfo &FI) {
1487   const Decl *D = GD.getDecl();
1488   SetLLVMFunctionAttributes(D, FI, F);
1489   SetLLVMFunctionAttributesForDefinition(D, F);
1490 
1491   F->setLinkage(llvm::Function::InternalLinkage);
1492 
1493   setNonAliasAttributes(GD, F);
1494 }
1495 
1496 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1497   // Set linkage and visibility in case we never see a definition.
1498   LinkageInfo LV = ND->getLinkageAndVisibility();
1499   // Don't set internal linkage on declarations.
1500   // "extern_weak" is overloaded in LLVM; we probably should have
1501   // separate linkage types for this.
1502   if (isExternallyVisible(LV.getLinkage()) &&
1503       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1504     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1505 }
1506 
1507 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1508                                                        llvm::Function *F) {
1509   // Only if we are checking indirect calls.
1510   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1511     return;
1512 
1513   // Non-static class methods are handled via vtable or member function pointer
1514   // checks elsewhere.
1515   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1516     return;
1517 
1518   // Additionally, if building with cross-DSO support...
1519   if (CodeGenOpts.SanitizeCfiCrossDso) {
1520     // Skip available_externally functions. They won't be codegen'ed in the
1521     // current module anyway.
1522     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1523       return;
1524   }
1525 
1526   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1527   F->addTypeMetadata(0, MD);
1528   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1529 
1530   // Emit a hash-based bit set entry for cross-DSO calls.
1531   if (CodeGenOpts.SanitizeCfiCrossDso)
1532     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1533       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1534 }
1535 
1536 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1537                                           bool IsIncompleteFunction,
1538                                           bool IsThunk) {
1539 
1540   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1541     // If this is an intrinsic function, set the function's attributes
1542     // to the intrinsic's attributes.
1543     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1544     return;
1545   }
1546 
1547   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1548 
1549   if (!IsIncompleteFunction) {
1550     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1551     // Setup target-specific attributes.
1552     if (F->isDeclaration())
1553       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1554   }
1555 
1556   // Add the Returned attribute for "this", except for iOS 5 and earlier
1557   // where substantial code, including the libstdc++ dylib, was compiled with
1558   // GCC and does not actually return "this".
1559   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1560       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1561     assert(!F->arg_empty() &&
1562            F->arg_begin()->getType()
1563              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1564            "unexpected this return");
1565     F->addAttribute(1, llvm::Attribute::Returned);
1566   }
1567 
1568   // Only a few attributes are set on declarations; these may later be
1569   // overridden by a definition.
1570 
1571   setLinkageForGV(F, FD);
1572   setGVProperties(F, FD);
1573 
1574   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1575     F->setSection(CSA->getName());
1576   else if (const auto *SA = FD->getAttr<SectionAttr>())
1577      F->setSection(SA->getName());
1578 
1579   if (FD->isReplaceableGlobalAllocationFunction()) {
1580     // A replaceable global allocation function does not act like a builtin by
1581     // default, only if it is invoked by a new-expression or delete-expression.
1582     F->addAttribute(llvm::AttributeList::FunctionIndex,
1583                     llvm::Attribute::NoBuiltin);
1584 
1585     // A sane operator new returns a non-aliasing pointer.
1586     // FIXME: Also add NonNull attribute to the return value
1587     // for the non-nothrow forms?
1588     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1589     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1590         (Kind == OO_New || Kind == OO_Array_New))
1591       F->addAttribute(llvm::AttributeList::ReturnIndex,
1592                       llvm::Attribute::NoAlias);
1593   }
1594 
1595   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1596     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1597   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1598     if (MD->isVirtual())
1599       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1600 
1601   // Don't emit entries for function declarations in the cross-DSO mode. This
1602   // is handled with better precision by the receiving DSO.
1603   if (!CodeGenOpts.SanitizeCfiCrossDso)
1604     CreateFunctionTypeMetadataForIcall(FD, F);
1605 
1606   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1607     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1608 }
1609 
1610 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1611   assert(!GV->isDeclaration() &&
1612          "Only globals with definition can force usage.");
1613   LLVMUsed.emplace_back(GV);
1614 }
1615 
1616 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1617   assert(!GV->isDeclaration() &&
1618          "Only globals with definition can force usage.");
1619   LLVMCompilerUsed.emplace_back(GV);
1620 }
1621 
1622 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1623                      std::vector<llvm::WeakTrackingVH> &List) {
1624   // Don't create llvm.used if there is no need.
1625   if (List.empty())
1626     return;
1627 
1628   // Convert List to what ConstantArray needs.
1629   SmallVector<llvm::Constant*, 8> UsedArray;
1630   UsedArray.resize(List.size());
1631   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1632     UsedArray[i] =
1633         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1634             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1635   }
1636 
1637   if (UsedArray.empty())
1638     return;
1639   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1640 
1641   auto *GV = new llvm::GlobalVariable(
1642       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1643       llvm::ConstantArray::get(ATy, UsedArray), Name);
1644 
1645   GV->setSection("llvm.metadata");
1646 }
1647 
1648 void CodeGenModule::emitLLVMUsed() {
1649   emitUsed(*this, "llvm.used", LLVMUsed);
1650   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1651 }
1652 
1653 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1654   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1655   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1656 }
1657 
1658 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1659   llvm::SmallString<32> Opt;
1660   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1661   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1662   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1663 }
1664 
1665 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1666   auto &C = getLLVMContext();
1667   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1668       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1669 }
1670 
1671 void CodeGenModule::AddDependentLib(StringRef Lib) {
1672   llvm::SmallString<24> Opt;
1673   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1674   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1675   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1676 }
1677 
1678 /// Add link options implied by the given module, including modules
1679 /// it depends on, using a postorder walk.
1680 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1681                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1682                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1683   // Import this module's parent.
1684   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1685     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1686   }
1687 
1688   // Import this module's dependencies.
1689   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1690     if (Visited.insert(Mod->Imports[I - 1]).second)
1691       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1692   }
1693 
1694   // Add linker options to link against the libraries/frameworks
1695   // described by this module.
1696   llvm::LLVMContext &Context = CGM.getLLVMContext();
1697 
1698   // For modules that use export_as for linking, use that module
1699   // name instead.
1700   if (Mod->UseExportAsModuleLinkName)
1701     return;
1702 
1703   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1704     // Link against a framework.  Frameworks are currently Darwin only, so we
1705     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1706     if (Mod->LinkLibraries[I-1].IsFramework) {
1707       llvm::Metadata *Args[2] = {
1708           llvm::MDString::get(Context, "-framework"),
1709           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1710 
1711       Metadata.push_back(llvm::MDNode::get(Context, Args));
1712       continue;
1713     }
1714 
1715     // Link against a library.
1716     llvm::SmallString<24> Opt;
1717     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1718       Mod->LinkLibraries[I-1].Library, Opt);
1719     auto *OptString = llvm::MDString::get(Context, Opt);
1720     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1721   }
1722 }
1723 
1724 void CodeGenModule::EmitModuleLinkOptions() {
1725   // Collect the set of all of the modules we want to visit to emit link
1726   // options, which is essentially the imported modules and all of their
1727   // non-explicit child modules.
1728   llvm::SetVector<clang::Module *> LinkModules;
1729   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1730   SmallVector<clang::Module *, 16> Stack;
1731 
1732   // Seed the stack with imported modules.
1733   for (Module *M : ImportedModules) {
1734     // Do not add any link flags when an implementation TU of a module imports
1735     // a header of that same module.
1736     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1737         !getLangOpts().isCompilingModule())
1738       continue;
1739     if (Visited.insert(M).second)
1740       Stack.push_back(M);
1741   }
1742 
1743   // Find all of the modules to import, making a little effort to prune
1744   // non-leaf modules.
1745   while (!Stack.empty()) {
1746     clang::Module *Mod = Stack.pop_back_val();
1747 
1748     bool AnyChildren = false;
1749 
1750     // Visit the submodules of this module.
1751     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1752                                         SubEnd = Mod->submodule_end();
1753          Sub != SubEnd; ++Sub) {
1754       // Skip explicit children; they need to be explicitly imported to be
1755       // linked against.
1756       if ((*Sub)->IsExplicit)
1757         continue;
1758 
1759       if (Visited.insert(*Sub).second) {
1760         Stack.push_back(*Sub);
1761         AnyChildren = true;
1762       }
1763     }
1764 
1765     // We didn't find any children, so add this module to the list of
1766     // modules to link against.
1767     if (!AnyChildren) {
1768       LinkModules.insert(Mod);
1769     }
1770   }
1771 
1772   // Add link options for all of the imported modules in reverse topological
1773   // order.  We don't do anything to try to order import link flags with respect
1774   // to linker options inserted by things like #pragma comment().
1775   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1776   Visited.clear();
1777   for (Module *M : LinkModules)
1778     if (Visited.insert(M).second)
1779       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1780   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1781   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1782 
1783   // Add the linker options metadata flag.
1784   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1785   for (auto *MD : LinkerOptionsMetadata)
1786     NMD->addOperand(MD);
1787 }
1788 
1789 void CodeGenModule::EmitDeferred() {
1790   // Emit deferred declare target declarations.
1791   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1792     getOpenMPRuntime().emitDeferredTargetDecls();
1793 
1794   // Emit code for any potentially referenced deferred decls.  Since a
1795   // previously unused static decl may become used during the generation of code
1796   // for a static function, iterate until no changes are made.
1797 
1798   if (!DeferredVTables.empty()) {
1799     EmitDeferredVTables();
1800 
1801     // Emitting a vtable doesn't directly cause more vtables to
1802     // become deferred, although it can cause functions to be
1803     // emitted that then need those vtables.
1804     assert(DeferredVTables.empty());
1805   }
1806 
1807   // Stop if we're out of both deferred vtables and deferred declarations.
1808   if (DeferredDeclsToEmit.empty())
1809     return;
1810 
1811   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1812   // work, it will not interfere with this.
1813   std::vector<GlobalDecl> CurDeclsToEmit;
1814   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1815 
1816   for (GlobalDecl &D : CurDeclsToEmit) {
1817     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1818     // to get GlobalValue with exactly the type we need, not something that
1819     // might had been created for another decl with the same mangled name but
1820     // different type.
1821     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1822         GetAddrOfGlobal(D, ForDefinition));
1823 
1824     // In case of different address spaces, we may still get a cast, even with
1825     // IsForDefinition equal to true. Query mangled names table to get
1826     // GlobalValue.
1827     if (!GV)
1828       GV = GetGlobalValue(getMangledName(D));
1829 
1830     // Make sure GetGlobalValue returned non-null.
1831     assert(GV);
1832 
1833     // Check to see if we've already emitted this.  This is necessary
1834     // for a couple of reasons: first, decls can end up in the
1835     // deferred-decls queue multiple times, and second, decls can end
1836     // up with definitions in unusual ways (e.g. by an extern inline
1837     // function acquiring a strong function redefinition).  Just
1838     // ignore these cases.
1839     if (!GV->isDeclaration())
1840       continue;
1841 
1842     // Otherwise, emit the definition and move on to the next one.
1843     EmitGlobalDefinition(D, GV);
1844 
1845     // If we found out that we need to emit more decls, do that recursively.
1846     // This has the advantage that the decls are emitted in a DFS and related
1847     // ones are close together, which is convenient for testing.
1848     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1849       EmitDeferred();
1850       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1851     }
1852   }
1853 }
1854 
1855 void CodeGenModule::EmitVTablesOpportunistically() {
1856   // Try to emit external vtables as available_externally if they have emitted
1857   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1858   // is not allowed to create new references to things that need to be emitted
1859   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1860 
1861   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1862          && "Only emit opportunistic vtables with optimizations");
1863 
1864   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1865     assert(getVTables().isVTableExternal(RD) &&
1866            "This queue should only contain external vtables");
1867     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1868       VTables.GenerateClassData(RD);
1869   }
1870   OpportunisticVTables.clear();
1871 }
1872 
1873 void CodeGenModule::EmitGlobalAnnotations() {
1874   if (Annotations.empty())
1875     return;
1876 
1877   // Create a new global variable for the ConstantStruct in the Module.
1878   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1879     Annotations[0]->getType(), Annotations.size()), Annotations);
1880   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1881                                       llvm::GlobalValue::AppendingLinkage,
1882                                       Array, "llvm.global.annotations");
1883   gv->setSection(AnnotationSection);
1884 }
1885 
1886 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1887   llvm::Constant *&AStr = AnnotationStrings[Str];
1888   if (AStr)
1889     return AStr;
1890 
1891   // Not found yet, create a new global.
1892   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1893   auto *gv =
1894       new llvm::GlobalVariable(getModule(), s->getType(), true,
1895                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1896   gv->setSection(AnnotationSection);
1897   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1898   AStr = gv;
1899   return gv;
1900 }
1901 
1902 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1903   SourceManager &SM = getContext().getSourceManager();
1904   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1905   if (PLoc.isValid())
1906     return EmitAnnotationString(PLoc.getFilename());
1907   return EmitAnnotationString(SM.getBufferName(Loc));
1908 }
1909 
1910 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1911   SourceManager &SM = getContext().getSourceManager();
1912   PresumedLoc PLoc = SM.getPresumedLoc(L);
1913   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1914     SM.getExpansionLineNumber(L);
1915   return llvm::ConstantInt::get(Int32Ty, LineNo);
1916 }
1917 
1918 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1919                                                 const AnnotateAttr *AA,
1920                                                 SourceLocation L) {
1921   // Get the globals for file name, annotation, and the line number.
1922   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1923                  *UnitGV = EmitAnnotationUnit(L),
1924                  *LineNoCst = EmitAnnotationLineNo(L);
1925 
1926   // Create the ConstantStruct for the global annotation.
1927   llvm::Constant *Fields[4] = {
1928     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1929     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1930     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1931     LineNoCst
1932   };
1933   return llvm::ConstantStruct::getAnon(Fields);
1934 }
1935 
1936 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1937                                          llvm::GlobalValue *GV) {
1938   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1939   // Get the struct elements for these annotations.
1940   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1941     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1942 }
1943 
1944 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1945                                            llvm::Function *Fn,
1946                                            SourceLocation Loc) const {
1947   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1948   // Blacklist by function name.
1949   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1950     return true;
1951   // Blacklist by location.
1952   if (Loc.isValid())
1953     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1954   // If location is unknown, this may be a compiler-generated function. Assume
1955   // it's located in the main file.
1956   auto &SM = Context.getSourceManager();
1957   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1958     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1959   }
1960   return false;
1961 }
1962 
1963 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1964                                            SourceLocation Loc, QualType Ty,
1965                                            StringRef Category) const {
1966   // For now globals can be blacklisted only in ASan and KASan.
1967   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1968       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1969        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1970   if (!EnabledAsanMask)
1971     return false;
1972   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1973   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1974     return true;
1975   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1976     return true;
1977   // Check global type.
1978   if (!Ty.isNull()) {
1979     // Drill down the array types: if global variable of a fixed type is
1980     // blacklisted, we also don't instrument arrays of them.
1981     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1982       Ty = AT->getElementType();
1983     Ty = Ty.getCanonicalType().getUnqualifiedType();
1984     // We allow to blacklist only record types (classes, structs etc.)
