1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Frontend/CodeGenOptions.h" 38 #include "llvm/ADT/APSInt.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/CallingConv.h" 41 #include "llvm/DataLayout.h" 42 #include "llvm/Intrinsics.h" 43 #include "llvm/LLVMContext.h" 44 #include "llvm/Module.h" 45 #include "llvm/Support/CallSite.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Target/Mangler.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::DataLayout &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.SanitizeThread || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 // This is just isGNUFamily(), but we want to force implementors of 139 // new ABIs to decide how best to do this. 140 switch (LangOpts.ObjCRuntime.getKind()) { 141 case ObjCRuntime::GNUstep: 142 case ObjCRuntime::GCC: 143 case ObjCRuntime::ObjFW: 144 ObjCRuntime = CreateGNUObjCRuntime(*this); 145 return; 146 147 case ObjCRuntime::FragileMacOSX: 148 case ObjCRuntime::MacOSX: 149 case ObjCRuntime::iOS: 150 ObjCRuntime = CreateMacObjCRuntime(*this); 151 return; 152 } 153 llvm_unreachable("bad runtime kind"); 154 } 155 156 void CodeGenModule::createOpenCLRuntime() { 157 OpenCLRuntime = new CGOpenCLRuntime(*this); 158 } 159 160 void CodeGenModule::createCUDARuntime() { 161 CUDARuntime = CreateNVCUDARuntime(*this); 162 } 163 164 void CodeGenModule::Release() { 165 EmitDeferred(); 166 EmitCXXGlobalInitFunc(); 167 EmitCXXGlobalDtorFunc(); 168 if (ObjCRuntime) 169 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 170 AddGlobalCtor(ObjCInitFunction); 171 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 172 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 173 EmitGlobalAnnotations(); 174 EmitLLVMUsed(); 175 176 SimplifyPersonality(); 177 178 if (getCodeGenOpts().EmitDeclMetadata) 179 EmitDeclMetadata(); 180 181 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 182 EmitCoverageFile(); 183 184 if (DebugInfo) 185 DebugInfo->finalize(); 186 } 187 188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 189 // Make sure that this type is translated. 190 Types.UpdateCompletedType(TD); 191 } 192 193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 194 if (!TBAA) 195 return 0; 196 return TBAA->getTBAAInfo(QTy); 197 } 198 199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 200 if (!TBAA) 201 return 0; 202 return TBAA->getTBAAInfoForVTablePtr(); 203 } 204 205 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 206 if (!TBAA) 207 return 0; 208 return TBAA->getTBAAStructInfo(QTy); 209 } 210 211 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 212 llvm::MDNode *TBAAInfo) { 213 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 214 } 215 216 bool CodeGenModule::isTargetDarwin() const { 217 return getContext().getTargetInfo().getTriple().isOSDarwin(); 218 } 219 220 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 221 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 222 getDiags().Report(Context.getFullLoc(loc), diagID); 223 } 224 225 /// ErrorUnsupported - Print out an error that codegen doesn't support the 226 /// specified stmt yet. 227 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 228 bool OmitOnError) { 229 if (OmitOnError && getDiags().hasErrorOccurred()) 230 return; 231 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 232 "cannot compile this %0 yet"); 233 std::string Msg = Type; 234 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 235 << Msg << S->getSourceRange(); 236 } 237 238 /// ErrorUnsupported - Print out an error that codegen doesn't support the 239 /// specified decl yet. 240 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 241 bool OmitOnError) { 242 if (OmitOnError && getDiags().hasErrorOccurred()) 243 return; 244 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 245 "cannot compile this %0 yet"); 246 std::string Msg = Type; 247 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 248 } 249 250 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 251 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 252 } 253 254 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 255 const NamedDecl *D) const { 256 // Internal definitions always have default visibility. 257 if (GV->hasLocalLinkage()) { 258 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 259 return; 260 } 261 262 // Set visibility for definitions. 263 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 264 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 265 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 266 } 267 268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 269 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 270 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 271 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 272 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 273 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 274 } 275 276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 277 CodeGenOptions::TLSModel M) { 278 switch (M) { 279 case CodeGenOptions::GeneralDynamicTLSModel: 280 return llvm::GlobalVariable::GeneralDynamicTLSModel; 281 case CodeGenOptions::LocalDynamicTLSModel: 282 return llvm::GlobalVariable::LocalDynamicTLSModel; 283 case CodeGenOptions::InitialExecTLSModel: 284 return llvm::GlobalVariable::InitialExecTLSModel; 285 case CodeGenOptions::LocalExecTLSModel: 286 return llvm::GlobalVariable::LocalExecTLSModel; 287 } 288 llvm_unreachable("Invalid TLS model!"); 289 } 290 291 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 292 const VarDecl &D) const { 293 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 294 295 llvm::GlobalVariable::ThreadLocalMode TLM; 296 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 297 298 // Override the TLS model if it is explicitly specified. 299 if (D.hasAttr<TLSModelAttr>()) { 300 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 301 TLM = GetLLVMTLSModel(Attr->getModel()); 302 } 303 304 GV->setThreadLocalMode(TLM); 305 } 306 307 /// Set the symbol visibility of type information (vtable and RTTI) 308 /// associated with the given type. 309 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 310 const CXXRecordDecl *RD, 311 TypeVisibilityKind TVK) const { 312 setGlobalVisibility(GV, RD); 313 314 if (!CodeGenOpts.HiddenWeakVTables) 315 return; 316 317 // We never want to drop the visibility for RTTI names. 318 if (TVK == TVK_ForRTTIName) 319 return; 320 321 // We want to drop the visibility to hidden for weak type symbols. 322 // This isn't possible if there might be unresolved references 323 // elsewhere that rely on this symbol being visible. 324 325 // This should be kept roughly in sync with setThunkVisibility 326 // in CGVTables.cpp. 327 328 // Preconditions. 329 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 330 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 331 return; 332 333 // Don't override an explicit visibility attribute. 334 if (RD->getExplicitVisibility()) 335 return; 336 337 switch (RD->getTemplateSpecializationKind()) { 338 // We have to disable the optimization if this is an EI definition 339 // because there might be EI declarations in other shared objects. 340 case TSK_ExplicitInstantiationDefinition: 341 case TSK_ExplicitInstantiationDeclaration: 342 return; 343 344 // Every use of a non-template class's type information has to emit it. 345 case TSK_Undeclared: 346 break; 347 348 // In theory, implicit instantiations can ignore the possibility of 349 // an explicit instantiation declaration because there necessarily 350 // must be an EI definition somewhere with default visibility. In 351 // practice, it's possible to have an explicit instantiation for 352 // an arbitrary template class, and linkers aren't necessarily able 353 // to deal with mixed-visibility symbols. 354 case TSK_ExplicitSpecialization: 355 case TSK_ImplicitInstantiation: 356 return; 357 } 358 359 // If there's a key function, there may be translation units 360 // that don't have the key function's definition. But ignore 361 // this if we're emitting RTTI under -fno-rtti. 362 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 363 if (Context.getKeyFunction(RD)) 364 return; 365 } 366 367 // Otherwise, drop the visibility to hidden. 368 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 369 GV->setUnnamedAddr(true); 370 } 371 372 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 373 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 374 375 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 376 if (!Str.empty()) 377 return Str; 378 379 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 380 IdentifierInfo *II = ND->getIdentifier(); 381 assert(II && "Attempt to mangle unnamed decl."); 382 383 Str = II->getName(); 384 return Str; 385 } 386 387 SmallString<256> Buffer; 388 llvm::raw_svector_ostream Out(Buffer); 389 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 390 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 391 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 392 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 393 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 394 getCXXABI().getMangleContext().mangleBlock(BD, Out, 395 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 396 else 397 getCXXABI().getMangleContext().mangleName(ND, Out); 398 399 // Allocate space for the mangled name. 400 Out.flush(); 401 size_t Length = Buffer.size(); 402 char *Name = MangledNamesAllocator.Allocate<char>(Length); 403 std::copy(Buffer.begin(), Buffer.end(), Name); 404 405 Str = StringRef(Name, Length); 406 407 return Str; 408 } 409 410 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 411 const BlockDecl *BD) { 412 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 413 const Decl *D = GD.getDecl(); 414 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 415 if (D == 0) 416 MangleCtx.mangleGlobalBlock(BD, 417 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 418 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 419 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 420 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 421 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 422 else 423 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 424 } 425 426 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 427 return getModule().getNamedValue(Name); 428 } 429 430 /// AddGlobalCtor - Add a function to the list that will be called before 431 /// main() runs. 432 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 433 // FIXME: Type coercion of void()* types. 434 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 435 } 436 437 /// AddGlobalDtor - Add a function to the list that will be called 438 /// when the module is unloaded. 439 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 440 // FIXME: Type coercion of void()* types. 441 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 442 } 443 444 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 445 // Ctor function type is void()*. 446 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 447 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 448 449 // Get the type of a ctor entry, { i32, void ()* }. 450 llvm::StructType *CtorStructTy = 451 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 452 453 // Construct the constructor and destructor arrays. 454 SmallVector<llvm::Constant*, 8> Ctors; 455 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 456 llvm::Constant *S[] = { 457 llvm::ConstantInt::get(Int32Ty, I->second, false), 458 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 459 }; 460 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 461 } 462 463 if (!Ctors.empty()) { 464 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 465 new llvm::GlobalVariable(TheModule, AT, false, 466 llvm::GlobalValue::AppendingLinkage, 467 llvm::ConstantArray::get(AT, Ctors), 468 GlobalName); 469 } 470 } 471 472 llvm::GlobalValue::LinkageTypes 473 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 474 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 475 476 if (Linkage == GVA_Internal) 477 return llvm::Function::InternalLinkage; 478 479 if (D->hasAttr<DLLExportAttr>()) 480 return llvm::Function::DLLExportLinkage; 481 482 if (D->hasAttr<WeakAttr>()) 483 return llvm::Function::WeakAnyLinkage; 484 485 // In C99 mode, 'inline' functions are guaranteed to have a strong 486 // definition somewhere else, so we can use available_externally linkage. 