1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/APSInt.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 91 Types(*this), VTables(*this), ObjCRuntime(nullptr), 92 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 93 DebugInfo(nullptr), ObjCData(nullptr), 94 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 95 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 96 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 97 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 98 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 99 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 100 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)), 101 WholeProgramVTablesBlacklist(CGO.WholeProgramVTablesBlacklistFiles, 102 C.getSourceManager()) { 103 104 // Initialize the type cache. 105 llvm::LLVMContext &LLVMContext = M.getContext(); 106 VoidTy = llvm::Type::getVoidTy(LLVMContext); 107 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 108 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 109 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 110 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 111 FloatTy = llvm::Type::getFloatTy(LLVMContext); 112 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 113 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 114 PointerAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 120 Int8PtrTy = Int8Ty->getPointerTo(0); 121 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 122 123 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 124 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 125 126 if (LangOpts.ObjC1) 127 createObjCRuntime(); 128 if (LangOpts.OpenCL) 129 createOpenCLRuntime(); 130 if (LangOpts.OpenMP) 131 createOpenMPRuntime(); 132 if (LangOpts.CUDA) 133 createCUDARuntime(); 134 135 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 136 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 137 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 138 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 139 getCXXABI().getMangleContext()); 140 141 // If debug info or coverage generation is enabled, create the CGDebugInfo 142 // object. 143 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 144 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 145 DebugInfo = new CGDebugInfo(*this); 146 147 Block.GlobalUniqueCount = 0; 148 149 if (C.getLangOpts().ObjC1) 150 ObjCData = new ObjCEntrypoints(); 151 152 if (!CodeGenOpts.InstrProfileInput.empty()) { 153 auto ReaderOrErr = 154 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 155 if (std::error_code EC = ReaderOrErr.getError()) { 156 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 157 "Could not read profile %0: %1"); 158 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 159 << EC.message(); 160 } else 161 PGOReader = std::move(ReaderOrErr.get()); 162 } 163 164 // If coverage mapping generation is enabled, create the 165 // CoverageMappingModuleGen object. 166 if (CodeGenOpts.CoverageMapping) 167 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 168 } 169 170 CodeGenModule::~CodeGenModule() { 171 delete ObjCRuntime; 172 delete OpenCLRuntime; 173 delete OpenMPRuntime; 174 delete CUDARuntime; 175 delete TheTargetCodeGenInfo; 176 delete TBAA; 177 delete DebugInfo; 178 delete ObjCData; 179 } 180 181 void CodeGenModule::createObjCRuntime() { 182 // This is just isGNUFamily(), but we want to force implementors of 183 // new ABIs to decide how best to do this. 184 switch (LangOpts.ObjCRuntime.getKind()) { 185 case ObjCRuntime::GNUstep: 186 case ObjCRuntime::GCC: 187 case ObjCRuntime::ObjFW: 188 ObjCRuntime = CreateGNUObjCRuntime(*this); 189 return; 190 191 case ObjCRuntime::FragileMacOSX: 192 case ObjCRuntime::MacOSX: 193 case ObjCRuntime::iOS: 194 case ObjCRuntime::WatchOS: 195 ObjCRuntime = CreateMacObjCRuntime(*this); 196 return; 197 } 198 llvm_unreachable("bad runtime kind"); 199 } 200 201 void CodeGenModule::createOpenCLRuntime() { 202 OpenCLRuntime = new CGOpenCLRuntime(*this); 203 } 204 205 void CodeGenModule::createOpenMPRuntime() { 206 // Select a specialized code generation class based on the target, if any. 207 // If it does not exist use the default implementation. 208 switch (getTarget().getTriple().getArch()) { 209 210 case llvm::Triple::nvptx: 211 case llvm::Triple::nvptx64: 212 assert(getLangOpts().OpenMPIsDevice && 213 "OpenMP NVPTX is only prepared to deal with device code."); 214 OpenMPRuntime = new CGOpenMPRuntimeNVPTX(*this); 215 break; 216 default: 217 OpenMPRuntime = new CGOpenMPRuntime(*this); 218 break; 219 } 220 } 221 222 void CodeGenModule::createCUDARuntime() { 223 CUDARuntime = CreateNVCUDARuntime(*this); 224 } 225 226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 227 Replacements[Name] = C; 228 } 229 230 void CodeGenModule::applyReplacements() { 231 for (auto &I : Replacements) { 232 StringRef MangledName = I.first(); 233 llvm::Constant *Replacement = I.second; 234 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 235 if (!Entry) 236 continue; 237 auto *OldF = cast<llvm::Function>(Entry); 238 auto *NewF = dyn_cast<llvm::Function>(Replacement); 239 if (!NewF) { 240 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 241 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 242 } else { 243 auto *CE = cast<llvm::ConstantExpr>(Replacement); 244 assert(CE->getOpcode() == llvm::Instruction::BitCast || 245 CE->getOpcode() == llvm::Instruction::GetElementPtr); 246 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 247 } 248 } 249 250 // Replace old with new, but keep the old order. 251 OldF->replaceAllUsesWith(Replacement); 252 if (NewF) { 253 NewF->removeFromParent(); 254 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 255 NewF); 256 } 257 OldF->eraseFromParent(); 258 } 259 } 260 261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 262 GlobalValReplacements.push_back(std::make_pair(GV, C)); 263 } 264 265 void CodeGenModule::applyGlobalValReplacements() { 266 for (auto &I : GlobalValReplacements) { 267 llvm::GlobalValue *GV = I.first; 268 llvm::Constant *C = I.second; 269 270 GV->replaceAllUsesWith(C); 271 GV->eraseFromParent(); 272 } 273 } 274 275 // This is only used in aliases that we created and we know they have a 276 // linear structure. 277 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 278 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 279 const llvm::Constant *C = &GA; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 286 if (!GA2) 287 return nullptr; 288 if (!Visited.insert(GA2).second) 289 return nullptr; 290 C = GA2->getAliasee(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 const AliasAttr *AA = D->getAttr<AliasAttr>(); 303 StringRef MangledName = getMangledName(GD); 304 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 305 auto *Alias = cast<llvm::GlobalAlias>(Entry); 306 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 307 if (!GV) { 308 Error = true; 309 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 310 } else if (GV->isDeclaration()) { 311 Error = true; 312 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 313 } 314 315 llvm::Constant *Aliasee = Alias->getAliasee(); 316 llvm::GlobalValue *AliaseeGV; 317 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 318 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 319 else 320 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 321 322 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 323 StringRef AliasSection = SA->getName(); 324 if (AliasSection != AliaseeGV->getSection()) 325 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 326 << AliasSection; 327 } 328 329 // We have to handle alias to weak aliases in here. LLVM itself disallows 330 // this since the object semantics would not match the IL one. For 331 // compatibility with gcc we implement it by just pointing the alias 332 // to its aliasee's aliasee. We also warn, since the user is probably 333 // expecting the link to be weak. 334 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 335 if (GA->mayBeOverridden()) { 336 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 337 << GV->getName() << GA->getName(); 338 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 339 GA->getAliasee(), Alias->getType()); 340 Alias->setAliasee(Aliasee); 341 } 342 } 343 } 344 if (!Error) 345 return; 346 347 for (const GlobalDecl &GD : Aliases) { 348 StringRef MangledName = getMangledName(GD); 349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 350 auto *Alias = cast<llvm::GlobalAlias>(Entry); 351 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 352 Alias->eraseFromParent(); 353 } 354 } 355 356 void CodeGenModule::clear() { 357 DeferredDeclsToEmit.clear(); 358 if (OpenMPRuntime) 359 OpenMPRuntime->clear(); 360 } 361 362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 363 StringRef MainFile) { 364 if (!hasDiagnostics()) 365 return; 366 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 367 if (MainFile.empty()) 368 MainFile = "<stdin>"; 369 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 370 } else 371 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 372 << Mismatched; 373 } 374 375 void CodeGenModule::Release() { 376 EmitDeferred(); 377 applyGlobalValReplacements(); 378 applyReplacements(); 379 checkAliases(); 380 EmitCXXGlobalInitFunc(); 381 EmitCXXGlobalDtorFunc(); 382 EmitCXXThreadLocalInitFunc(); 383 if (ObjCRuntime) 384 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 385 AddGlobalCtor(ObjCInitFunction); 386 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 387 CUDARuntime) { 388 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 389 AddGlobalCtor(CudaCtorFunction); 390 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 391 AddGlobalDtor(CudaDtorFunction); 392 } 393 if (OpenMPRuntime) 394 if (llvm::Function *OpenMPRegistrationFunction = 395 OpenMPRuntime->emitRegistrationFunction()) 396 AddGlobalCtor(OpenMPRegistrationFunction, 0); 397 if (PGOReader) { 398 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 399 if (PGOStats.hasDiagnostics()) 400 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 401 } 402 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 403 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 404 EmitGlobalAnnotations(); 405 EmitStaticExternCAliases(); 406 EmitDeferredUnusedCoverageMappings(); 407 if (CoverageMapping) 408 CoverageMapping->emit(); 409 if (CodeGenOpts.SanitizeCfiCrossDso) 410 CodeGenFunction(*this).EmitCfiCheckFail(); 411 emitLLVMUsed(); 412 if (SanStats) 413 SanStats->finish(); 414 415 if (CodeGenOpts.Autolink && 416 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 417 EmitModuleLinkOptions(); 418 } 419 if (CodeGenOpts.DwarfVersion) { 420 // We actually want the latest version when there are conflicts. 421 // We can change from Warning to Latest if such mode is supported. 422 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 423 CodeGenOpts.DwarfVersion); 424 } 425 if (CodeGenOpts.EmitCodeView) { 426 // Indicate that we want CodeView in the metadata. 427 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 428 } 429 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 430 // We don't support LTO with 2 with different StrictVTablePointers 431 // FIXME: we could support it by stripping all the information introduced 432 // by StrictVTablePointers. 433 434 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 435 436 llvm::Metadata *Ops[2] = { 437 llvm::MDString::get(VMContext, "StrictVTablePointers"), 438 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 439 llvm::Type::getInt32Ty(VMContext), 1))}; 440 441 getModule().addModuleFlag(llvm::Module::Require, 442 "StrictVTablePointersRequirement", 443 llvm::MDNode::get(VMContext, Ops)); 444 } 445 if (DebugInfo) 446 // We support a single version in the linked module. The LLVM 447 // parser will drop debug info with a different version number 448 // (and warn about it, too). 449 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 450 llvm::DEBUG_METADATA_VERSION); 451 452 // We need to record the widths of enums and wchar_t, so that we can generate 453 // the correct build attributes in the ARM backend. 454 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 455 if ( Arch == llvm::Triple::arm 456 || Arch == llvm::Triple::armeb 457 || Arch == llvm::Triple::thumb 458 || Arch == llvm::Triple::thumbeb) { 459 // Width of wchar_t in bytes 460 uint64_t WCharWidth = 461 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 462 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 463 464 // The minimum width of an enum in bytes 465 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 466 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 467 } 468 469 if (CodeGenOpts.SanitizeCfiCrossDso) { 470 // Indicate that we want cross-DSO control flow integrity checks. 471 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 472 } 473 474 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 475 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 476 switch (PLevel) { 477 case 0: break; 478 case 1: PL = llvm::PICLevel::Small; break; 479 case 2: PL = llvm::PICLevel::Large; break; 480 default: llvm_unreachable("Invalid PIC Level"); 481 } 482 483 getModule().setPICLevel(PL); 484 } 485 486 SimplifyPersonality(); 487 488 if (getCodeGenOpts().EmitDeclMetadata) 489 EmitDeclMetadata(); 490 491 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 492 EmitCoverageFile(); 493 494 if (DebugInfo) 495 DebugInfo->finalize(); 496 497 EmitVersionIdentMetadata(); 498 499 EmitTargetMetadata(); 500 } 501 502 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 503 // Make sure that this type is translated. 504 Types.UpdateCompletedType(TD); 505 } 506 507 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 508 // Make sure that this type is translated. 509 Types.RefreshTypeCacheForClass(RD); 510 } 511 512 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 513 if (!TBAA) 514 return nullptr; 515 return TBAA->getTBAAInfo(QTy); 516 } 517 518 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 519 if (!TBAA) 520 return nullptr; 521 return TBAA->getTBAAInfoForVTablePtr(); 522 } 523 524 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 525 if (!TBAA) 526 return nullptr; 527 return TBAA->getTBAAStructInfo(QTy); 528 } 529 530 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 531 llvm::MDNode *AccessN, 532 uint64_t O) { 533 if (!TBAA) 534 return nullptr; 535 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 536 } 537 538 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 539 /// and struct-path aware TBAA, the tag has the same format: 540 /// base type, access type and offset. 541 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 542 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 543 llvm::MDNode *TBAAInfo, 544 bool ConvertTypeToTag) { 545 if (ConvertTypeToTag && TBAA) 546 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 547 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 548 else 549 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 550 } 551 552 void CodeGenModule::DecorateInstructionWithInvariantGroup( 553 llvm::Instruction *I, const CXXRecordDecl *RD) { 554 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 555 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 556 // Check if we have to wrap MDString in MDNode. 557 if (!MetaDataNode) 558 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 559 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 560 } 561 562 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 563 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 564 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 565 } 566 567 /// ErrorUnsupported - Print out an error that codegen doesn't support the 568 /// specified stmt yet. 569 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 570 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 571 "cannot compile this %0 yet"); 572 std::string Msg = Type; 573 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 574 << Msg << S->getSourceRange(); 575 } 576 577 /// ErrorUnsupported - Print out an error that codegen doesn't support the 578 /// specified decl yet. 579 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 580 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 581 "cannot compile this %0 yet"); 582 std::string Msg = Type; 583 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 584 } 585 586 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 587 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 588 } 589 590 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 591 const NamedDecl *D) const { 592 // Internal definitions always have default visibility. 593 if (GV->hasLocalLinkage()) { 594 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 595 return; 596 } 597 598 // Set visibility for definitions. 599 LinkageInfo LV = D->getLinkageAndVisibility(); 600 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 601 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 602 } 603 604 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 605 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 606 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 607 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 608 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 609 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 610 } 611 612 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 613 CodeGenOptions::TLSModel M) { 614 switch (M) { 615 case CodeGenOptions::GeneralDynamicTLSModel: 616 return llvm::GlobalVariable::GeneralDynamicTLSModel; 617 case CodeGenOptions::LocalDynamicTLSModel: 618 return llvm::GlobalVariable::LocalDynamicTLSModel; 619 case CodeGenOptions::InitialExecTLSModel: 620 return llvm::GlobalVariable::InitialExecTLSModel; 621 case CodeGenOptions::LocalExecTLSModel: 622 return llvm::GlobalVariable::LocalExecTLSModel; 623 } 624 llvm_unreachable("Invalid TLS model!"); 625 } 626 627 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 628 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 629 630 llvm::GlobalValue::ThreadLocalMode TLM; 631 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 632 633 // Override the TLS model if it is explicitly specified. 