xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 443250f08da3ea3396586f0349d8d34d42223633)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "CoverageMappingGen.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericMIPS:
68   case TargetCXXABI::GenericItanium:
69     return CreateItaniumCXXABI(CGM);
70   case TargetCXXABI::Microsoft:
71     return CreateMicrosoftCXXABI(CGM);
72   }
73 
74   llvm_unreachable("invalid C++ ABI kind");
75 }
76 
77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
78                              llvm::Module &M, const llvm::DataLayout &TD,
79                              DiagnosticsEngine &diags,
80                              CoverageSourceInfo *CoverageInfo)
81     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
82       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
83       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
84       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
85       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
86       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
87       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
88       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
89       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
90       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
91       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
92       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
93       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
94 
95   // Initialize the type cache.
96   llvm::LLVMContext &LLVMContext = M.getContext();
97   VoidTy = llvm::Type::getVoidTy(LLVMContext);
98   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
100   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
101   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
102   FloatTy = llvm::Type::getFloatTy(LLVMContext);
103   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
104   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
105   PointerAlignInBytes =
106   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
107   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
108   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
109   Int8PtrTy = Int8Ty->getPointerTo(0);
110   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
111 
112   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
113   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     auto ReaderOrErr =
145         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
146     if (std::error_code EC = ReaderOrErr.getError()) {
147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148                                               "Could not read profile: %0");
149       getDiags().Report(DiagID) << EC.message();
150     }
151     PGOReader = std::move(ReaderOrErr.get());
152   }
153 
154   // If coverage mapping generation is enabled, create the
155   // CoverageMappingModuleGen object.
156   if (CodeGenOpts.CoverageMapping)
157     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
158 }
159 
160 CodeGenModule::~CodeGenModule() {
161   delete ObjCRuntime;
162   delete OpenCLRuntime;
163   delete OpenMPRuntime;
164   delete CUDARuntime;
165   delete TheTargetCodeGenInfo;
166   delete TBAA;
167   delete DebugInfo;
168   delete ARCData;
169   delete RRData;
170 }
171 
172 void CodeGenModule::createObjCRuntime() {
173   // This is just isGNUFamily(), but we want to force implementors of
174   // new ABIs to decide how best to do this.
175   switch (LangOpts.ObjCRuntime.getKind()) {
176   case ObjCRuntime::GNUstep:
177   case ObjCRuntime::GCC:
178   case ObjCRuntime::ObjFW:
179     ObjCRuntime = CreateGNUObjCRuntime(*this);
180     return;
181 
182   case ObjCRuntime::FragileMacOSX:
183   case ObjCRuntime::MacOSX:
184   case ObjCRuntime::iOS:
185     ObjCRuntime = CreateMacObjCRuntime(*this);
186     return;
187   }
188   llvm_unreachable("bad runtime kind");
189 }
190 
191 void CodeGenModule::createOpenCLRuntime() {
192   OpenCLRuntime = new CGOpenCLRuntime(*this);
193 }
194 
195 void CodeGenModule::createOpenMPRuntime() {
196   OpenMPRuntime = new CGOpenMPRuntime(*this);
197 }
198 
199 void CodeGenModule::createCUDARuntime() {
200   CUDARuntime = CreateNVCUDARuntime(*this);
201 }
202 
203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
204   Replacements[Name] = C;
205 }
206 
207 void CodeGenModule::applyReplacements() {
208   for (ReplacementsTy::iterator I = Replacements.begin(),
209                                 E = Replacements.end();
210        I != E; ++I) {
211     StringRef MangledName = I->first();
212     llvm::Constant *Replacement = I->second;
213     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
214     if (!Entry)
215       continue;
216     auto *OldF = cast<llvm::Function>(Entry);
217     auto *NewF = dyn_cast<llvm::Function>(Replacement);
218     if (!NewF) {
219       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
220         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
221       } else {
222         auto *CE = cast<llvm::ConstantExpr>(Replacement);
223         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
224                CE->getOpcode() == llvm::Instruction::GetElementPtr);
225         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
226       }
227     }
228 
229     // Replace old with new, but keep the old order.
230     OldF->replaceAllUsesWith(Replacement);
231     if (NewF) {
232       NewF->removeFromParent();
233       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
234     }
235     OldF->eraseFromParent();
236   }
237 }
238 
239 // This is only used in aliases that we created and we know they have a
240 // linear structure.
241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
242   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
243   const llvm::Constant *C = &GA;
244   for (;;) {
245     C = C->stripPointerCasts();
246     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
247       return GO;
248     // stripPointerCasts will not walk over weak aliases.
249     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
250     if (!GA2)
251       return nullptr;
252     if (!Visited.insert(GA2).second)
253       return nullptr;
254     C = GA2->getAliasee();
255   }
256 }
257 
258 void CodeGenModule::checkAliases() {
259   // Check if the constructed aliases are well formed. It is really unfortunate
260   // that we have to do this in CodeGen, but we only construct mangled names
261   // and aliases during codegen.
262   bool Error = false;
263   DiagnosticsEngine &Diags = getDiags();
264   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
265          E = Aliases.end(); I != E; ++I) {
266     const GlobalDecl &GD = *I;
267     const auto *D = cast<ValueDecl>(GD.getDecl());
268     const AliasAttr *AA = D->getAttr<AliasAttr>();
269     StringRef MangledName = getMangledName(GD);
270     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
271     auto *Alias = cast<llvm::GlobalAlias>(Entry);
272     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
273     if (!GV) {
274       Error = true;
275       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
276     } else if (GV->isDeclaration()) {
277       Error = true;
278       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
279     }
280 
281     llvm::Constant *Aliasee = Alias->getAliasee();
282     llvm::GlobalValue *AliaseeGV;
283     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
284       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
285     else
286       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
287 
288     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
289       StringRef AliasSection = SA->getName();
290       if (AliasSection != AliaseeGV->getSection())
291         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
292             << AliasSection;
293     }
294 
295     // We have to handle alias to weak aliases in here. LLVM itself disallows
296     // this since the object semantics would not match the IL one. For
297     // compatibility with gcc we implement it by just pointing the alias
298     // to its aliasee's aliasee. We also warn, since the user is probably
299     // expecting the link to be weak.
300     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
301       if (GA->mayBeOverridden()) {
302         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
303             << GV->getName() << GA->getName();
304         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
305             GA->getAliasee(), Alias->getType());
306         Alias->setAliasee(Aliasee);
307       }
308     }
309   }
310   if (!Error)
311     return;
312 
313   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
314          E = Aliases.end(); I != E; ++I) {
315     const GlobalDecl &GD = *I;
316     StringRef MangledName = getMangledName(GD);
317     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
318     auto *Alias = cast<llvm::GlobalAlias>(Entry);
319     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
320     Alias->eraseFromParent();
321   }
322 }
323 
324 void CodeGenModule::clear() {
325   DeferredDeclsToEmit.clear();
326 }
327 
328 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
329                                        StringRef MainFile) {
330   if (!hasDiagnostics())
331     return;
332   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
333     if (MainFile.empty())
334       MainFile = "<stdin>";
335     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
336   } else
337     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
338                                                       << Mismatched;
339 }
340 
341 void CodeGenModule::Release() {
342   EmitDeferred();
343   applyReplacements();
344   checkAliases();
345   EmitCXXGlobalInitFunc();
346   EmitCXXGlobalDtorFunc();
347   EmitCXXThreadLocalInitFunc();
348   if (ObjCRuntime)
349     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
350       AddGlobalCtor(ObjCInitFunction);
351   if (PGOReader && PGOStats.hasDiagnostics())
352     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
353   EmitCtorList(GlobalCtors, "llvm.global_ctors");
354   EmitCtorList(GlobalDtors, "llvm.global_dtors");
355   EmitGlobalAnnotations();
356   EmitStaticExternCAliases();
357   EmitDeferredUnusedCoverageMappings();
358   if (CoverageMapping)
359     CoverageMapping->emit();
360   emitLLVMUsed();
361 
362   if (CodeGenOpts.Autolink &&
363       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
364     EmitModuleLinkOptions();
365   }
366   if (CodeGenOpts.DwarfVersion)
367     // We actually want the latest version when there are conflicts.
368     // We can change from Warning to Latest if such mode is supported.
369     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
370                               CodeGenOpts.DwarfVersion);
371   if (DebugInfo)
372     // We support a single version in the linked module. The LLVM
373     // parser will drop debug info with a different version number
374     // (and warn about it, too).
375     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
376                               llvm::DEBUG_METADATA_VERSION);
377 
378   // We need to record the widths of enums and wchar_t, so that we can generate
379   // the correct build attributes in the ARM backend.
380   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
381   if (   Arch == llvm::Triple::arm
382       || Arch == llvm::Triple::armeb
383       || Arch == llvm::Triple::thumb
384       || Arch == llvm::Triple::thumbeb) {
385     // Width of wchar_t in bytes
386     uint64_t WCharWidth =
387         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
388     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
389 
390     // The minimum width of an enum in bytes
391     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
392     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
393   }
394 
395   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
396     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
397     switch (PLevel) {
398     case 0: break;
399     case 1: PL = llvm::PICLevel::Small; break;
400     case 2: PL = llvm::PICLevel::Large; break;
401     default: llvm_unreachable("Invalid PIC Level");
402     }
403 
404     getModule().setPICLevel(PL);
405   }
406 
407   SimplifyPersonality();
408 
409   if (getCodeGenOpts().EmitDeclMetadata)
410     EmitDeclMetadata();
411 
412   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
413     EmitCoverageFile();
414 
415   if (DebugInfo)
416     DebugInfo->finalize();
417 
418   EmitVersionIdentMetadata();
419 
420   EmitTargetMetadata();
421 }
422 
423 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
424   // Make sure that this type is translated.
425   Types.UpdateCompletedType(TD);
426 }
427 
428 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
429   if (!TBAA)
430     return nullptr;
431   return TBAA->getTBAAInfo(QTy);
432 }
433 
434 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
435   if (!TBAA)
436     return nullptr;
437   return TBAA->getTBAAInfoForVTablePtr();
438 }
439 
440 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
441   if (!TBAA)
442     return nullptr;
443   return TBAA->getTBAAStructInfo(QTy);
444 }
445 
446 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
447   if (!TBAA)
448     return nullptr;
449   return TBAA->getTBAAStructTypeInfo(QTy);
450 }
451 
452 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
453                                                   llvm::MDNode *AccessN,
454                                                   uint64_t O) {
455   if (!TBAA)
456     return nullptr;
457   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
458 }
459 
460 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
461 /// and struct-path aware TBAA, the tag has the same format:
462 /// base type, access type and offset.
463 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
464 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
465                                         llvm::MDNode *TBAAInfo,
466                                         bool ConvertTypeToTag) {
467   if (ConvertTypeToTag && TBAA)
468     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
469                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
470   else
471     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
472 }
473 
474 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
475   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
476   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
477 }
478 
479 /// ErrorUnsupported - Print out an error that codegen doesn't support the
480 /// specified stmt yet.
481 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
482   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
483                                                "cannot compile this %0 yet");
484   std::string Msg = Type;
485   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
486     << Msg << S->getSourceRange();
487 }
488 
489 /// ErrorUnsupported - Print out an error that codegen doesn't support the
490 /// specified decl yet.
491 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
492   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
493                                                "cannot compile this %0 yet");
494   std::string Msg = Type;
495   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
496 }
497 
498 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
499   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
500 }
501 
502 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
503                                         const NamedDecl *D) const {
504   // Internal definitions always have default visibility.
505   if (GV->hasLocalLinkage()) {
506     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
507     return;
508   }
509 
510   // Set visibility for definitions.
511   LinkageInfo LV = D->getLinkageAndVisibility();
512   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
513     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
514 }
515 
516 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
517   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
518       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
519       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
520       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
521       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
522 }
523 
524 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
525     CodeGenOptions::TLSModel M) {
526   switch (M) {
527   case CodeGenOptions::GeneralDynamicTLSModel:
528     return llvm::GlobalVariable::GeneralDynamicTLSModel;
529   case CodeGenOptions::LocalDynamicTLSModel:
530     return llvm::GlobalVariable::LocalDynamicTLSModel;
531   case CodeGenOptions::InitialExecTLSModel:
532     return llvm::GlobalVariable::InitialExecTLSModel;
533   case CodeGenOptions::LocalExecTLSModel:
534     return llvm::GlobalVariable::LocalExecTLSModel;
535   }
536   llvm_unreachable("Invalid TLS model!");
537 }
538 
539 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
540   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
541 
542   llvm::GlobalValue::ThreadLocalMode TLM;
543   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
544 
545   // Override the TLS model if it is explicitly specified.
546   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
547     TLM = GetLLVMTLSModel(Attr->getModel());
548   }
549 
550   GV->setThreadLocalMode(TLM);
551 }
552 
553 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
554   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
555   if (!FoundStr.empty())
556     return FoundStr;
557 
558   const auto *ND = cast<NamedDecl>(GD.getDecl());
559   SmallString<256> Buffer;
560   StringRef Str;
561   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
562     llvm::raw_svector_ostream Out(Buffer);
563     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
564       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
565     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
566       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
567     else
568       getCXXABI().getMangleContext().mangleName(ND, Out);
569     Str = Out.str();
570   } else {
571     IdentifierInfo *II = ND->getIdentifier();
572     assert(II && "Attempt to mangle unnamed decl.");
573     Str = II->getName();
574   }
575 
576   // Keep the first result in the case of a mangling collision.
577   auto Result = Manglings.insert(std::make_pair(Str, GD));
578   return FoundStr = Result.first->first();
579 }
580 
581 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
582                                              const BlockDecl *BD) {
583   MangleContext &MangleCtx = getCXXABI().getMangleContext();
584   const Decl *D = GD.getDecl();
585 
586   SmallString<256> Buffer;
587   llvm::raw_svector_ostream Out(Buffer);
588   if (!D)
589     MangleCtx.mangleGlobalBlock(BD,
590       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
591   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
592     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
593   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
594     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
595   else
596     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
597 
598   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
599   return Result.first->first();
600 }
601 
602 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
603   return getModule().getNamedValue(Name);
604 }
605 
606 /// AddGlobalCtor - Add a function to the list that will be called before
607 /// main() runs.
