1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CoverageMappingGen.h" 25 #include "CodeGenTBAA.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericItanium: 68 return CreateItaniumCXXABI(CGM); 69 case TargetCXXABI::Microsoft: 70 return CreateMicrosoftCXXABI(CGM); 71 } 72 73 llvm_unreachable("invalid C++ ABI kind"); 74 } 75 76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 77 llvm::Module &M, const llvm::DataLayout &TD, 78 DiagnosticsEngine &diags, 79 CoverageSourceInfo *CoverageInfo) 80 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 81 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 82 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 83 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 84 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 85 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 86 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 87 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 88 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 89 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 90 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 91 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 92 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 113 114 if (LangOpts.ObjC1) 115 createObjCRuntime(); 116 if (LangOpts.OpenCL) 117 createOpenCLRuntime(); 118 if (LangOpts.OpenMP) 119 createOpenMPRuntime(); 120 if (LangOpts.CUDA) 121 createCUDARuntime(); 122 123 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 124 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 125 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 126 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 127 getCXXABI().getMangleContext()); 128 129 // If debug info or coverage generation is enabled, create the CGDebugInfo 130 // object. 131 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 132 CodeGenOpts.EmitGcovArcs || 133 CodeGenOpts.EmitGcovNotes) 134 DebugInfo = new CGDebugInfo(*this); 135 136 Block.GlobalUniqueCount = 0; 137 138 if (C.getLangOpts().ObjCAutoRefCount) 139 ARCData = new ARCEntrypoints(); 140 RRData = new RREntrypoints(); 141 142 if (!CodeGenOpts.InstrProfileInput.empty()) { 143 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 144 CodeGenOpts.InstrProfileInput, PGOReader)) { 145 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 146 "Could not read profile: %0"); 147 getDiags().Report(DiagID) << EC.message(); 148 } 149 } 150 151 // If coverage mapping generation is enabled, create the 152 // CoverageMappingModuleGen object. 153 if (CodeGenOpts.CoverageMapping) 154 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 155 } 156 157 CodeGenModule::~CodeGenModule() { 158 delete ObjCRuntime; 159 delete OpenCLRuntime; 160 delete OpenMPRuntime; 161 delete CUDARuntime; 162 delete TheTargetCodeGenInfo; 163 delete TBAA; 164 delete DebugInfo; 165 delete ARCData; 166 delete RRData; 167 } 168 169 void CodeGenModule::createObjCRuntime() { 170 // This is just isGNUFamily(), but we want to force implementors of 171 // new ABIs to decide how best to do this. 172 switch (LangOpts.ObjCRuntime.getKind()) { 173 case ObjCRuntime::GNUstep: 174 case ObjCRuntime::GCC: 175 case ObjCRuntime::ObjFW: 176 ObjCRuntime = CreateGNUObjCRuntime(*this); 177 return; 178 179 case ObjCRuntime::FragileMacOSX: 180 case ObjCRuntime::MacOSX: 181 case ObjCRuntime::iOS: 182 ObjCRuntime = CreateMacObjCRuntime(*this); 183 return; 184 } 185 llvm_unreachable("bad runtime kind"); 186 } 187 188 void CodeGenModule::createOpenCLRuntime() { 189 OpenCLRuntime = new CGOpenCLRuntime(*this); 190 } 191 192 void CodeGenModule::createOpenMPRuntime() { 193 OpenMPRuntime = new CGOpenMPRuntime(*this); 194 } 195 196 void CodeGenModule::createCUDARuntime() { 197 CUDARuntime = CreateNVCUDARuntime(*this); 198 } 199 200 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 201 Replacements[Name] = C; 202 } 203 204 void CodeGenModule::applyReplacements() { 205 for (ReplacementsTy::iterator I = Replacements.begin(), 206 E = Replacements.end(); 207 I != E; ++I) { 208 StringRef MangledName = I->first(); 209 llvm::Constant *Replacement = I->second; 210 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 211 if (!Entry) 212 continue; 213 auto *OldF = cast<llvm::Function>(Entry); 214 auto *NewF = dyn_cast<llvm::Function>(Replacement); 215 if (!NewF) { 216 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 217 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 218 } else { 219 auto *CE = cast<llvm::ConstantExpr>(Replacement); 220 assert(CE->getOpcode() == llvm::Instruction::BitCast || 221 CE->getOpcode() == llvm::Instruction::GetElementPtr); 222 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 223 } 224 } 225 226 // Replace old with new, but keep the old order. 227 OldF->replaceAllUsesWith(Replacement); 228 if (NewF) { 229 NewF->removeFromParent(); 230 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 231 } 232 OldF->eraseFromParent(); 233 } 234 } 235 236 // This is only used in aliases that we created and we know they have a 237 // linear structure. 238 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 239 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 240 const llvm::Constant *C = &GA; 241 for (;;) { 242 C = C->stripPointerCasts(); 243 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 244 return GO; 245 // stripPointerCasts will not walk over weak aliases. 246 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 247 if (!GA2) 248 return nullptr; 249 if (!Visited.insert(GA2).second) 250 return nullptr; 251 C = GA2->getAliasee(); 252 } 253 } 254 255 void CodeGenModule::checkAliases() { 256 // Check if the constructed aliases are well formed. It is really unfortunate 257 // that we have to do this in CodeGen, but we only construct mangled names 258 // and aliases during codegen. 259 bool Error = false; 260 DiagnosticsEngine &Diags = getDiags(); 261 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 262 E = Aliases.end(); I != E; ++I) { 263 const GlobalDecl &GD = *I; 264 const auto *D = cast<ValueDecl>(GD.getDecl()); 265 const AliasAttr *AA = D->getAttr<AliasAttr>(); 266 StringRef MangledName = getMangledName(GD); 267 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 268 auto *Alias = cast<llvm::GlobalAlias>(Entry); 269 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 270 if (!GV) { 271 Error = true; 272 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 273 } else if (GV->isDeclaration()) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 276 } 277 278 llvm::Constant *Aliasee = Alias->getAliasee(); 279 llvm::GlobalValue *AliaseeGV; 280 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 281 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 282 else 283 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 284 285 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 286 StringRef AliasSection = SA->getName(); 287 if (AliasSection != AliaseeGV->getSection()) 288 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 289 << AliasSection; 290 } 291 292 // We have to handle alias to weak aliases in here. LLVM itself disallows 293 // this since the object semantics would not match the IL one. For 294 // compatibility with gcc we implement it by just pointing the alias 295 // to its aliasee's aliasee. We also warn, since the user is probably 296 // expecting the link to be weak. 297 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 298 if (GA->mayBeOverridden()) { 299 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 300 << GV->getName() << GA->getName(); 301 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 302 GA->getAliasee(), Alias->getType()); 303 Alias->setAliasee(Aliasee); 304 } 305 } 306 } 307 if (!Error) 308 return; 309 310 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 311 E = Aliases.end(); I != E; ++I) { 312 const GlobalDecl &GD = *I; 313 StringRef MangledName = getMangledName(GD); 314 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 315 auto *Alias = cast<llvm::GlobalAlias>(Entry); 316 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 317 Alias->eraseFromParent(); 318 } 319 } 320 321 void CodeGenModule::clear() { 322 DeferredDeclsToEmit.clear(); 323 } 324 325 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 326 StringRef MainFile) { 327 if (!hasDiagnostics()) 328 return; 329 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 330 if (MainFile.empty()) 331 MainFile = "<stdin>"; 332 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 333 } else 334 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 335 << Mismatched; 336 } 337 338 void CodeGenModule::Release() { 339 EmitDeferred(); 340 applyReplacements(); 341 checkAliases(); 342 EmitCXXGlobalInitFunc(); 343 EmitCXXGlobalDtorFunc(); 344 EmitCXXThreadLocalInitFunc(); 345 if (ObjCRuntime) 346 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 347 AddGlobalCtor(ObjCInitFunction); 348 if (PGOReader && PGOStats.hasDiagnostics()) 349 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 350 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 351 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 352 EmitGlobalAnnotations(); 353 EmitStaticExternCAliases(); 354 EmitDeferredUnusedCoverageMappings(); 355 if (CoverageMapping) 356 CoverageMapping->emit(); 357 emitLLVMUsed(); 358 359 if (CodeGenOpts.Autolink && 360 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 361 EmitModuleLinkOptions(); 362 } 363 if (CodeGenOpts.DwarfVersion) 364 // We actually want the latest version when there are conflicts. 365 // We can change from Warning to Latest if such mode is supported. 366 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 367 CodeGenOpts.DwarfVersion); 368 if (DebugInfo) 369 // We support a single version in the linked module. The LLVM 370 // parser will drop debug info with a different version number 371 // (and warn about it, too). 372 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 373 llvm::DEBUG_METADATA_VERSION); 374 375 // We need to record the widths of enums and wchar_t, so that we can generate 376 // the correct build attributes in the ARM backend. 377 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 378 if ( Arch == llvm::Triple::arm 379 || Arch == llvm::Triple::armeb 380 || Arch == llvm::Triple::thumb 381 || Arch == llvm::Triple::thumbeb) { 382 // Width of wchar_t in bytes 383 uint64_t WCharWidth = 384 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 385 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 386 387 // The minimum width of an enum in bytes 388 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 389 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 390 } 391 392 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 393 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 394 switch (PLevel) { 395 case 0: break; 396 case 1: PL = llvm::PICLevel::Small; break; 397 case 2: PL = llvm::PICLevel::Large; break; 398 default: llvm_unreachable("Invalid PIC Level"); 399 } 400 401 getModule().setPICLevel(PL); 402 } 403 404 SimplifyPersonality(); 405 406 if (getCodeGenOpts().EmitDeclMetadata) 407 EmitDeclMetadata(); 408 409 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 410 EmitCoverageFile(); 411 412 if (DebugInfo) 413 DebugInfo->finalize(); 414 415 EmitVersionIdentMetadata(); 416 417 EmitTargetMetadata(); 418 } 419 420 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 421 // Make sure that this type is translated. 422 Types.UpdateCompletedType(TD); 423 } 424 425 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 426 if (!TBAA) 427 return nullptr; 428 return TBAA->getTBAAInfo(QTy); 429 } 430 431 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 432 if (!TBAA) 433 return nullptr; 434 return TBAA->getTBAAInfoForVTablePtr(); 435 } 436 437 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 438 if (!TBAA) 439 return nullptr; 440 return TBAA->getTBAAStructInfo(QTy); 441 } 442 443 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 444 if (!TBAA) 445 return nullptr; 446 return TBAA->getTBAAStructTypeInfo(QTy); 447 } 448 449 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 450 llvm::MDNode *AccessN, 451 uint64_t O) { 452 if (!TBAA) 453 return nullptr; 454 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 455 } 456 457 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 458 /// and struct-path aware TBAA, the tag has the same format: 459 /// base type, access type and offset. 460 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 461 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 462 llvm::MDNode *TBAAInfo, 463 bool ConvertTypeToTag) { 464 if (ConvertTypeToTag && TBAA) 465 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 466 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 467 else 468 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 469 } 470 471 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 472 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 473 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 474 } 475 476 /// ErrorUnsupported - Print out an error that codegen doesn't support the 477 /// specified stmt yet. 478 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 479 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 480 "cannot compile this %0 yet"); 481 std::string Msg = Type; 482 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 483 << Msg << S->getSourceRange(); 484 } 485 486 /// ErrorUnsupported - Print out an error that codegen doesn't support the 487 /// specified decl yet. 488 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 489 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 490 "cannot compile this %0 yet"); 491 std::string Msg = Type; 492 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 493 } 494 495 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 496 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 497 } 498 499 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 500 const NamedDecl *D) const { 501 // Internal definitions always have default visibility. 502 if (GV->hasLocalLinkage()) { 503 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 504 return; 505 } 506 507 // Set visibility for definitions. 508 LinkageInfo LV = D->getLinkageAndVisibility(); 509 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 510 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 511 } 512 513 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 514 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 515 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 516 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 517 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 518 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 519 } 520 521 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 522 CodeGenOptions::TLSModel M) { 523 switch (M) { 524 case CodeGenOptions::GeneralDynamicTLSModel: 525 return llvm::GlobalVariable::GeneralDynamicTLSModel; 526 case CodeGenOptions::LocalDynamicTLSModel: 527 return llvm::GlobalVariable::LocalDynamicTLSModel; 528 case CodeGenOptions::InitialExecTLSModel: 529 return llvm::GlobalVariable::InitialExecTLSModel; 530 case CodeGenOptions::LocalExecTLSModel: 531 return llvm::GlobalVariable::LocalExecTLSModel; 532 } 533 llvm_unreachable("Invalid TLS model!"); 534 } 535 536 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 537 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 538 539 llvm::GlobalValue::ThreadLocalMode TLM; 540 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 541 542 // Override the TLS model if it is explicitly specified. 