634 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 635 TLM = GetLLVMTLSModel(Attr->getModel()); 636 } 637 638 GV->setThreadLocalMode(TLM); 639 } 640 641 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 642 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 643 644 // Some ABIs don't have constructor variants. Make sure that base and 645 // complete constructors get mangled the same. 646 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 647 if (!getTarget().getCXXABI().hasConstructorVariants()) { 648 CXXCtorType OrigCtorType = GD.getCtorType(); 649 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 650 if (OrigCtorType == Ctor_Base) 651 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 652 } 653 } 654 655 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 656 if (!FoundStr.empty()) 657 return FoundStr; 658 659 const auto *ND = cast<NamedDecl>(GD.getDecl()); 660 SmallString<256> Buffer; 661 StringRef Str; 662 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 663 llvm::raw_svector_ostream Out(Buffer); 664 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 665 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 666 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 667 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 668 else 669 getCXXABI().getMangleContext().mangleName(ND, Out); 670 Str = Out.str(); 671 } else { 672 IdentifierInfo *II = ND->getIdentifier(); 673 assert(II && "Attempt to mangle unnamed decl."); 674 Str = II->getName(); 675 } 676 677 // Keep the first result in the case of a mangling collision. 678 auto Result = Manglings.insert(std::make_pair(Str, GD)); 679 return FoundStr = Result.first->first(); 680 } 681 682 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 683 const BlockDecl *BD) { 684 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 685 const Decl *D = GD.getDecl(); 686 687 SmallString<256> Buffer; 688 llvm::raw_svector_ostream Out(Buffer); 689 if (!D) 690 MangleCtx.mangleGlobalBlock(BD, 691 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 692 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 693 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 694 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 695 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 696 else 697 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 698 699 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 700 return Result.first->first(); 701 } 702 703 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 704 return getModule().getNamedValue(Name); 705 } 706 707 /// AddGlobalCtor - Add a function to the list that will be called before 708 /// main() runs. 709 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 710 llvm::Constant *AssociatedData) { 711 // FIXME: Type coercion of void()* types. 712 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 713 } 714 715 /// AddGlobalDtor - Add a function to the list that will be called 716 /// when the module is unloaded. 717 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 718 // FIXME: Type coercion of void()* types. 719 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 720 } 721 722 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 723 // Ctor function type is void()*. 724 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 725 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 726 727 // Get the type of a ctor entry, { i32, void ()*, i8* }. 728 llvm::StructType *CtorStructTy = llvm::StructType::get( 729 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 730 731 // Construct the constructor and destructor arrays. 732 SmallVector<llvm::Constant *, 8> Ctors; 733 for (const auto &I : Fns) { 734 llvm::Constant *S[] = { 735 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 736 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 737 (I.AssociatedData 738 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 739 : llvm::Constant::getNullValue(VoidPtrTy))}; 740 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 741 } 742 743 if (!Ctors.empty()) { 744 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 745 new llvm::GlobalVariable(TheModule, AT, false, 746 llvm::GlobalValue::AppendingLinkage, 747 llvm::ConstantArray::get(AT, Ctors), 748 GlobalName); 749 } 750 } 751 752 llvm::GlobalValue::LinkageTypes 753 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 754 const auto *D = cast<FunctionDecl>(GD.getDecl()); 755 756 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 757 758 if (isa<CXXDestructorDecl>(D) && 759 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 760 GD.getDtorType())) { 761 // Destructor variants in the Microsoft C++ ABI are always internal or 762 // linkonce_odr thunks emitted on an as-needed basis. 763 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 764 : llvm::GlobalValue::LinkOnceODRLinkage; 765 } 766 767 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 768 } 769 770 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 771 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 772 773 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 774 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 775 // Don't dllexport/import destructor thunks. 776 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 777 return; 778 } 779 } 780 781 if (FD->hasAttr<DLLImportAttr>()) 782 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 783 else if (FD->hasAttr<DLLExportAttr>()) 784 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 785 else 786 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 787 } 788 789 llvm::ConstantInt * 790 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 791 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 792 if (!MDS) return nullptr; 793 794 llvm::MD5 md5; 795 llvm::MD5::MD5Result result; 796 md5.update(MDS->getString()); 797 md5.final(result); 798 uint64_t id = 0; 799 for (int i = 0; i < 8; ++i) 800 id |= static_cast<uint64_t>(result[i]) << (i * 8); 801 return llvm::ConstantInt::get(Int64Ty, id); 802 } 803 804 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 805 llvm::Function *F) { 806 setNonAliasAttributes(D, F); 807 } 808 809 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 810 const CGFunctionInfo &Info, 811 llvm::Function *F) { 812 unsigned CallingConv; 813 AttributeListType AttributeList; 814 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 815 false); 816 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 817 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 818 } 819 820 /// Determines whether the language options require us to model 821 /// unwind exceptions. We treat -fexceptions as mandating this 822 /// except under the fragile ObjC ABI with only ObjC exceptions 823 /// enabled. This means, for example, that C with -fexceptions 824 /// enables this. 825 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 826 // If exceptions are completely disabled, obviously this is false. 827 if (!LangOpts.Exceptions) return false; 828 829 // If C++ exceptions are enabled, this is true. 830 if (LangOpts.CXXExceptions) return true; 831 832 // If ObjC exceptions are enabled, this depends on the ABI. 833 if (LangOpts.ObjCExceptions) { 834 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 835 } 836 837 return true; 838 } 839 840 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 841 llvm::Function *F) { 842 llvm::AttrBuilder B; 843 844 if (CodeGenOpts.UnwindTables) 845 B.addAttribute(llvm::Attribute::UWTable); 846 847 if (!hasUnwindExceptions(LangOpts)) 848 B.addAttribute(llvm::Attribute::NoUnwind); 849 850 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 851 B.addAttribute(llvm::Attribute::StackProtect); 852 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 853 B.addAttribute(llvm::Attribute::StackProtectStrong); 854 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 855 B.addAttribute(llvm::Attribute::StackProtectReq); 856 857 if (!D) { 858 F->addAttributes(llvm::AttributeSet::FunctionIndex, 859 llvm::AttributeSet::get( 860 F->getContext(), 861 llvm::AttributeSet::FunctionIndex, B)); 862 return; 863 } 864 865 if (D->hasAttr<NakedAttr>()) { 866 // Naked implies noinline: we should not be inlining such functions. 867 B.addAttribute(llvm::Attribute::Naked); 868 B.addAttribute(llvm::Attribute::NoInline); 869 } else if (D->hasAttr<NoDuplicateAttr>()) { 870 B.addAttribute(llvm::Attribute::NoDuplicate); 871 } else if (D->hasAttr<NoInlineAttr>()) { 872 B.addAttribute(llvm::Attribute::NoInline); 873 } else if (D->hasAttr<AlwaysInlineAttr>() && 874 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 875 llvm::Attribute::NoInline)) { 876 // (noinline wins over always_inline, and we can't specify both in IR) 877 B.addAttribute(llvm::Attribute::AlwaysInline); 878 } 879 880 if (D->hasAttr<ColdAttr>()) { 881 if (!D->hasAttr<OptimizeNoneAttr>()) 882 B.addAttribute(llvm::Attribute::OptimizeForSize); 883 B.addAttribute(llvm::Attribute::Cold); 884 } 885 886 if (D->hasAttr<MinSizeAttr>()) 887 B.addAttribute(llvm::Attribute::MinSize); 888 889 F->addAttributes(llvm::AttributeSet::FunctionIndex, 890 llvm::AttributeSet::get( 891 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 892 893 if (D->hasAttr<OptimizeNoneAttr>()) { 894 // OptimizeNone implies noinline; we should not be inlining such functions. 895 F->addFnAttr(llvm::Attribute::OptimizeNone); 896 F->addFnAttr(llvm::Attribute::NoInline); 897 898 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 899 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 900 F->removeFnAttr(llvm::Attribute::MinSize); 901 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 902 "OptimizeNone and AlwaysInline on same function!"); 903 904 // Attribute 'inlinehint' has no effect on 'optnone' functions. 905 // Explicitly remove it from the set of function attributes. 906 F->removeFnAttr(llvm::Attribute::InlineHint); 907 } 908 909 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 910 F->setUnnamedAddr(true); 911 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 912 if (MD->isVirtual()) 913 F->setUnnamedAddr(true); 914 915 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 916 if (alignment) 917 F->setAlignment(alignment); 918 919 // Some C++ ABIs require 2-byte alignment for member functions, in order to 920 // reserve a bit for differentiating between virtual and non-virtual member 921 // functions. If the current target's C++ ABI requires this and this is a 922 // member function, set its alignment accordingly. 923 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 924 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 925 F->setAlignment(2); 926 } 927 } 928 929 void CodeGenModule::SetCommonAttributes(const Decl *D, 930 llvm::GlobalValue *GV) { 931 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 932 setGlobalVisibility(GV, ND); 933 else 934 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 935 936 if (D && D->hasAttr<UsedAttr>()) 937 addUsedGlobal(GV); 938 } 939 940 void CodeGenModule::setAliasAttributes(const Decl *D, 941 llvm::GlobalValue *GV) { 942 SetCommonAttributes(D, GV); 943 944 // Process the dllexport attribute based on whether the original definition 945 // (not necessarily the aliasee) was exported. 946 if (D->hasAttr<DLLExportAttr>()) 947 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 948 } 949 950 void CodeGenModule::setNonAliasAttributes(const Decl *D, 951 llvm::GlobalObject *GO) { 952 SetCommonAttributes(D, GO); 953 954 if (D) 955 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 956 GO->setSection(SA->getName()); 957 958 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 959 } 960 961 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 962 llvm::Function *F, 963 const CGFunctionInfo &FI) { 964 SetLLVMFunctionAttributes(D, FI, F); 965 SetLLVMFunctionAttributesForDefinition(D, F); 966 967 F->setLinkage(llvm::Function::InternalLinkage); 968 969 setNonAliasAttributes(D, F); 970 } 971 972 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 973 const NamedDecl *ND) { 974 // Set linkage and visibility in case we never see a definition. 975 LinkageInfo LV = ND->getLinkageAndVisibility(); 976 if (LV.getLinkage() != ExternalLinkage) { 977 // Don't set internal linkage on declarations. 978 } else { 979 if (ND->hasAttr<DLLImportAttr>()) { 980 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 981 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 982 } else if (ND->hasAttr<DLLExportAttr>()) { 983 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 984 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 985 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 986 // "extern_weak" is overloaded in LLVM; we probably should have 987 // separate linkage types for this. 988 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 989 } 990 991 // Set visibility on a declaration only if it's explicit. 992 if (LV.isVisibilityExplicit()) 993 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 994 } 995 } 996 997 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 998 llvm::Function *F) { 999 // Only if we are checking indirect calls. 1000 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1001 return; 1002 1003 // Non-static class methods are handled via vtable pointer checks elsewhere. 1004 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1005 return; 1006 1007 // Additionally, if building with cross-DSO support... 1008 if (CodeGenOpts.SanitizeCfiCrossDso) { 1009 // Don't emit entries for function declarations. In cross-DSO mode these are 1010 // handled with better precision at run time. 1011 if (!FD->hasBody()) 1012 return; 1013 // Skip available_externally functions. They won't be codegen'ed in the 1014 // current module anyway. 1015 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1016 return; 1017 } 1018 1019 llvm::NamedMDNode *BitsetsMD = 1020 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1021 1022 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1023 llvm::Metadata *BitsetOps[] = { 1024 MD, llvm::ConstantAsMetadata::get(F), 1025 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1026 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1027 1028 // Emit a hash-based bit set entry for cross-DSO calls. 1029 if (CodeGenOpts.SanitizeCfiCrossDso) { 1030 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 1031 llvm::Metadata *BitsetOps2[] = { 1032 llvm::ConstantAsMetadata::get(TypeId), 1033 llvm::ConstantAsMetadata::get(F), 1034 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1035 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 1036 } 1037 } 1038 } 1039 1040 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1041 bool IsIncompleteFunction, 1042 bool IsThunk) { 1043 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1044 // If this is an intrinsic function, set the function's attributes 1045 // to the intrinsic's attributes. 1046 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1047 return; 1048 } 1049 1050 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1051 1052 if (!IsIncompleteFunction) 1053 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1054 1055 // Add the Returned attribute for "this", except for iOS 5 and earlier 1056 // where substantial code, including the libstdc++ dylib, was compiled with 1057 // GCC and does not actually return "this". 1058 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1059 !(getTarget().getTriple().isiOS() && 1060 getTarget().getTriple().isOSVersionLT(6))) { 1061 assert(!F->arg_empty() && 1062 F->arg_begin()->getType() 1063 ->canLosslesslyBitCastTo(F->getReturnType()) && 1064 "unexpected this return"); 1065 F->addAttribute(1, llvm::Attribute::Returned); 1066 } 1067 1068 // Only a few attributes are set on declarations; these may later be 1069 // overridden by a definition. 1070 1071 setLinkageAndVisibilityForGV(F, FD); 1072 1073 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1074 F->setSection(SA->getName()); 1075 1076 // A replaceable global allocation function does not act like a builtin by 1077 // default, only if it is invoked by a new-expression or delete-expression. 1078 if (FD->isReplaceableGlobalAllocationFunction()) 1079 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1080 llvm::Attribute::NoBuiltin); 1081 1082 CreateFunctionBitSetEntry(FD, F); 1083 } 1084 1085 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1086 assert(!GV->isDeclaration() && 1087 "Only globals with definition can force usage."); 1088 LLVMUsed.emplace_back(GV); 1089 } 1090 1091 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1092 assert(!GV->isDeclaration() && 1093 "Only globals with definition can force usage."); 1094 LLVMCompilerUsed.emplace_back(GV); 1095 } 1096 1097 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1098 std::vector<llvm::WeakVH> &List) { 1099 // Don't create llvm.used if there is no need. 1100 if (List.empty()) 1101 return; 1102 1103 // Convert List to what ConstantArray needs. 1104 SmallVector<llvm::Constant*, 8> UsedArray; 1105 UsedArray.resize(List.size()); 1106 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1107 UsedArray[i] = 1108 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1109 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1110 } 1111 1112 if (UsedArray.empty()) 1113 return; 1114 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1115 1116 auto *GV = new llvm::GlobalVariable( 1117 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1118 llvm::ConstantArray::get(ATy, UsedArray), Name); 1119 1120 GV->setSection("llvm.metadata"); 1121 } 1122 1123 void CodeGenModule::emitLLVMUsed() { 1124 emitUsed(*this, "llvm.used", LLVMUsed); 1125 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1126 } 1127 1128 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1129 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1130 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1131 } 1132 1133 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1134 llvm::SmallString<32> Opt; 1135 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1136 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1137 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1138 } 1139 1140 void CodeGenModule::AddDependentLib(StringRef Lib) { 1141 llvm::SmallString<24> Opt; 1142 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1143 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1144 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1145 } 1146 1147 /// \brief Add link options implied by the given module, including modules 1148 /// it depends on, using a postorder walk. 1149 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1150 SmallVectorImpl<llvm::Metadata *> &Metadata, 1151 llvm::SmallPtrSet<Module *, 16> &Visited) { 1152 // Import this module's parent. 1153 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1154 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1155 } 1156 1157 // Import this module's dependencies. 