608 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
609                                   llvm::Constant *AssociatedData) {
610   // FIXME: Type coercion of void()* types.
611   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
612 }
613 
614 /// AddGlobalDtor - Add a function to the list that will be called
615 /// when the module is unloaded.
616 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
617   // FIXME: Type coercion of void()* types.
618   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
619 }
620 
621 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
622   // Ctor function type is void()*.
623   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
624   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
625 
626   // Get the type of a ctor entry, { i32, void ()*, i8* }.
627   llvm::StructType *CtorStructTy = llvm::StructType::get(
628       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
629 
630   // Construct the constructor and destructor arrays.
631   SmallVector<llvm::Constant*, 8> Ctors;
632   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
633     llvm::Constant *S[] = {
634       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
635       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
636       (I->AssociatedData
637            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
638            : llvm::Constant::getNullValue(VoidPtrTy))
639     };
640     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
641   }
642 
643   if (!Ctors.empty()) {
644     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
645     new llvm::GlobalVariable(TheModule, AT, false,
646                              llvm::GlobalValue::AppendingLinkage,
647                              llvm::ConstantArray::get(AT, Ctors),
648                              GlobalName);
649   }
650 }
651 
652 llvm::GlobalValue::LinkageTypes
653 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
654   const auto *D = cast<FunctionDecl>(GD.getDecl());
655 
656   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
657 
658   if (isa<CXXDestructorDecl>(D) &&
659       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
660                                          GD.getDtorType())) {
661     // Destructor variants in the Microsoft C++ ABI are always internal or
662     // linkonce_odr thunks emitted on an as-needed basis.
663     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
664                                    : llvm::GlobalValue::LinkOnceODRLinkage;
665   }
666 
667   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
668 }
669 
670 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
671                                                     llvm::Function *F) {
672   setNonAliasAttributes(D, F);
673 }
674 
675 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
676                                               const CGFunctionInfo &Info,
677                                               llvm::Function *F) {
678   unsigned CallingConv;
679   AttributeListType AttributeList;
680   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
681   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
682   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
683 }
684 
685 /// Determines whether the language options require us to model
686 /// unwind exceptions.  We treat -fexceptions as mandating this
687 /// except under the fragile ObjC ABI with only ObjC exceptions
688 /// enabled.  This means, for example, that C with -fexceptions
689 /// enables this.
690 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
691   // If exceptions are completely disabled, obviously this is false.
692   if (!LangOpts.Exceptions) return false;
693 
694   // If C++ exceptions are enabled, this is true.
695   if (LangOpts.CXXExceptions) return true;
696 
697   // If ObjC exceptions are enabled, this depends on the ABI.
698   if (LangOpts.ObjCExceptions) {
699     return LangOpts.ObjCRuntime.hasUnwindExceptions();
700   }
701 
702   return true;
703 }
704 
705 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
706                                                            llvm::Function *F) {
707   llvm::AttrBuilder B;
708 
709   if (CodeGenOpts.UnwindTables)
710     B.addAttribute(llvm::Attribute::UWTable);
711 
712   if (!hasUnwindExceptions(LangOpts))
713     B.addAttribute(llvm::Attribute::NoUnwind);
714 
715   if (D->hasAttr<NakedAttr>()) {
716     // Naked implies noinline: we should not be inlining such functions.
717     B.addAttribute(llvm::Attribute::Naked);
718     B.addAttribute(llvm::Attribute::NoInline);
719   } else if (D->hasAttr<NoDuplicateAttr>()) {
720     B.addAttribute(llvm::Attribute::NoDuplicate);
721   } else if (D->hasAttr<NoInlineAttr>()) {
722     B.addAttribute(llvm::Attribute::NoInline);
723   } else if (D->hasAttr<AlwaysInlineAttr>() &&
724              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
725                                               llvm::Attribute::NoInline)) {
726     // (noinline wins over always_inline, and we can't specify both in IR)
727     B.addAttribute(llvm::Attribute::AlwaysInline);
728   }
729 
730   if (D->hasAttr<ColdAttr>()) {
731     if (!D->hasAttr<OptimizeNoneAttr>())
732       B.addAttribute(llvm::Attribute::OptimizeForSize);
733     B.addAttribute(llvm::Attribute::Cold);
734   }
735 
736   if (D->hasAttr<MinSizeAttr>())
737     B.addAttribute(llvm::Attribute::MinSize);
738 
739   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
740     B.addAttribute(llvm::Attribute::StackProtect);
741   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
742     B.addAttribute(llvm::Attribute::StackProtectStrong);
743   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
744     B.addAttribute(llvm::Attribute::StackProtectReq);
745 
746   // Add sanitizer attributes if function is not blacklisted.
747   if (!isInSanitizerBlacklist(F, D->getLocation())) {
748     // When AddressSanitizer is enabled, set SanitizeAddress attribute
749     // unless __attribute__((no_sanitize_address)) is used.
750     if (LangOpts.Sanitize.has(SanitizerKind::Address) &&
751         !D->hasAttr<NoSanitizeAddressAttr>())
752       B.addAttribute(llvm::Attribute::SanitizeAddress);
753     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
754     if (LangOpts.Sanitize.has(SanitizerKind::Thread) &&
755         !D->hasAttr<NoSanitizeThreadAttr>())
756       B.addAttribute(llvm::Attribute::SanitizeThread);
757     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
758     if (LangOpts.Sanitize.has(SanitizerKind::Memory) &&
759         !D->hasAttr<NoSanitizeMemoryAttr>())
760       B.addAttribute(llvm::Attribute::SanitizeMemory);
761   }
762 
763   F->addAttributes(llvm::AttributeSet::FunctionIndex,
764                    llvm::AttributeSet::get(
765                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
766 
767   if (D->hasAttr<OptimizeNoneAttr>()) {
768     // OptimizeNone implies noinline; we should not be inlining such functions.
769     F->addFnAttr(llvm::Attribute::OptimizeNone);
770     F->addFnAttr(llvm::Attribute::NoInline);
771 
772     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
773     assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
774            "OptimizeNone and OptimizeForSize on same function!");
775     assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
776            "OptimizeNone and MinSize on same function!");
777     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
778            "OptimizeNone and AlwaysInline on same function!");
779 
780     // Attribute 'inlinehint' has no effect on 'optnone' functions.
781     // Explicitly remove it from the set of function attributes.
782     F->removeFnAttr(llvm::Attribute::InlineHint);
783   }
784 
785   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
786     F->setUnnamedAddr(true);
787   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
788     if (MD->isVirtual())
789       F->setUnnamedAddr(true);
790 
791   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
792   if (alignment)
793     F->setAlignment(alignment);
794 
795   // C++ ABI requires 2-byte alignment for member functions.
796   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
797     F->setAlignment(2);
798 }
799 
800 void CodeGenModule::SetCommonAttributes(const Decl *D,
801                                         llvm::GlobalValue *GV) {
802   if (const auto *ND = dyn_cast<NamedDecl>(D))
803     setGlobalVisibility(GV, ND);
804   else
805     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
806 
807   if (D->hasAttr<UsedAttr>())
808     addUsedGlobal(GV);
809 }
810 
811 void CodeGenModule::setAliasAttributes(const Decl *D,
812                                        llvm::GlobalValue *GV) {
813   SetCommonAttributes(D, GV);
814 
815   // Process the dllexport attribute based on whether the original definition
816   // (not necessarily the aliasee) was exported.
817   if (D->hasAttr<DLLExportAttr>())
818     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
819 }
820 
821 void CodeGenModule::setNonAliasAttributes(const Decl *D,
822                                           llvm::GlobalObject *GO) {
823   SetCommonAttributes(D, GO);
824 
825   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
826     GO->setSection(SA->getName());
827 
828   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
829 }
830 
831 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
832                                                   llvm::Function *F,
833                                                   const CGFunctionInfo &FI) {
834   SetLLVMFunctionAttributes(D, FI, F);
835   SetLLVMFunctionAttributesForDefinition(D, F);
836 
837   F->setLinkage(llvm::Function::InternalLinkage);
838 
839   setNonAliasAttributes(D, F);
840 }
841 
842 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
843                                          const NamedDecl *ND) {
844   // Set linkage and visibility in case we never see a definition.
845   LinkageInfo LV = ND->getLinkageAndVisibility();
846   if (LV.getLinkage() != ExternalLinkage) {
847     // Don't set internal linkage on declarations.
848   } else {
849     if (ND->hasAttr<DLLImportAttr>()) {
850       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
851       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
852     } else if (ND->hasAttr<DLLExportAttr>()) {
853       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
854       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
855     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
856       // "extern_weak" is overloaded in LLVM; we probably should have
857       // separate linkage types for this.
858       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
859     }
860 
861     // Set visibility on a declaration only if it's explicit.
862     if (LV.isVisibilityExplicit())
863       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
864   }
865 }
866 
867 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
868                                           bool IsIncompleteFunction,
869                                           bool IsThunk) {
870   if (unsigned IID = F->getIntrinsicID()) {
871     // If this is an intrinsic function, set the function's attributes
872     // to the intrinsic's attributes.
873     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
874                                                     (llvm::Intrinsic::ID)IID));
875     return;
876   }
877 
878   const auto *FD = cast<FunctionDecl>(GD.getDecl());
879 
880   if (!IsIncompleteFunction)
881     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
882 
883   // Add the Returned attribute for "this", except for iOS 5 and earlier
884   // where substantial code, including the libstdc++ dylib, was compiled with
885   // GCC and does not actually return "this".
886   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
887       !(getTarget().getTriple().isiOS() &&
888         getTarget().getTriple().isOSVersionLT(6))) {
889     assert(!F->arg_empty() &&
890            F->arg_begin()->getType()
891              ->canLosslesslyBitCastTo(F->getReturnType()) &&
892            "unexpected this return");
893     F->addAttribute(1, llvm::Attribute::Returned);
894   }
895 
896   // Only a few attributes are set on declarations; these may later be
897   // overridden by a definition.
898 
899   setLinkageAndVisibilityForGV(F, FD);
900 
901   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
902     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
903       // Don't dllexport/import destructor thunks.
904       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
905     }
906   }
907 
908   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
909     F->setSection(SA->getName());
910 
911   // A replaceable global allocation function does not act like a builtin by
912   // default, only if it is invoked by a new-expression or delete-expression.
913   if (FD->isReplaceableGlobalAllocationFunction())
914     F->addAttribute(llvm::AttributeSet::FunctionIndex,
915                     llvm::Attribute::NoBuiltin);
916 }
917 
918 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
919   assert(!GV->isDeclaration() &&
920          "Only globals with definition can force usage.");
921   LLVMUsed.push_back(GV);
922 }
923 
924 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
925   assert(!GV->isDeclaration() &&
926          "Only globals with definition can force usage.");
927   LLVMCompilerUsed.push_back(GV);
928 }
929 
930 static void emitUsed(CodeGenModule &CGM, StringRef Name,
931                      std::vector<llvm::WeakVH> &List) {
932   // Don't create llvm.used if there is no need.
933   if (List.empty())
934     return;
935 
936   // Convert List to what ConstantArray needs.
937   SmallVector<llvm::Constant*, 8> UsedArray;
938   UsedArray.resize(List.size());
939   for (unsigned i = 0, e = List.size(); i != e; ++i) {
940     UsedArray[i] =
941         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
942             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
943   }
944 
945   if (UsedArray.empty())
946     return;
947   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
948 
949   auto *GV = new llvm::GlobalVariable(
950       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
951       llvm::ConstantArray::get(ATy, UsedArray), Name);
952 
953   GV->setSection("llvm.metadata");
954 }
955 
956 void CodeGenModule::emitLLVMUsed() {
957   emitUsed(*this, "llvm.used", LLVMUsed);
958   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
959 }
960 
961 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
962   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
963   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
964 }
965 
966 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
967   llvm::SmallString<32> Opt;
968   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
969   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
970   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
971 }
972 
973 void CodeGenModule::AddDependentLib(StringRef Lib) {
974   llvm::SmallString<24> Opt;
975   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
976   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
977   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
978 }
979 
980 /// \brief Add link options implied by the given module, including modules
981 /// it depends on, using a postorder walk.
982 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
983                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
984                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
985   // Import this module's parent.
986   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
987     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
988   }
989 
990   // Import this module's dependencies.
991   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
992     if (Visited.insert(Mod->Imports[I - 1]).second)
993       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
994   }
995 
996   // Add linker options to link against the libraries/frameworks
997   // described by this module.
998   llvm::LLVMContext &Context = CGM.getLLVMContext();
999   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1000     // Link against a framework.  Frameworks are currently Darwin only, so we
1001     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1002     if (Mod->LinkLibraries[I-1].IsFramework) {
1003       llvm::Metadata *Args[2] = {
1004           llvm::MDString::get(Context, "-framework"),
1005           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1006 
1007       Metadata.push_back(llvm::MDNode::get(Context, Args));
1008       continue;
1009     }
1010 
1011     // Link against a library.
1012     llvm::SmallString<24> Opt;
1013     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1014       Mod->LinkLibraries[I-1].Library, Opt);
1015     auto *OptString = llvm::MDString::get(Context, Opt);
1016     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1017   }
1018 }
1019 
1020 void CodeGenModule::EmitModuleLinkOptions() {
1021   // Collect the set of all of the modules we want to visit to emit link
1022   // options, which is essentially the imported modules and all of their
1023   // non-explicit child modules.
1024   llvm::SetVector<clang::Module *> LinkModules;
1025   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1026   SmallVector<clang::Module *, 16> Stack;
1027 
1028   // Seed the stack with imported modules.
1029   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1030                                                MEnd = ImportedModules.end();
1031        M != MEnd; ++M) {
1032     if (Visited.insert(*M).second)
1033       Stack.push_back(*M);
1034   }
1035 
1036   // Find all of the modules to import, making a little effort to prune
1037   // non-leaf modules.