1985     if (Ty->isRecordType()) {
1986       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1987       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1988         return true;
1989     }
1990   }
1991   return false;
1992 }
1993 
1994 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1995                                    StringRef Category) const {
1996   const auto &XRayFilter = getContext().getXRayFilter();
1997   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1998   auto Attr = ImbueAttr::NONE;
1999   if (Loc.isValid())
2000     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2001   if (Attr == ImbueAttr::NONE)
2002     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2003   switch (Attr) {
2004   case ImbueAttr::NONE:
2005     return false;
2006   case ImbueAttr::ALWAYS:
2007     Fn->addFnAttr("function-instrument", "xray-always");
2008     break;
2009   case ImbueAttr::ALWAYS_ARG1:
2010     Fn->addFnAttr("function-instrument", "xray-always");
2011     Fn->addFnAttr("xray-log-args", "1");
2012     break;
2013   case ImbueAttr::NEVER:
2014     Fn->addFnAttr("function-instrument", "xray-never");
2015     break;
2016   }
2017   return true;
2018 }
2019 
2020 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2021   // Never defer when EmitAllDecls is specified.
2022   if (LangOpts.EmitAllDecls)
2023     return true;
2024 
2025   if (CodeGenOpts.KeepStaticConsts) {
2026     const auto *VD = dyn_cast<VarDecl>(Global);
2027     if (VD && VD->getType().isConstQualified() &&
2028         VD->getStorageDuration() == SD_Static)
2029       return true;
2030   }
2031 
2032   return getContext().DeclMustBeEmitted(Global);
2033 }
2034 
2035 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2036   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2037     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2038       // Implicit template instantiations may change linkage if they are later
2039       // explicitly instantiated, so they should not be emitted eagerly.
2040       return false;
2041   if (const auto *VD = dyn_cast<VarDecl>(Global))
2042     if (Context.getInlineVariableDefinitionKind(VD) ==
2043         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2044       // A definition of an inline constexpr static data member may change
2045       // linkage later if it's redeclared outside the class.
2046       return false;
2047   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2048   // codegen for global variables, because they may be marked as threadprivate.
2049   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2050       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2051       !isTypeConstant(Global->getType(), false) &&
2052       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2053     return false;
2054 
2055   return true;
2056 }
2057 
2058 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2059     const CXXUuidofExpr* E) {
2060   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2061   // well-formed.
2062   StringRef Uuid = E->getUuidStr();
2063   std::string Name = "_GUID_" + Uuid.lower();
2064   std::replace(Name.begin(), Name.end(), '-', '_');
2065 
2066   // The UUID descriptor should be pointer aligned.
2067   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2068 
2069   // Look for an existing global.
2070   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2071     return ConstantAddress(GV, Alignment);
2072 
2073   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2074   assert(Init && "failed to initialize as constant");
2075 
2076   auto *GV = new llvm::GlobalVariable(
2077       getModule(), Init->getType(),
2078       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2079   if (supportsCOMDAT())
2080     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2081   setDSOLocal(GV);
2082   return ConstantAddress(GV, Alignment);
2083 }
2084 
2085 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2086   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2087   assert(AA && "No alias?");
2088 
2089   CharUnits Alignment = getContext().getDeclAlign(VD);
2090   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2091 
2092   // See if there is already something with the target's name in the module.
2093   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2094   if (Entry) {
2095     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2096     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2097     return ConstantAddress(Ptr, Alignment);
2098   }
2099 
2100   llvm::Constant *Aliasee;
2101   if (isa<llvm::FunctionType>(DeclTy))
2102     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2103                                       GlobalDecl(cast<FunctionDecl>(VD)),
2104                                       /*ForVTable=*/false);
2105   else
2106     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2107                                     llvm::PointerType::getUnqual(DeclTy),
2108                                     nullptr);
2109 
2110   auto *F = cast<llvm::GlobalValue>(Aliasee);
2111   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2112   WeakRefReferences.insert(F);
2113 
2114   return ConstantAddress(Aliasee, Alignment);
2115 }
2116 
2117 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2118   const auto *Global = cast<ValueDecl>(GD.getDecl());
2119 
2120   // Weak references don't produce any output by themselves.
2121   if (Global->hasAttr<WeakRefAttr>())
2122     return;
2123 
2124   // If this is an alias definition (which otherwise looks like a declaration)
2125   // emit it now.
2126   if (Global->hasAttr<AliasAttr>())
2127     return EmitAliasDefinition(GD);
2128 
2129   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2130   if (Global->hasAttr<IFuncAttr>())
2131     return emitIFuncDefinition(GD);
2132 
2133   // If this is a cpu_dispatch multiversion function, emit the resolver.
2134   if (Global->hasAttr<CPUDispatchAttr>())
2135     return emitCPUDispatchDefinition(GD);
2136 
2137   // If this is CUDA, be selective about which declarations we emit.
2138   if (LangOpts.CUDA) {
2139     if (LangOpts.CUDAIsDevice) {
2140       if (!Global->hasAttr<CUDADeviceAttr>() &&
2141           !Global->hasAttr<CUDAGlobalAttr>() &&
2142           !Global->hasAttr<CUDAConstantAttr>() &&
2143           !Global->hasAttr<CUDASharedAttr>())
2144         return;
2145     } else {
2146       // We need to emit host-side 'shadows' for all global
2147       // device-side variables because the CUDA runtime needs their
2148       // size and host-side address in order to provide access to
2149       // their device-side incarnations.
2150 
2151       // So device-only functions are the only things we skip.
2152       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2153           Global->hasAttr<CUDADeviceAttr>())
2154         return;
2155 
2156       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2157              "Expected Variable or Function");
2158     }
2159   }
2160 
2161   if (LangOpts.OpenMP) {
2162     // If this is OpenMP device, check if it is legal to emit this global
2163     // normally.
2164     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2165       return;
2166     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2167       if (MustBeEmitted(Global))
2168         EmitOMPDeclareReduction(DRD);
2169       return;
2170     }
2171   }
2172 
2173   // Ignore declarations, they will be emitted on their first use.
2174   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2175     // Forward declarations are emitted lazily on first use.
2176     if (!FD->doesThisDeclarationHaveABody()) {
2177       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2178         return;
2179 
2180       StringRef MangledName = getMangledName(GD);
2181 
2182       // Compute the function info and LLVM type.
2183       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2184       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2185 
2186       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2187                               /*DontDefer=*/false);
2188       return;
2189     }
2190   } else {
2191     const auto *VD = cast<VarDecl>(Global);
2192     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2193     // We need to emit device-side global CUDA variables even if a
2194     // variable does not have a definition -- we still need to define
2195     // host-side shadow for it.
2196     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2197                            !VD->hasDefinition() &&
2198                            (VD->hasAttr<CUDAConstantAttr>() ||
2199                             VD->hasAttr<CUDADeviceAttr>());
2200     if (!MustEmitForCuda &&
2201         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2202         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2203       if (LangOpts.OpenMP) {
2204         // Emit declaration of the must-be-emitted declare target variable.
2205         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2206                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2207           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2208             (void)GetAddrOfGlobalVar(VD);
2209           } else {
2210             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2211                    "link claue expected.");
2212             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2213           }
2214           return;
2215         }
2216       }
2217       // If this declaration may have caused an inline variable definition to
2218       // change linkage, make sure that it's emitted.
2219       if (Context.getInlineVariableDefinitionKind(VD) ==
2220           ASTContext::InlineVariableDefinitionKind::Strong)
2221         GetAddrOfGlobalVar(VD);
2222       return;
2223     }
2224   }
2225 
2226   // Defer code generation to first use when possible, e.g. if this is an inline
2227   // function. If the global must always be emitted, do it eagerly if possible
2228   // to benefit from cache locality.
2229   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2230     // Emit the definition if it can't be deferred.
2231     EmitGlobalDefinition(GD);
2232     return;
2233   }
2234 
2235   // If we're deferring emission of a C++ variable with an
2236   // initializer, remember the order in which it appeared in the file.
2237   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2238       cast<VarDecl>(Global)->hasInit()) {
2239     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2240     CXXGlobalInits.push_back(nullptr);
2241   }
2242 
2243   StringRef MangledName = getMangledName(GD);
2244   if (GetGlobalValue(MangledName) != nullptr) {
2245     // The value has already been used and should therefore be emitted.
2246     addDeferredDeclToEmit(GD);
2247   } else if (MustBeEmitted(Global)) {
2248     // The value must be emitted, but cannot be emitted eagerly.
2249     assert(!MayBeEmittedEagerly(Global));
2250     addDeferredDeclToEmit(GD);
2251   } else {
2252     // Otherwise, remember that we saw a deferred decl with this name.  The
2253     // first use of the mangled name will cause it to move into
2254     // DeferredDeclsToEmit.
2255     DeferredDecls[MangledName] = GD;
2256   }
2257 }
2258 
2259 // Check if T is a class type with a destructor that's not dllimport.
2260 static bool HasNonDllImportDtor(QualType T) {
2261   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2262     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2263       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2264         return true;
2265 
2266   return false;
2267 }
2268 
2269 namespace {
2270   struct FunctionIsDirectlyRecursive :
2271     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2272     const StringRef Name;
2273     const Builtin::Context &BI;
2274     bool Result;
2275     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2276       Name(N), BI(C), Result(false) {
2277     }
2278     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2279 
2280     bool TraverseCallExpr(CallExpr *E) {
2281       const FunctionDecl *FD = E->getDirectCallee();
2282       if (!FD)
2283         return true;
2284       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2285       if (Attr && Name == Attr->getLabel()) {
2286         Result = true;
2287         return false;
2288       }
2289       unsigned BuiltinID = FD->getBuiltinID();
2290       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2291         return true;
2292       StringRef BuiltinName = BI.getName(BuiltinID);
2293       if (BuiltinName.startswith("__builtin_") &&
2294           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2295         Result = true;
2296         return false;
2297       }
2298       return true;
2299     }
2300   };
2301 
2302   // Make sure we're not referencing non-imported vars or functions.
2303   struct DLLImportFunctionVisitor
2304       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2305     bool SafeToInline = true;
2306 
2307     bool shouldVisitImplicitCode() const { return true; }
2308 
2309     bool VisitVarDecl(VarDecl *VD) {
2310       if (VD->getTLSKind()) {
2311         // A thread-local variable cannot be imported.
2312         SafeToInline = false;
2313         return SafeToInline;
2314       }
2315 
2316       // A variable definition might imply a destructor call.
2317       if (VD->isThisDeclarationADefinition())
2318         SafeToInline = !HasNonDllImportDtor(VD->getType());
2319 
2320       return SafeToInline;
2321     }
2322 
2323     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2324       if (const auto *D = E->getTemporary()->getDestructor())
2325         SafeToInline = D->hasAttr<DLLImportAttr>();
2326       return SafeToInline;
2327     }
2328 
2329     bool VisitDeclRefExpr(DeclRefExpr *E) {
2330       ValueDecl *VD = E->getDecl();
2331       if (isa<FunctionDecl>(VD))
2332         SafeToInline = VD->hasAttr<DLLImportAttr>();
2333       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2334         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2335       return SafeToInline;
2336     }
2337 
2338     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2339       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2340       return SafeToInline;
2341     }
2342 
2343     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2344       CXXMethodDecl *M = E->getMethodDecl();
2345       if (!M) {
2346         // Call through a pointer to member function. This is safe to inline.
2347         SafeToInline = true;
2348       } else {
2349         SafeToInline = M->hasAttr<DLLImportAttr>();
2350       }
2351       return SafeToInline;
2352     }
2353 
2354     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2355       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2356       return SafeToInline;
2357     }
2358 
2359     bool VisitCXXNewExpr(CXXNewExpr *E) {
2360       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2361       return SafeToInline;
2362     }
2363   };
2364 }
2365 
2366 // isTriviallyRecursive - Check if this function calls another
2367 // decl that, because of the asm attribute or the other decl being a builtin,
2368 // ends up pointing to itself.
2369 bool
2370 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2371   StringRef Name;
2372   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2373     // asm labels are a special kind of mangling we have to support.
2374     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2375     if (!Attr)
2376       return false;
2377     Name = Attr->getLabel();
2378   } else {
2379     Name = FD->getName();
2380   }
2381 
2382   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2383   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2384   return Walker.Result;
2385 }
2386 
2387 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2388   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2389     return true;
2390   const auto *F = cast<FunctionDecl>(GD.getDecl());
2391   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2392     return false;
2393 
2394   if (F->hasAttr<DLLImportAttr>()) {
2395     // Check whether it would be safe to inline this dllimport function.
2396     DLLImportFunctionVisitor Visitor;
2397     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2398     if (!Visitor.SafeToInline)
2399       return false;
2400 
2401     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2402       // Implicit destructor invocations aren't captured in the AST, so the
2403       // check above can't see them. Check for them manually here.
2404       for (const Decl *Member : Dtor->getParent()->decls())
2405         if (isa<FieldDecl>(Member))
2406           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2407             return false;
2408       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2409         if (HasNonDllImportDtor(B.getType()))
2410           return false;
2411     }
2412   }
2413 
2414   // PR9614. Avoid cases where the source code is lying to us. An available
2415   // externally function should have an equivalent function somewhere else,
2416   // but a function that calls itself is clearly not equivalent to the real
2417   // implementation.
2418   // This happens in glibc's btowc and in some configure checks.
2419   return !isTriviallyRecursive(F);
2420 }
2421 
2422 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2423   return CodeGenOpts.OptimizationLevel > 0;
2424 }
2425 
2426 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2427   const auto *D = cast<ValueDecl>(GD.getDecl());
2428 
2429   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2430                                  Context.getSourceManager(),
2431                                  "Generating code for declaration");
2432 
2433   if (isa<FunctionDecl>(D)) {
2434     // At -O0, don't generate IR for functions with available_externally
2435     // linkage.
2436     if (!shouldEmitFunction(GD))
2437       return;
2438 
2439     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2440       // Make sure to emit the definition(s) before we emit the thunks.
2441       // This is necessary for the generation of certain thunks.
2442       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2443         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2444       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2445         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2446       else
2447         EmitGlobalFunctionDefinition(GD, GV);
2448 
2449       if (Method->isVirtual())
2450         getVTables().EmitThunks(GD);
2451 
2452       return;
2453     }
2454 
2455     return EmitGlobalFunctionDefinition(GD, GV);
2456   }
2457 
2458   if (const auto *VD = dyn_cast<VarDecl>(D))
2459     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2460 
2461   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2462 }
2463 
2464 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2465                                                       llvm::Function *NewFn);
2466 
2467 static unsigned
2468 TargetMVPriority(const TargetInfo &TI,
2469                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2470   unsigned Priority = 0;
2471   for (StringRef Feat : RO.Conditions.Features)
2472     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2473 
2474   if (!RO.Conditions.Architecture.empty())
2475     Priority = std::max(
2476         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2477   return Priority;
2478 }
2479 
2480 void CodeGenModule::emitMultiVersionFunctions() {
2481   for (GlobalDecl GD : MultiVersionFuncs) {
2482     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2483     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2484     getContext().forEachMultiversionedFunctionVersion(
2485         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2486           GlobalDecl CurGD{
2487               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2488           StringRef MangledName = getMangledName(CurGD);
2489           llvm::Constant *Func = GetGlobalValue(MangledName);
2490           if (!Func) {
2491             if (CurFD->isDefined()) {
2492               EmitGlobalFunctionDefinition(CurGD, nullptr);
2493               Func = GetGlobalValue(MangledName);
2494             } else {
2495               const CGFunctionInfo &FI =
2496                   getTypes().arrangeGlobalDeclaration(GD);
2497               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2498               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2499                                        /*DontDefer=*/false, ForDefinition);
2500             }
2501             assert(Func && "This should have just been created");
2502           }
2503 
2504           const auto *TA = CurFD->getAttr<TargetAttr>();
2505           llvm::SmallVector<StringRef, 8> Feats;
2506           TA->getAddedFeatures(Feats);
2507 
2508           Options.emplace_back(cast<llvm::Function>(Func),
2509                                TA->getArchitecture(), Feats);
2510         });
2511 
2512     llvm::Function *ResolverFunc;
2513     const TargetInfo &TI = getTarget();
2514 
2515     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2516       ResolverFunc = cast<llvm::Function>(
2517           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2518     else
2519       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2520 
2521     if (supportsCOMDAT())
2522       ResolverFunc->setComdat(
2523           getModule().getOrInsertComdat(ResolverFunc->getName()));
2524 
2525     std::stable_sort(
2526         Options.begin(), Options.end(),
2527         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2528               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2529           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2530         });
2531     CodeGenFunction CGF(*this);
2532     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2533   }
2534 }
2535 
2536 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2537   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2538   assert(FD && "Not a FunctionDecl?");
2539   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2540   assert(DD && "Not a cpu_dispatch Function?");
2541   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType());
2542 
2543   StringRef ResolverName = getMangledName(GD);
2544 
2545   llvm::Type *ResolverType;
2546   GlobalDecl ResolverGD;
2547   if (getTarget().supportsIFunc())
2548     ResolverType = llvm::FunctionType::get(
2549         llvm::PointerType::get(DeclTy,
2550                                Context.getTargetAddressSpace(FD->getType())),
2551         false);
2552   else {
2553     ResolverType = DeclTy;
2554     ResolverGD = GD;
2555   }
2556 
2557   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2558       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2559 
2560   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2561   const TargetInfo &Target = getTarget();
2562   for (const IdentifierInfo *II : DD->cpus()) {
2563     // Get the name of the target function so we can look it up/create it.