543 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 544 TLM = GetLLVMTLSModel(Attr->getModel()); 545 } 546 547 GV->setThreadLocalMode(TLM); 548 } 549 550 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 551 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 552 if (!FoundStr.empty()) 553 return FoundStr; 554 555 const auto *ND = cast<NamedDecl>(GD.getDecl()); 556 SmallString<256> Buffer; 557 StringRef Str; 558 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 559 llvm::raw_svector_ostream Out(Buffer); 560 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 561 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 562 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 563 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 564 else 565 getCXXABI().getMangleContext().mangleName(ND, Out); 566 Str = Out.str(); 567 } else { 568 IdentifierInfo *II = ND->getIdentifier(); 569 assert(II && "Attempt to mangle unnamed decl."); 570 Str = II->getName(); 571 } 572 573 // Keep the first result in the case of a mangling collision. 574 auto Result = Manglings.insert(std::make_pair(Str, GD)); 575 return FoundStr = Result.first->first(); 576 } 577 578 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 579 const BlockDecl *BD) { 580 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 581 const Decl *D = GD.getDecl(); 582 583 SmallString<256> Buffer; 584 llvm::raw_svector_ostream Out(Buffer); 585 if (!D) 586 MangleCtx.mangleGlobalBlock(BD, 587 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 588 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 589 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 590 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 591 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 592 else 593 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 594 595 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 596 return Result.first->first(); 597 } 598 599 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 600 return getModule().getNamedValue(Name); 601 } 602 603 /// AddGlobalCtor - Add a function to the list that will be called before 604 /// main() runs. 605 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 606 llvm::Constant *AssociatedData) { 607 // FIXME: Type coercion of void()* types. 608 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 609 } 610 611 /// AddGlobalDtor - Add a function to the list that will be called 612 /// when the module is unloaded. 613 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 614 // FIXME: Type coercion of void()* types. 615 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 616 } 617 618 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 619 // Ctor function type is void()*. 620 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 621 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 622 623 // Get the type of a ctor entry, { i32, void ()*, i8* }. 624 llvm::StructType *CtorStructTy = llvm::StructType::get( 625 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 626 627 // Construct the constructor and destructor arrays. 628 SmallVector<llvm::Constant*, 8> Ctors; 629 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 630 llvm::Constant *S[] = { 631 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 632 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 633 (I->AssociatedData 634 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 635 : llvm::Constant::getNullValue(VoidPtrTy)) 636 }; 637 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 638 } 639 640 if (!Ctors.empty()) { 641 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 642 new llvm::GlobalVariable(TheModule, AT, false, 643 llvm::GlobalValue::AppendingLinkage, 644 llvm::ConstantArray::get(AT, Ctors), 645 GlobalName); 646 } 647 } 648 649 llvm::GlobalValue::LinkageTypes 650 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 651 const auto *D = cast<FunctionDecl>(GD.getDecl()); 652 653 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 654 655 if (isa<CXXDestructorDecl>(D) && 656 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 657 GD.getDtorType())) { 658 // Destructor variants in the Microsoft C++ ABI are always internal or 659 // linkonce_odr thunks emitted on an as-needed basis. 660 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 661 : llvm::GlobalValue::LinkOnceODRLinkage; 662 } 663 664 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 665 } 666 667 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 668 llvm::Function *F) { 669 setNonAliasAttributes(D, F); 670 } 671 672 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 673 const CGFunctionInfo &Info, 674 llvm::Function *F) { 675 unsigned CallingConv; 676 AttributeListType AttributeList; 677 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 678 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 679 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 680 } 681 682 /// Determines whether the language options require us to model 683 /// unwind exceptions. We treat -fexceptions as mandating this 684 /// except under the fragile ObjC ABI with only ObjC exceptions 685 /// enabled. This means, for example, that C with -fexceptions 686 /// enables this. 687 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 688 // If exceptions are completely disabled, obviously this is false. 689 if (!LangOpts.Exceptions) return false; 690 691 // If C++ exceptions are enabled, this is true. 692 if (LangOpts.CXXExceptions) return true; 693 694 // If ObjC exceptions are enabled, this depends on the ABI. 695 if (LangOpts.ObjCExceptions) { 696 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 697 } 698 699 return true; 700 } 701 702 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 703 llvm::Function *F) { 704 llvm::AttrBuilder B; 705 706 if (CodeGenOpts.UnwindTables) 707 B.addAttribute(llvm::Attribute::UWTable); 708 709 if (!hasUnwindExceptions(LangOpts)) 710 B.addAttribute(llvm::Attribute::NoUnwind); 711 712 if (D->hasAttr<NakedAttr>()) { 713 // Naked implies noinline: we should not be inlining such functions. 714 B.addAttribute(llvm::Attribute::Naked); 715 B.addAttribute(llvm::Attribute::NoInline); 716 } else if (D->hasAttr<NoDuplicateAttr>()) { 717 B.addAttribute(llvm::Attribute::NoDuplicate); 718 } else if (D->hasAttr<NoInlineAttr>()) { 719 B.addAttribute(llvm::Attribute::NoInline); 720 } else if (D->hasAttr<AlwaysInlineAttr>() && 721 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 722 llvm::Attribute::NoInline)) { 723 // (noinline wins over always_inline, and we can't specify both in IR) 724 B.addAttribute(llvm::Attribute::AlwaysInline); 725 } 726 727 if (D->hasAttr<ColdAttr>()) { 728 if (!D->hasAttr<OptimizeNoneAttr>()) 729 B.addAttribute(llvm::Attribute::OptimizeForSize); 730 B.addAttribute(llvm::Attribute::Cold); 731 } 732 733 if (D->hasAttr<MinSizeAttr>()) 734 B.addAttribute(llvm::Attribute::MinSize); 735 736 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 737 B.addAttribute(llvm::Attribute::StackProtect); 738 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 739 B.addAttribute(llvm::Attribute::StackProtectStrong); 740 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 741 B.addAttribute(llvm::Attribute::StackProtectReq); 742 743 // Add sanitizer attributes if function is not blacklisted. 744 if (!isInSanitizerBlacklist(F, D->getLocation())) { 745 // When AddressSanitizer is enabled, set SanitizeAddress attribute 746 // unless __attribute__((no_sanitize_address)) is used. 747 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 748 !D->hasAttr<NoSanitizeAddressAttr>()) 749 B.addAttribute(llvm::Attribute::SanitizeAddress); 750 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 751 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 752 !D->hasAttr<NoSanitizeThreadAttr>()) 753 B.addAttribute(llvm::Attribute::SanitizeThread); 754 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 755 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 756 !D->hasAttr<NoSanitizeMemoryAttr>()) 757 B.addAttribute(llvm::Attribute::SanitizeMemory); 758 } 759 760 F->addAttributes(llvm::AttributeSet::FunctionIndex, 761 llvm::AttributeSet::get( 762 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 763 764 if (D->hasAttr<OptimizeNoneAttr>()) { 765 // OptimizeNone implies noinline; we should not be inlining such functions. 766 F->addFnAttr(llvm::Attribute::OptimizeNone); 767 F->addFnAttr(llvm::Attribute::NoInline); 768 769 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 770 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 771 "OptimizeNone and OptimizeForSize on same function!"); 772 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 773 "OptimizeNone and MinSize on same function!"); 774 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 775 "OptimizeNone and AlwaysInline on same function!"); 776 777 // Attribute 'inlinehint' has no effect on 'optnone' functions. 778 // Explicitly remove it from the set of function attributes. 779 F->removeFnAttr(llvm::Attribute::InlineHint); 780 } 781 782 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 783 F->setUnnamedAddr(true); 784 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 785 if (MD->isVirtual()) 786 F->setUnnamedAddr(true); 787 788 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 789 if (alignment) 790 F->setAlignment(alignment); 791 792 // C++ ABI requires 2-byte alignment for member functions. 793 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 794 F->setAlignment(2); 795 } 796 797 void CodeGenModule::SetCommonAttributes(const Decl *D, 798 llvm::GlobalValue *GV) { 799 if (const auto *ND = dyn_cast<NamedDecl>(D)) 800 setGlobalVisibility(GV, ND); 801 else 802 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 803 804 if (D->hasAttr<UsedAttr>()) 805 addUsedGlobal(GV); 806 } 807 808 void CodeGenModule::setAliasAttributes(const Decl *D, 809 llvm::GlobalValue *GV) { 810 SetCommonAttributes(D, GV); 811 812 // Process the dllexport attribute based on whether the original definition 813 // (not necessarily the aliasee) was exported. 814 if (D->hasAttr<DLLExportAttr>()) 815 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 816 } 817 818 void CodeGenModule::setNonAliasAttributes(const Decl *D, 819 llvm::GlobalObject *GO) { 820 SetCommonAttributes(D, GO); 821 822 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 823 GO->setSection(SA->getName()); 824 825 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 826 } 827 828 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 829 llvm::Function *F, 830 const CGFunctionInfo &FI) { 831 SetLLVMFunctionAttributes(D, FI, F); 832 SetLLVMFunctionAttributesForDefinition(D, F); 833 834 F->setLinkage(llvm::Function::InternalLinkage); 835 836 setNonAliasAttributes(D, F); 837 } 838 839 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 840 const NamedDecl *ND) { 841 // Set linkage and visibility in case we never see a definition. 842 LinkageInfo LV = ND->getLinkageAndVisibility(); 843 if (LV.getLinkage() != ExternalLinkage) { 844 // Don't set internal linkage on declarations. 845 } else { 846 if (ND->hasAttr<DLLImportAttr>()) { 847 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 848 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 849 } else if (ND->hasAttr<DLLExportAttr>()) { 850 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 851 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 852 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 853 // "extern_weak" is overloaded in LLVM; we probably should have 854 // separate linkage types for this. 855 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 856 } 857 858 // Set visibility on a declaration only if it's explicit. 859 if (LV.isVisibilityExplicit()) 860 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 861 } 862 } 863 864 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 865 bool IsIncompleteFunction, 866 bool IsThunk) { 867 if (unsigned IID = F->getIntrinsicID()) { 868 // If this is an intrinsic function, set the function's attributes 869 // to the intrinsic's attributes. 870 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 871 (llvm::Intrinsic::ID)IID)); 872 return; 873 } 874 875 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 876 877 if (!IsIncompleteFunction) 878 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 879 880 // Add the Returned attribute for "this", except for iOS 5 and earlier 881 // where substantial code, including the libstdc++ dylib, was compiled with 882 // GCC and does not actually return "this". 883 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 884 !(getTarget().getTriple().isiOS() && 885 getTarget().getTriple().isOSVersionLT(6))) { 886 assert(!F->arg_empty() && 887 F->arg_begin()->getType() 888 ->canLosslesslyBitCastTo(F->getReturnType()) && 889 "unexpected this return"); 890 F->addAttribute(1, llvm::Attribute::Returned); 891 } 892 893 // Only a few attributes are set on declarations; these may later be 894 // overridden by a definition. 895 896 setLinkageAndVisibilityForGV(F, FD); 897 898 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 899 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 900 // Don't dllexport/import destructor thunks. 901 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 902 } 903 } 904 905 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 906 F->setSection(SA->getName()); 907 908 // A replaceable global allocation function does not act like a builtin by 909 // default, only if it is invoked by a new-expression or delete-expression. 910 if (FD->isReplaceableGlobalAllocationFunction()) 911 F->addAttribute(llvm::AttributeSet::FunctionIndex, 912 llvm::Attribute::NoBuiltin); 913 } 914 915 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 916 assert(!GV->isDeclaration() && 917 "Only globals with definition can force usage."); 918 LLVMUsed.push_back(GV); 919 } 920 921 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 922 assert(!GV->isDeclaration() && 923 "Only globals with definition can force usage."); 924 LLVMCompilerUsed.push_back(GV); 925 } 926 927 static void emitUsed(CodeGenModule &CGM, StringRef Name, 928 std::vector<llvm::WeakVH> &List) { 929 // Don't create llvm.used if there is no need. 930 if (List.empty()) 931 return; 932 933 // Convert List to what ConstantArray needs. 934 SmallVector<llvm::Constant*, 8> UsedArray; 935 UsedArray.resize(List.size()); 936 for (unsigned i = 0, e = List.size(); i != e; ++i) { 937 UsedArray[i] = 938 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 939 CGM.Int8PtrTy); 940 } 941 942 if (UsedArray.empty()) 943 return; 944 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 945 946 auto *GV = new llvm::GlobalVariable( 947 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 948 llvm::ConstantArray::get(ATy, UsedArray), Name); 949 950 GV->setSection("llvm.metadata"); 951 } 952 953 void CodeGenModule::emitLLVMUsed() { 954 emitUsed(*this, "llvm.used", LLVMUsed); 955 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 956 } 957 958 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 959 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 960 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 961 } 962 963 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 964 llvm::SmallString<32> Opt; 965 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 966 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 967 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 968 } 969 970 void CodeGenModule::AddDependentLib(StringRef Lib) { 971 llvm::SmallString<24> Opt; 972 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 973 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 974 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 975 } 976 977 /// \brief Add link options implied by the given module, including modules 978 /// it depends on, using a postorder walk. 979 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 980 SmallVectorImpl<llvm::Metadata *> &Metadata, 981 llvm::SmallPtrSet<Module *, 16> &Visited) { 982 // Import this module's parent. 