1038   while (!Stack.empty()) {
1039     clang::Module *Mod = Stack.pop_back_val();
1040 
1041     bool AnyChildren = false;
1042 
1043     // Visit the submodules of this module.
1044     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1045                                         SubEnd = Mod->submodule_end();
1046          Sub != SubEnd; ++Sub) {
1047       // Skip explicit children; they need to be explicitly imported to be
1048       // linked against.
1049       if ((*Sub)->IsExplicit)
1050         continue;
1051 
1052       if (Visited.insert(*Sub).second) {
1053         Stack.push_back(*Sub);
1054         AnyChildren = true;
1055       }
1056     }
1057 
1058     // We didn't find any children, so add this module to the list of
1059     // modules to link against.
1060     if (!AnyChildren) {
1061       LinkModules.insert(Mod);
1062     }
1063   }
1064 
1065   // Add link options for all of the imported modules in reverse topological
1066   // order.  We don't do anything to try to order import link flags with respect
1067   // to linker options inserted by things like #pragma comment().
1068   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1069   Visited.clear();
1070   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1071                                                MEnd = LinkModules.end();
1072        M != MEnd; ++M) {
1073     if (Visited.insert(*M).second)
1074       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1075   }
1076   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1077   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1078 
1079   // Add the linker options metadata flag.
1080   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1081                             llvm::MDNode::get(getLLVMContext(),
1082                                               LinkerOptionsMetadata));
1083 }
1084 
1085 void CodeGenModule::EmitDeferred() {
1086   // Emit code for any potentially referenced deferred decls.  Since a
1087   // previously unused static decl may become used during the generation of code
1088   // for a static function, iterate until no changes are made.
1089 
1090   if (!DeferredVTables.empty()) {
1091     EmitDeferredVTables();
1092 
1093     // Emitting a v-table doesn't directly cause more v-tables to
1094     // become deferred, although it can cause functions to be
1095     // emitted that then need those v-tables.
1096     assert(DeferredVTables.empty());
1097   }
1098 
1099   // Stop if we're out of both deferred v-tables and deferred declarations.
1100   if (DeferredDeclsToEmit.empty())
1101     return;
1102 
1103   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1104   // work, it will not interfere with this.
1105   std::vector<DeferredGlobal> CurDeclsToEmit;
1106   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1107 
1108   for (DeferredGlobal &G : CurDeclsToEmit) {
1109     GlobalDecl D = G.GD;
1110     llvm::GlobalValue *GV = G.GV;
1111     G.GV = nullptr;
1112 
1113     assert(!GV || GV == GetGlobalValue(getMangledName(D)));
1114     if (!GV)
1115       GV = GetGlobalValue(getMangledName(D));
1116 
1117     // Check to see if we've already emitted this.  This is necessary
1118     // for a couple of reasons: first, decls can end up in the
1119     // deferred-decls queue multiple times, and second, decls can end
1120     // up with definitions in unusual ways (e.g. by an extern inline
1121     // function acquiring a strong function redefinition).  Just
1122     // ignore these cases.
1123     if (GV && !GV->isDeclaration())
1124       continue;
1125 
1126     // Otherwise, emit the definition and move on to the next one.
1127     EmitGlobalDefinition(D, GV);
1128 
1129     // If we found out that we need to emit more decls, do that recursively.
1130     // This has the advantage that the decls are emitted in a DFS and related
1131     // ones are close together, which is convenient for testing.
1132     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1133       EmitDeferred();
1134       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1135     }
1136   }
1137 }
1138 
1139 void CodeGenModule::EmitGlobalAnnotations() {
1140   if (Annotations.empty())
1141     return;
1142 
1143   // Create a new global variable for the ConstantStruct in the Module.
1144   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1145     Annotations[0]->getType(), Annotations.size()), Annotations);
1146   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1147                                       llvm::GlobalValue::AppendingLinkage,
1148                                       Array, "llvm.global.annotations");
1149   gv->setSection(AnnotationSection);
1150 }
1151 
1152 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1153   llvm::Constant *&AStr = AnnotationStrings[Str];
1154   if (AStr)
1155     return AStr;
1156 
1157   // Not found yet, create a new global.
1158   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1159   auto *gv =
1160       new llvm::GlobalVariable(getModule(), s->getType(), true,
1161                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1162   gv->setSection(AnnotationSection);
1163   gv->setUnnamedAddr(true);
1164   AStr = gv;
1165   return gv;
1166 }
1167 
1168 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1169   SourceManager &SM = getContext().getSourceManager();
1170   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1171   if (PLoc.isValid())
1172     return EmitAnnotationString(PLoc.getFilename());
1173   return EmitAnnotationString(SM.getBufferName(Loc));
1174 }
1175 
1176 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1177   SourceManager &SM = getContext().getSourceManager();
1178   PresumedLoc PLoc = SM.getPresumedLoc(L);
1179   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1180     SM.getExpansionLineNumber(L);
1181   return llvm::ConstantInt::get(Int32Ty, LineNo);
1182 }
1183 
1184 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1185                                                 const AnnotateAttr *AA,
1186                                                 SourceLocation L) {
1187   // Get the globals for file name, annotation, and the line number.
1188   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1189                  *UnitGV = EmitAnnotationUnit(L),
1190                  *LineNoCst = EmitAnnotationLineNo(L);
1191 
1192   // Create the ConstantStruct for the global annotation.
1193   llvm::Constant *Fields[4] = {
1194     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1195     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1196     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1197     LineNoCst
1198   };
1199   return llvm::ConstantStruct::getAnon(Fields);
1200 }
1201 
1202 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1203                                          llvm::GlobalValue *GV) {
1204   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1205   // Get the struct elements for these annotations.
1206   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1207     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1208 }
1209 
1210 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1211                                            SourceLocation Loc) const {
1212   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1213   // Blacklist by function name.
1214   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1215     return true;
1216   // Blacklist by location.
1217   if (!Loc.isInvalid())
1218     return SanitizerBL.isBlacklistedLocation(Loc);
1219   // If location is unknown, this may be a compiler-generated function. Assume
1220   // it's located in the main file.
1221   auto &SM = Context.getSourceManager();
1222   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1223     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1224   }
1225   return false;
1226 }
1227 
1228 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1229                                            SourceLocation Loc, QualType Ty,
1230                                            StringRef Category) const {
1231   // For now globals can be blacklisted only in ASan.
1232   if (!LangOpts.Sanitize.has(SanitizerKind::Address))
1233     return false;
1234   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1235   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1236     return true;
1237   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1238     return true;
1239   // Check global type.
1240   if (!Ty.isNull()) {
1241     // Drill down the array types: if global variable of a fixed type is
1242     // blacklisted, we also don't instrument arrays of them.
1243     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1244       Ty = AT->getElementType();
1245     Ty = Ty.getCanonicalType().getUnqualifiedType();
1246     // We allow to blacklist only record types (classes, structs etc.)
1247     if (Ty->isRecordType()) {
1248       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1249       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1250         return true;
1251     }
1252   }
1253   return false;
1254 }
1255 
1256 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1257   // Never defer when EmitAllDecls is specified.
1258   if (LangOpts.EmitAllDecls)
1259     return true;
1260 
1261   return getContext().DeclMustBeEmitted(Global);
1262 }
1263 
1264 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1265   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1266     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1267       // Implicit template instantiations may change linkage if they are later
1268       // explicitly instantiated, so they should not be emitted eagerly.
1269       return false;
1270 
1271   return true;
1272 }
1273 
1274 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1275     const CXXUuidofExpr* E) {
1276   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1277   // well-formed.
1278   StringRef Uuid = E->getUuidAsStringRef(Context);
1279   std::string Name = "_GUID_" + Uuid.lower();
1280   std::replace(Name.begin(), Name.end(), '-', '_');
1281 
1282   // Look for an existing global.
1283   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1284     return GV;
1285 
1286   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1287   assert(Init && "failed to initialize as constant");
1288 
1289   auto *GV = new llvm::GlobalVariable(
1290       getModule(), Init->getType(),
1291       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1292   if (supportsCOMDAT())
1293     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1294   return GV;
1295 }
1296 
1297 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1298   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1299   assert(AA && "No alias?");
1300 
1301   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1302 
1303   // See if there is already something with the target's name in the module.
1304   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1305   if (Entry) {
1306     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1307     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1308   }
1309 
1310   llvm::Constant *Aliasee;
1311   if (isa<llvm::FunctionType>(DeclTy))
1312     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1313                                       GlobalDecl(cast<FunctionDecl>(VD)),
1314                                       /*ForVTable=*/false);
1315   else
1316     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1317                                     llvm::PointerType::getUnqual(DeclTy),
1318                                     nullptr);
1319 
1320   auto *F = cast<llvm::GlobalValue>(Aliasee);
1321   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1322   WeakRefReferences.insert(F);
1323 
1324   return Aliasee;
1325 }
1326 
1327 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1328   const auto *Global = cast<ValueDecl>(GD.getDecl());
1329 
1330   // Weak references don't produce any output by themselves.
1331   if (Global->hasAttr<WeakRefAttr>())
1332     return;
1333 
1334   // If this is an alias definition (which otherwise looks like a declaration)
1335   // emit it now.
1336   if (Global->hasAttr<AliasAttr>())
1337     return EmitAliasDefinition(GD);
1338 
1339   // If this is CUDA, be selective about which declarations we emit.
1340   if (LangOpts.CUDA) {
1341     if (CodeGenOpts.CUDAIsDevice) {
1342       if (!Global->hasAttr<CUDADeviceAttr>() &&
1343           !Global->hasAttr<CUDAGlobalAttr>() &&
1344           !Global->hasAttr<CUDAConstantAttr>() &&
1345           !Global->hasAttr<CUDASharedAttr>())
1346         return;
1347     } else {
1348       if (!Global->hasAttr<CUDAHostAttr>() && (
1349             Global->hasAttr<CUDADeviceAttr>() ||
1350             Global->hasAttr<CUDAConstantAttr>() ||
1351             Global->hasAttr<CUDASharedAttr>()))
1352         return;
1353     }
1354   }
1355 
1356   // Ignore declarations, they will be emitted on their first use.
1357   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1358     // Forward declarations are emitted lazily on first use.
1359     if (!FD->doesThisDeclarationHaveABody()) {
1360       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1361         return;
1362 
1363       StringRef MangledName = getMangledName(GD);
1364 
1365       // Compute the function info and LLVM type.
1366       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1367       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1368 
1369       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1370                               /*DontDefer=*/false);
1371       return;
1372     }
1373   } else {
1374     const auto *VD = cast<VarDecl>(Global);
1375     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1376 
1377     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1378         !Context.isMSStaticDataMemberInlineDefinition(VD))
1379       return;
1380   }
1381 
1382   // Defer code generation to first use when possible, e.g. if this is an inline
1383   // function. If the global must always be emitted, do it eagerly if possible
1384   // to benefit from cache locality.
1385   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1386     // Emit the definition if it can't be deferred.
1387     EmitGlobalDefinition(GD);
1388     return;
1389   }
1390 
1391   // If we're deferring emission of a C++ variable with an
1392   // initializer, remember the order in which it appeared in the file.
1393   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1394       cast<VarDecl>(Global)->hasInit()) {
1395     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1396     CXXGlobalInits.push_back(nullptr);
1397   }
1398 
1399   StringRef MangledName = getMangledName(GD);
1400   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1401     // The value has already been used and should therefore be emitted.
1402     addDeferredDeclToEmit(GV, GD);
1403   } else if (MustBeEmitted(Global)) {
1404     // The value must be emitted, but cannot be emitted eagerly.
1405     assert(!MayBeEmittedEagerly(Global));
1406     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1407   } else {
1408     // Otherwise, remember that we saw a deferred decl with this name.  The
1409     // first use of the mangled name will cause it to move into
1410     // DeferredDeclsToEmit.
1411     DeferredDecls[MangledName] = GD;
1412   }
1413 }
1414 
1415 namespace {
1416   struct FunctionIsDirectlyRecursive :
1417     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1418     const StringRef Name;
1419     const Builtin::Context &BI;
1420     bool Result;
1421     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1422       Name(N), BI(C), Result(false) {
1423     }
1424     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1425 
1426     bool TraverseCallExpr(CallExpr *E) {
1427       const FunctionDecl *FD = E->getDirectCallee();
1428       if (!FD)
1429         return true;
1430       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1431       if (Attr && Name == Attr->getLabel()) {
1432         Result = true;
1433         return false;
1434       }
1435       unsigned BuiltinID = FD->getBuiltinID();
1436       if (!BuiltinID)
1437         return true;
1438       StringRef BuiltinName = BI.GetName(BuiltinID);
1439       if (BuiltinName.startswith("__builtin_") &&
1440           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1441         Result = true;
1442         return false;
1443       }
1444       return true;
1445     }
1446   };
1447 }
1448 
1449 // isTriviallyRecursive - Check if this function calls another
1450 // decl that, because of the asm attribute or the other decl being a builtin,
1451 // ends up pointing to itself.
1452 bool
1453 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1454   StringRef Name;
1455   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1456     // asm labels are a special kind of mangling we have to support.
1457     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1458     if (!Attr)
1459       return false;
1460     Name = Attr->getLabel();
1461   } else {
1462     Name = FD->getName();
1463   }
1464 
1465   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1466   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1467   return Walker.Result;
1468 }
1469 
1470 bool
1471 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1472   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1473     return true;
1474   const auto *F = cast<FunctionDecl>(GD.getDecl());
1475   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1476     return false;
1477   // PR9614. Avoid cases where the source code is lying to us. An available
1478   // externally function should have an equivalent function somewhere else,
1479   // but a function that calls itself is clearly not equivalent to the real
1480   // implementation.
1481   // This happens in glibc's btowc and in some configure checks.
1482   return !isTriviallyRecursive(F);
1483 }
1484 
1485 /// If the type for the method's class was generated by
1486 /// CGDebugInfo::createContextChain(), the cache contains only a
1487 /// limited DIType without any declarations. Since EmitFunctionStart()
1488 /// needs to find the canonical declaration for each method, we need
1489 /// to construct the complete type prior to emitting the method.