1158 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1159 if (Visited.insert(Mod->Imports[I - 1]).second) 1160 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1161 } 1162 1163 // Add linker options to link against the libraries/frameworks 1164 // described by this module. 1165 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1166 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1167 // Link against a framework. Frameworks are currently Darwin only, so we 1168 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1169 if (Mod->LinkLibraries[I-1].IsFramework) { 1170 llvm::Metadata *Args[2] = { 1171 llvm::MDString::get(Context, "-framework"), 1172 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1173 1174 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1175 continue; 1176 } 1177 1178 // Link against a library. 1179 llvm::SmallString<24> Opt; 1180 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1181 Mod->LinkLibraries[I-1].Library, Opt); 1182 auto *OptString = llvm::MDString::get(Context, Opt); 1183 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1184 } 1185 } 1186 1187 void CodeGenModule::EmitModuleLinkOptions() { 1188 // Collect the set of all of the modules we want to visit to emit link 1189 // options, which is essentially the imported modules and all of their 1190 // non-explicit child modules. 1191 llvm::SetVector<clang::Module *> LinkModules; 1192 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1193 SmallVector<clang::Module *, 16> Stack; 1194 1195 // Seed the stack with imported modules. 1196 for (Module *M : ImportedModules) 1197 if (Visited.insert(M).second) 1198 Stack.push_back(M); 1199 1200 // Find all of the modules to import, making a little effort to prune 1201 // non-leaf modules. 1202 while (!Stack.empty()) { 1203 clang::Module *Mod = Stack.pop_back_val(); 1204 1205 bool AnyChildren = false; 1206 1207 // Visit the submodules of this module. 1208 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1209 SubEnd = Mod->submodule_end(); 1210 Sub != SubEnd; ++Sub) { 1211 // Skip explicit children; they need to be explicitly imported to be 1212 // linked against. 1213 if ((*Sub)->IsExplicit) 1214 continue; 1215 1216 if (Visited.insert(*Sub).second) { 1217 Stack.push_back(*Sub); 1218 AnyChildren = true; 1219 } 1220 } 1221 1222 // We didn't find any children, so add this module to the list of 1223 // modules to link against. 1224 if (!AnyChildren) { 1225 LinkModules.insert(Mod); 1226 } 1227 } 1228 1229 // Add link options for all of the imported modules in reverse topological 1230 // order. We don't do anything to try to order import link flags with respect 1231 // to linker options inserted by things like #pragma comment(). 1232 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1233 Visited.clear(); 1234 for (Module *M : LinkModules) 1235 if (Visited.insert(M).second) 1236 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1237 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1238 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1239 1240 // Add the linker options metadata flag. 1241 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1242 llvm::MDNode::get(getLLVMContext(), 1243 LinkerOptionsMetadata)); 1244 } 1245 1246 void CodeGenModule::EmitDeferred() { 1247 // Emit code for any potentially referenced deferred decls. Since a 1248 // previously unused static decl may become used during the generation of code 1249 // for a static function, iterate until no changes are made. 1250 1251 if (!DeferredVTables.empty()) { 1252 EmitDeferredVTables(); 1253 1254 // Emitting a vtable doesn't directly cause more vtables to 1255 // become deferred, although it can cause functions to be 1256 // emitted that then need those vtables. 1257 assert(DeferredVTables.empty()); 1258 } 1259 1260 // Stop if we're out of both deferred vtables and deferred declarations. 1261 if (DeferredDeclsToEmit.empty()) 1262 return; 1263 1264 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1265 // work, it will not interfere with this. 1266 std::vector<DeferredGlobal> CurDeclsToEmit; 1267 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1268 1269 for (DeferredGlobal &G : CurDeclsToEmit) { 1270 GlobalDecl D = G.GD; 1271 G.GV = nullptr; 1272 1273 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1274 // to get GlobalValue with exactly the type we need, not something that 1275 // might had been created for another decl with the same mangled name but 1276 // different type. 1277 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1278 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1279 1280 // In case of different address spaces, we may still get a cast, even with 1281 // IsForDefinition equal to true. Query mangled names table to get 1282 // GlobalValue. 1283 if (!GV) 1284 GV = GetGlobalValue(getMangledName(D)); 1285 1286 // Make sure GetGlobalValue returned non-null. 1287 assert(GV); 1288 1289 // Check to see if we've already emitted this. This is necessary 1290 // for a couple of reasons: first, decls can end up in the 1291 // deferred-decls queue multiple times, and second, decls can end 1292 // up with definitions in unusual ways (e.g. by an extern inline 1293 // function acquiring a strong function redefinition). Just 1294 // ignore these cases. 1295 if (!GV->isDeclaration()) 1296 continue; 1297 1298 // Otherwise, emit the definition and move on to the next one. 1299 EmitGlobalDefinition(D, GV); 1300 1301 // If we found out that we need to emit more decls, do that recursively. 1302 // This has the advantage that the decls are emitted in a DFS and related 1303 // ones are close together, which is convenient for testing. 1304 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1305 EmitDeferred(); 1306 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1307 } 1308 } 1309 } 1310 1311 void CodeGenModule::EmitGlobalAnnotations() { 1312 if (Annotations.empty()) 1313 return; 1314 1315 // Create a new global variable for the ConstantStruct in the Module. 1316 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1317 Annotations[0]->getType(), Annotations.size()), Annotations); 1318 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1319 llvm::GlobalValue::AppendingLinkage, 1320 Array, "llvm.global.annotations"); 1321 gv->setSection(AnnotationSection); 1322 } 1323 1324 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1325 llvm::Constant *&AStr = AnnotationStrings[Str]; 1326 if (AStr) 1327 return AStr; 1328 1329 // Not found yet, create a new global. 1330 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1331 auto *gv = 1332 new llvm::GlobalVariable(getModule(), s->getType(), true, 1333 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1334 gv->setSection(AnnotationSection); 1335 gv->setUnnamedAddr(true); 1336 AStr = gv; 1337 return gv; 1338 } 1339 1340 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1341 SourceManager &SM = getContext().getSourceManager(); 1342 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1343 if (PLoc.isValid()) 1344 return EmitAnnotationString(PLoc.getFilename()); 1345 return EmitAnnotationString(SM.getBufferName(Loc)); 1346 } 1347 1348 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1349 SourceManager &SM = getContext().getSourceManager(); 1350 PresumedLoc PLoc = SM.getPresumedLoc(L); 1351 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1352 SM.getExpansionLineNumber(L); 1353 return llvm::ConstantInt::get(Int32Ty, LineNo); 1354 } 1355 1356 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1357 const AnnotateAttr *AA, 1358 SourceLocation L) { 1359 // Get the globals for file name, annotation, and the line number. 1360 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1361 *UnitGV = EmitAnnotationUnit(L), 1362 *LineNoCst = EmitAnnotationLineNo(L); 1363 1364 // Create the ConstantStruct for the global annotation. 1365 llvm::Constant *Fields[4] = { 1366 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1367 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1368 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1369 LineNoCst 1370 }; 1371 return llvm::ConstantStruct::getAnon(Fields); 1372 } 1373 1374 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1375 llvm::GlobalValue *GV) { 1376 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1377 // Get the struct elements for these annotations. 1378 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1379 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1380 } 1381 1382 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1383 SourceLocation Loc) const { 1384 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1385 // Blacklist by function name. 1386 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1387 return true; 1388 // Blacklist by location. 1389 if (Loc.isValid()) 1390 return SanitizerBL.isBlacklistedLocation(Loc); 1391 // If location is unknown, this may be a compiler-generated function. Assume 1392 // it's located in the main file. 1393 auto &SM = Context.getSourceManager(); 1394 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1395 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1396 } 1397 return false; 1398 } 1399 1400 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1401 SourceLocation Loc, QualType Ty, 1402 StringRef Category) const { 1403 // For now globals can be blacklisted only in ASan and KASan. 1404 if (!LangOpts.Sanitize.hasOneOf( 1405 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1406 return false; 1407 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1408 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1409 return true; 1410 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1411 return true; 1412 // Check global type. 1413 if (!Ty.isNull()) { 1414 // Drill down the array types: if global variable of a fixed type is 1415 // blacklisted, we also don't instrument arrays of them. 1416 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1417 Ty = AT->getElementType(); 1418 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1419 // We allow to blacklist only record types (classes, structs etc.) 1420 if (Ty->isRecordType()) { 1421 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1422 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1423 return true; 1424 } 1425 } 1426 return false; 1427 } 1428 1429 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1430 // Never defer when EmitAllDecls is specified. 1431 if (LangOpts.EmitAllDecls) 1432 return true; 1433 1434 return getContext().DeclMustBeEmitted(Global); 1435 } 1436 1437 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1438 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1439 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1440 // Implicit template instantiations may change linkage if they are later 1441 // explicitly instantiated, so they should not be emitted eagerly. 1442 return false; 1443 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1444 // codegen for global variables, because they may be marked as threadprivate. 1445 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1446 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1453 const CXXUuidofExpr* E) { 1454 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1455 // well-formed. 1456 StringRef Uuid = E->getUuidAsStringRef(Context); 1457 std::string Name = "_GUID_" + Uuid.lower(); 1458 std::replace(Name.begin(), Name.end(), '-', '_'); 1459 1460 // Contains a 32-bit field. 1461 CharUnits Alignment = CharUnits::fromQuantity(4); 1462 1463 // Look for an existing global. 1464 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1465 return ConstantAddress(GV, Alignment); 1466 1467 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1468 assert(Init && "failed to initialize as constant"); 1469 1470 auto *GV = new llvm::GlobalVariable( 1471 getModule(), Init->getType(), 1472 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1473 if (supportsCOMDAT()) 1474 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1475 return ConstantAddress(GV, Alignment); 1476 } 1477 1478 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1479 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1480 assert(AA && "No alias?"); 1481 1482 CharUnits Alignment = getContext().getDeclAlign(VD); 1483 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1484 1485 // See if there is already something with the target's name in the module. 1486 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1487 if (Entry) { 1488 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1489 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1490 return ConstantAddress(Ptr, Alignment); 1491 } 1492 1493 llvm::Constant *Aliasee; 1494 if (isa<llvm::FunctionType>(DeclTy)) 1495 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1496 GlobalDecl(cast<FunctionDecl>(VD)), 1497 /*ForVTable=*/false); 1498 else 1499 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1500 llvm::PointerType::getUnqual(DeclTy), 1501 nullptr); 1502 1503 auto *F = cast<llvm::GlobalValue>(Aliasee); 1504 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1505 WeakRefReferences.insert(F); 1506 1507 return ConstantAddress(Aliasee, Alignment); 1508 } 1509 1510 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1511 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1512 1513 // Weak references don't produce any output by themselves. 1514 if (Global->hasAttr<WeakRefAttr>()) 1515 return; 1516 1517 // If this is an alias definition (which otherwise looks like a declaration) 1518 // emit it now. 1519 if (Global->hasAttr<AliasAttr>()) 1520 return EmitAliasDefinition(GD); 1521 1522 // If this is CUDA, be selective about which declarations we emit. 1523 if (LangOpts.CUDA) { 1524 if (LangOpts.CUDAIsDevice) { 1525 if (!Global->hasAttr<CUDADeviceAttr>() && 1526 !Global->hasAttr<CUDAGlobalAttr>() && 1527 !Global->hasAttr<CUDAConstantAttr>() && 1528 !Global->hasAttr<CUDASharedAttr>()) 1529 return; 1530 } else { 1531 // We need to emit host-side 'shadows' for all global 1532 // device-side variables because the CUDA runtime needs their 1533 // size and host-side address in order to provide access to 1534 // their device-side incarnations. 1535 1536 // So device-only functions are the only things we skip. 1537 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1538 Global->hasAttr<CUDADeviceAttr>()) 1539 return; 1540 1541 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1542 "Expected Variable or Function"); 1543 } 1544 } 1545 1546 // If this is OpenMP device, check if it is legal to emit this global 1547 // normally. 1548 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1549 return; 1550 1551 // Ignore declarations, they will be emitted on their first use. 1552 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1553 // Forward declarations are emitted lazily on first use. 1554 if (!FD->doesThisDeclarationHaveABody()) { 1555 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1556 return; 1557 1558 StringRef MangledName = getMangledName(GD); 1559 1560 // Compute the function info and LLVM type. 1561 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1562 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1563 1564 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1565 /*DontDefer=*/false); 1566 return; 1567 } 1568 } else { 1569 const auto *VD = cast<VarDecl>(Global); 1570 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1571 // We need to emit device-side global CUDA variables even if a 1572 // variable does not have a definition -- we still need to define 1573 // host-side shadow for it. 1574 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1575 !VD->hasDefinition() && 1576 (VD->hasAttr<CUDAConstantAttr>() || 1577 VD->hasAttr<CUDADeviceAttr>()); 1578 if (!MustEmitForCuda && 1579 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1580 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1581 return; 1582 } 1583 1584 // Defer code generation to first use when possible, e.g. if this is an inline 1585 // function. If the global must always be emitted, do it eagerly if possible 1586 // to benefit from cache locality. 1587 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1588 // Emit the definition if it can't be deferred. 1589 EmitGlobalDefinition(GD); 1590 return; 1591 } 1592 1593 // If we're deferring emission of a C++ variable with an 1594 // initializer, remember the order in which it appeared in the file. 1595 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1596 cast<VarDecl>(Global)->hasInit()) { 1597 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1598 CXXGlobalInits.push_back(nullptr); 1599 } 1600 1601 StringRef MangledName = getMangledName(GD); 1602 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1603 // The value has already been used and should therefore be emitted. 1604 addDeferredDeclToEmit(GV, GD); 1605 } else if (MustBeEmitted(Global)) { 1606 // The value must be emitted, but cannot be emitted eagerly. 1607 assert(!MayBeEmittedEagerly(Global)); 1608 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1609 } else { 1610 // Otherwise, remember that we saw a deferred decl with this name. The 1611 // first use of the mangled name will cause it to move into 1612 // DeferredDeclsToEmit. 1613 DeferredDecls[MangledName] = GD; 1614 } 1615 } 1616 1617 namespace { 1618 struct FunctionIsDirectlyRecursive : 1619 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1620 const StringRef Name; 1621 const Builtin::Context &BI; 1622 bool Result; 1623 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1624 Name(N), BI(C), Result(false) { 1625 } 1626 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1627 1628 bool TraverseCallExpr(CallExpr *E) { 1629 const FunctionDecl *FD = E->getDirectCallee(); 1630 if (!FD) 1631 return true; 1632 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1633 if (Attr && Name == Attr->getLabel()) { 1634 Result = true; 1635 return false; 1636 } 1637 unsigned BuiltinID = FD->getBuiltinID(); 1638 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1639 return true; 1640 StringRef BuiltinName = BI.getName(BuiltinID); 1641 if (BuiltinName.startswith("__builtin_") && 1642 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1643 Result = true; 1644 return false; 1645 } 1646 return true; 1647 } 1648 }; 1649 1650 struct DLLImportFunctionVisitor 1651 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1652 bool SafeToInline = true; 1653 1654 bool VisitVarDecl(VarDecl *VD) { 1655 // A thread-local variable cannot be imported. 1656 SafeToInline = !VD->getTLSKind(); 1657 return SafeToInline; 1658 } 1659 1660 // Make sure we're not referencing non-imported vars or functions. 