xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 43a0f99b103dc9c2546e650b99f5501e49e74dd2)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CoverageMappingGen.h"
25 #include "CodeGenTBAA.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericItanium:
68     return CreateItaniumCXXABI(CGM);
69   case TargetCXXABI::Microsoft:
70     return CreateMicrosoftCXXABI(CGM);
71   }
72 
73   llvm_unreachable("invalid C++ ABI kind");
74 }
75 
76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
77                              llvm::Module &M, const llvm::DataLayout &TD,
78                              DiagnosticsEngine &diags,
79                              CoverageSourceInfo *CoverageInfo)
80     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
81       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
82       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
83       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
84       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
85       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
86       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
87       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
88       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
89       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
90       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
91       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
92       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
113 
114   if (LangOpts.ObjC1)
115     createObjCRuntime();
116   if (LangOpts.OpenCL)
117     createOpenCLRuntime();
118   if (LangOpts.OpenMP)
119     createOpenMPRuntime();
120   if (LangOpts.CUDA)
121     createCUDARuntime();
122 
123   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
124   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
125       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
126     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
127                            getCXXABI().getMangleContext());
128 
129   // If debug info or coverage generation is enabled, create the CGDebugInfo
130   // object.
131   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
132       CodeGenOpts.EmitGcovArcs ||
133       CodeGenOpts.EmitGcovNotes)
134     DebugInfo = new CGDebugInfo(*this);
135 
136   Block.GlobalUniqueCount = 0;
137 
138   if (C.getLangOpts().ObjCAutoRefCount)
139     ARCData = new ARCEntrypoints();
140   RRData = new RREntrypoints();
141 
142   if (!CodeGenOpts.InstrProfileInput.empty()) {
143     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
144             CodeGenOpts.InstrProfileInput, PGOReader)) {
145       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
146                                               "Could not read profile: %0");
147       getDiags().Report(DiagID) << EC.message();
148     }
149   }
150 
151   // If coverage mapping generation is enabled, create the
152   // CoverageMappingModuleGen object.
153   if (CodeGenOpts.CoverageMapping)
154     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
155 }
156 
157 CodeGenModule::~CodeGenModule() {
158   delete ObjCRuntime;
159   delete OpenCLRuntime;
160   delete OpenMPRuntime;
161   delete CUDARuntime;
162   delete TheTargetCodeGenInfo;
163   delete TBAA;
164   delete DebugInfo;
165   delete ARCData;
166   delete RRData;
167 }
168 
169 void CodeGenModule::createObjCRuntime() {
170   // This is just isGNUFamily(), but we want to force implementors of
171   // new ABIs to decide how best to do this.
172   switch (LangOpts.ObjCRuntime.getKind()) {
173   case ObjCRuntime::GNUstep:
174   case ObjCRuntime::GCC:
175   case ObjCRuntime::ObjFW:
176     ObjCRuntime = CreateGNUObjCRuntime(*this);
177     return;
178 
179   case ObjCRuntime::FragileMacOSX:
180   case ObjCRuntime::MacOSX:
181   case ObjCRuntime::iOS:
182     ObjCRuntime = CreateMacObjCRuntime(*this);
183     return;
184   }
185   llvm_unreachable("bad runtime kind");
186 }
187 
188 void CodeGenModule::createOpenCLRuntime() {
189   OpenCLRuntime = new CGOpenCLRuntime(*this);
190 }
191 
192 void CodeGenModule::createOpenMPRuntime() {
193   OpenMPRuntime = new CGOpenMPRuntime(*this);
194 }
195 
196 void CodeGenModule::createCUDARuntime() {
197   CUDARuntime = CreateNVCUDARuntime(*this);
198 }
199 
200 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
201   Replacements[Name] = C;
202 }
203 
204 void CodeGenModule::applyReplacements() {
205   for (ReplacementsTy::iterator I = Replacements.begin(),
206                                 E = Replacements.end();
207        I != E; ++I) {
208     StringRef MangledName = I->first();
209     llvm::Constant *Replacement = I->second;
210     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
211     if (!Entry)
212       continue;
213     auto *OldF = cast<llvm::Function>(Entry);
214     auto *NewF = dyn_cast<llvm::Function>(Replacement);
215     if (!NewF) {
216       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
217         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
218       } else {
219         auto *CE = cast<llvm::ConstantExpr>(Replacement);
220         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
221                CE->getOpcode() == llvm::Instruction::GetElementPtr);
222         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
223       }
224     }
225 
226     // Replace old with new, but keep the old order.
227     OldF->replaceAllUsesWith(Replacement);
228     if (NewF) {
229       NewF->removeFromParent();
230       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
231     }
232     OldF->eraseFromParent();
233   }
234 }
235 
236 // This is only used in aliases that we created and we know they have a
237 // linear structure.
238 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
239   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
240   const llvm::Constant *C = &GA;
241   for (;;) {
242     C = C->stripPointerCasts();
243     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
244       return GO;
245     // stripPointerCasts will not walk over weak aliases.
246     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
247     if (!GA2)
248       return nullptr;
249     if (!Visited.insert(GA2).second)
250       return nullptr;
251     C = GA2->getAliasee();
252   }
253 }
254 
255 void CodeGenModule::checkAliases() {
256   // Check if the constructed aliases are well formed. It is really unfortunate
257   // that we have to do this in CodeGen, but we only construct mangled names
258   // and aliases during codegen.
259   bool Error = false;
260   DiagnosticsEngine &Diags = getDiags();
261   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
262          E = Aliases.end(); I != E; ++I) {
263     const GlobalDecl &GD = *I;
264     const auto *D = cast<ValueDecl>(GD.getDecl());
265     const AliasAttr *AA = D->getAttr<AliasAttr>();
266     StringRef MangledName = getMangledName(GD);
267     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
268     auto *Alias = cast<llvm::GlobalAlias>(Entry);
269     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
270     if (!GV) {
271       Error = true;
272       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
273     } else if (GV->isDeclaration()) {
274       Error = true;
275       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
276     }
277 
278     llvm::Constant *Aliasee = Alias->getAliasee();
279     llvm::GlobalValue *AliaseeGV;
280     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
281       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
282     else
283       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
284 
285     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
286       StringRef AliasSection = SA->getName();
287       if (AliasSection != AliaseeGV->getSection())
288         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
289             << AliasSection;
290     }
291 
292     // We have to handle alias to weak aliases in here. LLVM itself disallows
293     // this since the object semantics would not match the IL one. For
294     // compatibility with gcc we implement it by just pointing the alias
295     // to its aliasee's aliasee. We also warn, since the user is probably
296     // expecting the link to be weak.
297     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
298       if (GA->mayBeOverridden()) {
299         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
300             << GV->getName() << GA->getName();
301         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
302             GA->getAliasee(), Alias->getType());
303         Alias->setAliasee(Aliasee);
304       }
305     }
306   }
307   if (!Error)
308     return;
309 
310   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
311          E = Aliases.end(); I != E; ++I) {
312     const GlobalDecl &GD = *I;
313     StringRef MangledName = getMangledName(GD);
314     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
315     auto *Alias = cast<llvm::GlobalAlias>(Entry);
316     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
317     Alias->eraseFromParent();
318   }
319 }
320 
321 void CodeGenModule::clear() {
322   DeferredDeclsToEmit.clear();
323 }
324 
325 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
326                                        StringRef MainFile) {
327   if (!hasDiagnostics())
328     return;
329   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
330     if (MainFile.empty())
331       MainFile = "<stdin>";
332     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
333   } else
334     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
335                                                       << Mismatched;
336 }
337 
338 void CodeGenModule::Release() {
339   EmitDeferred();
340   applyReplacements();
341   checkAliases();
342   EmitCXXGlobalInitFunc();
343   EmitCXXGlobalDtorFunc();
344   EmitCXXThreadLocalInitFunc();
345   if (ObjCRuntime)
346     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
347       AddGlobalCtor(ObjCInitFunction);
348   if (PGOReader && PGOStats.hasDiagnostics())
349     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
350   EmitCtorList(GlobalCtors, "llvm.global_ctors");
351   EmitCtorList(GlobalDtors, "llvm.global_dtors");
352   EmitGlobalAnnotations();
353   EmitStaticExternCAliases();
354   EmitDeferredUnusedCoverageMappings();
355   if (CoverageMapping)
356     CoverageMapping->emit();
357   emitLLVMUsed();
358 
359   if (CodeGenOpts.Autolink &&
360       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
361     EmitModuleLinkOptions();
362   }
363   if (CodeGenOpts.DwarfVersion)
364     // We actually want the latest version when there are conflicts.
365     // We can change from Warning to Latest if such mode is supported.
366     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
367                               CodeGenOpts.DwarfVersion);
368   if (DebugInfo)
369     // We support a single version in the linked module. The LLVM
370     // parser will drop debug info with a different version number
371     // (and warn about it, too).
372     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
373                               llvm::DEBUG_METADATA_VERSION);
374 
375   // We need to record the widths of enums and wchar_t, so that we can generate
376   // the correct build attributes in the ARM backend.
377   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
378   if (   Arch == llvm::Triple::arm
379       || Arch == llvm::Triple::armeb
380       || Arch == llvm::Triple::thumb
381       || Arch == llvm::Triple::thumbeb) {
382     // Width of wchar_t in bytes
383     uint64_t WCharWidth =
384         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
385     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
386 
387     // The minimum width of an enum in bytes
388     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
389     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
390   }
391 
392   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
393     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
394     switch (PLevel) {
395     case 0: break;
396     case 1: PL = llvm::PICLevel::Small; break;
397     case 2: PL = llvm::PICLevel::Large; break;
398     default: llvm_unreachable("Invalid PIC Level");
399     }
400 
401     getModule().setPICLevel(PL);
402   }
403 
404   SimplifyPersonality();
405 
406   if (getCodeGenOpts().EmitDeclMetadata)
407     EmitDeclMetadata();
408 
409   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
410     EmitCoverageFile();
411 
412   if (DebugInfo)
413     DebugInfo->finalize();
414 
415   EmitVersionIdentMetadata();
416 
417   EmitTargetMetadata();
418 }
419 
420 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
421   // Make sure that this type is translated.
422   Types.UpdateCompletedType(TD);
423 }
424 
425 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
426   if (!TBAA)
427     return nullptr;
428   return TBAA->getTBAAInfo(QTy);
429 }
430 
431 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
432   if (!TBAA)
433     return nullptr;
434   return TBAA->getTBAAInfoForVTablePtr();
435 }
436 
437 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
438   if (!TBAA)
439     return nullptr;
440   return TBAA->getTBAAStructInfo(QTy);
441 }
442 
443 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
444   if (!TBAA)
445     return nullptr;
446   return TBAA->getTBAAStructTypeInfo(QTy);
447 }
448 
449 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
450                                                   llvm::MDNode *AccessN,
451                                                   uint64_t O) {
452   if (!TBAA)
453     return nullptr;
454   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
455 }
456 
457 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
458 /// and struct-path aware TBAA, the tag has the same format:
459 /// base type, access type and offset.
460 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
461 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
462                                         llvm::MDNode *TBAAInfo,
463                                         bool ConvertTypeToTag) {
464   if (ConvertTypeToTag && TBAA)
465     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
466                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
467   else
468     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
469 }
470 
471 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
472   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
473   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
474 }
475 
476 /// ErrorUnsupported - Print out an error that codegen doesn't support the
477 /// specified stmt yet.
478 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
479   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
480                                                "cannot compile this %0 yet");
481   std::string Msg = Type;
482   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
483     << Msg << S->getSourceRange();
484 }
485 
486 /// ErrorUnsupported - Print out an error that codegen doesn't support the
487 /// specified decl yet.
488 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
489   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
490                                                "cannot compile this %0 yet");
491   std::string Msg = Type;
492   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
493 }
494 
495 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
496   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
497 }
498 
499 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
500                                         const NamedDecl *D) const {
501   // Internal definitions always have default visibility.
502   if (GV->hasLocalLinkage()) {
503     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
504     return;
505   }
506 
507   // Set visibility for definitions.
508   LinkageInfo LV = D->getLinkageAndVisibility();
509   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
510     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
511 }
512 
513 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
514   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
515       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
516       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
517       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
518       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
519 }
520 
521 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
522     CodeGenOptions::TLSModel M) {
523   switch (M) {
524   case CodeGenOptions::GeneralDynamicTLSModel:
525     return llvm::GlobalVariable::GeneralDynamicTLSModel;
526   case CodeGenOptions::LocalDynamicTLSModel:
527     return llvm::GlobalVariable::LocalDynamicTLSModel;
528   case CodeGenOptions::InitialExecTLSModel:
529     return llvm::GlobalVariable::InitialExecTLSModel;
530   case CodeGenOptions::LocalExecTLSModel:
531     return llvm::GlobalVariable::LocalExecTLSModel;
532   }
533   llvm_unreachable("Invalid TLS model!");
534 }
535 
536 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
537   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
538 
539   llvm::GlobalValue::ThreadLocalMode TLM;
540   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
541 
542   // Override the TLS model if it is explicitly specified.
543   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
544     TLM = GetLLVMTLSModel(Attr->getModel());
545   }
546 
547   GV->setThreadLocalMode(TLM);
548 }
549 
550 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
551   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
552   if (!FoundStr.empty())
553     return FoundStr;
554 
555   const auto *ND = cast<NamedDecl>(GD.getDecl());
556   SmallString<256> Buffer;
557   StringRef Str;
558   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
559     llvm::raw_svector_ostream Out(Buffer);
560     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
561       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
562     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
563       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
564     else
565       getCXXABI().getMangleContext().mangleName(ND, Out);
566     Str = Out.str();
567   } else {
568     IdentifierInfo *II = ND->getIdentifier();
569     assert(II && "Attempt to mangle unnamed decl.");
570     Str = II->getName();
571   }
572 
573   // Keep the first result in the case of a mangling collision.