1490 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1491   if (!D->isInstance())
1492     return;
1493 
1494   if (CGDebugInfo *DI = getModuleDebugInfo())
1495     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1496       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1497       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1498     }
1499 }
1500 
1501 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1502   const auto *D = cast<ValueDecl>(GD.getDecl());
1503 
1504   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1505                                  Context.getSourceManager(),
1506                                  "Generating code for declaration");
1507 
1508   if (isa<FunctionDecl>(D)) {
1509     // At -O0, don't generate IR for functions with available_externally
1510     // linkage.
1511     if (!shouldEmitFunction(GD))
1512       return;
1513 
1514     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1515       CompleteDIClassType(Method);
1516       // Make sure to emit the definition(s) before we emit the thunks.
1517       // This is necessary for the generation of certain thunks.
1518       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1519         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1520       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1521         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1522       else
1523         EmitGlobalFunctionDefinition(GD, GV);
1524 
1525       if (Method->isVirtual())
1526         getVTables().EmitThunks(GD);
1527 
1528       return;
1529     }
1530 
1531     return EmitGlobalFunctionDefinition(GD, GV);
1532   }
1533 
1534   if (const auto *VD = dyn_cast<VarDecl>(D))
1535     return EmitGlobalVarDefinition(VD);
1536 
1537   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1538 }
1539 
1540 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1541 /// module, create and return an llvm Function with the specified type. If there
1542 /// is something in the module with the specified name, return it potentially
1543 /// bitcasted to the right type.
1544 ///
1545 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1546 /// to set the attributes on the function when it is first created.
1547 llvm::Constant *
1548 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1549                                        llvm::Type *Ty,
1550                                        GlobalDecl GD, bool ForVTable,
1551                                        bool DontDefer, bool IsThunk,
1552                                        llvm::AttributeSet ExtraAttrs) {
1553   const Decl *D = GD.getDecl();
1554 
1555   // Lookup the entry, lazily creating it if necessary.
1556   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1557   if (Entry) {
1558     if (WeakRefReferences.erase(Entry)) {
1559       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1560       if (FD && !FD->hasAttr<WeakAttr>())
1561         Entry->setLinkage(llvm::Function::ExternalLinkage);
1562     }
1563 
1564     // Handle dropped DLL attributes.
1565     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1566       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1567 
1568     if (Entry->getType()->getElementType() == Ty)
1569       return Entry;
1570 
1571     // Make sure the result is of the correct type.
1572     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1573   }
1574 
1575   // This function doesn't have a complete type (for example, the return
1576   // type is an incomplete struct). Use a fake type instead, and make
1577   // sure not to try to set attributes.
1578   bool IsIncompleteFunction = false;
1579 
1580   llvm::FunctionType *FTy;
1581   if (isa<llvm::FunctionType>(Ty)) {
1582     FTy = cast<llvm::FunctionType>(Ty);
1583   } else {
1584     FTy = llvm::FunctionType::get(VoidTy, false);
1585     IsIncompleteFunction = true;
1586   }
1587 
1588   llvm::Function *F = llvm::Function::Create(FTy,
1589                                              llvm::Function::ExternalLinkage,
1590                                              MangledName, &getModule());
1591   assert(F->getName() == MangledName && "name was uniqued!");
1592   if (D)
1593     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1594   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1595     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1596     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1597                      llvm::AttributeSet::get(VMContext,
1598                                              llvm::AttributeSet::FunctionIndex,
1599                                              B));
1600   }
1601 
1602   if (!DontDefer) {
1603     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1604     // each other bottoming out with the base dtor.  Therefore we emit non-base
1605     // dtors on usage, even if there is no dtor definition in the TU.
1606     if (D && isa<CXXDestructorDecl>(D) &&
1607         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1608                                            GD.getDtorType()))
1609       addDeferredDeclToEmit(F, GD);
1610 
1611     // This is the first use or definition of a mangled name.  If there is a
1612     // deferred decl with this name, remember that we need to emit it at the end
1613     // of the file.
1614     auto DDI = DeferredDecls.find(MangledName);
1615     if (DDI != DeferredDecls.end()) {
1616       // Move the potentially referenced deferred decl to the
1617       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1618       // don't need it anymore).
1619       addDeferredDeclToEmit(F, DDI->second);
1620       DeferredDecls.erase(DDI);
1621 
1622       // Otherwise, if this is a sized deallocation function, emit a weak
1623       // definition for it at the end of the translation unit (if allowed),
1624       // unless the sized deallocation function is aliased.
1625     } else if (D &&
1626                cast<FunctionDecl>(D)
1627                   ->getCorrespondingUnsizedGlobalDeallocationFunction() &&
1628                getLangOpts().DefineSizedDeallocation &&
1629                !D->hasAttr<AliasAttr>()) {
1630       addDeferredDeclToEmit(F, GD);
1631 
1632       // Otherwise, there are cases we have to worry about where we're
1633       // using a declaration for which we must emit a definition but where
1634       // we might not find a top-level definition:
1635       //   - member functions defined inline in their classes
1636       //   - friend functions defined inline in some class
1637       //   - special member functions with implicit definitions
1638       // If we ever change our AST traversal to walk into class methods,
1639       // this will be unnecessary.
1640       //
1641       // We also don't emit a definition for a function if it's going to be an
1642       // entry in a vtable, unless it's already marked as used.
1643     } else if (getLangOpts().CPlusPlus && D) {
1644       // Look for a declaration that's lexically in a record.
1645       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1646            FD = FD->getPreviousDecl()) {
1647         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1648           if (FD->doesThisDeclarationHaveABody()) {
1649             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1650             break;
1651           }
1652         }
1653       }
1654     }
1655   }
1656 
1657   // Make sure the result is of the requested type.
1658   if (!IsIncompleteFunction) {
1659     assert(F->getType()->getElementType() == Ty);
1660     return F;
1661   }
1662 
1663   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1664   return llvm::ConstantExpr::getBitCast(F, PTy);
1665 }
1666 
1667 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1668 /// non-null, then this function will use the specified type if it has to
1669 /// create it (this occurs when we see a definition of the function).
1670 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1671                                                  llvm::Type *Ty,
1672                                                  bool ForVTable,
1673                                                  bool DontDefer) {
1674   // If there was no specific requested type, just convert it now.
1675   if (!Ty)
1676     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1677 
1678   StringRef MangledName = getMangledName(GD);
1679   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1680 }
1681 
1682 /// CreateRuntimeFunction - Create a new runtime function with the specified
1683 /// type and name.
1684 llvm::Constant *
1685 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1686                                      StringRef Name,
1687                                      llvm::AttributeSet ExtraAttrs) {
1688   llvm::Constant *C =
1689       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1690                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1691   if (auto *F = dyn_cast<llvm::Function>(C))
1692     if (F->empty())
1693       F->setCallingConv(getRuntimeCC());
1694   return C;
1695 }
1696 
1697 /// CreateBuiltinFunction - Create a new builtin function with the specified
1698 /// type and name.
1699 llvm::Constant *
1700 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1701                                      StringRef Name,
1702                                      llvm::AttributeSet ExtraAttrs) {
1703   llvm::Constant *C =
1704       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1705                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1706   if (auto *F = dyn_cast<llvm::Function>(C))
1707     if (F->empty())
1708       F->setCallingConv(getBuiltinCC());
1709   return C;
1710 }
1711 
1712 /// isTypeConstant - Determine whether an object of this type can be emitted
1713 /// as a constant.
1714 ///
1715 /// If ExcludeCtor is true, the duration when the object's constructor runs
1716 /// will not be considered. The caller will need to verify that the object is
1717 /// not written to during its construction.
1718 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1719   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1720     return false;
1721 
1722   if (Context.getLangOpts().CPlusPlus) {
1723     if (const CXXRecordDecl *Record
1724           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1725       return ExcludeCtor && !Record->hasMutableFields() &&
1726              Record->hasTrivialDestructor();
1727   }
1728 
1729   return true;
1730 }
1731 
1732 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1733 /// create and return an llvm GlobalVariable with the specified type.  If there
1734 /// is something in the module with the specified name, return it potentially
1735 /// bitcasted to the right type.
1736 ///
1737 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1738 /// to set the attributes on the global when it is first created.
1739 llvm::Constant *
1740 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1741                                      llvm::PointerType *Ty,
1742                                      const VarDecl *D) {
1743   // Lookup the entry, lazily creating it if necessary.
1744   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1745   if (Entry) {
1746     if (WeakRefReferences.erase(Entry)) {
1747       if (D && !D->hasAttr<WeakAttr>())
1748         Entry->setLinkage(llvm::Function::ExternalLinkage);
1749     }
1750 
1751     // Handle dropped DLL attributes.
1752     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1753       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1754 
1755     if (Entry->getType() == Ty)
1756       return Entry;
1757 
1758     // Make sure the result is of the correct type.
1759     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1760       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1761 
1762     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1763   }
1764 
1765   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1766   auto *GV = new llvm::GlobalVariable(
1767       getModule(), Ty->getElementType(), false,
1768       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1769       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1770 
1771   // This is the first use or definition of a mangled name.  If there is a
1772   // deferred decl with this name, remember that we need to emit it at the end
1773   // of the file.
1774   auto DDI = DeferredDecls.find(MangledName);
1775   if (DDI != DeferredDecls.end()) {
1776     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1777     // list, and remove it from DeferredDecls (since we don't need it anymore).
1778     addDeferredDeclToEmit(GV, DDI->second);
1779     DeferredDecls.erase(DDI);
1780   }
1781 
1782   // Handle things which are present even on external declarations.
1783   if (D) {
1784     // FIXME: This code is overly simple and should be merged with other global
1785     // handling.
1786     GV->setConstant(isTypeConstant(D->getType(), false));
1787 
1788     setLinkageAndVisibilityForGV(GV, D);
1789 
1790     if (D->getTLSKind()) {
1791       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1792         CXXThreadLocals.push_back(std::make_pair(D, GV));
1793       setTLSMode(GV, *D);
1794     }
1795 
1796     // If required by the ABI, treat declarations of static data members with
1797     // inline initializers as definitions.
1798     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1799       EmitGlobalVarDefinition(D);
1800     }
1801 
1802     // Handle XCore specific ABI requirements.
1803     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1804         D->getLanguageLinkage() == CLanguageLinkage &&
1805         D->getType().isConstant(Context) &&
1806         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1807       GV->setSection(".cp.rodata");
1808   }
1809 
1810   if (AddrSpace != Ty->getAddressSpace())
1811     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1812 
1813   return GV;
1814 }
1815 
1816 
1817 llvm::GlobalVariable *
1818 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1819                                       llvm::Type *Ty,
1820                                       llvm::GlobalValue::LinkageTypes Linkage) {
1821   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1822   llvm::GlobalVariable *OldGV = nullptr;
1823 
1824   if (GV) {
1825     // Check if the variable has the right type.
1826     if (GV->getType()->getElementType() == Ty)
1827       return GV;
1828 
1829     // Because C++ name mangling, the only way we can end up with an already
1830     // existing global with the same name is if it has been declared extern "C".
1831     assert(GV->isDeclaration() && "Declaration has wrong type!");
1832     OldGV = GV;
1833   }
1834 
1835   // Create a new variable.
1836   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1837                                 Linkage, nullptr, Name);
1838 
1839   if (OldGV) {
1840     // Replace occurrences of the old variable if needed.
1841     GV->takeName(OldGV);
1842 
1843     if (!OldGV->use_empty()) {
1844       llvm::Constant *NewPtrForOldDecl =
1845       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1846       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1847     }
1848 
1849     OldGV->eraseFromParent();
1850   }
1851 
1852   if (supportsCOMDAT() && GV->isWeakForLinker())
1853     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1854 
1855   return GV;
1856 }
1857 
1858 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1859 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1860 /// then it will be created with the specified type instead of whatever the
1861 /// normal requested type would be.
1862 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1863                                                   llvm::Type *Ty) {
1864   assert(D->hasGlobalStorage() && "Not a global variable");
1865   QualType ASTTy = D->getType();
1866   if (!Ty)
1867     Ty = getTypes().ConvertTypeForMem(ASTTy);
1868 
1869   llvm::PointerType *PTy =
1870     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1871 
1872   StringRef MangledName = getMangledName(D);
1873   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1874 }
1875 
1876 /// CreateRuntimeVariable - Create a new runtime global variable with the
1877 /// specified type and name.
1878 llvm::Constant *
1879 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1880                                      StringRef Name) {
1881   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1882 }
1883 
1884 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1885   assert(!D->getInit() && "Cannot emit definite definitions here!");
1886 
1887   if (!MustBeEmitted(D)) {
1888     // If we have not seen a reference to this variable yet, place it
1889     // into the deferred declarations table to be emitted if needed
1890     // later.
1891     StringRef MangledName = getMangledName(D);
1892     if (!GetGlobalValue(MangledName)) {
1893       DeferredDecls[MangledName] = D;
1894       return;
1895     }
1896   }
1897 
1898   // The tentative definition is the only definition.
1899   EmitGlobalVarDefinition(D);
1900 }
1901 
1902 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1903     return Context.toCharUnitsFromBits(
1904       TheDataLayout.getTypeStoreSizeInBits(Ty));
1905 }
1906 
1907 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1908                                                  unsigned AddrSpace) {
1909   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1910     if (D->hasAttr<CUDAConstantAttr>())
1911       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1912     else if (D->hasAttr<CUDASharedAttr>())
1913       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1914     else
1915       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1916   }
1917 
1918   return AddrSpace;
1919 }
1920 
1921 template<typename SomeDecl>
1922 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1923                                                llvm::GlobalValue *GV) {
1924   if (!getLangOpts().CPlusPlus)
1925     return;
1926 
1927   // Must have 'used' attribute, or else inline assembly can't rely on
1928   // the name existing.