2564     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2565                               getCPUSpecificMangling(*this, II->getName());
2566     llvm::Constant *Func = GetOrCreateLLVMFunction(
2567         MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false,
2568         /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2569     llvm::SmallVector<StringRef, 32> Features;
2570     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2571     llvm::transform(Features, Features.begin(),
2572                     [](StringRef Str) { return Str.substr(1); });
2573     Features.erase(std::remove_if(
2574         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2575           return !Target.validateCpuSupports(Feat);
2576         }), Features.end());
2577     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2578   }
2579 
2580   llvm::sort(
2581       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2582                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2583         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2584                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2585       });
2586 
2587   // If the list contains multiple 'default' versions, such as when it contains
2588   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2589   // always run on at least a 'pentium'). We do this by deleting the 'least
2590   // advanced' (read, lowest mangling letter).
2591   while (Options.size() > 1 &&
2592          CodeGenFunction::GetX86CpuSupportsMask(
2593              (Options.end() - 2)->Conditions.Features) == 0) {
2594     StringRef LHSName = (Options.end() - 2)->Function->getName();
2595     StringRef RHSName = (Options.end() - 1)->Function->getName();
2596     if (LHSName.compare(RHSName) < 0)
2597       Options.erase(Options.end() - 2);
2598     else
2599       Options.erase(Options.end() - 1);
2600   }
2601 
2602   CodeGenFunction CGF(*this);
2603   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2604 }
2605 
2606 /// If a dispatcher for the specified mangled name is not in the module, create
2607 /// and return an llvm Function with the specified type.
2608 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2609     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2610   std::string MangledName =
2611       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2612 
2613   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2614   // a separate resolver).
2615   std::string ResolverName = MangledName;
2616   if (getTarget().supportsIFunc())
2617     ResolverName += ".ifunc";
2618   else if (FD->isTargetMultiVersion())
2619     ResolverName += ".resolver";
2620 
2621   // If this already exists, just return that one.
2622   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2623     return ResolverGV;
2624 
2625   // Since this is the first time we've created this IFunc, make sure
2626   // that we put this multiversioned function into the list to be
2627   // replaced later if necessary (target multiversioning only).
2628   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2629     MultiVersionFuncs.push_back(GD);
2630 
2631   if (getTarget().supportsIFunc()) {
2632     llvm::Type *ResolverType = llvm::FunctionType::get(
2633         llvm::PointerType::get(
2634             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2635         false);
2636     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2637         MangledName + ".resolver", ResolverType, GlobalDecl{},
2638         /*ForVTable=*/false);
2639     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2640         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2641     GIF->setName(ResolverName);
2642     SetCommonAttributes(FD, GIF);
2643 
2644     return GIF;
2645   }
2646 
2647   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2648       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2649   assert(isa<llvm::GlobalValue>(Resolver) &&
2650          "Resolver should be created for the first time");
2651   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2652   return Resolver;
2653 }
2654 
2655 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2656 /// module, create and return an llvm Function with the specified type. If there
2657 /// is something in the module with the specified name, return it potentially
2658 /// bitcasted to the right type.
2659 ///
2660 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2661 /// to set the attributes on the function when it is first created.
2662 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2663     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2664     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2665     ForDefinition_t IsForDefinition) {
2666   const Decl *D = GD.getDecl();
2667 
2668   // Any attempts to use a MultiVersion function should result in retrieving
2669   // the iFunc instead. Name Mangling will handle the rest of the changes.
2670   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2671     // For the device mark the function as one that should be emitted.
2672     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2673         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2674         !DontDefer && !IsForDefinition) {
2675       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2676         GlobalDecl GDDef;
2677         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2678           GDDef = GlobalDecl(CD, GD.getCtorType());
2679         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2680           GDDef = GlobalDecl(DD, GD.getDtorType());
2681         else
2682           GDDef = GlobalDecl(FDDef);
2683         EmitGlobal(GDDef);
2684       }
2685     }
2686 
2687     if (FD->isMultiVersion()) {
2688       const auto *TA = FD->getAttr<TargetAttr>();
2689       if (TA && TA->isDefaultVersion())
2690         UpdateMultiVersionNames(GD, FD);
2691       if (!IsForDefinition)
2692         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2693     }
2694   }
2695 
2696   // Lookup the entry, lazily creating it if necessary.
2697   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2698   if (Entry) {
2699     if (WeakRefReferences.erase(Entry)) {
2700       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2701       if (FD && !FD->hasAttr<WeakAttr>())
2702         Entry->setLinkage(llvm::Function::ExternalLinkage);
2703     }
2704 
2705     // Handle dropped DLL attributes.
2706     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2707       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2708       setDSOLocal(Entry);
2709     }
2710 
2711     // If there are two attempts to define the same mangled name, issue an
2712     // error.
2713     if (IsForDefinition && !Entry->isDeclaration()) {
2714       GlobalDecl OtherGD;
2715       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2716       // to make sure that we issue an error only once.
2717       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2718           (GD.getCanonicalDecl().getDecl() !=
2719            OtherGD.getCanonicalDecl().getDecl()) &&
2720           DiagnosedConflictingDefinitions.insert(GD).second) {
2721         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2722             << MangledName;
2723         getDiags().Report(OtherGD.getDecl()->getLocation(),
2724                           diag::note_previous_definition);
2725       }
2726     }
2727 
2728     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2729         (Entry->getType()->getElementType() == Ty)) {
2730       return Entry;
2731     }
2732 
2733     // Make sure the result is of the correct type.
2734     // (If function is requested for a definition, we always need to create a new
2735     // function, not just return a bitcast.)
2736     if (!IsForDefinition)
2737       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2738   }
2739 
2740   // This function doesn't have a complete type (for example, the return
2741   // type is an incomplete struct). Use a fake type instead, and make
2742   // sure not to try to set attributes.
2743   bool IsIncompleteFunction = false;
2744 
2745   llvm::FunctionType *FTy;
2746   if (isa<llvm::FunctionType>(Ty)) {
2747     FTy = cast<llvm::FunctionType>(Ty);
2748   } else {
2749     FTy = llvm::FunctionType::get(VoidTy, false);
2750     IsIncompleteFunction = true;
2751   }
2752 
2753   llvm::Function *F =
2754       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2755                              Entry ? StringRef() : MangledName, &getModule());
2756 
2757   // If we already created a function with the same mangled name (but different
2758   // type) before, take its name and add it to the list of functions to be
2759   // replaced with F at the end of CodeGen.
2760   //
2761   // This happens if there is a prototype for a function (e.g. "int f()") and
2762   // then a definition of a different type (e.g. "int f(int x)").
2763   if (Entry) {
2764     F->takeName(Entry);
2765 
2766     // This might be an implementation of a function without a prototype, in
2767     // which case, try to do special replacement of calls which match the new
2768     // prototype.  The really key thing here is that we also potentially drop
2769     // arguments from the call site so as to make a direct call, which makes the
2770     // inliner happier and suppresses a number of optimizer warnings (!) about
2771     // dropping arguments.
2772     if (!Entry->use_empty()) {
2773       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2774       Entry->removeDeadConstantUsers();
2775     }
2776 
2777     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2778         F, Entry->getType()->getElementType()->getPointerTo());
2779     addGlobalValReplacement(Entry, BC);
2780   }
2781 
2782   assert(F->getName() == MangledName && "name was uniqued!");
2783   if (D)
2784     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2785   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2786     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2787     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2788   }
2789 
2790   if (!DontDefer) {
2791     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2792     // each other bottoming out with the base dtor.  Therefore we emit non-base
2793     // dtors on usage, even if there is no dtor definition in the TU.
2794     if (D && isa<CXXDestructorDecl>(D) &&
2795         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2796                                            GD.getDtorType()))
2797       addDeferredDeclToEmit(GD);
2798 
2799     // This is the first use or definition of a mangled name.  If there is a
2800     // deferred decl with this name, remember that we need to emit it at the end
2801     // of the file.
2802     auto DDI = DeferredDecls.find(MangledName);
2803     if (DDI != DeferredDecls.end()) {
2804       // Move the potentially referenced deferred decl to the
2805       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2806       // don't need it anymore).
2807       addDeferredDeclToEmit(DDI->second);
2808       DeferredDecls.erase(DDI);
2809 
2810       // Otherwise, there are cases we have to worry about where we're
2811       // using a declaration for which we must emit a definition but where
2812       // we might not find a top-level definition:
2813       //   - member functions defined inline in their classes
2814       //   - friend functions defined inline in some class
2815       //   - special member functions with implicit definitions
2816       // If we ever change our AST traversal to walk into class methods,
2817       // this will be unnecessary.
2818       //
2819       // We also don't emit a definition for a function if it's going to be an
2820       // entry in a vtable, unless it's already marked as used.
2821     } else if (getLangOpts().CPlusPlus && D) {
2822       // Look for a declaration that's lexically in a record.
2823       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2824            FD = FD->getPreviousDecl()) {
2825         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2826           if (FD->doesThisDeclarationHaveABody()) {
2827             addDeferredDeclToEmit(GD.getWithDecl(FD));
2828             break;
2829           }
2830         }
2831       }
2832     }
2833   }
2834 
2835   // Make sure the result is of the requested type.
2836   if (!IsIncompleteFunction) {
2837     assert(F->getType()->getElementType() == Ty);
2838     return F;
2839   }
2840 
2841   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2842   return llvm::ConstantExpr::getBitCast(F, PTy);
2843 }
2844 
2845 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2846 /// non-null, then this function will use the specified type if it has to
2847 /// create it (this occurs when we see a definition of the function).
2848 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2849                                                  llvm::Type *Ty,
2850                                                  bool ForVTable,
2851                                                  bool DontDefer,
2852                                               ForDefinition_t IsForDefinition) {
2853   // If there was no specific requested type, just convert it now.
2854   if (!Ty) {
2855     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2856     auto CanonTy = Context.getCanonicalType(FD->getType());
2857     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2858   }
2859 
2860   // Devirtualized destructor calls may come through here instead of via
2861   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2862   // of the complete destructor when necessary.
2863   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2864     if (getTarget().getCXXABI().isMicrosoft() &&
2865         GD.getDtorType() == Dtor_Complete &&
2866         DD->getParent()->getNumVBases() == 0)
2867       GD = GlobalDecl(DD, Dtor_Base);
2868   }
2869 
2870   StringRef MangledName = getMangledName(GD);
2871   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2872                                  /*IsThunk=*/false, llvm::AttributeList(),
2873                                  IsForDefinition);
2874 }
2875 
2876 static const FunctionDecl *
2877 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2878   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2879   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2880 
2881   IdentifierInfo &CII = C.Idents.get(Name);
2882   for (const auto &Result : DC->lookup(&CII))
2883     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2884       return FD;
2885 
2886   if (!C.getLangOpts().CPlusPlus)
2887     return nullptr;
2888 
2889   // Demangle the premangled name from getTerminateFn()
2890   IdentifierInfo &CXXII =
2891       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2892           ? C.Idents.get("terminate")
2893           : C.Idents.get(Name);
2894 
2895   for (const auto &N : {"__cxxabiv1", "std"}) {
2896     IdentifierInfo &NS = C.Idents.get(N);
2897     for (const auto &Result : DC->lookup(&NS)) {
2898       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2899       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2900         for (const auto &Result : LSD->lookup(&NS))
2901           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2902             break;
2903 
2904       if (ND)
2905         for (const auto &Result : ND->lookup(&CXXII))
2906           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2907             return FD;
2908     }
2909   }
2910 
2911   return nullptr;
2912 }
2913 
2914 /// CreateRuntimeFunction - Create a new runtime function with the specified
2915 /// type and name.
2916 llvm::Constant *
2917 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2918                                      llvm::AttributeList ExtraAttrs,
2919                                      bool Local) {
2920   llvm::Constant *C =
2921       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2922                               /*DontDefer=*/false, /*IsThunk=*/false,
2923                               ExtraAttrs);
2924 
2925   if (auto *F = dyn_cast<llvm::Function>(C)) {
2926     if (F->empty()) {
2927       F->setCallingConv(getRuntimeCC());
2928 
2929       if (!Local && getTriple().isOSBinFormatCOFF() &&
2930           !getCodeGenOpts().LTOVisibilityPublicStd &&
2931           !getTriple().isWindowsGNUEnvironment()) {
2932         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2933         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2934           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2935           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2936         }
2937       }
2938       setDSOLocal(F);
2939     }
2940   }
2941 
2942   return C;
2943 }
2944 
2945 /// CreateBuiltinFunction - Create a new builtin function with the specified
2946 /// type and name.
2947 llvm::Constant *
2948 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2949                                      llvm::AttributeList ExtraAttrs) {
2950   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2951 }
2952 
2953 /// isTypeConstant - Determine whether an object of this type can be emitted
2954 /// as a constant.
2955 ///
2956 /// If ExcludeCtor is true, the duration when the object's constructor runs
2957 /// will not be considered. The caller will need to verify that the object is
2958 /// not written to during its construction.
2959 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2960   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2961     return false;
2962 
2963   if (Context.getLangOpts().CPlusPlus) {
2964     if (const CXXRecordDecl *Record
2965           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2966       return ExcludeCtor && !Record->hasMutableFields() &&
2967              Record->hasTrivialDestructor();
2968   }
2969 
2970   return true;
2971 }
2972 
2973 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2974 /// create and return an llvm GlobalVariable with the specified type.  If there
2975 /// is something in the module with the specified name, return it potentially
2976 /// bitcasted to the right type.
2977 ///
2978 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2979 /// to set the attributes on the global when it is first created.
2980 ///
2981 /// If IsForDefinition is true, it is guaranteed that an actual global with
2982 /// type Ty will be returned, not conversion of a variable with the same
2983 /// mangled name but some other type.