983 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 984 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 985 } 986 987 // Import this module's dependencies. 988 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 989 if (Visited.insert(Mod->Imports[I - 1]).second) 990 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 991 } 992 993 // Add linker options to link against the libraries/frameworks 994 // described by this module. 995 llvm::LLVMContext &Context = CGM.getLLVMContext(); 996 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 997 // Link against a framework. Frameworks are currently Darwin only, so we 998 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 999 if (Mod->LinkLibraries[I-1].IsFramework) { 1000 llvm::Metadata *Args[2] = { 1001 llvm::MDString::get(Context, "-framework"), 1002 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1003 1004 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1005 continue; 1006 } 1007 1008 // Link against a library. 1009 llvm::SmallString<24> Opt; 1010 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1011 Mod->LinkLibraries[I-1].Library, Opt); 1012 auto *OptString = llvm::MDString::get(Context, Opt); 1013 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1014 } 1015 } 1016 1017 void CodeGenModule::EmitModuleLinkOptions() { 1018 // Collect the set of all of the modules we want to visit to emit link 1019 // options, which is essentially the imported modules and all of their 1020 // non-explicit child modules. 1021 llvm::SetVector<clang::Module *> LinkModules; 1022 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1023 SmallVector<clang::Module *, 16> Stack; 1024 1025 // Seed the stack with imported modules. 1026 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1027 MEnd = ImportedModules.end(); 1028 M != MEnd; ++M) { 1029 if (Visited.insert(*M).second) 1030 Stack.push_back(*M); 1031 } 1032 1033 // Find all of the modules to import, making a little effort to prune 1034 // non-leaf modules. 1035 while (!Stack.empty()) { 1036 clang::Module *Mod = Stack.pop_back_val(); 1037 1038 bool AnyChildren = false; 1039 1040 // Visit the submodules of this module. 1041 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1042 SubEnd = Mod->submodule_end(); 1043 Sub != SubEnd; ++Sub) { 1044 // Skip explicit children; they need to be explicitly imported to be 1045 // linked against. 1046 if ((*Sub)->IsExplicit) 1047 continue; 1048 1049 if (Visited.insert(*Sub).second) { 1050 Stack.push_back(*Sub); 1051 AnyChildren = true; 1052 } 1053 } 1054 1055 // We didn't find any children, so add this module to the list of 1056 // modules to link against. 1057 if (!AnyChildren) { 1058 LinkModules.insert(Mod); 1059 } 1060 } 1061 1062 // Add link options for all of the imported modules in reverse topological 1063 // order. We don't do anything to try to order import link flags with respect 1064 // to linker options inserted by things like #pragma comment(). 1065 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1066 Visited.clear(); 1067 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1068 MEnd = LinkModules.end(); 1069 M != MEnd; ++M) { 1070 if (Visited.insert(*M).second) 1071 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1072 } 1073 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1074 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1075 1076 // Add the linker options metadata flag. 1077 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1078 llvm::MDNode::get(getLLVMContext(), 1079 LinkerOptionsMetadata)); 1080 } 1081 1082 void CodeGenModule::EmitDeferred() { 1083 // Emit code for any potentially referenced deferred decls. Since a 1084 // previously unused static decl may become used during the generation of code 1085 // for a static function, iterate until no changes are made. 1086 1087 while (true) { 1088 if (!DeferredVTables.empty()) { 1089 EmitDeferredVTables(); 1090 1091 // Emitting a v-table doesn't directly cause more v-tables to 1092 // become deferred, although it can cause functions to be 1093 // emitted that then need those v-tables. 1094 assert(DeferredVTables.empty()); 1095 } 1096 1097 // Stop if we're out of both deferred v-tables and deferred declarations. 1098 if (DeferredDeclsToEmit.empty()) break; 1099 1100 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1101 GlobalDecl D = G.GD; 1102 llvm::GlobalValue *GV = G.GV; 1103 DeferredDeclsToEmit.pop_back(); 1104 1105 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1106 if (!GV) 1107 GV = GetGlobalValue(getMangledName(D)); 1108 1109 1110 // Check to see if we've already emitted this. This is necessary 1111 // for a couple of reasons: first, decls can end up in the 1112 // deferred-decls queue multiple times, and second, decls can end 1113 // up with definitions in unusual ways (e.g. by an extern inline 1114 // function acquiring a strong function redefinition). Just 1115 // ignore these cases. 1116 if (GV && !GV->isDeclaration()) 1117 continue; 1118 1119 // Otherwise, emit the definition and move on to the next one. 1120 EmitGlobalDefinition(D, GV); 1121 } 1122 } 1123 1124 void CodeGenModule::EmitGlobalAnnotations() { 1125 if (Annotations.empty()) 1126 return; 1127 1128 // Create a new global variable for the ConstantStruct in the Module. 1129 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1130 Annotations[0]->getType(), Annotations.size()), Annotations); 1131 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1132 llvm::GlobalValue::AppendingLinkage, 1133 Array, "llvm.global.annotations"); 1134 gv->setSection(AnnotationSection); 1135 } 1136 1137 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1138 llvm::Constant *&AStr = AnnotationStrings[Str]; 1139 if (AStr) 1140 return AStr; 1141 1142 // Not found yet, create a new global. 1143 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1144 auto *gv = 1145 new llvm::GlobalVariable(getModule(), s->getType(), true, 1146 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1147 gv->setSection(AnnotationSection); 1148 gv->setUnnamedAddr(true); 1149 AStr = gv; 1150 return gv; 1151 } 1152 1153 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1154 SourceManager &SM = getContext().getSourceManager(); 1155 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1156 if (PLoc.isValid()) 1157 return EmitAnnotationString(PLoc.getFilename()); 1158 return EmitAnnotationString(SM.getBufferName(Loc)); 1159 } 1160 1161 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1162 SourceManager &SM = getContext().getSourceManager(); 1163 PresumedLoc PLoc = SM.getPresumedLoc(L); 1164 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1165 SM.getExpansionLineNumber(L); 1166 return llvm::ConstantInt::get(Int32Ty, LineNo); 1167 } 1168 1169 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1170 const AnnotateAttr *AA, 1171 SourceLocation L) { 1172 // Get the globals for file name, annotation, and the line number. 1173 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1174 *UnitGV = EmitAnnotationUnit(L), 1175 *LineNoCst = EmitAnnotationLineNo(L); 1176 1177 // Create the ConstantStruct for the global annotation. 1178 llvm::Constant *Fields[4] = { 1179 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1180 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1181 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1182 LineNoCst 1183 }; 1184 return llvm::ConstantStruct::getAnon(Fields); 1185 } 1186 1187 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1188 llvm::GlobalValue *GV) { 1189 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1190 // Get the struct elements for these annotations. 1191 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1192 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1193 } 1194 1195 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1196 SourceLocation Loc) const { 1197 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1198 // Blacklist by function name. 1199 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1200 return true; 1201 // Blacklist by location. 1202 if (!Loc.isInvalid()) 1203 return SanitizerBL.isBlacklistedLocation(Loc); 1204 // If location is unknown, this may be a compiler-generated function. Assume 1205 // it's located in the main file. 1206 auto &SM = Context.getSourceManager(); 1207 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1208 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1209 } 1210 return false; 1211 } 1212 1213 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1214 SourceLocation Loc, QualType Ty, 1215 StringRef Category) const { 1216 // For now globals can be blacklisted only in ASan. 1217 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1218 return false; 1219 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1220 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1221 return true; 1222 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1223 return true; 1224 // Check global type. 1225 if (!Ty.isNull()) { 1226 // Drill down the array types: if global variable of a fixed type is 1227 // blacklisted, we also don't instrument arrays of them. 1228 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1229 Ty = AT->getElementType(); 1230 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1231 // We allow to blacklist only record types (classes, structs etc.) 1232 if (Ty->isRecordType()) { 1233 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1234 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1235 return true; 1236 } 1237 } 1238 return false; 1239 } 1240 1241 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1242 // Never defer when EmitAllDecls is specified. 1243 if (LangOpts.EmitAllDecls) 1244 return true; 1245 1246 return getContext().DeclMustBeEmitted(Global); 1247 } 1248 1249 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1250 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1251 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1252 // Implicit template instantiations may change linkage if they are later 1253 // explicitly instantiated, so they should not be emitted eagerly. 1254 return false; 1255 1256 return true; 1257 } 1258 1259 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1260 const CXXUuidofExpr* E) { 1261 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1262 // well-formed. 1263 StringRef Uuid = E->getUuidAsStringRef(Context); 1264 std::string Name = "_GUID_" + Uuid.lower(); 1265 std::replace(Name.begin(), Name.end(), '-', '_'); 1266 1267 // Look for an existing global. 1268 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1269 return GV; 1270 1271 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1272 assert(Init && "failed to initialize as constant"); 1273 1274 auto *GV = new llvm::GlobalVariable( 1275 getModule(), Init->getType(), 1276 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1277 return GV; 1278 } 1279 1280 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1281 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1282 assert(AA && "No alias?"); 1283 1284 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1285 1286 // See if there is already something with the target's name in the module. 1287 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1288 if (Entry) { 1289 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1290 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1291 } 1292 1293 llvm::Constant *Aliasee; 1294 if (isa<llvm::FunctionType>(DeclTy)) 1295 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1296 GlobalDecl(cast<FunctionDecl>(VD)), 1297 /*ForVTable=*/false); 1298 else 1299 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1300 llvm::PointerType::getUnqual(DeclTy), 1301 nullptr); 1302 1303 auto *F = cast<llvm::GlobalValue>(Aliasee); 1304 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1305 WeakRefReferences.insert(F); 1306 1307 return Aliasee; 1308 } 1309 1310 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1311 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1312 1313 // Weak references don't produce any output by themselves. 1314 if (Global->hasAttr<WeakRefAttr>()) 1315 return; 1316 1317 // If this is an alias definition (which otherwise looks like a declaration) 1318 // emit it now. 1319 if (Global->hasAttr<AliasAttr>()) 1320 return EmitAliasDefinition(GD); 1321 1322 // If this is CUDA, be selective about which declarations we emit. 1323 if (LangOpts.CUDA) { 1324 if (CodeGenOpts.CUDAIsDevice) { 1325 if (!Global->hasAttr<CUDADeviceAttr>() && 1326 !Global->hasAttr<CUDAGlobalAttr>() && 1327 !Global->hasAttr<CUDAConstantAttr>() && 1328 !Global->hasAttr<CUDASharedAttr>()) 1329 return; 1330 } else { 1331 if (!Global->hasAttr<CUDAHostAttr>() && ( 1332 Global->hasAttr<CUDADeviceAttr>() || 1333 Global->hasAttr<CUDAConstantAttr>() || 1334 Global->hasAttr<CUDASharedAttr>())) 1335 return; 1336 } 1337 } 1338 1339 // Ignore declarations, they will be emitted on their first use. 1340 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1341 // Forward declarations are emitted lazily on first use. 1342 if (!FD->doesThisDeclarationHaveABody()) { 1343 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1344 return; 1345 1346 StringRef MangledName = getMangledName(GD); 1347 1348 // Compute the function info and LLVM type. 1349 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1350 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1351 1352 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1353 /*DontDefer=*/false); 1354 return; 1355 } 1356 } else { 1357 const auto *VD = cast<VarDecl>(Global); 1358 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1359 1360 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1361 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1362 return; 1363 } 1364 1365 // Defer code generation to first use when possible, e.g. if this is an inline 1366 // function. If the global must always be emitted, do it eagerly if possible 1367 // to benefit from cache locality. 1368 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1369 // Emit the definition if it can't be deferred. 1370 EmitGlobalDefinition(GD); 1371 return; 1372 } 1373 1374 // If we're deferring emission of a C++ variable with an 1375 // initializer, remember the order in which it appeared in the file. 1376 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1377 cast<VarDecl>(Global)->hasInit()) { 1378 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1379 CXXGlobalInits.push_back(nullptr); 1380 } 1381 1382 StringRef MangledName = getMangledName(GD); 1383 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1384 // The value has already been used and should therefore be emitted. 1385 addDeferredDeclToEmit(GV, GD); 1386 } else if (MustBeEmitted(Global)) { 1387 // The value must be emitted, but cannot be emitted eagerly. 1388 assert(!MayBeEmittedEagerly(Global)); 1389 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1390 } else { 1391 // Otherwise, remember that we saw a deferred decl with this name. The 1392 // first use of the mangled name will cause it to move into 1393 // DeferredDeclsToEmit. 1394 DeferredDecls[MangledName] = GD; 1395 } 1396 } 1397 1398 namespace { 1399 struct FunctionIsDirectlyRecursive : 1400 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1401 const StringRef Name; 1402 const Builtin::Context &BI; 1403 bool Result; 1404 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1405 Name(N), BI(C), Result(false) { 1406 } 1407 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1408 1409 bool TraverseCallExpr(CallExpr *E) { 1410 const FunctionDecl *FD = E->getDirectCallee(); 1411 if (!FD) 1412 return true; 1413 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1414 if (Attr && Name == Attr->getLabel()) { 1415 Result = true; 1416 return false; 1417 } 1418 unsigned BuiltinID = FD->getBuiltinID(); 1419 if (!BuiltinID) 1420 return true; 1421 StringRef BuiltinName = BI.GetName(BuiltinID); 1422 if (BuiltinName.startswith("__builtin_") && 1423 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1424 Result = true; 1425 return false; 1426 } 1427 return true; 1428 } 1429 }; 1430 } 1431 1432 // isTriviallyRecursive - Check if this function calls another 1433 // decl that, because of the asm attribute or the other decl being a builtin, 1434 // ends up pointing to itself. 