1929   if (!D->template hasAttr<UsedAttr>())
1930     return;
1931 
1932   // Must have internal linkage and an ordinary name.
1933   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1934     return;
1935 
1936   // Must be in an extern "C" context. Entities declared directly within
1937   // a record are not extern "C" even if the record is in such a context.
1938   const SomeDecl *First = D->getFirstDecl();
1939   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1940     return;
1941 
1942   // OK, this is an internal linkage entity inside an extern "C" linkage
1943   // specification. Make a note of that so we can give it the "expected"
1944   // mangled name if nothing else is using that name.
1945   std::pair<StaticExternCMap::iterator, bool> R =
1946       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1947 
1948   // If we have multiple internal linkage entities with the same name
1949   // in extern "C" regions, none of them gets that name.
1950   if (!R.second)
1951     R.first->second = nullptr;
1952 }
1953 
1954 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
1955   if (!CGM.supportsCOMDAT())
1956     return false;
1957 
1958   if (D.hasAttr<SelectAnyAttr>())
1959     return true;
1960 
1961   GVALinkage Linkage;
1962   if (auto *VD = dyn_cast<VarDecl>(&D))
1963     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
1964   else
1965     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
1966 
1967   switch (Linkage) {
1968   case GVA_Internal:
1969   case GVA_AvailableExternally:
1970   case GVA_StrongExternal:
1971     return false;
1972   case GVA_DiscardableODR:
1973   case GVA_StrongODR:
1974     return true;
1975   }
1976   llvm_unreachable("No such linkage");
1977 }
1978 
1979 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
1980                                           llvm::GlobalObject &GO) {
1981   if (!shouldBeInCOMDAT(*this, D))
1982     return;
1983   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
1984 }
1985 
1986 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1987   llvm::Constant *Init = nullptr;
1988   QualType ASTTy = D->getType();
1989   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1990   bool NeedsGlobalCtor = false;
1991   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1992 
1993   const VarDecl *InitDecl;
1994   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1995 
1996   if (!InitExpr) {
1997     // This is a tentative definition; tentative definitions are
1998     // implicitly initialized with { 0 }.
1999     //
2000     // Note that tentative definitions are only emitted at the end of
2001     // a translation unit, so they should never have incomplete
2002     // type. In addition, EmitTentativeDefinition makes sure that we
2003     // never attempt to emit a tentative definition if a real one
2004     // exists. A use may still exists, however, so we still may need
2005     // to do a RAUW.
2006     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2007     Init = EmitNullConstant(D->getType());
2008   } else {
2009     initializedGlobalDecl = GlobalDecl(D);
2010     Init = EmitConstantInit(*InitDecl);
2011 
2012     if (!Init) {
2013       QualType T = InitExpr->getType();
2014       if (D->getType()->isReferenceType())
2015         T = D->getType();
2016 
2017       if (getLangOpts().CPlusPlus) {
2018         Init = EmitNullConstant(T);
2019         NeedsGlobalCtor = true;
2020       } else {
2021         ErrorUnsupported(D, "static initializer");
2022         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2023       }
2024     } else {
2025       // We don't need an initializer, so remove the entry for the delayed
2026       // initializer position (just in case this entry was delayed) if we
2027       // also don't need to register a destructor.
2028       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2029         DelayedCXXInitPosition.erase(D);
2030     }
2031   }
2032 
2033   llvm::Type* InitType = Init->getType();
2034   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2035 
2036   // Strip off a bitcast if we got one back.
2037   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2038     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2039            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2040            // All zero index gep.
2041            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2042     Entry = CE->getOperand(0);
2043   }
2044 
2045   // Entry is now either a Function or GlobalVariable.
2046   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2047 
2048   // We have a definition after a declaration with the wrong type.
2049   // We must make a new GlobalVariable* and update everything that used OldGV
2050   // (a declaration or tentative definition) with the new GlobalVariable*
2051   // (which will be a definition).
2052   //
2053   // This happens if there is a prototype for a global (e.g.
2054   // "extern int x[];") and then a definition of a different type (e.g.
2055   // "int x[10];"). This also happens when an initializer has a different type
2056   // from the type of the global (this happens with unions).
2057   if (!GV ||
2058       GV->getType()->getElementType() != InitType ||
2059       GV->getType()->getAddressSpace() !=
2060        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2061 
2062     // Move the old entry aside so that we'll create a new one.
2063     Entry->setName(StringRef());
2064 
2065     // Make a new global with the correct type, this is now guaranteed to work.
2066     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2067 
2068     // Replace all uses of the old global with the new global
2069     llvm::Constant *NewPtrForOldDecl =
2070         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2071     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2072 
2073     // Erase the old global, since it is no longer used.
2074     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2075   }
2076 
2077   MaybeHandleStaticInExternC(D, GV);
2078 
2079   if (D->hasAttr<AnnotateAttr>())
2080     AddGlobalAnnotations(D, GV);
2081 
2082   GV->setInitializer(Init);
2083 
2084   // If it is safe to mark the global 'constant', do so now.
2085   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2086                   isTypeConstant(D->getType(), true));
2087 
2088   // If it is in a read-only section, mark it 'constant'.
2089   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2090     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2091     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2092       GV->setConstant(true);
2093   }
2094 
2095   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2096 
2097   // Set the llvm linkage type as appropriate.
2098   llvm::GlobalValue::LinkageTypes Linkage =
2099       getLLVMLinkageVarDefinition(D, GV->isConstant());
2100 
2101   // On Darwin, the backing variable for a C++11 thread_local variable always
2102   // has internal linkage; all accesses should just be calls to the
2103   // Itanium-specified entry point, which has the normal linkage of the
2104   // variable.
2105   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2106       Context.getTargetInfo().getTriple().isMacOSX())
2107     Linkage = llvm::GlobalValue::InternalLinkage;
2108 
2109   GV->setLinkage(Linkage);
2110   if (D->hasAttr<DLLImportAttr>())
2111     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2112   else if (D->hasAttr<DLLExportAttr>())
2113     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2114   else
2115     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2116 
2117   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2118     // common vars aren't constant even if declared const.
2119     GV->setConstant(false);
2120 
2121   setNonAliasAttributes(D, GV);
2122 
2123   if (D->getTLSKind() && !GV->isThreadLocal()) {
2124     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2125       CXXThreadLocals.push_back(std::make_pair(D, GV));
2126     setTLSMode(GV, *D);
2127   }
2128 
2129   maybeSetTrivialComdat(*D, *GV);
2130 
2131   // Emit the initializer function if necessary.
2132   if (NeedsGlobalCtor || NeedsGlobalDtor)
2133     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2134 
2135   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2136 
2137   // Emit global variable debug information.
2138   if (CGDebugInfo *DI = getModuleDebugInfo())
2139     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2140       DI->EmitGlobalVariable(GV, D);
2141 }
2142 
2143 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2144                                       const VarDecl *D, bool NoCommon) {
2145   // Don't give variables common linkage if -fno-common was specified unless it
2146   // was overridden by a NoCommon attribute.
2147   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2148     return true;
2149 
2150   // C11 6.9.2/2:
2151   //   A declaration of an identifier for an object that has file scope without
2152   //   an initializer, and without a storage-class specifier or with the
2153   //   storage-class specifier static, constitutes a tentative definition.
2154   if (D->getInit() || D->hasExternalStorage())
2155     return true;
2156 
2157   // A variable cannot be both common and exist in a section.
2158   if (D->hasAttr<SectionAttr>())
2159     return true;
2160 
2161   // Thread local vars aren't considered common linkage.
2162   if (D->getTLSKind())
2163     return true;
2164 
2165   // Tentative definitions marked with WeakImportAttr are true definitions.
2166   if (D->hasAttr<WeakImportAttr>())
2167     return true;
2168 
2169   // Declarations with a required alignment do not have common linakge in MSVC
2170   // mode.
2171   if (Context.getLangOpts().MSVCCompat) {
2172     if (D->hasAttr<AlignedAttr>())
2173       return true;
2174     QualType VarType = D->getType();
2175     if (Context.isAlignmentRequired(VarType))
2176       return true;
2177 
2178     if (const auto *RT = VarType->getAs<RecordType>()) {
2179       const RecordDecl *RD = RT->getDecl();
2180       for (const FieldDecl *FD : RD->fields()) {
2181         if (FD->isBitField())
2182           continue;
2183         if (FD->hasAttr<AlignedAttr>())
2184           return true;
2185         if (Context.isAlignmentRequired(FD->getType()))
2186           return true;
2187       }
2188     }
2189   }
2190 
2191   return false;
2192 }
2193 
2194 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2195     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2196   if (Linkage == GVA_Internal)
2197     return llvm::Function::InternalLinkage;
2198 
2199   if (D->hasAttr<WeakAttr>()) {
2200     if (IsConstantVariable)
2201       return llvm::GlobalVariable::WeakODRLinkage;
2202     else
2203       return llvm::GlobalVariable::WeakAnyLinkage;
2204   }
2205 
2206   // We are guaranteed to have a strong definition somewhere else,
2207   // so we can use available_externally linkage.
2208   if (Linkage == GVA_AvailableExternally)
2209     return llvm::Function::AvailableExternallyLinkage;
2210 
2211   // Note that Apple's kernel linker doesn't support symbol
2212   // coalescing, so we need to avoid linkonce and weak linkages there.
2213   // Normally, this means we just map to internal, but for explicit
2214   // instantiations we'll map to external.
2215 
2216   // In C++, the compiler has to emit a definition in every translation unit
2217   // that references the function.  We should use linkonce_odr because
2218   // a) if all references in this translation unit are optimized away, we
2219   // don't need to codegen it.  b) if the function persists, it needs to be
2220   // merged with other definitions. c) C++ has the ODR, so we know the
2221   // definition is dependable.
2222   if (Linkage == GVA_DiscardableODR)
2223     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2224                                             : llvm::Function::InternalLinkage;
2225 
2226   // An explicit instantiation of a template has weak linkage, since
2227   // explicit instantiations can occur in multiple translation units
2228   // and must all be equivalent. However, we are not allowed to
2229   // throw away these explicit instantiations.
2230   if (Linkage == GVA_StrongODR)
2231     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2232                                             : llvm::Function::ExternalLinkage;
2233 
2234   // C++ doesn't have tentative definitions and thus cannot have common
2235   // linkage.
2236   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2237       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2238                                  CodeGenOpts.NoCommon))
2239     return llvm::GlobalVariable::CommonLinkage;
2240 
2241   // selectany symbols are externally visible, so use weak instead of
2242   // linkonce.  MSVC optimizes away references to const selectany globals, so
2243   // all definitions should be the same and ODR linkage should be used.
2244   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2245   if (D->hasAttr<SelectAnyAttr>())
2246     return llvm::GlobalVariable::WeakODRLinkage;
2247 
2248   // Otherwise, we have strong external linkage.
2249   assert(Linkage == GVA_StrongExternal);
2250   return llvm::GlobalVariable::ExternalLinkage;
2251 }
2252 
2253 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2254     const VarDecl *VD, bool IsConstant) {
2255   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2256   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2257 }
2258 
2259 /// Replace the uses of a function that was declared with a non-proto type.
2260 /// We want to silently drop extra arguments from call sites
2261 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2262                                           llvm::Function *newFn) {
2263   // Fast path.
2264   if (old->use_empty()) return;
2265 
2266   llvm::Type *newRetTy = newFn->getReturnType();
2267   SmallVector<llvm::Value*, 4> newArgs;
2268 
2269   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2270          ui != ue; ) {
2271     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2272     llvm::User *user = use->getUser();
2273 
2274     // Recognize and replace uses of bitcasts.  Most calls to
2275     // unprototyped functions will use bitcasts.
2276     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2277       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2278         replaceUsesOfNonProtoConstant(bitcast, newFn);
2279       continue;
2280     }
2281 
2282     // Recognize calls to the function.
2283     llvm::CallSite callSite(user);
2284     if (!callSite) continue;
2285     if (!callSite.isCallee(&*use)) continue;
2286 
2287     // If the return types don't match exactly, then we can't
2288     // transform this call unless it's dead.
2289     if (callSite->getType() != newRetTy && !callSite->use_empty())
2290       continue;
2291 
2292     // Get the call site's attribute list.
2293     SmallVector<llvm::AttributeSet, 8> newAttrs;
2294     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2295 
2296     // Collect any return attributes from the call.
2297     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2298       newAttrs.push_back(
2299         llvm::AttributeSet::get(newFn->getContext(),
2300                                 oldAttrs.getRetAttributes()));
2301 
2302     // If the function was passed too few arguments, don't transform.
2303     unsigned newNumArgs = newFn->arg_size();
2304     if (callSite.arg_size() < newNumArgs) continue;
2305 
2306     // If extra arguments were passed, we silently drop them.
2307     // If any of the types mismatch, we don't transform.
2308     unsigned argNo = 0;
2309     bool dontTransform = false;
2310     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2311            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2312       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2313         dontTransform = true;
2314         break;
2315       }
2316 
2317       // Add any parameter attributes.
2318       if (oldAttrs.hasAttributes(argNo + 1))
2319         newAttrs.
2320           push_back(llvm::
2321                     AttributeSet::get(newFn->getContext(),
2322                                       oldAttrs.getParamAttributes(argNo + 1)));
2323     }
2324     if (dontTransform)
2325       continue;
2326 
2327     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2328       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2329                                                  oldAttrs.getFnAttributes()));
2330 
2331     // Okay, we can transform this.  Create the new call instruction and copy
2332     // over the required information.
2333     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2334 
2335     llvm::CallSite newCall;
2336     if (callSite.isCall()) {
2337       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2338                                        callSite.getInstruction());
2339     } else {
2340       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2341       newCall = llvm::InvokeInst::Create(newFn,
2342                                          oldInvoke->getNormalDest(),
2343                                          oldInvoke->getUnwindDest(),
2344                                          newArgs, "",
2345                                          callSite.getInstruction());
2346     }
2347     newArgs.clear(); // for the next iteration
2348 
2349     if (!newCall->getType()->isVoidTy())
2350       newCall->takeName(callSite.getInstruction());
2351     newCall.setAttributes(
2352                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2353     newCall.setCallingConv(callSite.getCallingConv());
2354 
2355     // Finally, remove the old call, replacing any uses with the new one.