2984 llvm::Constant *
2985 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2986                                      llvm::PointerType *Ty,
2987                                      const VarDecl *D,
2988                                      ForDefinition_t IsForDefinition) {
2989   // Lookup the entry, lazily creating it if necessary.
2990   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2991   if (Entry) {
2992     if (WeakRefReferences.erase(Entry)) {
2993       if (D && !D->hasAttr<WeakAttr>())
2994         Entry->setLinkage(llvm::Function::ExternalLinkage);
2995     }
2996 
2997     // Handle dropped DLL attributes.
2998     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2999       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3000 
3001     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3002       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3003 
3004     if (Entry->getType() == Ty)
3005       return Entry;
3006 
3007     // If there are two attempts to define the same mangled name, issue an
3008     // error.
3009     if (IsForDefinition && !Entry->isDeclaration()) {
3010       GlobalDecl OtherGD;
3011       const VarDecl *OtherD;
3012 
3013       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3014       // to make sure that we issue an error only once.
3015       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3016           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3017           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3018           OtherD->hasInit() &&
3019           DiagnosedConflictingDefinitions.insert(D).second) {
3020         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3021             << MangledName;
3022         getDiags().Report(OtherGD.getDecl()->getLocation(),
3023                           diag::note_previous_definition);
3024       }
3025     }
3026 
3027     // Make sure the result is of the correct type.
3028     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3029       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3030 
3031     // (If global is requested for a definition, we always need to create a new
3032     // global, not just return a bitcast.)
3033     if (!IsForDefinition)
3034       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3035   }
3036 
3037   auto AddrSpace = GetGlobalVarAddressSpace(D);
3038   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3039 
3040   auto *GV = new llvm::GlobalVariable(
3041       getModule(), Ty->getElementType(), false,
3042       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3043       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3044 
3045   // If we already created a global with the same mangled name (but different
3046   // type) before, take its name and remove it from its parent.
3047   if (Entry) {
3048     GV->takeName(Entry);
3049 
3050     if (!Entry->use_empty()) {
3051       llvm::Constant *NewPtrForOldDecl =
3052           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3053       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3054     }
3055 
3056     Entry->eraseFromParent();
3057   }
3058 
3059   // This is the first use or definition of a mangled name.  If there is a
3060   // deferred decl with this name, remember that we need to emit it at the end
3061   // of the file.
3062   auto DDI = DeferredDecls.find(MangledName);
3063   if (DDI != DeferredDecls.end()) {
3064     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3065     // list, and remove it from DeferredDecls (since we don't need it anymore).
3066     addDeferredDeclToEmit(DDI->second);
3067     DeferredDecls.erase(DDI);
3068   }
3069 
3070   // Handle things which are present even on external declarations.
3071   if (D) {
3072     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3073       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3074 
3075     // FIXME: This code is overly simple and should be merged with other global
3076     // handling.
3077     GV->setConstant(isTypeConstant(D->getType(), false));
3078 
3079     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3080 
3081     setLinkageForGV(GV, D);
3082 
3083     if (D->getTLSKind()) {
3084       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3085         CXXThreadLocals.push_back(D);
3086       setTLSMode(GV, *D);
3087     }
3088 
3089     setGVProperties(GV, D);
3090 
3091     // If required by the ABI, treat declarations of static data members with
3092     // inline initializers as definitions.
3093     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3094       EmitGlobalVarDefinition(D);
3095     }
3096 
3097     // Emit section information for extern variables.
3098     if (D->hasExternalStorage()) {
3099       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3100         GV->setSection(SA->getName());
3101     }
3102 
3103     // Handle XCore specific ABI requirements.
3104     if (getTriple().getArch() == llvm::Triple::xcore &&
3105         D->getLanguageLinkage() == CLanguageLinkage &&
3106         D->getType().isConstant(Context) &&
3107         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3108       GV->setSection(".cp.rodata");
3109 
3110     // Check if we a have a const declaration with an initializer, we may be
3111     // able to emit it as available_externally to expose it's value to the
3112     // optimizer.
3113     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3114         D->getType().isConstQualified() && !GV->hasInitializer() &&
3115         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3116       const auto *Record =
3117           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3118       bool HasMutableFields = Record && Record->hasMutableFields();
3119       if (!HasMutableFields) {
3120         const VarDecl *InitDecl;
3121         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3122         if (InitExpr) {
3123           ConstantEmitter emitter(*this);
3124           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3125           if (Init) {
3126             auto *InitType = Init->getType();
3127             if (GV->getType()->getElementType() != InitType) {
3128               // The type of the initializer does not match the definition.
3129               // This happens when an initializer has a different type from
3130               // the type of the global (because of padding at the end of a
3131               // structure for instance).
3132               GV->setName(StringRef());
3133               // Make a new global with the correct type, this is now guaranteed
3134               // to work.
3135               auto *NewGV = cast<llvm::GlobalVariable>(
3136                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3137 
3138               // Erase the old global, since it is no longer used.
3139               GV->eraseFromParent();
3140               GV = NewGV;
3141             } else {
3142               GV->setInitializer(Init);
3143               GV->setConstant(true);
3144               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3145             }
3146             emitter.finalize(GV);
3147           }
3148         }
3149       }
3150     }
3151   }
3152 
3153   LangAS ExpectedAS =
3154       D ? D->getType().getAddressSpace()
3155         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3156   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3157          Ty->getPointerAddressSpace());
3158   if (AddrSpace != ExpectedAS)
3159     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3160                                                        ExpectedAS, Ty);
3161 
3162   return GV;
3163 }
3164 
3165 llvm::Constant *
3166 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3167                                ForDefinition_t IsForDefinition) {
3168   const Decl *D = GD.getDecl();
3169   if (isa<CXXConstructorDecl>(D))
3170     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3171                                 getFromCtorType(GD.getCtorType()),
3172                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3173                                 /*DontDefer=*/false, IsForDefinition);
3174   else if (isa<CXXDestructorDecl>(D))
3175     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3176                                 getFromDtorType(GD.getDtorType()),
3177                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3178                                 /*DontDefer=*/false, IsForDefinition);
3179   else if (isa<CXXMethodDecl>(D)) {
3180     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3181         cast<CXXMethodDecl>(D));
3182     auto Ty = getTypes().GetFunctionType(*FInfo);
3183     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3184                              IsForDefinition);
3185   } else if (isa<FunctionDecl>(D)) {
3186     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3187     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3188     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3189                              IsForDefinition);
3190   } else
3191     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3192                               IsForDefinition);
3193 }
3194 
3195 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3196     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3197     unsigned Alignment) {
3198   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3199   llvm::GlobalVariable *OldGV = nullptr;
3200 
3201   if (GV) {
3202     // Check if the variable has the right type.
3203     if (GV->getType()->getElementType() == Ty)
3204       return GV;
3205 
3206     // Because C++ name mangling, the only way we can end up with an already
3207     // existing global with the same name is if it has been declared extern "C".
3208     assert(GV->isDeclaration() && "Declaration has wrong type!");
3209     OldGV = GV;
3210   }
3211 
3212   // Create a new variable.
3213   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3214                                 Linkage, nullptr, Name);
3215 
3216   if (OldGV) {
3217     // Replace occurrences of the old variable if needed.
3218     GV->takeName(OldGV);
3219 
3220     if (!OldGV->use_empty()) {
3221       llvm::Constant *NewPtrForOldDecl =
3222       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3223       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3224     }
3225 
3226     OldGV->eraseFromParent();
3227   }
3228 
3229   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3230       !GV->hasAvailableExternallyLinkage())
3231     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3232 
3233   GV->setAlignment(Alignment);
3234 
3235   return GV;
3236 }
3237 
3238 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3239 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3240 /// then it will be created with the specified type instead of whatever the
3241 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3242 /// that an actual global with type Ty will be returned, not conversion of a
3243 /// variable with the same mangled name but some other type.
3244 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3245                                                   llvm::Type *Ty,
3246                                            ForDefinition_t IsForDefinition) {
3247   assert(D->hasGlobalStorage() && "Not a global variable");
3248   QualType ASTTy = D->getType();
3249   if (!Ty)
3250     Ty = getTypes().ConvertTypeForMem(ASTTy);
3251 
3252   llvm::PointerType *PTy =
3253     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3254 
3255   StringRef MangledName = getMangledName(D);
3256   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3257 }
3258 
3259 /// CreateRuntimeVariable - Create a new runtime global variable with the
3260 /// specified type and name.
3261 llvm::Constant *
3262 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3263                                      StringRef Name) {
3264   auto *Ret =
3265       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3266   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3267   return Ret;
3268 }
3269 
3270 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3271   assert(!D->getInit() && "Cannot emit definite definitions here!");
3272 
3273   StringRef MangledName = getMangledName(D);
3274   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3275 
3276   // We already have a definition, not declaration, with the same mangled name.
3277   // Emitting of declaration is not required (and actually overwrites emitted
3278   // definition).
3279   if (GV && !GV->isDeclaration())
3280     return;
3281 
3282   // If we have not seen a reference to this variable yet, place it into the
3283   // deferred declarations table to be emitted if needed later.
3284   if (!MustBeEmitted(D) && !GV) {
3285       DeferredDecls[MangledName] = D;
3286       return;
3287   }
3288 
3289   // The tentative definition is the only definition.
3290   EmitGlobalVarDefinition(D);
3291 }
3292 
3293 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3294   return Context.toCharUnitsFromBits(
3295       getDataLayout().getTypeStoreSizeInBits(Ty));
3296 }
3297 
3298 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3299   LangAS AddrSpace = LangAS::Default;
3300   if (LangOpts.OpenCL) {
3301     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3302     assert(AddrSpace == LangAS::opencl_global ||
3303            AddrSpace == LangAS::opencl_constant ||
3304            AddrSpace == LangAS::opencl_local ||
3305            AddrSpace >= LangAS::FirstTargetAddressSpace);
3306     return AddrSpace;
3307   }
3308 
3309   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3310     if (D && D->hasAttr<CUDAConstantAttr>())
3311       return LangAS::cuda_constant;
3312     else if (D && D->hasAttr<CUDASharedAttr>())
3313       return LangAS::cuda_shared;
3314     else if (D && D->hasAttr<CUDADeviceAttr>())
3315       return LangAS::cuda_device;
3316     else if (D && D->getType().isConstQualified())
3317       return LangAS::cuda_constant;
3318     else
3319       return LangAS::cuda_device;
3320   }
3321 
3322   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3323 }
3324 
3325 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3326   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3327   if (LangOpts.OpenCL)
3328     return LangAS::opencl_constant;
3329   if (auto AS = getTarget().getConstantAddressSpace())
3330     return AS.getValue();
3331   return LangAS::Default;
3332 }
3333 
3334 // In address space agnostic languages, string literals are in default address
3335 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3336 // emitted in constant address space in LLVM IR. To be consistent with other
3337 // parts of AST, string literal global variables in constant address space
3338 // need to be casted to default address space before being put into address
3339 // map and referenced by other part of CodeGen.
3340 // In OpenCL, string literals are in constant address space in AST, therefore
3341 // they should not be casted to default address space.
3342 static llvm::Constant *
3343 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3344                                        llvm::GlobalVariable *GV) {
3345   llvm::Constant *Cast = GV;
3346   if (!CGM.getLangOpts().OpenCL) {
3347     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3348       if (AS != LangAS::Default)
3349         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3350             CGM, GV, AS.getValue(), LangAS::Default,
3351             GV->getValueType()->getPointerTo(
3352                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3353     }
3354   }
3355   return Cast;
3356 }
3357 
3358 template<typename SomeDecl>
3359 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3360                                                llvm::GlobalValue *GV) {
3361   if (!getLangOpts().CPlusPlus)
3362     return;
3363 
3364   // Must have 'used' attribute, or else inline assembly can't rely on
3365   // the name existing.
3366   if (!D->template hasAttr<UsedAttr>())
3367     return;
3368 
3369   // Must have internal linkage and an ordinary name.
3370   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3371     return;
3372 
3373   // Must be in an extern "C" context. Entities declared directly within
3374   // a record are not extern "C" even if the record is in such a context.
3375   const SomeDecl *First = D->getFirstDecl();
3376   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3377     return;
3378 
3379   // OK, this is an internal linkage entity inside an extern "C" linkage
3380   // specification. Make a note of that so we can give it the "expected"
3381   // mangled name if nothing else is using that name.
3382   std::pair<StaticExternCMap::iterator, bool> R =
3383       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3384 
3385   // If we have multiple internal linkage entities with the same name
3386   // in extern "C" regions, none of them gets that name.
3387   if (!R.second)
3388     R.first->second = nullptr;
3389 }
3390 
3391 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3392   if (!CGM.supportsCOMDAT())
3393     return false;
3394 
3395   if (D.hasAttr<SelectAnyAttr>())
3396     return true;
3397 
3398   GVALinkage Linkage;
3399   if (auto *VD = dyn_cast<VarDecl>(&D))
3400     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3401   else
3402     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3403 
3404   switch (Linkage) {
3405   case GVA_Internal:
3406   case GVA_AvailableExternally:
3407   case GVA_StrongExternal:
3408     return false;
3409   case GVA_DiscardableODR:
3410   case GVA_StrongODR:
3411     return true;
3412   }
3413   llvm_unreachable("No such linkage");
3414 }
3415 
3416 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3417                                           llvm::GlobalObject &GO) {
3418   if (!shouldBeInCOMDAT(*this, D))
3419     return;
3420   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3421 }
3422 
3423 /// Pass IsTentative as true if you want to create a tentative definition.
3424 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3425                                             bool IsTentative) {
3426   // OpenCL global variables of sampler type are translated to function calls,
3427   // therefore no need to be translated.
3428   QualType ASTTy = D->getType();
3429   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3430     return;
3431 
3432   // If this is OpenMP device, check if it is legal to emit this global
3433   // normally.
3434   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3435       OpenMPRuntime->emitTargetGlobalVariable(D))
3436     return;
3437 
3438   llvm::Constant *Init = nullptr;
3439   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3440   bool NeedsGlobalCtor = false;
3441   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3442 
3443   const VarDecl *InitDecl;
3444   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3445 
3446   Optional<ConstantEmitter> emitter;
3447 
3448   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3449   // as part of their declaration."  Sema has already checked for
3450   // error cases, so we just need to set Init to UndefValue.
3451   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3452       D->hasAttr<CUDASharedAttr>())
3453     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3454   else if (!InitExpr) {
3455     // This is a tentative definition; tentative definitions are
3456     // implicitly initialized with { 0 }.
3457     //
3458     // Note that tentative definitions are only emitted at the end of
3459     // a translation unit, so they should never have incomplete
3460     // type. In addition, EmitTentativeDefinition makes sure that we
3461     // never attempt to emit a tentative definition if a real one
3462     // exists. A use may still exists, however, so we still may need
3463     // to do a RAUW.
3464     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3465     Init = EmitNullConstant(D->getType());
3466   } else {
3467     initializedGlobalDecl = GlobalDecl(D);
3468     emitter.emplace(*this);
3469     Init = emitter->tryEmitForInitializer(*InitDecl);
3470 
3471     if (!Init) {
3472       QualType T = InitExpr->getType();
3473       if (D->getType()->isReferenceType())
3474         T = D->getType();
3475 
3476       if (getLangOpts().CPlusPlus) {
3477         Init = EmitNullConstant(T);
3478         NeedsGlobalCtor = true;
3479       } else {
3480         ErrorUnsupported(D, "static initializer");
3481         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3482       }
3483     } else {
3484       // We don't need an initializer, so remove the entry for the delayed
3485       // initializer position (just in case this entry was delayed) if we
3486       // also don't need to register a destructor.