487 if (Linkage == GVA_C99Inline) 488 return llvm::Function::AvailableExternallyLinkage; 489 490 // Note that Apple's kernel linker doesn't support symbol 491 // coalescing, so we need to avoid linkonce and weak linkages there. 492 // Normally, this means we just map to internal, but for explicit 493 // instantiations we'll map to external. 494 495 // In C++, the compiler has to emit a definition in every translation unit 496 // that references the function. We should use linkonce_odr because 497 // a) if all references in this translation unit are optimized away, we 498 // don't need to codegen it. b) if the function persists, it needs to be 499 // merged with other definitions. c) C++ has the ODR, so we know the 500 // definition is dependable. 501 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 502 return !Context.getLangOpts().AppleKext 503 ? llvm::Function::LinkOnceODRLinkage 504 : llvm::Function::InternalLinkage; 505 506 // An explicit instantiation of a template has weak linkage, since 507 // explicit instantiations can occur in multiple translation units 508 // and must all be equivalent. However, we are not allowed to 509 // throw away these explicit instantiations. 510 if (Linkage == GVA_ExplicitTemplateInstantiation) 511 return !Context.getLangOpts().AppleKext 512 ? llvm::Function::WeakODRLinkage 513 : llvm::Function::ExternalLinkage; 514 515 // Otherwise, we have strong external linkage. 516 assert(Linkage == GVA_StrongExternal); 517 return llvm::Function::ExternalLinkage; 518 } 519 520 521 /// SetFunctionDefinitionAttributes - Set attributes for a global. 522 /// 523 /// FIXME: This is currently only done for aliases and functions, but not for 524 /// variables (these details are set in EmitGlobalVarDefinition for variables). 525 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 526 llvm::GlobalValue *GV) { 527 SetCommonAttributes(D, GV); 528 } 529 530 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 531 const CGFunctionInfo &Info, 532 llvm::Function *F) { 533 unsigned CallingConv; 534 AttributeListType AttributeList; 535 ConstructAttributeList(Info, D, AttributeList, CallingConv); 536 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 537 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 538 } 539 540 /// Determines whether the language options require us to model 541 /// unwind exceptions. We treat -fexceptions as mandating this 542 /// except under the fragile ObjC ABI with only ObjC exceptions 543 /// enabled. This means, for example, that C with -fexceptions 544 /// enables this. 545 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 546 // If exceptions are completely disabled, obviously this is false. 547 if (!LangOpts.Exceptions) return false; 548 549 // If C++ exceptions are enabled, this is true. 550 if (LangOpts.CXXExceptions) return true; 551 552 // If ObjC exceptions are enabled, this depends on the ABI. 553 if (LangOpts.ObjCExceptions) { 554 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 555 } 556 557 return true; 558 } 559 560 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 561 llvm::Function *F) { 562 if (CodeGenOpts.UnwindTables) 563 F->setHasUWTable(); 564 565 if (!hasUnwindExceptions(LangOpts)) 566 F->addFnAttr(llvm::Attributes::NoUnwind); 567 568 if (D->hasAttr<NakedAttr>()) { 569 // Naked implies noinline: we should not be inlining such functions. 570 F->addFnAttr(llvm::Attributes::Naked); 571 F->addFnAttr(llvm::Attributes::NoInline); 572 } 573 574 if (D->hasAttr<NoInlineAttr>()) 575 F->addFnAttr(llvm::Attributes::NoInline); 576 577 // (noinline wins over always_inline, and we can't specify both in IR) 578 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 579 !F->getFnAttributes().hasAttribute(llvm::Attributes::NoInline)) 580 F->addFnAttr(llvm::Attributes::AlwaysInline); 581 582 // FIXME: Communicate hot and cold attributes to LLVM more directly. 583 if (D->hasAttr<ColdAttr>()) 584 F->addFnAttr(llvm::Attributes::OptimizeForSize); 585 586 if (D->hasAttr<MinSizeAttr>()) 587 F->addFnAttr(llvm::Attributes::MinSize); 588 589 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 590 F->setUnnamedAddr(true); 591 592 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 593 if (MD->isVirtual()) 594 F->setUnnamedAddr(true); 595 596 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 597 F->addFnAttr(llvm::Attributes::StackProtect); 598 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 599 F->addFnAttr(llvm::Attributes::StackProtectReq); 600 601 if (LangOpts.SanitizeAddress) { 602 // When AddressSanitizer is enabled, set AddressSafety attribute 603 // unless __attribute__((no_address_safety_analysis)) is used. 604 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 605 F->addFnAttr(llvm::Attributes::AddressSafety); 606 } 607 608 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 609 if (alignment) 610 F->setAlignment(alignment); 611 612 // C++ ABI requires 2-byte alignment for member functions. 613 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 614 F->setAlignment(2); 615 } 616 617 void CodeGenModule::SetCommonAttributes(const Decl *D, 618 llvm::GlobalValue *GV) { 619 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 620 setGlobalVisibility(GV, ND); 621 else 622 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 623 624 if (D->hasAttr<UsedAttr>()) 625 AddUsedGlobal(GV); 626 627 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 628 GV->setSection(SA->getName()); 629 630 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 631 } 632 633 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 634 llvm::Function *F, 635 const CGFunctionInfo &FI) { 636 SetLLVMFunctionAttributes(D, FI, F); 637 SetLLVMFunctionAttributesForDefinition(D, F); 638 639 F->setLinkage(llvm::Function::InternalLinkage); 640 641 SetCommonAttributes(D, F); 642 } 643 644 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 645 llvm::Function *F, 646 bool IsIncompleteFunction) { 647 if (unsigned IID = F->getIntrinsicID()) { 648 // If this is an intrinsic function, set the function's attributes 649 // to the intrinsic's attributes. 650 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 651 (llvm::Intrinsic::ID)IID)); 652 return; 653 } 654 655 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 656 657 if (!IsIncompleteFunction) 658 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 659 660 // Only a few attributes are set on declarations; these may later be 661 // overridden by a definition. 662 663 if (FD->hasAttr<DLLImportAttr>()) { 664 F->setLinkage(llvm::Function::DLLImportLinkage); 665 } else if (FD->hasAttr<WeakAttr>() || 666 FD->isWeakImported()) { 667 // "extern_weak" is overloaded in LLVM; we probably should have 668 // separate linkage types for this. 669 F->setLinkage(llvm::Function::ExternalWeakLinkage); 670 } else { 671 F->setLinkage(llvm::Function::ExternalLinkage); 672 673 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 674 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 675 F->setVisibility(GetLLVMVisibility(LV.visibility())); 676 } 677 } 678 679 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 680 F->setSection(SA->getName()); 681 } 682 683 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 684 assert(!GV->isDeclaration() && 685 "Only globals with definition can force usage."); 686 LLVMUsed.push_back(GV); 687 } 688 689 void CodeGenModule::EmitLLVMUsed() { 690 // Don't create llvm.used if there is no need. 691 if (LLVMUsed.empty()) 692 return; 693 694 // Convert LLVMUsed to what ConstantArray needs. 695 SmallVector<llvm::Constant*, 8> UsedArray; 696 UsedArray.resize(LLVMUsed.size()); 697 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 698 UsedArray[i] = 699 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 700 Int8PtrTy); 701 } 702 703 if (UsedArray.empty()) 704 return; 705 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 706 707 llvm::GlobalVariable *GV = 708 new llvm::GlobalVariable(getModule(), ATy, false, 709 llvm::GlobalValue::AppendingLinkage, 710 llvm::ConstantArray::get(ATy, UsedArray), 711 "llvm.used"); 712 713 GV->setSection("llvm.metadata"); 714 } 715 716 void CodeGenModule::EmitDeferred() { 717 // Emit code for any potentially referenced deferred decls. Since a 718 // previously unused static decl may become used during the generation of code 719 // for a static function, iterate until no changes are made. 720 721 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 722 if (!DeferredVTables.empty()) { 723 const CXXRecordDecl *RD = DeferredVTables.back(); 724 DeferredVTables.pop_back(); 725 getCXXABI().EmitVTables(RD); 726 continue; 727 } 728 729 GlobalDecl D = DeferredDeclsToEmit.back(); 730 DeferredDeclsToEmit.pop_back(); 731 732 // Check to see if we've already emitted this. This is necessary 733 // for a couple of reasons: first, decls can end up in the 734 // deferred-decls queue multiple times, and second, decls can end 735 // up with definitions in unusual ways (e.g. by an extern inline 736 // function acquiring a strong function redefinition). Just 737 // ignore these cases. 738 // 739 // TODO: That said, looking this up multiple times is very wasteful. 740 StringRef Name = getMangledName(D); 741 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 742 assert(CGRef && "Deferred decl wasn't referenced?"); 743 744 if (!CGRef->isDeclaration()) 745 continue; 746 747 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 748 // purposes an alias counts as a definition. 749 if (isa<llvm::GlobalAlias>(CGRef)) 750 continue; 751 752 // Otherwise, emit the definition and move on to the next one. 753 EmitGlobalDefinition(D); 754 } 755 } 756 757 void CodeGenModule::EmitGlobalAnnotations() { 758 if (Annotations.empty()) 759 return; 760 761 // Create a new global variable for the ConstantStruct in the Module. 762 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 763 Annotations[0]->getType(), Annotations.size()), Annotations); 764 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 765 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 766 "llvm.global.annotations"); 767 gv->setSection(AnnotationSection); 768 } 769 770 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 771 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 772 if (i != AnnotationStrings.end()) 773 return i->second; 774 775 // Not found yet, create a new global. 776 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 777 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 778 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 779 gv->setSection(AnnotationSection); 780 gv->setUnnamedAddr(true); 781 AnnotationStrings[Str] = gv; 782 return gv; 783 } 784 785 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 786 SourceManager &SM = getContext().getSourceManager(); 787 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 788 if (PLoc.isValid()) 789 return EmitAnnotationString(PLoc.getFilename()); 790 return EmitAnnotationString(SM.getBufferName(Loc)); 791 } 792 793 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 794 SourceManager &SM = getContext().getSourceManager(); 795 PresumedLoc PLoc = SM.getPresumedLoc(L); 796 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 797 SM.getExpansionLineNumber(L); 798 return llvm::ConstantInt::get(Int32Ty, LineNo); 799 } 800 801 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 802 const AnnotateAttr *AA, 803 SourceLocation L) { 804 // Get the globals for file name, annotation, and the line number. 805 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 806 *UnitGV = EmitAnnotationUnit(L), 807 *LineNoCst = EmitAnnotationLineNo(L); 808 809 // Create the ConstantStruct for the global annotation. 810 llvm::Constant *Fields[4] = { 811 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 812 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 813 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 814 LineNoCst 815 }; 816 return llvm::ConstantStruct::getAnon(Fields); 817 } 818 819 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 820 llvm::GlobalValue *GV) { 821 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 822 // Get the struct elements for these annotations. 823 for (specific_attr_iterator<AnnotateAttr> 824 ai = D->specific_attr_begin<AnnotateAttr>(), 825 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 826 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 827 } 828 829 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 830 // Never defer when EmitAllDecls is specified. 