2356     if (!callSite->use_empty())
2357       callSite->replaceAllUsesWith(newCall.getInstruction());
2358 
2359     // Copy debug location attached to CI.
2360     if (!callSite->getDebugLoc().isUnknown())
2361       newCall->setDebugLoc(callSite->getDebugLoc());
2362     callSite->eraseFromParent();
2363   }
2364 }
2365 
2366 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2367 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2368 /// existing call uses of the old function in the module, this adjusts them to
2369 /// call the new function directly.
2370 ///
2371 /// This is not just a cleanup: the always_inline pass requires direct calls to
2372 /// functions to be able to inline them.  If there is a bitcast in the way, it
2373 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2374 /// run at -O0.
2375 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2376                                                       llvm::Function *NewFn) {
2377   // If we're redefining a global as a function, don't transform it.
2378   if (!isa<llvm::Function>(Old)) return;
2379 
2380   replaceUsesOfNonProtoConstant(Old, NewFn);
2381 }
2382 
2383 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2384   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2385   // If we have a definition, this might be a deferred decl. If the
2386   // instantiation is explicit, make sure we emit it at the end.
2387   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2388     GetAddrOfGlobalVar(VD);
2389 
2390   EmitTopLevelDecl(VD);
2391 }
2392 
2393 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2394                                                  llvm::GlobalValue *GV) {
2395   const auto *D = cast<FunctionDecl>(GD.getDecl());
2396 
2397   // Compute the function info and LLVM type.
2398   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2399   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2400 
2401   // Get or create the prototype for the function.
2402   if (!GV) {
2403     llvm::Constant *C =
2404         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2405 
2406     // Strip off a bitcast if we got one back.
2407     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2408       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2409       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2410     } else {
2411       GV = cast<llvm::GlobalValue>(C);
2412     }
2413   }
2414 
2415   if (!GV->isDeclaration()) {
2416     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2417     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2418     if (auto *Prev = OldGD.getDecl())
2419       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2420     return;
2421   }
2422 
2423   if (GV->getType()->getElementType() != Ty) {
2424     // If the types mismatch then we have to rewrite the definition.
2425     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2426 
2427     // F is the Function* for the one with the wrong type, we must make a new
2428     // Function* and update everything that used F (a declaration) with the new
2429     // Function* (which will be a definition).
2430     //
2431     // This happens if there is a prototype for a function
2432     // (e.g. "int f()") and then a definition of a different type
2433     // (e.g. "int f(int x)").  Move the old function aside so that it
2434     // doesn't interfere with GetAddrOfFunction.
2435     GV->setName(StringRef());
2436     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2437 
2438     // This might be an implementation of a function without a
2439     // prototype, in which case, try to do special replacement of
2440     // calls which match the new prototype.  The really key thing here
2441     // is that we also potentially drop arguments from the call site
2442     // so as to make a direct call, which makes the inliner happier
2443     // and suppresses a number of optimizer warnings (!) about
2444     // dropping arguments.
2445     if (!GV->use_empty()) {
2446       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2447       GV->removeDeadConstantUsers();
2448     }
2449 
2450     // Replace uses of F with the Function we will endow with a body.
2451     if (!GV->use_empty()) {
2452       llvm::Constant *NewPtrForOldDecl =
2453           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2454       GV->replaceAllUsesWith(NewPtrForOldDecl);
2455     }
2456 
2457     // Ok, delete the old function now, which is dead.
2458     GV->eraseFromParent();
2459 
2460     GV = NewFn;
2461   }
2462 
2463   // We need to set linkage and visibility on the function before
2464   // generating code for it because various parts of IR generation
2465   // want to propagate this information down (e.g. to local static
2466   // declarations).
2467   auto *Fn = cast<llvm::Function>(GV);
2468   setFunctionLinkage(GD, Fn);
2469   if (D->hasAttr<DLLImportAttr>())
2470     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2471   else if (D->hasAttr<DLLExportAttr>())
2472     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2473   else
2474     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2475 
2476   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2477   setGlobalVisibility(Fn, D);
2478 
2479   MaybeHandleStaticInExternC(D, Fn);
2480 
2481   maybeSetTrivialComdat(*D, *Fn);
2482 
2483   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2484 
2485   setFunctionDefinitionAttributes(D, Fn);
2486   SetLLVMFunctionAttributesForDefinition(D, Fn);
2487 
2488   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2489     AddGlobalCtor(Fn, CA->getPriority());
2490   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2491     AddGlobalDtor(Fn, DA->getPriority());
2492   if (D->hasAttr<AnnotateAttr>())
2493     AddGlobalAnnotations(D, Fn);
2494 }
2495 
2496 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2497   const auto *D = cast<ValueDecl>(GD.getDecl());
2498   const AliasAttr *AA = D->getAttr<AliasAttr>();
2499   assert(AA && "Not an alias?");
2500 
2501   StringRef MangledName = getMangledName(GD);
2502 
2503   // If there is a definition in the module, then it wins over the alias.
2504   // This is dubious, but allow it to be safe.  Just ignore the alias.
2505   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2506   if (Entry && !Entry->isDeclaration())
2507     return;
2508 
2509   Aliases.push_back(GD);
2510 
2511   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2512 
2513   // Create a reference to the named value.  This ensures that it is emitted
2514   // if a deferred decl.
2515   llvm::Constant *Aliasee;
2516   if (isa<llvm::FunctionType>(DeclTy))
2517     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2518                                       /*ForVTable=*/false);
2519   else
2520     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2521                                     llvm::PointerType::getUnqual(DeclTy),
2522                                     /*D=*/nullptr);
2523 
2524   // Create the new alias itself, but don't set a name yet.
2525   auto *GA = llvm::GlobalAlias::create(
2526       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2527       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2528 
2529   if (Entry) {
2530     if (GA->getAliasee() == Entry) {
2531       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2532       return;
2533     }
2534 
2535     assert(Entry->isDeclaration());
2536 
2537     // If there is a declaration in the module, then we had an extern followed
2538     // by the alias, as in:
2539     //   extern int test6();
2540     //   ...
2541     //   int test6() __attribute__((alias("test7")));
2542     //
2543     // Remove it and replace uses of it with the alias.
2544     GA->takeName(Entry);
2545 
2546     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2547                                                           Entry->getType()));
2548     Entry->eraseFromParent();
2549   } else {
2550     GA->setName(MangledName);
2551   }
2552 
2553   // Set attributes which are particular to an alias; this is a
2554   // specialization of the attributes which may be set on a global
2555   // variable/function.
2556   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2557       D->isWeakImported()) {
2558     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2559   }
2560 
2561   if (const auto *VD = dyn_cast<VarDecl>(D))
2562     if (VD->getTLSKind())
2563       setTLSMode(GA, *VD);
2564 
2565   setAliasAttributes(D, GA);
2566 }
2567 
2568 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2569                                             ArrayRef<llvm::Type*> Tys) {
2570   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2571                                          Tys);
2572 }
2573 
2574 static llvm::StringMapEntry<llvm::Constant*> &
2575 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2576                          const StringLiteral *Literal,
2577                          bool TargetIsLSB,
2578                          bool &IsUTF16,
2579                          unsigned &StringLength) {
2580   StringRef String = Literal->getString();
2581   unsigned NumBytes = String.size();
2582 
2583   // Check for simple case.
2584   if (!Literal->containsNonAsciiOrNull()) {
2585     StringLength = NumBytes;
2586     return *Map.insert(std::make_pair(String, nullptr)).first;
2587   }
2588 
2589   // Otherwise, convert the UTF8 literals into a string of shorts.
2590   IsUTF16 = true;
2591 
2592   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2593   const UTF8 *FromPtr = (const UTF8 *)String.data();
2594   UTF16 *ToPtr = &ToBuf[0];
2595 
2596   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2597                            &ToPtr, ToPtr + NumBytes,
2598                            strictConversion);
2599 
2600   // ConvertUTF8toUTF16 returns the length in ToPtr.
2601   StringLength = ToPtr - &ToBuf[0];
2602 
2603   // Add an explicit null.
2604   *ToPtr = 0;
2605   return *Map.insert(std::make_pair(
2606                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2607                                    (StringLength + 1) * 2),
2608                          nullptr)).first;
2609 }
2610 
2611 static llvm::StringMapEntry<llvm::Constant*> &
2612 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2613                        const StringLiteral *Literal,
2614                        unsigned &StringLength) {
2615   StringRef String = Literal->getString();
2616   StringLength = String.size();
2617   return *Map.insert(std::make_pair(String, nullptr)).first;
2618 }
2619 
2620 llvm::Constant *
2621 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2622   unsigned StringLength = 0;
2623   bool isUTF16 = false;
2624   llvm::StringMapEntry<llvm::Constant*> &Entry =
2625     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2626                              getDataLayout().isLittleEndian(),
2627                              isUTF16, StringLength);
2628 
2629   if (auto *C = Entry.second)
2630     return C;
2631 
2632   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2633   llvm::Constant *Zeros[] = { Zero, Zero };
2634   llvm::Value *V;
2635 
2636   // If we don't already have it, get __CFConstantStringClassReference.
2637   if (!CFConstantStringClassRef) {
2638     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2639     Ty = llvm::ArrayType::get(Ty, 0);
2640     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2641                                            "__CFConstantStringClassReference");
2642     // Decay array -> ptr
2643     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2644     CFConstantStringClassRef = V;
2645   }
2646   else
2647     V = CFConstantStringClassRef;
2648 
2649   QualType CFTy = getContext().getCFConstantStringType();
2650 
2651   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2652 
2653   llvm::Constant *Fields[4];
2654 
2655   // Class pointer.
2656   Fields[0] = cast<llvm::ConstantExpr>(V);
2657 
2658   // Flags.
2659   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2660   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2661     llvm::ConstantInt::get(Ty, 0x07C8);
2662 
2663   // String pointer.
2664   llvm::Constant *C = nullptr;
2665   if (isUTF16) {
2666     ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2667         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2668         Entry.first().size() / 2);
2669     C = llvm::ConstantDataArray::get(VMContext, Arr);
2670   } else {
2671     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2672   }
2673 
2674   // Note: -fwritable-strings doesn't make the backing store strings of
2675   // CFStrings writable. (See <rdar://problem/10657500>)
2676   auto *GV =
2677       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2678                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2679   GV->setUnnamedAddr(true);
2680   // Don't enforce the target's minimum global alignment, since the only use
2681   // of the string is via this class initializer.
2682   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2683   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2684   // that changes the section it ends in, which surprises ld64.
2685   if (isUTF16) {
2686     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2687     GV->setAlignment(Align.getQuantity());
2688     GV->setSection("__TEXT,__ustring");
2689   } else {
2690     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2691     GV->setAlignment(Align.getQuantity());
2692     GV->setSection("__TEXT,__cstring,cstring_literals");
2693   }
2694 
2695   // String.
2696   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2697 
2698   if (isUTF16)
2699     // Cast the UTF16 string to the correct type.
2700     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2701 
2702   // String length.
2703   Ty = getTypes().ConvertType(getContext().LongTy);
2704   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2705 
2706   // The struct.
2707   C = llvm::ConstantStruct::get(STy, Fields);
2708   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2709                                 llvm::GlobalVariable::PrivateLinkage, C,
2710                                 "_unnamed_cfstring_");
2711   GV->setSection("__DATA,__cfstring");
2712   Entry.second = GV;
2713 
2714   return GV;
2715 }
2716 
2717 llvm::Constant *
2718 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2719   unsigned StringLength = 0;
2720   llvm::StringMapEntry<llvm::Constant*> &Entry =
2721     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2722 
2723   if (auto *C = Entry.second)
2724     return C;
2725 
2726   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2727   llvm::Constant *Zeros[] = { Zero, Zero };
2728   llvm::Value *V;
2729   // If we don't already have it, get _NSConstantStringClassReference.
2730   if (!ConstantStringClassRef) {
2731     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2732     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2733     llvm::Constant *GV;
2734     if (LangOpts.ObjCRuntime.isNonFragile()) {
2735       std::string str =
2736         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2737                             : "OBJC_CLASS_$_" + StringClass;
2738       GV = getObjCRuntime().GetClassGlobal(str);
2739       // Make sure the result is of the correct type.
2740       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2741       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2742       ConstantStringClassRef = V;
2743     } else {
2744       std::string str =
2745         StringClass.empty() ? "_NSConstantStringClassReference"
2746                             : "_" + StringClass + "ClassReference";
2747       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2748       GV = CreateRuntimeVariable(PTy, str);
2749       // Decay array -> ptr
2750       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2751       ConstantStringClassRef = V;
2752     }
2753   }
2754   else
2755     V = ConstantStringClassRef;
2756 
2757   if (!NSConstantStringType) {
2758     // Construct the type for a constant NSString.
2759     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2760     D->startDefinition();
2761 
2762     QualType FieldTypes[3];
2763 
2764     // const int *isa;
2765     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2766     // const char *str;
2767     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2768     // unsigned int length;
2769     FieldTypes[2] = Context.UnsignedIntTy;
2770 
2771     // Create fields
2772     for (unsigned i = 0; i < 3; ++i) {
2773       FieldDecl *Field = FieldDecl::Create(Context, D,
2774                                            SourceLocation(),
2775                                            SourceLocation(), nullptr,
2776                                            FieldTypes[i], /*TInfo=*/nullptr,
2777                                            /*BitWidth=*/nullptr,
2778                                            /*Mutable=*/false,
2779                                            ICIS_NoInit);
2780       Field->setAccess(AS_public);
2781       D->addDecl(Field);
2782     }
2783 
2784     D->completeDefinition();
2785     QualType NSTy = Context.getTagDeclType(D);
2786     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2787   }
2788 
2789   llvm::Constant *Fields[3];
2790 
2791   // Class pointer.
2792   Fields[0] = cast<llvm::ConstantExpr>(V);
2793 
2794   // String pointer.
