1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 423 if (PGOStats.hasDiagnostics()) 424 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 425 } 426 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 427 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 428 EmitGlobalAnnotations(); 429 EmitStaticExternCAliases(); 430 EmitDeferredUnusedCoverageMappings(); 431 if (CoverageMapping) 432 CoverageMapping->emit(); 433 if (CodeGenOpts.SanitizeCfiCrossDso) { 434 CodeGenFunction(*this).EmitCfiCheckFail(); 435 CodeGenFunction(*this).EmitCfiCheckStub(); 436 } 437 emitAtAvailableLinkGuard(); 438 emitLLVMUsed(); 439 if (SanStats) 440 SanStats->finish(); 441 442 if (CodeGenOpts.Autolink && 443 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 444 EmitModuleLinkOptions(); 445 } 446 447 // Record mregparm value now so it is visible through rest of codegen. 448 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 449 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 450 CodeGenOpts.NumRegisterParameters); 451 452 if (CodeGenOpts.DwarfVersion) { 453 // We actually want the latest version when there are conflicts. 454 // We can change from Warning to Latest if such mode is supported. 455 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 456 CodeGenOpts.DwarfVersion); 457 } 458 if (CodeGenOpts.EmitCodeView) { 459 // Indicate that we want CodeView in the metadata. 460 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 461 } 462 if (CodeGenOpts.ControlFlowGuard) { 463 // We want function ID tables for Control Flow Guard. 464 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 465 } 466 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 467 // We don't support LTO with 2 with different StrictVTablePointers 468 // FIXME: we could support it by stripping all the information introduced 469 // by StrictVTablePointers. 470 471 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 472 473 llvm::Metadata *Ops[2] = { 474 llvm::MDString::get(VMContext, "StrictVTablePointers"), 475 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 476 llvm::Type::getInt32Ty(VMContext), 1))}; 477 478 getModule().addModuleFlag(llvm::Module::Require, 479 "StrictVTablePointersRequirement", 480 llvm::MDNode::get(VMContext, Ops)); 481 } 482 if (DebugInfo) 483 // We support a single version in the linked module. The LLVM 484 // parser will drop debug info with a different version number 485 // (and warn about it, too). 486 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 487 llvm::DEBUG_METADATA_VERSION); 488 489 // We need to record the widths of enums and wchar_t, so that we can generate 490 // the correct build attributes in the ARM backend. wchar_size is also used by 491 // TargetLibraryInfo. 492 uint64_t WCharWidth = 493 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 494 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 495 496 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 497 if ( Arch == llvm::Triple::arm 498 || Arch == llvm::Triple::armeb 499 || Arch == llvm::Triple::thumb 500 || Arch == llvm::Triple::thumbeb) { 501 // The minimum width of an enum in bytes 502 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 503 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 504 } 505 506 if (CodeGenOpts.SanitizeCfiCrossDso) { 507 // Indicate that we want cross-DSO control flow integrity checks. 508 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 509 } 510 511 if (CodeGenOpts.CFProtectionReturn && 512 Target.checkCFProtectionReturnSupported(getDiags())) { 513 // Indicate that we want to instrument return control flow protection. 514 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 515 1); 516 } 517 518 if (CodeGenOpts.CFProtectionBranch && 519 Target.checkCFProtectionBranchSupported(getDiags())) { 520 // Indicate that we want to instrument branch control flow protection. 521 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 522 1); 523 } 524 525 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 526 // Indicate whether __nvvm_reflect should be configured to flush denormal 527 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 528 // property.) 529 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 530 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 531 } 532 533 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 534 if (LangOpts.OpenCL) { 535 EmitOpenCLMetadata(); 536 // Emit SPIR version. 537 if (getTriple().getArch() == llvm::Triple::spir || 538 getTriple().getArch() == llvm::Triple::spir64) { 539 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 540 // opencl.spir.version named metadata. 541 llvm::Metadata *SPIRVerElts[] = { 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, LangOpts.OpenCLVersion / 100)), 544 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 545 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 546 llvm::NamedMDNode *SPIRVerMD = 547 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 548 llvm::LLVMContext &Ctx = TheModule.getContext(); 549 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 550 } 551 } 552 553 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 554 assert(PLevel < 3 && "Invalid PIC Level"); 555 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 556 if (Context.getLangOpts().PIE) 557 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 558 } 559 560 if (CodeGenOpts.NoPLT) 561 getModule().setRtLibUseGOT(); 562 563 SimplifyPersonality(); 564 565 if (getCodeGenOpts().EmitDeclMetadata) 566 EmitDeclMetadata(); 567 568 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 569 EmitCoverageFile(); 570 571 if (DebugInfo) 572 DebugInfo->finalize(); 573 574 EmitVersionIdentMetadata(); 575 576 EmitTargetMetadata(); 577 } 578 579 void CodeGenModule::EmitOpenCLMetadata() { 580 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 581 // opencl.ocl.version named metadata node. 582 llvm::Metadata *OCLVerElts[] = { 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, LangOpts.OpenCLVersion / 100)), 585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 586 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 587 llvm::NamedMDNode *OCLVerMD = 588 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 589 llvm::LLVMContext &Ctx = TheModule.getContext(); 590 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 591 } 592 593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 594 // Make sure that this type is translated. 595 Types.UpdateCompletedType(TD); 596 } 597 598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 599 // Make sure that this type is translated. 600 Types.RefreshTypeCacheForClass(RD); 601 } 602 603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 604 if (!TBAA) 605 return nullptr; 606 return TBAA->getTypeInfo(QTy); 607 } 608 609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 610 if (!TBAA) 611 return TBAAAccessInfo(); 612 return TBAA->getAccessInfo(AccessType); 613 } 614 615 TBAAAccessInfo 616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 617 if (!TBAA) 618 return TBAAAccessInfo(); 619 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 620 } 621 622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 623 if (!TBAA) 624 return nullptr; 625 return TBAA->getTBAAStructInfo(QTy); 626 } 627 628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 629 if (!TBAA) 630 return nullptr; 631 return TBAA->getBaseTypeInfo(QTy); 632 } 633 634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 635 if (!TBAA) 636 return nullptr; 637 return TBAA->getAccessTagInfo(Info); 638 } 639 640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 641 TBAAAccessInfo TargetInfo) { 642 if (!TBAA) 643 return TBAAAccessInfo(); 644 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 645 } 646 647 TBAAAccessInfo 648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 649 TBAAAccessInfo InfoB) { 650 if (!TBAA) 651 return TBAAAccessInfo(); 652 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 653 } 654 655 TBAAAccessInfo 656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 657 TBAAAccessInfo SrcInfo) { 658 if (!TBAA) 659 return TBAAAccessInfo(); 660 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 661 } 662 663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 664 TBAAAccessInfo TBAAInfo) { 665 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 666 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 667 } 668 669 void CodeGenModule::DecorateInstructionWithInvariantGroup( 670 llvm::Instruction *I, const CXXRecordDecl *RD) { 671 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 672 llvm::MDNode::get(getLLVMContext(), {})); 673 } 674 675 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 676 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 677 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 678 } 679 680 /// ErrorUnsupported - Print out an error that codegen doesn't support the 681 /// specified stmt yet. 682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 683 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 684 "cannot compile this %0 yet"); 685 std::string Msg = Type; 686 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 687 << Msg << S->getSourceRange(); 688 } 689 690 /// ErrorUnsupported - Print out an error that codegen doesn't support the 691 /// specified decl yet. 692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 693 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 694 "cannot compile this %0 yet"); 695 std::string Msg = Type; 696 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 697 } 698 699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 700 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 701 } 702 703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 704 const NamedDecl *D) const { 705 if (GV->hasDLLImportStorageClass()) 706 return; 707 // Internal definitions always have default visibility. 708 if (GV->hasLocalLinkage()) { 709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 710 return; 711 } 712 if (!D) 713 return; 714 // Set visibility for definitions. 715 LinkageInfo LV = D->getLinkageAndVisibility(); 716 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 717 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 718 } 719 720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 721 llvm::GlobalValue *GV) { 722 if (GV->hasLocalLinkage()) 723 return true; 724 725 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 726 return true; 727 728 // DLLImport explicitly marks the GV as external. 729 if (GV->hasDLLImportStorageClass()) 730 return false; 731 732 const llvm::Triple &TT = CGM.getTriple(); 733 // Every other GV is local on COFF. 734 // Make an exception for windows OS in the triple: Some firmware builds use 735 // *-win32-macho triples. This (accidentally?) produced windows relocations 736 // without GOT tables in older clang versions; Keep this behaviour. 737 // FIXME: even thread local variables? 738 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 739 return true; 740 741 // Only handle COFF and ELF for now. 742 if (!TT.isOSBinFormatELF()) 743 return false; 744 745 // If this is not an executable, don't assume anything is local. 746 const auto &CGOpts = CGM.getCodeGenOpts(); 747 llvm::Reloc::Model RM = CGOpts.RelocationModel; 748 const auto &LOpts = CGM.getLangOpts(); 749 if (RM != llvm::Reloc::Static && !LOpts.PIE) 750 return false; 751 752 // A definition cannot be preempted from an executable. 753 if (!GV->isDeclarationForLinker()) 754 return true; 755 756 // Most PIC code sequences that assume that a symbol is local cannot produce a 757 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 758 // depended, it seems worth it to handle it here. 759 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 760 return false; 761 762 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 763 llvm::Triple::ArchType Arch = TT.getArch(); 764 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 765 Arch == llvm::Triple::ppc64le) 766 return false; 767 768 // If we can use copy relocations we can assume it is local. 769 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 770 if (!Var->isThreadLocal() && 771 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 772 return true; 773 774 // If we can use a plt entry as the symbol address we can assume it 775 // is local. 776 // FIXME: This should work for PIE, but the gold linker doesn't support it. 777 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 778 return true; 779 780 // Otherwise don't assue it is local. 781 return false; 782 } 783 784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 785 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 786 } 787 788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 789 GlobalDecl GD) const { 790 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 791 // C++ destructors have a few C++ ABI specific special cases. 792 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 793 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 794 return; 795 } 796 setDLLImportDLLExport(GV, D); 797 } 798 799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 800 const NamedDecl *D) const { 801 if (D && D->isExternallyVisible()) { 802 if (D->hasAttr<DLLImportAttr>()) 803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 804 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 805 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 806 } 807 } 808 809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 810 GlobalDecl GD) const { 811 setDLLImportDLLExport(GV, GD); 812 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 813 } 814 815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 816 const NamedDecl *D) const { 817 setDLLImportDLLExport(GV, D); 818 setGlobalVisibilityAndLocal(GV, D); 819 } 820 821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 setGlobalVisibility(GV, D); 824 setDSOLocal(GV); 825 } 826 827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 828 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 829 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 830 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 831 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 832 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 833 } 834 835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 836 CodeGenOptions::TLSModel M) { 837 switch (M) { 838 case CodeGenOptions::GeneralDynamicTLSModel: 839 return llvm::GlobalVariable::GeneralDynamicTLSModel; 840 case CodeGenOptions::LocalDynamicTLSModel: 841 return llvm::GlobalVariable::LocalDynamicTLSModel; 842 case CodeGenOptions::InitialExecTLSModel: 843 return llvm::GlobalVariable::InitialExecTLSModel; 844 case CodeGenOptions::LocalExecTLSModel: 845 return llvm::GlobalVariable::LocalExecTLSModel; 846 } 847 llvm_unreachable("Invalid TLS model!"); 848 } 849 850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 851 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 852 853 llvm::GlobalValue::ThreadLocalMode TLM; 854 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 855 856 // Override the TLS model if it is explicitly specified. 857 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 858 TLM = GetLLVMTLSModel(Attr->getModel()); 859 } 860 861 GV->setThreadLocalMode(TLM); 862 } 863 864 static void AppendTargetMangling(const CodeGenModule &CGM, 865 const TargetAttr *Attr, raw_ostream &Out) { 866 if (Attr->isDefaultVersion()) 867 return; 868 869 Out << '.'; 870 const auto &Target = CGM.getTarget(); 871 TargetAttr::ParsedTargetAttr Info = 872 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 873 // Multiversioning doesn't allow "no-${feature}", so we can 874 // only have "+" prefixes here. 875 assert(LHS.startswith("+") && RHS.startswith("+") && 876 "Features should always have a prefix."); 877 return Target.multiVersionSortPriority(LHS.substr(1)) > 878 Target.multiVersionSortPriority(RHS.substr(1)); 879 }); 880 881 bool IsFirst = true; 882 883 if (!Info.Architecture.empty()) { 884 IsFirst = false; 885 Out << "arch_" << Info.Architecture; 886 } 887 888 for (StringRef Feat : Info.Features) { 889 if (!IsFirst) 890 Out << '_'; 891 IsFirst = false; 892 Out << Feat.substr(1); 893 } 894 } 895 896 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 897 const NamedDecl *ND, 898 bool OmitTargetMangling = false) { 899 SmallString<256> Buffer; 900 llvm::raw_svector_ostream Out(Buffer); 901 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 902 if (MC.shouldMangleDeclName(ND)) { 903 llvm::raw_svector_ostream Out(Buffer); 904 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 905 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 906 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 907 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 908 else 909 MC.mangleName(ND, Out); 910 } else { 911 IdentifierInfo *II = ND->getIdentifier(); 912 assert(II && "Attempt to mangle unnamed decl."); 913 const auto *FD = dyn_cast<FunctionDecl>(ND); 914 915 if (FD && 916 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 917 llvm::raw_svector_ostream Out(Buffer); 918 Out << "__regcall3__" << II->getName(); 919 } else { 920 Out << II->getName(); 921 } 922 } 923 924 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 925 if (FD->isMultiVersion() && !OmitTargetMangling) 926 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 927 return Out.str(); 928 } 929 930 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 931 const FunctionDecl *FD) { 932 if (!FD->isMultiVersion()) 933 return; 934 935 // Get the name of what this would be without the 'target' attribute. This 936 // allows us to lookup the version that was emitted when this wasn't a 937 // multiversion function. 938 std::string NonTargetName = 939 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 940 GlobalDecl OtherGD; 941 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 942 assert(OtherGD.getCanonicalDecl() 943 .getDecl() 944 ->getAsFunction() 945 ->isMultiVersion() && 946 "Other GD should now be a multiversioned function"); 947 // OtherFD is the version of this function that was mangled BEFORE 948 // becoming a MultiVersion function. It potentially needs to be updated. 949 const FunctionDecl *OtherFD = 950 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 951 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 952 // This is so that if the initial version was already the 'default' 953 // version, we don't try to update it. 954 if (OtherName != NonTargetName) { 955 // Remove instead of erase, since others may have stored the StringRef 956 // to this. 957 const auto ExistingRecord = Manglings.find(NonTargetName); 958 if (ExistingRecord != std::end(Manglings)) 959 Manglings.remove(&(*ExistingRecord)); 960 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 961 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 962 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 963 Entry->setName(OtherName); 964 } 965 } 966 } 967 968 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 969 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 970 971 // Some ABIs don't have constructor variants. Make sure that base and 972 // complete constructors get mangled the same. 973 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 974 if (!getTarget().getCXXABI().hasConstructorVariants()) { 975 CXXCtorType OrigCtorType = GD.getCtorType(); 976 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 977 if (OrigCtorType == Ctor_Base) 978 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 979 } 980 } 981 982 auto FoundName = MangledDeclNames.find(CanonicalGD); 983 if (FoundName != MangledDeclNames.end()) 984 return FoundName->second; 985 986 987 // Keep the first result in the case of a mangling collision. 988 const auto *ND = cast<NamedDecl>(GD.getDecl()); 989 auto Result = 990 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 991 return MangledDeclNames[CanonicalGD] = Result.first->first(); 992 } 993 994 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 995 const BlockDecl *BD) { 996 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 997 const Decl *D = GD.getDecl(); 998 999 SmallString<256> Buffer; 1000 llvm::raw_svector_ostream Out(Buffer); 1001 if (!D) 1002 MangleCtx.mangleGlobalBlock(BD, 1003 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1004 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1005 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1006 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1007 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1008 else 1009 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1010 1011 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1012 return Result.first->first(); 1013 } 1014 1015 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1016 return getModule().getNamedValue(Name); 1017 } 1018 1019 /// AddGlobalCtor - Add a function to the list that will be called before 1020 /// main() runs. 1021 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1022 llvm::Constant *AssociatedData) { 1023 // FIXME: Type coercion of void()* types. 1024 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1025 } 1026 1027 /// AddGlobalDtor - Add a function to the list that will be called 1028 /// when the module is unloaded. 