831 if (LangOpts.EmitAllDecls) 832 return false; 833 834 return !getContext().DeclMustBeEmitted(Global); 835 } 836 837 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 838 const CXXUuidofExpr* E) { 839 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 840 // well-formed. 841 StringRef Uuid; 842 if (E->isTypeOperand()) 843 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid(); 844 else { 845 // Special case: __uuidof(0) means an all-zero GUID. 846 Expr *Op = E->getExprOperand(); 847 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 848 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid(); 849 else 850 Uuid = "00000000-0000-0000-0000-000000000000"; 851 } 852 std::string Name = "__uuid_" + Uuid.str(); 853 854 // Look for an existing global. 855 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 856 return GV; 857 858 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 859 assert(Init && "failed to initialize as constant"); 860 861 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 862 // first field is declared as "long", which for many targets is 8 bytes. 863 // Those architectures are not supported. (With the MS abi, long is always 4 864 // bytes.) 865 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 866 if (Init->getType() != GuidType) { 867 DiagnosticsEngine &Diags = getDiags(); 868 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 869 "__uuidof codegen is not supported on this architecture"); 870 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 871 Init = llvm::UndefValue::get(GuidType); 872 } 873 874 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 875 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); 876 GV->setUnnamedAddr(true); 877 return GV; 878 } 879 880 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 881 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 882 assert(AA && "No alias?"); 883 884 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 885 886 // See if there is already something with the target's name in the module. 887 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 888 if (Entry) { 889 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 890 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 891 } 892 893 llvm::Constant *Aliasee; 894 if (isa<llvm::FunctionType>(DeclTy)) 895 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 896 GlobalDecl(cast<FunctionDecl>(VD)), 897 /*ForVTable=*/false); 898 else 899 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 900 llvm::PointerType::getUnqual(DeclTy), 0); 901 902 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 903 F->setLinkage(llvm::Function::ExternalWeakLinkage); 904 WeakRefReferences.insert(F); 905 906 return Aliasee; 907 } 908 909 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 910 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 911 912 // Weak references don't produce any output by themselves. 913 if (Global->hasAttr<WeakRefAttr>()) 914 return; 915 916 // If this is an alias definition (which otherwise looks like a declaration) 917 // emit it now. 918 if (Global->hasAttr<AliasAttr>()) 919 return EmitAliasDefinition(GD); 920 921 // If this is CUDA, be selective about which declarations we emit. 922 if (LangOpts.CUDA) { 923 if (CodeGenOpts.CUDAIsDevice) { 924 if (!Global->hasAttr<CUDADeviceAttr>() && 925 !Global->hasAttr<CUDAGlobalAttr>() && 926 !Global->hasAttr<CUDAConstantAttr>() && 927 !Global->hasAttr<CUDASharedAttr>()) 928 return; 929 } else { 930 if (!Global->hasAttr<CUDAHostAttr>() && ( 931 Global->hasAttr<CUDADeviceAttr>() || 932 Global->hasAttr<CUDAConstantAttr>() || 933 Global->hasAttr<CUDASharedAttr>())) 934 return; 935 } 936 } 937 938 // Ignore declarations, they will be emitted on their first use. 939 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 940 // Forward declarations are emitted lazily on first use. 941 if (!FD->doesThisDeclarationHaveABody()) { 942 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 943 return; 944 945 const FunctionDecl *InlineDefinition = 0; 946 FD->getBody(InlineDefinition); 947 948 StringRef MangledName = getMangledName(GD); 949 DeferredDecls.erase(MangledName); 950 EmitGlobalDefinition(InlineDefinition); 951 return; 952 } 953 } else { 954 const VarDecl *VD = cast<VarDecl>(Global); 955 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 956 957 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 958 return; 959 } 960 961 // Defer code generation when possible if this is a static definition, inline 962 // function etc. These we only want to emit if they are used. 963 if (!MayDeferGeneration(Global)) { 964 // Emit the definition if it can't be deferred. 965 EmitGlobalDefinition(GD); 966 return; 967 } 968 969 // If we're deferring emission of a C++ variable with an 970 // initializer, remember the order in which it appeared in the file. 971 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 972 cast<VarDecl>(Global)->hasInit()) { 973 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 974 CXXGlobalInits.push_back(0); 975 } 976 977 // If the value has already been used, add it directly to the 978 // DeferredDeclsToEmit list. 979 StringRef MangledName = getMangledName(GD); 980 if (GetGlobalValue(MangledName)) 981 DeferredDeclsToEmit.push_back(GD); 982 else { 983 // Otherwise, remember that we saw a deferred decl with this name. The 984 // first use of the mangled name will cause it to move into 985 // DeferredDeclsToEmit. 986 DeferredDecls[MangledName] = GD; 987 } 988 } 989 990 namespace { 991 struct FunctionIsDirectlyRecursive : 992 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 993 const StringRef Name; 994 const Builtin::Context &BI; 995 bool Result; 996 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 997 Name(N), BI(C), Result(false) { 998 } 999 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1000 1001 bool TraverseCallExpr(CallExpr *E) { 1002 const FunctionDecl *FD = E->getDirectCallee(); 1003 if (!FD) 1004 return true; 1005 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1006 if (Attr && Name == Attr->getLabel()) { 1007 Result = true; 1008 return false; 1009 } 1010 unsigned BuiltinID = FD->getBuiltinID(); 1011 if (!BuiltinID) 1012 return true; 1013 StringRef BuiltinName = BI.GetName(BuiltinID); 1014 if (BuiltinName.startswith("__builtin_") && 1015 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1016 Result = true; 1017 return false; 1018 } 1019 return true; 1020 } 1021 }; 1022 } 1023 1024 // isTriviallyRecursive - Check if this function calls another 1025 // decl that, because of the asm attribute or the other decl being a builtin, 1026 // ends up pointing to itself. 1027 bool 1028 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1029 StringRef Name; 1030 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1031 // asm labels are a special kind of mangling we have to support. 1032 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1033 if (!Attr) 1034 return false; 1035 Name = Attr->getLabel(); 1036 } else { 1037 Name = FD->getName(); 1038 } 1039 1040 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1041 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1042 return Walker.Result; 1043 } 1044 1045 bool 1046 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 1047 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 1048 return true; 1049 if (CodeGenOpts.OptimizationLevel == 0 && 1050 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1051 return false; 1052 // PR9614. Avoid cases where the source code is lying to us. An available 1053 // externally function should have an equivalent function somewhere else, 1054 // but a function that calls itself is clearly not equivalent to the real 1055 // implementation. 1056 // This happens in glibc's btowc and in some configure checks. 1057 return !isTriviallyRecursive(F); 1058 } 1059 1060 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1061 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1062 1063 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1064 Context.getSourceManager(), 1065 "Generating code for declaration"); 1066 1067 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1068 // At -O0, don't generate IR for functions with available_externally 1069 // linkage. 1070 if (!shouldEmitFunction(Function)) 1071 return; 1072 1073 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1074 // Make sure to emit the definition(s) before we emit the thunks. 1075 // This is necessary for the generation of certain thunks. 1076 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1077 EmitCXXConstructor(CD, GD.getCtorType()); 1078 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1079 EmitCXXDestructor(DD, GD.getDtorType()); 1080 else 1081 EmitGlobalFunctionDefinition(GD); 1082 1083 if (Method->isVirtual()) 1084 getVTables().EmitThunks(GD); 1085 1086 return; 1087 } 1088 1089 return EmitGlobalFunctionDefinition(GD); 1090 } 1091 1092 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1093 return EmitGlobalVarDefinition(VD); 1094 1095 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1096 } 1097 1098 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1099 /// module, create and return an llvm Function with the specified type. If there 1100 /// is something in the module with the specified name, return it potentially 1101 /// bitcasted to the right type. 1102 /// 1103 /// If D is non-null, it specifies a decl that correspond to this. This is used 1104 /// to set the attributes on the function when it is first created. 1105 llvm::Constant * 1106 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1107 llvm::Type *Ty, 1108 GlobalDecl D, bool ForVTable, 1109 llvm::Attributes ExtraAttrs) { 1110 // Lookup the entry, lazily creating it if necessary. 1111 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1112 if (Entry) { 1113 if (WeakRefReferences.erase(Entry)) { 1114 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1115 if (FD && !FD->hasAttr<WeakAttr>()) 1116 Entry->setLinkage(llvm::Function::ExternalLinkage); 1117 } 1118 1119 if (Entry->getType()->getElementType() == Ty) 1120 return Entry; 1121 1122 // Make sure the result is of the correct type. 1123 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1124 } 1125 1126 // This function doesn't have a complete type (for example, the return 1127 // type is an incomplete struct). Use a fake type instead, and make 1128 // sure not to try to set attributes. 1129 bool IsIncompleteFunction = false; 1130 1131 llvm::FunctionType *FTy; 1132 if (isa<llvm::FunctionType>(Ty)) { 1133 FTy = cast<llvm::FunctionType>(Ty); 1134 } else { 1135 FTy = llvm::FunctionType::get(VoidTy, false); 1136 IsIncompleteFunction = true; 1137 } 1138 1139 llvm::Function *F = llvm::Function::Create(FTy, 1140 llvm::Function::ExternalLinkage, 1141 MangledName, &getModule()); 1142 assert(F->getName() == MangledName && "name was uniqued!"); 1143 if (D.getDecl()) 1144 SetFunctionAttributes(D, F, IsIncompleteFunction); 1145 if (ExtraAttrs.hasAttributes()) 1146 F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs); 1147 1148 // This is the first use or definition of a mangled name. If there is a 1149 // deferred decl with this name, remember that we need to emit it at the end 1150 // of the file. 1151 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1152 if (DDI != DeferredDecls.end()) { 1153 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1154 // list, and remove it from DeferredDecls (since we don't need it anymore). 1155 DeferredDeclsToEmit.push_back(DDI->second); 1156 DeferredDecls.erase(DDI); 1157 1158 // Otherwise, there are cases we have to worry about where we're 1159 // using a declaration for which we must emit a definition but where 1160 // we might not find a top-level definition: 1161 // - member functions defined inline in their classes 1162 // - friend functions defined inline in some class 1163 // - special member functions with implicit definitions 1164 // If we ever change our AST traversal to walk into class methods, 1165 // this will be unnecessary. 1166 // 1167 // We also don't emit a definition for a function if it's going to be an entry 1168 // in a vtable, unless it's already marked as used. 1169 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1170 // Look for a declaration that's lexically in a record. 