1661 bool VisitDeclRefExpr(DeclRefExpr *E) { 1662 ValueDecl *VD = E->getDecl(); 1663 if (isa<FunctionDecl>(VD)) 1664 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1665 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1666 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1667 return SafeToInline; 1668 } 1669 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1670 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1671 return SafeToInline; 1672 } 1673 bool VisitCXXNewExpr(CXXNewExpr *E) { 1674 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1675 return SafeToInline; 1676 } 1677 }; 1678 } 1679 1680 // isTriviallyRecursive - Check if this function calls another 1681 // decl that, because of the asm attribute or the other decl being a builtin, 1682 // ends up pointing to itself. 1683 bool 1684 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1685 StringRef Name; 1686 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1687 // asm labels are a special kind of mangling we have to support. 1688 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1689 if (!Attr) 1690 return false; 1691 Name = Attr->getLabel(); 1692 } else { 1693 Name = FD->getName(); 1694 } 1695 1696 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1697 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1698 return Walker.Result; 1699 } 1700 1701 bool 1702 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1703 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1704 return true; 1705 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1706 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1707 return false; 1708 1709 if (F->hasAttr<DLLImportAttr>()) { 1710 // Check whether it would be safe to inline this dllimport function. 1711 DLLImportFunctionVisitor Visitor; 1712 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1713 if (!Visitor.SafeToInline) 1714 return false; 1715 } 1716 1717 // PR9614. Avoid cases where the source code is lying to us. An available 1718 // externally function should have an equivalent function somewhere else, 1719 // but a function that calls itself is clearly not equivalent to the real 1720 // implementation. 1721 // This happens in glibc's btowc and in some configure checks. 1722 return !isTriviallyRecursive(F); 1723 } 1724 1725 /// If the type for the method's class was generated by 1726 /// CGDebugInfo::createContextChain(), the cache contains only a 1727 /// limited DIType without any declarations. Since EmitFunctionStart() 1728 /// needs to find the canonical declaration for each method, we need 1729 /// to construct the complete type prior to emitting the method. 1730 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1731 if (!D->isInstance()) 1732 return; 1733 1734 if (CGDebugInfo *DI = getModuleDebugInfo()) 1735 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1736 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1737 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1738 } 1739 } 1740 1741 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1742 const auto *D = cast<ValueDecl>(GD.getDecl()); 1743 1744 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1745 Context.getSourceManager(), 1746 "Generating code for declaration"); 1747 1748 if (isa<FunctionDecl>(D)) { 1749 // At -O0, don't generate IR for functions with available_externally 1750 // linkage. 1751 if (!shouldEmitFunction(GD)) 1752 return; 1753 1754 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1755 CompleteDIClassType(Method); 1756 // Make sure to emit the definition(s) before we emit the thunks. 1757 // This is necessary for the generation of certain thunks. 1758 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1759 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1760 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1761 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1762 else 1763 EmitGlobalFunctionDefinition(GD, GV); 1764 1765 if (Method->isVirtual()) 1766 getVTables().EmitThunks(GD); 1767 1768 return; 1769 } 1770 1771 return EmitGlobalFunctionDefinition(GD, GV); 1772 } 1773 1774 if (const auto *VD = dyn_cast<VarDecl>(D)) 1775 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1776 1777 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1778 } 1779 1780 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1781 llvm::Function *NewFn); 1782 1783 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1784 /// module, create and return an llvm Function with the specified type. If there 1785 /// is something in the module with the specified name, return it potentially 1786 /// bitcasted to the right type. 1787 /// 1788 /// If D is non-null, it specifies a decl that correspond to this. This is used 1789 /// to set the attributes on the function when it is first created. 1790 llvm::Constant * 1791 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1792 llvm::Type *Ty, 1793 GlobalDecl GD, bool ForVTable, 1794 bool DontDefer, bool IsThunk, 1795 llvm::AttributeSet ExtraAttrs, 1796 bool IsForDefinition) { 1797 const Decl *D = GD.getDecl(); 1798 1799 // Lookup the entry, lazily creating it if necessary. 1800 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1801 if (Entry) { 1802 if (WeakRefReferences.erase(Entry)) { 1803 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1804 if (FD && !FD->hasAttr<WeakAttr>()) 1805 Entry->setLinkage(llvm::Function::ExternalLinkage); 1806 } 1807 1808 // Handle dropped DLL attributes. 1809 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1810 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1811 1812 // If there are two attempts to define the same mangled name, issue an 1813 // error. 1814 if (IsForDefinition && !Entry->isDeclaration()) { 1815 GlobalDecl OtherGD; 1816 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1817 // to make sure that we issue an error only once. 1818 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1819 (GD.getCanonicalDecl().getDecl() != 1820 OtherGD.getCanonicalDecl().getDecl()) && 1821 DiagnosedConflictingDefinitions.insert(GD).second) { 1822 getDiags().Report(D->getLocation(), 1823 diag::err_duplicate_mangled_name); 1824 getDiags().Report(OtherGD.getDecl()->getLocation(), 1825 diag::note_previous_definition); 1826 } 1827 } 1828 1829 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1830 (Entry->getType()->getElementType() == Ty)) { 1831 return Entry; 1832 } 1833 1834 // Make sure the result is of the correct type. 1835 // (If function is requested for a definition, we always need to create a new 1836 // function, not just return a bitcast.) 1837 if (!IsForDefinition) 1838 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1839 } 1840 1841 // This function doesn't have a complete type (for example, the return 1842 // type is an incomplete struct). Use a fake type instead, and make 1843 // sure not to try to set attributes. 1844 bool IsIncompleteFunction = false; 1845 1846 llvm::FunctionType *FTy; 1847 if (isa<llvm::FunctionType>(Ty)) { 1848 FTy = cast<llvm::FunctionType>(Ty); 1849 } else { 1850 FTy = llvm::FunctionType::get(VoidTy, false); 1851 IsIncompleteFunction = true; 1852 } 1853 1854 llvm::Function *F = 1855 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1856 Entry ? StringRef() : MangledName, &getModule()); 1857 1858 // If we already created a function with the same mangled name (but different 1859 // type) before, take its name and add it to the list of functions to be 1860 // replaced with F at the end of CodeGen. 1861 // 1862 // This happens if there is a prototype for a function (e.g. "int f()") and 1863 // then a definition of a different type (e.g. "int f(int x)"). 1864 if (Entry) { 1865 F->takeName(Entry); 1866 1867 // This might be an implementation of a function without a prototype, in 1868 // which case, try to do special replacement of calls which match the new 1869 // prototype. The really key thing here is that we also potentially drop 1870 // arguments from the call site so as to make a direct call, which makes the 1871 // inliner happier and suppresses a number of optimizer warnings (!) about 1872 // dropping arguments. 1873 if (!Entry->use_empty()) { 1874 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1875 Entry->removeDeadConstantUsers(); 1876 } 1877 1878 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1879 F, Entry->getType()->getElementType()->getPointerTo()); 1880 addGlobalValReplacement(Entry, BC); 1881 } 1882 1883 assert(F->getName() == MangledName && "name was uniqued!"); 1884 if (D) 1885 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1886 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1887 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1888 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1889 llvm::AttributeSet::get(VMContext, 1890 llvm::AttributeSet::FunctionIndex, 1891 B)); 1892 } 1893 1894 if (!DontDefer) { 1895 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1896 // each other bottoming out with the base dtor. Therefore we emit non-base 1897 // dtors on usage, even if there is no dtor definition in the TU. 1898 if (D && isa<CXXDestructorDecl>(D) && 1899 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1900 GD.getDtorType())) 1901 addDeferredDeclToEmit(F, GD); 1902 1903 // This is the first use or definition of a mangled name. If there is a 1904 // deferred decl with this name, remember that we need to emit it at the end 1905 // of the file. 1906 auto DDI = DeferredDecls.find(MangledName); 1907 if (DDI != DeferredDecls.end()) { 1908 // Move the potentially referenced deferred decl to the 1909 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1910 // don't need it anymore). 1911 addDeferredDeclToEmit(F, DDI->second); 1912 DeferredDecls.erase(DDI); 1913 1914 // Otherwise, there are cases we have to worry about where we're 1915 // using a declaration for which we must emit a definition but where 1916 // we might not find a top-level definition: 1917 // - member functions defined inline in their classes 1918 // - friend functions defined inline in some class 1919 // - special member functions with implicit definitions 1920 // If we ever change our AST traversal to walk into class methods, 1921 // this will be unnecessary. 1922 // 1923 // We also don't emit a definition for a function if it's going to be an 1924 // entry in a vtable, unless it's already marked as used. 1925 } else if (getLangOpts().CPlusPlus && D) { 1926 // Look for a declaration that's lexically in a record. 1927 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1928 FD = FD->getPreviousDecl()) { 1929 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1930 if (FD->doesThisDeclarationHaveABody()) { 1931 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1932 break; 1933 } 1934 } 1935 } 1936 } 1937 } 1938 1939 // Make sure the result is of the requested type. 1940 if (!IsIncompleteFunction) { 1941 assert(F->getType()->getElementType() == Ty); 1942 return F; 1943 } 1944 1945 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1946 return llvm::ConstantExpr::getBitCast(F, PTy); 1947 } 1948 1949 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1950 /// non-null, then this function will use the specified type if it has to 1951 /// create it (this occurs when we see a definition of the function). 1952 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1953 llvm::Type *Ty, 1954 bool ForVTable, 1955 bool DontDefer, 1956 bool IsForDefinition) { 1957 // If there was no specific requested type, just convert it now. 1958 if (!Ty) { 1959 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1960 auto CanonTy = Context.getCanonicalType(FD->getType()); 1961 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1962 } 1963 1964 StringRef MangledName = getMangledName(GD); 1965 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1966 /*IsThunk=*/false, llvm::AttributeSet(), 1967 IsForDefinition); 1968 } 1969 1970 /// CreateRuntimeFunction - Create a new runtime function with the specified 1971 /// type and name. 1972 llvm::Constant * 1973 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1974 StringRef Name, 1975 llvm::AttributeSet ExtraAttrs) { 1976 llvm::Constant *C = 1977 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1978 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1979 if (auto *F = dyn_cast<llvm::Function>(C)) 1980 if (F->empty()) 1981 F->setCallingConv(getRuntimeCC()); 1982 return C; 1983 } 1984 1985 /// CreateBuiltinFunction - Create a new builtin function with the specified 1986 /// type and name. 1987 llvm::Constant * 1988 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1989 StringRef Name, 1990 llvm::AttributeSet ExtraAttrs) { 1991 llvm::Constant *C = 1992 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1993 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1994 if (auto *F = dyn_cast<llvm::Function>(C)) 1995 if (F->empty()) 1996 F->setCallingConv(getBuiltinCC()); 1997 return C; 1998 } 1999 2000 /// isTypeConstant - Determine whether an object of this type can be emitted 2001 /// as a constant. 2002 /// 2003 /// If ExcludeCtor is true, the duration when the object's constructor runs 2004 /// will not be considered. The caller will need to verify that the object is 2005 /// not written to during its construction. 2006 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2007 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2008 return false; 2009 2010 if (Context.getLangOpts().CPlusPlus) { 2011 if (const CXXRecordDecl *Record 2012 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2013 return ExcludeCtor && !Record->hasMutableFields() && 2014 Record->hasTrivialDestructor(); 2015 } 2016 2017 return true; 2018 } 2019 2020 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2021 /// create and return an llvm GlobalVariable with the specified type. If there 2022 /// is something in the module with the specified name, return it potentially 2023 /// bitcasted to the right type. 2024 /// 2025 /// If D is non-null, it specifies a decl that correspond to this. This is used 2026 /// to set the attributes on the global when it is first created. 2027 /// 2028 /// If IsForDefinition is true, it is guranteed that an actual global with 2029 /// type Ty will be returned, not conversion of a variable with the same 2030 /// mangled name but some other type. 2031 llvm::Constant * 2032 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2033 llvm::PointerType *Ty, 2034 const VarDecl *D, 2035 bool IsForDefinition) { 2036 // Lookup the entry, lazily creating it if necessary. 2037 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2038 if (Entry) { 2039 if (WeakRefReferences.erase(Entry)) { 2040 if (D && !D->hasAttr<WeakAttr>()) 2041 Entry->setLinkage(llvm::Function::ExternalLinkage); 2042 } 2043 2044 // Handle dropped DLL attributes. 2045 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2046 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2047 2048 if (Entry->getType() == Ty) 2049 return Entry; 2050 2051 // If there are two attempts to define the same mangled name, issue an 2052 // error. 2053 if (IsForDefinition && !Entry->isDeclaration()) { 2054 GlobalDecl OtherGD; 2055 const VarDecl *OtherD; 2056 2057 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2058 // to make sure that we issue an error only once. 2059 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2060 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2061 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2062 OtherD->hasInit() && 2063 DiagnosedConflictingDefinitions.insert(D).second) { 2064 getDiags().Report(D->getLocation(), 2065 diag::err_duplicate_mangled_name); 2066 getDiags().Report(OtherGD.getDecl()->getLocation(), 2067 diag::note_previous_definition); 2068 } 2069 } 2070 2071 // Make sure the result is of the correct type. 2072 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2073 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2074 2075 // (If global is requested for a definition, we always need to create a new 2076 // global, not just return a bitcast.) 2077 if (!IsForDefinition) 2078 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2079 } 2080 2081 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2082 auto *GV = new llvm::GlobalVariable( 2083 getModule(), Ty->getElementType(), false, 2084 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2085 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2086 2087 // If we already created a global with the same mangled name (but different 2088 // type) before, take its name and remove it from its parent. 2089 if (Entry) { 2090 GV->takeName(Entry); 2091 2092 if (!Entry->use_empty()) { 2093 llvm::Constant *NewPtrForOldDecl = 2094 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2095 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2096 } 2097 2098 Entry->eraseFromParent(); 2099 } 2100 2101 // This is the first use or definition of a mangled name. If there is a 2102 // deferred decl with this name, remember that we need to emit it at the end 2103 // of the file. 2104 auto DDI = DeferredDecls.find(MangledName); 2105 if (DDI != DeferredDecls.end()) { 2106 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2107 // list, and remove it from DeferredDecls (since we don't need it anymore). 2108 addDeferredDeclToEmit(GV, DDI->second); 2109 DeferredDecls.erase(DDI); 2110 } 2111 2112 // Handle things which are present even on external declarations. 2113 if (D) { 2114 // FIXME: This code is overly simple and should be merged with other global 2115 // handling. 2116 GV->setConstant(isTypeConstant(D->getType(), false)); 2117 2118 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2119 2120 setLinkageAndVisibilityForGV(GV, D); 2121 2122 if (D->getTLSKind()) { 2123 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2124 CXXThreadLocals.push_back(D); 2125 setTLSMode(GV, *D); 2126 } 2127 2128 // If required by the ABI, treat declarations of static data members with 2129 // inline initializers as definitions. 2130 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2131 EmitGlobalVarDefinition(D); 2132 } 2133 2134 // Handle XCore specific ABI requirements. 