1029 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1030 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1031 DtorsUsingAtExit[Priority].push_back(Dtor); 1032 return; 1033 } 1034 1035 // FIXME: Type coercion of void()* types. 1036 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1037 } 1038 1039 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1040 if (Fns.empty()) return; 1041 1042 // Ctor function type is void()*. 1043 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1044 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1045 1046 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1047 llvm::StructType *CtorStructTy = llvm::StructType::get( 1048 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1049 1050 // Construct the constructor and destructor arrays. 1051 ConstantInitBuilder builder(*this); 1052 auto ctors = builder.beginArray(CtorStructTy); 1053 for (const auto &I : Fns) { 1054 auto ctor = ctors.beginStruct(CtorStructTy); 1055 ctor.addInt(Int32Ty, I.Priority); 1056 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1057 if (I.AssociatedData) 1058 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1059 else 1060 ctor.addNullPointer(VoidPtrTy); 1061 ctor.finishAndAddTo(ctors); 1062 } 1063 1064 auto list = 1065 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1066 /*constant*/ false, 1067 llvm::GlobalValue::AppendingLinkage); 1068 1069 // The LTO linker doesn't seem to like it when we set an alignment 1070 // on appending variables. Take it off as a workaround. 1071 list->setAlignment(0); 1072 1073 Fns.clear(); 1074 } 1075 1076 llvm::GlobalValue::LinkageTypes 1077 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1078 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1079 1080 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1081 1082 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1083 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1084 1085 if (isa<CXXConstructorDecl>(D) && 1086 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1087 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1088 // Our approach to inheriting constructors is fundamentally different from 1089 // that used by the MS ABI, so keep our inheriting constructor thunks 1090 // internal rather than trying to pick an unambiguous mangling for them. 1091 return llvm::GlobalValue::InternalLinkage; 1092 } 1093 1094 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1095 } 1096 1097 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1098 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1099 if (!MDS) return nullptr; 1100 1101 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1102 } 1103 1104 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1105 const CGFunctionInfo &Info, 1106 llvm::Function *F) { 1107 unsigned CallingConv; 1108 llvm::AttributeList PAL; 1109 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1110 F->setAttributes(PAL); 1111 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1112 } 1113 1114 /// Determines whether the language options require us to model 1115 /// unwind exceptions. We treat -fexceptions as mandating this 1116 /// except under the fragile ObjC ABI with only ObjC exceptions 1117 /// enabled. This means, for example, that C with -fexceptions 1118 /// enables this. 1119 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1120 // If exceptions are completely disabled, obviously this is false. 1121 if (!LangOpts.Exceptions) return false; 1122 1123 // If C++ exceptions are enabled, this is true. 1124 if (LangOpts.CXXExceptions) return true; 1125 1126 // If ObjC exceptions are enabled, this depends on the ABI. 1127 if (LangOpts.ObjCExceptions) { 1128 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1129 } 1130 1131 return true; 1132 } 1133 1134 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1135 llvm::Function *F) { 1136 llvm::AttrBuilder B; 1137 1138 if (CodeGenOpts.UnwindTables) 1139 B.addAttribute(llvm::Attribute::UWTable); 1140 1141 if (!hasUnwindExceptions(LangOpts)) 1142 B.addAttribute(llvm::Attribute::NoUnwind); 1143 1144 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1145 B.addAttribute(llvm::Attribute::StackProtect); 1146 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1147 B.addAttribute(llvm::Attribute::StackProtectStrong); 1148 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1149 B.addAttribute(llvm::Attribute::StackProtectReq); 1150 1151 if (!D) { 1152 // If we don't have a declaration to control inlining, the function isn't 1153 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1154 // disabled, mark the function as noinline. 1155 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1156 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1157 B.addAttribute(llvm::Attribute::NoInline); 1158 1159 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1160 return; 1161 } 1162 1163 // Track whether we need to add the optnone LLVM attribute, 1164 // starting with the default for this optimization level. 1165 bool ShouldAddOptNone = 1166 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1167 // We can't add optnone in the following cases, it won't pass the verifier. 1168 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1169 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1170 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1171 1172 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1173 B.addAttribute(llvm::Attribute::OptimizeNone); 1174 1175 // OptimizeNone implies noinline; we should not be inlining such functions. 1176 B.addAttribute(llvm::Attribute::NoInline); 1177 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1178 "OptimizeNone and AlwaysInline on same function!"); 1179 1180 // We still need to handle naked functions even though optnone subsumes 1181 // much of their semantics. 1182 if (D->hasAttr<NakedAttr>()) 1183 B.addAttribute(llvm::Attribute::Naked); 1184 1185 // OptimizeNone wins over OptimizeForSize and MinSize. 1186 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1187 F->removeFnAttr(llvm::Attribute::MinSize); 1188 } else if (D->hasAttr<NakedAttr>()) { 1189 // Naked implies noinline: we should not be inlining such functions. 1190 B.addAttribute(llvm::Attribute::Naked); 1191 B.addAttribute(llvm::Attribute::NoInline); 1192 } else if (D->hasAttr<NoDuplicateAttr>()) { 1193 B.addAttribute(llvm::Attribute::NoDuplicate); 1194 } else if (D->hasAttr<NoInlineAttr>()) { 1195 B.addAttribute(llvm::Attribute::NoInline); 1196 } else if (D->hasAttr<AlwaysInlineAttr>() && 1197 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1198 // (noinline wins over always_inline, and we can't specify both in IR) 1199 B.addAttribute(llvm::Attribute::AlwaysInline); 1200 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1201 // If we're not inlining, then force everything that isn't always_inline to 1202 // carry an explicit noinline attribute. 1203 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1204 B.addAttribute(llvm::Attribute::NoInline); 1205 } else { 1206 // Otherwise, propagate the inline hint attribute and potentially use its 1207 // absence to mark things as noinline. 1208 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1209 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1210 return Redecl->isInlineSpecified(); 1211 })) { 1212 B.addAttribute(llvm::Attribute::InlineHint); 1213 } else if (CodeGenOpts.getInlining() == 1214 CodeGenOptions::OnlyHintInlining && 1215 !FD->isInlined() && 1216 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1217 B.addAttribute(llvm::Attribute::NoInline); 1218 } 1219 } 1220 } 1221 1222 // Add other optimization related attributes if we are optimizing this 1223 // function. 1224 if (!D->hasAttr<OptimizeNoneAttr>()) { 1225 if (D->hasAttr<ColdAttr>()) { 1226 if (!ShouldAddOptNone) 1227 B.addAttribute(llvm::Attribute::OptimizeForSize); 1228 B.addAttribute(llvm::Attribute::Cold); 1229 } 1230 1231 if (D->hasAttr<MinSizeAttr>()) 1232 B.addAttribute(llvm::Attribute::MinSize); 1233 } 1234 1235 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1236 1237 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1238 if (alignment) 1239 F->setAlignment(alignment); 1240 1241 if (!D->hasAttr<AlignedAttr>()) 1242 if (LangOpts.FunctionAlignment) 1243 F->setAlignment(1 << LangOpts.FunctionAlignment); 1244 1245 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1246 // reserve a bit for differentiating between virtual and non-virtual member 1247 // functions. If the current target's C++ ABI requires this and this is a 1248 // member function, set its alignment accordingly. 1249 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1250 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1251 F->setAlignment(2); 1252 } 1253 1254 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1255 if (CodeGenOpts.SanitizeCfiCrossDso) 1256 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1257 CreateFunctionTypeMetadata(FD, F); 1258 } 1259 1260 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1261 const Decl *D = GD.getDecl(); 1262 if (dyn_cast_or_null<NamedDecl>(D)) 1263 setGVProperties(GV, GD); 1264 else 1265 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1266 1267 if (D && D->hasAttr<UsedAttr>()) 1268 addUsedGlobal(GV); 1269 } 1270 1271 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1272 llvm::AttrBuilder &Attrs) { 1273 // Add target-cpu and target-features attributes to functions. If 1274 // we have a decl for the function and it has a target attribute then 1275 // parse that and add it to the feature set. 1276 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1277 std::vector<std::string> Features; 1278 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1279 FD = FD ? FD->getMostRecentDecl() : FD; 1280 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1281 bool AddedAttr = false; 1282 if (TD) { 1283 llvm::StringMap<bool> FeatureMap; 1284 getFunctionFeatureMap(FeatureMap, FD); 1285 1286 // Produce the canonical string for this set of features. 1287 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1288 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1289 1290 // Now add the target-cpu and target-features to the function. 1291 // While we populated the feature map above, we still need to 1292 // get and parse the target attribute so we can get the cpu for 1293 // the function. 1294 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1295 if (ParsedAttr.Architecture != "" && 1296 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1297 TargetCPU = ParsedAttr.Architecture; 1298 } else { 1299 // Otherwise just add the existing target cpu and target features to the 1300 // function. 1301 Features = getTarget().getTargetOpts().Features; 1302 } 1303 1304 if (TargetCPU != "") { 1305 Attrs.addAttribute("target-cpu", TargetCPU); 1306 AddedAttr = true; 1307 } 1308 if (!Features.empty()) { 1309 llvm::sort(Features.begin(), Features.end()); 1310 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1311 AddedAttr = true; 1312 } 1313 1314 return AddedAttr; 1315 } 1316 1317 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1318 llvm::GlobalObject *GO) { 1319 const Decl *D = GD.getDecl(); 1320 SetCommonAttributes(GD, GO); 1321 1322 if (D) { 1323 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1324 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1325 GV->addAttribute("bss-section", SA->getName()); 1326 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1327 GV->addAttribute("data-section", SA->getName()); 1328 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1329 GV->addAttribute("rodata-section", SA->getName()); 1330 } 1331 1332 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1333 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1334 if (!D->getAttr<SectionAttr>()) 1335 F->addFnAttr("implicit-section-name", SA->getName()); 1336 1337 llvm::AttrBuilder Attrs; 1338 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1339 // We know that GetCPUAndFeaturesAttributes will always have the 1340 // newest set, since it has the newest possible FunctionDecl, so the 1341 // new ones should replace the old. 1342 F->removeFnAttr("target-cpu"); 1343 F->removeFnAttr("target-features"); 1344 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1345 } 1346 } 1347 1348 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1349 GO->setSection(SA->getName()); 1350 } 1351 1352 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1353 } 1354 1355 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1356 llvm::Function *F, 1357 const CGFunctionInfo &FI) { 1358 const Decl *D = GD.getDecl(); 1359 SetLLVMFunctionAttributes(D, FI, F); 1360 SetLLVMFunctionAttributesForDefinition(D, F); 1361 1362 F->setLinkage(llvm::Function::InternalLinkage); 1363 1364 setNonAliasAttributes(GD, F); 1365 } 1366 1367 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1368 // Set linkage and visibility in case we never see a definition. 1369 LinkageInfo LV = ND->getLinkageAndVisibility(); 1370 // Don't set internal linkage on declarations. 1371 // "extern_weak" is overloaded in LLVM; we probably should have 1372 // separate linkage types for this. 1373 if (isExternallyVisible(LV.getLinkage()) && 1374 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1375 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1376 } 1377 1378 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1379 llvm::Function *F) { 1380 // Only if we are checking indirect calls. 1381 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1382 return; 1383 1384 // Non-static class methods are handled via vtable pointer checks elsewhere. 1385 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1386 return; 1387 1388 // Additionally, if building with cross-DSO support... 1389 if (CodeGenOpts.SanitizeCfiCrossDso) { 1390 // Skip available_externally functions. They won't be codegen'ed in the 1391 // current module anyway. 1392 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1393 return; 1394 } 1395 1396 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1397 F->addTypeMetadata(0, MD); 1398 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1399 1400 // Emit a hash-based bit set entry for cross-DSO calls. 1401 if (CodeGenOpts.SanitizeCfiCrossDso) 1402 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1403 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1404 } 1405 1406 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1407 bool IsIncompleteFunction, 1408 bool IsThunk) { 1409 1410 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1411 // If this is an intrinsic function, set the function's attributes 1412 // to the intrinsic's attributes. 1413 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1414 return; 1415 } 1416 1417 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1418 1419 if (!IsIncompleteFunction) { 1420 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1421 // Setup target-specific attributes. 1422 if (F->isDeclaration()) 1423 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1424 } 1425 1426 // Add the Returned attribute for "this", except for iOS 5 and earlier 1427 // where substantial code, including the libstdc++ dylib, was compiled with 1428 // GCC and does not actually return "this". 1429 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1430 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1431 assert(!F->arg_empty() && 1432 F->arg_begin()->getType() 1433 ->canLosslesslyBitCastTo(F->getReturnType()) && 1434 "unexpected this return"); 1435 F->addAttribute(1, llvm::Attribute::Returned); 1436 } 1437 1438 // Only a few attributes are set on declarations; these may later be 1439 // overridden by a definition. 1440 1441 setLinkageForGV(F, FD); 1442 setGVProperties(F, FD); 1443 1444 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1445 F->addFnAttr("implicit-section-name"); 1446 } 1447 1448 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1449 F->setSection(SA->getName()); 1450 1451 if (FD->isReplaceableGlobalAllocationFunction()) { 1452 // A replaceable global allocation function does not act like a builtin by 1453 // default, only if it is invoked by a new-expression or delete-expression. 1454 F->addAttribute(llvm::AttributeList::FunctionIndex, 1455 llvm::Attribute::NoBuiltin); 1456 1457 // A sane operator new returns a non-aliasing pointer. 1458 // FIXME: Also add NonNull attribute to the return value 1459 // for the non-nothrow forms? 1460 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1461 if (getCodeGenOpts().AssumeSaneOperatorNew && 1462 (Kind == OO_New || Kind == OO_Array_New)) 1463 F->addAttribute(llvm::AttributeList::ReturnIndex, 1464 llvm::Attribute::NoAlias); 1465 } 1466 1467 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1468 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1469 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1470 if (MD->isVirtual()) 1471 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1472 1473 // Don't emit entries for function declarations in the cross-DSO mode. This 1474 // is handled with better precision by the receiving DSO. 1475 if (!CodeGenOpts.SanitizeCfiCrossDso) 1476 CreateFunctionTypeMetadata(FD, F); 1477 1478 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1479 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1480 } 1481 1482 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1483 assert(!GV->isDeclaration() && 1484 "Only globals with definition can force usage."); 1485 LLVMUsed.emplace_back(GV); 1486 } 1487 1488 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1489 assert(!GV->isDeclaration() && 1490 "Only globals with definition can force usage."); 1491 LLVMCompilerUsed.emplace_back(GV); 1492 } 1493 1494 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1495 std::vector<llvm::WeakTrackingVH> &List) { 1496 // Don't create llvm.used if there is no need. 1497 if (List.empty()) 1498 return; 1499 1500 // Convert List to what ConstantArray needs. 1501 SmallVector<llvm::Constant*, 8> UsedArray; 1502 UsedArray.resize(List.size()); 1503 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1504 UsedArray[i] = 1505 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1506 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1507 } 1508 1509 if (UsedArray.empty()) 1510 return; 1511 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1512 1513 auto *GV = new llvm::GlobalVariable( 1514 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1515 llvm::ConstantArray::get(ATy, UsedArray), Name); 1516 1517 GV->setSection("llvm.metadata"); 1518 } 1519 1520 void CodeGenModule::emitLLVMUsed() { 1521 emitUsed(*this, "llvm.used", LLVMUsed); 1522 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1523 } 1524 1525 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1526 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1527 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1528 } 1529 1530 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1531 llvm::SmallString<32> Opt; 1532 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1533 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1534 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1535 } 1536 1537 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1538 auto &C = getLLVMContext(); 1539 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1540 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1541 } 1542 1543 void CodeGenModule::AddDependentLib(StringRef Lib) { 1544 llvm::SmallString<24> Opt; 1545 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1546 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1547 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1548 } 1549 1550 /// \brief Add link options implied by the given module, including modules 1551 /// it depends on, using a postorder walk. 1552 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1553 SmallVectorImpl<llvm::MDNode *> &Metadata, 1554 llvm::SmallPtrSet<Module *, 16> &Visited) { 1555 // Import this module's parent. 1556 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1557 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1558 } 1559 1560 // Import this module's dependencies. 1561 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1562 if (Visited.insert(Mod->Imports[I - 1]).second) 1563 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1564 } 1565 1566 // Add linker options to link against the libraries/frameworks 1567 // described by this module. 1568 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1569 1570 // For modules that use export_as for linking, use that module 1571 // name instead. 1572 if (Mod->UseExportAsModuleLinkName) 1573 return; 1574 1575 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1576 // Link against a framework. Frameworks are currently Darwin only, so we 1577 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1578 if (Mod->LinkLibraries[I-1].IsFramework) { 1579 llvm::Metadata *Args[2] = { 1580 llvm::MDString::get(Context, "-framework"), 1581 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1582 1583 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1584 continue; 1585 } 1586 1587 // Link against a library. 