1171 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1172 FD = FD->getMostRecentDecl(); 1173 do { 1174 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1175 if (FD->isImplicit() && !ForVTable) { 1176 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1177 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1178 break; 1179 } else if (FD->doesThisDeclarationHaveABody()) { 1180 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1181 break; 1182 } 1183 } 1184 FD = FD->getPreviousDecl(); 1185 } while (FD); 1186 } 1187 1188 // Make sure the result is of the requested type. 1189 if (!IsIncompleteFunction) { 1190 assert(F->getType()->getElementType() == Ty); 1191 return F; 1192 } 1193 1194 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1195 return llvm::ConstantExpr::getBitCast(F, PTy); 1196 } 1197 1198 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1199 /// non-null, then this function will use the specified type if it has to 1200 /// create it (this occurs when we see a definition of the function). 1201 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1202 llvm::Type *Ty, 1203 bool ForVTable) { 1204 // If there was no specific requested type, just convert it now. 1205 if (!Ty) 1206 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1207 1208 StringRef MangledName = getMangledName(GD); 1209 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1210 } 1211 1212 /// CreateRuntimeFunction - Create a new runtime function with the specified 1213 /// type and name. 1214 llvm::Constant * 1215 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1216 StringRef Name, 1217 llvm::Attributes ExtraAttrs) { 1218 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1219 ExtraAttrs); 1220 } 1221 1222 /// isTypeConstant - Determine whether an object of this type can be emitted 1223 /// as a constant. 1224 /// 1225 /// If ExcludeCtor is true, the duration when the object's constructor runs 1226 /// will not be considered. The caller will need to verify that the object is 1227 /// not written to during its construction. 1228 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1229 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1230 return false; 1231 1232 if (Context.getLangOpts().CPlusPlus) { 1233 if (const CXXRecordDecl *Record 1234 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1235 return ExcludeCtor && !Record->hasMutableFields() && 1236 Record->hasTrivialDestructor(); 1237 } 1238 1239 return true; 1240 } 1241 1242 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1243 /// create and return an llvm GlobalVariable with the specified type. If there 1244 /// is something in the module with the specified name, return it potentially 1245 /// bitcasted to the right type. 1246 /// 1247 /// If D is non-null, it specifies a decl that correspond to this. This is used 1248 /// to set the attributes on the global when it is first created. 1249 llvm::Constant * 1250 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1251 llvm::PointerType *Ty, 1252 const VarDecl *D, 1253 bool UnnamedAddr) { 1254 // Lookup the entry, lazily creating it if necessary. 1255 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1256 if (Entry) { 1257 if (WeakRefReferences.erase(Entry)) { 1258 if (D && !D->hasAttr<WeakAttr>()) 1259 Entry->setLinkage(llvm::Function::ExternalLinkage); 1260 } 1261 1262 if (UnnamedAddr) 1263 Entry->setUnnamedAddr(true); 1264 1265 if (Entry->getType() == Ty) 1266 return Entry; 1267 1268 // Make sure the result is of the correct type. 1269 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1270 } 1271 1272 // This is the first use or definition of a mangled name. If there is a 1273 // deferred decl with this name, remember that we need to emit it at the end 1274 // of the file. 1275 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1276 if (DDI != DeferredDecls.end()) { 1277 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1278 // list, and remove it from DeferredDecls (since we don't need it anymore). 1279 DeferredDeclsToEmit.push_back(DDI->second); 1280 DeferredDecls.erase(DDI); 1281 } 1282 1283 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1284 llvm::GlobalVariable *GV = 1285 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1286 llvm::GlobalValue::ExternalLinkage, 1287 0, MangledName, 0, 1288 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1289 1290 // Handle things which are present even on external declarations. 1291 if (D) { 1292 // FIXME: This code is overly simple and should be merged with other global 1293 // handling. 1294 GV->setConstant(isTypeConstant(D->getType(), false)); 1295 1296 // Set linkage and visibility in case we never see a definition. 1297 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1298 if (LV.linkage() != ExternalLinkage) { 1299 // Don't set internal linkage on declarations. 1300 } else { 1301 if (D->hasAttr<DLLImportAttr>()) 1302 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1303 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1304 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1305 1306 // Set visibility on a declaration only if it's explicit. 1307 if (LV.visibilityExplicit()) 1308 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1309 } 1310 1311 if (D->isThreadSpecified()) 1312 setTLSMode(GV, *D); 1313 } 1314 1315 if (AddrSpace != Ty->getAddressSpace()) 1316 return llvm::ConstantExpr::getBitCast(GV, Ty); 1317 else 1318 return GV; 1319 } 1320 1321 1322 llvm::GlobalVariable * 1323 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1324 llvm::Type *Ty, 1325 llvm::GlobalValue::LinkageTypes Linkage) { 1326 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1327 llvm::GlobalVariable *OldGV = 0; 1328 1329 1330 if (GV) { 1331 // Check if the variable has the right type. 1332 if (GV->getType()->getElementType() == Ty) 1333 return GV; 1334 1335 // Because C++ name mangling, the only way we can end up with an already 1336 // existing global with the same name is if it has been declared extern "C". 1337 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1338 OldGV = GV; 1339 } 1340 1341 // Create a new variable. 1342 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1343 Linkage, 0, Name); 1344 1345 if (OldGV) { 1346 // Replace occurrences of the old variable if needed. 1347 GV->takeName(OldGV); 1348 1349 if (!OldGV->use_empty()) { 1350 llvm::Constant *NewPtrForOldDecl = 1351 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1352 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1353 } 1354 1355 OldGV->eraseFromParent(); 1356 } 1357 1358 return GV; 1359 } 1360 1361 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1362 /// given global variable. If Ty is non-null and if the global doesn't exist, 1363 /// then it will be created with the specified type instead of whatever the 1364 /// normal requested type would be. 1365 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1366 llvm::Type *Ty) { 1367 assert(D->hasGlobalStorage() && "Not a global variable"); 1368 QualType ASTTy = D->getType(); 1369 if (Ty == 0) 1370 Ty = getTypes().ConvertTypeForMem(ASTTy); 1371 1372 llvm::PointerType *PTy = 1373 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1374 1375 StringRef MangledName = getMangledName(D); 1376 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1377 } 1378 1379 /// CreateRuntimeVariable - Create a new runtime global variable with the 1380 /// specified type and name. 1381 llvm::Constant * 1382 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1383 StringRef Name) { 1384 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1385 true); 1386 } 1387 1388 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1389 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1390 1391 if (MayDeferGeneration(D)) { 1392 // If we have not seen a reference to this variable yet, place it 1393 // into the deferred declarations table to be emitted if needed 1394 // later. 1395 StringRef MangledName = getMangledName(D); 1396 if (!GetGlobalValue(MangledName)) { 1397 DeferredDecls[MangledName] = D; 1398 return; 1399 } 1400 } 1401 1402 // The tentative definition is the only definition. 1403 EmitGlobalVarDefinition(D); 1404 } 1405 1406 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1407 if (DefinitionRequired) 1408 getCXXABI().EmitVTables(Class); 1409 } 1410 1411 llvm::GlobalVariable::LinkageTypes 1412 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1413 if (RD->getLinkage() != ExternalLinkage) 1414 return llvm::GlobalVariable::InternalLinkage; 1415 1416 if (const CXXMethodDecl *KeyFunction 1417 = RD->getASTContext().getKeyFunction(RD)) { 1418 // If this class has a key function, use that to determine the linkage of 1419 // the vtable. 1420 const FunctionDecl *Def = 0; 1421 if (KeyFunction->hasBody(Def)) 1422 KeyFunction = cast<CXXMethodDecl>(Def); 1423 1424 switch (KeyFunction->getTemplateSpecializationKind()) { 1425 case TSK_Undeclared: 1426 case TSK_ExplicitSpecialization: 1427 // When compiling with optimizations turned on, we emit all vtables, 1428 // even if the key function is not defined in the current translation 1429 // unit. If this is the case, use available_externally linkage. 1430 if (!Def && CodeGenOpts.OptimizationLevel) 1431 return llvm::GlobalVariable::AvailableExternallyLinkage; 1432 1433 if (KeyFunction->isInlined()) 1434 return !Context.getLangOpts().AppleKext ? 1435 llvm::GlobalVariable::LinkOnceODRLinkage : 1436 llvm::Function::InternalLinkage; 1437 1438 return llvm::GlobalVariable::ExternalLinkage; 1439 1440 case TSK_ImplicitInstantiation: 1441 return !Context.getLangOpts().AppleKext ? 1442 llvm::GlobalVariable::LinkOnceODRLinkage : 1443 llvm::Function::InternalLinkage; 1444 1445 case TSK_ExplicitInstantiationDefinition: 1446 return !Context.getLangOpts().AppleKext ? 1447 llvm::GlobalVariable::WeakODRLinkage : 1448 llvm::Function::InternalLinkage; 1449 1450 case TSK_ExplicitInstantiationDeclaration: 1451 // FIXME: Use available_externally linkage. However, this currently 1452 // breaks LLVM's build due to undefined symbols. 1453 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1454 return !Context.getLangOpts().AppleKext ? 1455 llvm::GlobalVariable::LinkOnceODRLinkage : 1456 llvm::Function::InternalLinkage; 1457 } 1458 } 1459 1460 if (Context.getLangOpts().AppleKext) 1461 return llvm::Function::InternalLinkage; 1462 1463 switch (RD->getTemplateSpecializationKind()) { 1464 case TSK_Undeclared: 1465 case TSK_ExplicitSpecialization: 1466 case TSK_ImplicitInstantiation: 1467 // FIXME: Use available_externally linkage. However, this currently 1468 // breaks LLVM's build due to undefined symbols. 1469 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1470 case TSK_ExplicitInstantiationDeclaration: 1471 return llvm::GlobalVariable::LinkOnceODRLinkage; 1472 1473 case TSK_ExplicitInstantiationDefinition: 1474 return llvm::GlobalVariable::WeakODRLinkage; 1475 } 1476 1477 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1478 } 1479 1480 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1481 return Context.toCharUnitsFromBits( 1482 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1483 } 1484 1485 llvm::Constant * 1486 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1487 const Expr *rawInit) { 1488 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1489 if (const ExprWithCleanups *withCleanups = 1490 dyn_cast<ExprWithCleanups>(rawInit)) { 1491 cleanups = withCleanups->getObjects(); 1492 rawInit = withCleanups->getSubExpr(); 1493 } 1494 1495 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1496 if (!init || !init->initializesStdInitializerList() || 1497 init->getNumInits() == 0) 1498 return 0; 1499 1500 ASTContext &ctx = getContext(); 1501 unsigned numInits = init->getNumInits(); 1502 // FIXME: This check is here because we would otherwise silently miscompile 1503 // nested global std::initializer_lists. Better would be to have a real 1504 // implementation. 