3487       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3488         DelayedCXXInitPosition.erase(D);
3489     }
3490   }
3491 
3492   llvm::Type* InitType = Init->getType();
3493   llvm::Constant *Entry =
3494       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3495 
3496   // Strip off a bitcast if we got one back.
3497   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3498     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3499            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3500            // All zero index gep.
3501            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3502     Entry = CE->getOperand(0);
3503   }
3504 
3505   // Entry is now either a Function or GlobalVariable.
3506   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3507 
3508   // We have a definition after a declaration with the wrong type.
3509   // We must make a new GlobalVariable* and update everything that used OldGV
3510   // (a declaration or tentative definition) with the new GlobalVariable*
3511   // (which will be a definition).
3512   //
3513   // This happens if there is a prototype for a global (e.g.
3514   // "extern int x[];") and then a definition of a different type (e.g.
3515   // "int x[10];"). This also happens when an initializer has a different type
3516   // from the type of the global (this happens with unions).
3517   if (!GV || GV->getType()->getElementType() != InitType ||
3518       GV->getType()->getAddressSpace() !=
3519           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3520 
3521     // Move the old entry aside so that we'll create a new one.
3522     Entry->setName(StringRef());
3523 
3524     // Make a new global with the correct type, this is now guaranteed to work.
3525     GV = cast<llvm::GlobalVariable>(
3526         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3527 
3528     // Replace all uses of the old global with the new global
3529     llvm::Constant *NewPtrForOldDecl =
3530         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3531     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3532 
3533     // Erase the old global, since it is no longer used.
3534     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3535   }
3536 
3537   MaybeHandleStaticInExternC(D, GV);
3538 
3539   if (D->hasAttr<AnnotateAttr>())
3540     AddGlobalAnnotations(D, GV);
3541 
3542   // Set the llvm linkage type as appropriate.
3543   llvm::GlobalValue::LinkageTypes Linkage =
3544       getLLVMLinkageVarDefinition(D, GV->isConstant());
3545 
3546   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3547   // the device. [...]"
3548   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3549   // __device__, declares a variable that: [...]
3550   // Is accessible from all the threads within the grid and from the host
3551   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3552   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3553   if (GV && LangOpts.CUDA) {
3554     if (LangOpts.CUDAIsDevice) {
3555       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3556         GV->setExternallyInitialized(true);
3557     } else {
3558       // Host-side shadows of external declarations of device-side
3559       // global variables become internal definitions. These have to
3560       // be internal in order to prevent name conflicts with global
3561       // host variables with the same name in a different TUs.
3562       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3563         Linkage = llvm::GlobalValue::InternalLinkage;
3564 
3565         // Shadow variables and their properties must be registered
3566         // with CUDA runtime.
3567         unsigned Flags = 0;
3568         if (!D->hasDefinition())
3569           Flags |= CGCUDARuntime::ExternDeviceVar;
3570         if (D->hasAttr<CUDAConstantAttr>())
3571           Flags |= CGCUDARuntime::ConstantDeviceVar;
3572         getCUDARuntime().registerDeviceVar(*GV, Flags);
3573       } else if (D->hasAttr<CUDASharedAttr>())
3574         // __shared__ variables are odd. Shadows do get created, but
3575         // they are not registered with the CUDA runtime, so they
3576         // can't really be used to access their device-side
3577         // counterparts. It's not clear yet whether it's nvcc's bug or
3578         // a feature, but we've got to do the same for compatibility.
3579         Linkage = llvm::GlobalValue::InternalLinkage;
3580     }
3581   }
3582 
3583   GV->setInitializer(Init);
3584   if (emitter) emitter->finalize(GV);
3585 
3586   // If it is safe to mark the global 'constant', do so now.
3587   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3588                   isTypeConstant(D->getType(), true));
3589 
3590   // If it is in a read-only section, mark it 'constant'.
3591   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3592     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3593     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3594       GV->setConstant(true);
3595   }
3596 
3597   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3598 
3599 
3600   // On Darwin, if the normal linkage of a C++ thread_local variable is
3601   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3602   // copies within a linkage unit; otherwise, the backing variable has
3603   // internal linkage and all accesses should just be calls to the
3604   // Itanium-specified entry point, which has the normal linkage of the
3605   // variable. This is to preserve the ability to change the implementation
3606   // behind the scenes.
3607   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3608       Context.getTargetInfo().getTriple().isOSDarwin() &&
3609       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3610       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3611     Linkage = llvm::GlobalValue::InternalLinkage;
3612 
3613   GV->setLinkage(Linkage);
3614   if (D->hasAttr<DLLImportAttr>())
3615     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3616   else if (D->hasAttr<DLLExportAttr>())
3617     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3618   else
3619     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3620 
3621   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3622     // common vars aren't constant even if declared const.
3623     GV->setConstant(false);
3624     // Tentative definition of global variables may be initialized with
3625     // non-zero null pointers. In this case they should have weak linkage
3626     // since common linkage must have zero initializer and must not have
3627     // explicit section therefore cannot have non-zero initial value.
3628     if (!GV->getInitializer()->isNullValue())
3629       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3630   }
3631 
3632   setNonAliasAttributes(D, GV);
3633 
3634   if (D->getTLSKind() && !GV->isThreadLocal()) {
3635     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3636       CXXThreadLocals.push_back(D);
3637     setTLSMode(GV, *D);
3638   }
3639 
3640   maybeSetTrivialComdat(*D, *GV);
3641 
3642   // Emit the initializer function if necessary.
3643   if (NeedsGlobalCtor || NeedsGlobalDtor)
3644     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3645 
3646   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3647 
3648   // Emit global variable debug information.
3649   if (CGDebugInfo *DI = getModuleDebugInfo())
3650     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3651       DI->EmitGlobalVariable(GV, D);
3652 }
3653 
3654 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3655                                       CodeGenModule &CGM, const VarDecl *D,
3656                                       bool NoCommon) {
3657   // Don't give variables common linkage if -fno-common was specified unless it
3658   // was overridden by a NoCommon attribute.
3659   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3660     return true;
3661 
3662   // C11 6.9.2/2:
3663   //   A declaration of an identifier for an object that has file scope without
3664   //   an initializer, and without a storage-class specifier or with the
3665   //   storage-class specifier static, constitutes a tentative definition.
3666   if (D->getInit() || D->hasExternalStorage())
3667     return true;
3668 
3669   // A variable cannot be both common and exist in a section.
3670   if (D->hasAttr<SectionAttr>())
3671     return true;
3672 
3673   // A variable cannot be both common and exist in a section.
3674   // We don't try to determine which is the right section in the front-end.
3675   // If no specialized section name is applicable, it will resort to default.
3676   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3677       D->hasAttr<PragmaClangDataSectionAttr>() ||
3678       D->hasAttr<PragmaClangRodataSectionAttr>())
3679     return true;
3680 
3681   // Thread local vars aren't considered common linkage.
3682   if (D->getTLSKind())
3683     return true;
3684 
3685   // Tentative definitions marked with WeakImportAttr are true definitions.
3686   if (D->hasAttr<WeakImportAttr>())
3687     return true;
3688 
3689   // A variable cannot be both common and exist in a comdat.
3690   if (shouldBeInCOMDAT(CGM, *D))
3691     return true;
3692 
3693   // Declarations with a required alignment do not have common linkage in MSVC
3694   // mode.
3695   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3696     if (D->hasAttr<AlignedAttr>())
3697       return true;
3698     QualType VarType = D->getType();
3699     if (Context.isAlignmentRequired(VarType))
3700       return true;
3701 
3702     if (const auto *RT = VarType->getAs<RecordType>()) {
3703       const RecordDecl *RD = RT->getDecl();
3704       for (const FieldDecl *FD : RD->fields()) {
3705         if (FD->isBitField())
3706           continue;
3707         if (FD->hasAttr<AlignedAttr>())
3708           return true;
3709         if (Context.isAlignmentRequired(FD->getType()))
3710           return true;
3711       }
3712     }
3713   }
3714 
3715   return false;
3716 }
3717 
3718 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3719     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3720   if (Linkage == GVA_Internal)
3721     return llvm::Function::InternalLinkage;
3722 
3723   if (D->hasAttr<WeakAttr>()) {
3724     if (IsConstantVariable)
3725       return llvm::GlobalVariable::WeakODRLinkage;
3726     else
3727       return llvm::GlobalVariable::WeakAnyLinkage;
3728   }
3729 
3730   if (const auto *FD = D->getAsFunction())
3731     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3732       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3733 
3734   // We are guaranteed to have a strong definition somewhere else,
3735   // so we can use available_externally linkage.
3736   if (Linkage == GVA_AvailableExternally)
3737     return llvm::GlobalValue::AvailableExternallyLinkage;
3738 
3739   // Note that Apple's kernel linker doesn't support symbol
3740   // coalescing, so we need to avoid linkonce and weak linkages there.
3741   // Normally, this means we just map to internal, but for explicit
3742   // instantiations we'll map to external.
3743 
3744   // In C++, the compiler has to emit a definition in every translation unit
3745   // that references the function.  We should use linkonce_odr because
3746   // a) if all references in this translation unit are optimized away, we
3747   // don't need to codegen it.  b) if the function persists, it needs to be
3748   // merged with other definitions. c) C++ has the ODR, so we know the
3749   // definition is dependable.
3750   if (Linkage == GVA_DiscardableODR)
3751     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3752                                             : llvm::Function::InternalLinkage;
3753 
3754   // An explicit instantiation of a template has weak linkage, since
3755   // explicit instantiations can occur in multiple translation units
3756   // and must all be equivalent. However, we are not allowed to
3757   // throw away these explicit instantiations.
3758   //
3759   // We don't currently support CUDA device code spread out across multiple TUs,
3760   // so say that CUDA templates are either external (for kernels) or internal.
3761   // This lets llvm perform aggressive inter-procedural optimizations.
3762   if (Linkage == GVA_StrongODR) {
3763     if (Context.getLangOpts().AppleKext)
3764       return llvm::Function::ExternalLinkage;
3765     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3766       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3767                                           : llvm::Function::InternalLinkage;
3768     return llvm::Function::WeakODRLinkage;
3769   }
3770 
3771   // C++ doesn't have tentative definitions and thus cannot have common
3772   // linkage.
3773   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3774       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3775                                  CodeGenOpts.NoCommon))
3776     return llvm::GlobalVariable::CommonLinkage;
3777 
3778   // selectany symbols are externally visible, so use weak instead of
3779   // linkonce.  MSVC optimizes away references to const selectany globals, so
3780   // all definitions should be the same and ODR linkage should be used.
3781   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3782   if (D->hasAttr<SelectAnyAttr>())
3783     return llvm::GlobalVariable::WeakODRLinkage;
3784 
3785   // Otherwise, we have strong external linkage.
3786   assert(Linkage == GVA_StrongExternal);
3787   return llvm::GlobalVariable::ExternalLinkage;
3788 }
3789 
3790 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3791     const VarDecl *VD, bool IsConstant) {
3792   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3793   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3794 }
3795 
3796 /// Replace the uses of a function that was declared with a non-proto type.
3797 /// We want to silently drop extra arguments from call sites
3798 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3799                                           llvm::Function *newFn) {
3800   // Fast path.
3801   if (old->use_empty()) return;
3802 
3803   llvm::Type *newRetTy = newFn->getReturnType();
3804   SmallVector<llvm::Value*, 4> newArgs;
3805   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3806 
3807   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3808          ui != ue; ) {
3809     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3810     llvm::User *user = use->getUser();
3811 
3812     // Recognize and replace uses of bitcasts.  Most calls to
3813     // unprototyped functions will use bitcasts.
3814     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3815       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3816         replaceUsesOfNonProtoConstant(bitcast, newFn);
3817       continue;
3818     }
3819 
3820     // Recognize calls to the function.
3821     llvm::CallSite callSite(user);
3822     if (!callSite) continue;
3823     if (!callSite.isCallee(&*use)) continue;
3824 
3825     // If the return types don't match exactly, then we can't
3826     // transform this call unless it's dead.
3827     if (callSite->getType() != newRetTy && !callSite->use_empty())
3828       continue;
3829 
3830     // Get the call site's attribute list.
3831     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3832     llvm::AttributeList oldAttrs = callSite.getAttributes();
3833 
3834     // If the function was passed too few arguments, don't transform.
3835     unsigned newNumArgs = newFn->arg_size();
3836     if (callSite.arg_size() < newNumArgs) continue;
3837 
3838     // If extra arguments were passed, we silently drop them.
3839     // If any of the types mismatch, we don't transform.
3840     unsigned argNo = 0;
3841     bool dontTransform = false;
3842     for (llvm::Argument &A : newFn->args()) {
3843       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3844         dontTransform = true;
3845         break;
3846       }
3847 
3848       // Add any parameter attributes.
3849       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3850       argNo++;
3851     }
3852     if (dontTransform)
3853       continue;
3854 
3855     // Okay, we can transform this.  Create the new call instruction and copy
3856     // over the required information.
3857     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3858 
3859     // Copy over any operand bundles.
3860     callSite.getOperandBundlesAsDefs(newBundles);
3861 
3862     llvm::CallSite newCall;
3863     if (callSite.isCall()) {
3864       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3865                                        callSite.getInstruction());
3866     } else {
3867       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3868       newCall = llvm::InvokeInst::Create(newFn,
3869                                          oldInvoke->getNormalDest(),
3870                                          oldInvoke->getUnwindDest(),
3871                                          newArgs, newBundles, "",
3872                                          callSite.getInstruction());
3873     }
3874     newArgs.clear(); // for the next iteration
3875 
3876     if (!newCall->getType()->isVoidTy())
3877       newCall->takeName(callSite.getInstruction());
3878     newCall.setAttributes(llvm::AttributeList::get(
3879         newFn->getContext(), oldAttrs.getFnAttributes(),
3880         oldAttrs.getRetAttributes(), newArgAttrs));
3881     newCall.setCallingConv(callSite.getCallingConv());
3882 
3883     // Finally, remove the old call, replacing any uses with the new one.
3884     if (!callSite->use_empty())
3885       callSite->replaceAllUsesWith(newCall.getInstruction());
3886 
3887     // Copy debug location attached to CI.
3888     if (callSite->getDebugLoc())
3889       newCall->setDebugLoc(callSite->getDebugLoc());
3890 
3891     callSite->eraseFromParent();
3892   }
3893 }
3894 
3895 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3896 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3897 /// existing call uses of the old function in the module, this adjusts them to
3898 /// call the new function directly.
3899 ///
3900 /// This is not just a cleanup: the always_inline pass requires direct calls to
3901 /// functions to be able to inline them.  If there is a bitcast in the way, it
3902 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3903 /// run at -O0.
3904 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3905                                                       llvm::Function *NewFn) {
3906   // If we're redefining a global as a function, don't transform it.
3907   if (!isa<llvm::Function>(Old)) return;
3908 
3909   replaceUsesOfNonProtoConstant(Old, NewFn);
3910 }
3911 
3912 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3913   auto DK = VD->isThisDeclarationADefinition();
3914   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3915     return;
3916 
3917   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3918   // If we have a definition, this might be a deferred decl. If the
3919   // instantiation is explicit, make sure we emit it at the end.
3920   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3921     GetAddrOfGlobalVar(VD);
3922 
3923   EmitTopLevelDecl(VD);
3924 }
3925 
3926 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3927                                                  llvm::GlobalValue *GV) {
3928   const auto *D = cast<FunctionDecl>(GD.getDecl());
3929 
3930   // Compute the function info and LLVM type.