1588 llvm::SmallString<24> Opt; 1589 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1590 Mod->LinkLibraries[I-1].Library, Opt); 1591 auto *OptString = llvm::MDString::get(Context, Opt); 1592 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1593 } 1594 } 1595 1596 void CodeGenModule::EmitModuleLinkOptions() { 1597 // Collect the set of all of the modules we want to visit to emit link 1598 // options, which is essentially the imported modules and all of their 1599 // non-explicit child modules. 1600 llvm::SetVector<clang::Module *> LinkModules; 1601 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1602 SmallVector<clang::Module *, 16> Stack; 1603 1604 // Seed the stack with imported modules. 1605 for (Module *M : ImportedModules) { 1606 // Do not add any link flags when an implementation TU of a module imports 1607 // a header of that same module. 1608 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1609 !getLangOpts().isCompilingModule()) 1610 continue; 1611 if (Visited.insert(M).second) 1612 Stack.push_back(M); 1613 } 1614 1615 // Find all of the modules to import, making a little effort to prune 1616 // non-leaf modules. 1617 while (!Stack.empty()) { 1618 clang::Module *Mod = Stack.pop_back_val(); 1619 1620 bool AnyChildren = false; 1621 1622 // Visit the submodules of this module. 1623 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1624 SubEnd = Mod->submodule_end(); 1625 Sub != SubEnd; ++Sub) { 1626 // Skip explicit children; they need to be explicitly imported to be 1627 // linked against. 1628 if ((*Sub)->IsExplicit) 1629 continue; 1630 1631 if (Visited.insert(*Sub).second) { 1632 Stack.push_back(*Sub); 1633 AnyChildren = true; 1634 } 1635 } 1636 1637 // We didn't find any children, so add this module to the list of 1638 // modules to link against. 1639 if (!AnyChildren) { 1640 LinkModules.insert(Mod); 1641 } 1642 } 1643 1644 // Add link options for all of the imported modules in reverse topological 1645 // order. We don't do anything to try to order import link flags with respect 1646 // to linker options inserted by things like #pragma comment(). 1647 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1648 Visited.clear(); 1649 for (Module *M : LinkModules) 1650 if (Visited.insert(M).second) 1651 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1652 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1653 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1654 1655 // Add the linker options metadata flag. 1656 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1657 for (auto *MD : LinkerOptionsMetadata) 1658 NMD->addOperand(MD); 1659 } 1660 1661 void CodeGenModule::EmitDeferred() { 1662 // Emit code for any potentially referenced deferred decls. Since a 1663 // previously unused static decl may become used during the generation of code 1664 // for a static function, iterate until no changes are made. 1665 1666 if (!DeferredVTables.empty()) { 1667 EmitDeferredVTables(); 1668 1669 // Emitting a vtable doesn't directly cause more vtables to 1670 // become deferred, although it can cause functions to be 1671 // emitted that then need those vtables. 1672 assert(DeferredVTables.empty()); 1673 } 1674 1675 // Stop if we're out of both deferred vtables and deferred declarations. 1676 if (DeferredDeclsToEmit.empty()) 1677 return; 1678 1679 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1680 // work, it will not interfere with this. 1681 std::vector<GlobalDecl> CurDeclsToEmit; 1682 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1683 1684 for (GlobalDecl &D : CurDeclsToEmit) { 1685 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1686 // to get GlobalValue with exactly the type we need, not something that 1687 // might had been created for another decl with the same mangled name but 1688 // different type. 1689 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1690 GetAddrOfGlobal(D, ForDefinition)); 1691 1692 // In case of different address spaces, we may still get a cast, even with 1693 // IsForDefinition equal to true. Query mangled names table to get 1694 // GlobalValue. 1695 if (!GV) 1696 GV = GetGlobalValue(getMangledName(D)); 1697 1698 // Make sure GetGlobalValue returned non-null. 1699 assert(GV); 1700 1701 // Check to see if we've already emitted this. This is necessary 1702 // for a couple of reasons: first, decls can end up in the 1703 // deferred-decls queue multiple times, and second, decls can end 1704 // up with definitions in unusual ways (e.g. by an extern inline 1705 // function acquiring a strong function redefinition). Just 1706 // ignore these cases. 1707 if (!GV->isDeclaration()) 1708 continue; 1709 1710 // Otherwise, emit the definition and move on to the next one. 1711 EmitGlobalDefinition(D, GV); 1712 1713 // If we found out that we need to emit more decls, do that recursively. 1714 // This has the advantage that the decls are emitted in a DFS and related 1715 // ones are close together, which is convenient for testing. 1716 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1717 EmitDeferred(); 1718 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1719 } 1720 } 1721 } 1722 1723 void CodeGenModule::EmitVTablesOpportunistically() { 1724 // Try to emit external vtables as available_externally if they have emitted 1725 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1726 // is not allowed to create new references to things that need to be emitted 1727 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1728 1729 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1730 && "Only emit opportunistic vtables with optimizations"); 1731 1732 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1733 assert(getVTables().isVTableExternal(RD) && 1734 "This queue should only contain external vtables"); 1735 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1736 VTables.GenerateClassData(RD); 1737 } 1738 OpportunisticVTables.clear(); 1739 } 1740 1741 void CodeGenModule::EmitGlobalAnnotations() { 1742 if (Annotations.empty()) 1743 return; 1744 1745 // Create a new global variable for the ConstantStruct in the Module. 1746 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1747 Annotations[0]->getType(), Annotations.size()), Annotations); 1748 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1749 llvm::GlobalValue::AppendingLinkage, 1750 Array, "llvm.global.annotations"); 1751 gv->setSection(AnnotationSection); 1752 } 1753 1754 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1755 llvm::Constant *&AStr = AnnotationStrings[Str]; 1756 if (AStr) 1757 return AStr; 1758 1759 // Not found yet, create a new global. 1760 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1761 auto *gv = 1762 new llvm::GlobalVariable(getModule(), s->getType(), true, 1763 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1764 gv->setSection(AnnotationSection); 1765 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1766 AStr = gv; 1767 return gv; 1768 } 1769 1770 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1771 SourceManager &SM = getContext().getSourceManager(); 1772 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1773 if (PLoc.isValid()) 1774 return EmitAnnotationString(PLoc.getFilename()); 1775 return EmitAnnotationString(SM.getBufferName(Loc)); 1776 } 1777 1778 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1779 SourceManager &SM = getContext().getSourceManager(); 1780 PresumedLoc PLoc = SM.getPresumedLoc(L); 1781 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1782 SM.getExpansionLineNumber(L); 1783 return llvm::ConstantInt::get(Int32Ty, LineNo); 1784 } 1785 1786 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1787 const AnnotateAttr *AA, 1788 SourceLocation L) { 1789 // Get the globals for file name, annotation, and the line number. 1790 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1791 *UnitGV = EmitAnnotationUnit(L), 1792 *LineNoCst = EmitAnnotationLineNo(L); 1793 1794 // Create the ConstantStruct for the global annotation. 1795 llvm::Constant *Fields[4] = { 1796 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1797 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1798 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1799 LineNoCst 1800 }; 1801 return llvm::ConstantStruct::getAnon(Fields); 1802 } 1803 1804 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1805 llvm::GlobalValue *GV) { 1806 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1807 // Get the struct elements for these annotations. 1808 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1809 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1810 } 1811 1812 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1813 llvm::Function *Fn, 1814 SourceLocation Loc) const { 1815 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1816 // Blacklist by function name. 1817 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1818 return true; 1819 // Blacklist by location. 1820 if (Loc.isValid()) 1821 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1822 // If location is unknown, this may be a compiler-generated function. Assume 1823 // it's located in the main file. 1824 auto &SM = Context.getSourceManager(); 1825 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1826 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1827 } 1828 return false; 1829 } 1830 1831 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1832 SourceLocation Loc, QualType Ty, 1833 StringRef Category) const { 1834 // For now globals can be blacklisted only in ASan and KASan. 1835 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1836 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1837 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1838 if (!EnabledAsanMask) 1839 return false; 1840 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1841 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1842 return true; 1843 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1844 return true; 1845 // Check global type. 1846 if (!Ty.isNull()) { 1847 // Drill down the array types: if global variable of a fixed type is 1848 // blacklisted, we also don't instrument arrays of them. 1849 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1850 Ty = AT->getElementType(); 1851 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1852 // We allow to blacklist only record types (classes, structs etc.) 1853 if (Ty->isRecordType()) { 1854 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1855 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1856 return true; 1857 } 1858 } 1859 return false; 1860 } 1861 1862 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1863 StringRef Category) const { 1864 if (!LangOpts.XRayInstrument) 1865 return false; 1866 1867 const auto &XRayFilter = getContext().getXRayFilter(); 1868 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1869 auto Attr = ImbueAttr::NONE; 1870 if (Loc.isValid()) 1871 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1872 if (Attr == ImbueAttr::NONE) 1873 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1874 switch (Attr) { 1875 case ImbueAttr::NONE: 1876 return false; 1877 case ImbueAttr::ALWAYS: 1878 Fn->addFnAttr("function-instrument", "xray-always"); 1879 break; 1880 case ImbueAttr::ALWAYS_ARG1: 1881 Fn->addFnAttr("function-instrument", "xray-always"); 1882 Fn->addFnAttr("xray-log-args", "1"); 1883 break; 1884 case ImbueAttr::NEVER: 1885 Fn->addFnAttr("function-instrument", "xray-never"); 1886 break; 1887 } 1888 return true; 1889 } 1890 1891 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1892 // Never defer when EmitAllDecls is specified. 1893 if (LangOpts.EmitAllDecls) 1894 return true; 1895 1896 return getContext().DeclMustBeEmitted(Global); 1897 } 1898 1899 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1900 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1901 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1902 // Implicit template instantiations may change linkage if they are later 1903 // explicitly instantiated, so they should not be emitted eagerly. 1904 return false; 1905 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1906 if (Context.getInlineVariableDefinitionKind(VD) == 1907 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1908 // A definition of an inline constexpr static data member may change 1909 // linkage later if it's redeclared outside the class. 1910 return false; 1911 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1912 // codegen for global variables, because they may be marked as threadprivate. 1913 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1914 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1915 return false; 1916 1917 return true; 1918 } 1919 1920 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1921 const CXXUuidofExpr* E) { 1922 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1923 // well-formed. 1924 StringRef Uuid = E->getUuidStr(); 1925 std::string Name = "_GUID_" + Uuid.lower(); 1926 std::replace(Name.begin(), Name.end(), '-', '_'); 1927 1928 // The UUID descriptor should be pointer aligned. 1929 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1930 1931 // Look for an existing global. 1932 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1933 return ConstantAddress(GV, Alignment); 1934 1935 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1936 assert(Init && "failed to initialize as constant"); 1937 1938 auto *GV = new llvm::GlobalVariable( 1939 getModule(), Init->getType(), 1940 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1941 if (supportsCOMDAT()) 1942 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1943 setDSOLocal(GV); 1944 return ConstantAddress(GV, Alignment); 1945 } 1946 1947 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1948 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1949 assert(AA && "No alias?"); 1950 1951 CharUnits Alignment = getContext().getDeclAlign(VD); 1952 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1953 1954 // See if there is already something with the target's name in the module. 1955 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1956 if (Entry) { 1957 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1958 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1959 return ConstantAddress(Ptr, Alignment); 1960 } 1961 1962 llvm::Constant *Aliasee; 1963 if (isa<llvm::FunctionType>(DeclTy)) 1964 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1965 GlobalDecl(cast<FunctionDecl>(VD)), 1966 /*ForVTable=*/false); 1967 else 1968 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1969 llvm::PointerType::getUnqual(DeclTy), 1970 nullptr); 1971 1972 auto *F = cast<llvm::GlobalValue>(Aliasee); 1973 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1974 WeakRefReferences.insert(F); 1975 1976 return ConstantAddress(Aliasee, Alignment); 1977 } 1978 1979 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1980 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1981 1982 // Weak references don't produce any output by themselves. 1983 if (Global->hasAttr<WeakRefAttr>()) 1984 return; 1985 1986 // If this is an alias definition (which otherwise looks like a declaration) 1987 // emit it now. 1988 if (Global->hasAttr<AliasAttr>()) 1989 return EmitAliasDefinition(GD); 1990 1991 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1992 if (Global->hasAttr<IFuncAttr>()) 1993 return emitIFuncDefinition(GD); 1994 1995 // If this is CUDA, be selective about which declarations we emit. 1996 if (LangOpts.CUDA) { 1997 if (LangOpts.CUDAIsDevice) { 1998 if (!Global->hasAttr<CUDADeviceAttr>() && 1999 !Global->hasAttr<CUDAGlobalAttr>() && 2000 !Global->hasAttr<CUDAConstantAttr>() && 2001 !Global->hasAttr<CUDASharedAttr>()) 2002 return; 2003 } else { 2004 // We need to emit host-side 'shadows' for all global 2005 // device-side variables because the CUDA runtime needs their 2006 // size and host-side address in order to provide access to 2007 // their device-side incarnations. 2008 2009 // So device-only functions are the only things we skip. 2010 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2011 Global->hasAttr<CUDADeviceAttr>()) 2012 return; 2013 2014 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2015 "Expected Variable or Function"); 2016 } 2017 } 2018 2019 if (LangOpts.OpenMP) { 2020 // If this is OpenMP device, check if it is legal to emit this global 2021 // normally. 2022 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2023 return; 2024 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2025 if (MustBeEmitted(Global)) 2026 EmitOMPDeclareReduction(DRD); 2027 return; 2028 } 2029 } 2030 2031 // Ignore declarations, they will be emitted on their first use. 2032 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2033 // Forward declarations are emitted lazily on first use. 2034 if (!FD->doesThisDeclarationHaveABody()) { 2035 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2036 return; 2037 2038 StringRef MangledName = getMangledName(GD); 2039 2040 // Compute the function info and LLVM type. 2041 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2042 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2043 2044 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2045 /*DontDefer=*/false); 2046 return; 2047 } 2048 } else { 2049 const auto *VD = cast<VarDecl>(Global); 2050 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2051 // We need to emit device-side global CUDA variables even if a 2052 // variable does not have a definition -- we still need to define 2053 // host-side shadow for it. 2054 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2055 !VD->hasDefinition() && 2056 (VD->hasAttr<CUDAConstantAttr>() || 2057 VD->hasAttr<CUDADeviceAttr>()); 2058 if (!MustEmitForCuda && 2059 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2060 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2061 // If this declaration may have caused an inline variable definition to 2062 // change linkage, make sure that it's emitted. 2063 if (Context.getInlineVariableDefinitionKind(VD) == 2064 ASTContext::InlineVariableDefinitionKind::Strong) 2065 GetAddrOfGlobalVar(VD); 2066 return; 2067 } 2068 } 2069 2070 // Defer code generation to first use when possible, e.g. if this is an inline 2071 // function. If the global must always be emitted, do it eagerly if possible 2072 // to benefit from cache locality. 2073 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2074 // Emit the definition if it can't be deferred. 2075 EmitGlobalDefinition(GD); 2076 return; 2077 } 2078 2079 // If we're deferring emission of a C++ variable with an 2080 // initializer, remember the order in which it appeared in the file. 2081 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2082 cast<VarDecl>(Global)->hasInit()) { 2083 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2084 CXXGlobalInits.push_back(nullptr); 2085 } 2086 2087 StringRef MangledName = getMangledName(GD); 2088 if (GetGlobalValue(MangledName) != nullptr) { 2089 // The value has already been used and should therefore be emitted. 2090 addDeferredDeclToEmit(GD); 2091 } else if (MustBeEmitted(Global)) { 2092 // The value must be emitted, but cannot be emitted eagerly. 2093 assert(!MayBeEmittedEagerly(Global)); 2094 addDeferredDeclToEmit(GD); 2095 } else { 2096 // Otherwise, remember that we saw a deferred decl with this name. The 2097 // first use of the mangled name will cause it to move into 2098 // DeferredDeclsToEmit. 2099 DeferredDecls[MangledName] = GD; 2100 } 2101 } 2102 2103 // Check if T is a class type with a destructor that's not dllimport. 2104 static bool HasNonDllImportDtor(QualType T) { 2105 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2106 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2107 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2108 return true; 2109 2110 return false; 2111 } 2112 2113 namespace { 2114 struct FunctionIsDirectlyRecursive : 2115 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2116 const StringRef Name; 2117 const Builtin::Context &BI; 2118 bool Result; 2119 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2120 Name(N), BI(C), Result(false) { 2121 } 2122 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2123 2124 bool TraverseCallExpr(CallExpr *E) { 2125 const FunctionDecl *FD = E->getDirectCallee(); 2126 if (!FD) 2127 return true; 2128 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2129 if (Attr && Name == Attr->getLabel()) { 2130 Result = true; 2131 return false; 2132 } 2133 unsigned BuiltinID = FD->getBuiltinID(); 2134 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2135 return true; 2136 StringRef BuiltinName = BI.getName(BuiltinID); 2137 if (BuiltinName.startswith("__builtin_") && 2138 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2139 Result = true; 2140 return false; 2141 } 2142 return true; 2143 } 2144 }; 2145 2146 // Make sure we're not referencing non-imported vars or functions. 2147 struct DLLImportFunctionVisitor 2148 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2149 bool SafeToInline = true; 2150 2151 bool shouldVisitImplicitCode() const { return true; } 2152 2153 bool VisitVarDecl(VarDecl *VD) { 2154 if (VD->getTLSKind()) { 2155 // A thread-local variable cannot be imported. 