2795   llvm::Constant *C =
2796       llvm::ConstantDataArray::getString(VMContext, Entry.first());
2797 
2798   llvm::GlobalValue::LinkageTypes Linkage;
2799   bool isConstant;
2800   Linkage = llvm::GlobalValue::PrivateLinkage;
2801   isConstant = !LangOpts.WritableStrings;
2802 
2803   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2804                                       Linkage, C, ".str");
2805   GV->setUnnamedAddr(true);
2806   // Don't enforce the target's minimum global alignment, since the only use
2807   // of the string is via this class initializer.
2808   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2809   GV->setAlignment(Align.getQuantity());
2810   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2811 
2812   // String length.
2813   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2814   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2815 
2816   // The struct.
2817   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2818   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2819                                 llvm::GlobalVariable::PrivateLinkage, C,
2820                                 "_unnamed_nsstring_");
2821   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2822   const char *NSStringNonFragileABISection =
2823       "__DATA,__objc_stringobj,regular,no_dead_strip";
2824   // FIXME. Fix section.
2825   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2826                      ? NSStringNonFragileABISection
2827                      : NSStringSection);
2828   Entry.second = GV;
2829 
2830   return GV;
2831 }
2832 
2833 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2834   if (ObjCFastEnumerationStateType.isNull()) {
2835     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2836     D->startDefinition();
2837 
2838     QualType FieldTypes[] = {
2839       Context.UnsignedLongTy,
2840       Context.getPointerType(Context.getObjCIdType()),
2841       Context.getPointerType(Context.UnsignedLongTy),
2842       Context.getConstantArrayType(Context.UnsignedLongTy,
2843                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2844     };
2845 
2846     for (size_t i = 0; i < 4; ++i) {
2847       FieldDecl *Field = FieldDecl::Create(Context,
2848                                            D,
2849                                            SourceLocation(),
2850                                            SourceLocation(), nullptr,
2851                                            FieldTypes[i], /*TInfo=*/nullptr,
2852                                            /*BitWidth=*/nullptr,
2853                                            /*Mutable=*/false,
2854                                            ICIS_NoInit);
2855       Field->setAccess(AS_public);
2856       D->addDecl(Field);
2857     }
2858 
2859     D->completeDefinition();
2860     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2861   }
2862 
2863   return ObjCFastEnumerationStateType;
2864 }
2865 
2866 llvm::Constant *
2867 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2868   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2869 
2870   // Don't emit it as the address of the string, emit the string data itself
2871   // as an inline array.
2872   if (E->getCharByteWidth() == 1) {
2873     SmallString<64> Str(E->getString());
2874 
2875     // Resize the string to the right size, which is indicated by its type.
2876     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2877     Str.resize(CAT->getSize().getZExtValue());
2878     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2879   }
2880 
2881   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2882   llvm::Type *ElemTy = AType->getElementType();
2883   unsigned NumElements = AType->getNumElements();
2884 
2885   // Wide strings have either 2-byte or 4-byte elements.
2886   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2887     SmallVector<uint16_t, 32> Elements;
2888     Elements.reserve(NumElements);
2889 
2890     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2891       Elements.push_back(E->getCodeUnit(i));
2892     Elements.resize(NumElements);
2893     return llvm::ConstantDataArray::get(VMContext, Elements);
2894   }
2895 
2896   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2897   SmallVector<uint32_t, 32> Elements;
2898   Elements.reserve(NumElements);
2899 
2900   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2901     Elements.push_back(E->getCodeUnit(i));
2902   Elements.resize(NumElements);
2903   return llvm::ConstantDataArray::get(VMContext, Elements);
2904 }
2905 
2906 static llvm::GlobalVariable *
2907 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2908                       CodeGenModule &CGM, StringRef GlobalName,
2909                       unsigned Alignment) {
2910   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2911   unsigned AddrSpace = 0;
2912   if (CGM.getLangOpts().OpenCL)
2913     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2914 
2915   llvm::Module &M = CGM.getModule();
2916   // Create a global variable for this string
2917   auto *GV = new llvm::GlobalVariable(
2918       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
2919       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2920   GV->setAlignment(Alignment);
2921   GV->setUnnamedAddr(true);
2922   if (GV->isWeakForLinker()) {
2923     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
2924     GV->setComdat(M.getOrInsertComdat(GV->getName()));
2925   }
2926 
2927   return GV;
2928 }
2929 
2930 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2931 /// constant array for the given string literal.
2932 llvm::GlobalVariable *
2933 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2934                                                   StringRef Name) {
2935   auto Alignment =
2936       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2937 
2938   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2939   llvm::GlobalVariable **Entry = nullptr;
2940   if (!LangOpts.WritableStrings) {
2941     Entry = &ConstantStringMap[C];
2942     if (auto GV = *Entry) {
2943       if (Alignment > GV->getAlignment())
2944         GV->setAlignment(Alignment);
2945       return GV;
2946     }
2947   }
2948 
2949   SmallString<256> MangledNameBuffer;
2950   StringRef GlobalVariableName;
2951   llvm::GlobalValue::LinkageTypes LT;
2952 
2953   // Mangle the string literal if the ABI allows for it.  However, we cannot
2954   // do this if  we are compiling with ASan or -fwritable-strings because they
2955   // rely on strings having normal linkage.
2956   if (!LangOpts.WritableStrings &&
2957       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
2958       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2959     llvm::raw_svector_ostream Out(MangledNameBuffer);
2960     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2961     Out.flush();
2962 
2963     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2964     GlobalVariableName = MangledNameBuffer;
2965   } else {
2966     LT = llvm::GlobalValue::PrivateLinkage;
2967     GlobalVariableName = Name;
2968   }
2969 
2970   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2971   if (Entry)
2972     *Entry = GV;
2973 
2974   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
2975                                   QualType());
2976   return GV;
2977 }
2978 
2979 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2980 /// array for the given ObjCEncodeExpr node.
2981 llvm::GlobalVariable *
2982 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2983   std::string Str;
2984   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2985 
2986   return GetAddrOfConstantCString(Str);
2987 }
2988 
2989 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2990 /// the literal and a terminating '\0' character.
2991 /// The result has pointer to array type.
2992 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2993     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2994   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2995   if (Alignment == 0) {
2996     Alignment = getContext()
2997                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2998                     .getQuantity();
2999   }
3000 
3001   llvm::Constant *C =
3002       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3003 
3004   // Don't share any string literals if strings aren't constant.
3005   llvm::GlobalVariable **Entry = nullptr;
3006   if (!LangOpts.WritableStrings) {
3007     Entry = &ConstantStringMap[C];
3008     if (auto GV = *Entry) {
3009       if (Alignment > GV->getAlignment())
3010         GV->setAlignment(Alignment);
3011       return GV;
3012     }
3013   }
3014 
3015   // Get the default prefix if a name wasn't specified.
3016   if (!GlobalName)
3017     GlobalName = ".str";
3018   // Create a global variable for this.
3019   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3020                                   GlobalName, Alignment);
3021   if (Entry)
3022     *Entry = GV;
3023   return GV;
3024 }
3025 
3026 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
3027     const MaterializeTemporaryExpr *E, const Expr *Init) {
3028   assert((E->getStorageDuration() == SD_Static ||
3029           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3030   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3031 
3032   // If we're not materializing a subobject of the temporary, keep the
3033   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3034   QualType MaterializedType = Init->getType();
3035   if (Init == E->GetTemporaryExpr())
3036     MaterializedType = E->getType();
3037 
3038   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
3039   if (Slot)
3040     return Slot;
3041 
3042   // FIXME: If an externally-visible declaration extends multiple temporaries,
3043   // we need to give each temporary the same name in every translation unit (and
3044   // we also need to make the temporaries externally-visible).
3045   SmallString<256> Name;
3046   llvm::raw_svector_ostream Out(Name);
3047   getCXXABI().getMangleContext().mangleReferenceTemporary(
3048       VD, E->getManglingNumber(), Out);
3049   Out.flush();
3050 
3051   APValue *Value = nullptr;
3052   if (E->getStorageDuration() == SD_Static) {
3053     // We might have a cached constant initializer for this temporary. Note
3054     // that this might have a different value from the value computed by
3055     // evaluating the initializer if the surrounding constant expression
3056     // modifies the temporary.
3057     Value = getContext().getMaterializedTemporaryValue(E, false);
3058     if (Value && Value->isUninit())
3059       Value = nullptr;
3060   }
3061 
3062   // Try evaluating it now, it might have a constant initializer.
3063   Expr::EvalResult EvalResult;
3064   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3065       !EvalResult.hasSideEffects())
3066     Value = &EvalResult.Val;
3067 
3068   llvm::Constant *InitialValue = nullptr;
3069   bool Constant = false;
3070   llvm::Type *Type;
3071   if (Value) {
3072     // The temporary has a constant initializer, use it.
3073     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3074     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3075     Type = InitialValue->getType();
3076   } else {
3077     // No initializer, the initialization will be provided when we
3078     // initialize the declaration which performed lifetime extension.
3079     Type = getTypes().ConvertTypeForMem(MaterializedType);
3080   }
3081 
3082   // Create a global variable for this lifetime-extended temporary.
3083   llvm::GlobalValue::LinkageTypes Linkage =
3084       getLLVMLinkageVarDefinition(VD, Constant);
3085   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3086     const VarDecl *InitVD;
3087     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3088         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3089       // Temporaries defined inside a class get linkonce_odr linkage because the
3090       // class can be defined in multipe translation units.
3091       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3092     } else {
3093       // There is no need for this temporary to have external linkage if the
3094       // VarDecl has external linkage.
3095       Linkage = llvm::GlobalVariable::InternalLinkage;
3096     }
3097   }
3098   unsigned AddrSpace = GetGlobalVarAddressSpace(
3099       VD, getContext().getTargetAddressSpace(MaterializedType));
3100   auto *GV = new llvm::GlobalVariable(
3101       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3102       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3103       AddrSpace);
3104   setGlobalVisibility(GV, VD);
3105   GV->setAlignment(
3106       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
3107   if (supportsCOMDAT() && GV->isWeakForLinker())
3108     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3109   if (VD->getTLSKind())
3110     setTLSMode(GV, *VD);
3111   Slot = GV;
3112   return GV;
3113 }
3114 
3115 /// EmitObjCPropertyImplementations - Emit information for synthesized
3116 /// properties for an implementation.
3117 void CodeGenModule::EmitObjCPropertyImplementations(const
3118                                                     ObjCImplementationDecl *D) {
3119   for (const auto *PID : D->property_impls()) {
3120     // Dynamic is just for type-checking.
3121     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3122       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3123 
3124       // Determine which methods need to be implemented, some may have
3125       // been overridden. Note that ::isPropertyAccessor is not the method
3126       // we want, that just indicates if the decl came from a
3127       // property. What we want to know is if the method is defined in
3128       // this implementation.
3129       if (!D->getInstanceMethod(PD->getGetterName()))
3130         CodeGenFunction(*this).GenerateObjCGetter(
3131                                  const_cast<ObjCImplementationDecl *>(D), PID);
3132       if (!PD->isReadOnly() &&
3133           !D->getInstanceMethod(PD->getSetterName()))
3134         CodeGenFunction(*this).GenerateObjCSetter(
3135                                  const_cast<ObjCImplementationDecl *>(D), PID);
3136     }
3137   }
3138 }
3139 
3140 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3141   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3142   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3143        ivar; ivar = ivar->getNextIvar())
3144     if (ivar->getType().isDestructedType())
3145       return true;
3146 
3147   return false;
3148 }
3149 
3150 static bool AllTrivialInitializers(CodeGenModule &CGM,
3151                                    ObjCImplementationDecl *D) {
3152   CodeGenFunction CGF(CGM);
3153   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3154        E = D->init_end(); B != E; ++B) {
3155     CXXCtorInitializer *CtorInitExp = *B;
3156     Expr *Init = CtorInitExp->getInit();
3157     if (!CGF.isTrivialInitializer(Init))
3158       return false;
3159   }
3160   return true;
3161 }
3162 
3163 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3164 /// for an implementation.
3165 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3166   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3167   if (needsDestructMethod(D)) {
3168     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3169     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3170     ObjCMethodDecl *DTORMethod =
3171       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3172                              cxxSelector, getContext().VoidTy, nullptr, D,
3173                              /*isInstance=*/true, /*isVariadic=*/false,
3174                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3175                              /*isDefined=*/false, ObjCMethodDecl::Required);
3176     D->addInstanceMethod(DTORMethod);
3177     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3178     D->setHasDestructors(true);
3179   }
3180 
3181   // If the implementation doesn't have any ivar initializers, we don't need
3182   // a .cxx_construct.
3183   if (D->getNumIvarInitializers() == 0 ||
3184       AllTrivialInitializers(*this, D))
3185     return;
3186 
3187   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3188   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3189   // The constructor returns 'self'.
3190   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3191                                                 D->getLocation(),
3192                                                 D->getLocation(),
3193                                                 cxxSelector,
3194                                                 getContext().getObjCIdType(),
3195                                                 nullptr, D, /*isInstance=*/true,
3196                                                 /*isVariadic=*/false,
3197                                                 /*isPropertyAccessor=*/true,
3198                                                 /*isImplicitlyDeclared=*/true,
3199                                                 /*isDefined=*/false,
3200                                                 ObjCMethodDecl::Required);
3201   D->addInstanceMethod(CTORMethod);
3202   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3203   D->setHasNonZeroConstructors(true);
3204 }
3205 
3206 /// EmitNamespace - Emit all declarations in a namespace.
3207 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3208   for (auto *I : ND->decls()) {
3209     if (const auto *VD = dyn_cast<VarDecl>(I))
3210       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3211           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3212         continue;
3213     EmitTopLevelDecl(I);
3214   }
3215 }
3216 
3217 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3218 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3219   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3220       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3221     ErrorUnsupported(LSD, "linkage spec");
3222     return;
3223   }
3224 
3225   for (auto *I : LSD->decls()) {
3226     // Meta-data for ObjC class includes references to implemented methods.