2135 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2136 D->getLanguageLinkage() == CLanguageLinkage && 2137 D->getType().isConstant(Context) && 2138 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2139 GV->setSection(".cp.rodata"); 2140 } 2141 2142 if (AddrSpace != Ty->getAddressSpace()) 2143 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2144 2145 return GV; 2146 } 2147 2148 llvm::Constant * 2149 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2150 bool IsForDefinition) { 2151 if (isa<CXXConstructorDecl>(GD.getDecl())) 2152 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2153 getFromCtorType(GD.getCtorType()), 2154 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2155 /*DontDefer=*/false, IsForDefinition); 2156 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2157 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2158 getFromDtorType(GD.getDtorType()), 2159 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2160 /*DontDefer=*/false, IsForDefinition); 2161 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2162 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2163 cast<CXXMethodDecl>(GD.getDecl())); 2164 auto Ty = getTypes().GetFunctionType(*FInfo); 2165 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2166 IsForDefinition); 2167 } else if (isa<FunctionDecl>(GD.getDecl())) { 2168 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2169 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2170 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2171 IsForDefinition); 2172 } else 2173 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2174 IsForDefinition); 2175 } 2176 2177 llvm::GlobalVariable * 2178 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2179 llvm::Type *Ty, 2180 llvm::GlobalValue::LinkageTypes Linkage) { 2181 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2182 llvm::GlobalVariable *OldGV = nullptr; 2183 2184 if (GV) { 2185 // Check if the variable has the right type. 2186 if (GV->getType()->getElementType() == Ty) 2187 return GV; 2188 2189 // Because C++ name mangling, the only way we can end up with an already 2190 // existing global with the same name is if it has been declared extern "C". 2191 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2192 OldGV = GV; 2193 } 2194 2195 // Create a new variable. 2196 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2197 Linkage, nullptr, Name); 2198 2199 if (OldGV) { 2200 // Replace occurrences of the old variable if needed. 2201 GV->takeName(OldGV); 2202 2203 if (!OldGV->use_empty()) { 2204 llvm::Constant *NewPtrForOldDecl = 2205 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2206 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2207 } 2208 2209 OldGV->eraseFromParent(); 2210 } 2211 2212 if (supportsCOMDAT() && GV->isWeakForLinker() && 2213 !GV->hasAvailableExternallyLinkage()) 2214 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2215 2216 return GV; 2217 } 2218 2219 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2220 /// given global variable. If Ty is non-null and if the global doesn't exist, 2221 /// then it will be created with the specified type instead of whatever the 2222 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2223 /// that an actual global with type Ty will be returned, not conversion of a 2224 /// variable with the same mangled name but some other type. 2225 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2226 llvm::Type *Ty, 2227 bool IsForDefinition) { 2228 assert(D->hasGlobalStorage() && "Not a global variable"); 2229 QualType ASTTy = D->getType(); 2230 if (!Ty) 2231 Ty = getTypes().ConvertTypeForMem(ASTTy); 2232 2233 llvm::PointerType *PTy = 2234 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2235 2236 StringRef MangledName = getMangledName(D); 2237 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2238 } 2239 2240 /// CreateRuntimeVariable - Create a new runtime global variable with the 2241 /// specified type and name. 2242 llvm::Constant * 2243 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2244 StringRef Name) { 2245 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2246 } 2247 2248 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2249 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2250 2251 StringRef MangledName = getMangledName(D); 2252 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2253 2254 // We already have a definition, not declaration, with the same mangled name. 2255 // Emitting of declaration is not required (and actually overwrites emitted 2256 // definition). 2257 if (GV && !GV->isDeclaration()) 2258 return; 2259 2260 // If we have not seen a reference to this variable yet, place it into the 2261 // deferred declarations table to be emitted if needed later. 2262 if (!MustBeEmitted(D) && !GV) { 2263 DeferredDecls[MangledName] = D; 2264 return; 2265 } 2266 2267 // The tentative definition is the only definition. 2268 EmitGlobalVarDefinition(D); 2269 } 2270 2271 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2272 return Context.toCharUnitsFromBits( 2273 getDataLayout().getTypeStoreSizeInBits(Ty)); 2274 } 2275 2276 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2277 unsigned AddrSpace) { 2278 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2279 if (D->hasAttr<CUDAConstantAttr>()) 2280 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2281 else if (D->hasAttr<CUDASharedAttr>()) 2282 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2283 else 2284 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2285 } 2286 2287 return AddrSpace; 2288 } 2289 2290 template<typename SomeDecl> 2291 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2292 llvm::GlobalValue *GV) { 2293 if (!getLangOpts().CPlusPlus) 2294 return; 2295 2296 // Must have 'used' attribute, or else inline assembly can't rely on 2297 // the name existing. 2298 if (!D->template hasAttr<UsedAttr>()) 2299 return; 2300 2301 // Must have internal linkage and an ordinary name. 2302 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2303 return; 2304 2305 // Must be in an extern "C" context. Entities declared directly within 2306 // a record are not extern "C" even if the record is in such a context. 2307 const SomeDecl *First = D->getFirstDecl(); 2308 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2309 return; 2310 2311 // OK, this is an internal linkage entity inside an extern "C" linkage 2312 // specification. Make a note of that so we can give it the "expected" 2313 // mangled name if nothing else is using that name. 2314 std::pair<StaticExternCMap::iterator, bool> R = 2315 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2316 2317 // If we have multiple internal linkage entities with the same name 2318 // in extern "C" regions, none of them gets that name. 2319 if (!R.second) 2320 R.first->second = nullptr; 2321 } 2322 2323 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2324 if (!CGM.supportsCOMDAT()) 2325 return false; 2326 2327 if (D.hasAttr<SelectAnyAttr>()) 2328 return true; 2329 2330 GVALinkage Linkage; 2331 if (auto *VD = dyn_cast<VarDecl>(&D)) 2332 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2333 else 2334 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2335 2336 switch (Linkage) { 2337 case GVA_Internal: 2338 case GVA_AvailableExternally: 2339 case GVA_StrongExternal: 2340 return false; 2341 case GVA_DiscardableODR: 2342 case GVA_StrongODR: 2343 return true; 2344 } 2345 llvm_unreachable("No such linkage"); 2346 } 2347 2348 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2349 llvm::GlobalObject &GO) { 2350 if (!shouldBeInCOMDAT(*this, D)) 2351 return; 2352 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2353 } 2354 2355 /// Pass IsTentative as true if you want to create a tentative definition. 2356 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2357 bool IsTentative) { 2358 llvm::Constant *Init = nullptr; 2359 QualType ASTTy = D->getType(); 2360 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2361 bool NeedsGlobalCtor = false; 2362 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2363 2364 const VarDecl *InitDecl; 2365 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2366 2367 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2368 // as part of their declaration." Sema has already checked for 2369 // error cases, so we just need to set Init to UndefValue. 2370 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2371 D->hasAttr<CUDASharedAttr>()) 2372 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2373 else if (!InitExpr) { 2374 // This is a tentative definition; tentative definitions are 2375 // implicitly initialized with { 0 }. 2376 // 2377 // Note that tentative definitions are only emitted at the end of 2378 // a translation unit, so they should never have incomplete 2379 // type. In addition, EmitTentativeDefinition makes sure that we 2380 // never attempt to emit a tentative definition if a real one 2381 // exists. A use may still exists, however, so we still may need 2382 // to do a RAUW. 2383 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2384 Init = EmitNullConstant(D->getType()); 2385 } else { 2386 initializedGlobalDecl = GlobalDecl(D); 2387 Init = EmitConstantInit(*InitDecl); 2388 2389 if (!Init) { 2390 QualType T = InitExpr->getType(); 2391 if (D->getType()->isReferenceType()) 2392 T = D->getType(); 2393 2394 if (getLangOpts().CPlusPlus) { 2395 Init = EmitNullConstant(T); 2396 NeedsGlobalCtor = true; 2397 } else { 2398 ErrorUnsupported(D, "static initializer"); 2399 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2400 } 2401 } else { 2402 // We don't need an initializer, so remove the entry for the delayed 2403 // initializer position (just in case this entry was delayed) if we 2404 // also don't need to register a destructor. 2405 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2406 DelayedCXXInitPosition.erase(D); 2407 } 2408 } 2409 2410 llvm::Type* InitType = Init->getType(); 2411 llvm::Constant *Entry = 2412 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2413 2414 // Strip off a bitcast if we got one back. 2415 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2416 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2417 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2418 // All zero index gep. 2419 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2420 Entry = CE->getOperand(0); 2421 } 2422 2423 // Entry is now either a Function or GlobalVariable. 2424 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2425 2426 // We have a definition after a declaration with the wrong type. 2427 // We must make a new GlobalVariable* and update everything that used OldGV 2428 // (a declaration or tentative definition) with the new GlobalVariable* 2429 // (which will be a definition). 2430 // 2431 // This happens if there is a prototype for a global (e.g. 2432 // "extern int x[];") and then a definition of a different type (e.g. 2433 // "int x[10];"). This also happens when an initializer has a different type 2434 // from the type of the global (this happens with unions). 2435 if (!GV || 2436 GV->getType()->getElementType() != InitType || 2437 GV->getType()->getAddressSpace() != 2438 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2439 2440 // Move the old entry aside so that we'll create a new one. 2441 Entry->setName(StringRef()); 2442 2443 // Make a new global with the correct type, this is now guaranteed to work. 2444 GV = cast<llvm::GlobalVariable>( 2445 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2446 2447 // Replace all uses of the old global with the new global 2448 llvm::Constant *NewPtrForOldDecl = 2449 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2450 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2451 2452 // Erase the old global, since it is no longer used. 2453 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2454 } 2455 2456 MaybeHandleStaticInExternC(D, GV); 2457 2458 if (D->hasAttr<AnnotateAttr>()) 2459 AddGlobalAnnotations(D, GV); 2460 2461 // Set the llvm linkage type as appropriate. 2462 llvm::GlobalValue::LinkageTypes Linkage = 2463 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2464 2465 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2466 // the device. [...]" 2467 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2468 // __device__, declares a variable that: [...] 2469 // Is accessible from all the threads within the grid and from the host 2470 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2471 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2472 if (GV && LangOpts.CUDA) { 2473 if (LangOpts.CUDAIsDevice) { 2474 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2475 GV->setExternallyInitialized(true); 2476 } else { 2477 // Host-side shadows of external declarations of device-side 2478 // global variables become internal definitions. These have to 2479 // be internal in order to prevent name conflicts with global 2480 // host variables with the same name in a different TUs. 2481 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2482 Linkage = llvm::GlobalValue::InternalLinkage; 2483 2484 // Shadow variables and their properties must be registered 2485 // with CUDA runtime. 2486 unsigned Flags = 0; 2487 if (!D->hasDefinition()) 2488 Flags |= CGCUDARuntime::ExternDeviceVar; 2489 if (D->hasAttr<CUDAConstantAttr>()) 2490 Flags |= CGCUDARuntime::ConstantDeviceVar; 2491 getCUDARuntime().registerDeviceVar(*GV, Flags); 2492 } else if (D->hasAttr<CUDASharedAttr>()) 2493 // __shared__ variables are odd. Shadows do get created, but 2494 // they are not registered with the CUDA runtime, so they 2495 // can't really be used to access their device-side 2496 // counterparts. It's not clear yet whether it's nvcc's bug or 2497 // a feature, but we've got to do the same for compatibility. 2498 Linkage = llvm::GlobalValue::InternalLinkage; 2499 } 2500 } 2501 GV->setInitializer(Init); 2502 2503 // If it is safe to mark the global 'constant', do so now. 2504 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2505 isTypeConstant(D->getType(), true)); 2506 2507 // If it is in a read-only section, mark it 'constant'. 2508 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2509 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2510 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2511 GV->setConstant(true); 2512 } 2513 2514 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2515 2516 2517 // On Darwin, if the normal linkage of a C++ thread_local variable is 2518 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2519 // copies within a linkage unit; otherwise, the backing variable has 2520 // internal linkage and all accesses should just be calls to the 2521 // Itanium-specified entry point, which has the normal linkage of the 2522 // variable. This is to preserve the ability to change the implementation 2523 // behind the scenes. 2524 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2525 Context.getTargetInfo().getTriple().isOSDarwin() && 2526 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2527 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2528 Linkage = llvm::GlobalValue::InternalLinkage; 2529 2530 GV->setLinkage(Linkage); 2531 if (D->hasAttr<DLLImportAttr>()) 2532 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2533 else if (D->hasAttr<DLLExportAttr>()) 2534 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2535 else 2536 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2537 2538 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2539 // common vars aren't constant even if declared const. 2540 GV->setConstant(false); 2541 2542 setNonAliasAttributes(D, GV); 2543 2544 if (D->getTLSKind() && !GV->isThreadLocal()) { 2545 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2546 CXXThreadLocals.push_back(D); 2547 setTLSMode(GV, *D); 2548 } 2549 2550 maybeSetTrivialComdat(*D, *GV); 2551 2552 // Emit the initializer function if necessary. 2553 if (NeedsGlobalCtor || NeedsGlobalDtor) 2554 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2555 2556 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2557 2558 // Emit global variable debug information. 2559 if (CGDebugInfo *DI = getModuleDebugInfo()) 2560 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2561 DI->EmitGlobalVariable(GV, D); 2562 } 2563 2564 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2565 CodeGenModule &CGM, const VarDecl *D, 2566 bool NoCommon) { 2567 // Don't give variables common linkage if -fno-common was specified unless it 2568 // was overridden by a NoCommon attribute. 2569 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2570 return true; 2571 2572 // C11 6.9.2/2: 2573 // A declaration of an identifier for an object that has file scope without 2574 // an initializer, and without a storage-class specifier or with the 2575 // storage-class specifier static, constitutes a tentative definition. 2576 if (D->getInit() || D->hasExternalStorage()) 2577 return true; 2578 2579 // A variable cannot be both common and exist in a section. 2580 if (D->hasAttr<SectionAttr>()) 2581 return true; 2582 2583 // Thread local vars aren't considered common linkage. 2584 if (D->getTLSKind()) 2585 return true; 2586 2587 // Tentative definitions marked with WeakImportAttr are true definitions. 2588 if (D->hasAttr<WeakImportAttr>()) 2589 return true; 2590 2591 // A variable cannot be both common and exist in a comdat. 2592 if (shouldBeInCOMDAT(CGM, *D)) 2593 return true; 2594 2595 // Declarations with a required alignment do not have common linakge in MSVC 2596 // mode. 2597 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2598 if (D->hasAttr<AlignedAttr>()) 2599 return true; 2600 QualType VarType = D->getType(); 2601 if (Context.isAlignmentRequired(VarType)) 2602 return true; 2603 2604 if (const auto *RT = VarType->getAs<RecordType>()) { 2605 const RecordDecl *RD = RT->getDecl(); 2606 for (const FieldDecl *FD : RD->fields()) { 2607 if (FD->isBitField()) 2608 continue; 2609 if (FD->hasAttr<AlignedAttr>()) 2610 return true; 2611 if (Context.isAlignmentRequired(FD->getType())) 2612 return true; 2613 } 2614 } 2615 } 2616 2617 return false; 2618 } 2619 2620 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2621 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2622 if (Linkage == GVA_Internal) 2623 return llvm::Function::InternalLinkage; 2624 2625 if (D->hasAttr<WeakAttr>()) { 2626 if (IsConstantVariable) 2627 return llvm::GlobalVariable::WeakODRLinkage; 2628 else 2629 return llvm::GlobalVariable::WeakAnyLinkage; 2630 } 2631 2632 // We are guaranteed to have a strong definition somewhere else, 2633 // so we can use available_externally linkage. 2634 if (Linkage == GVA_AvailableExternally) 2635 return llvm::Function::AvailableExternallyLinkage; 2636 2637 // Note that Apple's kernel linker doesn't support symbol 2638 // coalescing, so we need to avoid linkonce and weak linkages there. 2639 // Normally, this means we just map to internal, but for explicit 2640 // instantiations we'll map to external. 