2156 SafeToInline = false; 2157 return SafeToInline; 2158 } 2159 2160 // A variable definition might imply a destructor call. 2161 if (VD->isThisDeclarationADefinition()) 2162 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2163 2164 return SafeToInline; 2165 } 2166 2167 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2168 if (const auto *D = E->getTemporary()->getDestructor()) 2169 SafeToInline = D->hasAttr<DLLImportAttr>(); 2170 return SafeToInline; 2171 } 2172 2173 bool VisitDeclRefExpr(DeclRefExpr *E) { 2174 ValueDecl *VD = E->getDecl(); 2175 if (isa<FunctionDecl>(VD)) 2176 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2177 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2178 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2179 return SafeToInline; 2180 } 2181 2182 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2183 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2184 return SafeToInline; 2185 } 2186 2187 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2188 CXXMethodDecl *M = E->getMethodDecl(); 2189 if (!M) { 2190 // Call through a pointer to member function. This is safe to inline. 2191 SafeToInline = true; 2192 } else { 2193 SafeToInline = M->hasAttr<DLLImportAttr>(); 2194 } 2195 return SafeToInline; 2196 } 2197 2198 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2199 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2200 return SafeToInline; 2201 } 2202 2203 bool VisitCXXNewExpr(CXXNewExpr *E) { 2204 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2205 return SafeToInline; 2206 } 2207 }; 2208 } 2209 2210 // isTriviallyRecursive - Check if this function calls another 2211 // decl that, because of the asm attribute or the other decl being a builtin, 2212 // ends up pointing to itself. 2213 bool 2214 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2215 StringRef Name; 2216 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2217 // asm labels are a special kind of mangling we have to support. 2218 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2219 if (!Attr) 2220 return false; 2221 Name = Attr->getLabel(); 2222 } else { 2223 Name = FD->getName(); 2224 } 2225 2226 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2227 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2228 return Walker.Result; 2229 } 2230 2231 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2232 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2233 return true; 2234 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2235 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2236 return false; 2237 2238 if (F->hasAttr<DLLImportAttr>()) { 2239 // Check whether it would be safe to inline this dllimport function. 2240 DLLImportFunctionVisitor Visitor; 2241 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2242 if (!Visitor.SafeToInline) 2243 return false; 2244 2245 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2246 // Implicit destructor invocations aren't captured in the AST, so the 2247 // check above can't see them. Check for them manually here. 2248 for (const Decl *Member : Dtor->getParent()->decls()) 2249 if (isa<FieldDecl>(Member)) 2250 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2251 return false; 2252 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2253 if (HasNonDllImportDtor(B.getType())) 2254 return false; 2255 } 2256 } 2257 2258 // PR9614. Avoid cases where the source code is lying to us. An available 2259 // externally function should have an equivalent function somewhere else, 2260 // but a function that calls itself is clearly not equivalent to the real 2261 // implementation. 2262 // This happens in glibc's btowc and in some configure checks. 2263 return !isTriviallyRecursive(F); 2264 } 2265 2266 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2267 return CodeGenOpts.OptimizationLevel > 0; 2268 } 2269 2270 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2271 const auto *D = cast<ValueDecl>(GD.getDecl()); 2272 2273 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2274 Context.getSourceManager(), 2275 "Generating code for declaration"); 2276 2277 if (isa<FunctionDecl>(D)) { 2278 // At -O0, don't generate IR for functions with available_externally 2279 // linkage. 2280 if (!shouldEmitFunction(GD)) 2281 return; 2282 2283 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2284 // Make sure to emit the definition(s) before we emit the thunks. 2285 // This is necessary for the generation of certain thunks. 2286 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2287 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2288 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2289 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2290 else 2291 EmitGlobalFunctionDefinition(GD, GV); 2292 2293 if (Method->isVirtual()) 2294 getVTables().EmitThunks(GD); 2295 2296 return; 2297 } 2298 2299 return EmitGlobalFunctionDefinition(GD, GV); 2300 } 2301 2302 if (const auto *VD = dyn_cast<VarDecl>(D)) 2303 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2304 2305 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2306 } 2307 2308 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2309 llvm::Function *NewFn); 2310 2311 void CodeGenModule::emitMultiVersionFunctions() { 2312 for (GlobalDecl GD : MultiVersionFuncs) { 2313 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2314 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2315 getContext().forEachMultiversionedFunctionVersion( 2316 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2317 GlobalDecl CurGD{ 2318 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2319 StringRef MangledName = getMangledName(CurGD); 2320 llvm::Constant *Func = GetGlobalValue(MangledName); 2321 if (!Func) { 2322 if (CurFD->isDefined()) { 2323 EmitGlobalFunctionDefinition(CurGD, nullptr); 2324 Func = GetGlobalValue(MangledName); 2325 } else { 2326 const CGFunctionInfo &FI = 2327 getTypes().arrangeGlobalDeclaration(GD); 2328 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2329 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2330 /*DontDefer=*/false, ForDefinition); 2331 } 2332 assert(Func && "This should have just been created"); 2333 } 2334 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2335 CurFD->getAttr<TargetAttr>()->parse()); 2336 }); 2337 2338 llvm::Function *ResolverFunc = cast<llvm::Function>( 2339 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2340 if (supportsCOMDAT()) 2341 ResolverFunc->setComdat( 2342 getModule().getOrInsertComdat(ResolverFunc->getName())); 2343 std::stable_sort( 2344 Options.begin(), Options.end(), 2345 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2346 CodeGenFunction CGF(*this); 2347 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2348 } 2349 } 2350 2351 /// If an ifunc for the specified mangled name is not in the module, create and 2352 /// return an llvm IFunc Function with the specified type. 2353 llvm::Constant * 2354 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2355 StringRef MangledName, 2356 const FunctionDecl *FD) { 2357 std::string IFuncName = (MangledName + ".ifunc").str(); 2358 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2359 return IFuncGV; 2360 2361 // Since this is the first time we've created this IFunc, make sure 2362 // that we put this multiversioned function into the list to be 2363 // replaced later. 2364 MultiVersionFuncs.push_back(GD); 2365 2366 std::string ResolverName = (MangledName + ".resolver").str(); 2367 llvm::Type *ResolverType = llvm::FunctionType::get( 2368 llvm::PointerType::get(DeclTy, 2369 Context.getTargetAddressSpace(FD->getType())), 2370 false); 2371 llvm::Constant *Resolver = 2372 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2373 /*ForVTable=*/false); 2374 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2375 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2376 GIF->setName(IFuncName); 2377 SetCommonAttributes(FD, GIF); 2378 2379 return GIF; 2380 } 2381 2382 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2383 /// module, create and return an llvm Function with the specified type. If there 2384 /// is something in the module with the specified name, return it potentially 2385 /// bitcasted to the right type. 2386 /// 2387 /// If D is non-null, it specifies a decl that correspond to this. This is used 2388 /// to set the attributes on the function when it is first created. 2389 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2390 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2391 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2392 ForDefinition_t IsForDefinition) { 2393 const Decl *D = GD.getDecl(); 2394 2395 // Any attempts to use a MultiVersion function should result in retrieving 2396 // the iFunc instead. Name Mangling will handle the rest of the changes. 2397 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2398 // For the device mark the function as one that should be emitted. 2399 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2400 !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() && 2401 !DontDefer && !IsForDefinition) 2402 addDeferredDeclToEmit(GD); 2403 2404 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2405 UpdateMultiVersionNames(GD, FD); 2406 if (!IsForDefinition) 2407 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2408 } 2409 } 2410 2411 // Lookup the entry, lazily creating it if necessary. 2412 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2413 if (Entry) { 2414 if (WeakRefReferences.erase(Entry)) { 2415 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2416 if (FD && !FD->hasAttr<WeakAttr>()) 2417 Entry->setLinkage(llvm::Function::ExternalLinkage); 2418 } 2419 2420 // Handle dropped DLL attributes. 2421 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2422 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2423 setDSOLocal(Entry); 2424 } 2425 2426 // If there are two attempts to define the same mangled name, issue an 2427 // error. 2428 if (IsForDefinition && !Entry->isDeclaration()) { 2429 GlobalDecl OtherGD; 2430 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2431 // to make sure that we issue an error only once. 2432 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2433 (GD.getCanonicalDecl().getDecl() != 2434 OtherGD.getCanonicalDecl().getDecl()) && 2435 DiagnosedConflictingDefinitions.insert(GD).second) { 2436 getDiags().Report(D->getLocation(), 2437 diag::err_duplicate_mangled_name); 2438 getDiags().Report(OtherGD.getDecl()->getLocation(), 2439 diag::note_previous_definition); 2440 } 2441 } 2442 2443 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2444 (Entry->getType()->getElementType() == Ty)) { 2445 return Entry; 2446 } 2447 2448 // Make sure the result is of the correct type. 2449 // (If function is requested for a definition, we always need to create a new 2450 // function, not just return a bitcast.) 2451 if (!IsForDefinition) 2452 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2453 } 2454 2455 // This function doesn't have a complete type (for example, the return 2456 // type is an incomplete struct). Use a fake type instead, and make 2457 // sure not to try to set attributes. 2458 bool IsIncompleteFunction = false; 2459 2460 llvm::FunctionType *FTy; 2461 if (isa<llvm::FunctionType>(Ty)) { 2462 FTy = cast<llvm::FunctionType>(Ty); 2463 } else { 2464 FTy = llvm::FunctionType::get(VoidTy, false); 2465 IsIncompleteFunction = true; 2466 } 2467 2468 llvm::Function *F = 2469 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2470 Entry ? StringRef() : MangledName, &getModule()); 2471 2472 // If we already created a function with the same mangled name (but different 2473 // type) before, take its name and add it to the list of functions to be 2474 // replaced with F at the end of CodeGen. 2475 // 2476 // This happens if there is a prototype for a function (e.g. "int f()") and 2477 // then a definition of a different type (e.g. "int f(int x)"). 2478 if (Entry) { 2479 F->takeName(Entry); 2480 2481 // This might be an implementation of a function without a prototype, in 2482 // which case, try to do special replacement of calls which match the new 2483 // prototype. The really key thing here is that we also potentially drop 2484 // arguments from the call site so as to make a direct call, which makes the 2485 // inliner happier and suppresses a number of optimizer warnings (!) about 2486 // dropping arguments. 2487 if (!Entry->use_empty()) { 2488 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2489 Entry->removeDeadConstantUsers(); 2490 } 2491 2492 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2493 F, Entry->getType()->getElementType()->getPointerTo()); 2494 addGlobalValReplacement(Entry, BC); 2495 } 2496 2497 assert(F->getName() == MangledName && "name was uniqued!"); 2498 if (D) 2499 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2500 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2501 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2502 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2503 } 2504 2505 if (!DontDefer) { 2506 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2507 // each other bottoming out with the base dtor. Therefore we emit non-base 2508 // dtors on usage, even if there is no dtor definition in the TU. 2509 if (D && isa<CXXDestructorDecl>(D) && 2510 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2511 GD.getDtorType())) 2512 addDeferredDeclToEmit(GD); 2513 2514 // This is the first use or definition of a mangled name. If there is a 2515 // deferred decl with this name, remember that we need to emit it at the end 2516 // of the file. 2517 auto DDI = DeferredDecls.find(MangledName); 2518 if (DDI != DeferredDecls.end()) { 2519 // Move the potentially referenced deferred decl to the 2520 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2521 // don't need it anymore). 2522 addDeferredDeclToEmit(DDI->second); 2523 DeferredDecls.erase(DDI); 2524 2525 // Otherwise, there are cases we have to worry about where we're 2526 // using a declaration for which we must emit a definition but where 2527 // we might not find a top-level definition: 2528 // - member functions defined inline in their classes 2529 // - friend functions defined inline in some class 2530 // - special member functions with implicit definitions 2531 // If we ever change our AST traversal to walk into class methods, 2532 // this will be unnecessary. 2533 // 2534 // We also don't emit a definition for a function if it's going to be an 2535 // entry in a vtable, unless it's already marked as used. 2536 } else if (getLangOpts().CPlusPlus && D) { 2537 // Look for a declaration that's lexically in a record. 2538 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2539 FD = FD->getPreviousDecl()) { 2540 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2541 if (FD->doesThisDeclarationHaveABody()) { 2542 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2543 break; 2544 } 2545 } 2546 } 2547 } 2548 } 2549 2550 // Make sure the result is of the requested type. 2551 if (!IsIncompleteFunction) { 2552 assert(F->getType()->getElementType() == Ty); 2553 return F; 2554 } 2555 2556 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2557 return llvm::ConstantExpr::getBitCast(F, PTy); 2558 } 2559 2560 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2561 /// non-null, then this function will use the specified type if it has to 2562 /// create it (this occurs when we see a definition of the function). 2563 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2564 llvm::Type *Ty, 2565 bool ForVTable, 2566 bool DontDefer, 2567 ForDefinition_t IsForDefinition) { 2568 // If there was no specific requested type, just convert it now. 2569 if (!Ty) { 2570 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2571 auto CanonTy = Context.getCanonicalType(FD->getType()); 2572 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2573 } 2574 2575 // Devirtualized destructor calls may come through here instead of via 2576 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2577 // of the complete destructor when necessary. 2578 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2579 if (getTarget().getCXXABI().isMicrosoft() && 2580 GD.getDtorType() == Dtor_Complete && 2581 DD->getParent()->getNumVBases() == 0) 2582 GD = GlobalDecl(DD, Dtor_Base); 2583 } 2584 2585 StringRef MangledName = getMangledName(GD); 2586 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2587 /*IsThunk=*/false, llvm::AttributeList(), 2588 IsForDefinition); 2589 } 2590 2591 static const FunctionDecl * 2592 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2593 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2594 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2595 2596 IdentifierInfo &CII = C.Idents.get(Name); 2597 for (const auto &Result : DC->lookup(&CII)) 2598 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2599 return FD; 2600 2601 if (!C.getLangOpts().CPlusPlus) 2602 return nullptr; 2603 2604 // Demangle the premangled name from getTerminateFn() 2605 IdentifierInfo &CXXII = 2606 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2607 ? C.Idents.get("terminate") 2608 : C.Idents.get(Name); 2609 2610 for (const auto &N : {"__cxxabiv1", "std"}) { 2611 IdentifierInfo &NS = C.Idents.get(N); 2612 for (const auto &Result : DC->lookup(&NS)) { 2613 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2614 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2615 for (const auto &Result : LSD->lookup(&NS)) 2616 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2617 break; 2618 2619 if (ND) 2620 for (const auto &Result : ND->lookup(&CXXII)) 2621 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2622 return FD; 2623 } 2624 } 2625 2626 return nullptr; 2627 } 2628 2629 /// CreateRuntimeFunction - Create a new runtime function with the specified 2630 /// type and name. 2631 llvm::Constant * 2632 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2633 llvm::AttributeList ExtraAttrs, 2634 bool Local) { 2635 llvm::Constant *C = 2636 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2637 /*DontDefer=*/false, /*IsThunk=*/false, 2638 ExtraAttrs); 2639 2640 if (auto *F = dyn_cast<llvm::Function>(C)) { 2641 if (F->empty()) { 2642 F->setCallingConv(getRuntimeCC()); 2643 2644 if (!Local && getTriple().isOSBinFormatCOFF() && 2645 !getCodeGenOpts().LTOVisibilityPublicStd && 2646 !getTriple().isWindowsGNUEnvironment()) { 2647 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2648 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2649 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2650 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2651 } 2652 } 2653 setDSOLocal(F); 2654 } 2655 } 2656 2657 return C; 2658 } 2659 2660 /// CreateBuiltinFunction - Create a new builtin function with the specified 2661 /// type and name. 2662 llvm::Constant * 2663 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2664 llvm::AttributeList ExtraAttrs) { 2665 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2666 } 2667 2668 /// isTypeConstant - Determine whether an object of this type can be emitted 2669 /// as a constant. 2670 /// 2671 /// If ExcludeCtor is true, the duration when the object's constructor runs 2672 /// will not be considered. The caller will need to verify that the object is 2673 /// not written to during its construction. 2674 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2675 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2676 return false; 2677 2678 if (Context.getLangOpts().CPlusPlus) { 2679 if (const CXXRecordDecl *Record 2680 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2681 return ExcludeCtor && !Record->hasMutableFields() && 2682 Record->hasTrivialDestructor(); 2683 } 2684 2685 return true; 2686 } 2687 2688 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2689 /// create and return an llvm GlobalVariable with the specified type. If there 2690 /// is something in the module with the specified name, return it potentially 2691 /// bitcasted to the right type. 2692 /// 2693 /// If D is non-null, it specifies a decl that correspond to this. This is used 2694 /// to set the attributes on the global when it is first created. 2695 /// 2696 /// If IsForDefinition is true, it is guaranteed that an actual global with 2697 /// type Ty will be returned, not conversion of a variable with the same 2698 /// mangled name but some other type. 2699 llvm::Constant * 2700 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2701 llvm::PointerType *Ty, 2702 const VarDecl *D, 2703 ForDefinition_t IsForDefinition) { 2704 // Lookup the entry, lazily creating it if necessary. 2705 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2706 if (Entry) { 2707 if (WeakRefReferences.erase(Entry)) { 2708 if (D && !D->hasAttr<WeakAttr>()) 2709 Entry->setLinkage(llvm::Function::ExternalLinkage); 2710 } 2711 2712 // Handle dropped DLL attributes. 2713 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2714 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2715 2716 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2717 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2718 2719 if (Entry->getType() == Ty) 2720 return Entry; 2721 2722 // If there are two attempts to define the same mangled name, issue an 2723 // error. 