1505 for (unsigned i = 0; i < numInits; ++i) { 1506 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1507 if (inner && inner->initializesStdInitializerList()) { 1508 ErrorUnsupported(inner, "nested global std::initializer_list"); 1509 return 0; 1510 } 1511 } 1512 1513 // Synthesize a fake VarDecl for the array and initialize that. 1514 QualType elementType = init->getInit(0)->getType(); 1515 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1516 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1517 ArrayType::Normal, 0); 1518 1519 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1520 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1521 arrayType, D->getLocation()); 1522 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1523 D->getDeclContext()), 1524 D->getLocStart(), D->getLocation(), 1525 name, arrayType, sourceInfo, 1526 SC_Static, SC_Static); 1527 1528 // Now clone the InitListExpr to initialize the array instead. 1529 // Incredible hack: we want to use the existing InitListExpr here, so we need 1530 // to tell it that it no longer initializes a std::initializer_list. 1531 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(), 1532 init->getNumInits()); 1533 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits, 1534 init->getRBraceLoc()); 1535 arrayInit->setType(arrayType); 1536 1537 if (!cleanups.empty()) 1538 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1539 1540 backingArray->setInit(arrayInit); 1541 1542 // Emit the definition of the array. 1543 EmitGlobalVarDefinition(backingArray); 1544 1545 // Inspect the initializer list to validate it and determine its type. 1546 // FIXME: doing this every time is probably inefficient; caching would be nice 1547 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1548 RecordDecl::field_iterator field = record->field_begin(); 1549 if (field == record->field_end()) { 1550 ErrorUnsupported(D, "weird std::initializer_list"); 1551 return 0; 1552 } 1553 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1554 // Start pointer. 1555 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1556 ErrorUnsupported(D, "weird std::initializer_list"); 1557 return 0; 1558 } 1559 ++field; 1560 if (field == record->field_end()) { 1561 ErrorUnsupported(D, "weird std::initializer_list"); 1562 return 0; 1563 } 1564 bool isStartEnd = false; 1565 if (ctx.hasSameType(field->getType(), elementPtr)) { 1566 // End pointer. 1567 isStartEnd = true; 1568 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1569 ErrorUnsupported(D, "weird std::initializer_list"); 1570 return 0; 1571 } 1572 1573 // Now build an APValue representing the std::initializer_list. 1574 APValue initListValue(APValue::UninitStruct(), 0, 2); 1575 APValue &startField = initListValue.getStructField(0); 1576 APValue::LValuePathEntry startOffsetPathEntry; 1577 startOffsetPathEntry.ArrayIndex = 0; 1578 startField = APValue(APValue::LValueBase(backingArray), 1579 CharUnits::fromQuantity(0), 1580 llvm::makeArrayRef(startOffsetPathEntry), 1581 /*IsOnePastTheEnd=*/false, 0); 1582 1583 if (isStartEnd) { 1584 APValue &endField = initListValue.getStructField(1); 1585 APValue::LValuePathEntry endOffsetPathEntry; 1586 endOffsetPathEntry.ArrayIndex = numInits; 1587 endField = APValue(APValue::LValueBase(backingArray), 1588 ctx.getTypeSizeInChars(elementType) * numInits, 1589 llvm::makeArrayRef(endOffsetPathEntry), 1590 /*IsOnePastTheEnd=*/true, 0); 1591 } else { 1592 APValue &sizeField = initListValue.getStructField(1); 1593 sizeField = APValue(llvm::APSInt(numElements)); 1594 } 1595 1596 // Emit the constant for the initializer_list. 1597 llvm::Constant *llvmInit = 1598 EmitConstantValueForMemory(initListValue, D->getType()); 1599 assert(llvmInit && "failed to initialize as constant"); 1600 return llvmInit; 1601 } 1602 1603 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1604 unsigned AddrSpace) { 1605 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1606 if (D->hasAttr<CUDAConstantAttr>()) 1607 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1608 else if (D->hasAttr<CUDASharedAttr>()) 1609 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1610 else 1611 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1612 } 1613 1614 return AddrSpace; 1615 } 1616 1617 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1618 llvm::Constant *Init = 0; 1619 QualType ASTTy = D->getType(); 1620 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1621 bool NeedsGlobalCtor = false; 1622 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1623 1624 const VarDecl *InitDecl; 1625 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1626 1627 if (!InitExpr) { 1628 // This is a tentative definition; tentative definitions are 1629 // implicitly initialized with { 0 }. 1630 // 1631 // Note that tentative definitions are only emitted at the end of 1632 // a translation unit, so they should never have incomplete 1633 // type. In addition, EmitTentativeDefinition makes sure that we 1634 // never attempt to emit a tentative definition if a real one 1635 // exists. A use may still exists, however, so we still may need 1636 // to do a RAUW. 1637 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1638 Init = EmitNullConstant(D->getType()); 1639 } else { 1640 // If this is a std::initializer_list, emit the special initializer. 1641 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1642 // An empty init list will perform zero-initialization, which happens 1643 // to be exactly what we want. 1644 // FIXME: It does so in a global constructor, which is *not* what we 1645 // want. 1646 1647 if (!Init) { 1648 initializedGlobalDecl = GlobalDecl(D); 1649 Init = EmitConstantInit(*InitDecl); 1650 } 1651 if (!Init) { 1652 QualType T = InitExpr->getType(); 1653 if (D->getType()->isReferenceType()) 1654 T = D->getType(); 1655 1656 if (getLangOpts().CPlusPlus) { 1657 Init = EmitNullConstant(T); 1658 NeedsGlobalCtor = true; 1659 } else { 1660 ErrorUnsupported(D, "static initializer"); 1661 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1662 } 1663 } else { 1664 // We don't need an initializer, so remove the entry for the delayed 1665 // initializer position (just in case this entry was delayed) if we 1666 // also don't need to register a destructor. 1667 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1668 DelayedCXXInitPosition.erase(D); 1669 } 1670 } 1671 1672 llvm::Type* InitType = Init->getType(); 1673 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1674 1675 // Strip off a bitcast if we got one back. 1676 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1677 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1678 // all zero index gep. 1679 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1680 Entry = CE->getOperand(0); 1681 } 1682 1683 // Entry is now either a Function or GlobalVariable. 1684 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1685 1686 // We have a definition after a declaration with the wrong type. 1687 // We must make a new GlobalVariable* and update everything that used OldGV 1688 // (a declaration or tentative definition) with the new GlobalVariable* 1689 // (which will be a definition). 1690 // 1691 // This happens if there is a prototype for a global (e.g. 1692 // "extern int x[];") and then a definition of a different type (e.g. 1693 // "int x[10];"). This also happens when an initializer has a different type 1694 // from the type of the global (this happens with unions). 1695 if (GV == 0 || 1696 GV->getType()->getElementType() != InitType || 1697 GV->getType()->getAddressSpace() != 1698 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1699 1700 // Move the old entry aside so that we'll create a new one. 1701 Entry->setName(StringRef()); 1702 1703 // Make a new global with the correct type, this is now guaranteed to work. 1704 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1705 1706 // Replace all uses of the old global with the new global 1707 llvm::Constant *NewPtrForOldDecl = 1708 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1709 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1710 1711 // Erase the old global, since it is no longer used. 1712 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1713 } 1714 1715 if (D->hasAttr<AnnotateAttr>()) 1716 AddGlobalAnnotations(D, GV); 1717 1718 GV->setInitializer(Init); 1719 1720 // If it is safe to mark the global 'constant', do so now. 1721 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1722 isTypeConstant(D->getType(), true)); 1723 1724 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1725 1726 // Set the llvm linkage type as appropriate. 1727 llvm::GlobalValue::LinkageTypes Linkage = 1728 GetLLVMLinkageVarDefinition(D, GV); 1729 GV->setLinkage(Linkage); 1730 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1731 // common vars aren't constant even if declared const. 1732 GV->setConstant(false); 1733 1734 SetCommonAttributes(D, GV); 1735 1736 // Emit the initializer function if necessary. 1737 if (NeedsGlobalCtor || NeedsGlobalDtor) 1738 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1739 1740 // If we are compiling with ASan, add metadata indicating dynamically 1741 // initialized globals. 1742 if (LangOpts.SanitizeAddress && NeedsGlobalCtor) { 1743 llvm::Module &M = getModule(); 1744 1745 llvm::NamedMDNode *DynamicInitializers = 1746 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1747 llvm::Value *GlobalToAdd[] = { GV }; 1748 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1749 DynamicInitializers->addOperand(ThisGlobal); 1750 } 1751 1752 // Emit global variable debug information. 1753 if (CGDebugInfo *DI = getModuleDebugInfo()) 1754 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1755 DI->EmitGlobalVariable(GV, D); 1756 } 1757 1758 llvm::GlobalValue::LinkageTypes 1759 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1760 llvm::GlobalVariable *GV) { 1761 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1762 if (Linkage == GVA_Internal) 1763 return llvm::Function::InternalLinkage; 1764 else if (D->hasAttr<DLLImportAttr>()) 1765 return llvm::Function::DLLImportLinkage; 1766 else if (D->hasAttr<DLLExportAttr>()) 1767 return llvm::Function::DLLExportLinkage; 1768 else if (D->hasAttr<WeakAttr>()) { 1769 if (GV->isConstant()) 1770 return llvm::GlobalVariable::WeakODRLinkage; 1771 else 1772 return llvm::GlobalVariable::WeakAnyLinkage; 1773 } else if (Linkage == GVA_TemplateInstantiation || 1774 Linkage == GVA_ExplicitTemplateInstantiation) 1775 return llvm::GlobalVariable::WeakODRLinkage; 1776 else if (!getLangOpts().CPlusPlus && 1777 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1778 D->getAttr<CommonAttr>()) && 1779 !D->hasExternalStorage() && !D->getInit() && 1780 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1781 !D->getAttr<WeakImportAttr>()) { 1782 // Thread local vars aren't considered common linkage. 1783 return llvm::GlobalVariable::CommonLinkage; 1784 } 1785 return llvm::GlobalVariable::ExternalLinkage; 1786 } 1787 1788 /// Replace the uses of a function that was declared with a non-proto type. 1789 /// We want to silently drop extra arguments from call sites 1790 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1791 llvm::Function *newFn) { 1792 // Fast path. 1793 if (old->use_empty()) return; 1794 1795 llvm::Type *newRetTy = newFn->getReturnType(); 1796 SmallVector<llvm::Value*, 4> newArgs; 1797 1798 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1799 ui != ue; ) { 1800 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1801 llvm::User *user = *use; 1802 1803 // Recognize and replace uses of bitcasts. Most calls to 1804 // unprototyped functions will use bitcasts. 1805 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1806 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1807 replaceUsesOfNonProtoConstant(bitcast, newFn); 1808 continue; 1809 } 1810 1811 // Recognize calls to the function. 1812 llvm::CallSite callSite(user); 1813 if (!callSite) continue; 1814 if (!callSite.isCallee(use)) continue; 1815 1816 // If the return types don't match exactly, then we can't 1817 // transform this call unless it's dead. 1818 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1819 continue; 1820 1821 // Get the call site's attribute list. 1822 llvm::SmallVector<llvm::AttributeWithIndex, 8> newAttrs; 1823 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1824 1825 // Collect any return attributes from the call. 1826 llvm::Attributes returnAttrs = oldAttrs.getRetAttributes(); 1827 if (returnAttrs.hasAttributes()) 1828 newAttrs.push_back(llvm::AttributeWithIndex::get( 1829 llvm::AttributeSet::ReturnIndex, returnAttrs)); 1830 1831 // If the function was passed too few arguments, don't transform. 