2641 2642 // In C++, the compiler has to emit a definition in every translation unit 2643 // that references the function. We should use linkonce_odr because 2644 // a) if all references in this translation unit are optimized away, we 2645 // don't need to codegen it. b) if the function persists, it needs to be 2646 // merged with other definitions. c) C++ has the ODR, so we know the 2647 // definition is dependable. 2648 if (Linkage == GVA_DiscardableODR) 2649 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2650 : llvm::Function::InternalLinkage; 2651 2652 // An explicit instantiation of a template has weak linkage, since 2653 // explicit instantiations can occur in multiple translation units 2654 // and must all be equivalent. However, we are not allowed to 2655 // throw away these explicit instantiations. 2656 if (Linkage == GVA_StrongODR) 2657 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2658 : llvm::Function::ExternalLinkage; 2659 2660 // C++ doesn't have tentative definitions and thus cannot have common 2661 // linkage. 2662 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2663 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2664 CodeGenOpts.NoCommon)) 2665 return llvm::GlobalVariable::CommonLinkage; 2666 2667 // selectany symbols are externally visible, so use weak instead of 2668 // linkonce. MSVC optimizes away references to const selectany globals, so 2669 // all definitions should be the same and ODR linkage should be used. 2670 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2671 if (D->hasAttr<SelectAnyAttr>()) 2672 return llvm::GlobalVariable::WeakODRLinkage; 2673 2674 // Otherwise, we have strong external linkage. 2675 assert(Linkage == GVA_StrongExternal); 2676 return llvm::GlobalVariable::ExternalLinkage; 2677 } 2678 2679 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2680 const VarDecl *VD, bool IsConstant) { 2681 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2682 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2683 } 2684 2685 /// Replace the uses of a function that was declared with a non-proto type. 2686 /// We want to silently drop extra arguments from call sites 2687 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2688 llvm::Function *newFn) { 2689 // Fast path. 2690 if (old->use_empty()) return; 2691 2692 llvm::Type *newRetTy = newFn->getReturnType(); 2693 SmallVector<llvm::Value*, 4> newArgs; 2694 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2695 2696 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2697 ui != ue; ) { 2698 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2699 llvm::User *user = use->getUser(); 2700 2701 // Recognize and replace uses of bitcasts. Most calls to 2702 // unprototyped functions will use bitcasts. 2703 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2704 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2705 replaceUsesOfNonProtoConstant(bitcast, newFn); 2706 continue; 2707 } 2708 2709 // Recognize calls to the function. 2710 llvm::CallSite callSite(user); 2711 if (!callSite) continue; 2712 if (!callSite.isCallee(&*use)) continue; 2713 2714 // If the return types don't match exactly, then we can't 2715 // transform this call unless it's dead. 2716 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2717 continue; 2718 2719 // Get the call site's attribute list. 2720 SmallVector<llvm::AttributeSet, 8> newAttrs; 2721 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2722 2723 // Collect any return attributes from the call. 2724 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2725 newAttrs.push_back( 2726 llvm::AttributeSet::get(newFn->getContext(), 2727 oldAttrs.getRetAttributes())); 2728 2729 // If the function was passed too few arguments, don't transform. 2730 unsigned newNumArgs = newFn->arg_size(); 2731 if (callSite.arg_size() < newNumArgs) continue; 2732 2733 // If extra arguments were passed, we silently drop them. 2734 // If any of the types mismatch, we don't transform. 2735 unsigned argNo = 0; 2736 bool dontTransform = false; 2737 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2738 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2739 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2740 dontTransform = true; 2741 break; 2742 } 2743 2744 // Add any parameter attributes. 2745 if (oldAttrs.hasAttributes(argNo + 1)) 2746 newAttrs. 2747 push_back(llvm:: 2748 AttributeSet::get(newFn->getContext(), 2749 oldAttrs.getParamAttributes(argNo + 1))); 2750 } 2751 if (dontTransform) 2752 continue; 2753 2754 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2755 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2756 oldAttrs.getFnAttributes())); 2757 2758 // Okay, we can transform this. Create the new call instruction and copy 2759 // over the required information. 2760 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2761 2762 // Copy over any operand bundles. 2763 callSite.getOperandBundlesAsDefs(newBundles); 2764 2765 llvm::CallSite newCall; 2766 if (callSite.isCall()) { 2767 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2768 callSite.getInstruction()); 2769 } else { 2770 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2771 newCall = llvm::InvokeInst::Create(newFn, 2772 oldInvoke->getNormalDest(), 2773 oldInvoke->getUnwindDest(), 2774 newArgs, newBundles, "", 2775 callSite.getInstruction()); 2776 } 2777 newArgs.clear(); // for the next iteration 2778 2779 if (!newCall->getType()->isVoidTy()) 2780 newCall->takeName(callSite.getInstruction()); 2781 newCall.setAttributes( 2782 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2783 newCall.setCallingConv(callSite.getCallingConv()); 2784 2785 // Finally, remove the old call, replacing any uses with the new one. 2786 if (!callSite->use_empty()) 2787 callSite->replaceAllUsesWith(newCall.getInstruction()); 2788 2789 // Copy debug location attached to CI. 2790 if (callSite->getDebugLoc()) 2791 newCall->setDebugLoc(callSite->getDebugLoc()); 2792 2793 callSite->eraseFromParent(); 2794 } 2795 } 2796 2797 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2798 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2799 /// existing call uses of the old function in the module, this adjusts them to 2800 /// call the new function directly. 2801 /// 2802 /// This is not just a cleanup: the always_inline pass requires direct calls to 2803 /// functions to be able to inline them. If there is a bitcast in the way, it 2804 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2805 /// run at -O0. 2806 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2807 llvm::Function *NewFn) { 2808 // If we're redefining a global as a function, don't transform it. 2809 if (!isa<llvm::Function>(Old)) return; 2810 2811 replaceUsesOfNonProtoConstant(Old, NewFn); 2812 } 2813 2814 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2815 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2816 // If we have a definition, this might be a deferred decl. If the 2817 // instantiation is explicit, make sure we emit it at the end. 2818 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2819 GetAddrOfGlobalVar(VD); 2820 2821 EmitTopLevelDecl(VD); 2822 } 2823 2824 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2825 llvm::GlobalValue *GV) { 2826 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2827 2828 // Compute the function info and LLVM type. 2829 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2830 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2831 2832 // Get or create the prototype for the function. 2833 if (!GV || (GV->getType()->getElementType() != Ty)) 2834 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2835 /*DontDefer=*/true, 2836 /*IsForDefinition=*/true)); 2837 2838 // Already emitted. 2839 if (!GV->isDeclaration()) 2840 return; 2841 2842 // We need to set linkage and visibility on the function before 2843 // generating code for it because various parts of IR generation 2844 // want to propagate this information down (e.g. to local static 2845 // declarations). 2846 auto *Fn = cast<llvm::Function>(GV); 2847 setFunctionLinkage(GD, Fn); 2848 setFunctionDLLStorageClass(GD, Fn); 2849 2850 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2851 setGlobalVisibility(Fn, D); 2852 2853 MaybeHandleStaticInExternC(D, Fn); 2854 2855 maybeSetTrivialComdat(*D, *Fn); 2856 2857 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2858 2859 setFunctionDefinitionAttributes(D, Fn); 2860 SetLLVMFunctionAttributesForDefinition(D, Fn); 2861 2862 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2863 AddGlobalCtor(Fn, CA->getPriority()); 2864 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2865 AddGlobalDtor(Fn, DA->getPriority()); 2866 if (D->hasAttr<AnnotateAttr>()) 2867 AddGlobalAnnotations(D, Fn); 2868 } 2869 2870 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2871 const auto *D = cast<ValueDecl>(GD.getDecl()); 2872 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2873 assert(AA && "Not an alias?"); 2874 2875 StringRef MangledName = getMangledName(GD); 2876 2877 if (AA->getAliasee() == MangledName) { 2878 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2879 return; 2880 } 2881 2882 // If there is a definition in the module, then it wins over the alias. 2883 // This is dubious, but allow it to be safe. Just ignore the alias. 2884 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2885 if (Entry && !Entry->isDeclaration()) 2886 return; 2887 2888 Aliases.push_back(GD); 2889 2890 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2891 2892 // Create a reference to the named value. This ensures that it is emitted 2893 // if a deferred decl. 2894 llvm::Constant *Aliasee; 2895 if (isa<llvm::FunctionType>(DeclTy)) 2896 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2897 /*ForVTable=*/false); 2898 else 2899 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2900 llvm::PointerType::getUnqual(DeclTy), 2901 /*D=*/nullptr); 2902 2903 // Create the new alias itself, but don't set a name yet. 2904 auto *GA = llvm::GlobalAlias::create( 2905 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2906 2907 if (Entry) { 2908 if (GA->getAliasee() == Entry) { 2909 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2910 return; 2911 } 2912 2913 assert(Entry->isDeclaration()); 2914 2915 // If there is a declaration in the module, then we had an extern followed 2916 // by the alias, as in: 2917 // extern int test6(); 2918 // ... 2919 // int test6() __attribute__((alias("test7"))); 2920 // 2921 // Remove it and replace uses of it with the alias. 2922 GA->takeName(Entry); 2923 2924 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2925 Entry->getType())); 2926 Entry->eraseFromParent(); 2927 } else { 2928 GA->setName(MangledName); 2929 } 2930 2931 // Set attributes which are particular to an alias; this is a 2932 // specialization of the attributes which may be set on a global 2933 // variable/function. 2934 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2935 D->isWeakImported()) { 2936 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2937 } 2938 2939 if (const auto *VD = dyn_cast<VarDecl>(D)) 2940 if (VD->getTLSKind()) 2941 setTLSMode(GA, *VD); 2942 2943 setAliasAttributes(D, GA); 2944 } 2945 2946 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2947 ArrayRef<llvm::Type*> Tys) { 2948 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2949 Tys); 2950 } 2951 2952 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2953 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2954 const StringLiteral *Literal, bool TargetIsLSB, 2955 bool &IsUTF16, unsigned &StringLength) { 2956 StringRef String = Literal->getString(); 2957 unsigned NumBytes = String.size(); 2958 2959 // Check for simple case. 2960 if (!Literal->containsNonAsciiOrNull()) { 2961 StringLength = NumBytes; 2962 return *Map.insert(std::make_pair(String, nullptr)).first; 2963 } 2964 2965 // Otherwise, convert the UTF8 literals into a string of shorts. 2966 IsUTF16 = true; 2967 2968 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2969 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2970 UTF16 *ToPtr = &ToBuf[0]; 2971 2972 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2973 &ToPtr, ToPtr + NumBytes, 2974 strictConversion); 2975 2976 // ConvertUTF8toUTF16 returns the length in ToPtr. 2977 StringLength = ToPtr - &ToBuf[0]; 2978 2979 // Add an explicit null. 2980 *ToPtr = 0; 2981 return *Map.insert(std::make_pair( 2982 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2983 (StringLength + 1) * 2), 2984 nullptr)).first; 2985 } 2986 2987 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2988 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2989 const StringLiteral *Literal, unsigned &StringLength) { 2990 StringRef String = Literal->getString(); 2991 StringLength = String.size(); 2992 return *Map.insert(std::make_pair(String, nullptr)).first; 2993 } 2994 2995 ConstantAddress 2996 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2997 unsigned StringLength = 0; 2998 bool isUTF16 = false; 2999 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3000 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3001 getDataLayout().isLittleEndian(), isUTF16, 3002 StringLength); 3003 3004 if (auto *C = Entry.second) 3005 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3006 3007 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3008 llvm::Constant *Zeros[] = { Zero, Zero }; 3009 llvm::Value *V; 3010 3011 // If we don't already have it, get __CFConstantStringClassReference. 3012 if (!CFConstantStringClassRef) { 3013 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3014 Ty = llvm::ArrayType::get(Ty, 0); 3015 llvm::Constant *GV = CreateRuntimeVariable(Ty, 3016 "__CFConstantStringClassReference"); 3017 // Decay array -> ptr 3018 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3019 CFConstantStringClassRef = V; 3020 } 3021 else 3022 V = CFConstantStringClassRef; 3023 3024 QualType CFTy = getContext().getCFConstantStringType(); 3025 3026 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3027 3028 llvm::Constant *Fields[4]; 3029 3030 // Class pointer. 3031 Fields[0] = cast<llvm::ConstantExpr>(V); 3032 3033 // Flags. 3034 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3035 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 3036 llvm::ConstantInt::get(Ty, 0x07C8); 3037 3038 // String pointer. 3039 llvm::Constant *C = nullptr; 3040 if (isUTF16) { 3041 auto Arr = llvm::makeArrayRef( 3042 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3043 Entry.first().size() / 2); 3044 C = llvm::ConstantDataArray::get(VMContext, Arr); 3045 } else { 3046 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3047 } 3048 3049 // Note: -fwritable-strings doesn't make the backing store strings of 3050 // CFStrings writable. (See <rdar://problem/10657500>) 3051 auto *GV = 3052 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3053 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3054 GV->setUnnamedAddr(true); 3055 // Don't enforce the target's minimum global alignment, since the only use 3056 // of the string is via this class initializer. 3057 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 3058 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 3059 // that changes the section it ends in, which surprises ld64. 3060 if (isUTF16) { 3061 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 3062 GV->setAlignment(Align.getQuantity()); 3063 GV->setSection("__TEXT,__ustring"); 3064 } else { 3065 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3066 GV->setAlignment(Align.getQuantity()); 3067 GV->setSection("__TEXT,__cstring,cstring_literals"); 3068 } 3069 3070 // String. 3071 Fields[2] = 3072 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3073 3074 if (isUTF16) 3075 // Cast the UTF16 string to the correct type. 3076 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3077 3078 // String length. 3079 Ty = getTypes().ConvertType(getContext().LongTy); 3080 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3081 3082 CharUnits Alignment = getPointerAlign(); 3083 3084 // The struct. 3085 C = llvm::ConstantStruct::get(STy, Fields); 3086 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3087 llvm::GlobalVariable::PrivateLinkage, C, 3088 "_unnamed_cfstring_"); 3089 GV->setSection("__DATA,__cfstring"); 3090 GV->setAlignment(Alignment.getQuantity()); 3091 Entry.second = GV; 3092 3093 return ConstantAddress(GV, Alignment); 3094 } 3095 3096 ConstantAddress 3097 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3098 unsigned StringLength = 0; 3099 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3100 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3101 3102 if (auto *C = Entry.second) 3103 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3104 3105 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3106 llvm::Constant *Zeros[] = { Zero, Zero }; 3107 llvm::Value *V; 3108 // If we don't already have it, get _NSConstantStringClassReference. 3109 if (!ConstantStringClassRef) { 3110 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3111 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3112 llvm::Constant *GV; 3113 if (LangOpts.ObjCRuntime.isNonFragile()) { 3114 std::string str = 3115 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3116 : "OBJC_CLASS_$_" + StringClass; 3117 GV = getObjCRuntime().GetClassGlobal(str); 3118 // Make sure the result is of the correct type. 3119 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3120 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3121 ConstantStringClassRef = V; 3122 } else { 3123 std::string str = 3124 StringClass.empty() ? "_NSConstantStringClassReference" 3125 : "_" + StringClass + "ClassReference"; 3126 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3127 GV = CreateRuntimeVariable(PTy, str); 3128 // Decay array -> ptr 3129 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3130 ConstantStringClassRef = V; 3131 } 3132 } else 3133 V = ConstantStringClassRef; 3134 3135 if (!NSConstantStringType) { 3136 // Construct the type for a constant NSString. 3137 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3138 D->startDefinition(); 3139 3140 QualType FieldTypes[3]; 3141 3142 // const int *isa; 3143 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3144 // const char *str; 3145 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3146 // unsigned int length; 3147 FieldTypes[2] = Context.UnsignedIntTy; 3148 3149 // Create fields 3150 for (unsigned i = 0; i < 3; ++i) { 3151 FieldDecl *Field = FieldDecl::Create(Context, D, 3152 SourceLocation(), 3153 SourceLocation(), nullptr, 3154 FieldTypes[i], /*TInfo=*/nullptr, 3155 /*BitWidth=*/nullptr, 3156 /*Mutable=*/false, 3157 ICIS_NoInit); 3158 Field->setAccess(AS_public); 3159 D->addDecl(Field); 3160 } 3161 3162 D->completeDefinition(); 3163 QualType NSTy = Context.getTagDeclType(D); 3164 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3165 } 3166 3167 llvm::Constant *Fields[3]; 3168 3169 // Class pointer. 