574   auto Result = Manglings.insert(std::make_pair(Str, GD));
575   return FoundStr = Result.first->first();
576 }
577 
578 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
579                                              const BlockDecl *BD) {
580   MangleContext &MangleCtx = getCXXABI().getMangleContext();
581   const Decl *D = GD.getDecl();
582 
583   SmallString<256> Buffer;
584   llvm::raw_svector_ostream Out(Buffer);
585   if (!D)
586     MangleCtx.mangleGlobalBlock(BD,
587       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
588   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
589     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
590   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
591     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
592   else
593     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
594 
595   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
596   return Result.first->first();
597 }
598 
599 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
600   return getModule().getNamedValue(Name);
601 }
602 
603 /// AddGlobalCtor - Add a function to the list that will be called before
604 /// main() runs.
605 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
606                                   llvm::Constant *AssociatedData) {
607   // FIXME: Type coercion of void()* types.
608   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
609 }
610 
611 /// AddGlobalDtor - Add a function to the list that will be called
612 /// when the module is unloaded.
613 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
614   // FIXME: Type coercion of void()* types.
615   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
616 }
617 
618 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
619   // Ctor function type is void()*.
620   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
621   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
622 
623   // Get the type of a ctor entry, { i32, void ()*, i8* }.
624   llvm::StructType *CtorStructTy = llvm::StructType::get(
625       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
626 
627   // Construct the constructor and destructor arrays.
628   SmallVector<llvm::Constant*, 8> Ctors;
629   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
630     llvm::Constant *S[] = {
631       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
632       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
633       (I->AssociatedData
634            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
635            : llvm::Constant::getNullValue(VoidPtrTy))
636     };
637     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
638   }
639 
640   if (!Ctors.empty()) {
641     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
642     new llvm::GlobalVariable(TheModule, AT, false,
643                              llvm::GlobalValue::AppendingLinkage,
644                              llvm::ConstantArray::get(AT, Ctors),
645                              GlobalName);
646   }
647 }
648 
649 llvm::GlobalValue::LinkageTypes
650 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
651   const auto *D = cast<FunctionDecl>(GD.getDecl());
652 
653   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
654 
655   if (isa<CXXDestructorDecl>(D) &&
656       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
657                                          GD.getDtorType())) {
658     // Destructor variants in the Microsoft C++ ABI are always internal or
659     // linkonce_odr thunks emitted on an as-needed basis.
660     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
661                                    : llvm::GlobalValue::LinkOnceODRLinkage;
662   }
663 
664   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
665 }
666 
667 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
668                                                     llvm::Function *F) {
669   setNonAliasAttributes(D, F);
670 }
671 
672 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
673                                               const CGFunctionInfo &Info,
674                                               llvm::Function *F) {
675   unsigned CallingConv;
676   AttributeListType AttributeList;
677   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
678   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
679   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
680 }
681 
682 /// Determines whether the language options require us to model
683 /// unwind exceptions.  We treat -fexceptions as mandating this
684 /// except under the fragile ObjC ABI with only ObjC exceptions
685 /// enabled.  This means, for example, that C with -fexceptions
686 /// enables this.
687 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
688   // If exceptions are completely disabled, obviously this is false.
689   if (!LangOpts.Exceptions) return false;
690 
691   // If C++ exceptions are enabled, this is true.
692   if (LangOpts.CXXExceptions) return true;
693 
694   // If ObjC exceptions are enabled, this depends on the ABI.
695   if (LangOpts.ObjCExceptions) {
696     return LangOpts.ObjCRuntime.hasUnwindExceptions();
697   }
698 
699   return true;
700 }
701 
702 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
703                                                            llvm::Function *F) {
704   llvm::AttrBuilder B;
705 
706   if (CodeGenOpts.UnwindTables)
707     B.addAttribute(llvm::Attribute::UWTable);
708 
709   if (!hasUnwindExceptions(LangOpts))
710     B.addAttribute(llvm::Attribute::NoUnwind);
711 
712   if (D->hasAttr<NakedAttr>()) {
713     // Naked implies noinline: we should not be inlining such functions.
714     B.addAttribute(llvm::Attribute::Naked);
715     B.addAttribute(llvm::Attribute::NoInline);
716   } else if (D->hasAttr<NoDuplicateAttr>()) {
717     B.addAttribute(llvm::Attribute::NoDuplicate);
718   } else if (D->hasAttr<NoInlineAttr>()) {
719     B.addAttribute(llvm::Attribute::NoInline);
720   } else if (D->hasAttr<AlwaysInlineAttr>() &&
721              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
722                                               llvm::Attribute::NoInline)) {
723     // (noinline wins over always_inline, and we can't specify both in IR)
724     B.addAttribute(llvm::Attribute::AlwaysInline);
725   }
726 
727   if (D->hasAttr<ColdAttr>()) {
728     if (!D->hasAttr<OptimizeNoneAttr>())
729       B.addAttribute(llvm::Attribute::OptimizeForSize);
730     B.addAttribute(llvm::Attribute::Cold);
731   }
732 
733   if (D->hasAttr<MinSizeAttr>())
734     B.addAttribute(llvm::Attribute::MinSize);
735 
736   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
737     B.addAttribute(llvm::Attribute::StackProtect);
738   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
739     B.addAttribute(llvm::Attribute::StackProtectStrong);
740   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
741     B.addAttribute(llvm::Attribute::StackProtectReq);
742 
743   // Add sanitizer attributes if function is not blacklisted.
744   if (!isInSanitizerBlacklist(F, D->getLocation())) {
745     // When AddressSanitizer is enabled, set SanitizeAddress attribute
746     // unless __attribute__((no_sanitize_address)) is used.
747     if (LangOpts.Sanitize.has(SanitizerKind::Address) &&
748         !D->hasAttr<NoSanitizeAddressAttr>())
749       B.addAttribute(llvm::Attribute::SanitizeAddress);
750     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
751     if (LangOpts.Sanitize.has(SanitizerKind::Thread) &&
752         !D->hasAttr<NoSanitizeThreadAttr>())
753       B.addAttribute(llvm::Attribute::SanitizeThread);
754     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
755     if (LangOpts.Sanitize.has(SanitizerKind::Memory) &&
756         !D->hasAttr<NoSanitizeMemoryAttr>())
757       B.addAttribute(llvm::Attribute::SanitizeMemory);
758   }
759 
760   F->addAttributes(llvm::AttributeSet::FunctionIndex,
761                    llvm::AttributeSet::get(
762                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
763 
764   if (D->hasAttr<OptimizeNoneAttr>()) {
765     // OptimizeNone implies noinline; we should not be inlining such functions.
766     F->addFnAttr(llvm::Attribute::OptimizeNone);
767     F->addFnAttr(llvm::Attribute::NoInline);
768 
769     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
770     assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
771            "OptimizeNone and OptimizeForSize on same function!");
772     assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
773            "OptimizeNone and MinSize on same function!");
774     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
775            "OptimizeNone and AlwaysInline on same function!");
776 
777     // Attribute 'inlinehint' has no effect on 'optnone' functions.
778     // Explicitly remove it from the set of function attributes.
779     F->removeFnAttr(llvm::Attribute::InlineHint);
780   }
781 
782   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
783     F->setUnnamedAddr(true);
784   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
785     if (MD->isVirtual())
786       F->setUnnamedAddr(true);
787 
788   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
789   if (alignment)
790     F->setAlignment(alignment);
791 
792   // C++ ABI requires 2-byte alignment for member functions.
793   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
794     F->setAlignment(2);
795 }
796 
797 void CodeGenModule::SetCommonAttributes(const Decl *D,
798                                         llvm::GlobalValue *GV) {
799   if (const auto *ND = dyn_cast<NamedDecl>(D))
800     setGlobalVisibility(GV, ND);
801   else
802     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
803 
804   if (D->hasAttr<UsedAttr>())
805     addUsedGlobal(GV);
806 }
807 
808 void CodeGenModule::setAliasAttributes(const Decl *D,
809                                        llvm::GlobalValue *GV) {
810   SetCommonAttributes(D, GV);
811 
812   // Process the dllexport attribute based on whether the original definition
813   // (not necessarily the aliasee) was exported.
814   if (D->hasAttr<DLLExportAttr>())
815     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
816 }
817 
818 void CodeGenModule::setNonAliasAttributes(const Decl *D,
819                                           llvm::GlobalObject *GO) {
820   SetCommonAttributes(D, GO);
821 
822   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
823     GO->setSection(SA->getName());
824 
825   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
826 }
827 
828 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
829                                                   llvm::Function *F,
830                                                   const CGFunctionInfo &FI) {
831   SetLLVMFunctionAttributes(D, FI, F);
832   SetLLVMFunctionAttributesForDefinition(D, F);
833 
834   F->setLinkage(llvm::Function::InternalLinkage);
835 
836   setNonAliasAttributes(D, F);
837 }
838 
839 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
840                                          const NamedDecl *ND) {
841   // Set linkage and visibility in case we never see a definition.
842   LinkageInfo LV = ND->getLinkageAndVisibility();
843   if (LV.getLinkage() != ExternalLinkage) {
844     // Don't set internal linkage on declarations.
845   } else {
846     if (ND->hasAttr<DLLImportAttr>()) {
847       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
848       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
849     } else if (ND->hasAttr<DLLExportAttr>()) {
850       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
851       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
852     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
853       // "extern_weak" is overloaded in LLVM; we probably should have
854       // separate linkage types for this.
855       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
856     }
857 
858     // Set visibility on a declaration only if it's explicit.
859     if (LV.isVisibilityExplicit())
860       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
861   }
862 }
863 
864 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
865                                           bool IsIncompleteFunction,
866                                           bool IsThunk) {
867   if (unsigned IID = F->getIntrinsicID()) {
868     // If this is an intrinsic function, set the function's attributes
869     // to the intrinsic's attributes.
870     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
871                                                     (llvm::Intrinsic::ID)IID));
872     return;
873   }
874 
875   const auto *FD = cast<FunctionDecl>(GD.getDecl());
876 
877   if (!IsIncompleteFunction)
878     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
879 
880   // Add the Returned attribute for "this", except for iOS 5 and earlier
881   // where substantial code, including the libstdc++ dylib, was compiled with
882   // GCC and does not actually return "this".
883   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
884       !(getTarget().getTriple().isiOS() &&
885         getTarget().getTriple().isOSVersionLT(6))) {
886     assert(!F->arg_empty() &&
887            F->arg_begin()->getType()
888              ->canLosslesslyBitCastTo(F->getReturnType()) &&
889            "unexpected this return");
890     F->addAttribute(1, llvm::Attribute::Returned);
891   }
892 
893   // Only a few attributes are set on declarations; these may later be
894   // overridden by a definition.
895 
896   setLinkageAndVisibilityForGV(F, FD);
897 
898   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
899     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
900       // Don't dllexport/import destructor thunks.
901       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
902     }
903   }
904 
905   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
906     F->setSection(SA->getName());
907 
908   // A replaceable global allocation function does not act like a builtin by
909   // default, only if it is invoked by a new-expression or delete-expression.
910   if (FD->isReplaceableGlobalAllocationFunction())
911     F->addAttribute(llvm::AttributeSet::FunctionIndex,
912                     llvm::Attribute::NoBuiltin);
913 }
914 
915 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
916   assert(!GV->isDeclaration() &&
917          "Only globals with definition can force usage.");
918   LLVMUsed.push_back(GV);
919 }
920 
921 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
922   assert(!GV->isDeclaration() &&
923          "Only globals with definition can force usage.");
924   LLVMCompilerUsed.push_back(GV);
925 }
926 
927 static void emitUsed(CodeGenModule &CGM, StringRef Name,
928                      std::vector<llvm::WeakVH> &List) {
929   // Don't create llvm.used if there is no need.
930   if (List.empty())
931     return;
932 
933   // Convert List to what ConstantArray needs.
934   SmallVector<llvm::Constant*, 8> UsedArray;
935   UsedArray.resize(List.size());
936   for (unsigned i = 0, e = List.size(); i != e; ++i) {
937     UsedArray[i] =
938      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
939                                     CGM.Int8PtrTy);
940   }
941 
942   if (UsedArray.empty())
943     return;
944   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
945 
946   auto *GV = new llvm::GlobalVariable(
947       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
948       llvm::ConstantArray::get(ATy, UsedArray), Name);
949 
950   GV->setSection("llvm.metadata");
951 }
952 
953 void CodeGenModule::emitLLVMUsed() {
954   emitUsed(*this, "llvm.used", LLVMUsed);
955   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
956 }
957 
958 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
959   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
960   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
961 }
962 
963 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
964   llvm::SmallString<32> Opt;
965   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
966   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
967   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
968 }
969 
970 void CodeGenModule::AddDependentLib(StringRef Lib) {
971   llvm::SmallString<24> Opt;
972   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
973   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
974   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
975 }
976 
977 /// \brief Add link options implied by the given module, including modules
978 /// it depends on, using a postorder walk.
979 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
980                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
981                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
982   // Import this module's parent.
983   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
984     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
985   }
986 
987   // Import this module's dependencies.
988   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
989     if (Visited.insert(Mod->Imports[I - 1]).second)
990       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
991   }
992 
993   // Add linker options to link against the libraries/frameworks
994   // described by this module.
995   llvm::LLVMContext &Context = CGM.getLLVMContext();
996   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
997     // Link against a framework.  Frameworks are currently Darwin only, so we
998     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
999     if (Mod->LinkLibraries[I-1].IsFramework) {
1000       llvm::Metadata *Args[2] = {
1001           llvm::MDString::get(Context, "-framework"),
1002           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1003 
1004       Metadata.push_back(llvm::MDNode::get(Context, Args));
1005       continue;
1006     }
1007 
1008     // Link against a library.