2724 if (IsForDefinition && !Entry->isDeclaration()) { 2725 GlobalDecl OtherGD; 2726 const VarDecl *OtherD; 2727 2728 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2729 // to make sure that we issue an error only once. 2730 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2731 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2732 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2733 OtherD->hasInit() && 2734 DiagnosedConflictingDefinitions.insert(D).second) { 2735 getDiags().Report(D->getLocation(), 2736 diag::err_duplicate_mangled_name); 2737 getDiags().Report(OtherGD.getDecl()->getLocation(), 2738 diag::note_previous_definition); 2739 } 2740 } 2741 2742 // Make sure the result is of the correct type. 2743 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2744 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2745 2746 // (If global is requested for a definition, we always need to create a new 2747 // global, not just return a bitcast.) 2748 if (!IsForDefinition) 2749 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2750 } 2751 2752 auto AddrSpace = GetGlobalVarAddressSpace(D); 2753 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2754 2755 auto *GV = new llvm::GlobalVariable( 2756 getModule(), Ty->getElementType(), false, 2757 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2758 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2759 2760 // If we already created a global with the same mangled name (but different 2761 // type) before, take its name and remove it from its parent. 2762 if (Entry) { 2763 GV->takeName(Entry); 2764 2765 if (!Entry->use_empty()) { 2766 llvm::Constant *NewPtrForOldDecl = 2767 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2768 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2769 } 2770 2771 Entry->eraseFromParent(); 2772 } 2773 2774 // This is the first use or definition of a mangled name. If there is a 2775 // deferred decl with this name, remember that we need to emit it at the end 2776 // of the file. 2777 auto DDI = DeferredDecls.find(MangledName); 2778 if (DDI != DeferredDecls.end()) { 2779 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2780 // list, and remove it from DeferredDecls (since we don't need it anymore). 2781 addDeferredDeclToEmit(DDI->second); 2782 DeferredDecls.erase(DDI); 2783 } 2784 2785 // Handle things which are present even on external declarations. 2786 if (D) { 2787 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2788 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2789 2790 // FIXME: This code is overly simple and should be merged with other global 2791 // handling. 2792 GV->setConstant(isTypeConstant(D->getType(), false)); 2793 2794 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2795 2796 setLinkageForGV(GV, D); 2797 2798 if (D->getTLSKind()) { 2799 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2800 CXXThreadLocals.push_back(D); 2801 setTLSMode(GV, *D); 2802 } 2803 2804 setGVProperties(GV, D); 2805 2806 // If required by the ABI, treat declarations of static data members with 2807 // inline initializers as definitions. 2808 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2809 EmitGlobalVarDefinition(D); 2810 } 2811 2812 // Emit section information for extern variables. 2813 if (D->hasExternalStorage()) { 2814 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2815 GV->setSection(SA->getName()); 2816 } 2817 2818 // Handle XCore specific ABI requirements. 2819 if (getTriple().getArch() == llvm::Triple::xcore && 2820 D->getLanguageLinkage() == CLanguageLinkage && 2821 D->getType().isConstant(Context) && 2822 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2823 GV->setSection(".cp.rodata"); 2824 2825 // Check if we a have a const declaration with an initializer, we may be 2826 // able to emit it as available_externally to expose it's value to the 2827 // optimizer. 2828 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2829 D->getType().isConstQualified() && !GV->hasInitializer() && 2830 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2831 const auto *Record = 2832 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2833 bool HasMutableFields = Record && Record->hasMutableFields(); 2834 if (!HasMutableFields) { 2835 const VarDecl *InitDecl; 2836 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2837 if (InitExpr) { 2838 ConstantEmitter emitter(*this); 2839 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2840 if (Init) { 2841 auto *InitType = Init->getType(); 2842 if (GV->getType()->getElementType() != InitType) { 2843 // The type of the initializer does not match the definition. 2844 // This happens when an initializer has a different type from 2845 // the type of the global (because of padding at the end of a 2846 // structure for instance). 2847 GV->setName(StringRef()); 2848 // Make a new global with the correct type, this is now guaranteed 2849 // to work. 2850 auto *NewGV = cast<llvm::GlobalVariable>( 2851 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2852 2853 // Erase the old global, since it is no longer used. 2854 GV->eraseFromParent(); 2855 GV = NewGV; 2856 } else { 2857 GV->setInitializer(Init); 2858 GV->setConstant(true); 2859 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2860 } 2861 emitter.finalize(GV); 2862 } 2863 } 2864 } 2865 } 2866 } 2867 2868 LangAS ExpectedAS = 2869 D ? D->getType().getAddressSpace() 2870 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2871 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2872 Ty->getPointerAddressSpace()); 2873 if (AddrSpace != ExpectedAS) 2874 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2875 ExpectedAS, Ty); 2876 2877 return GV; 2878 } 2879 2880 llvm::Constant * 2881 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2882 ForDefinition_t IsForDefinition) { 2883 const Decl *D = GD.getDecl(); 2884 if (isa<CXXConstructorDecl>(D)) 2885 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2886 getFromCtorType(GD.getCtorType()), 2887 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2888 /*DontDefer=*/false, IsForDefinition); 2889 else if (isa<CXXDestructorDecl>(D)) 2890 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2891 getFromDtorType(GD.getDtorType()), 2892 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2893 /*DontDefer=*/false, IsForDefinition); 2894 else if (isa<CXXMethodDecl>(D)) { 2895 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2896 cast<CXXMethodDecl>(D)); 2897 auto Ty = getTypes().GetFunctionType(*FInfo); 2898 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2899 IsForDefinition); 2900 } else if (isa<FunctionDecl>(D)) { 2901 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2902 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2903 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2904 IsForDefinition); 2905 } else 2906 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2907 IsForDefinition); 2908 } 2909 2910 llvm::GlobalVariable * 2911 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2912 llvm::Type *Ty, 2913 llvm::GlobalValue::LinkageTypes Linkage) { 2914 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2915 llvm::GlobalVariable *OldGV = nullptr; 2916 2917 if (GV) { 2918 // Check if the variable has the right type. 2919 if (GV->getType()->getElementType() == Ty) 2920 return GV; 2921 2922 // Because C++ name mangling, the only way we can end up with an already 2923 // existing global with the same name is if it has been declared extern "C". 2924 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2925 OldGV = GV; 2926 } 2927 2928 // Create a new variable. 2929 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2930 Linkage, nullptr, Name); 2931 2932 if (OldGV) { 2933 // Replace occurrences of the old variable if needed. 2934 GV->takeName(OldGV); 2935 2936 if (!OldGV->use_empty()) { 2937 llvm::Constant *NewPtrForOldDecl = 2938 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2939 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2940 } 2941 2942 OldGV->eraseFromParent(); 2943 } 2944 2945 if (supportsCOMDAT() && GV->isWeakForLinker() && 2946 !GV->hasAvailableExternallyLinkage()) 2947 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2948 2949 return GV; 2950 } 2951 2952 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2953 /// given global variable. If Ty is non-null and if the global doesn't exist, 2954 /// then it will be created with the specified type instead of whatever the 2955 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 2956 /// that an actual global with type Ty will be returned, not conversion of a 2957 /// variable with the same mangled name but some other type. 2958 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2959 llvm::Type *Ty, 2960 ForDefinition_t IsForDefinition) { 2961 assert(D->hasGlobalStorage() && "Not a global variable"); 2962 QualType ASTTy = D->getType(); 2963 if (!Ty) 2964 Ty = getTypes().ConvertTypeForMem(ASTTy); 2965 2966 llvm::PointerType *PTy = 2967 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2968 2969 StringRef MangledName = getMangledName(D); 2970 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2971 } 2972 2973 /// CreateRuntimeVariable - Create a new runtime global variable with the 2974 /// specified type and name. 2975 llvm::Constant * 2976 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2977 StringRef Name) { 2978 auto *Ret = 2979 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2980 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 2981 return Ret; 2982 } 2983 2984 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2985 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2986 2987 StringRef MangledName = getMangledName(D); 2988 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2989 2990 // We already have a definition, not declaration, with the same mangled name. 2991 // Emitting of declaration is not required (and actually overwrites emitted 2992 // definition). 2993 if (GV && !GV->isDeclaration()) 2994 return; 2995 2996 // If we have not seen a reference to this variable yet, place it into the 2997 // deferred declarations table to be emitted if needed later. 2998 if (!MustBeEmitted(D) && !GV) { 2999 DeferredDecls[MangledName] = D; 3000 return; 3001 } 3002 3003 // The tentative definition is the only definition. 3004 EmitGlobalVarDefinition(D); 3005 } 3006 3007 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3008 return Context.toCharUnitsFromBits( 3009 getDataLayout().getTypeStoreSizeInBits(Ty)); 3010 } 3011 3012 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3013 LangAS AddrSpace = LangAS::Default; 3014 if (LangOpts.OpenCL) { 3015 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3016 assert(AddrSpace == LangAS::opencl_global || 3017 AddrSpace == LangAS::opencl_constant || 3018 AddrSpace == LangAS::opencl_local || 3019 AddrSpace >= LangAS::FirstTargetAddressSpace); 3020 return AddrSpace; 3021 } 3022 3023 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3024 if (D && D->hasAttr<CUDAConstantAttr>()) 3025 return LangAS::cuda_constant; 3026 else if (D && D->hasAttr<CUDASharedAttr>()) 3027 return LangAS::cuda_shared; 3028 else 3029 return LangAS::cuda_device; 3030 } 3031 3032 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3033 } 3034 3035 template<typename SomeDecl> 3036 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3037 llvm::GlobalValue *GV) { 3038 if (!getLangOpts().CPlusPlus) 3039 return; 3040 3041 // Must have 'used' attribute, or else inline assembly can't rely on 3042 // the name existing. 3043 if (!D->template hasAttr<UsedAttr>()) 3044 return; 3045 3046 // Must have internal linkage and an ordinary name. 3047 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3048 return; 3049 3050 // Must be in an extern "C" context. Entities declared directly within 3051 // a record are not extern "C" even if the record is in such a context. 3052 const SomeDecl *First = D->getFirstDecl(); 3053 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3054 return; 3055 3056 // OK, this is an internal linkage entity inside an extern "C" linkage 3057 // specification. Make a note of that so we can give it the "expected" 3058 // mangled name if nothing else is using that name. 3059 std::pair<StaticExternCMap::iterator, bool> R = 3060 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3061 3062 // If we have multiple internal linkage entities with the same name 3063 // in extern "C" regions, none of them gets that name. 3064 if (!R.second) 3065 R.first->second = nullptr; 3066 } 3067 3068 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3069 if (!CGM.supportsCOMDAT()) 3070 return false; 3071 3072 if (D.hasAttr<SelectAnyAttr>()) 3073 return true; 3074 3075 GVALinkage Linkage; 3076 if (auto *VD = dyn_cast<VarDecl>(&D)) 3077 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3078 else 3079 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3080 3081 switch (Linkage) { 3082 case GVA_Internal: 3083 case GVA_AvailableExternally: 3084 case GVA_StrongExternal: 3085 return false; 3086 case GVA_DiscardableODR: 3087 case GVA_StrongODR: 3088 return true; 3089 } 3090 llvm_unreachable("No such linkage"); 3091 } 3092 3093 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3094 llvm::GlobalObject &GO) { 3095 if (!shouldBeInCOMDAT(*this, D)) 3096 return; 3097 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3098 } 3099 3100 /// Pass IsTentative as true if you want to create a tentative definition. 3101 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3102 bool IsTentative) { 3103 // OpenCL global variables of sampler type are translated to function calls, 3104 // therefore no need to be translated. 3105 QualType ASTTy = D->getType(); 3106 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3107 return; 3108 3109 // If this is OpenMP device, check if it is legal to emit this global 3110 // normally. 3111 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3112 OpenMPRuntime->emitTargetGlobalVariable(D)) 3113 return; 3114 3115 llvm::Constant *Init = nullptr; 3116 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3117 bool NeedsGlobalCtor = false; 3118 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3119 3120 const VarDecl *InitDecl; 3121 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3122 3123 Optional<ConstantEmitter> emitter; 3124 3125 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3126 // as part of their declaration." Sema has already checked for 3127 // error cases, so we just need to set Init to UndefValue. 3128 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3129 D->hasAttr<CUDASharedAttr>()) 3130 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3131 else if (!InitExpr) { 3132 // This is a tentative definition; tentative definitions are 3133 // implicitly initialized with { 0 }. 3134 // 3135 // Note that tentative definitions are only emitted at the end of 3136 // a translation unit, so they should never have incomplete 3137 // type. In addition, EmitTentativeDefinition makes sure that we 3138 // never attempt to emit a tentative definition if a real one 3139 // exists. A use may still exists, however, so we still may need 3140 // to do a RAUW. 3141 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3142 Init = EmitNullConstant(D->getType()); 3143 } else { 3144 initializedGlobalDecl = GlobalDecl(D); 3145 emitter.emplace(*this); 3146 Init = emitter->tryEmitForInitializer(*InitDecl); 3147 3148 if (!Init) { 3149 QualType T = InitExpr->getType(); 3150 if (D->getType()->isReferenceType()) 3151 T = D->getType(); 3152 3153 if (getLangOpts().CPlusPlus) { 3154 Init = EmitNullConstant(T); 3155 NeedsGlobalCtor = true; 3156 } else { 3157 ErrorUnsupported(D, "static initializer"); 3158 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3159 } 3160 } else { 3161 // We don't need an initializer, so remove the entry for the delayed 3162 // initializer position (just in case this entry was delayed) if we 3163 // also don't need to register a destructor. 3164 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3165 DelayedCXXInitPosition.erase(D); 3166 } 3167 } 3168 3169 llvm::Type* InitType = Init->getType(); 3170 llvm::Constant *Entry = 3171 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3172 3173 // Strip off a bitcast if we got one back. 3174 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3175 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3176 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3177 // All zero index gep. 3178 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3179 Entry = CE->getOperand(0); 3180 } 3181 3182 // Entry is now either a Function or GlobalVariable. 3183 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3184 3185 // We have a definition after a declaration with the wrong type. 3186 // We must make a new GlobalVariable* and update everything that used OldGV 3187 // (a declaration or tentative definition) with the new GlobalVariable* 3188 // (which will be a definition). 3189 // 3190 // This happens if there is a prototype for a global (e.g. 3191 // "extern int x[];") and then a definition of a different type (e.g. 3192 // "int x[10];"). This also happens when an initializer has a different type 3193 // from the type of the global (this happens with unions). 3194 if (!GV || GV->getType()->getElementType() != InitType || 3195 GV->getType()->getAddressSpace() != 3196 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3197 3198 // Move the old entry aside so that we'll create a new one. 3199 Entry->setName(StringRef()); 3200 3201 // Make a new global with the correct type, this is now guaranteed to work. 3202 GV = cast<llvm::GlobalVariable>( 3203 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3204 3205 // Replace all uses of the old global with the new global 3206 llvm::Constant *NewPtrForOldDecl = 3207 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3208 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3209 3210 // Erase the old global, since it is no longer used. 3211 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3212 } 3213 3214 MaybeHandleStaticInExternC(D, GV); 3215 3216 if (D->hasAttr<AnnotateAttr>()) 3217 AddGlobalAnnotations(D, GV); 3218 3219 // Set the llvm linkage type as appropriate. 3220 llvm::GlobalValue::LinkageTypes Linkage = 3221 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3222 3223 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3224 // the device. [...]" 3225 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3226 // __device__, declares a variable that: [...] 3227 // Is accessible from all the threads within the grid and from the host 3228 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3229 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3230 if (GV && LangOpts.CUDA) { 3231 if (LangOpts.CUDAIsDevice) { 3232 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3233 GV->setExternallyInitialized(true); 3234 } else { 3235 // Host-side shadows of external declarations of device-side 3236 // global variables become internal definitions. These have to 3237 // be internal in order to prevent name conflicts with global 3238 // host variables with the same name in a different TUs. 3239 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3240 Linkage = llvm::GlobalValue::InternalLinkage; 3241 3242 // Shadow variables and their properties must be registered 3243 // with CUDA runtime. 3244 unsigned Flags = 0; 3245 if (!D->hasDefinition()) 3246 Flags |= CGCUDARuntime::ExternDeviceVar; 3247 if (D->hasAttr<CUDAConstantAttr>()) 3248 Flags |= CGCUDARuntime::ConstantDeviceVar; 3249 getCUDARuntime().registerDeviceVar(*GV, Flags); 3250 } else if (D->hasAttr<CUDASharedAttr>()) 3251 // __shared__ variables are odd. Shadows do get created, but 3252 // they are not registered with the CUDA runtime, so they 3253 // can't really be used to access their device-side 3254 // counterparts. It's not clear yet whether it's nvcc's bug or 3255 // a feature, but we've got to do the same for compatibility. 3256 Linkage = llvm::GlobalValue::InternalLinkage; 3257 } 3258 } 3259 3260 GV->setInitializer(Init); 3261 if (emitter) emitter->finalize(GV); 3262 3263 // If it is safe to mark the global 'constant', do so now. 3264 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3265 isTypeConstant(D->getType(), true)); 3266 3267 // If it is in a read-only section, mark it 'constant'. 3268 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3269 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3270 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3271 GV->setConstant(true); 3272 } 3273 3274 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3275 3276 3277 // On Darwin, if the normal linkage of a C++ thread_local variable is 3278 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3279 // copies within a linkage unit; otherwise, the backing variable has 3280 // internal linkage and all accesses should just be calls to the 3281 // Itanium-specified entry point, which has the normal linkage of the 3282 // variable. This is to preserve the ability to change the implementation 3283 // behind the scenes. 