3931   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3932   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3933 
3934   // Get or create the prototype for the function.
3935   if (!GV || (GV->getType()->getElementType() != Ty))
3936     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3937                                                    /*DontDefer=*/true,
3938                                                    ForDefinition));
3939 
3940   // Already emitted.
3941   if (!GV->isDeclaration())
3942     return;
3943 
3944   // We need to set linkage and visibility on the function before
3945   // generating code for it because various parts of IR generation
3946   // want to propagate this information down (e.g. to local static
3947   // declarations).
3948   auto *Fn = cast<llvm::Function>(GV);
3949   setFunctionLinkage(GD, Fn);
3950 
3951   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3952   setGVProperties(Fn, GD);
3953 
3954   MaybeHandleStaticInExternC(D, Fn);
3955 
3956 
3957   maybeSetTrivialComdat(*D, *Fn);
3958 
3959   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3960 
3961   setNonAliasAttributes(GD, Fn);
3962   SetLLVMFunctionAttributesForDefinition(D, Fn);
3963 
3964   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3965     AddGlobalCtor(Fn, CA->getPriority());
3966   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3967     AddGlobalDtor(Fn, DA->getPriority());
3968   if (D->hasAttr<AnnotateAttr>())
3969     AddGlobalAnnotations(D, Fn);
3970 
3971   if (D->isCPUSpecificMultiVersion()) {
3972     auto *Spec = D->getAttr<CPUSpecificAttr>();
3973     // If there is another specific version we need to emit, do so here.
3974     if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) {
3975       ++Spec->ActiveArgIndex;
3976       EmitGlobalFunctionDefinition(GD, nullptr);
3977     }
3978   }
3979 }
3980 
3981 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3982   const auto *D = cast<ValueDecl>(GD.getDecl());
3983   const AliasAttr *AA = D->getAttr<AliasAttr>();
3984   assert(AA && "Not an alias?");
3985 
3986   StringRef MangledName = getMangledName(GD);
3987 
3988   if (AA->getAliasee() == MangledName) {
3989     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3990     return;
3991   }
3992 
3993   // If there is a definition in the module, then it wins over the alias.
3994   // This is dubious, but allow it to be safe.  Just ignore the alias.
3995   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3996   if (Entry && !Entry->isDeclaration())
3997     return;
3998 
3999   Aliases.push_back(GD);
4000 
4001   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4002 
4003   // Create a reference to the named value.  This ensures that it is emitted
4004   // if a deferred decl.
4005   llvm::Constant *Aliasee;
4006   if (isa<llvm::FunctionType>(DeclTy))
4007     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4008                                       /*ForVTable=*/false);
4009   else
4010     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4011                                     llvm::PointerType::getUnqual(DeclTy),
4012                                     /*D=*/nullptr);
4013 
4014   // Create the new alias itself, but don't set a name yet.
4015   auto *GA = llvm::GlobalAlias::create(
4016       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4017 
4018   if (Entry) {
4019     if (GA->getAliasee() == Entry) {
4020       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4021       return;
4022     }
4023 
4024     assert(Entry->isDeclaration());
4025 
4026     // If there is a declaration in the module, then we had an extern followed
4027     // by the alias, as in:
4028     //   extern int test6();
4029     //   ...
4030     //   int test6() __attribute__((alias("test7")));
4031     //
4032     // Remove it and replace uses of it with the alias.
4033     GA->takeName(Entry);
4034 
4035     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4036                                                           Entry->getType()));
4037     Entry->eraseFromParent();
4038   } else {
4039     GA->setName(MangledName);
4040   }
4041 
4042   // Set attributes which are particular to an alias; this is a
4043   // specialization of the attributes which may be set on a global
4044   // variable/function.
4045   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4046       D->isWeakImported()) {
4047     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4048   }
4049 
4050   if (const auto *VD = dyn_cast<VarDecl>(D))
4051     if (VD->getTLSKind())
4052       setTLSMode(GA, *VD);
4053 
4054   SetCommonAttributes(GD, GA);
4055 }
4056 
4057 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4058   const auto *D = cast<ValueDecl>(GD.getDecl());
4059   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4060   assert(IFA && "Not an ifunc?");
4061 
4062   StringRef MangledName = getMangledName(GD);
4063 
4064   if (IFA->getResolver() == MangledName) {
4065     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4066     return;
4067   }
4068 
4069   // Report an error if some definition overrides ifunc.
4070   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4071   if (Entry && !Entry->isDeclaration()) {
4072     GlobalDecl OtherGD;
4073     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4074         DiagnosedConflictingDefinitions.insert(GD).second) {
4075       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4076           << MangledName;
4077       Diags.Report(OtherGD.getDecl()->getLocation(),
4078                    diag::note_previous_definition);
4079     }
4080     return;
4081   }
4082 
4083   Aliases.push_back(GD);
4084 
4085   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4086   llvm::Constant *Resolver =
4087       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4088                               /*ForVTable=*/false);
4089   llvm::GlobalIFunc *GIF =
4090       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4091                                 "", Resolver, &getModule());
4092   if (Entry) {
4093     if (GIF->getResolver() == Entry) {
4094       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4095       return;
4096     }
4097     assert(Entry->isDeclaration());
4098 
4099     // If there is a declaration in the module, then we had an extern followed
4100     // by the ifunc, as in:
4101     //   extern int test();
4102     //   ...
4103     //   int test() __attribute__((ifunc("resolver")));
4104     //
4105     // Remove it and replace uses of it with the ifunc.
4106     GIF->takeName(Entry);
4107 
4108     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4109                                                           Entry->getType()));
4110     Entry->eraseFromParent();
4111   } else
4112     GIF->setName(MangledName);
4113 
4114   SetCommonAttributes(GD, GIF);
4115 }
4116 
4117 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4118                                             ArrayRef<llvm::Type*> Tys) {
4119   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4120                                          Tys);
4121 }
4122 
4123 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4124 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4125                          const StringLiteral *Literal, bool TargetIsLSB,
4126                          bool &IsUTF16, unsigned &StringLength) {
4127   StringRef String = Literal->getString();
4128   unsigned NumBytes = String.size();
4129 
4130   // Check for simple case.
4131   if (!Literal->containsNonAsciiOrNull()) {
4132     StringLength = NumBytes;
4133     return *Map.insert(std::make_pair(String, nullptr)).first;
4134   }
4135 
4136   // Otherwise, convert the UTF8 literals into a string of shorts.
4137   IsUTF16 = true;
4138 
4139   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4140   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4141   llvm::UTF16 *ToPtr = &ToBuf[0];
4142 
4143   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4144                                  ToPtr + NumBytes, llvm::strictConversion);
4145 
4146   // ConvertUTF8toUTF16 returns the length in ToPtr.
4147   StringLength = ToPtr - &ToBuf[0];
4148 
4149   // Add an explicit null.
4150   *ToPtr = 0;
4151   return *Map.insert(std::make_pair(
4152                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4153                                    (StringLength + 1) * 2),
4154                          nullptr)).first;
4155 }
4156 
4157 ConstantAddress
4158 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4159   unsigned StringLength = 0;
4160   bool isUTF16 = false;
4161   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4162       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4163                                getDataLayout().isLittleEndian(), isUTF16,
4164                                StringLength);
4165 
4166   if (auto *C = Entry.second)
4167     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4168 
4169   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4170   llvm::Constant *Zeros[] = { Zero, Zero };
4171 
4172   const ASTContext &Context = getContext();
4173   const llvm::Triple &Triple = getTriple();
4174 
4175   const auto CFRuntime = getLangOpts().CFRuntime;
4176   const bool IsSwiftABI =
4177       static_cast<unsigned>(CFRuntime) >=
4178       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4179   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4180 
4181   // If we don't already have it, get __CFConstantStringClassReference.
4182   if (!CFConstantStringClassRef) {
4183     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4184     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4185     Ty = llvm::ArrayType::get(Ty, 0);
4186 
4187     switch (CFRuntime) {
4188     default: break;
4189     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4190     case LangOptions::CoreFoundationABI::Swift5_0:
4191       CFConstantStringClassName =
4192           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4193                               : "$s10Foundation19_NSCFConstantStringCN";
4194       Ty = IntPtrTy;
4195       break;
4196     case LangOptions::CoreFoundationABI::Swift4_2:
4197       CFConstantStringClassName =
4198           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4199                               : "$S10Foundation19_NSCFConstantStringCN";
4200       Ty = IntPtrTy;
4201       break;
4202     case LangOptions::CoreFoundationABI::Swift4_1:
4203       CFConstantStringClassName =
4204           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4205                               : "__T010Foundation19_NSCFConstantStringCN";
4206       Ty = IntPtrTy;
4207       break;
4208     }
4209 
4210     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4211 
4212     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4213       llvm::GlobalValue *GV = nullptr;
4214 
4215       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4216         IdentifierInfo &II = Context.Idents.get(GV->getName());
4217         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4218         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4219 
4220         const VarDecl *VD = nullptr;
4221         for (const auto &Result : DC->lookup(&II))
4222           if ((VD = dyn_cast<VarDecl>(Result)))
4223             break;
4224 
4225         if (Triple.isOSBinFormatELF()) {
4226           if (!VD)
4227             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4228         } else {
4229           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4230           if (!VD || !VD->hasAttr<DLLExportAttr>())
4231             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4232           else
4233             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4234         }
4235 
4236         setDSOLocal(GV);
4237       }
4238     }
4239 
4240     // Decay array -> ptr
4241     CFConstantStringClassRef =
4242         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4243                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4244   }
4245 
4246   QualType CFTy = Context.getCFConstantStringType();
4247 
4248   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4249 
4250   ConstantInitBuilder Builder(*this);
4251   auto Fields = Builder.beginStruct(STy);
4252 
4253   // Class pointer.
4254   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4255 
4256   // Flags.
4257   if (IsSwiftABI) {
4258     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4259     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4260   } else {
4261     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4262   }
4263 
4264   // String pointer.
4265   llvm::Constant *C = nullptr;
4266   if (isUTF16) {
4267     auto Arr = llvm::makeArrayRef(
4268         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4269         Entry.first().size() / 2);
4270     C = llvm::ConstantDataArray::get(VMContext, Arr);
4271   } else {
4272     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4273   }
4274 
4275   // Note: -fwritable-strings doesn't make the backing store strings of
4276   // CFStrings writable. (See <rdar://problem/10657500>)
4277   auto *GV =
4278       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4279                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4280   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4281   // Don't enforce the target's minimum global alignment, since the only use
4282   // of the string is via this class initializer.
4283   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4284                             : Context.getTypeAlignInChars(Context.CharTy);
4285   GV->setAlignment(Align.getQuantity());
4286 
4287   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4288   // Without it LLVM can merge the string with a non unnamed_addr one during
4289   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4290   if (Triple.isOSBinFormatMachO())
4291     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4292                            : "__TEXT,__cstring,cstring_literals");
4293   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4294   // the static linker to adjust permissions to read-only later on.
4295   else if (Triple.isOSBinFormatELF())
4296     GV->setSection(".rodata");
4297 
4298   // String.
4299   llvm::Constant *Str =
4300       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4301 
4302   if (isUTF16)
4303     // Cast the UTF16 string to the correct type.
4304     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4305   Fields.add(Str);
4306 
4307   // String length.
4308   llvm::IntegerType *LengthTy =
4309       llvm::IntegerType::get(getModule().getContext(),
4310                              Context.getTargetInfo().getLongWidth());
4311   if (IsSwiftABI) {
4312     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4313         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4314       LengthTy = Int32Ty;
4315     else
4316       LengthTy = IntPtrTy;
4317   }
4318   Fields.addInt(LengthTy, StringLength);
4319 
4320   CharUnits Alignment = getPointerAlign();
4321 
4322   // The struct.
4323   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4324                                     /*isConstant=*/false,
4325                                     llvm::GlobalVariable::PrivateLinkage);
4326   switch (Triple.getObjectFormat()) {
4327   case llvm::Triple::UnknownObjectFormat:
4328     llvm_unreachable("unknown file format");
4329   case llvm::Triple::COFF:
4330   case llvm::Triple::ELF:
4331   case llvm::Triple::Wasm:
4332     GV->setSection("cfstring");
4333     break;
4334   case llvm::Triple::MachO:
4335     GV->setSection("__DATA,__cfstring");
4336     break;
4337   }
4338   Entry.second = GV;
4339 
4340   return ConstantAddress(GV, Alignment);
4341 }
4342 
4343 bool CodeGenModule::getExpressionLocationsEnabled() const {
4344   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4345 }
4346 
4347 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4348   if (ObjCFastEnumerationStateType.isNull()) {
4349     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4350     D->startDefinition();
4351 
4352     QualType FieldTypes[] = {
4353       Context.UnsignedLongTy,
4354       Context.getPointerType(Context.getObjCIdType()),
4355       Context.getPointerType(Context.UnsignedLongTy),
4356       Context.getConstantArrayType(Context.UnsignedLongTy,
4357                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4358     };
4359 
4360     for (size_t i = 0; i < 4; ++i) {
4361       FieldDecl *Field = FieldDecl::Create(Context,
4362                                            D,
4363                                            SourceLocation(),
4364                                            SourceLocation(), nullptr,
4365                                            FieldTypes[i], /*TInfo=*/nullptr,
4366                                            /*BitWidth=*/nullptr,
4367                                            /*Mutable=*/false,
4368                                            ICIS_NoInit);
4369       Field->setAccess(AS_public);
4370       D->addDecl(Field);
4371     }
4372 
4373     D->completeDefinition();
4374     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4375   }
4376 
4377   return ObjCFastEnumerationStateType;
4378 }
4379 
4380 llvm::Constant *
4381 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4382   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4383 
4384   // Don't emit it as the address of the string, emit the string data itself
4385   // as an inline array.
4386   if (E->getCharByteWidth() == 1) {
4387     SmallString<64> Str(E->getString());
4388 
4389     // Resize the string to the right size, which is indicated by its type.
4390     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4391     Str.resize(CAT->getSize().getZExtValue());
4392     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4393   }
4394 
4395   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4396   llvm::Type *ElemTy = AType->getElementType();
4397   unsigned NumElements = AType->getNumElements();
4398 
4399   // Wide strings have either 2-byte or 4-byte elements.
4400   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4401     SmallVector<uint16_t, 32> Elements;
4402     Elements.reserve(NumElements);
4403 
4404     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4405       Elements.push_back(E->getCodeUnit(i));
4406     Elements.resize(NumElements);
4407     return llvm::ConstantDataArray::get(VMContext, Elements);
4408   }
4409 
4410   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4411   SmallVector<uint32_t, 32> Elements;
4412   Elements.reserve(NumElements);
4413 
4414   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4415     Elements.push_back(E->getCodeUnit(i));
4416   Elements.resize(NumElements);
4417   return llvm::ConstantDataArray::get(VMContext, Elements);
4418 }
4419 
4420 static llvm::GlobalVariable *
4421 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4422                       CodeGenModule &CGM, StringRef GlobalName,
4423                       CharUnits Alignment) {
4424   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4425       CGM.getStringLiteralAddressSpace());
4426 
4427   llvm::Module &M = CGM.getModule();
4428   // Create a global variable for this string
4429   auto *GV = new llvm::GlobalVariable(
4430       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4431       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4432   GV->setAlignment(Alignment.getQuantity());
4433   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4434   if (GV->isWeakForLinker()) {
4435     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4436     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4437   }
4438   CGM.setDSOLocal(GV);
4439 
4440   return GV;
4441 }
4442 
4443 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4444 /// constant array for the given string literal.