1009     llvm::SmallString<24> Opt;
1010     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1011       Mod->LinkLibraries[I-1].Library, Opt);
1012     auto *OptString = llvm::MDString::get(Context, Opt);
1013     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1014   }
1015 }
1016 
1017 void CodeGenModule::EmitModuleLinkOptions() {
1018   // Collect the set of all of the modules we want to visit to emit link
1019   // options, which is essentially the imported modules and all of their
1020   // non-explicit child modules.
1021   llvm::SetVector<clang::Module *> LinkModules;
1022   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1023   SmallVector<clang::Module *, 16> Stack;
1024 
1025   // Seed the stack with imported modules.
1026   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1027                                                MEnd = ImportedModules.end();
1028        M != MEnd; ++M) {
1029     if (Visited.insert(*M).second)
1030       Stack.push_back(*M);
1031   }
1032 
1033   // Find all of the modules to import, making a little effort to prune
1034   // non-leaf modules.
1035   while (!Stack.empty()) {
1036     clang::Module *Mod = Stack.pop_back_val();
1037 
1038     bool AnyChildren = false;
1039 
1040     // Visit the submodules of this module.
1041     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1042                                         SubEnd = Mod->submodule_end();
1043          Sub != SubEnd; ++Sub) {
1044       // Skip explicit children; they need to be explicitly imported to be
1045       // linked against.
1046       if ((*Sub)->IsExplicit)
1047         continue;
1048 
1049       if (Visited.insert(*Sub).second) {
1050         Stack.push_back(*Sub);
1051         AnyChildren = true;
1052       }
1053     }
1054 
1055     // We didn't find any children, so add this module to the list of
1056     // modules to link against.
1057     if (!AnyChildren) {
1058       LinkModules.insert(Mod);
1059     }
1060   }
1061 
1062   // Add link options for all of the imported modules in reverse topological
1063   // order.  We don't do anything to try to order import link flags with respect
1064   // to linker options inserted by things like #pragma comment().
1065   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1066   Visited.clear();
1067   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1068                                                MEnd = LinkModules.end();
1069        M != MEnd; ++M) {
1070     if (Visited.insert(*M).second)
1071       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1072   }
1073   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1074   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1075 
1076   // Add the linker options metadata flag.
1077   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1078                             llvm::MDNode::get(getLLVMContext(),
1079                                               LinkerOptionsMetadata));
1080 }
1081 
1082 void CodeGenModule::EmitDeferred() {
1083   // Emit code for any potentially referenced deferred decls.  Since a
1084   // previously unused static decl may become used during the generation of code
1085   // for a static function, iterate until no changes are made.
1086 
1087   while (true) {
1088     if (!DeferredVTables.empty()) {
1089       EmitDeferredVTables();
1090 
1091       // Emitting a v-table doesn't directly cause more v-tables to
1092       // become deferred, although it can cause functions to be
1093       // emitted that then need those v-tables.
1094       assert(DeferredVTables.empty());
1095     }
1096 
1097     // Stop if we're out of both deferred v-tables and deferred declarations.
1098     if (DeferredDeclsToEmit.empty()) break;
1099 
1100     DeferredGlobal &G = DeferredDeclsToEmit.back();
1101     GlobalDecl D = G.GD;
1102     llvm::GlobalValue *GV = G.GV;
1103     DeferredDeclsToEmit.pop_back();
1104 
1105     assert(!GV || GV == GetGlobalValue(getMangledName(D)));
1106     if (!GV)
1107       GV = GetGlobalValue(getMangledName(D));
1108 
1109 
1110     // Check to see if we've already emitted this.  This is necessary
1111     // for a couple of reasons: first, decls can end up in the
1112     // deferred-decls queue multiple times, and second, decls can end
1113     // up with definitions in unusual ways (e.g. by an extern inline
1114     // function acquiring a strong function redefinition).  Just
1115     // ignore these cases.
1116     if (GV && !GV->isDeclaration())
1117       continue;
1118 
1119     // Otherwise, emit the definition and move on to the next one.
1120     EmitGlobalDefinition(D, GV);
1121   }
1122 }
1123 
1124 void CodeGenModule::EmitGlobalAnnotations() {
1125   if (Annotations.empty())
1126     return;
1127 
1128   // Create a new global variable for the ConstantStruct in the Module.
1129   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1130     Annotations[0]->getType(), Annotations.size()), Annotations);
1131   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1132                                       llvm::GlobalValue::AppendingLinkage,
1133                                       Array, "llvm.global.annotations");
1134   gv->setSection(AnnotationSection);
1135 }
1136 
1137 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1138   llvm::Constant *&AStr = AnnotationStrings[Str];
1139   if (AStr)
1140     return AStr;
1141 
1142   // Not found yet, create a new global.
1143   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1144   auto *gv =
1145       new llvm::GlobalVariable(getModule(), s->getType(), true,
1146                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1147   gv->setSection(AnnotationSection);
1148   gv->setUnnamedAddr(true);
1149   AStr = gv;
1150   return gv;
1151 }
1152 
1153 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1154   SourceManager &SM = getContext().getSourceManager();
1155   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1156   if (PLoc.isValid())
1157     return EmitAnnotationString(PLoc.getFilename());
1158   return EmitAnnotationString(SM.getBufferName(Loc));
1159 }
1160 
1161 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1162   SourceManager &SM = getContext().getSourceManager();
1163   PresumedLoc PLoc = SM.getPresumedLoc(L);
1164   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1165     SM.getExpansionLineNumber(L);
1166   return llvm::ConstantInt::get(Int32Ty, LineNo);
1167 }
1168 
1169 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1170                                                 const AnnotateAttr *AA,
1171                                                 SourceLocation L) {
1172   // Get the globals for file name, annotation, and the line number.
1173   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1174                  *UnitGV = EmitAnnotationUnit(L),
1175                  *LineNoCst = EmitAnnotationLineNo(L);
1176 
1177   // Create the ConstantStruct for the global annotation.
1178   llvm::Constant *Fields[4] = {
1179     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1180     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1181     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1182     LineNoCst
1183   };
1184   return llvm::ConstantStruct::getAnon(Fields);
1185 }
1186 
1187 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1188                                          llvm::GlobalValue *GV) {
1189   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1190   // Get the struct elements for these annotations.
1191   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1192     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1193 }
1194 
1195 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1196                                            SourceLocation Loc) const {
1197   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1198   // Blacklist by function name.
1199   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1200     return true;
1201   // Blacklist by location.
1202   if (!Loc.isInvalid())
1203     return SanitizerBL.isBlacklistedLocation(Loc);
1204   // If location is unknown, this may be a compiler-generated function. Assume
1205   // it's located in the main file.
1206   auto &SM = Context.getSourceManager();
1207   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1208     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1209   }
1210   return false;
1211 }
1212 
1213 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1214                                            SourceLocation Loc, QualType Ty,
1215                                            StringRef Category) const {
1216   // For now globals can be blacklisted only in ASan.
1217   if (!LangOpts.Sanitize.has(SanitizerKind::Address))
1218     return false;
1219   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1220   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1221     return true;
1222   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1223     return true;
1224   // Check global type.
1225   if (!Ty.isNull()) {
1226     // Drill down the array types: if global variable of a fixed type is
1227     // blacklisted, we also don't instrument arrays of them.
1228     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1229       Ty = AT->getElementType();
1230     Ty = Ty.getCanonicalType().getUnqualifiedType();
1231     // We allow to blacklist only record types (classes, structs etc.)
1232     if (Ty->isRecordType()) {
1233       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1234       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1235         return true;
1236     }
1237   }
1238   return false;
1239 }
1240 
1241 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1242   // Never defer when EmitAllDecls is specified.
1243   if (LangOpts.EmitAllDecls)
1244     return true;
1245 
1246   return getContext().DeclMustBeEmitted(Global);
1247 }
1248 
1249 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1250   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1251     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1252       // Implicit template instantiations may change linkage if they are later
1253       // explicitly instantiated, so they should not be emitted eagerly.
1254       return false;
1255 
1256   return true;
1257 }
1258 
1259 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1260     const CXXUuidofExpr* E) {
1261   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1262   // well-formed.
1263   StringRef Uuid = E->getUuidAsStringRef(Context);
1264   std::string Name = "_GUID_" + Uuid.lower();
1265   std::replace(Name.begin(), Name.end(), '-', '_');
1266 
1267   // Look for an existing global.
1268   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1269     return GV;
1270 
1271   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1272   assert(Init && "failed to initialize as constant");
1273 
1274   auto *GV = new llvm::GlobalVariable(
1275       getModule(), Init->getType(),
1276       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1277   return GV;
1278 }
1279 
1280 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1281   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1282   assert(AA && "No alias?");
1283 
1284   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1285 
1286   // See if there is already something with the target's name in the module.
1287   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1288   if (Entry) {
1289     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1290     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1291   }
1292 
1293   llvm::Constant *Aliasee;
1294   if (isa<llvm::FunctionType>(DeclTy))
1295     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1296                                       GlobalDecl(cast<FunctionDecl>(VD)),
1297                                       /*ForVTable=*/false);
1298   else
1299     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1300                                     llvm::PointerType::getUnqual(DeclTy),
1301                                     nullptr);
1302 
1303   auto *F = cast<llvm::GlobalValue>(Aliasee);
1304   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1305   WeakRefReferences.insert(F);
1306 
1307   return Aliasee;
1308 }
1309 
1310 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1311   const auto *Global = cast<ValueDecl>(GD.getDecl());
1312 
1313   // Weak references don't produce any output by themselves.
1314   if (Global->hasAttr<WeakRefAttr>())
1315     return;
1316 
1317   // If this is an alias definition (which otherwise looks like a declaration)
1318   // emit it now.
1319   if (Global->hasAttr<AliasAttr>())
1320     return EmitAliasDefinition(GD);
1321 
1322   // If this is CUDA, be selective about which declarations we emit.
1323   if (LangOpts.CUDA) {
1324     if (CodeGenOpts.CUDAIsDevice) {
1325       if (!Global->hasAttr<CUDADeviceAttr>() &&
1326           !Global->hasAttr<CUDAGlobalAttr>() &&
1327           !Global->hasAttr<CUDAConstantAttr>() &&
1328           !Global->hasAttr<CUDASharedAttr>())
1329         return;
1330     } else {
1331       if (!Global->hasAttr<CUDAHostAttr>() && (
1332             Global->hasAttr<CUDADeviceAttr>() ||
1333             Global->hasAttr<CUDAConstantAttr>() ||
1334             Global->hasAttr<CUDASharedAttr>()))
1335         return;
1336     }
1337   }
1338 
1339   // Ignore declarations, they will be emitted on their first use.
1340   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1341     // Forward declarations are emitted lazily on first use.
1342     if (!FD->doesThisDeclarationHaveABody()) {
1343       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1344         return;
1345 
1346       StringRef MangledName = getMangledName(GD);
1347 
1348       // Compute the function info and LLVM type.
1349       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1350       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1351 
1352       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1353                               /*DontDefer=*/false);
1354       return;
1355     }
1356   } else {
1357     const auto *VD = cast<VarDecl>(Global);
1358     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1359 
1360     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1361         !Context.isMSStaticDataMemberInlineDefinition(VD))
1362       return;
1363   }
1364 
1365   // Defer code generation to first use when possible, e.g. if this is an inline
1366   // function. If the global must always be emitted, do it eagerly if possible
1367   // to benefit from cache locality.
1368   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1369     // Emit the definition if it can't be deferred.
1370     EmitGlobalDefinition(GD);
1371     return;
1372   }
1373 
1374   // If we're deferring emission of a C++ variable with an
1375   // initializer, remember the order in which it appeared in the file.
1376   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1377       cast<VarDecl>(Global)->hasInit()) {
1378     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1379     CXXGlobalInits.push_back(nullptr);
1380   }
1381 
1382   StringRef MangledName = getMangledName(GD);
1383   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1384     // The value has already been used and should therefore be emitted.
1385     addDeferredDeclToEmit(GV, GD);
1386   } else if (MustBeEmitted(Global)) {
1387     // The value must be emitted, but cannot be emitted eagerly.
1388     assert(!MayBeEmittedEagerly(Global));
1389     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1390   } else {
1391     // Otherwise, remember that we saw a deferred decl with this name.  The
1392     // first use of the mangled name will cause it to move into
1393     // DeferredDeclsToEmit.
1394     DeferredDecls[MangledName] = GD;
1395   }
1396 }
1397 
1398 namespace {
1399   struct FunctionIsDirectlyRecursive :
1400     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1401     const StringRef Name;
1402     const Builtin::Context &BI;
1403     bool Result;
1404     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1405       Name(N), BI(C), Result(false) {
1406     }
1407     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1408 
1409     bool TraverseCallExpr(CallExpr *E) {
1410       const FunctionDecl *FD = E->getDirectCallee();
1411       if (!FD)
1412         return true;
1413       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1414       if (Attr && Name == Attr->getLabel()) {
1415         Result = true;
1416         return false;
1417       }
1418       unsigned BuiltinID = FD->getBuiltinID();
1419       if (!BuiltinID)
1420         return true;
1421       StringRef BuiltinName = BI.GetName(BuiltinID);
1422       if (BuiltinName.startswith("__builtin_") &&
1423           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1424         Result = true;
1425         return false;
1426       }
1427       return true;
1428     }
1429   };
1430 }
1431 
1432 // isTriviallyRecursive - Check if this function calls another
1433 // decl that, because of the asm attribute or the other decl being a builtin,
1434 // ends up pointing to itself.
1435 bool
1436 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1437   StringRef Name;
1438   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1439     // asm labels are a special kind of mangling we have to support.