3170 Fields[0] = cast<llvm::ConstantExpr>(V); 3171 3172 // String pointer. 3173 llvm::Constant *C = 3174 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3175 3176 llvm::GlobalValue::LinkageTypes Linkage; 3177 bool isConstant; 3178 Linkage = llvm::GlobalValue::PrivateLinkage; 3179 isConstant = !LangOpts.WritableStrings; 3180 3181 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3182 Linkage, C, ".str"); 3183 GV->setUnnamedAddr(true); 3184 // Don't enforce the target's minimum global alignment, since the only use 3185 // of the string is via this class initializer. 3186 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3187 GV->setAlignment(Align.getQuantity()); 3188 Fields[1] = 3189 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3190 3191 // String length. 3192 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3193 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3194 3195 // The struct. 3196 CharUnits Alignment = getPointerAlign(); 3197 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3198 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3199 llvm::GlobalVariable::PrivateLinkage, C, 3200 "_unnamed_nsstring_"); 3201 GV->setAlignment(Alignment.getQuantity()); 3202 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3203 const char *NSStringNonFragileABISection = 3204 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3205 // FIXME. Fix section. 3206 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3207 ? NSStringNonFragileABISection 3208 : NSStringSection); 3209 Entry.second = GV; 3210 3211 return ConstantAddress(GV, Alignment); 3212 } 3213 3214 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3215 if (ObjCFastEnumerationStateType.isNull()) { 3216 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3217 D->startDefinition(); 3218 3219 QualType FieldTypes[] = { 3220 Context.UnsignedLongTy, 3221 Context.getPointerType(Context.getObjCIdType()), 3222 Context.getPointerType(Context.UnsignedLongTy), 3223 Context.getConstantArrayType(Context.UnsignedLongTy, 3224 llvm::APInt(32, 5), ArrayType::Normal, 0) 3225 }; 3226 3227 for (size_t i = 0; i < 4; ++i) { 3228 FieldDecl *Field = FieldDecl::Create(Context, 3229 D, 3230 SourceLocation(), 3231 SourceLocation(), nullptr, 3232 FieldTypes[i], /*TInfo=*/nullptr, 3233 /*BitWidth=*/nullptr, 3234 /*Mutable=*/false, 3235 ICIS_NoInit); 3236 Field->setAccess(AS_public); 3237 D->addDecl(Field); 3238 } 3239 3240 D->completeDefinition(); 3241 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3242 } 3243 3244 return ObjCFastEnumerationStateType; 3245 } 3246 3247 llvm::Constant * 3248 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3249 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3250 3251 // Don't emit it as the address of the string, emit the string data itself 3252 // as an inline array. 3253 if (E->getCharByteWidth() == 1) { 3254 SmallString<64> Str(E->getString()); 3255 3256 // Resize the string to the right size, which is indicated by its type. 3257 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3258 Str.resize(CAT->getSize().getZExtValue()); 3259 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3260 } 3261 3262 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3263 llvm::Type *ElemTy = AType->getElementType(); 3264 unsigned NumElements = AType->getNumElements(); 3265 3266 // Wide strings have either 2-byte or 4-byte elements. 3267 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3268 SmallVector<uint16_t, 32> Elements; 3269 Elements.reserve(NumElements); 3270 3271 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3272 Elements.push_back(E->getCodeUnit(i)); 3273 Elements.resize(NumElements); 3274 return llvm::ConstantDataArray::get(VMContext, Elements); 3275 } 3276 3277 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3278 SmallVector<uint32_t, 32> Elements; 3279 Elements.reserve(NumElements); 3280 3281 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3282 Elements.push_back(E->getCodeUnit(i)); 3283 Elements.resize(NumElements); 3284 return llvm::ConstantDataArray::get(VMContext, Elements); 3285 } 3286 3287 static llvm::GlobalVariable * 3288 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3289 CodeGenModule &CGM, StringRef GlobalName, 3290 CharUnits Alignment) { 3291 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3292 unsigned AddrSpace = 0; 3293 if (CGM.getLangOpts().OpenCL) 3294 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3295 3296 llvm::Module &M = CGM.getModule(); 3297 // Create a global variable for this string 3298 auto *GV = new llvm::GlobalVariable( 3299 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3300 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3301 GV->setAlignment(Alignment.getQuantity()); 3302 GV->setUnnamedAddr(true); 3303 if (GV->isWeakForLinker()) { 3304 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3305 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3306 } 3307 3308 return GV; 3309 } 3310 3311 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3312 /// constant array for the given string literal. 3313 ConstantAddress 3314 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3315 StringRef Name) { 3316 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3317 3318 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3319 llvm::GlobalVariable **Entry = nullptr; 3320 if (!LangOpts.WritableStrings) { 3321 Entry = &ConstantStringMap[C]; 3322 if (auto GV = *Entry) { 3323 if (Alignment.getQuantity() > GV->getAlignment()) 3324 GV->setAlignment(Alignment.getQuantity()); 3325 return ConstantAddress(GV, Alignment); 3326 } 3327 } 3328 3329 SmallString<256> MangledNameBuffer; 3330 StringRef GlobalVariableName; 3331 llvm::GlobalValue::LinkageTypes LT; 3332 3333 // Mangle the string literal if the ABI allows for it. However, we cannot 3334 // do this if we are compiling with ASan or -fwritable-strings because they 3335 // rely on strings having normal linkage. 3336 if (!LangOpts.WritableStrings && 3337 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3338 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3339 llvm::raw_svector_ostream Out(MangledNameBuffer); 3340 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3341 3342 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3343 GlobalVariableName = MangledNameBuffer; 3344 } else { 3345 LT = llvm::GlobalValue::PrivateLinkage; 3346 GlobalVariableName = Name; 3347 } 3348 3349 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3350 if (Entry) 3351 *Entry = GV; 3352 3353 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3354 QualType()); 3355 return ConstantAddress(GV, Alignment); 3356 } 3357 3358 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3359 /// array for the given ObjCEncodeExpr node. 3360 ConstantAddress 3361 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3362 std::string Str; 3363 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3364 3365 return GetAddrOfConstantCString(Str); 3366 } 3367 3368 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3369 /// the literal and a terminating '\0' character. 3370 /// The result has pointer to array type. 3371 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3372 const std::string &Str, const char *GlobalName) { 3373 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3374 CharUnits Alignment = 3375 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3376 3377 llvm::Constant *C = 3378 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3379 3380 // Don't share any string literals if strings aren't constant. 3381 llvm::GlobalVariable **Entry = nullptr; 3382 if (!LangOpts.WritableStrings) { 3383 Entry = &ConstantStringMap[C]; 3384 if (auto GV = *Entry) { 3385 if (Alignment.getQuantity() > GV->getAlignment()) 3386 GV->setAlignment(Alignment.getQuantity()); 3387 return ConstantAddress(GV, Alignment); 3388 } 3389 } 3390 3391 // Get the default prefix if a name wasn't specified. 3392 if (!GlobalName) 3393 GlobalName = ".str"; 3394 // Create a global variable for this. 3395 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3396 GlobalName, Alignment); 3397 if (Entry) 3398 *Entry = GV; 3399 return ConstantAddress(GV, Alignment); 3400 } 3401 3402 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3403 const MaterializeTemporaryExpr *E, const Expr *Init) { 3404 assert((E->getStorageDuration() == SD_Static || 3405 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3406 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3407 3408 // If we're not materializing a subobject of the temporary, keep the 3409 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3410 QualType MaterializedType = Init->getType(); 3411 if (Init == E->GetTemporaryExpr()) 3412 MaterializedType = E->getType(); 3413 3414 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3415 3416 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3417 return ConstantAddress(Slot, Align); 3418 3419 // FIXME: If an externally-visible declaration extends multiple temporaries, 3420 // we need to give each temporary the same name in every translation unit (and 3421 // we also need to make the temporaries externally-visible). 3422 SmallString<256> Name; 3423 llvm::raw_svector_ostream Out(Name); 3424 getCXXABI().getMangleContext().mangleReferenceTemporary( 3425 VD, E->getManglingNumber(), Out); 3426 3427 APValue *Value = nullptr; 3428 if (E->getStorageDuration() == SD_Static) { 3429 // We might have a cached constant initializer for this temporary. Note 3430 // that this might have a different value from the value computed by 3431 // evaluating the initializer if the surrounding constant expression 3432 // modifies the temporary. 3433 Value = getContext().getMaterializedTemporaryValue(E, false); 3434 if (Value && Value->isUninit()) 3435 Value = nullptr; 3436 } 3437 3438 // Try evaluating it now, it might have a constant initializer. 3439 Expr::EvalResult EvalResult; 3440 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3441 !EvalResult.hasSideEffects()) 3442 Value = &EvalResult.Val; 3443 3444 llvm::Constant *InitialValue = nullptr; 3445 bool Constant = false; 3446 llvm::Type *Type; 3447 if (Value) { 3448 // The temporary has a constant initializer, use it. 3449 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3450 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3451 Type = InitialValue->getType(); 3452 } else { 3453 // No initializer, the initialization will be provided when we 3454 // initialize the declaration which performed lifetime extension. 3455 Type = getTypes().ConvertTypeForMem(MaterializedType); 3456 } 3457 3458 // Create a global variable for this lifetime-extended temporary. 3459 llvm::GlobalValue::LinkageTypes Linkage = 3460 getLLVMLinkageVarDefinition(VD, Constant); 3461 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3462 const VarDecl *InitVD; 3463 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3464 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3465 // Temporaries defined inside a class get linkonce_odr linkage because the 3466 // class can be defined in multipe translation units. 3467 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3468 } else { 3469 // There is no need for this temporary to have external linkage if the 3470 // VarDecl has external linkage. 3471 Linkage = llvm::GlobalVariable::InternalLinkage; 3472 } 3473 } 3474 unsigned AddrSpace = GetGlobalVarAddressSpace( 3475 VD, getContext().getTargetAddressSpace(MaterializedType)); 3476 auto *GV = new llvm::GlobalVariable( 3477 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3478 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3479 AddrSpace); 3480 setGlobalVisibility(GV, VD); 3481 GV->setAlignment(Align.getQuantity()); 3482 if (supportsCOMDAT() && GV->isWeakForLinker()) 3483 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3484 if (VD->getTLSKind()) 3485 setTLSMode(GV, *VD); 3486 MaterializedGlobalTemporaryMap[E] = GV; 3487 return ConstantAddress(GV, Align); 3488 } 3489 3490 /// EmitObjCPropertyImplementations - Emit information for synthesized 3491 /// properties for an implementation. 3492 void CodeGenModule::EmitObjCPropertyImplementations(const 3493 ObjCImplementationDecl *D) { 3494 for (const auto *PID : D->property_impls()) { 3495 // Dynamic is just for type-checking. 3496 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3497 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3498 3499 // Determine which methods need to be implemented, some may have 3500 // been overridden. Note that ::isPropertyAccessor is not the method 3501 // we want, that just indicates if the decl came from a 3502 // property. What we want to know is if the method is defined in 3503 // this implementation. 3504 if (!D->getInstanceMethod(PD->getGetterName())) 3505 CodeGenFunction(*this).GenerateObjCGetter( 3506 const_cast<ObjCImplementationDecl *>(D), PID); 3507 if (!PD->isReadOnly() && 3508 !D->getInstanceMethod(PD->getSetterName())) 3509 CodeGenFunction(*this).GenerateObjCSetter( 3510 const_cast<ObjCImplementationDecl *>(D), PID); 3511 } 3512 } 3513 } 3514 3515 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3516 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3517 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3518 ivar; ivar = ivar->getNextIvar()) 3519 if (ivar->getType().isDestructedType()) 3520 return true; 3521 3522 return false; 3523 } 3524 3525 static bool AllTrivialInitializers(CodeGenModule &CGM, 3526 ObjCImplementationDecl *D) { 3527 CodeGenFunction CGF(CGM); 3528 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3529 E = D->init_end(); B != E; ++B) { 3530 CXXCtorInitializer *CtorInitExp = *B; 3531 Expr *Init = CtorInitExp->getInit(); 3532 if (!CGF.isTrivialInitializer(Init)) 3533 return false; 3534 } 3535 return true; 3536 } 3537 3538 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3539 /// for an implementation. 3540 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3541 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3542 if (needsDestructMethod(D)) { 3543 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3544 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3545 ObjCMethodDecl *DTORMethod = 3546 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3547 cxxSelector, getContext().VoidTy, nullptr, D, 3548 /*isInstance=*/true, /*isVariadic=*/false, 3549 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3550 /*isDefined=*/false, ObjCMethodDecl::Required); 3551 D->addInstanceMethod(DTORMethod); 3552 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3553 D->setHasDestructors(true); 3554 } 3555 3556 // If the implementation doesn't have any ivar initializers, we don't need 3557 // a .cxx_construct. 3558 if (D->getNumIvarInitializers() == 0 || 3559 AllTrivialInitializers(*this, D)) 3560 return; 3561 3562 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3563 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3564 // The constructor returns 'self'. 3565 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3566 D->getLocation(), 3567 D->getLocation(), 3568 cxxSelector, 3569 getContext().getObjCIdType(), 3570 nullptr, D, /*isInstance=*/true, 3571 /*isVariadic=*/false, 3572 /*isPropertyAccessor=*/true, 3573 /*isImplicitlyDeclared=*/true, 3574 /*isDefined=*/false, 3575 ObjCMethodDecl::Required); 3576 D->addInstanceMethod(CTORMethod); 3577 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3578 D->setHasNonZeroConstructors(true); 3579 } 3580 3581 /// EmitNamespace - Emit all declarations in a namespace. 3582 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3583 for (auto *I : ND->decls()) { 3584 if (const auto *VD = dyn_cast<VarDecl>(I)) 3585 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3586 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3587 continue; 3588 EmitTopLevelDecl(I); 3589 } 3590 } 3591 3592 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3593 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3594 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3595 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3596 ErrorUnsupported(LSD, "linkage spec"); 3597 return; 3598 } 3599 3600 for (auto *I : LSD->decls()) { 3601 // Meta-data for ObjC class includes references to implemented methods. 3602 // Generate class's method definitions first. 3603 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3604 for (auto *M : OID->methods()) 3605 EmitTopLevelDecl(M); 3606 } 3607 EmitTopLevelDecl(I); 3608 } 3609 } 3610 3611 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3612 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3613 // Ignore dependent declarations. 3614 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3615 return; 3616 3617 switch (D->getKind()) { 3618 case Decl::CXXConversion: 3619 case Decl::CXXMethod: 3620 case Decl::Function: 3621 // Skip function templates 3622 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3623 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3624 return; 3625 3626 EmitGlobal(cast<FunctionDecl>(D)); 3627 // Always provide some coverage mapping 3628 // even for the functions that aren't emitted. 3629 AddDeferredUnusedCoverageMapping(D); 3630 break; 3631 3632 case Decl::Var: 3633 // Skip variable templates 3634 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3635 return; 3636 case Decl::VarTemplateSpecialization: 3637 EmitGlobal(cast<VarDecl>(D)); 3638 break; 3639 3640 // Indirect fields from global anonymous structs and unions can be 3641 // ignored; only the actual variable requires IR gen support. 3642 case Decl::IndirectField: 3643 break; 3644 3645 // C++ Decls 3646 case Decl::Namespace: 3647 EmitNamespace(cast<NamespaceDecl>(D)); 3648 break; 3649 // No code generation needed. 