3227     // Generate class's method definitions first.
3228     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3229       for (auto *M : OID->methods())
3230         EmitTopLevelDecl(M);
3231     }
3232     EmitTopLevelDecl(I);
3233   }
3234 }
3235 
3236 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3237 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3238   // Ignore dependent declarations.
3239   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3240     return;
3241 
3242   switch (D->getKind()) {
3243   case Decl::CXXConversion:
3244   case Decl::CXXMethod:
3245   case Decl::Function:
3246     // Skip function templates
3247     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3248         cast<FunctionDecl>(D)->isLateTemplateParsed())
3249       return;
3250 
3251     EmitGlobal(cast<FunctionDecl>(D));
3252     // Always provide some coverage mapping
3253     // even for the functions that aren't emitted.
3254     AddDeferredUnusedCoverageMapping(D);
3255     break;
3256 
3257   case Decl::Var:
3258     // Skip variable templates
3259     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3260       return;
3261   case Decl::VarTemplateSpecialization:
3262     EmitGlobal(cast<VarDecl>(D));
3263     break;
3264 
3265   // Indirect fields from global anonymous structs and unions can be
3266   // ignored; only the actual variable requires IR gen support.
3267   case Decl::IndirectField:
3268     break;
3269 
3270   // C++ Decls
3271   case Decl::Namespace:
3272     EmitNamespace(cast<NamespaceDecl>(D));
3273     break;
3274     // No code generation needed.
3275   case Decl::UsingShadow:
3276   case Decl::ClassTemplate:
3277   case Decl::VarTemplate:
3278   case Decl::VarTemplatePartialSpecialization:
3279   case Decl::FunctionTemplate:
3280   case Decl::TypeAliasTemplate:
3281   case Decl::Block:
3282   case Decl::Empty:
3283     break;
3284   case Decl::Using:          // using X; [C++]
3285     if (CGDebugInfo *DI = getModuleDebugInfo())
3286         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3287     return;
3288   case Decl::NamespaceAlias:
3289     if (CGDebugInfo *DI = getModuleDebugInfo())
3290         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3291     return;
3292   case Decl::UsingDirective: // using namespace X; [C++]
3293     if (CGDebugInfo *DI = getModuleDebugInfo())
3294       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3295     return;
3296   case Decl::CXXConstructor:
3297     // Skip function templates
3298     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3299         cast<FunctionDecl>(D)->isLateTemplateParsed())
3300       return;
3301 
3302     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3303     break;
3304   case Decl::CXXDestructor:
3305     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3306       return;
3307     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3308     break;
3309 
3310   case Decl::StaticAssert:
3311     // Nothing to do.
3312     break;
3313 
3314   // Objective-C Decls
3315 
3316   // Forward declarations, no (immediate) code generation.
3317   case Decl::ObjCInterface:
3318   case Decl::ObjCCategory:
3319     break;
3320 
3321   case Decl::ObjCProtocol: {
3322     auto *Proto = cast<ObjCProtocolDecl>(D);
3323     if (Proto->isThisDeclarationADefinition())
3324       ObjCRuntime->GenerateProtocol(Proto);
3325     break;
3326   }
3327 
3328   case Decl::ObjCCategoryImpl:
3329     // Categories have properties but don't support synthesize so we
3330     // can ignore them here.
3331     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3332     break;
3333 
3334   case Decl::ObjCImplementation: {
3335     auto *OMD = cast<ObjCImplementationDecl>(D);
3336     EmitObjCPropertyImplementations(OMD);
3337     EmitObjCIvarInitializations(OMD);
3338     ObjCRuntime->GenerateClass(OMD);
3339     // Emit global variable debug information.
3340     if (CGDebugInfo *DI = getModuleDebugInfo())
3341       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3342         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3343             OMD->getClassInterface()), OMD->getLocation());
3344     break;
3345   }
3346   case Decl::ObjCMethod: {
3347     auto *OMD = cast<ObjCMethodDecl>(D);
3348     // If this is not a prototype, emit the body.
3349     if (OMD->getBody())
3350       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3351     break;
3352   }
3353   case Decl::ObjCCompatibleAlias:
3354     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3355     break;
3356 
3357   case Decl::LinkageSpec:
3358     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3359     break;
3360 
3361   case Decl::FileScopeAsm: {
3362     auto *AD = cast<FileScopeAsmDecl>(D);
3363     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3364     break;
3365   }
3366 
3367   case Decl::Import: {
3368     auto *Import = cast<ImportDecl>(D);
3369 
3370     // Ignore import declarations that come from imported modules.
3371     if (clang::Module *Owner = Import->getOwningModule()) {
3372       if (getLangOpts().CurrentModule.empty() ||
3373           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3374         break;
3375     }
3376 
3377     ImportedModules.insert(Import->getImportedModule());
3378     break;
3379   }
3380 
3381   case Decl::OMPThreadPrivate:
3382     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3383     break;
3384 
3385   case Decl::ClassTemplateSpecialization: {
3386     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3387     if (DebugInfo &&
3388         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3389         Spec->hasDefinition())
3390       DebugInfo->completeTemplateDefinition(*Spec);
3391     break;
3392   }
3393 
3394   default:
3395     // Make sure we handled everything we should, every other kind is a
3396     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3397     // function. Need to recode Decl::Kind to do that easily.
3398     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3399     break;
3400   }
3401 }
3402 
3403 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3404   // Do we need to generate coverage mapping?
3405   if (!CodeGenOpts.CoverageMapping)
3406     return;
3407   switch (D->getKind()) {
3408   case Decl::CXXConversion:
3409   case Decl::CXXMethod:
3410   case Decl::Function:
3411   case Decl::ObjCMethod:
3412   case Decl::CXXConstructor:
3413   case Decl::CXXDestructor: {
3414     if (!cast<FunctionDecl>(D)->hasBody())
3415       return;
3416     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3417     if (I == DeferredEmptyCoverageMappingDecls.end())
3418       DeferredEmptyCoverageMappingDecls[D] = true;
3419     break;
3420   }
3421   default:
3422     break;
3423   };
3424 }
3425 
3426 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3427   // Do we need to generate coverage mapping?
3428   if (!CodeGenOpts.CoverageMapping)
3429     return;
3430   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3431     if (Fn->isTemplateInstantiation())
3432       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3433   }
3434   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3435   if (I == DeferredEmptyCoverageMappingDecls.end())
3436     DeferredEmptyCoverageMappingDecls[D] = false;
3437   else
3438     I->second = false;
3439 }
3440 
3441 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3442   std::vector<const Decl *> DeferredDecls;
3443   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3444     if (!I.second)
3445       continue;
3446     DeferredDecls.push_back(I.first);
3447   }
3448   // Sort the declarations by their location to make sure that the tests get a
3449   // predictable order for the coverage mapping for the unused declarations.
3450   if (CodeGenOpts.DumpCoverageMapping)
3451     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3452               [] (const Decl *LHS, const Decl *RHS) {
3453       return LHS->getLocStart() < RHS->getLocStart();
3454     });
3455   for (const auto *D : DeferredDecls) {
3456     switch (D->getKind()) {
3457     case Decl::CXXConversion:
3458     case Decl::CXXMethod:
3459     case Decl::Function:
3460     case Decl::ObjCMethod: {
3461       CodeGenPGO PGO(*this);
3462       GlobalDecl GD(cast<FunctionDecl>(D));
3463       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3464                                   getFunctionLinkage(GD));
3465       break;
3466     }
3467     case Decl::CXXConstructor: {
3468       CodeGenPGO PGO(*this);
3469       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3470       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3471                                   getFunctionLinkage(GD));
3472       break;
3473     }
3474     case Decl::CXXDestructor: {
3475       CodeGenPGO PGO(*this);
3476       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3477       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3478                                   getFunctionLinkage(GD));
3479       break;
3480     }
3481     default:
3482       break;
3483     };
3484   }
3485 }
3486 
3487 /// Turns the given pointer into a constant.
3488 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3489                                           const void *Ptr) {
3490   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3491   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3492   return llvm::ConstantInt::get(i64, PtrInt);
3493 }
3494 
3495 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3496                                    llvm::NamedMDNode *&GlobalMetadata,
3497                                    GlobalDecl D,
3498                                    llvm::GlobalValue *Addr) {
3499   if (!GlobalMetadata)
3500     GlobalMetadata =
3501       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3502 
3503   // TODO: should we report variant information for ctors/dtors?
3504   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3505                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3506                                CGM.getLLVMContext(), D.getDecl()))};
3507   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3508 }
3509 
3510 /// For each function which is declared within an extern "C" region and marked
3511 /// as 'used', but has internal linkage, create an alias from the unmangled
3512 /// name to the mangled name if possible. People expect to be able to refer
3513 /// to such functions with an unmangled name from inline assembly within the
3514 /// same translation unit.
3515 void CodeGenModule::EmitStaticExternCAliases() {
3516   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3517                                   E = StaticExternCValues.end();
3518        I != E; ++I) {
3519     IdentifierInfo *Name = I->first;
3520     llvm::GlobalValue *Val = I->second;
3521     if (Val && !getModule().getNamedValue(Name->getName()))
3522       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3523   }
3524 }
3525 
3526 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3527                                              GlobalDecl &Result) const {
3528   auto Res = Manglings.find(MangledName);
3529   if (Res == Manglings.end())
3530     return false;
3531   Result = Res->getValue();
3532   return true;
3533 }
3534 
3535 /// Emits metadata nodes associating all the global values in the
3536 /// current module with the Decls they came from.  This is useful for
3537 /// projects using IR gen as a subroutine.
3538 ///
3539 /// Since there's currently no way to associate an MDNode directly
3540 /// with an llvm::GlobalValue, we create a global named metadata
3541 /// with the name 'clang.global.decl.ptrs'.
3542 void CodeGenModule::EmitDeclMetadata() {
3543   llvm::NamedMDNode *GlobalMetadata = nullptr;
3544 
3545   // StaticLocalDeclMap
3546   for (auto &I : MangledDeclNames) {
3547     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3548     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3549   }
3550 }
3551 
3552 /// Emits metadata nodes for all the local variables in the current
3553 /// function.
3554 void CodeGenFunction::EmitDeclMetadata() {
3555   if (LocalDeclMap.empty()) return;
3556 
3557   llvm::LLVMContext &Context = getLLVMContext();
3558 
3559   // Find the unique metadata ID for this name.
3560   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3561 
3562   llvm::NamedMDNode *GlobalMetadata = nullptr;
3563 
3564   for (auto &I : LocalDeclMap) {
3565     const Decl *D = I.first;
3566     llvm::Value *Addr = I.second;
3567     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3568       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3569       Alloca->setMetadata(
3570           DeclPtrKind, llvm::MDNode::get(
3571                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3572     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3573       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3574       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3575     }
3576   }
3577 }
3578 
3579 void CodeGenModule::EmitVersionIdentMetadata() {
3580   llvm::NamedMDNode *IdentMetadata =
3581     TheModule.getOrInsertNamedMetadata("llvm.ident");
3582   std::string Version = getClangFullVersion();
3583   llvm::LLVMContext &Ctx = TheModule.getContext();
3584 
3585   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3586   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3587 }
3588 
3589 void CodeGenModule::EmitTargetMetadata() {
3590   // Warning, new MangledDeclNames may be appended within this loop.
3591   // We rely on MapVector insertions adding new elements to the end
3592   // of the container.
3593   // FIXME: Move this loop into the one target that needs it, and only
3594   // loop over those declarations for which we couldn't emit the target
3595   // metadata when we emitted the declaration.
3596   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3597     auto Val = *(MangledDeclNames.begin() + I);
3598     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3599     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3600     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3601   }
3602 }
3603 
3604 void CodeGenModule::EmitCoverageFile() {
3605   if (!getCodeGenOpts().CoverageFile.empty()) {
3606     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3607       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3608       llvm::LLVMContext &Ctx = TheModule.getContext();
3609       llvm::MDString *CoverageFile =
3610           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3611       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3612         llvm::MDNode *CU = CUNode->getOperand(i);
3613         llvm::Metadata *Elts[] = {CoverageFile, CU};
3614         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3615       }
3616     }
3617   }
3618 }
3619 
3620 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3621   // Sema has checked that all uuid strings are of the form
3622   // "12345678-1234-1234-1234-1234567890ab".
3623   assert(Uuid.size() == 36);
3624   for (unsigned i = 0; i < 36; ++i) {
3625     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3626     else                                         assert(isHexDigit(Uuid[i]));
3627   }
3628 
3629   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3630   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3631 
3632   llvm::Constant *Field3[8];
3633   for (unsigned Idx = 0; Idx < 8; ++Idx)
3634     Field3[Idx] = llvm::ConstantInt::get(
3635         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3636 
3637   llvm::Constant *Fields[4] = {
3638     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3639     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3640     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3641     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3642   };
3643 
3644   return llvm::ConstantStruct::getAnon(Fields);
3645 }
3646 
3647 llvm::Constant *CodeGenModule::getAddrOfCXXCatchDescriptor(QualType Ty) {
3648   return getCXXABI().getAddrOfCXXCatchDescriptor(Ty);
3649 }
3650 
3651 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3652                                                        bool ForEH) {
3653   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3654   // FIXME: should we even be calling this method if RTTI is disabled
3655   // and it's not for EH?
3656   if (!ForEH && !getLangOpts().RTTI)
3657     return llvm::Constant::getNullValue(Int8PtrTy);
3658 
3659   if (ForEH && Ty->isObjCObjectPointerType() &&
3660       LangOpts.ObjCRuntime.isGNUFamily())
3661     return ObjCRuntime->GetEHType(Ty);
3662 
3663   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3664 }
3665 
3666 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3667   for (auto RefExpr : D->varlists()) {
3668     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3669     bool PerformInit =
3670         VD->getAnyInitializer() &&
3671         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3672                                                         /*ForRef=*/false);
3673     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3674             VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit))
3675       CXXGlobalInits.push_back(InitFunction);
3676   }
3677 }
3678 
3679