1440     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1441     if (!Attr)
1442       return false;
1443     Name = Attr->getLabel();
1444   } else {
1445     Name = FD->getName();
1446   }
1447 
1448   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1449   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1450   return Walker.Result;
1451 }
1452 
1453 bool
1454 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1455   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1456     return true;
1457   const auto *F = cast<FunctionDecl>(GD.getDecl());
1458   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1459     return false;
1460   // PR9614. Avoid cases where the source code is lying to us. An available
1461   // externally function should have an equivalent function somewhere else,
1462   // but a function that calls itself is clearly not equivalent to the real
1463   // implementation.
1464   // This happens in glibc's btowc and in some configure checks.
1465   return !isTriviallyRecursive(F);
1466 }
1467 
1468 /// If the type for the method's class was generated by
1469 /// CGDebugInfo::createContextChain(), the cache contains only a
1470 /// limited DIType without any declarations. Since EmitFunctionStart()
1471 /// needs to find the canonical declaration for each method, we need
1472 /// to construct the complete type prior to emitting the method.
1473 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1474   if (!D->isInstance())
1475     return;
1476 
1477   if (CGDebugInfo *DI = getModuleDebugInfo())
1478     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1479       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1480       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1481     }
1482 }
1483 
1484 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1485   const auto *D = cast<ValueDecl>(GD.getDecl());
1486 
1487   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1488                                  Context.getSourceManager(),
1489                                  "Generating code for declaration");
1490 
1491   if (isa<FunctionDecl>(D)) {
1492     // At -O0, don't generate IR for functions with available_externally
1493     // linkage.
1494     if (!shouldEmitFunction(GD))
1495       return;
1496 
1497     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1498       CompleteDIClassType(Method);
1499       // Make sure to emit the definition(s) before we emit the thunks.
1500       // This is necessary for the generation of certain thunks.
1501       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1502         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1503       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1504         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1505       else
1506         EmitGlobalFunctionDefinition(GD, GV);
1507 
1508       if (Method->isVirtual())
1509         getVTables().EmitThunks(GD);
1510 
1511       return;
1512     }
1513 
1514     return EmitGlobalFunctionDefinition(GD, GV);
1515   }
1516 
1517   if (const auto *VD = dyn_cast<VarDecl>(D))
1518     return EmitGlobalVarDefinition(VD);
1519 
1520   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1521 }
1522 
1523 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1524 /// module, create and return an llvm Function with the specified type. If there
1525 /// is something in the module with the specified name, return it potentially
1526 /// bitcasted to the right type.
1527 ///
1528 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1529 /// to set the attributes on the function when it is first created.
1530 llvm::Constant *
1531 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1532                                        llvm::Type *Ty,
1533                                        GlobalDecl GD, bool ForVTable,
1534                                        bool DontDefer, bool IsThunk,
1535                                        llvm::AttributeSet ExtraAttrs) {
1536   const Decl *D = GD.getDecl();
1537 
1538   // Lookup the entry, lazily creating it if necessary.
1539   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1540   if (Entry) {
1541     if (WeakRefReferences.erase(Entry)) {
1542       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1543       if (FD && !FD->hasAttr<WeakAttr>())
1544         Entry->setLinkage(llvm::Function::ExternalLinkage);
1545     }
1546 
1547     // Handle dropped DLL attributes.
1548     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1549       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1550 
1551     if (Entry->getType()->getElementType() == Ty)
1552       return Entry;
1553 
1554     // Make sure the result is of the correct type.
1555     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1556   }
1557 
1558   // This function doesn't have a complete type (for example, the return
1559   // type is an incomplete struct). Use a fake type instead, and make
1560   // sure not to try to set attributes.
1561   bool IsIncompleteFunction = false;
1562 
1563   llvm::FunctionType *FTy;
1564   if (isa<llvm::FunctionType>(Ty)) {
1565     FTy = cast<llvm::FunctionType>(Ty);
1566   } else {
1567     FTy = llvm::FunctionType::get(VoidTy, false);
1568     IsIncompleteFunction = true;
1569   }
1570 
1571   llvm::Function *F = llvm::Function::Create(FTy,
1572                                              llvm::Function::ExternalLinkage,
1573                                              MangledName, &getModule());
1574   assert(F->getName() == MangledName && "name was uniqued!");
1575   if (D)
1576     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1577   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1578     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1579     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1580                      llvm::AttributeSet::get(VMContext,
1581                                              llvm::AttributeSet::FunctionIndex,
1582                                              B));
1583   }
1584 
1585   if (!DontDefer) {
1586     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1587     // each other bottoming out with the base dtor.  Therefore we emit non-base
1588     // dtors on usage, even if there is no dtor definition in the TU.
1589     if (D && isa<CXXDestructorDecl>(D) &&
1590         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1591                                            GD.getDtorType()))
1592       addDeferredDeclToEmit(F, GD);
1593 
1594     // This is the first use or definition of a mangled name.  If there is a
1595     // deferred decl with this name, remember that we need to emit it at the end
1596     // of the file.
1597     auto DDI = DeferredDecls.find(MangledName);
1598     if (DDI != DeferredDecls.end()) {
1599       // Move the potentially referenced deferred decl to the
1600       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1601       // don't need it anymore).
1602       addDeferredDeclToEmit(F, DDI->second);
1603       DeferredDecls.erase(DDI);
1604 
1605       // Otherwise, if this is a sized deallocation function, emit a weak
1606       // definition
1607       // for it at the end of the translation unit.
1608     } else if (D && cast<FunctionDecl>(D)
1609                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1610       addDeferredDeclToEmit(F, GD);
1611 
1612       // Otherwise, there are cases we have to worry about where we're
1613       // using a declaration for which we must emit a definition but where
1614       // we might not find a top-level definition:
1615       //   - member functions defined inline in their classes
1616       //   - friend functions defined inline in some class
1617       //   - special member functions with implicit definitions
1618       // If we ever change our AST traversal to walk into class methods,
1619       // this will be unnecessary.
1620       //
1621       // We also don't emit a definition for a function if it's going to be an
1622       // entry in a vtable, unless it's already marked as used.
1623     } else if (getLangOpts().CPlusPlus && D) {
1624       // Look for a declaration that's lexically in a record.
1625       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1626            FD = FD->getPreviousDecl()) {
1627         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1628           if (FD->doesThisDeclarationHaveABody()) {
1629             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1630             break;
1631           }
1632         }
1633       }
1634     }
1635   }
1636 
1637   // Make sure the result is of the requested type.
1638   if (!IsIncompleteFunction) {
1639     assert(F->getType()->getElementType() == Ty);
1640     return F;
1641   }
1642 
1643   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1644   return llvm::ConstantExpr::getBitCast(F, PTy);
1645 }
1646 
1647 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1648 /// non-null, then this function will use the specified type if it has to
1649 /// create it (this occurs when we see a definition of the function).
1650 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1651                                                  llvm::Type *Ty,
1652                                                  bool ForVTable,
1653                                                  bool DontDefer) {
1654   // If there was no specific requested type, just convert it now.
1655   if (!Ty)
1656     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1657 
1658   StringRef MangledName = getMangledName(GD);
1659   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1660 }
1661 
1662 /// CreateRuntimeFunction - Create a new runtime function with the specified
1663 /// type and name.
1664 llvm::Constant *
1665 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1666                                      StringRef Name,
1667                                      llvm::AttributeSet ExtraAttrs) {
1668   llvm::Constant *C =
1669       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1670                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1671   if (auto *F = dyn_cast<llvm::Function>(C))
1672     if (F->empty())
1673       F->setCallingConv(getRuntimeCC());
1674   return C;
1675 }
1676 
1677 /// CreateBuiltinFunction - Create a new builtin function with the specified
1678 /// type and name.
1679 llvm::Constant *
1680 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1681                                      StringRef Name,
1682                                      llvm::AttributeSet ExtraAttrs) {
1683   llvm::Constant *C =
1684       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1685                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1686   if (auto *F = dyn_cast<llvm::Function>(C))
1687     if (F->empty())
1688       F->setCallingConv(getBuiltinCC());
1689   return C;
1690 }
1691 
1692 /// isTypeConstant - Determine whether an object of this type can be emitted
1693 /// as a constant.
1694 ///
1695 /// If ExcludeCtor is true, the duration when the object's constructor runs
1696 /// will not be considered. The caller will need to verify that the object is
1697 /// not written to during its construction.
1698 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1699   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1700     return false;
1701 
1702   if (Context.getLangOpts().CPlusPlus) {
1703     if (const CXXRecordDecl *Record
1704           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1705       return ExcludeCtor && !Record->hasMutableFields() &&
1706              Record->hasTrivialDestructor();
1707   }
1708 
1709   return true;
1710 }
1711 
1712 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1713 /// create and return an llvm GlobalVariable with the specified type.  If there
1714 /// is something in the module with the specified name, return it potentially
1715 /// bitcasted to the right type.
1716 ///
1717 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1718 /// to set the attributes on the global when it is first created.
1719 llvm::Constant *
1720 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1721                                      llvm::PointerType *Ty,
1722                                      const VarDecl *D) {
1723   // Lookup the entry, lazily creating it if necessary.
1724   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1725   if (Entry) {
1726     if (WeakRefReferences.erase(Entry)) {
1727       if (D && !D->hasAttr<WeakAttr>())
1728         Entry->setLinkage(llvm::Function::ExternalLinkage);
1729     }
1730 
1731     // Handle dropped DLL attributes.
1732     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1733       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1734 
1735     if (Entry->getType() == Ty)
1736       return Entry;
1737 
1738     // Make sure the result is of the correct type.
1739     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1740       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1741 
1742     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1743   }
1744 
1745   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1746   auto *GV = new llvm::GlobalVariable(
1747       getModule(), Ty->getElementType(), false,
1748       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1749       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1750 
1751   // This is the first use or definition of a mangled name.  If there is a
1752   // deferred decl with this name, remember that we need to emit it at the end
1753   // of the file.
1754   auto DDI = DeferredDecls.find(MangledName);
1755   if (DDI != DeferredDecls.end()) {
1756     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1757     // list, and remove it from DeferredDecls (since we don't need it anymore).
1758     addDeferredDeclToEmit(GV, DDI->second);
1759     DeferredDecls.erase(DDI);
1760   }
1761 
1762   // Handle things which are present even on external declarations.
1763   if (D) {
1764     // FIXME: This code is overly simple and should be merged with other global
1765     // handling.
1766     GV->setConstant(isTypeConstant(D->getType(), false));
1767 
1768     setLinkageAndVisibilityForGV(GV, D);
1769 
1770     if (D->getTLSKind()) {
1771       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1772         CXXThreadLocals.push_back(std::make_pair(D, GV));
1773       setTLSMode(GV, *D);
1774     }
1775 
1776     // If required by the ABI, treat declarations of static data members with
1777     // inline initializers as definitions.
1778     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1779       EmitGlobalVarDefinition(D);
1780     }
1781 
1782     // Handle XCore specific ABI requirements.
1783     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1784         D->getLanguageLinkage() == CLanguageLinkage &&
1785         D->getType().isConstant(Context) &&
1786         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1787       GV->setSection(".cp.rodata");
1788   }
1789 
1790   if (AddrSpace != Ty->getAddressSpace())
1791     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1792 
1793   return GV;
1794 }
1795 
1796 
1797 llvm::GlobalVariable *
1798 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1799                                       llvm::Type *Ty,
1800                                       llvm::GlobalValue::LinkageTypes Linkage) {
1801   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1802   llvm::GlobalVariable *OldGV = nullptr;
1803 
1804   if (GV) {
1805     // Check if the variable has the right type.
1806     if (GV->getType()->getElementType() == Ty)
1807       return GV;
1808 
1809     // Because C++ name mangling, the only way we can end up with an already
1810     // existing global with the same name is if it has been declared extern "C".
1811     assert(GV->isDeclaration() && "Declaration has wrong type!");
1812     OldGV = GV;
1813   }
1814 
1815   // Create a new variable.
1816   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1817                                 Linkage, nullptr, Name);
1818 
1819   if (OldGV) {
1820     // Replace occurrences of the old variable if needed.
1821     GV->takeName(OldGV);
1822 
1823     if (!OldGV->use_empty()) {
1824       llvm::Constant *NewPtrForOldDecl =
1825       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1826       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1827     }
1828 
1829     OldGV->eraseFromParent();
1830   }
1831 
1832   return GV;
1833 }
1834 
1835 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1836 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1837 /// then it will be created with the specified type instead of whatever the
1838 /// normal requested type would be.
1839 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1840                                                   llvm::Type *Ty) {
1841   assert(D->hasGlobalStorage() && "Not a global variable");
1842   QualType ASTTy = D->getType();
1843   if (!Ty)
1844     Ty = getTypes().ConvertTypeForMem(ASTTy);
1845 
1846   llvm::PointerType *PTy =
1847     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1848 
1849   StringRef MangledName = getMangledName(D);
1850   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1851 }
1852 
1853 /// CreateRuntimeVariable - Create a new runtime global variable with the
1854 /// specified type and name.
1855 llvm::Constant *
1856 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1857                                      StringRef Name) {
1858   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1859 }
1860 
1861 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1862   assert(!D->getInit() && "Cannot emit definite definitions here!");
1863 
1864   if (!MustBeEmitted(D)) {
1865     // If we have not seen a reference to this variable yet, place it
1866     // into the deferred declarations table to be emitted if needed
1867     // later.
1868     StringRef MangledName = getMangledName(D);
1869     if (!GetGlobalValue(MangledName)) {
1870       DeferredDecls[MangledName] = D;
1871       return;
1872     }
1873   }
1874 
1875   // The tentative definition is the only definition.