1435 bool 1436 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1437 StringRef Name; 1438 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1439 // asm labels are a special kind of mangling we have to support. 1440 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1441 if (!Attr) 1442 return false; 1443 Name = Attr->getLabel(); 1444 } else { 1445 Name = FD->getName(); 1446 } 1447 1448 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1449 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1450 return Walker.Result; 1451 } 1452 1453 bool 1454 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1455 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1456 return true; 1457 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1458 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1459 return false; 1460 // PR9614. Avoid cases where the source code is lying to us. An available 1461 // externally function should have an equivalent function somewhere else, 1462 // but a function that calls itself is clearly not equivalent to the real 1463 // implementation. 1464 // This happens in glibc's btowc and in some configure checks. 1465 return !isTriviallyRecursive(F); 1466 } 1467 1468 /// If the type for the method's class was generated by 1469 /// CGDebugInfo::createContextChain(), the cache contains only a 1470 /// limited DIType without any declarations. Since EmitFunctionStart() 1471 /// needs to find the canonical declaration for each method, we need 1472 /// to construct the complete type prior to emitting the method. 1473 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1474 if (!D->isInstance()) 1475 return; 1476 1477 if (CGDebugInfo *DI = getModuleDebugInfo()) 1478 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1479 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1480 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1481 } 1482 } 1483 1484 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1485 const auto *D = cast<ValueDecl>(GD.getDecl()); 1486 1487 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1488 Context.getSourceManager(), 1489 "Generating code for declaration"); 1490 1491 if (isa<FunctionDecl>(D)) { 1492 // At -O0, don't generate IR for functions with available_externally 1493 // linkage. 1494 if (!shouldEmitFunction(GD)) 1495 return; 1496 1497 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1498 CompleteDIClassType(Method); 1499 // Make sure to emit the definition(s) before we emit the thunks. 1500 // This is necessary for the generation of certain thunks. 1501 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1502 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1503 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1504 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1505 else 1506 EmitGlobalFunctionDefinition(GD, GV); 1507 1508 if (Method->isVirtual()) 1509 getVTables().EmitThunks(GD); 1510 1511 return; 1512 } 1513 1514 return EmitGlobalFunctionDefinition(GD, GV); 1515 } 1516 1517 if (const auto *VD = dyn_cast<VarDecl>(D)) 1518 return EmitGlobalVarDefinition(VD); 1519 1520 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1521 } 1522 1523 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1524 /// module, create and return an llvm Function with the specified type. If there 1525 /// is something in the module with the specified name, return it potentially 1526 /// bitcasted to the right type. 1527 /// 1528 /// If D is non-null, it specifies a decl that correspond to this. This is used 1529 /// to set the attributes on the function when it is first created. 1530 llvm::Constant * 1531 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1532 llvm::Type *Ty, 1533 GlobalDecl GD, bool ForVTable, 1534 bool DontDefer, bool IsThunk, 1535 llvm::AttributeSet ExtraAttrs) { 1536 const Decl *D = GD.getDecl(); 1537 1538 // Lookup the entry, lazily creating it if necessary. 1539 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1540 if (Entry) { 1541 if (WeakRefReferences.erase(Entry)) { 1542 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1543 if (FD && !FD->hasAttr<WeakAttr>()) 1544 Entry->setLinkage(llvm::Function::ExternalLinkage); 1545 } 1546 1547 // Handle dropped DLL attributes. 1548 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1549 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1550 1551 if (Entry->getType()->getElementType() == Ty) 1552 return Entry; 1553 1554 // Make sure the result is of the correct type. 1555 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1556 } 1557 1558 // This function doesn't have a complete type (for example, the return 1559 // type is an incomplete struct). Use a fake type instead, and make 1560 // sure not to try to set attributes. 1561 bool IsIncompleteFunction = false; 1562 1563 llvm::FunctionType *FTy; 1564 if (isa<llvm::FunctionType>(Ty)) { 1565 FTy = cast<llvm::FunctionType>(Ty); 1566 } else { 1567 FTy = llvm::FunctionType::get(VoidTy, false); 1568 IsIncompleteFunction = true; 1569 } 1570 1571 llvm::Function *F = llvm::Function::Create(FTy, 1572 llvm::Function::ExternalLinkage, 1573 MangledName, &getModule()); 1574 assert(F->getName() == MangledName && "name was uniqued!"); 1575 if (D) 1576 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1577 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1578 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1579 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1580 llvm::AttributeSet::get(VMContext, 1581 llvm::AttributeSet::FunctionIndex, 1582 B)); 1583 } 1584 1585 if (!DontDefer) { 1586 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1587 // each other bottoming out with the base dtor. Therefore we emit non-base 1588 // dtors on usage, even if there is no dtor definition in the TU. 1589 if (D && isa<CXXDestructorDecl>(D) && 1590 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1591 GD.getDtorType())) 1592 addDeferredDeclToEmit(F, GD); 1593 1594 // This is the first use or definition of a mangled name. If there is a 1595 // deferred decl with this name, remember that we need to emit it at the end 1596 // of the file. 1597 auto DDI = DeferredDecls.find(MangledName); 1598 if (DDI != DeferredDecls.end()) { 1599 // Move the potentially referenced deferred decl to the 1600 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1601 // don't need it anymore). 1602 addDeferredDeclToEmit(F, DDI->second); 1603 DeferredDecls.erase(DDI); 1604 1605 // Otherwise, if this is a sized deallocation function, emit a weak 1606 // definition 1607 // for it at the end of the translation unit. 1608 } else if (D && cast<FunctionDecl>(D) 1609 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1610 addDeferredDeclToEmit(F, GD); 1611 1612 // Otherwise, there are cases we have to worry about where we're 1613 // using a declaration for which we must emit a definition but where 1614 // we might not find a top-level definition: 1615 // - member functions defined inline in their classes 1616 // - friend functions defined inline in some class 1617 // - special member functions with implicit definitions 1618 // If we ever change our AST traversal to walk into class methods, 1619 // this will be unnecessary. 1620 // 1621 // We also don't emit a definition for a function if it's going to be an 1622 // entry in a vtable, unless it's already marked as used. 1623 } else if (getLangOpts().CPlusPlus && D) { 1624 // Look for a declaration that's lexically in a record. 1625 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1626 FD = FD->getPreviousDecl()) { 1627 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1628 if (FD->doesThisDeclarationHaveABody()) { 1629 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1630 break; 1631 } 1632 } 1633 } 1634 } 1635 } 1636 1637 // Make sure the result is of the requested type. 1638 if (!IsIncompleteFunction) { 1639 assert(F->getType()->getElementType() == Ty); 1640 return F; 1641 } 1642 1643 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1644 return llvm::ConstantExpr::getBitCast(F, PTy); 1645 } 1646 1647 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1648 /// non-null, then this function will use the specified type if it has to 1649 /// create it (this occurs when we see a definition of the function). 1650 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1651 llvm::Type *Ty, 1652 bool ForVTable, 1653 bool DontDefer) { 1654 // If there was no specific requested type, just convert it now. 1655 if (!Ty) 1656 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1657 1658 StringRef MangledName = getMangledName(GD); 1659 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1660 } 1661 1662 /// CreateRuntimeFunction - Create a new runtime function with the specified 1663 /// type and name. 1664 llvm::Constant * 1665 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1666 StringRef Name, 1667 llvm::AttributeSet ExtraAttrs) { 1668 llvm::Constant *C = 1669 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1670 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1671 if (auto *F = dyn_cast<llvm::Function>(C)) 1672 if (F->empty()) 1673 F->setCallingConv(getRuntimeCC()); 1674 return C; 1675 } 1676 1677 /// CreateBuiltinFunction - Create a new builtin function with the specified 1678 /// type and name. 1679 llvm::Constant * 1680 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1681 StringRef Name, 1682 llvm::AttributeSet ExtraAttrs) { 1683 llvm::Constant *C = 1684 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1685 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1686 if (auto *F = dyn_cast<llvm::Function>(C)) 1687 if (F->empty()) 1688 F->setCallingConv(getBuiltinCC()); 1689 return C; 1690 } 1691 1692 /// isTypeConstant - Determine whether an object of this type can be emitted 1693 /// as a constant. 1694 /// 1695 /// If ExcludeCtor is true, the duration when the object's constructor runs 1696 /// will not be considered. The caller will need to verify that the object is 1697 /// not written to during its construction. 1698 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1699 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1700 return false; 1701 1702 if (Context.getLangOpts().CPlusPlus) { 1703 if (const CXXRecordDecl *Record 1704 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1705 return ExcludeCtor && !Record->hasMutableFields() && 1706 Record->hasTrivialDestructor(); 1707 } 1708 1709 return true; 1710 } 1711 1712 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1713 /// create and return an llvm GlobalVariable with the specified type. If there 1714 /// is something in the module with the specified name, return it potentially 1715 /// bitcasted to the right type. 1716 /// 1717 /// If D is non-null, it specifies a decl that correspond to this. This is used 1718 /// to set the attributes on the global when it is first created. 1719 llvm::Constant * 1720 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1721 llvm::PointerType *Ty, 1722 const VarDecl *D) { 1723 // Lookup the entry, lazily creating it if necessary. 1724 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1725 if (Entry) { 1726 if (WeakRefReferences.erase(Entry)) { 1727 if (D && !D->hasAttr<WeakAttr>()) 1728 Entry->setLinkage(llvm::Function::ExternalLinkage); 1729 } 1730 1731 // Handle dropped DLL attributes. 1732 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1733 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1734 1735 if (Entry->getType() == Ty) 1736 return Entry; 1737 1738 // Make sure the result is of the correct type. 1739 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1740 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1741 1742 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1743 } 1744 1745 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1746 auto *GV = new llvm::GlobalVariable( 1747 getModule(), Ty->getElementType(), false, 1748 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1749 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1750 1751 // This is the first use or definition of a mangled name. If there is a 1752 // deferred decl with this name, remember that we need to emit it at the end 1753 // of the file. 1754 auto DDI = DeferredDecls.find(MangledName); 1755 if (DDI != DeferredDecls.end()) { 1756 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1757 // list, and remove it from DeferredDecls (since we don't need it anymore). 1758 addDeferredDeclToEmit(GV, DDI->second); 1759 DeferredDecls.erase(DDI); 1760 } 1761 1762 // Handle things which are present even on external declarations. 1763 if (D) { 1764 // FIXME: This code is overly simple and should be merged with other global 1765 // handling. 1766 GV->setConstant(isTypeConstant(D->getType(), false)); 1767 1768 setLinkageAndVisibilityForGV(GV, D); 1769 1770 if (D->getTLSKind()) { 1771 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1772 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1773 setTLSMode(GV, *D); 1774 } 1775 1776 // If required by the ABI, treat declarations of static data members with 1777 // inline initializers as definitions. 1778 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1779 EmitGlobalVarDefinition(D); 1780 } 1781 1782 // Handle XCore specific ABI requirements. 1783 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1784 D->getLanguageLinkage() == CLanguageLinkage && 1785 D->getType().isConstant(Context) && 1786 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1787 GV->setSection(".cp.rodata"); 1788 } 1789 1790 if (AddrSpace != Ty->getAddressSpace()) 1791 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1792 1793 return GV; 1794 } 1795 1796 1797 llvm::GlobalVariable * 1798 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1799 llvm::Type *Ty, 1800 llvm::GlobalValue::LinkageTypes Linkage) { 1801 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1802 llvm::GlobalVariable *OldGV = nullptr; 1803 1804 if (GV) { 1805 // Check if the variable has the right type. 1806 if (GV->getType()->getElementType() == Ty) 1807 return GV; 1808 1809 // Because C++ name mangling, the only way we can end up with an already 1810 // existing global with the same name is if it has been declared extern "C". 1811 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1812 OldGV = GV; 1813 } 1814 1815 // Create a new variable. 1816 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1817 Linkage, nullptr, Name); 1818 1819 if (OldGV) { 1820 // Replace occurrences of the old variable if needed. 