1832 unsigned newNumArgs = newFn->arg_size(); 1833 if (callSite.arg_size() < newNumArgs) continue; 1834 1835 // If extra arguments were passed, we silently drop them. 1836 // If any of the types mismatch, we don't transform. 1837 unsigned argNo = 0; 1838 bool dontTransform = false; 1839 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1840 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1841 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1842 dontTransform = true; 1843 break; 1844 } 1845 1846 // Add any parameter attributes. 1847 llvm::Attributes pAttrs = oldAttrs.getParamAttributes(argNo + 1); 1848 if (pAttrs.hasAttributes()) 1849 newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs)); 1850 } 1851 if (dontTransform) 1852 continue; 1853 1854 llvm::Attributes fnAttrs = oldAttrs.getFnAttributes(); 1855 if (fnAttrs.hasAttributes()) 1856 newAttrs.push_back(llvm:: 1857 AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex, 1858 fnAttrs)); 1859 1860 // Okay, we can transform this. Create the new call instruction and copy 1861 // over the required information. 1862 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1863 1864 llvm::CallSite newCall; 1865 if (callSite.isCall()) { 1866 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1867 callSite.getInstruction()); 1868 } else { 1869 llvm::InvokeInst *oldInvoke = 1870 cast<llvm::InvokeInst>(callSite.getInstruction()); 1871 newCall = llvm::InvokeInst::Create(newFn, 1872 oldInvoke->getNormalDest(), 1873 oldInvoke->getUnwindDest(), 1874 newArgs, "", 1875 callSite.getInstruction()); 1876 } 1877 newArgs.clear(); // for the next iteration 1878 1879 if (!newCall->getType()->isVoidTy()) 1880 newCall->takeName(callSite.getInstruction()); 1881 newCall.setAttributes( 1882 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1883 newCall.setCallingConv(callSite.getCallingConv()); 1884 1885 // Finally, remove the old call, replacing any uses with the new one. 1886 if (!callSite->use_empty()) 1887 callSite->replaceAllUsesWith(newCall.getInstruction()); 1888 1889 // Copy debug location attached to CI. 1890 if (!callSite->getDebugLoc().isUnknown()) 1891 newCall->setDebugLoc(callSite->getDebugLoc()); 1892 callSite->eraseFromParent(); 1893 } 1894 } 1895 1896 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1897 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1898 /// existing call uses of the old function in the module, this adjusts them to 1899 /// call the new function directly. 1900 /// 1901 /// This is not just a cleanup: the always_inline pass requires direct calls to 1902 /// functions to be able to inline them. If there is a bitcast in the way, it 1903 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1904 /// run at -O0. 1905 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1906 llvm::Function *NewFn) { 1907 // If we're redefining a global as a function, don't transform it. 1908 if (!isa<llvm::Function>(Old)) return; 1909 1910 replaceUsesOfNonProtoConstant(Old, NewFn); 1911 } 1912 1913 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1914 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1915 // If we have a definition, this might be a deferred decl. If the 1916 // instantiation is explicit, make sure we emit it at the end. 1917 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1918 GetAddrOfGlobalVar(VD); 1919 } 1920 1921 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1922 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1923 1924 // Compute the function info and LLVM type. 1925 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1926 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1927 1928 // Get or create the prototype for the function. 1929 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1930 1931 // Strip off a bitcast if we got one back. 1932 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1933 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1934 Entry = CE->getOperand(0); 1935 } 1936 1937 1938 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1939 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1940 1941 // If the types mismatch then we have to rewrite the definition. 1942 assert(OldFn->isDeclaration() && 1943 "Shouldn't replace non-declaration"); 1944 1945 // F is the Function* for the one with the wrong type, we must make a new 1946 // Function* and update everything that used F (a declaration) with the new 1947 // Function* (which will be a definition). 1948 // 1949 // This happens if there is a prototype for a function 1950 // (e.g. "int f()") and then a definition of a different type 1951 // (e.g. "int f(int x)"). Move the old function aside so that it 1952 // doesn't interfere with GetAddrOfFunction. 1953 OldFn->setName(StringRef()); 1954 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1955 1956 // This might be an implementation of a function without a 1957 // prototype, in which case, try to do special replacement of 1958 // calls which match the new prototype. The really key thing here 1959 // is that we also potentially drop arguments from the call site 1960 // so as to make a direct call, which makes the inliner happier 1961 // and suppresses a number of optimizer warnings (!) about 1962 // dropping arguments. 1963 if (!OldFn->use_empty()) { 1964 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1965 OldFn->removeDeadConstantUsers(); 1966 } 1967 1968 // Replace uses of F with the Function we will endow with a body. 1969 if (!Entry->use_empty()) { 1970 llvm::Constant *NewPtrForOldDecl = 1971 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1972 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1973 } 1974 1975 // Ok, delete the old function now, which is dead. 1976 OldFn->eraseFromParent(); 1977 1978 Entry = NewFn; 1979 } 1980 1981 // We need to set linkage and visibility on the function before 1982 // generating code for it because various parts of IR generation 1983 // want to propagate this information down (e.g. to local static 1984 // declarations). 1985 llvm::Function *Fn = cast<llvm::Function>(Entry); 1986 setFunctionLinkage(D, Fn); 1987 1988 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1989 setGlobalVisibility(Fn, D); 1990 1991 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1992 1993 SetFunctionDefinitionAttributes(D, Fn); 1994 SetLLVMFunctionAttributesForDefinition(D, Fn); 1995 1996 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1997 AddGlobalCtor(Fn, CA->getPriority()); 1998 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1999 AddGlobalDtor(Fn, DA->getPriority()); 2000 if (D->hasAttr<AnnotateAttr>()) 2001 AddGlobalAnnotations(D, Fn); 2002 } 2003 2004 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2005 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2006 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2007 assert(AA && "Not an alias?"); 2008 2009 StringRef MangledName = getMangledName(GD); 2010 2011 // If there is a definition in the module, then it wins over the alias. 2012 // This is dubious, but allow it to be safe. Just ignore the alias. 2013 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2014 if (Entry && !Entry->isDeclaration()) 2015 return; 2016 2017 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2018 2019 // Create a reference to the named value. This ensures that it is emitted 2020 // if a deferred decl. 2021 llvm::Constant *Aliasee; 2022 if (isa<llvm::FunctionType>(DeclTy)) 2023 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2024 /*ForVTable=*/false); 2025 else 2026 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2027 llvm::PointerType::getUnqual(DeclTy), 0); 2028 2029 // Create the new alias itself, but don't set a name yet. 2030 llvm::GlobalValue *GA = 2031 new llvm::GlobalAlias(Aliasee->getType(), 2032 llvm::Function::ExternalLinkage, 2033 "", Aliasee, &getModule()); 2034 2035 if (Entry) { 2036 assert(Entry->isDeclaration()); 2037 2038 // If there is a declaration in the module, then we had an extern followed 2039 // by the alias, as in: 2040 // extern int test6(); 2041 // ... 2042 // int test6() __attribute__((alias("test7"))); 2043 // 2044 // Remove it and replace uses of it with the alias. 2045 GA->takeName(Entry); 2046 2047 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2048 Entry->getType())); 2049 Entry->eraseFromParent(); 2050 } else { 2051 GA->setName(MangledName); 2052 } 2053 2054 // Set attributes which are particular to an alias; this is a 2055 // specialization of the attributes which may be set on a global 2056 // variable/function. 2057 if (D->hasAttr<DLLExportAttr>()) { 2058 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2059 // The dllexport attribute is ignored for undefined symbols. 2060 if (FD->hasBody()) 2061 GA->setLinkage(llvm::Function::DLLExportLinkage); 2062 } else { 2063 GA->setLinkage(llvm::Function::DLLExportLinkage); 2064 } 2065 } else if (D->hasAttr<WeakAttr>() || 2066 D->hasAttr<WeakRefAttr>() || 2067 D->isWeakImported()) { 2068 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2069 } 2070 2071 SetCommonAttributes(D, GA); 2072 } 2073 2074 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2075 ArrayRef<llvm::Type*> Tys) { 2076 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2077 Tys); 2078 } 2079 2080 static llvm::StringMapEntry<llvm::Constant*> & 2081 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2082 const StringLiteral *Literal, 2083 bool TargetIsLSB, 2084 bool &IsUTF16, 2085 unsigned &StringLength) { 2086 StringRef String = Literal->getString(); 2087 unsigned NumBytes = String.size(); 2088 2089 // Check for simple case. 2090 if (!Literal->containsNonAsciiOrNull()) { 2091 StringLength = NumBytes; 2092 return Map.GetOrCreateValue(String); 2093 } 2094 2095 // Otherwise, convert the UTF8 literals into a string of shorts. 2096 IsUTF16 = true; 2097 2098 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2099 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2100 UTF16 *ToPtr = &ToBuf[0]; 2101 2102 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2103 &ToPtr, ToPtr + NumBytes, 2104 strictConversion); 2105 2106 // ConvertUTF8toUTF16 returns the length in ToPtr. 2107 StringLength = ToPtr - &ToBuf[0]; 2108 2109 // Add an explicit null. 2110 *ToPtr = 0; 2111 return Map. 2112 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2113 (StringLength + 1) * 2)); 2114 } 2115 2116 static llvm::StringMapEntry<llvm::Constant*> & 2117 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2118 const StringLiteral *Literal, 2119 unsigned &StringLength) { 2120 StringRef String = Literal->getString(); 2121 StringLength = String.size(); 2122 return Map.GetOrCreateValue(String); 2123 } 2124 2125 llvm::Constant * 2126 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2127 unsigned StringLength = 0; 2128 bool isUTF16 = false; 2129 llvm::StringMapEntry<llvm::Constant*> &Entry = 2130 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2131 getDataLayout().isLittleEndian(), 2132 isUTF16, StringLength); 2133 2134 if (llvm::Constant *C = Entry.getValue()) 2135 return C; 2136 2137 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2138 llvm::Constant *Zeros[] = { Zero, Zero }; 2139 2140 // If we don't already have it, get __CFConstantStringClassReference. 2141 if (!CFConstantStringClassRef) { 2142 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2143 Ty = llvm::ArrayType::get(Ty, 0); 2144 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2145 "__CFConstantStringClassReference"); 2146 // Decay array -> ptr 2147 CFConstantStringClassRef = 2148 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2149 } 2150 2151 QualType CFTy = getContext().getCFConstantStringType(); 2152 2153 llvm::StructType *STy = 2154 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2155 2156 llvm::Constant *Fields[4]; 2157 2158 // Class pointer. 2159 Fields[0] = CFConstantStringClassRef; 2160 2161 // Flags. 2162 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2163 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2164 llvm::ConstantInt::get(Ty, 0x07C8); 2165 2166 // String pointer. 2167 llvm::Constant *C = 0; 2168 if (isUTF16) { 2169 ArrayRef<uint16_t> Arr = 2170 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2171 Entry.getKey().size() / 2); 2172 C = llvm::ConstantDataArray::get(VMContext, Arr); 2173 } else { 2174 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2175 } 2176 2177 llvm::GlobalValue::LinkageTypes Linkage; 2178 if (isUTF16) 2179 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2180 Linkage = llvm::GlobalValue::InternalLinkage; 2181 else 2182 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2183 // when using private linkage. It is not clear if this is a bug in ld 2184 // or a reasonable new restriction. 