1876   EmitGlobalVarDefinition(D);
1877 }
1878 
1879 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1880     return Context.toCharUnitsFromBits(
1881       TheDataLayout.getTypeStoreSizeInBits(Ty));
1882 }
1883 
1884 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1885                                                  unsigned AddrSpace) {
1886   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1887     if (D->hasAttr<CUDAConstantAttr>())
1888       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1889     else if (D->hasAttr<CUDASharedAttr>())
1890       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1891     else
1892       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1893   }
1894 
1895   return AddrSpace;
1896 }
1897 
1898 template<typename SomeDecl>
1899 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1900                                                llvm::GlobalValue *GV) {
1901   if (!getLangOpts().CPlusPlus)
1902     return;
1903 
1904   // Must have 'used' attribute, or else inline assembly can't rely on
1905   // the name existing.
1906   if (!D->template hasAttr<UsedAttr>())
1907     return;
1908 
1909   // Must have internal linkage and an ordinary name.
1910   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1911     return;
1912 
1913   // Must be in an extern "C" context. Entities declared directly within
1914   // a record are not extern "C" even if the record is in such a context.
1915   const SomeDecl *First = D->getFirstDecl();
1916   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1917     return;
1918 
1919   // OK, this is an internal linkage entity inside an extern "C" linkage
1920   // specification. Make a note of that so we can give it the "expected"
1921   // mangled name if nothing else is using that name.
1922   std::pair<StaticExternCMap::iterator, bool> R =
1923       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1924 
1925   // If we have multiple internal linkage entities with the same name
1926   // in extern "C" regions, none of them gets that name.
1927   if (!R.second)
1928     R.first->second = nullptr;
1929 }
1930 
1931 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1932   llvm::Constant *Init = nullptr;
1933   QualType ASTTy = D->getType();
1934   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1935   bool NeedsGlobalCtor = false;
1936   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1937 
1938   const VarDecl *InitDecl;
1939   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1940 
1941   if (!InitExpr) {
1942     // This is a tentative definition; tentative definitions are
1943     // implicitly initialized with { 0 }.
1944     //
1945     // Note that tentative definitions are only emitted at the end of
1946     // a translation unit, so they should never have incomplete
1947     // type. In addition, EmitTentativeDefinition makes sure that we
1948     // never attempt to emit a tentative definition if a real one
1949     // exists. A use may still exists, however, so we still may need
1950     // to do a RAUW.
1951     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1952     Init = EmitNullConstant(D->getType());
1953   } else {
1954     initializedGlobalDecl = GlobalDecl(D);
1955     Init = EmitConstantInit(*InitDecl);
1956 
1957     if (!Init) {
1958       QualType T = InitExpr->getType();
1959       if (D->getType()->isReferenceType())
1960         T = D->getType();
1961 
1962       if (getLangOpts().CPlusPlus) {
1963         Init = EmitNullConstant(T);
1964         NeedsGlobalCtor = true;
1965       } else {
1966         ErrorUnsupported(D, "static initializer");
1967         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1968       }
1969     } else {
1970       // We don't need an initializer, so remove the entry for the delayed
1971       // initializer position (just in case this entry was delayed) if we
1972       // also don't need to register a destructor.
1973       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1974         DelayedCXXInitPosition.erase(D);
1975     }
1976   }
1977 
1978   llvm::Type* InitType = Init->getType();
1979   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1980 
1981   // Strip off a bitcast if we got one back.
1982   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1983     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1984            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1985            // All zero index gep.
1986            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1987     Entry = CE->getOperand(0);
1988   }
1989 
1990   // Entry is now either a Function or GlobalVariable.
1991   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1992 
1993   // We have a definition after a declaration with the wrong type.
1994   // We must make a new GlobalVariable* and update everything that used OldGV
1995   // (a declaration or tentative definition) with the new GlobalVariable*
1996   // (which will be a definition).
1997   //
1998   // This happens if there is a prototype for a global (e.g.
1999   // "extern int x[];") and then a definition of a different type (e.g.
2000   // "int x[10];"). This also happens when an initializer has a different type
2001   // from the type of the global (this happens with unions).
2002   if (!GV ||
2003       GV->getType()->getElementType() != InitType ||
2004       GV->getType()->getAddressSpace() !=
2005        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2006 
2007     // Move the old entry aside so that we'll create a new one.
2008     Entry->setName(StringRef());
2009 
2010     // Make a new global with the correct type, this is now guaranteed to work.
2011     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2012 
2013     // Replace all uses of the old global with the new global
2014     llvm::Constant *NewPtrForOldDecl =
2015         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2016     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2017 
2018     // Erase the old global, since it is no longer used.
2019     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2020   }
2021 
2022   MaybeHandleStaticInExternC(D, GV);
2023 
2024   if (D->hasAttr<AnnotateAttr>())
2025     AddGlobalAnnotations(D, GV);
2026 
2027   GV->setInitializer(Init);
2028 
2029   // If it is safe to mark the global 'constant', do so now.
2030   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2031                   isTypeConstant(D->getType(), true));
2032 
2033   // If it is in a read-only section, mark it 'constant'.
2034   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2035     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2036     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2037       GV->setConstant(true);
2038   }
2039 
2040   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2041 
2042   // Set the llvm linkage type as appropriate.
2043   llvm::GlobalValue::LinkageTypes Linkage =
2044       getLLVMLinkageVarDefinition(D, GV->isConstant());
2045 
2046   // On Darwin, the backing variable for a C++11 thread_local variable always
2047   // has internal linkage; all accesses should just be calls to the
2048   // Itanium-specified entry point, which has the normal linkage of the
2049   // variable.
2050   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2051       Context.getTargetInfo().getTriple().isMacOSX())
2052     Linkage = llvm::GlobalValue::InternalLinkage;
2053 
2054   GV->setLinkage(Linkage);
2055   if (D->hasAttr<DLLImportAttr>())
2056     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2057   else if (D->hasAttr<DLLExportAttr>())
2058     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2059   else
2060     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2061 
2062   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2063     // common vars aren't constant even if declared const.
2064     GV->setConstant(false);
2065 
2066   setNonAliasAttributes(D, GV);
2067 
2068   if (D->getTLSKind() && !GV->isThreadLocal()) {
2069     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2070       CXXThreadLocals.push_back(std::make_pair(D, GV));
2071     setTLSMode(GV, *D);
2072   }
2073 
2074   // Emit the initializer function if necessary.
2075   if (NeedsGlobalCtor || NeedsGlobalDtor)
2076     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2077 
2078   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2079 
2080   // Emit global variable debug information.
2081   if (CGDebugInfo *DI = getModuleDebugInfo())
2082     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2083       DI->EmitGlobalVariable(GV, D);
2084 }
2085 
2086 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2087                                       const VarDecl *D, bool NoCommon) {
2088   // Don't give variables common linkage if -fno-common was specified unless it
2089   // was overridden by a NoCommon attribute.
2090   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2091     return true;
2092 
2093   // C11 6.9.2/2:
2094   //   A declaration of an identifier for an object that has file scope without
2095   //   an initializer, and without a storage-class specifier or with the
2096   //   storage-class specifier static, constitutes a tentative definition.
2097   if (D->getInit() || D->hasExternalStorage())
2098     return true;
2099 
2100   // A variable cannot be both common and exist in a section.
2101   if (D->hasAttr<SectionAttr>())
2102     return true;
2103 
2104   // Thread local vars aren't considered common linkage.
2105   if (D->getTLSKind())
2106     return true;
2107 
2108   // Tentative definitions marked with WeakImportAttr are true definitions.
2109   if (D->hasAttr<WeakImportAttr>())
2110     return true;
2111 
2112   // Declarations with a required alignment do not have common linakge in MSVC
2113   // mode.
2114   if (Context.getLangOpts().MSVCCompat &&
2115       (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>()))
2116     return true;
2117 
2118   return false;
2119 }
2120 
2121 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2122     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2123   if (Linkage == GVA_Internal)
2124     return llvm::Function::InternalLinkage;
2125 
2126   if (D->hasAttr<WeakAttr>()) {
2127     if (IsConstantVariable)
2128       return llvm::GlobalVariable::WeakODRLinkage;
2129     else
2130       return llvm::GlobalVariable::WeakAnyLinkage;
2131   }
2132 
2133   // We are guaranteed to have a strong definition somewhere else,
2134   // so we can use available_externally linkage.
2135   if (Linkage == GVA_AvailableExternally)
2136     return llvm::Function::AvailableExternallyLinkage;
2137 
2138   // Note that Apple's kernel linker doesn't support symbol
2139   // coalescing, so we need to avoid linkonce and weak linkages there.
2140   // Normally, this means we just map to internal, but for explicit
2141   // instantiations we'll map to external.
2142 
2143   // In C++, the compiler has to emit a definition in every translation unit
2144   // that references the function.  We should use linkonce_odr because
2145   // a) if all references in this translation unit are optimized away, we
2146   // don't need to codegen it.  b) if the function persists, it needs to be
2147   // merged with other definitions. c) C++ has the ODR, so we know the
2148   // definition is dependable.
2149   if (Linkage == GVA_DiscardableODR)
2150     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2151                                             : llvm::Function::InternalLinkage;
2152 
2153   // An explicit instantiation of a template has weak linkage, since
2154   // explicit instantiations can occur in multiple translation units
2155   // and must all be equivalent. However, we are not allowed to
2156   // throw away these explicit instantiations.
2157   if (Linkage == GVA_StrongODR)
2158     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2159                                             : llvm::Function::ExternalLinkage;
2160 
2161   // C++ doesn't have tentative definitions and thus cannot have common
2162   // linkage.
2163   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2164       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2165                                  CodeGenOpts.NoCommon))
2166     return llvm::GlobalVariable::CommonLinkage;
2167 
2168   // selectany symbols are externally visible, so use weak instead of
2169   // linkonce.  MSVC optimizes away references to const selectany globals, so
2170   // all definitions should be the same and ODR linkage should be used.
2171   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2172   if (D->hasAttr<SelectAnyAttr>())
2173     return llvm::GlobalVariable::WeakODRLinkage;
2174 
2175   // Otherwise, we have strong external linkage.
2176   assert(Linkage == GVA_StrongExternal);
2177   return llvm::GlobalVariable::ExternalLinkage;
2178 }
2179 
2180 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2181     const VarDecl *VD, bool IsConstant) {
2182   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2183   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2184 }
2185 
2186 /// Replace the uses of a function that was declared with a non-proto type.
2187 /// We want to silently drop extra arguments from call sites
2188 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2189                                           llvm::Function *newFn) {
2190   // Fast path.
2191   if (old->use_empty()) return;
2192 
2193   llvm::Type *newRetTy = newFn->getReturnType();
2194   SmallVector<llvm::Value*, 4> newArgs;
2195 
2196   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2197          ui != ue; ) {
2198     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2199     llvm::User *user = use->getUser();
2200 
2201     // Recognize and replace uses of bitcasts.  Most calls to
2202     // unprototyped functions will use bitcasts.
2203     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2204       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2205         replaceUsesOfNonProtoConstant(bitcast, newFn);
2206       continue;
2207     }
2208 
2209     // Recognize calls to the function.
2210     llvm::CallSite callSite(user);
2211     if (!callSite) continue;
2212     if (!callSite.isCallee(&*use)) continue;
2213 
2214     // If the return types don't match exactly, then we can't
2215     // transform this call unless it's dead.
2216     if (callSite->getType() != newRetTy && !callSite->use_empty())
2217       continue;
2218 
2219     // Get the call site's attribute list.
2220     SmallVector<llvm::AttributeSet, 8> newAttrs;
2221     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2222 
2223     // Collect any return attributes from the call.
2224     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2225       newAttrs.push_back(
2226         llvm::AttributeSet::get(newFn->getContext(),
2227                                 oldAttrs.getRetAttributes()));
2228 
2229     // If the function was passed too few arguments, don't transform.
2230     unsigned newNumArgs = newFn->arg_size();
2231     if (callSite.arg_size() < newNumArgs) continue;
2232 
2233     // If extra arguments were passed, we silently drop them.
2234     // If any of the types mismatch, we don't transform.
2235     unsigned argNo = 0;
2236     bool dontTransform = false;
2237     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2238            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2239       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2240         dontTransform = true;
2241         break;
2242       }
2243 
2244       // Add any parameter attributes.
2245       if (oldAttrs.hasAttributes(argNo + 1))
2246         newAttrs.
2247           push_back(llvm::
2248                     AttributeSet::get(newFn->getContext(),
2249                                       oldAttrs.getParamAttributes(argNo + 1)));
2250     }
2251     if (dontTransform)
2252       continue;
2253 
2254     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2255       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2256                                                  oldAttrs.getFnAttributes()));
2257 
2258     // Okay, we can transform this.  Create the new call instruction and copy
2259     // over the required information.
2260     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2261 
2262     llvm::CallSite newCall;
2263     if (callSite.isCall()) {
2264       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2265                                        callSite.getInstruction());
2266     } else {
2267       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2268       newCall = llvm::InvokeInst::Create(newFn,
2269                                          oldInvoke->getNormalDest(),
2270                                          oldInvoke->getUnwindDest(),
2271                                          newArgs, "",
2272                                          callSite.getInstruction());
2273     }
2274     newArgs.clear(); // for the next iteration
2275 
2276     if (!newCall->getType()->isVoidTy())
2277       newCall->takeName(callSite.getInstruction());
2278     newCall.setAttributes(
2279                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2280     newCall.setCallingConv(callSite.getCallingConv());
2281 
2282     // Finally, remove the old call, replacing any uses with the new one.
2283     if (!callSite->use_empty())
2284       callSite->replaceAllUsesWith(newCall.getInstruction());
2285 
2286     // Copy debug location attached to CI.