1821 GV->takeName(OldGV); 1822 1823 if (!OldGV->use_empty()) { 1824 llvm::Constant *NewPtrForOldDecl = 1825 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1826 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1827 } 1828 1829 OldGV->eraseFromParent(); 1830 } 1831 1832 return GV; 1833 } 1834 1835 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1836 /// given global variable. If Ty is non-null and if the global doesn't exist, 1837 /// then it will be created with the specified type instead of whatever the 1838 /// normal requested type would be. 1839 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1840 llvm::Type *Ty) { 1841 assert(D->hasGlobalStorage() && "Not a global variable"); 1842 QualType ASTTy = D->getType(); 1843 if (!Ty) 1844 Ty = getTypes().ConvertTypeForMem(ASTTy); 1845 1846 llvm::PointerType *PTy = 1847 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1848 1849 StringRef MangledName = getMangledName(D); 1850 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1851 } 1852 1853 /// CreateRuntimeVariable - Create a new runtime global variable with the 1854 /// specified type and name. 1855 llvm::Constant * 1856 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1857 StringRef Name) { 1858 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1859 } 1860 1861 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1862 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1863 1864 if (!MustBeEmitted(D)) { 1865 // If we have not seen a reference to this variable yet, place it 1866 // into the deferred declarations table to be emitted if needed 1867 // later. 1868 StringRef MangledName = getMangledName(D); 1869 if (!GetGlobalValue(MangledName)) { 1870 DeferredDecls[MangledName] = D; 1871 return; 1872 } 1873 } 1874 1875 // The tentative definition is the only definition. 1876 EmitGlobalVarDefinition(D); 1877 } 1878 1879 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1880 return Context.toCharUnitsFromBits( 1881 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1882 } 1883 1884 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1885 unsigned AddrSpace) { 1886 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1887 if (D->hasAttr<CUDAConstantAttr>()) 1888 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1889 else if (D->hasAttr<CUDASharedAttr>()) 1890 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1891 else 1892 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1893 } 1894 1895 return AddrSpace; 1896 } 1897 1898 template<typename SomeDecl> 1899 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1900 llvm::GlobalValue *GV) { 1901 if (!getLangOpts().CPlusPlus) 1902 return; 1903 1904 // Must have 'used' attribute, or else inline assembly can't rely on 1905 // the name existing. 1906 if (!D->template hasAttr<UsedAttr>()) 1907 return; 1908 1909 // Must have internal linkage and an ordinary name. 1910 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1911 return; 1912 1913 // Must be in an extern "C" context. Entities declared directly within 1914 // a record are not extern "C" even if the record is in such a context. 1915 const SomeDecl *First = D->getFirstDecl(); 1916 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1917 return; 1918 1919 // OK, this is an internal linkage entity inside an extern "C" linkage 1920 // specification. Make a note of that so we can give it the "expected" 1921 // mangled name if nothing else is using that name. 1922 std::pair<StaticExternCMap::iterator, bool> R = 1923 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1924 1925 // If we have multiple internal linkage entities with the same name 1926 // in extern "C" regions, none of them gets that name. 1927 if (!R.second) 1928 R.first->second = nullptr; 1929 } 1930 1931 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1932 llvm::Constant *Init = nullptr; 1933 QualType ASTTy = D->getType(); 1934 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1935 bool NeedsGlobalCtor = false; 1936 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1937 1938 const VarDecl *InitDecl; 1939 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1940 1941 if (!InitExpr) { 1942 // This is a tentative definition; tentative definitions are 1943 // implicitly initialized with { 0 }. 1944 // 1945 // Note that tentative definitions are only emitted at the end of 1946 // a translation unit, so they should never have incomplete 1947 // type. In addition, EmitTentativeDefinition makes sure that we 1948 // never attempt to emit a tentative definition if a real one 1949 // exists. A use may still exists, however, so we still may need 1950 // to do a RAUW. 1951 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1952 Init = EmitNullConstant(D->getType()); 1953 } else { 1954 initializedGlobalDecl = GlobalDecl(D); 1955 Init = EmitConstantInit(*InitDecl); 1956 1957 if (!Init) { 1958 QualType T = InitExpr->getType(); 1959 if (D->getType()->isReferenceType()) 1960 T = D->getType(); 1961 1962 if (getLangOpts().CPlusPlus) { 1963 Init = EmitNullConstant(T); 1964 NeedsGlobalCtor = true; 1965 } else { 1966 ErrorUnsupported(D, "static initializer"); 1967 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1968 } 1969 } else { 1970 // We don't need an initializer, so remove the entry for the delayed 1971 // initializer position (just in case this entry was delayed) if we 1972 // also don't need to register a destructor. 1973 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1974 DelayedCXXInitPosition.erase(D); 1975 } 1976 } 1977 1978 llvm::Type* InitType = Init->getType(); 1979 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1980 1981 // Strip off a bitcast if we got one back. 1982 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1983 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1984 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1985 // All zero index gep. 1986 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1987 Entry = CE->getOperand(0); 1988 } 1989 1990 // Entry is now either a Function or GlobalVariable. 1991 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1992 1993 // We have a definition after a declaration with the wrong type. 1994 // We must make a new GlobalVariable* and update everything that used OldGV 1995 // (a declaration or tentative definition) with the new GlobalVariable* 1996 // (which will be a definition). 1997 // 1998 // This happens if there is a prototype for a global (e.g. 1999 // "extern int x[];") and then a definition of a different type (e.g. 2000 // "int x[10];"). This also happens when an initializer has a different type 2001 // from the type of the global (this happens with unions). 2002 if (!GV || 2003 GV->getType()->getElementType() != InitType || 2004 GV->getType()->getAddressSpace() != 2005 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2006 2007 // Move the old entry aside so that we'll create a new one. 2008 Entry->setName(StringRef()); 2009 2010 // Make a new global with the correct type, this is now guaranteed to work. 2011 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2012 2013 // Replace all uses of the old global with the new global 2014 llvm::Constant *NewPtrForOldDecl = 2015 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2016 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2017 2018 // Erase the old global, since it is no longer used. 2019 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2020 } 2021 2022 MaybeHandleStaticInExternC(D, GV); 2023 2024 if (D->hasAttr<AnnotateAttr>()) 2025 AddGlobalAnnotations(D, GV); 2026 2027 GV->setInitializer(Init); 2028 2029 // If it is safe to mark the global 'constant', do so now. 2030 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2031 isTypeConstant(D->getType(), true)); 2032 2033 // If it is in a read-only section, mark it 'constant'. 2034 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2035 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2036 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2037 GV->setConstant(true); 2038 } 2039 2040 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2041 2042 // Set the llvm linkage type as appropriate. 2043 llvm::GlobalValue::LinkageTypes Linkage = 2044 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2045 2046 // On Darwin, the backing variable for a C++11 thread_local variable always 2047 // has internal linkage; all accesses should just be calls to the 2048 // Itanium-specified entry point, which has the normal linkage of the 2049 // variable. 2050 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2051 Context.getTargetInfo().getTriple().isMacOSX()) 2052 Linkage = llvm::GlobalValue::InternalLinkage; 2053 2054 GV->setLinkage(Linkage); 2055 if (D->hasAttr<DLLImportAttr>()) 2056 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2057 else if (D->hasAttr<DLLExportAttr>()) 2058 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2059 else 2060 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2061 2062 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2063 // common vars aren't constant even if declared const. 2064 GV->setConstant(false); 2065 2066 setNonAliasAttributes(D, GV); 2067 2068 if (D->getTLSKind() && !GV->isThreadLocal()) { 2069 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2070 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2071 setTLSMode(GV, *D); 2072 } 2073 2074 // Emit the initializer function if necessary. 2075 if (NeedsGlobalCtor || NeedsGlobalDtor) 2076 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2077 2078 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2079 2080 // Emit global variable debug information. 2081 if (CGDebugInfo *DI = getModuleDebugInfo()) 2082 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2083 DI->EmitGlobalVariable(GV, D); 2084 } 2085 2086 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2087 const VarDecl *D, bool NoCommon) { 2088 // Don't give variables common linkage if -fno-common was specified unless it 2089 // was overridden by a NoCommon attribute. 2090 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2091 return true; 2092 2093 // C11 6.9.2/2: 2094 // A declaration of an identifier for an object that has file scope without 2095 // an initializer, and without a storage-class specifier or with the 2096 // storage-class specifier static, constitutes a tentative definition. 2097 if (D->getInit() || D->hasExternalStorage()) 2098 return true; 2099 2100 // A variable cannot be both common and exist in a section. 2101 if (D->hasAttr<SectionAttr>()) 2102 return true; 2103 2104 // Thread local vars aren't considered common linkage. 2105 if (D->getTLSKind()) 2106 return true; 2107 2108 // Tentative definitions marked with WeakImportAttr are true definitions. 2109 if (D->hasAttr<WeakImportAttr>()) 2110 return true; 2111 2112 // Declarations with a required alignment do not have common linakge in MSVC 2113 // mode. 2114 if (Context.getLangOpts().MSVCCompat && 2115 (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>())) 2116 return true; 2117 2118 return false; 2119 } 2120 2121 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2122 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2123 if (Linkage == GVA_Internal) 2124 return llvm::Function::InternalLinkage; 2125 2126 if (D->hasAttr<WeakAttr>()) { 2127 if (IsConstantVariable) 2128 return llvm::GlobalVariable::WeakODRLinkage; 2129 else 2130 return llvm::GlobalVariable::WeakAnyLinkage; 2131 } 2132 2133 // We are guaranteed to have a strong definition somewhere else, 2134 // so we can use available_externally linkage. 2135 if (Linkage == GVA_AvailableExternally) 2136 return llvm::Function::AvailableExternallyLinkage; 2137 2138 // Note that Apple's kernel linker doesn't support symbol 2139 // coalescing, so we need to avoid linkonce and weak linkages there. 2140 // Normally, this means we just map to internal, but for explicit 2141 // instantiations we'll map to external. 2142 2143 // In C++, the compiler has to emit a definition in every translation unit 2144 // that references the function. We should use linkonce_odr because 2145 // a) if all references in this translation unit are optimized away, we 2146 // don't need to codegen it. b) if the function persists, it needs to be 2147 // merged with other definitions. c) C++ has the ODR, so we know the 2148 // definition is dependable. 2149 if (Linkage == GVA_DiscardableODR) 2150 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2151 : llvm::Function::InternalLinkage; 2152 2153 // An explicit instantiation of a template has weak linkage, since 2154 // explicit instantiations can occur in multiple translation units 2155 // and must all be equivalent. However, we are not allowed to 2156 // throw away these explicit instantiations. 2157 if (Linkage == GVA_StrongODR) 2158 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2159 : llvm::Function::ExternalLinkage; 2160 2161 // C++ doesn't have tentative definitions and thus cannot have common 2162 // linkage. 2163 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2164 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2165 CodeGenOpts.NoCommon)) 2166 return llvm::GlobalVariable::CommonLinkage; 2167 2168 // selectany symbols are externally visible, so use weak instead of 2169 // linkonce. MSVC optimizes away references to const selectany globals, so 2170 // all definitions should be the same and ODR linkage should be used. 2171 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2172 if (D->hasAttr<SelectAnyAttr>()) 2173 return llvm::GlobalVariable::WeakODRLinkage; 2174 2175 // Otherwise, we have strong external linkage. 2176 assert(Linkage == GVA_StrongExternal); 2177 return llvm::GlobalVariable::ExternalLinkage; 2178 } 2179 2180 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2181 const VarDecl *VD, bool IsConstant) { 2182 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2183 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2184 } 2185 2186 /// Replace the uses of a function that was declared with a non-proto type. 2187 /// We want to silently drop extra arguments from call sites 2188 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2189 llvm::Function *newFn) { 2190 // Fast path. 2191 if (old->use_empty()) return; 2192 2193 llvm::Type *newRetTy = newFn->getReturnType(); 2194 SmallVector<llvm::Value*, 4> newArgs; 2195 2196 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2197 ui != ue; ) { 2198 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2199 llvm::User *user = use->getUser(); 2200 2201 // Recognize and replace uses of bitcasts. Most calls to 2202 // unprototyped functions will use bitcasts. 2203 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2204 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2205 replaceUsesOfNonProtoConstant(bitcast, newFn); 2206 continue; 2207 } 2208 2209 // Recognize calls to the function. 2210 llvm::CallSite callSite(user); 2211 if (!callSite) continue; 2212 if (!callSite.isCallee(&*use)) continue; 2213 2214 // If the return types don't match exactly, then we can't 2215 // transform this call unless it's dead. 2216 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2217 continue; 2218 2219 // Get the call site's attribute list. 2220 SmallVector<llvm::AttributeSet, 8> newAttrs; 2221 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2222 2223 // Collect any return attributes from the call. 2224 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2225 newAttrs.push_back( 2226 llvm::AttributeSet::get(newFn->getContext(), 2227 oldAttrs.getRetAttributes())); 2228 2229 // If the function was passed too few arguments, don't transform. 2230 unsigned newNumArgs = newFn->arg_size(); 2231 if (callSite.arg_size() < newNumArgs) continue; 2232 2233 // If extra arguments were passed, we silently drop them. 2234 // If any of the types mismatch, we don't transform. 2235 unsigned argNo = 0; 2236 bool dontTransform = false; 2237 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2238 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2239 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2240 dontTransform = true; 2241 break; 2242 } 2243 2244 // Add any parameter attributes. 2245 if (oldAttrs.hasAttributes(argNo + 1)) 2246 newAttrs. 2247 push_back(llvm:: 2248 AttributeSet::get(newFn->getContext(), 2249 oldAttrs.getParamAttributes(argNo + 1))); 2250 } 2251 if (dontTransform) 2252 continue; 2253 2254 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2255 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2256 oldAttrs.getFnAttributes())); 2257 2258 // Okay, we can transform this. Create the new call instruction and copy 2259 // over the required information. 