3284 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3285 Context.getTargetInfo().getTriple().isOSDarwin() && 3286 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3287 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3288 Linkage = llvm::GlobalValue::InternalLinkage; 3289 3290 GV->setLinkage(Linkage); 3291 if (D->hasAttr<DLLImportAttr>()) 3292 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3293 else if (D->hasAttr<DLLExportAttr>()) 3294 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3295 else 3296 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3297 3298 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3299 // common vars aren't constant even if declared const. 3300 GV->setConstant(false); 3301 // Tentative definition of global variables may be initialized with 3302 // non-zero null pointers. In this case they should have weak linkage 3303 // since common linkage must have zero initializer and must not have 3304 // explicit section therefore cannot have non-zero initial value. 3305 if (!GV->getInitializer()->isNullValue()) 3306 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3307 } 3308 3309 setNonAliasAttributes(D, GV); 3310 3311 if (D->getTLSKind() && !GV->isThreadLocal()) { 3312 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3313 CXXThreadLocals.push_back(D); 3314 setTLSMode(GV, *D); 3315 } 3316 3317 maybeSetTrivialComdat(*D, *GV); 3318 3319 // Emit the initializer function if necessary. 3320 if (NeedsGlobalCtor || NeedsGlobalDtor) 3321 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3322 3323 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3324 3325 // Emit global variable debug information. 3326 if (CGDebugInfo *DI = getModuleDebugInfo()) 3327 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3328 DI->EmitGlobalVariable(GV, D); 3329 } 3330 3331 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3332 CodeGenModule &CGM, const VarDecl *D, 3333 bool NoCommon) { 3334 // Don't give variables common linkage if -fno-common was specified unless it 3335 // was overridden by a NoCommon attribute. 3336 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3337 return true; 3338 3339 // C11 6.9.2/2: 3340 // A declaration of an identifier for an object that has file scope without 3341 // an initializer, and without a storage-class specifier or with the 3342 // storage-class specifier static, constitutes a tentative definition. 3343 if (D->getInit() || D->hasExternalStorage()) 3344 return true; 3345 3346 // A variable cannot be both common and exist in a section. 3347 if (D->hasAttr<SectionAttr>()) 3348 return true; 3349 3350 // A variable cannot be both common and exist in a section. 3351 // We don't try to determine which is the right section in the front-end. 3352 // If no specialized section name is applicable, it will resort to default. 3353 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3354 D->hasAttr<PragmaClangDataSectionAttr>() || 3355 D->hasAttr<PragmaClangRodataSectionAttr>()) 3356 return true; 3357 3358 // Thread local vars aren't considered common linkage. 3359 if (D->getTLSKind()) 3360 return true; 3361 3362 // Tentative definitions marked with WeakImportAttr are true definitions. 3363 if (D->hasAttr<WeakImportAttr>()) 3364 return true; 3365 3366 // A variable cannot be both common and exist in a comdat. 3367 if (shouldBeInCOMDAT(CGM, *D)) 3368 return true; 3369 3370 // Declarations with a required alignment do not have common linkage in MSVC 3371 // mode. 3372 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3373 if (D->hasAttr<AlignedAttr>()) 3374 return true; 3375 QualType VarType = D->getType(); 3376 if (Context.isAlignmentRequired(VarType)) 3377 return true; 3378 3379 if (const auto *RT = VarType->getAs<RecordType>()) { 3380 const RecordDecl *RD = RT->getDecl(); 3381 for (const FieldDecl *FD : RD->fields()) { 3382 if (FD->isBitField()) 3383 continue; 3384 if (FD->hasAttr<AlignedAttr>()) 3385 return true; 3386 if (Context.isAlignmentRequired(FD->getType())) 3387 return true; 3388 } 3389 } 3390 } 3391 3392 return false; 3393 } 3394 3395 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3396 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3397 if (Linkage == GVA_Internal) 3398 return llvm::Function::InternalLinkage; 3399 3400 if (D->hasAttr<WeakAttr>()) { 3401 if (IsConstantVariable) 3402 return llvm::GlobalVariable::WeakODRLinkage; 3403 else 3404 return llvm::GlobalVariable::WeakAnyLinkage; 3405 } 3406 3407 // We are guaranteed to have a strong definition somewhere else, 3408 // so we can use available_externally linkage. 3409 if (Linkage == GVA_AvailableExternally) 3410 return llvm::GlobalValue::AvailableExternallyLinkage; 3411 3412 // Note that Apple's kernel linker doesn't support symbol 3413 // coalescing, so we need to avoid linkonce and weak linkages there. 3414 // Normally, this means we just map to internal, but for explicit 3415 // instantiations we'll map to external. 3416 3417 // In C++, the compiler has to emit a definition in every translation unit 3418 // that references the function. We should use linkonce_odr because 3419 // a) if all references in this translation unit are optimized away, we 3420 // don't need to codegen it. b) if the function persists, it needs to be 3421 // merged with other definitions. c) C++ has the ODR, so we know the 3422 // definition is dependable. 3423 if (Linkage == GVA_DiscardableODR) 3424 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3425 : llvm::Function::InternalLinkage; 3426 3427 // An explicit instantiation of a template has weak linkage, since 3428 // explicit instantiations can occur in multiple translation units 3429 // and must all be equivalent. However, we are not allowed to 3430 // throw away these explicit instantiations. 3431 // 3432 // We don't currently support CUDA device code spread out across multiple TUs, 3433 // so say that CUDA templates are either external (for kernels) or internal. 3434 // This lets llvm perform aggressive inter-procedural optimizations. 3435 if (Linkage == GVA_StrongODR) { 3436 if (Context.getLangOpts().AppleKext) 3437 return llvm::Function::ExternalLinkage; 3438 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3439 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3440 : llvm::Function::InternalLinkage; 3441 return llvm::Function::WeakODRLinkage; 3442 } 3443 3444 // C++ doesn't have tentative definitions and thus cannot have common 3445 // linkage. 3446 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3447 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3448 CodeGenOpts.NoCommon)) 3449 return llvm::GlobalVariable::CommonLinkage; 3450 3451 // selectany symbols are externally visible, so use weak instead of 3452 // linkonce. MSVC optimizes away references to const selectany globals, so 3453 // all definitions should be the same and ODR linkage should be used. 3454 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3455 if (D->hasAttr<SelectAnyAttr>()) 3456 return llvm::GlobalVariable::WeakODRLinkage; 3457 3458 // Otherwise, we have strong external linkage. 3459 assert(Linkage == GVA_StrongExternal); 3460 return llvm::GlobalVariable::ExternalLinkage; 3461 } 3462 3463 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3464 const VarDecl *VD, bool IsConstant) { 3465 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3466 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3467 } 3468 3469 /// Replace the uses of a function that was declared with a non-proto type. 3470 /// We want to silently drop extra arguments from call sites 3471 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3472 llvm::Function *newFn) { 3473 // Fast path. 3474 if (old->use_empty()) return; 3475 3476 llvm::Type *newRetTy = newFn->getReturnType(); 3477 SmallVector<llvm::Value*, 4> newArgs; 3478 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3479 3480 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3481 ui != ue; ) { 3482 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3483 llvm::User *user = use->getUser(); 3484 3485 // Recognize and replace uses of bitcasts. Most calls to 3486 // unprototyped functions will use bitcasts. 3487 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3488 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3489 replaceUsesOfNonProtoConstant(bitcast, newFn); 3490 continue; 3491 } 3492 3493 // Recognize calls to the function. 3494 llvm::CallSite callSite(user); 3495 if (!callSite) continue; 3496 if (!callSite.isCallee(&*use)) continue; 3497 3498 // If the return types don't match exactly, then we can't 3499 // transform this call unless it's dead. 3500 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3501 continue; 3502 3503 // Get the call site's attribute list. 3504 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3505 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3506 3507 // If the function was passed too few arguments, don't transform. 3508 unsigned newNumArgs = newFn->arg_size(); 3509 if (callSite.arg_size() < newNumArgs) continue; 3510 3511 // If extra arguments were passed, we silently drop them. 3512 // If any of the types mismatch, we don't transform. 3513 unsigned argNo = 0; 3514 bool dontTransform = false; 3515 for (llvm::Argument &A : newFn->args()) { 3516 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3517 dontTransform = true; 3518 break; 3519 } 3520 3521 // Add any parameter attributes. 3522 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3523 argNo++; 3524 } 3525 if (dontTransform) 3526 continue; 3527 3528 // Okay, we can transform this. Create the new call instruction and copy 3529 // over the required information. 3530 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3531 3532 // Copy over any operand bundles. 3533 callSite.getOperandBundlesAsDefs(newBundles); 3534 3535 llvm::CallSite newCall; 3536 if (callSite.isCall()) { 3537 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3538 callSite.getInstruction()); 3539 } else { 3540 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3541 newCall = llvm::InvokeInst::Create(newFn, 3542 oldInvoke->getNormalDest(), 3543 oldInvoke->getUnwindDest(), 3544 newArgs, newBundles, "", 3545 callSite.getInstruction()); 3546 } 3547 newArgs.clear(); // for the next iteration 3548 3549 if (!newCall->getType()->isVoidTy()) 3550 newCall->takeName(callSite.getInstruction()); 3551 newCall.setAttributes(llvm::AttributeList::get( 3552 newFn->getContext(), oldAttrs.getFnAttributes(), 3553 oldAttrs.getRetAttributes(), newArgAttrs)); 3554 newCall.setCallingConv(callSite.getCallingConv()); 3555 3556 // Finally, remove the old call, replacing any uses with the new one. 3557 if (!callSite->use_empty()) 3558 callSite->replaceAllUsesWith(newCall.getInstruction()); 3559 3560 // Copy debug location attached to CI. 3561 if (callSite->getDebugLoc()) 3562 newCall->setDebugLoc(callSite->getDebugLoc()); 3563 3564 callSite->eraseFromParent(); 3565 } 3566 } 3567 3568 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3569 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3570 /// existing call uses of the old function in the module, this adjusts them to 3571 /// call the new function directly. 3572 /// 3573 /// This is not just a cleanup: the always_inline pass requires direct calls to 3574 /// functions to be able to inline them. If there is a bitcast in the way, it 3575 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3576 /// run at -O0. 3577 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3578 llvm::Function *NewFn) { 3579 // If we're redefining a global as a function, don't transform it. 3580 if (!isa<llvm::Function>(Old)) return; 3581 3582 replaceUsesOfNonProtoConstant(Old, NewFn); 3583 } 3584 3585 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3586 auto DK = VD->isThisDeclarationADefinition(); 3587 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3588 return; 3589 3590 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3591 // If we have a definition, this might be a deferred decl. If the 3592 // instantiation is explicit, make sure we emit it at the end. 3593 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3594 GetAddrOfGlobalVar(VD); 3595 3596 EmitTopLevelDecl(VD); 3597 } 3598 3599 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3600 llvm::GlobalValue *GV) { 3601 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3602 3603 // Compute the function info and LLVM type. 3604 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3605 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3606 3607 // Get or create the prototype for the function. 3608 if (!GV || (GV->getType()->getElementType() != Ty)) 3609 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3610 /*DontDefer=*/true, 3611 ForDefinition)); 3612 3613 // Already emitted. 3614 if (!GV->isDeclaration()) 3615 return; 3616 3617 // We need to set linkage and visibility on the function before 3618 // generating code for it because various parts of IR generation 3619 // want to propagate this information down (e.g. to local static 3620 // declarations). 3621 auto *Fn = cast<llvm::Function>(GV); 3622 setFunctionLinkage(GD, Fn); 3623 3624 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3625 setGVProperties(Fn, GD); 3626 3627 MaybeHandleStaticInExternC(D, Fn); 3628 3629 if (D->hasAttr<CUDAGlobalAttr>()) 3630 getTargetCodeGenInfo().setCUDAKernelCallingConvention(Fn); 3631 3632 maybeSetTrivialComdat(*D, *Fn); 3633 3634 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3635 3636 setNonAliasAttributes(GD, Fn); 3637 SetLLVMFunctionAttributesForDefinition(D, Fn); 3638 3639 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3640 AddGlobalCtor(Fn, CA->getPriority()); 3641 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3642 AddGlobalDtor(Fn, DA->getPriority()); 3643 if (D->hasAttr<AnnotateAttr>()) 3644 AddGlobalAnnotations(D, Fn); 3645 } 3646 3647 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3648 const auto *D = cast<ValueDecl>(GD.getDecl()); 3649 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3650 assert(AA && "Not an alias?"); 3651 3652 StringRef MangledName = getMangledName(GD); 3653 3654 if (AA->getAliasee() == MangledName) { 3655 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3656 return; 3657 } 3658 3659 // If there is a definition in the module, then it wins over the alias. 3660 // This is dubious, but allow it to be safe. Just ignore the alias. 3661 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3662 if (Entry && !Entry->isDeclaration()) 3663 return; 3664 3665 Aliases.push_back(GD); 3666 3667 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3668 3669 // Create a reference to the named value. This ensures that it is emitted 3670 // if a deferred decl. 3671 llvm::Constant *Aliasee; 3672 if (isa<llvm::FunctionType>(DeclTy)) 3673 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3674 /*ForVTable=*/false); 3675 else 3676 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3677 llvm::PointerType::getUnqual(DeclTy), 3678 /*D=*/nullptr); 3679 3680 // Create the new alias itself, but don't set a name yet. 3681 auto *GA = llvm::GlobalAlias::create( 3682 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3683 3684 if (Entry) { 3685 if (GA->getAliasee() == Entry) { 3686 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3687 return; 3688 } 3689 3690 assert(Entry->isDeclaration()); 3691 3692 // If there is a declaration in the module, then we had an extern followed 3693 // by the alias, as in: 3694 // extern int test6(); 3695 // ... 3696 // int test6() __attribute__((alias("test7"))); 3697 // 3698 // Remove it and replace uses of it with the alias. 3699 GA->takeName(Entry); 3700 3701 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3702 Entry->getType())); 3703 Entry->eraseFromParent(); 3704 } else { 3705 GA->setName(MangledName); 3706 } 3707 3708 // Set attributes which are particular to an alias; this is a 3709 // specialization of the attributes which may be set on a global 3710 // variable/function. 3711 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3712 D->isWeakImported()) { 3713 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3714 } 3715 3716 if (const auto *VD = dyn_cast<VarDecl>(D)) 3717 if (VD->getTLSKind()) 3718 setTLSMode(GA, *VD); 3719 3720 SetCommonAttributes(GD, GA); 3721 } 3722 3723 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3724 const auto *D = cast<ValueDecl>(GD.getDecl()); 3725 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3726 assert(IFA && "Not an ifunc?"); 3727 3728 StringRef MangledName = getMangledName(GD); 3729 3730 if (IFA->getResolver() == MangledName) { 3731 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3732 return; 3733 } 3734 3735 // Report an error if some definition overrides ifunc. 3736 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3737 if (Entry && !Entry->isDeclaration()) { 3738 GlobalDecl OtherGD; 3739 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3740 DiagnosedConflictingDefinitions.insert(GD).second) { 3741 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3742 Diags.Report(OtherGD.getDecl()->getLocation(), 3743 diag::note_previous_definition); 3744 } 3745 return; 3746 } 3747 3748 Aliases.push_back(GD); 3749 3750 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3751 llvm::Constant *Resolver = 3752 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3753 /*ForVTable=*/false); 3754 llvm::GlobalIFunc *GIF = 3755 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3756 "", Resolver, &getModule()); 3757 if (Entry) { 3758 if (GIF->getResolver() == Entry) { 3759 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3760 return; 3761 } 3762 assert(Entry->isDeclaration()); 3763 3764 // If there is a declaration in the module, then we had an extern followed 3765 // by the ifunc, as in: 3766 // extern int test(); 3767 // ... 3768 // int test() __attribute__((ifunc("resolver"))); 3769 // 3770 // Remove it and replace uses of it with the ifunc. 3771 GIF->takeName(Entry); 3772 3773 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3774 Entry->getType())); 3775 Entry->eraseFromParent(); 3776 } else 3777 GIF->setName(MangledName); 3778 3779 SetCommonAttributes(GD, GIF); 3780 } 3781 3782 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3783 ArrayRef<llvm::Type*> Tys) { 3784 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3785 Tys); 3786 } 3787 3788 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3789 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3790 const StringLiteral *Literal, bool TargetIsLSB, 3791 bool &IsUTF16, unsigned &StringLength) { 3792 StringRef String = Literal->getString(); 3793 unsigned NumBytes = String.size(); 3794 3795 // Check for simple case. 3796 if (!Literal->containsNonAsciiOrNull()) { 3797 StringLength = NumBytes; 3798 return *Map.insert(std::make_pair(String, nullptr)).first; 3799 } 3800 3801 // Otherwise, convert the UTF8 literals into a string of shorts. 3802 IsUTF16 = true; 3803 3804 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3805 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3806 llvm::UTF16 *ToPtr = &ToBuf[0]; 3807 3808 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3809 ToPtr + NumBytes, llvm::strictConversion); 3810 3811 // ConvertUTF8toUTF16 returns the length in ToPtr. 3812 StringLength = ToPtr - &ToBuf[0]; 3813 3814 // Add an explicit null. 3815 *ToPtr = 0; 3816 return *Map.insert(std::make_pair( 3817 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3818 (StringLength + 1) * 2), 3819 nullptr)).first; 3820 } 3821 3822 ConstantAddress 3823 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3824 unsigned StringLength = 0; 3825 bool isUTF16 = false; 3826 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3827 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3828 getDataLayout().isLittleEndian(), isUTF16, 3829 StringLength); 3830 3831 if (auto *C = Entry.second) 3832 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3833 3834 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3835 llvm::Constant *Zeros[] = { Zero, Zero }; 3836 3837 // If we don't already have it, get __CFConstantStringClassReference. 3838 if (!CFConstantStringClassRef) { 3839 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3840 Ty = llvm::ArrayType::get(Ty, 0); 3841 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 3842 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 3843 3844 if (getTriple().isOSBinFormatCOFF()) { 3845 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3846 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3847 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3848 3849 const VarDecl *VD = nullptr; 3850 for (const auto &Result : DC->lookup(&II)) 3851 if ((VD = dyn_cast<VarDecl>(Result))) 3852 break; 3853 3854 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3855 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3856 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3857 } else { 3858 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3859 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3860 } 3861 } 3862 setDSOLocal(GV); 3863 3864 // Decay array -> ptr 3865 CFConstantStringClassRef = 3866 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3867 } 3868 3869 QualType CFTy = getContext().getCFConstantStringType(); 3870 3871 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3872 3873 ConstantInitBuilder Builder(*this); 3874 auto Fields = Builder.beginStruct(STy); 3875 3876 // Class pointer. 