2287     if (!callSite->getDebugLoc().isUnknown())
2288       newCall->setDebugLoc(callSite->getDebugLoc());
2289     callSite->eraseFromParent();
2290   }
2291 }
2292 
2293 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2294 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2295 /// existing call uses of the old function in the module, this adjusts them to
2296 /// call the new function directly.
2297 ///
2298 /// This is not just a cleanup: the always_inline pass requires direct calls to
2299 /// functions to be able to inline them.  If there is a bitcast in the way, it
2300 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2301 /// run at -O0.
2302 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2303                                                       llvm::Function *NewFn) {
2304   // If we're redefining a global as a function, don't transform it.
2305   if (!isa<llvm::Function>(Old)) return;
2306 
2307   replaceUsesOfNonProtoConstant(Old, NewFn);
2308 }
2309 
2310 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2311   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2312   // If we have a definition, this might be a deferred decl. If the
2313   // instantiation is explicit, make sure we emit it at the end.
2314   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2315     GetAddrOfGlobalVar(VD);
2316 
2317   EmitTopLevelDecl(VD);
2318 }
2319 
2320 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2321                                                  llvm::GlobalValue *GV) {
2322   const auto *D = cast<FunctionDecl>(GD.getDecl());
2323 
2324   // Compute the function info and LLVM type.
2325   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2326   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2327 
2328   // Get or create the prototype for the function.
2329   if (!GV) {
2330     llvm::Constant *C =
2331         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2332 
2333     // Strip off a bitcast if we got one back.
2334     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2335       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2336       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2337     } else {
2338       GV = cast<llvm::GlobalValue>(C);
2339     }
2340   }
2341 
2342   if (!GV->isDeclaration()) {
2343     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2344     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2345     if (auto *Prev = OldGD.getDecl())
2346       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2347     return;
2348   }
2349 
2350   if (GV->getType()->getElementType() != Ty) {
2351     // If the types mismatch then we have to rewrite the definition.
2352     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2353 
2354     // F is the Function* for the one with the wrong type, we must make a new
2355     // Function* and update everything that used F (a declaration) with the new
2356     // Function* (which will be a definition).
2357     //
2358     // This happens if there is a prototype for a function
2359     // (e.g. "int f()") and then a definition of a different type
2360     // (e.g. "int f(int x)").  Move the old function aside so that it
2361     // doesn't interfere with GetAddrOfFunction.
2362     GV->setName(StringRef());
2363     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2364 
2365     // This might be an implementation of a function without a
2366     // prototype, in which case, try to do special replacement of
2367     // calls which match the new prototype.  The really key thing here
2368     // is that we also potentially drop arguments from the call site
2369     // so as to make a direct call, which makes the inliner happier
2370     // and suppresses a number of optimizer warnings (!) about
2371     // dropping arguments.
2372     if (!GV->use_empty()) {
2373       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2374       GV->removeDeadConstantUsers();
2375     }
2376 
2377     // Replace uses of F with the Function we will endow with a body.
2378     if (!GV->use_empty()) {
2379       llvm::Constant *NewPtrForOldDecl =
2380           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2381       GV->replaceAllUsesWith(NewPtrForOldDecl);
2382     }
2383 
2384     // Ok, delete the old function now, which is dead.
2385     GV->eraseFromParent();
2386 
2387     GV = NewFn;
2388   }
2389 
2390   // We need to set linkage and visibility on the function before
2391   // generating code for it because various parts of IR generation
2392   // want to propagate this information down (e.g. to local static
2393   // declarations).
2394   auto *Fn = cast<llvm::Function>(GV);
2395   setFunctionLinkage(GD, Fn);
2396   if (D->hasAttr<DLLImportAttr>())
2397     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2398   else if (D->hasAttr<DLLExportAttr>())
2399     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2400   else
2401     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2402 
2403   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2404   setGlobalVisibility(Fn, D);
2405 
2406   MaybeHandleStaticInExternC(D, Fn);
2407 
2408   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2409 
2410   setFunctionDefinitionAttributes(D, Fn);
2411   SetLLVMFunctionAttributesForDefinition(D, Fn);
2412 
2413   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2414     AddGlobalCtor(Fn, CA->getPriority());
2415   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2416     AddGlobalDtor(Fn, DA->getPriority());
2417   if (D->hasAttr<AnnotateAttr>())
2418     AddGlobalAnnotations(D, Fn);
2419 }
2420 
2421 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2422   const auto *D = cast<ValueDecl>(GD.getDecl());
2423   const AliasAttr *AA = D->getAttr<AliasAttr>();
2424   assert(AA && "Not an alias?");
2425 
2426   StringRef MangledName = getMangledName(GD);
2427 
2428   // If there is a definition in the module, then it wins over the alias.
2429   // This is dubious, but allow it to be safe.  Just ignore the alias.
2430   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2431   if (Entry && !Entry->isDeclaration())
2432     return;
2433 
2434   Aliases.push_back(GD);
2435 
2436   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2437 
2438   // Create a reference to the named value.  This ensures that it is emitted
2439   // if a deferred decl.
2440   llvm::Constant *Aliasee;
2441   if (isa<llvm::FunctionType>(DeclTy))
2442     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2443                                       /*ForVTable=*/false);
2444   else
2445     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2446                                     llvm::PointerType::getUnqual(DeclTy),
2447                                     /*D=*/nullptr);
2448 
2449   // Create the new alias itself, but don't set a name yet.
2450   auto *GA = llvm::GlobalAlias::create(
2451       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2452       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2453 
2454   if (Entry) {
2455     if (GA->getAliasee() == Entry) {
2456       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2457       return;
2458     }
2459 
2460     assert(Entry->isDeclaration());
2461 
2462     // If there is a declaration in the module, then we had an extern followed
2463     // by the alias, as in:
2464     //   extern int test6();
2465     //   ...
2466     //   int test6() __attribute__((alias("test7")));
2467     //
2468     // Remove it and replace uses of it with the alias.
2469     GA->takeName(Entry);
2470 
2471     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2472                                                           Entry->getType()));
2473     Entry->eraseFromParent();
2474   } else {
2475     GA->setName(MangledName);
2476   }
2477 
2478   // Set attributes which are particular to an alias; this is a
2479   // specialization of the attributes which may be set on a global
2480   // variable/function.
2481   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2482       D->isWeakImported()) {
2483     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2484   }
2485 
2486   if (const auto *VD = dyn_cast<VarDecl>(D))
2487     if (VD->getTLSKind())
2488       setTLSMode(GA, *VD);
2489 
2490   setAliasAttributes(D, GA);
2491 }
2492 
2493 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2494                                             ArrayRef<llvm::Type*> Tys) {
2495   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2496                                          Tys);
2497 }
2498 
2499 static llvm::StringMapEntry<llvm::Constant*> &
2500 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2501                          const StringLiteral *Literal,
2502                          bool TargetIsLSB,
2503                          bool &IsUTF16,
2504                          unsigned &StringLength) {
2505   StringRef String = Literal->getString();
2506   unsigned NumBytes = String.size();
2507 
2508   // Check for simple case.
2509   if (!Literal->containsNonAsciiOrNull()) {
2510     StringLength = NumBytes;
2511     return *Map.insert(std::make_pair(String, nullptr)).first;
2512   }
2513 
2514   // Otherwise, convert the UTF8 literals into a string of shorts.
2515   IsUTF16 = true;
2516 
2517   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2518   const UTF8 *FromPtr = (const UTF8 *)String.data();
2519   UTF16 *ToPtr = &ToBuf[0];
2520 
2521   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2522                            &ToPtr, ToPtr + NumBytes,
2523                            strictConversion);
2524 
2525   // ConvertUTF8toUTF16 returns the length in ToPtr.
2526   StringLength = ToPtr - &ToBuf[0];
2527 
2528   // Add an explicit null.
2529   *ToPtr = 0;
2530   return *Map.insert(std::make_pair(
2531                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2532                                    (StringLength + 1) * 2),
2533                          nullptr)).first;
2534 }
2535 
2536 static llvm::StringMapEntry<llvm::Constant*> &
2537 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2538                        const StringLiteral *Literal,
2539                        unsigned &StringLength) {
2540   StringRef String = Literal->getString();
2541   StringLength = String.size();
2542   return *Map.insert(std::make_pair(String, nullptr)).first;
2543 }
2544 
2545 llvm::Constant *
2546 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2547   unsigned StringLength = 0;
2548   bool isUTF16 = false;
2549   llvm::StringMapEntry<llvm::Constant*> &Entry =
2550     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2551                              getDataLayout().isLittleEndian(),
2552                              isUTF16, StringLength);
2553 
2554   if (auto *C = Entry.second)
2555     return C;
2556 
2557   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2558   llvm::Constant *Zeros[] = { Zero, Zero };
2559   llvm::Value *V;
2560 
2561   // If we don't already have it, get __CFConstantStringClassReference.
2562   if (!CFConstantStringClassRef) {
2563     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2564     Ty = llvm::ArrayType::get(Ty, 0);
2565     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2566                                            "__CFConstantStringClassReference");
2567     // Decay array -> ptr
2568     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2569     CFConstantStringClassRef = V;
2570   }
2571   else
2572     V = CFConstantStringClassRef;
2573 
2574   QualType CFTy = getContext().getCFConstantStringType();
2575 
2576   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2577 
2578   llvm::Constant *Fields[4];
2579 
2580   // Class pointer.
2581   Fields[0] = cast<llvm::ConstantExpr>(V);
2582 
2583   // Flags.
2584   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2585   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2586     llvm::ConstantInt::get(Ty, 0x07C8);
2587 
2588   // String pointer.
2589   llvm::Constant *C = nullptr;
2590   if (isUTF16) {
2591     ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2592         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2593         Entry.first().size() / 2);
2594     C = llvm::ConstantDataArray::get(VMContext, Arr);
2595   } else {
2596     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2597   }
2598 
2599   // Note: -fwritable-strings doesn't make the backing store strings of
2600   // CFStrings writable. (See <rdar://problem/10657500>)
2601   auto *GV =
2602       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2603                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2604   GV->setUnnamedAddr(true);
2605   // Don't enforce the target's minimum global alignment, since the only use
2606   // of the string is via this class initializer.
2607   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2608   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2609   // that changes the section it ends in, which surprises ld64.
2610   if (isUTF16) {
2611     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2612     GV->setAlignment(Align.getQuantity());
2613     GV->setSection("__TEXT,__ustring");
2614   } else {
2615     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2616     GV->setAlignment(Align.getQuantity());
2617     GV->setSection("__TEXT,__cstring,cstring_literals");
2618   }
2619 
2620   // String.
2621   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2622 
2623   if (isUTF16)
2624     // Cast the UTF16 string to the correct type.
2625     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2626 
2627   // String length.
2628   Ty = getTypes().ConvertType(getContext().LongTy);
2629   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2630 
2631   // The struct.
2632   C = llvm::ConstantStruct::get(STy, Fields);
2633   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2634                                 llvm::GlobalVariable::PrivateLinkage, C,
2635                                 "_unnamed_cfstring_");
2636   GV->setSection("__DATA,__cfstring");
2637   Entry.second = GV;
2638 
2639   return GV;
2640 }
2641 
2642 llvm::Constant *
2643 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2644   unsigned StringLength = 0;
2645   llvm::StringMapEntry<llvm::Constant*> &Entry =
2646     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2647 
2648   if (auto *C = Entry.second)
2649     return C;
2650 
2651   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2652   llvm::Constant *Zeros[] = { Zero, Zero };
2653   llvm::Value *V;
2654   // If we don't already have it, get _NSConstantStringClassReference.
2655   if (!ConstantStringClassRef) {
2656     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2657     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2658     llvm::Constant *GV;
2659     if (LangOpts.ObjCRuntime.isNonFragile()) {
2660       std::string str =
2661         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2662                             : "OBJC_CLASS_$_" + StringClass;
2663       GV = getObjCRuntime().GetClassGlobal(str);
2664       // Make sure the result is of the correct type.
2665       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2666       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2667       ConstantStringClassRef = V;
2668     } else {
2669       std::string str =
2670         StringClass.empty() ? "_NSConstantStringClassReference"
2671                             : "_" + StringClass + "ClassReference";
2672       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2673       GV = CreateRuntimeVariable(PTy, str);
2674       // Decay array -> ptr
2675       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2676       ConstantStringClassRef = V;
2677     }
2678   }
2679   else
2680     V = ConstantStringClassRef;
2681 
2682   if (!NSConstantStringType) {
2683     // Construct the type for a constant NSString.
2684     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2685     D->startDefinition();
2686 
2687     QualType FieldTypes[3];
2688 
2689     // const int *isa;
2690     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2691     // const char *str;
2692     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2693     // unsigned int length;
2694     FieldTypes[2] = Context.UnsignedIntTy;
2695 
2696     // Create fields
2697     for (unsigned i = 0; i < 3; ++i) {
2698       FieldDecl *Field = FieldDecl::Create(Context, D,
2699                                            SourceLocation(),
2700                                            SourceLocation(), nullptr,
2701                                            FieldTypes[i], /*TInfo=*/nullptr,
2702                                            /*BitWidth=*/nullptr,
2703                                            /*Mutable=*/false,
2704                                            ICIS_NoInit);
2705       Field->setAccess(AS_public);
2706       D->addDecl(Field);
2707     }
2708 
2709     D->completeDefinition();
2710     QualType NSTy = Context.getTagDeclType(D);
2711     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2712   }
2713 
2714   llvm::Constant *Fields[3];
2715 
2716   // Class pointer.
2717   Fields[0] = cast<llvm::ConstantExpr>(V);
2718 
2719   // String pointer.