3650 case Decl::UsingShadow: 3651 case Decl::ClassTemplate: 3652 case Decl::VarTemplate: 3653 case Decl::VarTemplatePartialSpecialization: 3654 case Decl::FunctionTemplate: 3655 case Decl::TypeAliasTemplate: 3656 case Decl::Block: 3657 case Decl::Empty: 3658 break; 3659 case Decl::Using: // using X; [C++] 3660 if (CGDebugInfo *DI = getModuleDebugInfo()) 3661 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3662 return; 3663 case Decl::NamespaceAlias: 3664 if (CGDebugInfo *DI = getModuleDebugInfo()) 3665 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3666 return; 3667 case Decl::UsingDirective: // using namespace X; [C++] 3668 if (CGDebugInfo *DI = getModuleDebugInfo()) 3669 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3670 return; 3671 case Decl::CXXConstructor: 3672 // Skip function templates 3673 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3674 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3675 return; 3676 3677 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3678 break; 3679 case Decl::CXXDestructor: 3680 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3681 return; 3682 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3683 break; 3684 3685 case Decl::StaticAssert: 3686 // Nothing to do. 3687 break; 3688 3689 // Objective-C Decls 3690 3691 // Forward declarations, no (immediate) code generation. 3692 case Decl::ObjCInterface: 3693 case Decl::ObjCCategory: 3694 break; 3695 3696 case Decl::ObjCProtocol: { 3697 auto *Proto = cast<ObjCProtocolDecl>(D); 3698 if (Proto->isThisDeclarationADefinition()) 3699 ObjCRuntime->GenerateProtocol(Proto); 3700 break; 3701 } 3702 3703 case Decl::ObjCCategoryImpl: 3704 // Categories have properties but don't support synthesize so we 3705 // can ignore them here. 3706 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3707 break; 3708 3709 case Decl::ObjCImplementation: { 3710 auto *OMD = cast<ObjCImplementationDecl>(D); 3711 EmitObjCPropertyImplementations(OMD); 3712 EmitObjCIvarInitializations(OMD); 3713 ObjCRuntime->GenerateClass(OMD); 3714 // Emit global variable debug information. 3715 if (CGDebugInfo *DI = getModuleDebugInfo()) 3716 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3717 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3718 OMD->getClassInterface()), OMD->getLocation()); 3719 break; 3720 } 3721 case Decl::ObjCMethod: { 3722 auto *OMD = cast<ObjCMethodDecl>(D); 3723 // If this is not a prototype, emit the body. 3724 if (OMD->getBody()) 3725 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3726 break; 3727 } 3728 case Decl::ObjCCompatibleAlias: 3729 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3730 break; 3731 3732 case Decl::PragmaComment: { 3733 const auto *PCD = cast<PragmaCommentDecl>(D); 3734 switch (PCD->getCommentKind()) { 3735 case PCK_Unknown: 3736 llvm_unreachable("unexpected pragma comment kind"); 3737 case PCK_Linker: 3738 AppendLinkerOptions(PCD->getArg()); 3739 break; 3740 case PCK_Lib: 3741 AddDependentLib(PCD->getArg()); 3742 break; 3743 case PCK_Compiler: 3744 case PCK_ExeStr: 3745 case PCK_User: 3746 break; // We ignore all of these. 3747 } 3748 break; 3749 } 3750 3751 case Decl::LinkageSpec: 3752 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3753 break; 3754 3755 case Decl::FileScopeAsm: { 3756 // File-scope asm is ignored during device-side CUDA compilation. 3757 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3758 break; 3759 // File-scope asm is ignored during device-side OpenMP compilation. 3760 if (LangOpts.OpenMPIsDevice) 3761 break; 3762 auto *AD = cast<FileScopeAsmDecl>(D); 3763 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3764 break; 3765 } 3766 3767 case Decl::Import: { 3768 auto *Import = cast<ImportDecl>(D); 3769 3770 // Ignore import declarations that come from imported modules. 3771 if (Import->getImportedOwningModule()) 3772 break; 3773 if (CGDebugInfo *DI = getModuleDebugInfo()) 3774 DI->EmitImportDecl(*Import); 3775 3776 ImportedModules.insert(Import->getImportedModule()); 3777 break; 3778 } 3779 3780 case Decl::OMPThreadPrivate: 3781 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3782 break; 3783 3784 case Decl::ClassTemplateSpecialization: { 3785 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3786 if (DebugInfo && 3787 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3788 Spec->hasDefinition()) 3789 DebugInfo->completeTemplateDefinition(*Spec); 3790 break; 3791 } 3792 3793 default: 3794 // Make sure we handled everything we should, every other kind is a 3795 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3796 // function. Need to recode Decl::Kind to do that easily. 3797 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3798 break; 3799 } 3800 } 3801 3802 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3803 // Do we need to generate coverage mapping? 3804 if (!CodeGenOpts.CoverageMapping) 3805 return; 3806 switch (D->getKind()) { 3807 case Decl::CXXConversion: 3808 case Decl::CXXMethod: 3809 case Decl::Function: 3810 case Decl::ObjCMethod: 3811 case Decl::CXXConstructor: 3812 case Decl::CXXDestructor: { 3813 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3814 return; 3815 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3816 if (I == DeferredEmptyCoverageMappingDecls.end()) 3817 DeferredEmptyCoverageMappingDecls[D] = true; 3818 break; 3819 } 3820 default: 3821 break; 3822 }; 3823 } 3824 3825 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3826 // Do we need to generate coverage mapping? 3827 if (!CodeGenOpts.CoverageMapping) 3828 return; 3829 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3830 if (Fn->isTemplateInstantiation()) 3831 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3832 } 3833 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3834 if (I == DeferredEmptyCoverageMappingDecls.end()) 3835 DeferredEmptyCoverageMappingDecls[D] = false; 3836 else 3837 I->second = false; 3838 } 3839 3840 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3841 std::vector<const Decl *> DeferredDecls; 3842 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3843 if (!I.second) 3844 continue; 3845 DeferredDecls.push_back(I.first); 3846 } 3847 // Sort the declarations by their location to make sure that the tests get a 3848 // predictable order for the coverage mapping for the unused declarations. 3849 if (CodeGenOpts.DumpCoverageMapping) 3850 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3851 [] (const Decl *LHS, const Decl *RHS) { 3852 return LHS->getLocStart() < RHS->getLocStart(); 3853 }); 3854 for (const auto *D : DeferredDecls) { 3855 switch (D->getKind()) { 3856 case Decl::CXXConversion: 3857 case Decl::CXXMethod: 3858 case Decl::Function: 3859 case Decl::ObjCMethod: { 3860 CodeGenPGO PGO(*this); 3861 GlobalDecl GD(cast<FunctionDecl>(D)); 3862 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3863 getFunctionLinkage(GD)); 3864 break; 3865 } 3866 case Decl::CXXConstructor: { 3867 CodeGenPGO PGO(*this); 3868 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3869 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3870 getFunctionLinkage(GD)); 3871 break; 3872 } 3873 case Decl::CXXDestructor: { 3874 CodeGenPGO PGO(*this); 3875 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3876 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3877 getFunctionLinkage(GD)); 3878 break; 3879 } 3880 default: 3881 break; 3882 }; 3883 } 3884 } 3885 3886 /// Turns the given pointer into a constant. 3887 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3888 const void *Ptr) { 3889 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3890 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3891 return llvm::ConstantInt::get(i64, PtrInt); 3892 } 3893 3894 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3895 llvm::NamedMDNode *&GlobalMetadata, 3896 GlobalDecl D, 3897 llvm::GlobalValue *Addr) { 3898 if (!GlobalMetadata) 3899 GlobalMetadata = 3900 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3901 3902 // TODO: should we report variant information for ctors/dtors? 3903 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3904 llvm::ConstantAsMetadata::get(GetPointerConstant( 3905 CGM.getLLVMContext(), D.getDecl()))}; 3906 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3907 } 3908 3909 /// For each function which is declared within an extern "C" region and marked 3910 /// as 'used', but has internal linkage, create an alias from the unmangled 3911 /// name to the mangled name if possible. People expect to be able to refer 3912 /// to such functions with an unmangled name from inline assembly within the 3913 /// same translation unit. 3914 void CodeGenModule::EmitStaticExternCAliases() { 3915 // Don't do anything if we're generating CUDA device code -- the NVPTX 3916 // assembly target doesn't support aliases. 3917 if (Context.getTargetInfo().getTriple().isNVPTX()) 3918 return; 3919 for (auto &I : StaticExternCValues) { 3920 IdentifierInfo *Name = I.first; 3921 llvm::GlobalValue *Val = I.second; 3922 if (Val && !getModule().getNamedValue(Name->getName())) 3923 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3924 } 3925 } 3926 3927 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3928 GlobalDecl &Result) const { 3929 auto Res = Manglings.find(MangledName); 3930 if (Res == Manglings.end()) 3931 return false; 3932 Result = Res->getValue(); 3933 return true; 3934 } 3935 3936 /// Emits metadata nodes associating all the global values in the 3937 /// current module with the Decls they came from. This is useful for 3938 /// projects using IR gen as a subroutine. 3939 /// 3940 /// Since there's currently no way to associate an MDNode directly 3941 /// with an llvm::GlobalValue, we create a global named metadata 3942 /// with the name 'clang.global.decl.ptrs'. 3943 void CodeGenModule::EmitDeclMetadata() { 3944 llvm::NamedMDNode *GlobalMetadata = nullptr; 3945 3946 for (auto &I : MangledDeclNames) { 3947 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3948 // Some mangled names don't necessarily have an associated GlobalValue 3949 // in this module, e.g. if we mangled it for DebugInfo. 3950 if (Addr) 3951 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3952 } 3953 } 3954 3955 /// Emits metadata nodes for all the local variables in the current 3956 /// function. 3957 void CodeGenFunction::EmitDeclMetadata() { 3958 if (LocalDeclMap.empty()) return; 3959 3960 llvm::LLVMContext &Context = getLLVMContext(); 3961 3962 // Find the unique metadata ID for this name. 3963 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3964 3965 llvm::NamedMDNode *GlobalMetadata = nullptr; 3966 3967 for (auto &I : LocalDeclMap) { 3968 const Decl *D = I.first; 3969 llvm::Value *Addr = I.second.getPointer(); 3970 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3971 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3972 Alloca->setMetadata( 3973 DeclPtrKind, llvm::MDNode::get( 3974 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3975 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3976 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3977 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3978 } 3979 } 3980 } 3981 3982 void CodeGenModule::EmitVersionIdentMetadata() { 3983 llvm::NamedMDNode *IdentMetadata = 3984 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3985 std::string Version = getClangFullVersion(); 3986 llvm::LLVMContext &Ctx = TheModule.getContext(); 3987 3988 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3989 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3990 } 3991 3992 void CodeGenModule::EmitTargetMetadata() { 3993 // Warning, new MangledDeclNames may be appended within this loop. 3994 // We rely on MapVector insertions adding new elements to the end 3995 // of the container. 3996 // FIXME: Move this loop into the one target that needs it, and only 3997 // loop over those declarations for which we couldn't emit the target 3998 // metadata when we emitted the declaration. 3999 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4000 auto Val = *(MangledDeclNames.begin() + I); 4001 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4002 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4003 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4004 } 4005 } 4006 4007 void CodeGenModule::EmitCoverageFile() { 4008 if (!getCodeGenOpts().CoverageFile.empty()) { 4009 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 4010 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4011 llvm::LLVMContext &Ctx = TheModule.getContext(); 4012 llvm::MDString *CoverageFile = 4013 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 4014 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4015 llvm::MDNode *CU = CUNode->getOperand(i); 4016 llvm::Metadata *Elts[] = {CoverageFile, CU}; 4017 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4018 } 4019 } 4020 } 4021 } 4022 4023 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4024 // Sema has checked that all uuid strings are of the form 4025 // "12345678-1234-1234-1234-1234567890ab". 4026 assert(Uuid.size() == 36); 4027 for (unsigned i = 0; i < 36; ++i) { 4028 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4029 else assert(isHexDigit(Uuid[i])); 4030 } 4031 4032 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4033 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4034 4035 llvm::Constant *Field3[8]; 4036 for (unsigned Idx = 0; Idx < 8; ++Idx) 4037 Field3[Idx] = llvm::ConstantInt::get( 4038 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4039 4040 llvm::Constant *Fields[4] = { 4041 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4042 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4043 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4044 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4045 }; 4046 4047 return llvm::ConstantStruct::getAnon(Fields); 4048 } 4049 4050 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4051 bool ForEH) { 4052 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4053 // FIXME: should we even be calling this method if RTTI is disabled 4054 // and it's not for EH? 4055 if (!ForEH && !getLangOpts().RTTI) 4056 return llvm::Constant::getNullValue(Int8PtrTy); 4057 4058 if (ForEH && Ty->isObjCObjectPointerType() && 4059 LangOpts.ObjCRuntime.isGNUFamily()) 4060 return ObjCRuntime->GetEHType(Ty); 4061 4062 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4063 } 4064 4065 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4066 for (auto RefExpr : D->varlists()) { 4067 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4068 bool PerformInit = 4069 VD->getAnyInitializer() && 4070 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4071 /*ForRef=*/false); 4072 4073 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4074 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4075 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4076 CXXGlobalInits.push_back(InitFunction); 4077 } 4078 } 4079 4080 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4081 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4082 if (InternalId) 4083 return InternalId; 4084 4085 if (isExternallyVisible(T->getLinkage())) { 4086 std::string OutName; 4087 llvm::raw_string_ostream Out(OutName); 4088 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4089 4090 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4091 } else { 4092 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4093 llvm::ArrayRef<llvm::Metadata *>()); 4094 } 4095 4096 return InternalId; 4097 } 4098 4099 /// Returns whether this module needs the "all-vtables" bitset. 4100 bool CodeGenModule::NeedAllVtablesBitSet() const { 4101 // Returns true if at least one of vtable-based CFI checkers is enabled and 4102 // is not in the trapping mode. 4103 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4104 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4105 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4106 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4107 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4108 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4109 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4110 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4111 } 4112 4113 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 4114 llvm::GlobalVariable *VTable, 4115 CharUnits Offset, 4116 const CXXRecordDecl *RD) { 4117 llvm::Metadata *MD = 4118 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4119 llvm::Metadata *BitsetOps[] = { 4120 MD, llvm::ConstantAsMetadata::get(VTable), 4121 llvm::ConstantAsMetadata::get( 4122 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4123 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4124 4125 if (CodeGenOpts.SanitizeCfiCrossDso) { 4126 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 4127 llvm::Metadata *BitsetOps2[] = { 4128 llvm::ConstantAsMetadata::get(TypeId), 4129 llvm::ConstantAsMetadata::get(VTable), 4130 llvm::ConstantAsMetadata::get( 4131 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4132 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 4133 } 4134 } 4135 4136 if (NeedAllVtablesBitSet()) { 4137 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4138 llvm::Metadata *BitsetOps[] = { 4139 MD, llvm::ConstantAsMetadata::get(VTable), 4140 llvm::ConstantAsMetadata::get( 4141 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4142 // Avoid adding a node to BitsetsMD twice. 4143 if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps)) 4144 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4145 } 4146 } 4147 4148 // Fills in the supplied string map with the set of target features for the 4149 // passed in function. 4150 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4151 const FunctionDecl *FD) { 4152 StringRef TargetCPU = Target.getTargetOpts().CPU; 4153 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4154 // If we have a TargetAttr build up the feature map based on that. 4155 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4156 4157 // Make a copy of the features as passed on the command line into the 4158 // beginning of the additional features from the function to override. 4159 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4160 Target.getTargetOpts().FeaturesAsWritten.begin(), 4161 Target.getTargetOpts().FeaturesAsWritten.end()); 4162 4163 if (ParsedAttr.second != "") 4164 TargetCPU = ParsedAttr.second; 4165 4166 // Now populate the feature map, first with the TargetCPU which is either 4167 // the default or a new one from the target attribute string. Then we'll use 4168 // the passed in features (FeaturesAsWritten) along with the new ones from 4169 // the attribute. 4170 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4171 } else { 4172 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4173 Target.getTargetOpts().Features); 4174 } 4175 } 4176 4177 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4178 if (!SanStats) 4179 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4180 4181 return *SanStats; 4182 } 4183