2260 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2261 2262 llvm::CallSite newCall; 2263 if (callSite.isCall()) { 2264 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2265 callSite.getInstruction()); 2266 } else { 2267 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2268 newCall = llvm::InvokeInst::Create(newFn, 2269 oldInvoke->getNormalDest(), 2270 oldInvoke->getUnwindDest(), 2271 newArgs, "", 2272 callSite.getInstruction()); 2273 } 2274 newArgs.clear(); // for the next iteration 2275 2276 if (!newCall->getType()->isVoidTy()) 2277 newCall->takeName(callSite.getInstruction()); 2278 newCall.setAttributes( 2279 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2280 newCall.setCallingConv(callSite.getCallingConv()); 2281 2282 // Finally, remove the old call, replacing any uses with the new one. 2283 if (!callSite->use_empty()) 2284 callSite->replaceAllUsesWith(newCall.getInstruction()); 2285 2286 // Copy debug location attached to CI. 2287 if (!callSite->getDebugLoc().isUnknown()) 2288 newCall->setDebugLoc(callSite->getDebugLoc()); 2289 callSite->eraseFromParent(); 2290 } 2291 } 2292 2293 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2294 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2295 /// existing call uses of the old function in the module, this adjusts them to 2296 /// call the new function directly. 2297 /// 2298 /// This is not just a cleanup: the always_inline pass requires direct calls to 2299 /// functions to be able to inline them. If there is a bitcast in the way, it 2300 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2301 /// run at -O0. 2302 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2303 llvm::Function *NewFn) { 2304 // If we're redefining a global as a function, don't transform it. 2305 if (!isa<llvm::Function>(Old)) return; 2306 2307 replaceUsesOfNonProtoConstant(Old, NewFn); 2308 } 2309 2310 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2311 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2312 // If we have a definition, this might be a deferred decl. If the 2313 // instantiation is explicit, make sure we emit it at the end. 2314 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2315 GetAddrOfGlobalVar(VD); 2316 2317 EmitTopLevelDecl(VD); 2318 } 2319 2320 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2321 llvm::GlobalValue *GV) { 2322 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2323 2324 // Compute the function info and LLVM type. 2325 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2326 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2327 2328 // Get or create the prototype for the function. 2329 if (!GV) { 2330 llvm::Constant *C = 2331 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2332 2333 // Strip off a bitcast if we got one back. 2334 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2335 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2336 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2337 } else { 2338 GV = cast<llvm::GlobalValue>(C); 2339 } 2340 } 2341 2342 if (!GV->isDeclaration()) { 2343 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2344 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2345 if (auto *Prev = OldGD.getDecl()) 2346 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2347 return; 2348 } 2349 2350 if (GV->getType()->getElementType() != Ty) { 2351 // If the types mismatch then we have to rewrite the definition. 2352 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2353 2354 // F is the Function* for the one with the wrong type, we must make a new 2355 // Function* and update everything that used F (a declaration) with the new 2356 // Function* (which will be a definition). 2357 // 2358 // This happens if there is a prototype for a function 2359 // (e.g. "int f()") and then a definition of a different type 2360 // (e.g. "int f(int x)"). Move the old function aside so that it 2361 // doesn't interfere with GetAddrOfFunction. 2362 GV->setName(StringRef()); 2363 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2364 2365 // This might be an implementation of a function without a 2366 // prototype, in which case, try to do special replacement of 2367 // calls which match the new prototype. The really key thing here 2368 // is that we also potentially drop arguments from the call site 2369 // so as to make a direct call, which makes the inliner happier 2370 // and suppresses a number of optimizer warnings (!) about 2371 // dropping arguments. 2372 if (!GV->use_empty()) { 2373 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2374 GV->removeDeadConstantUsers(); 2375 } 2376 2377 // Replace uses of F with the Function we will endow with a body. 2378 if (!GV->use_empty()) { 2379 llvm::Constant *NewPtrForOldDecl = 2380 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2381 GV->replaceAllUsesWith(NewPtrForOldDecl); 2382 } 2383 2384 // Ok, delete the old function now, which is dead. 2385 GV->eraseFromParent(); 2386 2387 GV = NewFn; 2388 } 2389 2390 // We need to set linkage and visibility on the function before 2391 // generating code for it because various parts of IR generation 2392 // want to propagate this information down (e.g. to local static 2393 // declarations). 2394 auto *Fn = cast<llvm::Function>(GV); 2395 setFunctionLinkage(GD, Fn); 2396 if (D->hasAttr<DLLImportAttr>()) 2397 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2398 else if (D->hasAttr<DLLExportAttr>()) 2399 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2400 else 2401 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2402 2403 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2404 setGlobalVisibility(Fn, D); 2405 2406 MaybeHandleStaticInExternC(D, Fn); 2407 2408 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2409 2410 setFunctionDefinitionAttributes(D, Fn); 2411 SetLLVMFunctionAttributesForDefinition(D, Fn); 2412 2413 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2414 AddGlobalCtor(Fn, CA->getPriority()); 2415 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2416 AddGlobalDtor(Fn, DA->getPriority()); 2417 if (D->hasAttr<AnnotateAttr>()) 2418 AddGlobalAnnotations(D, Fn); 2419 } 2420 2421 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2422 const auto *D = cast<ValueDecl>(GD.getDecl()); 2423 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2424 assert(AA && "Not an alias?"); 2425 2426 StringRef MangledName = getMangledName(GD); 2427 2428 // If there is a definition in the module, then it wins over the alias. 2429 // This is dubious, but allow it to be safe. Just ignore the alias. 2430 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2431 if (Entry && !Entry->isDeclaration()) 2432 return; 2433 2434 Aliases.push_back(GD); 2435 2436 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2437 2438 // Create a reference to the named value. This ensures that it is emitted 2439 // if a deferred decl. 2440 llvm::Constant *Aliasee; 2441 if (isa<llvm::FunctionType>(DeclTy)) 2442 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2443 /*ForVTable=*/false); 2444 else 2445 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2446 llvm::PointerType::getUnqual(DeclTy), 2447 /*D=*/nullptr); 2448 2449 // Create the new alias itself, but don't set a name yet. 2450 auto *GA = llvm::GlobalAlias::create( 2451 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2452 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2453 2454 if (Entry) { 2455 if (GA->getAliasee() == Entry) { 2456 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2457 return; 2458 } 2459 2460 assert(Entry->isDeclaration()); 2461 2462 // If there is a declaration in the module, then we had an extern followed 2463 // by the alias, as in: 2464 // extern int test6(); 2465 // ... 2466 // int test6() __attribute__((alias("test7"))); 2467 // 2468 // Remove it and replace uses of it with the alias. 2469 GA->takeName(Entry); 2470 2471 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2472 Entry->getType())); 2473 Entry->eraseFromParent(); 2474 } else { 2475 GA->setName(MangledName); 2476 } 2477 2478 // Set attributes which are particular to an alias; this is a 2479 // specialization of the attributes which may be set on a global 2480 // variable/function. 2481 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2482 D->isWeakImported()) { 2483 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2484 } 2485 2486 if (const auto *VD = dyn_cast<VarDecl>(D)) 2487 if (VD->getTLSKind()) 2488 setTLSMode(GA, *VD); 2489 2490 setAliasAttributes(D, GA); 2491 } 2492 2493 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2494 ArrayRef<llvm::Type*> Tys) { 2495 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2496 Tys); 2497 } 2498 2499 static llvm::StringMapEntry<llvm::Constant*> & 2500 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2501 const StringLiteral *Literal, 2502 bool TargetIsLSB, 2503 bool &IsUTF16, 2504 unsigned &StringLength) { 2505 StringRef String = Literal->getString(); 2506 unsigned NumBytes = String.size(); 2507 2508 // Check for simple case. 2509 if (!Literal->containsNonAsciiOrNull()) { 2510 StringLength = NumBytes; 2511 return *Map.insert(std::make_pair(String, nullptr)).first; 2512 } 2513 2514 // Otherwise, convert the UTF8 literals into a string of shorts. 2515 IsUTF16 = true; 2516 2517 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2518 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2519 UTF16 *ToPtr = &ToBuf[0]; 2520 2521 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2522 &ToPtr, ToPtr + NumBytes, 2523 strictConversion); 2524 2525 // ConvertUTF8toUTF16 returns the length in ToPtr. 2526 StringLength = ToPtr - &ToBuf[0]; 2527 2528 // Add an explicit null. 2529 *ToPtr = 0; 2530 return *Map.insert(std::make_pair( 2531 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2532 (StringLength + 1) * 2), 2533 nullptr)).first; 2534 } 2535 2536 static llvm::StringMapEntry<llvm::Constant*> & 2537 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2538 const StringLiteral *Literal, 2539 unsigned &StringLength) { 2540 StringRef String = Literal->getString(); 2541 StringLength = String.size(); 2542 return *Map.insert(std::make_pair(String, nullptr)).first; 2543 } 2544 2545 llvm::Constant * 2546 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2547 unsigned StringLength = 0; 2548 bool isUTF16 = false; 2549 llvm::StringMapEntry<llvm::Constant*> &Entry = 2550 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2551 getDataLayout().isLittleEndian(), 2552 isUTF16, StringLength); 2553 2554 if (auto *C = Entry.second) 2555 return C; 2556 2557 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2558 llvm::Constant *Zeros[] = { Zero, Zero }; 2559 llvm::Value *V; 2560 2561 // If we don't already have it, get __CFConstantStringClassReference. 2562 if (!CFConstantStringClassRef) { 2563 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2564 Ty = llvm::ArrayType::get(Ty, 0); 2565 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2566 "__CFConstantStringClassReference"); 2567 // Decay array -> ptr 2568 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2569 CFConstantStringClassRef = V; 2570 } 2571 else 2572 V = CFConstantStringClassRef; 2573 2574 QualType CFTy = getContext().getCFConstantStringType(); 2575 2576 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2577 2578 llvm::Constant *Fields[4]; 2579 2580 // Class pointer. 2581 Fields[0] = cast<llvm::ConstantExpr>(V); 2582 2583 // Flags. 2584 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2585 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2586 llvm::ConstantInt::get(Ty, 0x07C8); 2587 2588 // String pointer. 2589 llvm::Constant *C = nullptr; 2590 if (isUTF16) { 2591 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2592 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2593 Entry.first().size() / 2); 2594 C = llvm::ConstantDataArray::get(VMContext, Arr); 2595 } else { 2596 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2597 } 2598 2599 // Note: -fwritable-strings doesn't make the backing store strings of 2600 // CFStrings writable. (See <rdar://problem/10657500>) 2601 auto *GV = 2602 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2603 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2604 GV->setUnnamedAddr(true); 2605 // Don't enforce the target's minimum global alignment, since the only use 2606 // of the string is via this class initializer. 2607 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2608 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2609 // that changes the section it ends in, which surprises ld64. 2610 if (isUTF16) { 2611 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2612 GV->setAlignment(Align.getQuantity()); 2613 GV->setSection("__TEXT,__ustring"); 2614 } else { 2615 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2616 GV->setAlignment(Align.getQuantity()); 2617 GV->setSection("__TEXT,__cstring,cstring_literals"); 2618 } 2619 2620 // String. 2621 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2622 2623 if (isUTF16) 2624 // Cast the UTF16 string to the correct type. 2625 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2626 2627 // String length. 2628 Ty = getTypes().ConvertType(getContext().LongTy); 2629 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2630 2631 // The struct. 2632 C = llvm::ConstantStruct::get(STy, Fields); 2633 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2634 llvm::GlobalVariable::PrivateLinkage, C, 2635 "_unnamed_cfstring_"); 2636 GV->setSection("__DATA,__cfstring"); 2637 Entry.second = GV; 2638 2639 return GV; 2640 } 2641 2642 llvm::Constant * 2643 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2644 unsigned StringLength = 0; 2645 llvm::StringMapEntry<llvm::Constant*> &Entry = 2646 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2647 2648 if (auto *C = Entry.second) 2649 return C; 2650 2651 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2652 llvm::Constant *Zeros[] = { Zero, Zero }; 2653 llvm::Value *V; 2654 // If we don't already have it, get _NSConstantStringClassReference. 2655 if (!ConstantStringClassRef) { 2656 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2657 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2658 llvm::Constant *GV; 2659 if (LangOpts.ObjCRuntime.isNonFragile()) { 2660 std::string str = 2661 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2662 : "OBJC_CLASS_$_" + StringClass; 2663 GV = getObjCRuntime().GetClassGlobal(str); 2664 // Make sure the result is of the correct type. 2665 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2666 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2667 ConstantStringClassRef = V; 2668 } else { 2669 std::string str = 2670 StringClass.empty() ? "_NSConstantStringClassReference" 2671 : "_" + StringClass + "ClassReference"; 2672 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2673 GV = CreateRuntimeVariable(PTy, str); 2674 // Decay array -> ptr 2675 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2676 ConstantStringClassRef = V; 2677 } 2678 } 2679 else 2680 V = ConstantStringClassRef; 2681 2682 if (!NSConstantStringType) { 2683 // Construct the type for a constant NSString. 