2185 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2186 2187 // Note: -fwritable-strings doesn't make the backing store strings of 2188 // CFStrings writable. (See <rdar://problem/10657500>) 2189 llvm::GlobalVariable *GV = 2190 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2191 Linkage, C, ".str"); 2192 GV->setUnnamedAddr(true); 2193 if (isUTF16) { 2194 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2195 GV->setAlignment(Align.getQuantity()); 2196 } else { 2197 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2198 GV->setAlignment(Align.getQuantity()); 2199 } 2200 2201 // String. 2202 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2203 2204 if (isUTF16) 2205 // Cast the UTF16 string to the correct type. 2206 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2207 2208 // String length. 2209 Ty = getTypes().ConvertType(getContext().LongTy); 2210 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2211 2212 // The struct. 2213 C = llvm::ConstantStruct::get(STy, Fields); 2214 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2215 llvm::GlobalVariable::PrivateLinkage, C, 2216 "_unnamed_cfstring_"); 2217 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2218 GV->setSection(Sect); 2219 Entry.setValue(GV); 2220 2221 return GV; 2222 } 2223 2224 static RecordDecl * 2225 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2226 DeclContext *DC, IdentifierInfo *Id) { 2227 SourceLocation Loc; 2228 if (Ctx.getLangOpts().CPlusPlus) 2229 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2230 else 2231 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2232 } 2233 2234 llvm::Constant * 2235 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2236 unsigned StringLength = 0; 2237 llvm::StringMapEntry<llvm::Constant*> &Entry = 2238 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2239 2240 if (llvm::Constant *C = Entry.getValue()) 2241 return C; 2242 2243 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2244 llvm::Constant *Zeros[] = { Zero, Zero }; 2245 2246 // If we don't already have it, get _NSConstantStringClassReference. 2247 if (!ConstantStringClassRef) { 2248 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2249 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2250 llvm::Constant *GV; 2251 if (LangOpts.ObjCRuntime.isNonFragile()) { 2252 std::string str = 2253 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2254 : "OBJC_CLASS_$_" + StringClass; 2255 GV = getObjCRuntime().GetClassGlobal(str); 2256 // Make sure the result is of the correct type. 2257 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2258 ConstantStringClassRef = 2259 llvm::ConstantExpr::getBitCast(GV, PTy); 2260 } else { 2261 std::string str = 2262 StringClass.empty() ? "_NSConstantStringClassReference" 2263 : "_" + StringClass + "ClassReference"; 2264 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2265 GV = CreateRuntimeVariable(PTy, str); 2266 // Decay array -> ptr 2267 ConstantStringClassRef = 2268 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2269 } 2270 } 2271 2272 if (!NSConstantStringType) { 2273 // Construct the type for a constant NSString. 2274 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2275 Context.getTranslationUnitDecl(), 2276 &Context.Idents.get("__builtin_NSString")); 2277 D->startDefinition(); 2278 2279 QualType FieldTypes[3]; 2280 2281 // const int *isa; 2282 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2283 // const char *str; 2284 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2285 // unsigned int length; 2286 FieldTypes[2] = Context.UnsignedIntTy; 2287 2288 // Create fields 2289 for (unsigned i = 0; i < 3; ++i) { 2290 FieldDecl *Field = FieldDecl::Create(Context, D, 2291 SourceLocation(), 2292 SourceLocation(), 0, 2293 FieldTypes[i], /*TInfo=*/0, 2294 /*BitWidth=*/0, 2295 /*Mutable=*/false, 2296 ICIS_NoInit); 2297 Field->setAccess(AS_public); 2298 D->addDecl(Field); 2299 } 2300 2301 D->completeDefinition(); 2302 QualType NSTy = Context.getTagDeclType(D); 2303 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2304 } 2305 2306 llvm::Constant *Fields[3]; 2307 2308 // Class pointer. 2309 Fields[0] = ConstantStringClassRef; 2310 2311 // String pointer. 2312 llvm::Constant *C = 2313 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2314 2315 llvm::GlobalValue::LinkageTypes Linkage; 2316 bool isConstant; 2317 Linkage = llvm::GlobalValue::PrivateLinkage; 2318 isConstant = !LangOpts.WritableStrings; 2319 2320 llvm::GlobalVariable *GV = 2321 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2322 ".str"); 2323 GV->setUnnamedAddr(true); 2324 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2325 GV->setAlignment(Align.getQuantity()); 2326 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2327 2328 // String length. 2329 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2330 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2331 2332 // The struct. 2333 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2334 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2335 llvm::GlobalVariable::PrivateLinkage, C, 2336 "_unnamed_nsstring_"); 2337 // FIXME. Fix section. 2338 if (const char *Sect = 2339 LangOpts.ObjCRuntime.isNonFragile() 2340 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2341 : getContext().getTargetInfo().getNSStringSection()) 2342 GV->setSection(Sect); 2343 Entry.setValue(GV); 2344 2345 return GV; 2346 } 2347 2348 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2349 if (ObjCFastEnumerationStateType.isNull()) { 2350 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2351 Context.getTranslationUnitDecl(), 2352 &Context.Idents.get("__objcFastEnumerationState")); 2353 D->startDefinition(); 2354 2355 QualType FieldTypes[] = { 2356 Context.UnsignedLongTy, 2357 Context.getPointerType(Context.getObjCIdType()), 2358 Context.getPointerType(Context.UnsignedLongTy), 2359 Context.getConstantArrayType(Context.UnsignedLongTy, 2360 llvm::APInt(32, 5), ArrayType::Normal, 0) 2361 }; 2362 2363 for (size_t i = 0; i < 4; ++i) { 2364 FieldDecl *Field = FieldDecl::Create(Context, 2365 D, 2366 SourceLocation(), 2367 SourceLocation(), 0, 2368 FieldTypes[i], /*TInfo=*/0, 2369 /*BitWidth=*/0, 2370 /*Mutable=*/false, 2371 ICIS_NoInit); 2372 Field->setAccess(AS_public); 2373 D->addDecl(Field); 2374 } 2375 2376 D->completeDefinition(); 2377 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2378 } 2379 2380 return ObjCFastEnumerationStateType; 2381 } 2382 2383 llvm::Constant * 2384 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2385 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2386 2387 // Don't emit it as the address of the string, emit the string data itself 2388 // as an inline array. 2389 if (E->getCharByteWidth() == 1) { 2390 SmallString<64> Str(E->getString()); 2391 2392 // Resize the string to the right size, which is indicated by its type. 2393 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2394 Str.resize(CAT->getSize().getZExtValue()); 2395 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2396 } 2397 2398 llvm::ArrayType *AType = 2399 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2400 llvm::Type *ElemTy = AType->getElementType(); 2401 unsigned NumElements = AType->getNumElements(); 2402 2403 // Wide strings have either 2-byte or 4-byte elements. 2404 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2405 SmallVector<uint16_t, 32> Elements; 2406 Elements.reserve(NumElements); 2407 2408 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2409 Elements.push_back(E->getCodeUnit(i)); 2410 Elements.resize(NumElements); 2411 return llvm::ConstantDataArray::get(VMContext, Elements); 2412 } 2413 2414 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2415 SmallVector<uint32_t, 32> Elements; 2416 Elements.reserve(NumElements); 2417 2418 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2419 Elements.push_back(E->getCodeUnit(i)); 2420 Elements.resize(NumElements); 2421 return llvm::ConstantDataArray::get(VMContext, Elements); 2422 } 2423 2424 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2425 /// constant array for the given string literal. 2426 llvm::Constant * 2427 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2428 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2429 if (S->isAscii() || S->isUTF8()) { 2430 SmallString<64> Str(S->getString()); 2431 2432 // Resize the string to the right size, which is indicated by its type. 2433 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2434 Str.resize(CAT->getSize().getZExtValue()); 2435 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2436 } 2437 2438 // FIXME: the following does not memoize wide strings. 2439 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2440 llvm::GlobalVariable *GV = 2441 new llvm::GlobalVariable(getModule(),C->getType(), 2442 !LangOpts.WritableStrings, 2443 llvm::GlobalValue::PrivateLinkage, 2444 C,".str"); 2445 2446 GV->setAlignment(Align.getQuantity()); 2447 GV->setUnnamedAddr(true); 2448 return GV; 2449 } 2450 2451 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2452 /// array for the given ObjCEncodeExpr node. 2453 llvm::Constant * 2454 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2455 std::string Str; 2456 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2457 2458 return GetAddrOfConstantCString(Str); 2459 } 2460 2461 2462 /// GenerateWritableString -- Creates storage for a string literal. 2463 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2464 bool constant, 2465 CodeGenModule &CGM, 2466 const char *GlobalName, 2467 unsigned Alignment) { 2468 // Create Constant for this string literal. Don't add a '\0'. 2469 llvm::Constant *C = 2470 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2471 2472 // Create a global variable for this string 2473 llvm::GlobalVariable *GV = 2474 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2475 llvm::GlobalValue::PrivateLinkage, 2476 C, GlobalName); 2477 GV->setAlignment(Alignment); 2478 GV->setUnnamedAddr(true); 2479 return GV; 2480 } 2481 2482 /// GetAddrOfConstantString - Returns a pointer to a character array 2483 /// containing the literal. This contents are exactly that of the 2484 /// given string, i.e. it will not be null terminated automatically; 2485 /// see GetAddrOfConstantCString. Note that whether the result is 2486 /// actually a pointer to an LLVM constant depends on 2487 /// Feature.WriteableStrings. 2488 /// 2489 /// The result has pointer to array type. 2490 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2491 const char *GlobalName, 2492 unsigned Alignment) { 2493 // Get the default prefix if a name wasn't specified. 2494 if (!GlobalName) 2495 GlobalName = ".str"; 2496 2497 // Don't share any string literals if strings aren't constant. 2498 if (LangOpts.WritableStrings) 2499 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2500 2501 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2502 ConstantStringMap.GetOrCreateValue(Str); 2503 2504 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2505 if (Alignment > GV->getAlignment()) { 2506 GV->setAlignment(Alignment); 2507 } 2508 return GV; 2509 } 2510 2511 // Create a global variable for this. 2512 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2513 Alignment); 2514 Entry.setValue(GV); 2515 return GV; 2516 } 2517 2518 /// GetAddrOfConstantCString - Returns a pointer to a character 2519 /// array containing the literal and a terminating '\0' 2520 /// character. The result has pointer to array type. 2521 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2522 const char *GlobalName, 2523 unsigned Alignment) { 2524 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2525 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2526 } 2527 2528 /// EmitObjCPropertyImplementations - Emit information for synthesized 2529 /// properties for an implementation. 2530 void CodeGenModule::EmitObjCPropertyImplementations(const 2531 ObjCImplementationDecl *D) { 2532 for (ObjCImplementationDecl::propimpl_iterator 2533 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2534 ObjCPropertyImplDecl *PID = *i; 2535 2536 // Dynamic is just for type-checking. 