2720   llvm::Constant *C =
2721       llvm::ConstantDataArray::getString(VMContext, Entry.first());
2722 
2723   llvm::GlobalValue::LinkageTypes Linkage;
2724   bool isConstant;
2725   Linkage = llvm::GlobalValue::PrivateLinkage;
2726   isConstant = !LangOpts.WritableStrings;
2727 
2728   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2729                                       Linkage, C, ".str");
2730   GV->setUnnamedAddr(true);
2731   // Don't enforce the target's minimum global alignment, since the only use
2732   // of the string is via this class initializer.
2733   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2734   GV->setAlignment(Align.getQuantity());
2735   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2736 
2737   // String length.
2738   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2739   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2740 
2741   // The struct.
2742   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2743   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2744                                 llvm::GlobalVariable::PrivateLinkage, C,
2745                                 "_unnamed_nsstring_");
2746   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2747   const char *NSStringNonFragileABISection =
2748       "__DATA,__objc_stringobj,regular,no_dead_strip";
2749   // FIXME. Fix section.
2750   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2751                      ? NSStringNonFragileABISection
2752                      : NSStringSection);
2753   Entry.second = GV;
2754 
2755   return GV;
2756 }
2757 
2758 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2759   if (ObjCFastEnumerationStateType.isNull()) {
2760     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2761     D->startDefinition();
2762 
2763     QualType FieldTypes[] = {
2764       Context.UnsignedLongTy,
2765       Context.getPointerType(Context.getObjCIdType()),
2766       Context.getPointerType(Context.UnsignedLongTy),
2767       Context.getConstantArrayType(Context.UnsignedLongTy,
2768                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2769     };
2770 
2771     for (size_t i = 0; i < 4; ++i) {
2772       FieldDecl *Field = FieldDecl::Create(Context,
2773                                            D,
2774                                            SourceLocation(),
2775                                            SourceLocation(), nullptr,
2776                                            FieldTypes[i], /*TInfo=*/nullptr,
2777                                            /*BitWidth=*/nullptr,
2778                                            /*Mutable=*/false,
2779                                            ICIS_NoInit);
2780       Field->setAccess(AS_public);
2781       D->addDecl(Field);
2782     }
2783 
2784     D->completeDefinition();
2785     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2786   }
2787 
2788   return ObjCFastEnumerationStateType;
2789 }
2790 
2791 llvm::Constant *
2792 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2793   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2794 
2795   // Don't emit it as the address of the string, emit the string data itself
2796   // as an inline array.
2797   if (E->getCharByteWidth() == 1) {
2798     SmallString<64> Str(E->getString());
2799 
2800     // Resize the string to the right size, which is indicated by its type.
2801     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2802     Str.resize(CAT->getSize().getZExtValue());
2803     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2804   }
2805 
2806   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2807   llvm::Type *ElemTy = AType->getElementType();
2808   unsigned NumElements = AType->getNumElements();
2809 
2810   // Wide strings have either 2-byte or 4-byte elements.
2811   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2812     SmallVector<uint16_t, 32> Elements;
2813     Elements.reserve(NumElements);
2814 
2815     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2816       Elements.push_back(E->getCodeUnit(i));
2817     Elements.resize(NumElements);
2818     return llvm::ConstantDataArray::get(VMContext, Elements);
2819   }
2820 
2821   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2822   SmallVector<uint32_t, 32> Elements;
2823   Elements.reserve(NumElements);
2824 
2825   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2826     Elements.push_back(E->getCodeUnit(i));
2827   Elements.resize(NumElements);
2828   return llvm::ConstantDataArray::get(VMContext, Elements);
2829 }
2830 
2831 static llvm::GlobalVariable *
2832 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2833                       CodeGenModule &CGM, StringRef GlobalName,
2834                       unsigned Alignment) {
2835   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2836   unsigned AddrSpace = 0;
2837   if (CGM.getLangOpts().OpenCL)
2838     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2839 
2840   // Create a global variable for this string
2841   auto *GV = new llvm::GlobalVariable(
2842       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2843       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2844   GV->setAlignment(Alignment);
2845   GV->setUnnamedAddr(true);
2846   return GV;
2847 }
2848 
2849 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2850 /// constant array for the given string literal.
2851 llvm::GlobalVariable *
2852 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2853                                                   StringRef Name) {
2854   auto Alignment =
2855       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2856 
2857   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2858   llvm::GlobalVariable **Entry = nullptr;
2859   if (!LangOpts.WritableStrings) {
2860     Entry = &ConstantStringMap[C];
2861     if (auto GV = *Entry) {
2862       if (Alignment > GV->getAlignment())
2863         GV->setAlignment(Alignment);
2864       return GV;
2865     }
2866   }
2867 
2868   SmallString<256> MangledNameBuffer;
2869   StringRef GlobalVariableName;
2870   llvm::GlobalValue::LinkageTypes LT;
2871 
2872   // Mangle the string literal if the ABI allows for it.  However, we cannot
2873   // do this if  we are compiling with ASan or -fwritable-strings because they
2874   // rely on strings having normal linkage.
2875   if (!LangOpts.WritableStrings &&
2876       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
2877       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2878     llvm::raw_svector_ostream Out(MangledNameBuffer);
2879     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2880     Out.flush();
2881 
2882     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2883     GlobalVariableName = MangledNameBuffer;
2884   } else {
2885     LT = llvm::GlobalValue::PrivateLinkage;
2886     GlobalVariableName = Name;
2887   }
2888 
2889   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2890   if (Entry)
2891     *Entry = GV;
2892 
2893   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
2894                                   QualType());
2895   return GV;
2896 }
2897 
2898 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2899 /// array for the given ObjCEncodeExpr node.
2900 llvm::GlobalVariable *
2901 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2902   std::string Str;
2903   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2904 
2905   return GetAddrOfConstantCString(Str);
2906 }
2907 
2908 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2909 /// the literal and a terminating '\0' character.
2910 /// The result has pointer to array type.
2911 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2912     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2913   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2914   if (Alignment == 0) {
2915     Alignment = getContext()
2916                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2917                     .getQuantity();
2918   }
2919 
2920   llvm::Constant *C =
2921       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2922 
2923   // Don't share any string literals if strings aren't constant.
2924   llvm::GlobalVariable **Entry = nullptr;
2925   if (!LangOpts.WritableStrings) {
2926     Entry = &ConstantStringMap[C];
2927     if (auto GV = *Entry) {
2928       if (Alignment > GV->getAlignment())
2929         GV->setAlignment(Alignment);
2930       return GV;
2931     }
2932   }
2933 
2934   // Get the default prefix if a name wasn't specified.
2935   if (!GlobalName)
2936     GlobalName = ".str";
2937   // Create a global variable for this.
2938   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2939                                   GlobalName, Alignment);
2940   if (Entry)
2941     *Entry = GV;
2942   return GV;
2943 }
2944 
2945 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2946     const MaterializeTemporaryExpr *E, const Expr *Init) {
2947   assert((E->getStorageDuration() == SD_Static ||
2948           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2949   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2950 
2951   // If we're not materializing a subobject of the temporary, keep the
2952   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2953   QualType MaterializedType = Init->getType();
2954   if (Init == E->GetTemporaryExpr())
2955     MaterializedType = E->getType();
2956 
2957   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2958   if (Slot)
2959     return Slot;
2960 
2961   // FIXME: If an externally-visible declaration extends multiple temporaries,
2962   // we need to give each temporary the same name in every translation unit (and
2963   // we also need to make the temporaries externally-visible).
2964   SmallString<256> Name;
2965   llvm::raw_svector_ostream Out(Name);
2966   getCXXABI().getMangleContext().mangleReferenceTemporary(
2967       VD, E->getManglingNumber(), Out);
2968   Out.flush();
2969 
2970   APValue *Value = nullptr;
2971   if (E->getStorageDuration() == SD_Static) {
2972     // We might have a cached constant initializer for this temporary. Note
2973     // that this might have a different value from the value computed by
2974     // evaluating the initializer if the surrounding constant expression
2975     // modifies the temporary.
2976     Value = getContext().getMaterializedTemporaryValue(E, false);
2977     if (Value && Value->isUninit())
2978       Value = nullptr;
2979   }
2980 
2981   // Try evaluating it now, it might have a constant initializer.
2982   Expr::EvalResult EvalResult;
2983   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2984       !EvalResult.hasSideEffects())
2985     Value = &EvalResult.Val;
2986 
2987   llvm::Constant *InitialValue = nullptr;
2988   bool Constant = false;
2989   llvm::Type *Type;
2990   if (Value) {
2991     // The temporary has a constant initializer, use it.
2992     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2993     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2994     Type = InitialValue->getType();
2995   } else {
2996     // No initializer, the initialization will be provided when we
2997     // initialize the declaration which performed lifetime extension.
2998     Type = getTypes().ConvertTypeForMem(MaterializedType);
2999   }
3000 
3001   // Create a global variable for this lifetime-extended temporary.
3002   llvm::GlobalValue::LinkageTypes Linkage =
3003       getLLVMLinkageVarDefinition(VD, Constant);
3004   // There is no need for this temporary to have global linkage if the global
3005   // variable has external linkage.
3006   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
3007     Linkage = llvm::GlobalVariable::PrivateLinkage;
3008   unsigned AddrSpace = GetGlobalVarAddressSpace(
3009       VD, getContext().getTargetAddressSpace(MaterializedType));
3010   auto *GV = new llvm::GlobalVariable(
3011       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3012       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3013       AddrSpace);
3014   setGlobalVisibility(GV, VD);
3015   GV->setAlignment(
3016       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
3017   if (VD->getTLSKind())
3018     setTLSMode(GV, *VD);
3019   Slot = GV;
3020   return GV;
3021 }
3022 
3023 /// EmitObjCPropertyImplementations - Emit information for synthesized
3024 /// properties for an implementation.
3025 void CodeGenModule::EmitObjCPropertyImplementations(const
3026                                                     ObjCImplementationDecl *D) {
3027   for (const auto *PID : D->property_impls()) {
3028     // Dynamic is just for type-checking.
3029     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3030       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3031 
3032       // Determine which methods need to be implemented, some may have
3033       // been overridden. Note that ::isPropertyAccessor is not the method
3034       // we want, that just indicates if the decl came from a
3035       // property. What we want to know is if the method is defined in
3036       // this implementation.
3037       if (!D->getInstanceMethod(PD->getGetterName()))
3038         CodeGenFunction(*this).GenerateObjCGetter(
3039                                  const_cast<ObjCImplementationDecl *>(D), PID);
3040       if (!PD->isReadOnly() &&
3041           !D->getInstanceMethod(PD->getSetterName()))
3042         CodeGenFunction(*this).GenerateObjCSetter(
3043                                  const_cast<ObjCImplementationDecl *>(D), PID);
3044     }
3045   }
3046 }
3047 
3048 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3049   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3050   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3051        ivar; ivar = ivar->getNextIvar())
3052     if (ivar->getType().isDestructedType())
3053       return true;
3054 
3055   return false;
3056 }
3057 
3058 static bool AllTrivialInitializers(CodeGenModule &CGM,
3059                                    ObjCImplementationDecl *D) {
3060   CodeGenFunction CGF(CGM);
3061   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3062        E = D->init_end(); B != E; ++B) {
3063     CXXCtorInitializer *CtorInitExp = *B;
3064     Expr *Init = CtorInitExp->getInit();
3065     if (!CGF.isTrivialInitializer(Init))
3066       return false;
3067   }
3068   return true;
3069 }
3070 
3071 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3072 /// for an implementation.
3073 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3074   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3075   if (needsDestructMethod(D)) {
3076     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3077     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3078     ObjCMethodDecl *DTORMethod =
3079       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3080                              cxxSelector, getContext().VoidTy, nullptr, D,
3081                              /*isInstance=*/true, /*isVariadic=*/false,
3082                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3083                              /*isDefined=*/false, ObjCMethodDecl::Required);
3084     D->addInstanceMethod(DTORMethod);
3085     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3086     D->setHasDestructors(true);
3087   }
3088 
3089   // If the implementation doesn't have any ivar initializers, we don't need
3090   // a .cxx_construct.
3091   if (D->getNumIvarInitializers() == 0 ||
3092       AllTrivialInitializers(*this, D))
3093     return;
3094 
3095   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3096   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3097   // The constructor returns 'self'.
3098   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3099                                                 D->getLocation(),
3100                                                 D->getLocation(),
3101                                                 cxxSelector,
3102                                                 getContext().getObjCIdType(),
3103                                                 nullptr, D, /*isInstance=*/true,
3104                                                 /*isVariadic=*/false,
3105                                                 /*isPropertyAccessor=*/true,
3106                                                 /*isImplicitlyDeclared=*/true,
3107                                                 /*isDefined=*/false,
3108                                                 ObjCMethodDecl::Required);
3109   D->addInstanceMethod(CTORMethod);
3110   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3111   D->setHasNonZeroConstructors(true);
3112 }
3113 
3114 /// EmitNamespace - Emit all declarations in a namespace.
3115 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3116   for (auto *I : ND->decls()) {
3117     if (const auto *VD = dyn_cast<VarDecl>(I))
3118       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3119           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3120         continue;
3121     EmitTopLevelDecl(I);
3122   }
3123 }
3124 
3125 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3126 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3127   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3128       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3129     ErrorUnsupported(LSD, "linkage spec");
3130     return;
3131   }
3132 
3133   for (auto *I : LSD->decls()) {
3134     // Meta-data for ObjC class includes references to implemented methods.
3135     // Generate class's method definitions first.
3136     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3137       for (auto *M : OID->methods())
3138         EmitTopLevelDecl(M);
3139     }
3140     EmitTopLevelDecl(I);
3141   }
3142 }
3143 
3144 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3145 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3146   // Ignore dependent declarations.