3877 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3878 3879 // Flags. 3880 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3881 3882 // String pointer. 3883 llvm::Constant *C = nullptr; 3884 if (isUTF16) { 3885 auto Arr = llvm::makeArrayRef( 3886 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3887 Entry.first().size() / 2); 3888 C = llvm::ConstantDataArray::get(VMContext, Arr); 3889 } else { 3890 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3891 } 3892 3893 // Note: -fwritable-strings doesn't make the backing store strings of 3894 // CFStrings writable. (See <rdar://problem/10657500>) 3895 auto *GV = 3896 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3897 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3898 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3899 // Don't enforce the target's minimum global alignment, since the only use 3900 // of the string is via this class initializer. 3901 CharUnits Align = isUTF16 3902 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3903 : getContext().getTypeAlignInChars(getContext().CharTy); 3904 GV->setAlignment(Align.getQuantity()); 3905 3906 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3907 // Without it LLVM can merge the string with a non unnamed_addr one during 3908 // LTO. Doing that changes the section it ends in, which surprises ld64. 3909 if (getTriple().isOSBinFormatMachO()) 3910 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3911 : "__TEXT,__cstring,cstring_literals"); 3912 3913 // String. 3914 llvm::Constant *Str = 3915 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3916 3917 if (isUTF16) 3918 // Cast the UTF16 string to the correct type. 3919 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3920 Fields.add(Str); 3921 3922 // String length. 3923 auto Ty = getTypes().ConvertType(getContext().LongTy); 3924 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3925 3926 CharUnits Alignment = getPointerAlign(); 3927 3928 // The struct. 3929 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3930 /*isConstant=*/false, 3931 llvm::GlobalVariable::PrivateLinkage); 3932 switch (getTriple().getObjectFormat()) { 3933 case llvm::Triple::UnknownObjectFormat: 3934 llvm_unreachable("unknown file format"); 3935 case llvm::Triple::COFF: 3936 case llvm::Triple::ELF: 3937 case llvm::Triple::Wasm: 3938 GV->setSection("cfstring"); 3939 break; 3940 case llvm::Triple::MachO: 3941 GV->setSection("__DATA,__cfstring"); 3942 break; 3943 } 3944 Entry.second = GV; 3945 3946 return ConstantAddress(GV, Alignment); 3947 } 3948 3949 bool CodeGenModule::getExpressionLocationsEnabled() const { 3950 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3951 } 3952 3953 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3954 if (ObjCFastEnumerationStateType.isNull()) { 3955 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3956 D->startDefinition(); 3957 3958 QualType FieldTypes[] = { 3959 Context.UnsignedLongTy, 3960 Context.getPointerType(Context.getObjCIdType()), 3961 Context.getPointerType(Context.UnsignedLongTy), 3962 Context.getConstantArrayType(Context.UnsignedLongTy, 3963 llvm::APInt(32, 5), ArrayType::Normal, 0) 3964 }; 3965 3966 for (size_t i = 0; i < 4; ++i) { 3967 FieldDecl *Field = FieldDecl::Create(Context, 3968 D, 3969 SourceLocation(), 3970 SourceLocation(), nullptr, 3971 FieldTypes[i], /*TInfo=*/nullptr, 3972 /*BitWidth=*/nullptr, 3973 /*Mutable=*/false, 3974 ICIS_NoInit); 3975 Field->setAccess(AS_public); 3976 D->addDecl(Field); 3977 } 3978 3979 D->completeDefinition(); 3980 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3981 } 3982 3983 return ObjCFastEnumerationStateType; 3984 } 3985 3986 llvm::Constant * 3987 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3988 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3989 3990 // Don't emit it as the address of the string, emit the string data itself 3991 // as an inline array. 3992 if (E->getCharByteWidth() == 1) { 3993 SmallString<64> Str(E->getString()); 3994 3995 // Resize the string to the right size, which is indicated by its type. 3996 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3997 Str.resize(CAT->getSize().getZExtValue()); 3998 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3999 } 4000 4001 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4002 llvm::Type *ElemTy = AType->getElementType(); 4003 unsigned NumElements = AType->getNumElements(); 4004 4005 // Wide strings have either 2-byte or 4-byte elements. 4006 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4007 SmallVector<uint16_t, 32> Elements; 4008 Elements.reserve(NumElements); 4009 4010 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4011 Elements.push_back(E->getCodeUnit(i)); 4012 Elements.resize(NumElements); 4013 return llvm::ConstantDataArray::get(VMContext, Elements); 4014 } 4015 4016 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4017 SmallVector<uint32_t, 32> Elements; 4018 Elements.reserve(NumElements); 4019 4020 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4021 Elements.push_back(E->getCodeUnit(i)); 4022 Elements.resize(NumElements); 4023 return llvm::ConstantDataArray::get(VMContext, Elements); 4024 } 4025 4026 static llvm::GlobalVariable * 4027 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4028 CodeGenModule &CGM, StringRef GlobalName, 4029 CharUnits Alignment) { 4030 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4031 unsigned AddrSpace = 0; 4032 if (CGM.getLangOpts().OpenCL) 4033 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 4034 4035 llvm::Module &M = CGM.getModule(); 4036 // Create a global variable for this string 4037 auto *GV = new llvm::GlobalVariable( 4038 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4039 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4040 GV->setAlignment(Alignment.getQuantity()); 4041 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4042 if (GV->isWeakForLinker()) { 4043 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4044 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4045 } 4046 CGM.setDSOLocal(GV); 4047 4048 return GV; 4049 } 4050 4051 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4052 /// constant array for the given string literal. 4053 ConstantAddress 4054 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4055 StringRef Name) { 4056 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4057 4058 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4059 llvm::GlobalVariable **Entry = nullptr; 4060 if (!LangOpts.WritableStrings) { 4061 Entry = &ConstantStringMap[C]; 4062 if (auto GV = *Entry) { 4063 if (Alignment.getQuantity() > GV->getAlignment()) 4064 GV->setAlignment(Alignment.getQuantity()); 4065 return ConstantAddress(GV, Alignment); 4066 } 4067 } 4068 4069 SmallString<256> MangledNameBuffer; 4070 StringRef GlobalVariableName; 4071 llvm::GlobalValue::LinkageTypes LT; 4072 4073 // Mangle the string literal if the ABI allows for it. However, we cannot 4074 // do this if we are compiling with ASan or -fwritable-strings because they 4075 // rely on strings having normal linkage. 4076 if (!LangOpts.WritableStrings && 4077 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4078 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4079 llvm::raw_svector_ostream Out(MangledNameBuffer); 4080 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4081 4082 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4083 GlobalVariableName = MangledNameBuffer; 4084 } else { 4085 LT = llvm::GlobalValue::PrivateLinkage; 4086 GlobalVariableName = Name; 4087 } 4088 4089 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4090 if (Entry) 4091 *Entry = GV; 4092 4093 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4094 QualType()); 4095 return ConstantAddress(GV, Alignment); 4096 } 4097 4098 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4099 /// array for the given ObjCEncodeExpr node. 4100 ConstantAddress 4101 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4102 std::string Str; 4103 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4104 4105 return GetAddrOfConstantCString(Str); 4106 } 4107 4108 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4109 /// the literal and a terminating '\0' character. 4110 /// The result has pointer to array type. 4111 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4112 const std::string &Str, const char *GlobalName) { 4113 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4114 CharUnits Alignment = 4115 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4116 4117 llvm::Constant *C = 4118 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4119 4120 // Don't share any string literals if strings aren't constant. 4121 llvm::GlobalVariable **Entry = nullptr; 4122 if (!LangOpts.WritableStrings) { 4123 Entry = &ConstantStringMap[C]; 4124 if (auto GV = *Entry) { 4125 if (Alignment.getQuantity() > GV->getAlignment()) 4126 GV->setAlignment(Alignment.getQuantity()); 4127 return ConstantAddress(GV, Alignment); 4128 } 4129 } 4130 4131 // Get the default prefix if a name wasn't specified. 4132 if (!GlobalName) 4133 GlobalName = ".str"; 4134 // Create a global variable for this. 4135 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4136 GlobalName, Alignment); 4137 if (Entry) 4138 *Entry = GV; 4139 return ConstantAddress(GV, Alignment); 4140 } 4141 4142 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4143 const MaterializeTemporaryExpr *E, const Expr *Init) { 4144 assert((E->getStorageDuration() == SD_Static || 4145 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4146 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4147 4148 // If we're not materializing a subobject of the temporary, keep the 4149 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4150 QualType MaterializedType = Init->getType(); 4151 if (Init == E->GetTemporaryExpr()) 4152 MaterializedType = E->getType(); 4153 4154 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4155 4156 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4157 return ConstantAddress(Slot, Align); 4158 4159 // FIXME: If an externally-visible declaration extends multiple temporaries, 4160 // we need to give each temporary the same name in every translation unit (and 4161 // we also need to make the temporaries externally-visible). 4162 SmallString<256> Name; 4163 llvm::raw_svector_ostream Out(Name); 4164 getCXXABI().getMangleContext().mangleReferenceTemporary( 4165 VD, E->getManglingNumber(), Out); 4166 4167 APValue *Value = nullptr; 4168 if (E->getStorageDuration() == SD_Static) { 4169 // We might have a cached constant initializer for this temporary. Note 4170 // that this might have a different value from the value computed by 4171 // evaluating the initializer if the surrounding constant expression 4172 // modifies the temporary. 4173 Value = getContext().getMaterializedTemporaryValue(E, false); 4174 if (Value && Value->isUninit()) 4175 Value = nullptr; 4176 } 4177 4178 // Try evaluating it now, it might have a constant initializer. 4179 Expr::EvalResult EvalResult; 4180 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4181 !EvalResult.hasSideEffects()) 4182 Value = &EvalResult.Val; 4183 4184 LangAS AddrSpace = 4185 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4186 4187 Optional<ConstantEmitter> emitter; 4188 llvm::Constant *InitialValue = nullptr; 4189 bool Constant = false; 4190 llvm::Type *Type; 4191 if (Value) { 4192 // The temporary has a constant initializer, use it. 4193 emitter.emplace(*this); 4194 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4195 MaterializedType); 4196 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4197 Type = InitialValue->getType(); 4198 } else { 4199 // No initializer, the initialization will be provided when we 4200 // initialize the declaration which performed lifetime extension. 4201 Type = getTypes().ConvertTypeForMem(MaterializedType); 4202 } 4203 4204 // Create a global variable for this lifetime-extended temporary. 4205 llvm::GlobalValue::LinkageTypes Linkage = 4206 getLLVMLinkageVarDefinition(VD, Constant); 4207 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4208 const VarDecl *InitVD; 4209 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4210 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4211 // Temporaries defined inside a class get linkonce_odr linkage because the 4212 // class can be defined in multiple translation units. 4213 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4214 } else { 4215 // There is no need for this temporary to have external linkage if the 4216 // VarDecl has external linkage. 4217 Linkage = llvm::GlobalVariable::InternalLinkage; 4218 } 4219 } 4220 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4221 auto *GV = new llvm::GlobalVariable( 4222 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4223 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4224 if (emitter) emitter->finalize(GV); 4225 setGVProperties(GV, VD); 4226 GV->setAlignment(Align.getQuantity()); 4227 if (supportsCOMDAT() && GV->isWeakForLinker()) 4228 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4229 if (VD->getTLSKind()) 4230 setTLSMode(GV, *VD); 4231 llvm::Constant *CV = GV; 4232 if (AddrSpace != LangAS::Default) 4233 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4234 *this, GV, AddrSpace, LangAS::Default, 4235 Type->getPointerTo( 4236 getContext().getTargetAddressSpace(LangAS::Default))); 4237 MaterializedGlobalTemporaryMap[E] = CV; 4238 return ConstantAddress(CV, Align); 4239 } 4240 4241 /// EmitObjCPropertyImplementations - Emit information for synthesized 4242 /// properties for an implementation. 4243 void CodeGenModule::EmitObjCPropertyImplementations(const 4244 ObjCImplementationDecl *D) { 4245 for (const auto *PID : D->property_impls()) { 4246 // Dynamic is just for type-checking. 4247 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4248 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4249 4250 // Determine which methods need to be implemented, some may have 4251 // been overridden. Note that ::isPropertyAccessor is not the method 4252 // we want, that just indicates if the decl came from a 4253 // property. What we want to know is if the method is defined in 4254 // this implementation. 4255 if (!D->getInstanceMethod(PD->getGetterName())) 4256 CodeGenFunction(*this).GenerateObjCGetter( 4257 const_cast<ObjCImplementationDecl *>(D), PID); 4258 if (!PD->isReadOnly() && 4259 !D->getInstanceMethod(PD->getSetterName())) 4260 CodeGenFunction(*this).GenerateObjCSetter( 4261 const_cast<ObjCImplementationDecl *>(D), PID); 4262 } 4263 } 4264 } 4265 4266 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4267 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4268 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4269 ivar; ivar = ivar->getNextIvar()) 4270 if (ivar->getType().isDestructedType()) 4271 return true; 4272 4273 return false; 4274 } 4275 4276 static bool AllTrivialInitializers(CodeGenModule &CGM, 4277 ObjCImplementationDecl *D) { 4278 CodeGenFunction CGF(CGM); 4279 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4280 E = D->init_end(); B != E; ++B) { 4281 CXXCtorInitializer *CtorInitExp = *B; 4282 Expr *Init = CtorInitExp->getInit(); 4283 if (!CGF.isTrivialInitializer(Init)) 4284 return false; 4285 } 4286 return true; 4287 } 4288 4289 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4290 /// for an implementation. 4291 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4292 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4293 if (needsDestructMethod(D)) { 4294 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4295 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4296 ObjCMethodDecl *DTORMethod = 4297 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4298 cxxSelector, getContext().VoidTy, nullptr, D, 4299 /*isInstance=*/true, /*isVariadic=*/false, 4300 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4301 /*isDefined=*/false, ObjCMethodDecl::Required); 4302 D->addInstanceMethod(DTORMethod); 4303 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4304 D->setHasDestructors(true); 4305 } 4306 4307 // If the implementation doesn't have any ivar initializers, we don't need 4308 // a .cxx_construct. 4309 if (D->getNumIvarInitializers() == 0 || 4310 AllTrivialInitializers(*this, D)) 4311 return; 4312 4313 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4314 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4315 // The constructor returns 'self'. 4316 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4317 D->getLocation(), 4318 D->getLocation(), 4319 cxxSelector, 4320 getContext().getObjCIdType(), 4321 nullptr, D, /*isInstance=*/true, 4322 /*isVariadic=*/false, 4323 /*isPropertyAccessor=*/true, 4324 /*isImplicitlyDeclared=*/true, 4325 /*isDefined=*/false, 4326 ObjCMethodDecl::Required); 4327 D->addInstanceMethod(CTORMethod); 4328 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4329 D->setHasNonZeroConstructors(true); 4330 } 4331 4332 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4333 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4334 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4335 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4336 ErrorUnsupported(LSD, "linkage spec"); 4337 return; 4338 } 4339 4340 EmitDeclContext(LSD); 4341 } 4342 4343 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4344 for (auto *I : DC->decls()) { 4345 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4346 // are themselves considered "top-level", so EmitTopLevelDecl on an 4347 // ObjCImplDecl does not recursively visit them. We need to do that in 4348 // case they're nested inside another construct (LinkageSpecDecl / 4349 // ExportDecl) that does stop them from being considered "top-level". 4350 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4351 for (auto *M : OID->methods()) 4352 EmitTopLevelDecl(M); 4353 } 4354 4355 EmitTopLevelDecl(I); 4356 } 4357 } 4358 4359 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4360 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4361 // Ignore dependent declarations. 4362 if (D->isTemplated()) 4363 return; 4364 4365 switch (D->getKind()) { 4366 case Decl::CXXConversion: 4367 case Decl::CXXMethod: 4368 case Decl::Function: 4369 EmitGlobal(cast<FunctionDecl>(D)); 4370 // Always provide some coverage mapping 4371 // even for the functions that aren't emitted. 4372 AddDeferredUnusedCoverageMapping(D); 4373 break; 4374 4375 case Decl::CXXDeductionGuide: 4376 // Function-like, but does not result in code emission. 4377 break; 4378 4379 case Decl::Var: 4380 case Decl::Decomposition: 4381 case Decl::VarTemplateSpecialization: 4382 EmitGlobal(cast<VarDecl>(D)); 4383 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4384 for (auto *B : DD->bindings()) 4385 if (auto *HD = B->getHoldingVar()) 4386 EmitGlobal(HD); 4387 break; 4388 4389 // Indirect fields from global anonymous structs and unions can be 4390 // ignored; only the actual variable requires IR gen support. 4391 case Decl::IndirectField: 4392 break; 4393 4394 // C++ Decls 4395 case Decl::Namespace: 4396 EmitDeclContext(cast<NamespaceDecl>(D)); 4397 break; 4398 case Decl::ClassTemplateSpecialization: { 4399 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4400 if (DebugInfo && 4401 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4402 Spec->hasDefinition()) 4403 DebugInfo->completeTemplateDefinition(*Spec); 4404 } LLVM_FALLTHROUGH; 4405 case Decl::CXXRecord: 4406 if (DebugInfo) { 4407 if (auto *ES = D->getASTContext().getExternalSource()) 4408 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4409 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4410 } 4411 // Emit any static data members, they may be definitions. 4412 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4413 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4414 EmitTopLevelDecl(I); 4415 break; 4416 // No code generation needed. 4417 case Decl::UsingShadow: 4418 case Decl::ClassTemplate: 4419 case Decl::VarTemplate: 4420 case Decl::VarTemplatePartialSpecialization: 4421 case Decl::FunctionTemplate: 4422 case Decl::TypeAliasTemplate: 4423 case Decl::Block: 4424 case Decl::Empty: 4425 break; 4426 case Decl::Using: // using X; [C++] 4427 if (CGDebugInfo *DI = getModuleDebugInfo()) 4428 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4429 return; 4430 case Decl::NamespaceAlias: 4431 if (CGDebugInfo *DI = getModuleDebugInfo()) 4432 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4433 return; 4434 case Decl::UsingDirective: // using namespace X; [C++] 4435 if (CGDebugInfo *DI = getModuleDebugInfo()) 4436 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4437 return; 4438 case Decl::CXXConstructor: 4439 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4440 break; 4441 case Decl::CXXDestructor: 4442 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4443 break; 4444 4445 case Decl::StaticAssert: 4446 // Nothing to do. 4447 break; 4448 4449 // Objective-C Decls 4450 4451 // Forward declarations, no (immediate) code generation. 