4445 ConstantAddress
4446 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4447                                                   StringRef Name) {
4448   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4449 
4450   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4451   llvm::GlobalVariable **Entry = nullptr;
4452   if (!LangOpts.WritableStrings) {
4453     Entry = &ConstantStringMap[C];
4454     if (auto GV = *Entry) {
4455       if (Alignment.getQuantity() > GV->getAlignment())
4456         GV->setAlignment(Alignment.getQuantity());
4457       return ConstantAddress(GV, Alignment);
4458     }
4459   }
4460 
4461   SmallString<256> MangledNameBuffer;
4462   StringRef GlobalVariableName;
4463   llvm::GlobalValue::LinkageTypes LT;
4464 
4465   // Mangle the string literal if that's how the ABI merges duplicate strings.
4466   // Don't do it if they are writable, since we don't want writes in one TU to
4467   // affect strings in another.
4468   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4469       !LangOpts.WritableStrings) {
4470     llvm::raw_svector_ostream Out(MangledNameBuffer);
4471     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4472     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4473     GlobalVariableName = MangledNameBuffer;
4474   } else {
4475     LT = llvm::GlobalValue::PrivateLinkage;
4476     GlobalVariableName = Name;
4477   }
4478 
4479   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4480   if (Entry)
4481     *Entry = GV;
4482 
4483   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4484                                   QualType());
4485 
4486   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4487                          Alignment);
4488 }
4489 
4490 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4491 /// array for the given ObjCEncodeExpr node.
4492 ConstantAddress
4493 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4494   std::string Str;
4495   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4496 
4497   return GetAddrOfConstantCString(Str);
4498 }
4499 
4500 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4501 /// the literal and a terminating '\0' character.
4502 /// The result has pointer to array type.
4503 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4504     const std::string &Str, const char *GlobalName) {
4505   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4506   CharUnits Alignment =
4507     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4508 
4509   llvm::Constant *C =
4510       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4511 
4512   // Don't share any string literals if strings aren't constant.
4513   llvm::GlobalVariable **Entry = nullptr;
4514   if (!LangOpts.WritableStrings) {
4515     Entry = &ConstantStringMap[C];
4516     if (auto GV = *Entry) {
4517       if (Alignment.getQuantity() > GV->getAlignment())
4518         GV->setAlignment(Alignment.getQuantity());
4519       return ConstantAddress(GV, Alignment);
4520     }
4521   }
4522 
4523   // Get the default prefix if a name wasn't specified.
4524   if (!GlobalName)
4525     GlobalName = ".str";
4526   // Create a global variable for this.
4527   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4528                                   GlobalName, Alignment);
4529   if (Entry)
4530     *Entry = GV;
4531 
4532   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4533                          Alignment);
4534 }
4535 
4536 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4537     const MaterializeTemporaryExpr *E, const Expr *Init) {
4538   assert((E->getStorageDuration() == SD_Static ||
4539           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4540   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4541 
4542   // If we're not materializing a subobject of the temporary, keep the
4543   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4544   QualType MaterializedType = Init->getType();
4545   if (Init == E->GetTemporaryExpr())
4546     MaterializedType = E->getType();
4547 
4548   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4549 
4550   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4551     return ConstantAddress(Slot, Align);
4552 
4553   // FIXME: If an externally-visible declaration extends multiple temporaries,
4554   // we need to give each temporary the same name in every translation unit (and
4555   // we also need to make the temporaries externally-visible).
4556   SmallString<256> Name;
4557   llvm::raw_svector_ostream Out(Name);
4558   getCXXABI().getMangleContext().mangleReferenceTemporary(
4559       VD, E->getManglingNumber(), Out);
4560 
4561   APValue *Value = nullptr;
4562   if (E->getStorageDuration() == SD_Static) {
4563     // We might have a cached constant initializer for this temporary. Note
4564     // that this might have a different value from the value computed by
4565     // evaluating the initializer if the surrounding constant expression
4566     // modifies the temporary.
4567     Value = getContext().getMaterializedTemporaryValue(E, false);
4568     if (Value && Value->isUninit())
4569       Value = nullptr;
4570   }
4571 
4572   // Try evaluating it now, it might have a constant initializer.
4573   Expr::EvalResult EvalResult;
4574   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4575       !EvalResult.hasSideEffects())
4576     Value = &EvalResult.Val;
4577 
4578   LangAS AddrSpace =
4579       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4580 
4581   Optional<ConstantEmitter> emitter;
4582   llvm::Constant *InitialValue = nullptr;
4583   bool Constant = false;
4584   llvm::Type *Type;
4585   if (Value) {
4586     // The temporary has a constant initializer, use it.
4587     emitter.emplace(*this);
4588     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4589                                                MaterializedType);
4590     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4591     Type = InitialValue->getType();
4592   } else {
4593     // No initializer, the initialization will be provided when we
4594     // initialize the declaration which performed lifetime extension.
4595     Type = getTypes().ConvertTypeForMem(MaterializedType);
4596   }
4597 
4598   // Create a global variable for this lifetime-extended temporary.
4599   llvm::GlobalValue::LinkageTypes Linkage =
4600       getLLVMLinkageVarDefinition(VD, Constant);
4601   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4602     const VarDecl *InitVD;
4603     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4604         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4605       // Temporaries defined inside a class get linkonce_odr linkage because the
4606       // class can be defined in multiple translation units.
4607       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4608     } else {
4609       // There is no need for this temporary to have external linkage if the
4610       // VarDecl has external linkage.
4611       Linkage = llvm::GlobalVariable::InternalLinkage;
4612     }
4613   }
4614   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4615   auto *GV = new llvm::GlobalVariable(
4616       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4617       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4618   if (emitter) emitter->finalize(GV);
4619   setGVProperties(GV, VD);
4620   GV->setAlignment(Align.getQuantity());
4621   if (supportsCOMDAT() && GV->isWeakForLinker())
4622     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4623   if (VD->getTLSKind())
4624     setTLSMode(GV, *VD);
4625   llvm::Constant *CV = GV;
4626   if (AddrSpace != LangAS::Default)
4627     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4628         *this, GV, AddrSpace, LangAS::Default,
4629         Type->getPointerTo(
4630             getContext().getTargetAddressSpace(LangAS::Default)));
4631   MaterializedGlobalTemporaryMap[E] = CV;
4632   return ConstantAddress(CV, Align);
4633 }
4634 
4635 /// EmitObjCPropertyImplementations - Emit information for synthesized
4636 /// properties for an implementation.
4637 void CodeGenModule::EmitObjCPropertyImplementations(const
4638                                                     ObjCImplementationDecl *D) {
4639   for (const auto *PID : D->property_impls()) {
4640     // Dynamic is just for type-checking.
4641     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4642       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4643 
4644       // Determine which methods need to be implemented, some may have
4645       // been overridden. Note that ::isPropertyAccessor is not the method
4646       // we want, that just indicates if the decl came from a
4647       // property. What we want to know is if the method is defined in
4648       // this implementation.
4649       if (!D->getInstanceMethod(PD->getGetterName()))
4650         CodeGenFunction(*this).GenerateObjCGetter(
4651                                  const_cast<ObjCImplementationDecl *>(D), PID);
4652       if (!PD->isReadOnly() &&
4653           !D->getInstanceMethod(PD->getSetterName()))
4654         CodeGenFunction(*this).GenerateObjCSetter(
4655                                  const_cast<ObjCImplementationDecl *>(D), PID);
4656     }
4657   }
4658 }
4659 
4660 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4661   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4662   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4663        ivar; ivar = ivar->getNextIvar())
4664     if (ivar->getType().isDestructedType())
4665       return true;
4666 
4667   return false;
4668 }
4669 
4670 static bool AllTrivialInitializers(CodeGenModule &CGM,
4671                                    ObjCImplementationDecl *D) {
4672   CodeGenFunction CGF(CGM);
4673   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4674        E = D->init_end(); B != E; ++B) {
4675     CXXCtorInitializer *CtorInitExp = *B;
4676     Expr *Init = CtorInitExp->getInit();
4677     if (!CGF.isTrivialInitializer(Init))
4678       return false;
4679   }
4680   return true;
4681 }
4682 
4683 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4684 /// for an implementation.
4685 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4686   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4687   if (needsDestructMethod(D)) {
4688     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4689     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4690     ObjCMethodDecl *DTORMethod =
4691       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4692                              cxxSelector, getContext().VoidTy, nullptr, D,
4693                              /*isInstance=*/true, /*isVariadic=*/false,
4694                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4695                              /*isDefined=*/false, ObjCMethodDecl::Required);
4696     D->addInstanceMethod(DTORMethod);
4697     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4698     D->setHasDestructors(true);
4699   }
4700 
4701   // If the implementation doesn't have any ivar initializers, we don't need
4702   // a .cxx_construct.
4703   if (D->getNumIvarInitializers() == 0 ||
4704       AllTrivialInitializers(*this, D))
4705     return;
4706 
4707   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4708   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4709   // The constructor returns 'self'.
4710   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4711                                                 D->getLocation(),
4712                                                 D->getLocation(),
4713                                                 cxxSelector,
4714                                                 getContext().getObjCIdType(),
4715                                                 nullptr, D, /*isInstance=*/true,
4716                                                 /*isVariadic=*/false,
4717                                                 /*isPropertyAccessor=*/true,
4718                                                 /*isImplicitlyDeclared=*/true,
4719                                                 /*isDefined=*/false,
4720                                                 ObjCMethodDecl::Required);
4721   D->addInstanceMethod(CTORMethod);
4722   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4723   D->setHasNonZeroConstructors(true);
4724 }
4725 
4726 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4727 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4728   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4729       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4730     ErrorUnsupported(LSD, "linkage spec");
4731     return;
4732   }
4733 
4734   EmitDeclContext(LSD);
4735 }
4736 
4737 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4738   for (auto *I : DC->decls()) {
4739     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4740     // are themselves considered "top-level", so EmitTopLevelDecl on an
4741     // ObjCImplDecl does not recursively visit them. We need to do that in
4742     // case they're nested inside another construct (LinkageSpecDecl /
4743     // ExportDecl) that does stop them from being considered "top-level".
4744     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4745       for (auto *M : OID->methods())
4746         EmitTopLevelDecl(M);
4747     }
4748 
4749     EmitTopLevelDecl(I);
4750   }
4751 }
4752 
4753 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4754 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4755   // Ignore dependent declarations.
4756   if (D->isTemplated())
4757     return;
4758 
4759   switch (D->getKind()) {
4760   case Decl::CXXConversion:
4761   case Decl::CXXMethod:
4762   case Decl::Function:
4763     EmitGlobal(cast<FunctionDecl>(D));
4764     // Always provide some coverage mapping
4765     // even for the functions that aren't emitted.
4766     AddDeferredUnusedCoverageMapping(D);
4767     break;
4768 
4769   case Decl::CXXDeductionGuide:
4770     // Function-like, but does not result in code emission.
4771     break;
4772 
4773   case Decl::Var:
4774   case Decl::Decomposition:
4775   case Decl::VarTemplateSpecialization:
4776     EmitGlobal(cast<VarDecl>(D));
4777     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4778       for (auto *B : DD->bindings())
4779         if (auto *HD = B->getHoldingVar())
4780           EmitGlobal(HD);
4781     break;
4782 
4783   // Indirect fields from global anonymous structs and unions can be
4784   // ignored; only the actual variable requires IR gen support.
4785   case Decl::IndirectField:
4786     break;
4787 
4788   // C++ Decls
4789   case Decl::Namespace:
4790     EmitDeclContext(cast<NamespaceDecl>(D));
4791     break;
4792   case Decl::ClassTemplateSpecialization: {
4793     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4794     if (DebugInfo &&
4795         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4796         Spec->hasDefinition())
4797       DebugInfo->completeTemplateDefinition(*Spec);
4798   } LLVM_FALLTHROUGH;
4799   case Decl::CXXRecord:
4800     if (DebugInfo) {
4801       if (auto *ES = D->getASTContext().getExternalSource())
4802         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4803           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4804     }
4805     // Emit any static data members, they may be definitions.
4806     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4807       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4808         EmitTopLevelDecl(I);
4809     break;
4810     // No code generation needed.
4811   case Decl::UsingShadow:
4812   case Decl::ClassTemplate:
4813   case Decl::VarTemplate:
4814   case Decl::VarTemplatePartialSpecialization:
4815   case Decl::FunctionTemplate:
4816   case Decl::TypeAliasTemplate:
4817   case Decl::Block:
4818   case Decl::Empty:
4819   case Decl::Binding:
4820     break;
4821   case Decl::Using:          // using X; [C++]
4822     if (CGDebugInfo *DI = getModuleDebugInfo())
4823         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4824     return;
4825   case Decl::NamespaceAlias:
4826     if (CGDebugInfo *DI = getModuleDebugInfo())
4827         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4828     return;
4829   case Decl::UsingDirective: // using namespace X; [C++]
4830     if (CGDebugInfo *DI = getModuleDebugInfo())
4831       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4832     return;
4833   case Decl::CXXConstructor:
4834     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4835     break;
4836   case Decl::CXXDestructor:
4837     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4838     break;
4839 
4840   case Decl::StaticAssert:
4841     // Nothing to do.
4842     break;
4843 
4844   // Objective-C Decls
4845 
4846   // Forward declarations, no (immediate) code generation.
4847   case Decl::ObjCInterface:
4848   case Decl::ObjCCategory:
4849     break;
4850 
4851   case Decl::ObjCProtocol: {
4852     auto *Proto = cast<ObjCProtocolDecl>(D);
4853     if (Proto->isThisDeclarationADefinition())
4854       ObjCRuntime->GenerateProtocol(Proto);
4855     break;
4856   }
4857 
4858   case Decl::ObjCCategoryImpl:
4859     // Categories have properties but don't support synthesize so we
4860     // can ignore them here.
4861     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4862     break;
4863 
4864   case Decl::ObjCImplementation: {
4865     auto *OMD = cast<ObjCImplementationDecl>(D);
4866     EmitObjCPropertyImplementations(OMD);
4867     EmitObjCIvarInitializations(OMD);
4868     ObjCRuntime->GenerateClass(OMD);
4869     // Emit global variable debug information.
4870     if (CGDebugInfo *DI = getModuleDebugInfo())
4871       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4872         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4873             OMD->getClassInterface()), OMD->getLocation());
4874     break;
4875   }
4876   case Decl::ObjCMethod: {
4877     auto *OMD = cast<ObjCMethodDecl>(D);
4878     // If this is not a prototype, emit the body.
4879     if (OMD->getBody())
4880       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4881     break;
4882   }
4883   case Decl::ObjCCompatibleAlias:
4884     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4885     break;
4886 
4887   case Decl::PragmaComment: {
4888     const auto *PCD = cast<PragmaCommentDecl>(D);
4889     switch (PCD->getCommentKind()) {
4890     case PCK_Unknown:
4891       llvm_unreachable("unexpected pragma comment kind");
4892     case PCK_Linker:
4893       AppendLinkerOptions(PCD->getArg());
4894       break;
4895     case PCK_Lib:
4896       if (getTarget().getTriple().isOSBinFormatELF() &&
4897           !getTarget().getTriple().isPS4())
4898         AddELFLibDirective(PCD->getArg());
4899       else
4900         AddDependentLib(PCD->getArg());
4901       break;
4902     case PCK_Compiler:
4903     case PCK_ExeStr:
4904     case PCK_User:
4905       break; // We ignore all of these.