3147   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3148     return;
3149 
3150   switch (D->getKind()) {
3151   case Decl::CXXConversion:
3152   case Decl::CXXMethod:
3153   case Decl::Function:
3154     // Skip function templates
3155     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3156         cast<FunctionDecl>(D)->isLateTemplateParsed())
3157       return;
3158 
3159     EmitGlobal(cast<FunctionDecl>(D));
3160     // Always provide some coverage mapping
3161     // even for the functions that aren't emitted.
3162     AddDeferredUnusedCoverageMapping(D);
3163     break;
3164 
3165   case Decl::Var:
3166     // Skip variable templates
3167     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3168       return;
3169   case Decl::VarTemplateSpecialization:
3170     EmitGlobal(cast<VarDecl>(D));
3171     break;
3172 
3173   // Indirect fields from global anonymous structs and unions can be
3174   // ignored; only the actual variable requires IR gen support.
3175   case Decl::IndirectField:
3176     break;
3177 
3178   // C++ Decls
3179   case Decl::Namespace:
3180     EmitNamespace(cast<NamespaceDecl>(D));
3181     break;
3182     // No code generation needed.
3183   case Decl::UsingShadow:
3184   case Decl::ClassTemplate:
3185   case Decl::VarTemplate:
3186   case Decl::VarTemplatePartialSpecialization:
3187   case Decl::FunctionTemplate:
3188   case Decl::TypeAliasTemplate:
3189   case Decl::Block:
3190   case Decl::Empty:
3191     break;
3192   case Decl::Using:          // using X; [C++]
3193     if (CGDebugInfo *DI = getModuleDebugInfo())
3194         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3195     return;
3196   case Decl::NamespaceAlias:
3197     if (CGDebugInfo *DI = getModuleDebugInfo())
3198         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3199     return;
3200   case Decl::UsingDirective: // using namespace X; [C++]
3201     if (CGDebugInfo *DI = getModuleDebugInfo())
3202       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3203     return;
3204   case Decl::CXXConstructor:
3205     // Skip function templates
3206     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3207         cast<FunctionDecl>(D)->isLateTemplateParsed())
3208       return;
3209 
3210     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3211     break;
3212   case Decl::CXXDestructor:
3213     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3214       return;
3215     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3216     break;
3217 
3218   case Decl::StaticAssert:
3219     // Nothing to do.
3220     break;
3221 
3222   // Objective-C Decls
3223 
3224   // Forward declarations, no (immediate) code generation.
3225   case Decl::ObjCInterface:
3226   case Decl::ObjCCategory:
3227     break;
3228 
3229   case Decl::ObjCProtocol: {
3230     auto *Proto = cast<ObjCProtocolDecl>(D);
3231     if (Proto->isThisDeclarationADefinition())
3232       ObjCRuntime->GenerateProtocol(Proto);
3233     break;
3234   }
3235 
3236   case Decl::ObjCCategoryImpl:
3237     // Categories have properties but don't support synthesize so we
3238     // can ignore them here.
3239     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3240     break;
3241 
3242   case Decl::ObjCImplementation: {
3243     auto *OMD = cast<ObjCImplementationDecl>(D);
3244     EmitObjCPropertyImplementations(OMD);
3245     EmitObjCIvarInitializations(OMD);
3246     ObjCRuntime->GenerateClass(OMD);
3247     // Emit global variable debug information.
3248     if (CGDebugInfo *DI = getModuleDebugInfo())
3249       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3250         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3251             OMD->getClassInterface()), OMD->getLocation());
3252     break;
3253   }
3254   case Decl::ObjCMethod: {
3255     auto *OMD = cast<ObjCMethodDecl>(D);
3256     // If this is not a prototype, emit the body.
3257     if (OMD->getBody())
3258       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3259     break;
3260   }
3261   case Decl::ObjCCompatibleAlias:
3262     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3263     break;
3264 
3265   case Decl::LinkageSpec:
3266     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3267     break;
3268 
3269   case Decl::FileScopeAsm: {
3270     auto *AD = cast<FileScopeAsmDecl>(D);
3271     StringRef AsmString = AD->getAsmString()->getString();
3272 
3273     const std::string &S = getModule().getModuleInlineAsm();
3274     if (S.empty())
3275       getModule().setModuleInlineAsm(AsmString);
3276     else if (S.end()[-1] == '\n')
3277       getModule().setModuleInlineAsm(S + AsmString.str());
3278     else
3279       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3280     break;
3281   }
3282 
3283   case Decl::Import: {
3284     auto *Import = cast<ImportDecl>(D);
3285 
3286     // Ignore import declarations that come from imported modules.
3287     if (clang::Module *Owner = Import->getOwningModule()) {
3288       if (getLangOpts().CurrentModule.empty() ||
3289           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3290         break;
3291     }
3292 
3293     ImportedModules.insert(Import->getImportedModule());
3294     break;
3295   }
3296 
3297   case Decl::OMPThreadPrivate:
3298     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3299     break;
3300 
3301   case Decl::ClassTemplateSpecialization: {
3302     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3303     if (DebugInfo &&
3304         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3305         Spec->hasDefinition())
3306       DebugInfo->completeTemplateDefinition(*Spec);
3307     break;
3308   }
3309 
3310   default:
3311     // Make sure we handled everything we should, every other kind is a
3312     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3313     // function. Need to recode Decl::Kind to do that easily.
3314     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3315     break;
3316   }
3317 }
3318 
3319 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3320   // Do we need to generate coverage mapping?
3321   if (!CodeGenOpts.CoverageMapping)
3322     return;
3323   switch (D->getKind()) {
3324   case Decl::CXXConversion:
3325   case Decl::CXXMethod:
3326   case Decl::Function:
3327   case Decl::ObjCMethod:
3328   case Decl::CXXConstructor:
3329   case Decl::CXXDestructor: {
3330     if (!cast<FunctionDecl>(D)->hasBody())
3331       return;
3332     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3333     if (I == DeferredEmptyCoverageMappingDecls.end())
3334       DeferredEmptyCoverageMappingDecls[D] = true;
3335     break;
3336   }
3337   default:
3338     break;
3339   };
3340 }
3341 
3342 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3343   // Do we need to generate coverage mapping?
3344   if (!CodeGenOpts.CoverageMapping)
3345     return;
3346   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3347     if (Fn->isTemplateInstantiation())
3348       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3349   }
3350   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3351   if (I == DeferredEmptyCoverageMappingDecls.end())
3352     DeferredEmptyCoverageMappingDecls[D] = false;
3353   else
3354     I->second = false;
3355 }
3356 
3357 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3358   std::vector<const Decl *> DeferredDecls;
3359   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3360     if (!I.second)
3361       continue;
3362     DeferredDecls.push_back(I.first);
3363   }
3364   // Sort the declarations by their location to make sure that the tests get a
3365   // predictable order for the coverage mapping for the unused declarations.
3366   if (CodeGenOpts.DumpCoverageMapping)
3367     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3368               [] (const Decl *LHS, const Decl *RHS) {
3369       return LHS->getLocStart() < RHS->getLocStart();
3370     });
3371   for (const auto *D : DeferredDecls) {
3372     switch (D->getKind()) {
3373     case Decl::CXXConversion:
3374     case Decl::CXXMethod:
3375     case Decl::Function:
3376     case Decl::ObjCMethod: {
3377       CodeGenPGO PGO(*this);
3378       GlobalDecl GD(cast<FunctionDecl>(D));
3379       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3380                                   getFunctionLinkage(GD));
3381       break;
3382     }
3383     case Decl::CXXConstructor: {
3384       CodeGenPGO PGO(*this);
3385       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3386       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3387                                   getFunctionLinkage(GD));
3388       break;
3389     }
3390     case Decl::CXXDestructor: {
3391       CodeGenPGO PGO(*this);
3392       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3393       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3394                                   getFunctionLinkage(GD));
3395       break;
3396     }
3397     default:
3398       break;
3399     };
3400   }
3401 }
3402 
3403 /// Turns the given pointer into a constant.
3404 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3405                                           const void *Ptr) {
3406   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3407   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3408   return llvm::ConstantInt::get(i64, PtrInt);
3409 }
3410 
3411 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3412                                    llvm::NamedMDNode *&GlobalMetadata,
3413                                    GlobalDecl D,
3414                                    llvm::GlobalValue *Addr) {
3415   if (!GlobalMetadata)
3416     GlobalMetadata =
3417       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3418 
3419   // TODO: should we report variant information for ctors/dtors?
3420   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3421                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3422                                CGM.getLLVMContext(), D.getDecl()))};
3423   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3424 }
3425 
3426 /// For each function which is declared within an extern "C" region and marked
3427 /// as 'used', but has internal linkage, create an alias from the unmangled
3428 /// name to the mangled name if possible. People expect to be able to refer
3429 /// to such functions with an unmangled name from inline assembly within the
3430 /// same translation unit.
3431 void CodeGenModule::EmitStaticExternCAliases() {
3432   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3433                                   E = StaticExternCValues.end();
3434        I != E; ++I) {
3435     IdentifierInfo *Name = I->first;
3436     llvm::GlobalValue *Val = I->second;
3437     if (Val && !getModule().getNamedValue(Name->getName()))
3438       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3439   }
3440 }
3441 
3442 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3443                                              GlobalDecl &Result) const {
3444   auto Res = Manglings.find(MangledName);
3445   if (Res == Manglings.end())
3446     return false;
3447   Result = Res->getValue();
3448   return true;
3449 }
3450 
3451 /// Emits metadata nodes associating all the global values in the
3452 /// current module with the Decls they came from.  This is useful for
3453 /// projects using IR gen as a subroutine.
3454 ///
3455 /// Since there's currently no way to associate an MDNode directly
3456 /// with an llvm::GlobalValue, we create a global named metadata
3457 /// with the name 'clang.global.decl.ptrs'.
3458 void CodeGenModule::EmitDeclMetadata() {
3459   llvm::NamedMDNode *GlobalMetadata = nullptr;
3460 
3461   // StaticLocalDeclMap
3462   for (auto &I : MangledDeclNames) {
3463     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3464     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3465   }
3466 }
3467 
3468 /// Emits metadata nodes for all the local variables in the current
3469 /// function.
3470 void CodeGenFunction::EmitDeclMetadata() {
3471   if (LocalDeclMap.empty()) return;
3472 
3473   llvm::LLVMContext &Context = getLLVMContext();
3474 
3475   // Find the unique metadata ID for this name.
3476   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3477 
3478   llvm::NamedMDNode *GlobalMetadata = nullptr;
3479 
3480   for (auto &I : LocalDeclMap) {
3481     const Decl *D = I.first;
3482     llvm::Value *Addr = I.second;
3483     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3484       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3485       Alloca->setMetadata(
3486           DeclPtrKind, llvm::MDNode::get(
3487                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3488     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3489       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3490       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3491     }
3492   }
3493 }
3494 
3495 void CodeGenModule::EmitVersionIdentMetadata() {
3496   llvm::NamedMDNode *IdentMetadata =
3497     TheModule.getOrInsertNamedMetadata("llvm.ident");
3498   std::string Version = getClangFullVersion();
3499   llvm::LLVMContext &Ctx = TheModule.getContext();
3500 
3501   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3502   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3503 }
3504 
3505 void CodeGenModule::EmitTargetMetadata() {
3506   // Warning, new MangledDeclNames may be appended within this loop.
3507   // We rely on MapVector insertions adding new elements to the end
3508   // of the container.
3509   // FIXME: Move this loop into the one target that needs it, and only
3510   // loop over those declarations for which we couldn't emit the target
3511   // metadata when we emitted the declaration.
3512   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3513     auto Val = *(MangledDeclNames.begin() + I);
3514     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3515     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3516     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3517   }
3518 }
3519 
3520 void CodeGenModule::EmitCoverageFile() {
3521   if (!getCodeGenOpts().CoverageFile.empty()) {
3522     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3523       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3524       llvm::LLVMContext &Ctx = TheModule.getContext();
3525       llvm::MDString *CoverageFile =
3526           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3527       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3528         llvm::MDNode *CU = CUNode->getOperand(i);
3529         llvm::Metadata *Elts[] = {CoverageFile, CU};
3530         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3531       }
3532     }
3533   }
3534 }
3535 
3536 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3537   // Sema has checked that all uuid strings are of the form
3538   // "12345678-1234-1234-1234-1234567890ab".
3539   assert(Uuid.size() == 36);
3540   for (unsigned i = 0; i < 36; ++i) {
3541     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3542     else                                         assert(isHexDigit(Uuid[i]));
3543   }
3544 
3545   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3546   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3547 
3548   llvm::Constant *Field3[8];
3549   for (unsigned Idx = 0; Idx < 8; ++Idx)
3550     Field3[Idx] = llvm::ConstantInt::get(
3551         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3552 
3553   llvm::Constant *Fields[4] = {
3554     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3555     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3556     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3557     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3558   };
3559 
3560   return llvm::ConstantStruct::getAnon(Fields);
3561 }
3562 
3563 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3564                                                        bool ForEH) {
3565   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3566   // FIXME: should we even be calling this method if RTTI is disabled
3567   // and it's not for EH?
3568   if (!ForEH && !getLangOpts().RTTI)
3569     return llvm::Constant::getNullValue(Int8PtrTy);
3570 
3571   if (ForEH && Ty->isObjCObjectPointerType() &&
3572       LangOpts.ObjCRuntime.isGNUFamily())
3573     return ObjCRuntime->GetEHType(Ty);
3574 
3575   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3576 }
3577 
3578 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3579   for (auto RefExpr : D->varlists()) {
3580     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3581     bool PerformInit =
3582         VD->getAnyInitializer() &&
3583         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3584                                                         /*ForRef=*/false);
3585     if (auto InitFunction =
3586             getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition(
3587                 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(),
3588                 PerformInit))
3589       CXXGlobalInits.push_back(InitFunction);
3590   }
3591 }
3592 
3593