4452 case Decl::ObjCInterface: 4453 case Decl::ObjCCategory: 4454 break; 4455 4456 case Decl::ObjCProtocol: { 4457 auto *Proto = cast<ObjCProtocolDecl>(D); 4458 if (Proto->isThisDeclarationADefinition()) 4459 ObjCRuntime->GenerateProtocol(Proto); 4460 break; 4461 } 4462 4463 case Decl::ObjCCategoryImpl: 4464 // Categories have properties but don't support synthesize so we 4465 // can ignore them here. 4466 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4467 break; 4468 4469 case Decl::ObjCImplementation: { 4470 auto *OMD = cast<ObjCImplementationDecl>(D); 4471 EmitObjCPropertyImplementations(OMD); 4472 EmitObjCIvarInitializations(OMD); 4473 ObjCRuntime->GenerateClass(OMD); 4474 // Emit global variable debug information. 4475 if (CGDebugInfo *DI = getModuleDebugInfo()) 4476 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4477 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4478 OMD->getClassInterface()), OMD->getLocation()); 4479 break; 4480 } 4481 case Decl::ObjCMethod: { 4482 auto *OMD = cast<ObjCMethodDecl>(D); 4483 // If this is not a prototype, emit the body. 4484 if (OMD->getBody()) 4485 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4486 break; 4487 } 4488 case Decl::ObjCCompatibleAlias: 4489 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4490 break; 4491 4492 case Decl::PragmaComment: { 4493 const auto *PCD = cast<PragmaCommentDecl>(D); 4494 switch (PCD->getCommentKind()) { 4495 case PCK_Unknown: 4496 llvm_unreachable("unexpected pragma comment kind"); 4497 case PCK_Linker: 4498 AppendLinkerOptions(PCD->getArg()); 4499 break; 4500 case PCK_Lib: 4501 if (getTarget().getTriple().isOSBinFormatELF() && 4502 !getTarget().getTriple().isPS4()) 4503 AddELFLibDirective(PCD->getArg()); 4504 else 4505 AddDependentLib(PCD->getArg()); 4506 break; 4507 case PCK_Compiler: 4508 case PCK_ExeStr: 4509 case PCK_User: 4510 break; // We ignore all of these. 4511 } 4512 break; 4513 } 4514 4515 case Decl::PragmaDetectMismatch: { 4516 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4517 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4518 break; 4519 } 4520 4521 case Decl::LinkageSpec: 4522 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4523 break; 4524 4525 case Decl::FileScopeAsm: { 4526 // File-scope asm is ignored during device-side CUDA compilation. 4527 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4528 break; 4529 // File-scope asm is ignored during device-side OpenMP compilation. 4530 if (LangOpts.OpenMPIsDevice) 4531 break; 4532 auto *AD = cast<FileScopeAsmDecl>(D); 4533 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4534 break; 4535 } 4536 4537 case Decl::Import: { 4538 auto *Import = cast<ImportDecl>(D); 4539 4540 // If we've already imported this module, we're done. 4541 if (!ImportedModules.insert(Import->getImportedModule())) 4542 break; 4543 4544 // Emit debug information for direct imports. 4545 if (!Import->getImportedOwningModule()) { 4546 if (CGDebugInfo *DI = getModuleDebugInfo()) 4547 DI->EmitImportDecl(*Import); 4548 } 4549 4550 // Find all of the submodules and emit the module initializers. 4551 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4552 SmallVector<clang::Module *, 16> Stack; 4553 Visited.insert(Import->getImportedModule()); 4554 Stack.push_back(Import->getImportedModule()); 4555 4556 while (!Stack.empty()) { 4557 clang::Module *Mod = Stack.pop_back_val(); 4558 if (!EmittedModuleInitializers.insert(Mod).second) 4559 continue; 4560 4561 for (auto *D : Context.getModuleInitializers(Mod)) 4562 EmitTopLevelDecl(D); 4563 4564 // Visit the submodules of this module. 4565 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4566 SubEnd = Mod->submodule_end(); 4567 Sub != SubEnd; ++Sub) { 4568 // Skip explicit children; they need to be explicitly imported to emit 4569 // the initializers. 4570 if ((*Sub)->IsExplicit) 4571 continue; 4572 4573 if (Visited.insert(*Sub).second) 4574 Stack.push_back(*Sub); 4575 } 4576 } 4577 break; 4578 } 4579 4580 case Decl::Export: 4581 EmitDeclContext(cast<ExportDecl>(D)); 4582 break; 4583 4584 case Decl::OMPThreadPrivate: 4585 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4586 break; 4587 4588 case Decl::OMPDeclareReduction: 4589 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4590 break; 4591 4592 default: 4593 // Make sure we handled everything we should, every other kind is a 4594 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4595 // function. Need to recode Decl::Kind to do that easily. 4596 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4597 break; 4598 } 4599 } 4600 4601 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4602 // Do we need to generate coverage mapping? 4603 if (!CodeGenOpts.CoverageMapping) 4604 return; 4605 switch (D->getKind()) { 4606 case Decl::CXXConversion: 4607 case Decl::CXXMethod: 4608 case Decl::Function: 4609 case Decl::ObjCMethod: 4610 case Decl::CXXConstructor: 4611 case Decl::CXXDestructor: { 4612 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4613 return; 4614 SourceManager &SM = getContext().getSourceManager(); 4615 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4616 return; 4617 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4618 if (I == DeferredEmptyCoverageMappingDecls.end()) 4619 DeferredEmptyCoverageMappingDecls[D] = true; 4620 break; 4621 } 4622 default: 4623 break; 4624 }; 4625 } 4626 4627 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4628 // Do we need to generate coverage mapping? 4629 if (!CodeGenOpts.CoverageMapping) 4630 return; 4631 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4632 if (Fn->isTemplateInstantiation()) 4633 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4634 } 4635 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4636 if (I == DeferredEmptyCoverageMappingDecls.end()) 4637 DeferredEmptyCoverageMappingDecls[D] = false; 4638 else 4639 I->second = false; 4640 } 4641 4642 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4643 // We call takeVector() here to avoid use-after-free. 4644 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4645 // we deserialize function bodies to emit coverage info for them, and that 4646 // deserializes more declarations. How should we handle that case? 4647 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4648 if (!Entry.second) 4649 continue; 4650 const Decl *D = Entry.first; 4651 switch (D->getKind()) { 4652 case Decl::CXXConversion: 4653 case Decl::CXXMethod: 4654 case Decl::Function: 4655 case Decl::ObjCMethod: { 4656 CodeGenPGO PGO(*this); 4657 GlobalDecl GD(cast<FunctionDecl>(D)); 4658 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4659 getFunctionLinkage(GD)); 4660 break; 4661 } 4662 case Decl::CXXConstructor: { 4663 CodeGenPGO PGO(*this); 4664 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4665 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4666 getFunctionLinkage(GD)); 4667 break; 4668 } 4669 case Decl::CXXDestructor: { 4670 CodeGenPGO PGO(*this); 4671 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4672 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4673 getFunctionLinkage(GD)); 4674 break; 4675 } 4676 default: 4677 break; 4678 }; 4679 } 4680 } 4681 4682 /// Turns the given pointer into a constant. 4683 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4684 const void *Ptr) { 4685 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4686 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4687 return llvm::ConstantInt::get(i64, PtrInt); 4688 } 4689 4690 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4691 llvm::NamedMDNode *&GlobalMetadata, 4692 GlobalDecl D, 4693 llvm::GlobalValue *Addr) { 4694 if (!GlobalMetadata) 4695 GlobalMetadata = 4696 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4697 4698 // TODO: should we report variant information for ctors/dtors? 4699 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4700 llvm::ConstantAsMetadata::get(GetPointerConstant( 4701 CGM.getLLVMContext(), D.getDecl()))}; 4702 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4703 } 4704 4705 /// For each function which is declared within an extern "C" region and marked 4706 /// as 'used', but has internal linkage, create an alias from the unmangled 4707 /// name to the mangled name if possible. People expect to be able to refer 4708 /// to such functions with an unmangled name from inline assembly within the 4709 /// same translation unit. 4710 void CodeGenModule::EmitStaticExternCAliases() { 4711 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4712 return; 4713 for (auto &I : StaticExternCValues) { 4714 IdentifierInfo *Name = I.first; 4715 llvm::GlobalValue *Val = I.second; 4716 if (Val && !getModule().getNamedValue(Name->getName())) 4717 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4718 } 4719 } 4720 4721 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4722 GlobalDecl &Result) const { 4723 auto Res = Manglings.find(MangledName); 4724 if (Res == Manglings.end()) 4725 return false; 4726 Result = Res->getValue(); 4727 return true; 4728 } 4729 4730 /// Emits metadata nodes associating all the global values in the 4731 /// current module with the Decls they came from. This is useful for 4732 /// projects using IR gen as a subroutine. 4733 /// 4734 /// Since there's currently no way to associate an MDNode directly 4735 /// with an llvm::GlobalValue, we create a global named metadata 4736 /// with the name 'clang.global.decl.ptrs'. 4737 void CodeGenModule::EmitDeclMetadata() { 4738 llvm::NamedMDNode *GlobalMetadata = nullptr; 4739 4740 for (auto &I : MangledDeclNames) { 4741 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4742 // Some mangled names don't necessarily have an associated GlobalValue 4743 // in this module, e.g. if we mangled it for DebugInfo. 4744 if (Addr) 4745 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4746 } 4747 } 4748 4749 /// Emits metadata nodes for all the local variables in the current 4750 /// function. 4751 void CodeGenFunction::EmitDeclMetadata() { 4752 if (LocalDeclMap.empty()) return; 4753 4754 llvm::LLVMContext &Context = getLLVMContext(); 4755 4756 // Find the unique metadata ID for this name. 4757 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4758 4759 llvm::NamedMDNode *GlobalMetadata = nullptr; 4760 4761 for (auto &I : LocalDeclMap) { 4762 const Decl *D = I.first; 4763 llvm::Value *Addr = I.second.getPointer(); 4764 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4765 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4766 Alloca->setMetadata( 4767 DeclPtrKind, llvm::MDNode::get( 4768 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4769 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4770 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4771 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4772 } 4773 } 4774 } 4775 4776 void CodeGenModule::EmitVersionIdentMetadata() { 4777 llvm::NamedMDNode *IdentMetadata = 4778 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4779 std::string Version = getClangFullVersion(); 4780 llvm::LLVMContext &Ctx = TheModule.getContext(); 4781 4782 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4783 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4784 } 4785 4786 void CodeGenModule::EmitTargetMetadata() { 4787 // Warning, new MangledDeclNames may be appended within this loop. 4788 // We rely on MapVector insertions adding new elements to the end 4789 // of the container. 4790 // FIXME: Move this loop into the one target that needs it, and only 4791 // loop over those declarations for which we couldn't emit the target 4792 // metadata when we emitted the declaration. 4793 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4794 auto Val = *(MangledDeclNames.begin() + I); 4795 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4796 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4797 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4798 } 4799 } 4800 4801 void CodeGenModule::EmitCoverageFile() { 4802 if (getCodeGenOpts().CoverageDataFile.empty() && 4803 getCodeGenOpts().CoverageNotesFile.empty()) 4804 return; 4805 4806 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4807 if (!CUNode) 4808 return; 4809 4810 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4811 llvm::LLVMContext &Ctx = TheModule.getContext(); 4812 auto *CoverageDataFile = 4813 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4814 auto *CoverageNotesFile = 4815 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4816 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4817 llvm::MDNode *CU = CUNode->getOperand(i); 4818 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4819 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4820 } 4821 } 4822 4823 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4824 // Sema has checked that all uuid strings are of the form 4825 // "12345678-1234-1234-1234-1234567890ab". 4826 assert(Uuid.size() == 36); 4827 for (unsigned i = 0; i < 36; ++i) { 4828 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4829 else assert(isHexDigit(Uuid[i])); 4830 } 4831 4832 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4833 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4834 4835 llvm::Constant *Field3[8]; 4836 for (unsigned Idx = 0; Idx < 8; ++Idx) 4837 Field3[Idx] = llvm::ConstantInt::get( 4838 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4839 4840 llvm::Constant *Fields[4] = { 4841 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4842 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4843 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4844 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4845 }; 4846 4847 return llvm::ConstantStruct::getAnon(Fields); 4848 } 4849 4850 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4851 bool ForEH) { 4852 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4853 // FIXME: should we even be calling this method if RTTI is disabled 4854 // and it's not for EH? 4855 if (!ForEH && !getLangOpts().RTTI) 4856 return llvm::Constant::getNullValue(Int8PtrTy); 4857 4858 if (ForEH && Ty->isObjCObjectPointerType() && 4859 LangOpts.ObjCRuntime.isGNUFamily()) 4860 return ObjCRuntime->GetEHType(Ty); 4861 4862 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4863 } 4864 4865 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4866 // Do not emit threadprivates in simd-only mode. 4867 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4868 return; 4869 for (auto RefExpr : D->varlists()) { 4870 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4871 bool PerformInit = 4872 VD->getAnyInitializer() && 4873 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4874 /*ForRef=*/false); 4875 4876 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4877 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4878 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4879 CXXGlobalInits.push_back(InitFunction); 4880 } 4881 } 4882 4883 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4884 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4885 if (InternalId) 4886 return InternalId; 4887 4888 if (isExternallyVisible(T->getLinkage())) { 4889 std::string OutName; 4890 llvm::raw_string_ostream Out(OutName); 4891 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4892 4893 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4894 } else { 4895 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4896 llvm::ArrayRef<llvm::Metadata *>()); 4897 } 4898 4899 return InternalId; 4900 } 4901 4902 // Generalize pointer types to a void pointer with the qualifiers of the 4903 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4904 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4905 // 'void *'. 4906 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4907 if (!Ty->isPointerType()) 4908 return Ty; 4909 4910 return Ctx.getPointerType( 4911 QualType(Ctx.VoidTy).withCVRQualifiers( 4912 Ty->getPointeeType().getCVRQualifiers())); 4913 } 4914 4915 // Apply type generalization to a FunctionType's return and argument types 4916 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4917 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4918 SmallVector<QualType, 8> GeneralizedParams; 4919 for (auto &Param : FnType->param_types()) 4920 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4921 4922 return Ctx.getFunctionType( 4923 GeneralizeType(Ctx, FnType->getReturnType()), 4924 GeneralizedParams, FnType->getExtProtoInfo()); 4925 } 4926 4927 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4928 return Ctx.getFunctionNoProtoType( 4929 GeneralizeType(Ctx, FnType->getReturnType())); 4930 4931 llvm_unreachable("Encountered unknown FunctionType"); 4932 } 4933 4934 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4935 T = GeneralizeFunctionType(getContext(), T); 4936 4937 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4938 if (InternalId) 4939 return InternalId; 4940 4941 if (isExternallyVisible(T->getLinkage())) { 4942 std::string OutName; 4943 llvm::raw_string_ostream Out(OutName); 4944 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4945 Out << ".generalized"; 4946 4947 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4948 } else { 4949 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4950 llvm::ArrayRef<llvm::Metadata *>()); 4951 } 4952 4953 return InternalId; 4954 } 4955 4956 /// Returns whether this module needs the "all-vtables" type identifier. 4957 bool CodeGenModule::NeedAllVtablesTypeId() const { 4958 // Returns true if at least one of vtable-based CFI checkers is enabled and 4959 // is not in the trapping mode. 4960 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4961 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4962 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4963 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4964 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4965 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4966 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4967 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4968 } 4969 4970 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4971 CharUnits Offset, 4972 const CXXRecordDecl *RD) { 4973 llvm::Metadata *MD = 4974 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4975 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4976 4977 if (CodeGenOpts.SanitizeCfiCrossDso) 4978 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4979 VTable->addTypeMetadata(Offset.getQuantity(), 4980 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4981 4982 if (NeedAllVtablesTypeId()) { 4983 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4984 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4985 } 4986 } 4987 4988 // Fills in the supplied string map with the set of target features for the 4989 // passed in function. 4990 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4991 const FunctionDecl *FD) { 4992 StringRef TargetCPU = Target.getTargetOpts().CPU; 4993 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4994 // If we have a TargetAttr build up the feature map based on that. 4995 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4996 4997 ParsedAttr.Features.erase( 4998 llvm::remove_if(ParsedAttr.Features, 4999 [&](const std::string &Feat) { 5000 return !Target.isValidFeatureName( 5001 StringRef{Feat}.substr(1)); 5002 }), 5003 ParsedAttr.Features.end()); 5004 5005 // Make a copy of the features as passed on the command line into the 5006 // beginning of the additional features from the function to override. 5007 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5008 Target.getTargetOpts().FeaturesAsWritten.begin(), 5009 Target.getTargetOpts().FeaturesAsWritten.end()); 5010 5011 if (ParsedAttr.Architecture != "" && 5012 Target.isValidCPUName(ParsedAttr.Architecture)) 5013 TargetCPU = ParsedAttr.Architecture; 5014 5015 // Now populate the feature map, first with the TargetCPU which is either 5016 // the default or a new one from the target attribute string. Then we'll use 5017 // the passed in features (FeaturesAsWritten) along with the new ones from 5018 // the attribute. 5019 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5020 ParsedAttr.Features); 5021 } else { 5022 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5023 Target.getTargetOpts().Features); 5024 } 5025 } 5026 5027 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5028 if (!SanStats) 5029 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5030 5031 return *SanStats; 5032 } 5033 llvm::Value * 5034 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5035 CodeGenFunction &CGF) { 5036 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5037 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5038 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5039 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5040 "__translate_sampler_initializer"), 5041 {C}); 5042 } 5043