4906     }
4907     break;
4908   }
4909 
4910   case Decl::PragmaDetectMismatch: {
4911     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4912     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4913     break;
4914   }
4915 
4916   case Decl::LinkageSpec:
4917     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4918     break;
4919 
4920   case Decl::FileScopeAsm: {
4921     // File-scope asm is ignored during device-side CUDA compilation.
4922     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4923       break;
4924     // File-scope asm is ignored during device-side OpenMP compilation.
4925     if (LangOpts.OpenMPIsDevice)
4926       break;
4927     auto *AD = cast<FileScopeAsmDecl>(D);
4928     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4929     break;
4930   }
4931 
4932   case Decl::Import: {
4933     auto *Import = cast<ImportDecl>(D);
4934 
4935     // If we've already imported this module, we're done.
4936     if (!ImportedModules.insert(Import->getImportedModule()))
4937       break;
4938 
4939     // Emit debug information for direct imports.
4940     if (!Import->getImportedOwningModule()) {
4941       if (CGDebugInfo *DI = getModuleDebugInfo())
4942         DI->EmitImportDecl(*Import);
4943     }
4944 
4945     // Find all of the submodules and emit the module initializers.
4946     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4947     SmallVector<clang::Module *, 16> Stack;
4948     Visited.insert(Import->getImportedModule());
4949     Stack.push_back(Import->getImportedModule());
4950 
4951     while (!Stack.empty()) {
4952       clang::Module *Mod = Stack.pop_back_val();
4953       if (!EmittedModuleInitializers.insert(Mod).second)
4954         continue;
4955 
4956       for (auto *D : Context.getModuleInitializers(Mod))
4957         EmitTopLevelDecl(D);
4958 
4959       // Visit the submodules of this module.
4960       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4961                                              SubEnd = Mod->submodule_end();
4962            Sub != SubEnd; ++Sub) {
4963         // Skip explicit children; they need to be explicitly imported to emit
4964         // the initializers.
4965         if ((*Sub)->IsExplicit)
4966           continue;
4967 
4968         if (Visited.insert(*Sub).second)
4969           Stack.push_back(*Sub);
4970       }
4971     }
4972     break;
4973   }
4974 
4975   case Decl::Export:
4976     EmitDeclContext(cast<ExportDecl>(D));
4977     break;
4978 
4979   case Decl::OMPThreadPrivate:
4980     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4981     break;
4982 
4983   case Decl::OMPDeclareReduction:
4984     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4985     break;
4986 
4987   case Decl::OMPRequires:
4988     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
4989     break;
4990 
4991   default:
4992     // Make sure we handled everything we should, every other kind is a
4993     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4994     // function. Need to recode Decl::Kind to do that easily.
4995     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4996     break;
4997   }
4998 }
4999 
5000 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5001   // Do we need to generate coverage mapping?
5002   if (!CodeGenOpts.CoverageMapping)
5003     return;
5004   switch (D->getKind()) {
5005   case Decl::CXXConversion:
5006   case Decl::CXXMethod:
5007   case Decl::Function:
5008   case Decl::ObjCMethod:
5009   case Decl::CXXConstructor:
5010   case Decl::CXXDestructor: {
5011     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5012       return;
5013     SourceManager &SM = getContext().getSourceManager();
5014     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5015       return;
5016     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5017     if (I == DeferredEmptyCoverageMappingDecls.end())
5018       DeferredEmptyCoverageMappingDecls[D] = true;
5019     break;
5020   }
5021   default:
5022     break;
5023   };
5024 }
5025 
5026 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5027   // Do we need to generate coverage mapping?
5028   if (!CodeGenOpts.CoverageMapping)
5029     return;
5030   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5031     if (Fn->isTemplateInstantiation())
5032       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5033   }
5034   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5035   if (I == DeferredEmptyCoverageMappingDecls.end())
5036     DeferredEmptyCoverageMappingDecls[D] = false;
5037   else
5038     I->second = false;
5039 }
5040 
5041 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5042   // We call takeVector() here to avoid use-after-free.
5043   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5044   // we deserialize function bodies to emit coverage info for them, and that
5045   // deserializes more declarations. How should we handle that case?
5046   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5047     if (!Entry.second)
5048       continue;
5049     const Decl *D = Entry.first;
5050     switch (D->getKind()) {
5051     case Decl::CXXConversion:
5052     case Decl::CXXMethod:
5053     case Decl::Function:
5054     case Decl::ObjCMethod: {
5055       CodeGenPGO PGO(*this);
5056       GlobalDecl GD(cast<FunctionDecl>(D));
5057       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5058                                   getFunctionLinkage(GD));
5059       break;
5060     }
5061     case Decl::CXXConstructor: {
5062       CodeGenPGO PGO(*this);
5063       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5064       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5065                                   getFunctionLinkage(GD));
5066       break;
5067     }
5068     case Decl::CXXDestructor: {
5069       CodeGenPGO PGO(*this);
5070       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5071       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5072                                   getFunctionLinkage(GD));
5073       break;
5074     }
5075     default:
5076       break;
5077     };
5078   }
5079 }
5080 
5081 /// Turns the given pointer into a constant.
5082 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5083                                           const void *Ptr) {
5084   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5085   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5086   return llvm::ConstantInt::get(i64, PtrInt);
5087 }
5088 
5089 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5090                                    llvm::NamedMDNode *&GlobalMetadata,
5091                                    GlobalDecl D,
5092                                    llvm::GlobalValue *Addr) {
5093   if (!GlobalMetadata)
5094     GlobalMetadata =
5095       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5096 
5097   // TODO: should we report variant information for ctors/dtors?
5098   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5099                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5100                                CGM.getLLVMContext(), D.getDecl()))};
5101   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5102 }
5103 
5104 /// For each function which is declared within an extern "C" region and marked
5105 /// as 'used', but has internal linkage, create an alias from the unmangled
5106 /// name to the mangled name if possible. People expect to be able to refer
5107 /// to such functions with an unmangled name from inline assembly within the
5108 /// same translation unit.
5109 void CodeGenModule::EmitStaticExternCAliases() {
5110   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5111     return;
5112   for (auto &I : StaticExternCValues) {
5113     IdentifierInfo *Name = I.first;
5114     llvm::GlobalValue *Val = I.second;
5115     if (Val && !getModule().getNamedValue(Name->getName()))
5116       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5117   }
5118 }
5119 
5120 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5121                                              GlobalDecl &Result) const {
5122   auto Res = Manglings.find(MangledName);
5123   if (Res == Manglings.end())
5124     return false;
5125   Result = Res->getValue();
5126   return true;
5127 }
5128 
5129 /// Emits metadata nodes associating all the global values in the
5130 /// current module with the Decls they came from.  This is useful for
5131 /// projects using IR gen as a subroutine.
5132 ///
5133 /// Since there's currently no way to associate an MDNode directly
5134 /// with an llvm::GlobalValue, we create a global named metadata
5135 /// with the name 'clang.global.decl.ptrs'.
5136 void CodeGenModule::EmitDeclMetadata() {
5137   llvm::NamedMDNode *GlobalMetadata = nullptr;
5138 
5139   for (auto &I : MangledDeclNames) {
5140     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5141     // Some mangled names don't necessarily have an associated GlobalValue
5142     // in this module, e.g. if we mangled it for DebugInfo.
5143     if (Addr)
5144       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5145   }
5146 }
5147 
5148 /// Emits metadata nodes for all the local variables in the current
5149 /// function.
5150 void CodeGenFunction::EmitDeclMetadata() {
5151   if (LocalDeclMap.empty()) return;
5152 
5153   llvm::LLVMContext &Context = getLLVMContext();
5154 
5155   // Find the unique metadata ID for this name.
5156   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5157 
5158   llvm::NamedMDNode *GlobalMetadata = nullptr;
5159 
5160   for (auto &I : LocalDeclMap) {
5161     const Decl *D = I.first;
5162     llvm::Value *Addr = I.second.getPointer();
5163     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5164       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5165       Alloca->setMetadata(
5166           DeclPtrKind, llvm::MDNode::get(
5167                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5168     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5169       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5170       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5171     }
5172   }
5173 }
5174 
5175 void CodeGenModule::EmitVersionIdentMetadata() {
5176   llvm::NamedMDNode *IdentMetadata =
5177     TheModule.getOrInsertNamedMetadata("llvm.ident");
5178   std::string Version = getClangFullVersion();
5179   llvm::LLVMContext &Ctx = TheModule.getContext();
5180 
5181   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5182   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5183 }
5184 
5185 void CodeGenModule::EmitTargetMetadata() {
5186   // Warning, new MangledDeclNames may be appended within this loop.
5187   // We rely on MapVector insertions adding new elements to the end
5188   // of the container.
5189   // FIXME: Move this loop into the one target that needs it, and only
5190   // loop over those declarations for which we couldn't emit the target
5191   // metadata when we emitted the declaration.
5192   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5193     auto Val = *(MangledDeclNames.begin() + I);
5194     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5195     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5196     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5197   }
5198 }
5199 
5200 void CodeGenModule::EmitCoverageFile() {
5201   if (getCodeGenOpts().CoverageDataFile.empty() &&
5202       getCodeGenOpts().CoverageNotesFile.empty())
5203     return;
5204 
5205   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5206   if (!CUNode)
5207     return;
5208 
5209   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5210   llvm::LLVMContext &Ctx = TheModule.getContext();
5211   auto *CoverageDataFile =
5212       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5213   auto *CoverageNotesFile =
5214       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5215   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5216     llvm::MDNode *CU = CUNode->getOperand(i);
5217     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5218     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5219   }
5220 }
5221 
5222 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5223   // Sema has checked that all uuid strings are of the form
5224   // "12345678-1234-1234-1234-1234567890ab".
5225   assert(Uuid.size() == 36);
5226   for (unsigned i = 0; i < 36; ++i) {
5227     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5228     else                                         assert(isHexDigit(Uuid[i]));
5229   }
5230 
5231   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5232   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5233 
5234   llvm::Constant *Field3[8];
5235   for (unsigned Idx = 0; Idx < 8; ++Idx)
5236     Field3[Idx] = llvm::ConstantInt::get(
5237         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5238 
5239   llvm::Constant *Fields[4] = {
5240     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5241     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5242     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5243     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5244   };
5245 
5246   return llvm::ConstantStruct::getAnon(Fields);
5247 }
5248 
5249 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5250                                                        bool ForEH) {
5251   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5252   // FIXME: should we even be calling this method if RTTI is disabled
5253   // and it's not for EH?
5254   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5255     return llvm::Constant::getNullValue(Int8PtrTy);
5256 
5257   if (ForEH && Ty->isObjCObjectPointerType() &&
5258       LangOpts.ObjCRuntime.isGNUFamily())
5259     return ObjCRuntime->GetEHType(Ty);
5260 
5261   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5262 }
5263 
5264 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5265   // Do not emit threadprivates in simd-only mode.
5266   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5267     return;
5268   for (auto RefExpr : D->varlists()) {
5269     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5270     bool PerformInit =
5271         VD->getAnyInitializer() &&
5272         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5273                                                         /*ForRef=*/false);
5274 
5275     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5276     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5277             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5278       CXXGlobalInits.push_back(InitFunction);
5279   }
5280 }
5281 
5282 llvm::Metadata *
5283 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5284                                             StringRef Suffix) {
5285   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5286   if (InternalId)
5287     return InternalId;
5288 
5289   if (isExternallyVisible(T->getLinkage())) {
5290     std::string OutName;
5291     llvm::raw_string_ostream Out(OutName);
5292     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5293     Out << Suffix;
5294 
5295     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5296   } else {
5297     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5298                                            llvm::ArrayRef<llvm::Metadata *>());
5299   }
5300 
5301   return InternalId;
5302 }
5303 
5304 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5305   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5306 }
5307 
5308 llvm::Metadata *
5309 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5310   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5311 }
5312 
5313 // Generalize pointer types to a void pointer with the qualifiers of the
5314 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5315 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5316 // 'void *'.
5317 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5318   if (!Ty->isPointerType())
5319     return Ty;
5320 
5321   return Ctx.getPointerType(
5322       QualType(Ctx.VoidTy).withCVRQualifiers(
5323           Ty->getPointeeType().getCVRQualifiers()));
5324 }
5325 
5326 // Apply type generalization to a FunctionType's return and argument types
5327 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5328   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5329     SmallVector<QualType, 8> GeneralizedParams;
5330     for (auto &Param : FnType->param_types())
5331       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5332 
5333     return Ctx.getFunctionType(
5334         GeneralizeType(Ctx, FnType->getReturnType()),
5335         GeneralizedParams, FnType->getExtProtoInfo());
5336   }
5337 
5338   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5339     return Ctx.getFunctionNoProtoType(
5340         GeneralizeType(Ctx, FnType->getReturnType()));
5341 
5342   llvm_unreachable("Encountered unknown FunctionType");
5343 }
5344 
5345 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5346   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5347                                       GeneralizedMetadataIdMap, ".generalized");
5348 }
5349 
5350 /// Returns whether this module needs the "all-vtables" type identifier.
5351 bool CodeGenModule::NeedAllVtablesTypeId() const {
5352   // Returns true if at least one of vtable-based CFI checkers is enabled and
5353   // is not in the trapping mode.
5354   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5355            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5356           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5357            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5358           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5359            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5360           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5361            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5362 }
5363 
5364 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5365                                           CharUnits Offset,
5366                                           const CXXRecordDecl *RD) {
5367   llvm::Metadata *MD =
5368       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5369   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5370 
5371   if (CodeGenOpts.SanitizeCfiCrossDso)
5372     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5373       VTable->addTypeMetadata(Offset.getQuantity(),
5374                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5375 
5376   if (NeedAllVtablesTypeId()) {
5377     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5378     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5379   }
5380 }
5381 
5382 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5383   assert(TD != nullptr);
5384   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5385 
5386   ParsedAttr.Features.erase(
5387       llvm::remove_if(ParsedAttr.Features,
5388                       [&](const std::string &Feat) {
5389                         return !Target.isValidFeatureName(
5390                             StringRef{Feat}.substr(1));
5391                       }),
5392       ParsedAttr.Features.end());
5393   return ParsedAttr;
5394 }
5395 
5396 
5397 // Fills in the supplied string map with the set of target features for the
5398 // passed in function.
5399 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5400                                           const FunctionDecl *FD) {
5401   StringRef TargetCPU = Target.getTargetOpts().CPU;
5402   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5403     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5404 
5405     // Make a copy of the features as passed on the command line into the
5406     // beginning of the additional features from the function to override.
5407     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5408                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5409                             Target.getTargetOpts().FeaturesAsWritten.end());
5410 
5411     if (ParsedAttr.Architecture != "" &&
5412         Target.isValidCPUName(ParsedAttr.Architecture))
5413       TargetCPU = ParsedAttr.Architecture;
5414 
5415     // Now populate the feature map, first with the TargetCPU which is either
5416     // the default or a new one from the target attribute string. Then we'll use
5417     // the passed in features (FeaturesAsWritten) along with the new ones from
5418     // the attribute.
5419     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5420                           ParsedAttr.Features);
5421   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5422     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5423     Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(),
5424                                              FeaturesTmp);
5425     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5426     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5427   } else {
5428     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5429                           Target.getTargetOpts().Features);
5430   }
5431 }
5432 
5433 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5434   if (!SanStats)
5435     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5436 
5437   return *SanStats;
5438 }
5439 llvm::Value *
5440 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5441                                                   CodeGenFunction &CGF) {
5442   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5443   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5444   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5445   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5446                                 "__translate_sampler_initializer"),
5447                                 {C});
5448 }
5449