2537 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2538 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2539 2540 // Determine which methods need to be implemented, some may have 2541 // been overridden. Note that ::isPropertyAccessor is not the method 2542 // we want, that just indicates if the decl came from a 2543 // property. What we want to know is if the method is defined in 2544 // this implementation. 2545 if (!D->getInstanceMethod(PD->getGetterName())) 2546 CodeGenFunction(*this).GenerateObjCGetter( 2547 const_cast<ObjCImplementationDecl *>(D), PID); 2548 if (!PD->isReadOnly() && 2549 !D->getInstanceMethod(PD->getSetterName())) 2550 CodeGenFunction(*this).GenerateObjCSetter( 2551 const_cast<ObjCImplementationDecl *>(D), PID); 2552 } 2553 } 2554 } 2555 2556 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2557 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2558 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2559 ivar; ivar = ivar->getNextIvar()) 2560 if (ivar->getType().isDestructedType()) 2561 return true; 2562 2563 return false; 2564 } 2565 2566 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2567 /// for an implementation. 2568 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2569 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2570 if (needsDestructMethod(D)) { 2571 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2572 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2573 ObjCMethodDecl *DTORMethod = 2574 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2575 cxxSelector, getContext().VoidTy, 0, D, 2576 /*isInstance=*/true, /*isVariadic=*/false, 2577 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2578 /*isDefined=*/false, ObjCMethodDecl::Required); 2579 D->addInstanceMethod(DTORMethod); 2580 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2581 D->setHasDestructors(true); 2582 } 2583 2584 // If the implementation doesn't have any ivar initializers, we don't need 2585 // a .cxx_construct. 2586 if (D->getNumIvarInitializers() == 0) 2587 return; 2588 2589 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2590 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2591 // The constructor returns 'self'. 2592 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2593 D->getLocation(), 2594 D->getLocation(), 2595 cxxSelector, 2596 getContext().getObjCIdType(), 0, 2597 D, /*isInstance=*/true, 2598 /*isVariadic=*/false, 2599 /*isPropertyAccessor=*/true, 2600 /*isImplicitlyDeclared=*/true, 2601 /*isDefined=*/false, 2602 ObjCMethodDecl::Required); 2603 D->addInstanceMethod(CTORMethod); 2604 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2605 D->setHasNonZeroConstructors(true); 2606 } 2607 2608 /// EmitNamespace - Emit all declarations in a namespace. 2609 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2610 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2611 I != E; ++I) 2612 EmitTopLevelDecl(*I); 2613 } 2614 2615 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2616 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2617 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2618 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2619 ErrorUnsupported(LSD, "linkage spec"); 2620 return; 2621 } 2622 2623 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2624 I != E; ++I) { 2625 // Meta-data for ObjC class includes references to implemented methods. 2626 // Generate class's method definitions first. 2627 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2628 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2629 MEnd = OID->meth_end(); 2630 M != MEnd; ++M) 2631 EmitTopLevelDecl(*M); 2632 } 2633 EmitTopLevelDecl(*I); 2634 } 2635 } 2636 2637 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2638 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2639 // If an error has occurred, stop code generation, but continue 2640 // parsing and semantic analysis (to ensure all warnings and errors 2641 // are emitted). 2642 if (Diags.hasErrorOccurred()) 2643 return; 2644 2645 // Ignore dependent declarations. 2646 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2647 return; 2648 2649 switch (D->getKind()) { 2650 case Decl::CXXConversion: 2651 case Decl::CXXMethod: 2652 case Decl::Function: 2653 // Skip function templates 2654 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2655 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2656 return; 2657 2658 EmitGlobal(cast<FunctionDecl>(D)); 2659 break; 2660 2661 case Decl::Var: 2662 EmitGlobal(cast<VarDecl>(D)); 2663 break; 2664 2665 // Indirect fields from global anonymous structs and unions can be 2666 // ignored; only the actual variable requires IR gen support. 2667 case Decl::IndirectField: 2668 break; 2669 2670 // C++ Decls 2671 case Decl::Namespace: 2672 EmitNamespace(cast<NamespaceDecl>(D)); 2673 break; 2674 // No code generation needed. 2675 case Decl::UsingShadow: 2676 case Decl::Using: 2677 case Decl::UsingDirective: 2678 case Decl::ClassTemplate: 2679 case Decl::FunctionTemplate: 2680 case Decl::TypeAliasTemplate: 2681 case Decl::NamespaceAlias: 2682 case Decl::Block: 2683 case Decl::Import: 2684 break; 2685 case Decl::CXXConstructor: 2686 // Skip function templates 2687 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2688 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2689 return; 2690 2691 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2692 break; 2693 case Decl::CXXDestructor: 2694 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2695 return; 2696 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2697 break; 2698 2699 case Decl::StaticAssert: 2700 // Nothing to do. 2701 break; 2702 2703 // Objective-C Decls 2704 2705 // Forward declarations, no (immediate) code generation. 2706 case Decl::ObjCInterface: 2707 case Decl::ObjCCategory: 2708 break; 2709 2710 case Decl::ObjCProtocol: { 2711 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2712 if (Proto->isThisDeclarationADefinition()) 2713 ObjCRuntime->GenerateProtocol(Proto); 2714 break; 2715 } 2716 2717 case Decl::ObjCCategoryImpl: 2718 // Categories have properties but don't support synthesize so we 2719 // can ignore them here. 2720 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2721 break; 2722 2723 case Decl::ObjCImplementation: { 2724 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2725 EmitObjCPropertyImplementations(OMD); 2726 EmitObjCIvarInitializations(OMD); 2727 ObjCRuntime->GenerateClass(OMD); 2728 // Emit global variable debug information. 2729 if (CGDebugInfo *DI = getModuleDebugInfo()) 2730 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2731 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2732 OMD->getClassInterface()), OMD->getLocation()); 2733 break; 2734 } 2735 case Decl::ObjCMethod: { 2736 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2737 // If this is not a prototype, emit the body. 2738 if (OMD->getBody()) 2739 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2740 break; 2741 } 2742 case Decl::ObjCCompatibleAlias: 2743 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2744 break; 2745 2746 case Decl::LinkageSpec: 2747 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2748 break; 2749 2750 case Decl::FileScopeAsm: { 2751 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2752 StringRef AsmString = AD->getAsmString()->getString(); 2753 2754 const std::string &S = getModule().getModuleInlineAsm(); 2755 if (S.empty()) 2756 getModule().setModuleInlineAsm(AsmString); 2757 else if (S.end()[-1] == '\n') 2758 getModule().setModuleInlineAsm(S + AsmString.str()); 2759 else 2760 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2761 break; 2762 } 2763 2764 default: 2765 // Make sure we handled everything we should, every other kind is a 2766 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2767 // function. Need to recode Decl::Kind to do that easily. 2768 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2769 } 2770 } 2771 2772 /// Turns the given pointer into a constant. 2773 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2774 const void *Ptr) { 2775 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2776 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2777 return llvm::ConstantInt::get(i64, PtrInt); 2778 } 2779 2780 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2781 llvm::NamedMDNode *&GlobalMetadata, 2782 GlobalDecl D, 2783 llvm::GlobalValue *Addr) { 2784 if (!GlobalMetadata) 2785 GlobalMetadata = 2786 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2787 2788 // TODO: should we report variant information for ctors/dtors? 2789 llvm::Value *Ops[] = { 2790 Addr, 2791 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2792 }; 2793 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2794 } 2795 2796 /// Emits metadata nodes associating all the global values in the 2797 /// current module with the Decls they came from. This is useful for 2798 /// projects using IR gen as a subroutine. 2799 /// 2800 /// Since there's currently no way to associate an MDNode directly 2801 /// with an llvm::GlobalValue, we create a global named metadata 2802 /// with the name 'clang.global.decl.ptrs'. 2803 void CodeGenModule::EmitDeclMetadata() { 2804 llvm::NamedMDNode *GlobalMetadata = 0; 2805 2806 // StaticLocalDeclMap 2807 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2808 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2809 I != E; ++I) { 2810 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2811 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2812 } 2813 } 2814 2815 /// Emits metadata nodes for all the local variables in the current 2816 /// function. 2817 void CodeGenFunction::EmitDeclMetadata() { 2818 if (LocalDeclMap.empty()) return; 2819 2820 llvm::LLVMContext &Context = getLLVMContext(); 2821 2822 // Find the unique metadata ID for this name. 2823 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2824 2825 llvm::NamedMDNode *GlobalMetadata = 0; 2826 2827 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2828 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2829 const Decl *D = I->first; 2830 llvm::Value *Addr = I->second; 2831 2832 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2833 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2834 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2835 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2836 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2837 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2838 } 2839 } 2840 } 2841 2842 void CodeGenModule::EmitCoverageFile() { 2843 if (!getCodeGenOpts().CoverageFile.empty()) { 2844 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2845 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2846 llvm::LLVMContext &Ctx = TheModule.getContext(); 2847 llvm::MDString *CoverageFile = 2848 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2849 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2850 llvm::MDNode *CU = CUNode->getOperand(i); 2851 llvm::Value *node[] = { CoverageFile, CU }; 2852 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2853 GCov->addOperand(N); 2854 } 2855 } 2856 } 2857 } 2858 2859 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 2860 QualType GuidType) { 2861 // Sema has checked that all uuid strings are of the form 2862 // "12345678-1234-1234-1234-1234567890ab". 2863 assert(Uuid.size() == 36); 2864 const char *Uuidstr = Uuid.data(); 2865 for (int i = 0; i < 36; ++i) { 2866 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 2867 else assert(isxdigit(Uuidstr[i])); 2868 } 2869 2870 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 2871 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 2872 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 2873 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 2874 2875 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 2876 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 2877 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 2878 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 2879 APValue& Arr = InitStruct.getStructField(3); 2880 Arr = APValue(APValue::UninitArray(), 8, 8); 2881 for (int t = 0; t < 8; ++t) 2882 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt( 2883 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16))); 2884 2885 return EmitConstantValue(InitStruct, GuidType); 2886 } 2887