2684 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2685 D->startDefinition(); 2686 2687 QualType FieldTypes[3]; 2688 2689 // const int *isa; 2690 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2691 // const char *str; 2692 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2693 // unsigned int length; 2694 FieldTypes[2] = Context.UnsignedIntTy; 2695 2696 // Create fields 2697 for (unsigned i = 0; i < 3; ++i) { 2698 FieldDecl *Field = FieldDecl::Create(Context, D, 2699 SourceLocation(), 2700 SourceLocation(), nullptr, 2701 FieldTypes[i], /*TInfo=*/nullptr, 2702 /*BitWidth=*/nullptr, 2703 /*Mutable=*/false, 2704 ICIS_NoInit); 2705 Field->setAccess(AS_public); 2706 D->addDecl(Field); 2707 } 2708 2709 D->completeDefinition(); 2710 QualType NSTy = Context.getTagDeclType(D); 2711 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2712 } 2713 2714 llvm::Constant *Fields[3]; 2715 2716 // Class pointer. 2717 Fields[0] = cast<llvm::ConstantExpr>(V); 2718 2719 // String pointer. 2720 llvm::Constant *C = 2721 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2722 2723 llvm::GlobalValue::LinkageTypes Linkage; 2724 bool isConstant; 2725 Linkage = llvm::GlobalValue::PrivateLinkage; 2726 isConstant = !LangOpts.WritableStrings; 2727 2728 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2729 Linkage, C, ".str"); 2730 GV->setUnnamedAddr(true); 2731 // Don't enforce the target's minimum global alignment, since the only use 2732 // of the string is via this class initializer. 2733 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2734 GV->setAlignment(Align.getQuantity()); 2735 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2736 2737 // String length. 2738 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2739 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2740 2741 // The struct. 2742 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2743 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2744 llvm::GlobalVariable::PrivateLinkage, C, 2745 "_unnamed_nsstring_"); 2746 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2747 const char *NSStringNonFragileABISection = 2748 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2749 // FIXME. Fix section. 2750 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2751 ? NSStringNonFragileABISection 2752 : NSStringSection); 2753 Entry.second = GV; 2754 2755 return GV; 2756 } 2757 2758 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2759 if (ObjCFastEnumerationStateType.isNull()) { 2760 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2761 D->startDefinition(); 2762 2763 QualType FieldTypes[] = { 2764 Context.UnsignedLongTy, 2765 Context.getPointerType(Context.getObjCIdType()), 2766 Context.getPointerType(Context.UnsignedLongTy), 2767 Context.getConstantArrayType(Context.UnsignedLongTy, 2768 llvm::APInt(32, 5), ArrayType::Normal, 0) 2769 }; 2770 2771 for (size_t i = 0; i < 4; ++i) { 2772 FieldDecl *Field = FieldDecl::Create(Context, 2773 D, 2774 SourceLocation(), 2775 SourceLocation(), nullptr, 2776 FieldTypes[i], /*TInfo=*/nullptr, 2777 /*BitWidth=*/nullptr, 2778 /*Mutable=*/false, 2779 ICIS_NoInit); 2780 Field->setAccess(AS_public); 2781 D->addDecl(Field); 2782 } 2783 2784 D->completeDefinition(); 2785 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2786 } 2787 2788 return ObjCFastEnumerationStateType; 2789 } 2790 2791 llvm::Constant * 2792 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2793 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2794 2795 // Don't emit it as the address of the string, emit the string data itself 2796 // as an inline array. 2797 if (E->getCharByteWidth() == 1) { 2798 SmallString<64> Str(E->getString()); 2799 2800 // Resize the string to the right size, which is indicated by its type. 2801 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2802 Str.resize(CAT->getSize().getZExtValue()); 2803 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2804 } 2805 2806 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2807 llvm::Type *ElemTy = AType->getElementType(); 2808 unsigned NumElements = AType->getNumElements(); 2809 2810 // Wide strings have either 2-byte or 4-byte elements. 2811 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2812 SmallVector<uint16_t, 32> Elements; 2813 Elements.reserve(NumElements); 2814 2815 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2816 Elements.push_back(E->getCodeUnit(i)); 2817 Elements.resize(NumElements); 2818 return llvm::ConstantDataArray::get(VMContext, Elements); 2819 } 2820 2821 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2822 SmallVector<uint32_t, 32> Elements; 2823 Elements.reserve(NumElements); 2824 2825 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2826 Elements.push_back(E->getCodeUnit(i)); 2827 Elements.resize(NumElements); 2828 return llvm::ConstantDataArray::get(VMContext, Elements); 2829 } 2830 2831 static llvm::GlobalVariable * 2832 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2833 CodeGenModule &CGM, StringRef GlobalName, 2834 unsigned Alignment) { 2835 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2836 unsigned AddrSpace = 0; 2837 if (CGM.getLangOpts().OpenCL) 2838 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2839 2840 // Create a global variable for this string 2841 auto *GV = new llvm::GlobalVariable( 2842 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2843 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2844 GV->setAlignment(Alignment); 2845 GV->setUnnamedAddr(true); 2846 return GV; 2847 } 2848 2849 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2850 /// constant array for the given string literal. 2851 llvm::GlobalVariable * 2852 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2853 StringRef Name) { 2854 auto Alignment = 2855 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2856 2857 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2858 llvm::GlobalVariable **Entry = nullptr; 2859 if (!LangOpts.WritableStrings) { 2860 Entry = &ConstantStringMap[C]; 2861 if (auto GV = *Entry) { 2862 if (Alignment > GV->getAlignment()) 2863 GV->setAlignment(Alignment); 2864 return GV; 2865 } 2866 } 2867 2868 SmallString<256> MangledNameBuffer; 2869 StringRef GlobalVariableName; 2870 llvm::GlobalValue::LinkageTypes LT; 2871 2872 // Mangle the string literal if the ABI allows for it. However, we cannot 2873 // do this if we are compiling with ASan or -fwritable-strings because they 2874 // rely on strings having normal linkage. 2875 if (!LangOpts.WritableStrings && 2876 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2877 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2878 llvm::raw_svector_ostream Out(MangledNameBuffer); 2879 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2880 Out.flush(); 2881 2882 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2883 GlobalVariableName = MangledNameBuffer; 2884 } else { 2885 LT = llvm::GlobalValue::PrivateLinkage; 2886 GlobalVariableName = Name; 2887 } 2888 2889 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2890 if (Entry) 2891 *Entry = GV; 2892 2893 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2894 QualType()); 2895 return GV; 2896 } 2897 2898 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2899 /// array for the given ObjCEncodeExpr node. 2900 llvm::GlobalVariable * 2901 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2902 std::string Str; 2903 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2904 2905 return GetAddrOfConstantCString(Str); 2906 } 2907 2908 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2909 /// the literal and a terminating '\0' character. 2910 /// The result has pointer to array type. 2911 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2912 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2913 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2914 if (Alignment == 0) { 2915 Alignment = getContext() 2916 .getAlignOfGlobalVarInChars(getContext().CharTy) 2917 .getQuantity(); 2918 } 2919 2920 llvm::Constant *C = 2921 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2922 2923 // Don't share any string literals if strings aren't constant. 2924 llvm::GlobalVariable **Entry = nullptr; 2925 if (!LangOpts.WritableStrings) { 2926 Entry = &ConstantStringMap[C]; 2927 if (auto GV = *Entry) { 2928 if (Alignment > GV->getAlignment()) 2929 GV->setAlignment(Alignment); 2930 return GV; 2931 } 2932 } 2933 2934 // Get the default prefix if a name wasn't specified. 2935 if (!GlobalName) 2936 GlobalName = ".str"; 2937 // Create a global variable for this. 2938 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2939 GlobalName, Alignment); 2940 if (Entry) 2941 *Entry = GV; 2942 return GV; 2943 } 2944 2945 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2946 const MaterializeTemporaryExpr *E, const Expr *Init) { 2947 assert((E->getStorageDuration() == SD_Static || 2948 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2949 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2950 2951 // If we're not materializing a subobject of the temporary, keep the 2952 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2953 QualType MaterializedType = Init->getType(); 2954 if (Init == E->GetTemporaryExpr()) 2955 MaterializedType = E->getType(); 2956 2957 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2958 if (Slot) 2959 return Slot; 2960 2961 // FIXME: If an externally-visible declaration extends multiple temporaries, 2962 // we need to give each temporary the same name in every translation unit (and 2963 // we also need to make the temporaries externally-visible). 2964 SmallString<256> Name; 2965 llvm::raw_svector_ostream Out(Name); 2966 getCXXABI().getMangleContext().mangleReferenceTemporary( 2967 VD, E->getManglingNumber(), Out); 2968 Out.flush(); 2969 2970 APValue *Value = nullptr; 2971 if (E->getStorageDuration() == SD_Static) { 2972 // We might have a cached constant initializer for this temporary. Note 2973 // that this might have a different value from the value computed by 2974 // evaluating the initializer if the surrounding constant expression 2975 // modifies the temporary. 2976 Value = getContext().getMaterializedTemporaryValue(E, false); 2977 if (Value && Value->isUninit()) 2978 Value = nullptr; 2979 } 2980 2981 // Try evaluating it now, it might have a constant initializer. 2982 Expr::EvalResult EvalResult; 2983 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2984 !EvalResult.hasSideEffects()) 2985 Value = &EvalResult.Val; 2986 2987 llvm::Constant *InitialValue = nullptr; 2988 bool Constant = false; 2989 llvm::Type *Type; 2990 if (Value) { 2991 // The temporary has a constant initializer, use it. 2992 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2993 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2994 Type = InitialValue->getType(); 2995 } else { 2996 // No initializer, the initialization will be provided when we 2997 // initialize the declaration which performed lifetime extension. 2998 Type = getTypes().ConvertTypeForMem(MaterializedType); 2999 } 3000 3001 // Create a global variable for this lifetime-extended temporary. 3002 llvm::GlobalValue::LinkageTypes Linkage = 3003 getLLVMLinkageVarDefinition(VD, Constant); 3004 // There is no need for this temporary to have global linkage if the global 3005 // variable has external linkage. 3006 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 3007 Linkage = llvm::GlobalVariable::PrivateLinkage; 3008 unsigned AddrSpace = GetGlobalVarAddressSpace( 3009 VD, getContext().getTargetAddressSpace(MaterializedType)); 3010 auto *GV = new llvm::GlobalVariable( 3011 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3012 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3013 AddrSpace); 3014 setGlobalVisibility(GV, VD); 3015 GV->setAlignment( 3016 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3017 if (VD->getTLSKind()) 3018 setTLSMode(GV, *VD); 3019 Slot = GV; 3020 return GV; 3021 } 3022 3023 /// EmitObjCPropertyImplementations - Emit information for synthesized 3024 /// properties for an implementation. 3025 void CodeGenModule::EmitObjCPropertyImplementations(const 3026 ObjCImplementationDecl *D) { 3027 for (const auto *PID : D->property_impls()) { 3028 // Dynamic is just for type-checking. 3029 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3030 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3031 3032 // Determine which methods need to be implemented, some may have 3033 // been overridden. Note that ::isPropertyAccessor is not the method 3034 // we want, that just indicates if the decl came from a 3035 // property. What we want to know is if the method is defined in 3036 // this implementation. 3037 if (!D->getInstanceMethod(PD->getGetterName())) 3038 CodeGenFunction(*this).GenerateObjCGetter( 3039 const_cast<ObjCImplementationDecl *>(D), PID); 3040 if (!PD->isReadOnly() && 3041 !D->getInstanceMethod(PD->getSetterName())) 3042 CodeGenFunction(*this).GenerateObjCSetter( 3043 const_cast<ObjCImplementationDecl *>(D), PID); 3044 } 3045 } 3046 } 3047 3048 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3049 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3050 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3051 ivar; ivar = ivar->getNextIvar()) 3052 if (ivar->getType().isDestructedType()) 3053 return true; 3054 3055 return false; 3056 } 3057 3058 static bool AllTrivialInitializers(CodeGenModule &CGM, 3059 ObjCImplementationDecl *D) { 3060 CodeGenFunction CGF(CGM); 3061 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3062 E = D->init_end(); B != E; ++B) { 3063 CXXCtorInitializer *CtorInitExp = *B; 3064 Expr *Init = CtorInitExp->getInit(); 3065 if (!CGF.isTrivialInitializer(Init)) 3066 return false; 3067 } 3068 return true; 3069 } 3070 3071 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3072 /// for an implementation. 3073 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3074 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3075 if (needsDestructMethod(D)) { 3076 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3077 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3078 ObjCMethodDecl *DTORMethod = 3079 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3080 cxxSelector, getContext().VoidTy, nullptr, D, 3081 /*isInstance=*/true, /*isVariadic=*/false, 3082 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3083 /*isDefined=*/false, ObjCMethodDecl::Required); 3084 D->addInstanceMethod(DTORMethod); 3085 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3086 D->setHasDestructors(true); 3087 } 3088 3089 // If the implementation doesn't have any ivar initializers, we don't need 3090 // a .cxx_construct. 3091 if (D->getNumIvarInitializers() == 0 || 3092 AllTrivialInitializers(*this, D)) 3093 return; 3094 3095 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3096 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3097 // The constructor returns 'self'. 3098 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3099 D->getLocation(), 3100 D->getLocation(), 3101 cxxSelector, 3102 getContext().getObjCIdType(), 3103 nullptr, D, /*isInstance=*/true, 3104 /*isVariadic=*/false, 3105 /*isPropertyAccessor=*/true, 3106 /*isImplicitlyDeclared=*/true, 3107 /*isDefined=*/false, 3108 ObjCMethodDecl::Required); 3109 D->addInstanceMethod(CTORMethod); 3110 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3111 D->setHasNonZeroConstructors(true); 3112 } 3113 3114 /// EmitNamespace - Emit all declarations in a namespace. 3115 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3116 for (auto *I : ND->decls()) { 3117 if (const auto *VD = dyn_cast<VarDecl>(I)) 3118 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3119 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3120 continue; 3121 EmitTopLevelDecl(I); 3122 } 3123 } 3124 3125 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3126 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3127 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3128 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3129 ErrorUnsupported(LSD, "linkage spec"); 3130 return; 3131 } 3132 3133 for (auto *I : LSD->decls()) { 3134 // Meta-data for ObjC class includes references to implemented methods. 3135 // Generate class's method definitions first. 3136 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3137 for (auto *M : OID->methods()) 3138 EmitTopLevelDecl(M); 3139 } 3140 EmitTopLevelDecl(I); 3141 } 3142 } 3143 3144 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3145 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3146 // Ignore dependent declarations. 3147 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3148 return; 3149 3150 switch (D->getKind()) { 3151 case Decl::CXXConversion: 3152 case Decl::CXXMethod: 3153 case Decl::Function: 3154 // Skip function templates 3155 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3156 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3157 return; 3158 3159 EmitGlobal(cast<FunctionDecl>(D)); 3160 // Always provide some coverage mapping 3161 // even for the functions that aren't emitted. 3162 AddDeferredUnusedCoverageMapping(D); 3163 break; 3164 3165 case Decl::Var: 3166 // Skip variable templates 3167 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3168 return; 3169 case Decl::VarTemplateSpecialization: 3170 EmitGlobal(cast<VarDecl>(D)); 3171 break; 3172 3173 // Indirect fields from global anonymous structs and unions can be 3174 // ignored; only the actual variable requires IR gen support. 3175 case Decl::IndirectField: 3176 break; 3177 3178 // C++ Decls 3179 case Decl::Namespace: 3180 EmitNamespace(cast<NamespaceDecl>(D)); 3181 break; 3182 // No code generation needed. 3183 case Decl::UsingShadow: 3184 case Decl::ClassTemplate: 3185 case Decl::VarTemplate: 3186 case Decl::VarTemplatePartialSpecialization: 3187 case Decl::FunctionTemplate: 3188 case Decl::TypeAliasTemplate: 3189 case Decl::Block: 3190 case Decl::Empty: 3191 break; 3192 case Decl::Using: // using X; [C++] 3193 if (CGDebugInfo *DI = getModuleDebugInfo()) 3194 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3195 return; 3196 case Decl::NamespaceAlias: 3197 if (CGDebugInfo *DI = getModuleDebugInfo()) 3198 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3199 return; 3200 case Decl::UsingDirective: // using namespace X; [C++] 3201 if (CGDebugInfo *DI = getModuleDebugInfo()) 3202 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3203 return; 3204 case Decl::CXXConstructor: 3205 // Skip function templates 3206 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3207 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3208 return; 3209 3210 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3211 break; 3212 case Decl::CXXDestructor: 3213 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3214 return; 3215 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3216 break; 3217 3218 case Decl::StaticAssert: 3219 // Nothing to do. 3220 break; 3221 3222 // Objective-C Decls 3223 3224 // Forward declarations, no (immediate) code generation. 3225 case Decl::ObjCInterface: 3226 case Decl::ObjCCategory: 3227 break; 3228 3229 case Decl::ObjCProtocol: { 3230 auto *Proto = cast<ObjCProtocolDecl>(D); 3231 if (Proto->isThisDeclarationADefinition()) 3232 ObjCRuntime->GenerateProtocol(Proto); 3233 break; 3234 } 3235 3236 case Decl::ObjCCategoryImpl: 3237 // Categories have properties but don't support synthesize so we 3238 // can ignore them here. 3239 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3240 break; 3241 3242 case Decl::ObjCImplementation: { 3243 auto *OMD = cast<ObjCImplementationDecl>(D); 3244 EmitObjCPropertyImplementations(OMD); 3245 EmitObjCIvarInitializations(OMD); 3246 ObjCRuntime->GenerateClass(OMD); 3247 // Emit global variable debug information. 3248 if (CGDebugInfo *DI = getModuleDebugInfo()) 3249 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3250 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3251 OMD->getClassInterface()), OMD->getLocation()); 3252 break; 3253 } 3254 case Decl::ObjCMethod: { 3255 auto *OMD = cast<ObjCMethodDecl>(D); 3256 // If this is not a prototype, emit the body. 3257 if (OMD->getBody()) 3258 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3259 break; 3260 } 3261 case Decl::ObjCCompatibleAlias: 3262 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3263 break; 3264 3265 case Decl::LinkageSpec: 3266 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3267 break; 3268 3269 case Decl::FileScopeAsm: { 3270 auto *AD = cast<FileScopeAsmDecl>(D); 3271 StringRef AsmString = AD->getAsmString()->getString(); 3272 3273 const std::string &S = getModule().getModuleInlineAsm(); 3274 if (S.empty()) 3275 getModule().setModuleInlineAsm(AsmString); 3276 else if (S.end()[-1] == '\n') 3277 getModule().setModuleInlineAsm(S + AsmString.str()); 3278 else 3279 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3280 break; 3281 } 3282 3283 case Decl::Import: { 3284 auto *Import = cast<ImportDecl>(D); 3285 3286 // Ignore import declarations that come from imported modules. 3287 if (clang::Module *Owner = Import->getOwningModule()) { 3288 if (getLangOpts().CurrentModule.empty() || 3289 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3290 break; 3291 } 3292 3293 ImportedModules.insert(Import->getImportedModule()); 3294 break; 3295 } 3296 3297 case Decl::OMPThreadPrivate: 3298 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3299 break; 3300 3301 case Decl::ClassTemplateSpecialization: { 3302 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3303 if (DebugInfo && 3304 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3305 Spec->hasDefinition()) 3306 DebugInfo->completeTemplateDefinition(*Spec); 3307 break; 3308 } 3309 3310 default: 3311 // Make sure we handled everything we should, every other kind is a 3312 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3313 // function. Need to recode Decl::Kind to do that easily. 3314 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3315 break; 3316 } 3317 } 3318 3319 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3320 // Do we need to generate coverage mapping? 3321 if (!CodeGenOpts.CoverageMapping) 3322 return; 3323 switch (D->getKind()) { 3324 case Decl::CXXConversion: 3325 case Decl::CXXMethod: 3326 case Decl::Function: 3327 case Decl::ObjCMethod: 3328 case Decl::CXXConstructor: 3329 case Decl::CXXDestructor: { 3330 if (!cast<FunctionDecl>(D)->hasBody()) 3331 return; 3332 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3333 if (I == DeferredEmptyCoverageMappingDecls.end()) 3334 DeferredEmptyCoverageMappingDecls[D] = true; 3335 break; 3336 } 3337 default: 3338 break; 3339 }; 3340 } 3341 3342 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3343 // Do we need to generate coverage mapping? 3344 if (!CodeGenOpts.CoverageMapping) 3345 return; 3346 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3347 if (Fn->isTemplateInstantiation()) 3348 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3349 } 3350 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3351 if (I == DeferredEmptyCoverageMappingDecls.end()) 3352 DeferredEmptyCoverageMappingDecls[D] = false; 3353 else 3354 I->second = false; 3355 } 3356 3357 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3358 std::vector<const Decl *> DeferredDecls; 3359 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3360 if (!I.second) 3361 continue; 3362 DeferredDecls.push_back(I.first); 3363 } 3364 // Sort the declarations by their location to make sure that the tests get a 3365 // predictable order for the coverage mapping for the unused declarations. 3366 if (CodeGenOpts.DumpCoverageMapping) 3367 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3368 [] (const Decl *LHS, const Decl *RHS) { 3369 return LHS->getLocStart() < RHS->getLocStart(); 3370 }); 3371 for (const auto *D : DeferredDecls) { 3372 switch (D->getKind()) { 3373 case Decl::CXXConversion: 3374 case Decl::CXXMethod: 3375 case Decl::Function: 3376 case Decl::ObjCMethod: { 3377 CodeGenPGO PGO(*this); 3378 GlobalDecl GD(cast<FunctionDecl>(D)); 3379 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3380 getFunctionLinkage(GD)); 3381 break; 3382 } 3383 case Decl::CXXConstructor: { 3384 CodeGenPGO PGO(*this); 3385 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3386 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3387 getFunctionLinkage(GD)); 3388 break; 3389 } 3390 case Decl::CXXDestructor: { 3391 CodeGenPGO PGO(*this); 3392 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3393 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3394 getFunctionLinkage(GD)); 3395 break; 3396 } 3397 default: 3398 break; 3399 }; 3400 } 3401 } 3402 3403 /// Turns the given pointer into a constant. 3404 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3405 const void *Ptr) { 3406 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3407 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3408 return llvm::ConstantInt::get(i64, PtrInt); 3409 } 3410 3411 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3412 llvm::NamedMDNode *&GlobalMetadata, 3413 GlobalDecl D, 3414 llvm::GlobalValue *Addr) { 3415 if (!GlobalMetadata) 3416 GlobalMetadata = 3417 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3418 3419 // TODO: should we report variant information for ctors/dtors? 3420 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3421 llvm::ConstantAsMetadata::get(GetPointerConstant( 3422 CGM.getLLVMContext(), D.getDecl()))}; 3423 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3424 } 3425 3426 /// For each function which is declared within an extern "C" region and marked 3427 /// as 'used', but has internal linkage, create an alias from the unmangled 3428 /// name to the mangled name if possible. People expect to be able to refer 3429 /// to such functions with an unmangled name from inline assembly within the 3430 /// same translation unit. 3431 void CodeGenModule::EmitStaticExternCAliases() { 3432 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3433 E = StaticExternCValues.end(); 3434 I != E; ++I) { 3435 IdentifierInfo *Name = I->first; 3436 llvm::GlobalValue *Val = I->second; 3437 if (Val && !getModule().getNamedValue(Name->getName())) 3438 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3439 } 3440 } 3441 3442 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3443 GlobalDecl &Result) const { 3444 auto Res = Manglings.find(MangledName); 3445 if (Res == Manglings.end()) 3446 return false; 3447 Result = Res->getValue(); 3448 return true; 3449 } 3450 3451 /// Emits metadata nodes associating all the global values in the 3452 /// current module with the Decls they came from. This is useful for 3453 /// projects using IR gen as a subroutine. 3454 /// 3455 /// Since there's currently no way to associate an MDNode directly 3456 /// with an llvm::GlobalValue, we create a global named metadata 3457 /// with the name 'clang.global.decl.ptrs'. 3458 void CodeGenModule::EmitDeclMetadata() { 3459 llvm::NamedMDNode *GlobalMetadata = nullptr; 3460 3461 // StaticLocalDeclMap 3462 for (auto &I : MangledDeclNames) { 3463 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3464 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3465 } 3466 } 3467 3468 /// Emits metadata nodes for all the local variables in the current 3469 /// function. 3470 void CodeGenFunction::EmitDeclMetadata() { 3471 if (LocalDeclMap.empty()) return; 3472 3473 llvm::LLVMContext &Context = getLLVMContext(); 3474 3475 // Find the unique metadata ID for this name. 3476 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3477 3478 llvm::NamedMDNode *GlobalMetadata = nullptr; 3479 3480 for (auto &I : LocalDeclMap) { 3481 const Decl *D = I.first; 3482 llvm::Value *Addr = I.second; 3483 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3484 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3485 Alloca->setMetadata( 3486 DeclPtrKind, llvm::MDNode::get( 3487 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3488 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3489 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3490 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3491 } 3492 } 3493 } 3494 3495 void CodeGenModule::EmitVersionIdentMetadata() { 3496 llvm::NamedMDNode *IdentMetadata = 3497 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3498 std::string Version = getClangFullVersion(); 3499 llvm::LLVMContext &Ctx = TheModule.getContext(); 3500 3501 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3502 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3503 } 3504 3505 void CodeGenModule::EmitTargetMetadata() { 3506 // Warning, new MangledDeclNames may be appended within this loop. 3507 // We rely on MapVector insertions adding new elements to the end 3508 // of the container. 3509 // FIXME: Move this loop into the one target that needs it, and only 3510 // loop over those declarations for which we couldn't emit the target 3511 // metadata when we emitted the declaration. 3512 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3513 auto Val = *(MangledDeclNames.begin() + I); 3514 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3515 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3516 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3517 } 3518 } 3519 3520 void CodeGenModule::EmitCoverageFile() { 3521 if (!getCodeGenOpts().CoverageFile.empty()) { 3522 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3523 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3524 llvm::LLVMContext &Ctx = TheModule.getContext(); 3525 llvm::MDString *CoverageFile = 3526 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3527 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3528 llvm::MDNode *CU = CUNode->getOperand(i); 3529 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3530 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3531 } 3532 } 3533 } 3534 } 3535 3536 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3537 // Sema has checked that all uuid strings are of the form 3538 // "12345678-1234-1234-1234-1234567890ab". 3539 assert(Uuid.size() == 36); 3540 for (unsigned i = 0; i < 36; ++i) { 3541 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3542 else assert(isHexDigit(Uuid[i])); 3543 } 3544 3545 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3546 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3547 3548 llvm::Constant *Field3[8]; 3549 for (unsigned Idx = 0; Idx < 8; ++Idx) 3550 Field3[Idx] = llvm::ConstantInt::get( 3551 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3552 3553 llvm::Constant *Fields[4] = { 3554 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3555 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3556 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3557 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3558 }; 3559 3560 return llvm::ConstantStruct::getAnon(Fields); 3561 } 3562 3563 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3564 bool ForEH) { 3565 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3566 // FIXME: should we even be calling this method if RTTI is disabled 3567 // and it's not for EH? 3568 if (!ForEH && !getLangOpts().RTTI) 3569 return llvm::Constant::getNullValue(Int8PtrTy); 3570 3571 if (ForEH && Ty->isObjCObjectPointerType() && 3572 LangOpts.ObjCRuntime.isGNUFamily()) 3573 return ObjCRuntime->GetEHType(Ty); 3574 3575 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3576 } 3577 3578 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3579 for (auto RefExpr : D->varlists()) { 3580 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3581 bool PerformInit = 3582 VD->getAnyInitializer() && 3583 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3584 /*ForRef=*/false); 3585 if (auto InitFunction = 3586 getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition( 3587 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), 3588 PerformInit)) 3589 CXXGlobalInits.push_back(InitFunction); 3590 } 3591 } 3592 3593