1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 78 llvm::Module &M, const llvm::DataLayout &TD, 79 DiagnosticsEngine &diags, 80 CoverageSourceInfo *CoverageInfo) 81 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 82 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 83 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 84 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 85 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 86 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 87 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 88 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 89 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 90 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 91 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 92 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 93 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 auto ReaderOrErr = 145 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 146 if (std::error_code EC = ReaderOrErr.getError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile %0: %1"); 149 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 150 << EC.message(); 151 } else 152 PGOReader = std::move(ReaderOrErr.get()); 153 } 154 155 // If coverage mapping generation is enabled, create the 156 // CoverageMappingModuleGen object. 157 if (CodeGenOpts.CoverageMapping) 158 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 159 } 160 161 CodeGenModule::~CodeGenModule() { 162 delete ObjCRuntime; 163 delete OpenCLRuntime; 164 delete OpenMPRuntime; 165 delete CUDARuntime; 166 delete TheTargetCodeGenInfo; 167 delete TBAA; 168 delete DebugInfo; 169 delete ARCData; 170 delete RRData; 171 } 172 173 void CodeGenModule::createObjCRuntime() { 174 // This is just isGNUFamily(), but we want to force implementors of 175 // new ABIs to decide how best to do this. 176 switch (LangOpts.ObjCRuntime.getKind()) { 177 case ObjCRuntime::GNUstep: 178 case ObjCRuntime::GCC: 179 case ObjCRuntime::ObjFW: 180 ObjCRuntime = CreateGNUObjCRuntime(*this); 181 return; 182 183 case ObjCRuntime::FragileMacOSX: 184 case ObjCRuntime::MacOSX: 185 case ObjCRuntime::iOS: 186 ObjCRuntime = CreateMacObjCRuntime(*this); 187 return; 188 } 189 llvm_unreachable("bad runtime kind"); 190 } 191 192 void CodeGenModule::createOpenCLRuntime() { 193 OpenCLRuntime = new CGOpenCLRuntime(*this); 194 } 195 196 void CodeGenModule::createOpenMPRuntime() { 197 OpenMPRuntime = new CGOpenMPRuntime(*this); 198 } 199 200 void CodeGenModule::createCUDARuntime() { 201 CUDARuntime = CreateNVCUDARuntime(*this); 202 } 203 204 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 205 Replacements[Name] = C; 206 } 207 208 void CodeGenModule::applyReplacements() { 209 for (auto &I : Replacements) { 210 StringRef MangledName = I.first(); 211 llvm::Constant *Replacement = I.second; 212 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 213 if (!Entry) 214 continue; 215 auto *OldF = cast<llvm::Function>(Entry); 216 auto *NewF = dyn_cast<llvm::Function>(Replacement); 217 if (!NewF) { 218 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 219 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 220 } else { 221 auto *CE = cast<llvm::ConstantExpr>(Replacement); 222 assert(CE->getOpcode() == llvm::Instruction::BitCast || 223 CE->getOpcode() == llvm::Instruction::GetElementPtr); 224 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 225 } 226 } 227 228 // Replace old with new, but keep the old order. 229 OldF->replaceAllUsesWith(Replacement); 230 if (NewF) { 231 NewF->removeFromParent(); 232 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 233 } 234 OldF->eraseFromParent(); 235 } 236 } 237 238 // This is only used in aliases that we created and we know they have a 239 // linear structure. 240 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 241 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 242 const llvm::Constant *C = &GA; 243 for (;;) { 244 C = C->stripPointerCasts(); 245 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 246 return GO; 247 // stripPointerCasts will not walk over weak aliases. 248 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 249 if (!GA2) 250 return nullptr; 251 if (!Visited.insert(GA2).second) 252 return nullptr; 253 C = GA2->getAliasee(); 254 } 255 } 256 257 void CodeGenModule::checkAliases() { 258 // Check if the constructed aliases are well formed. It is really unfortunate 259 // that we have to do this in CodeGen, but we only construct mangled names 260 // and aliases during codegen. 261 bool Error = false; 262 DiagnosticsEngine &Diags = getDiags(); 263 for (const GlobalDecl &GD : Aliases) { 264 const auto *D = cast<ValueDecl>(GD.getDecl()); 265 const AliasAttr *AA = D->getAttr<AliasAttr>(); 266 StringRef MangledName = getMangledName(GD); 267 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 268 auto *Alias = cast<llvm::GlobalAlias>(Entry); 269 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 270 if (!GV) { 271 Error = true; 272 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 273 } else if (GV->isDeclaration()) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 276 } 277 278 llvm::Constant *Aliasee = Alias->getAliasee(); 279 llvm::GlobalValue *AliaseeGV; 280 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 281 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 282 else 283 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 284 285 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 286 StringRef AliasSection = SA->getName(); 287 if (AliasSection != AliaseeGV->getSection()) 288 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 289 << AliasSection; 290 } 291 292 // We have to handle alias to weak aliases in here. LLVM itself disallows 293 // this since the object semantics would not match the IL one. For 294 // compatibility with gcc we implement it by just pointing the alias 295 // to its aliasee's aliasee. We also warn, since the user is probably 296 // expecting the link to be weak. 297 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 298 if (GA->mayBeOverridden()) { 299 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 300 << GV->getName() << GA->getName(); 301 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 302 GA->getAliasee(), Alias->getType()); 303 Alias->setAliasee(Aliasee); 304 } 305 } 306 } 307 if (!Error) 308 return; 309 310 for (const GlobalDecl &GD : Aliases) { 311 StringRef MangledName = getMangledName(GD); 312 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 313 auto *Alias = cast<llvm::GlobalAlias>(Entry); 314 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 315 Alias->eraseFromParent(); 316 } 317 } 318 319 void CodeGenModule::clear() { 320 DeferredDeclsToEmit.clear(); 321 if (OpenMPRuntime) 322 OpenMPRuntime->clear(); 323 } 324 325 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 326 StringRef MainFile) { 327 if (!hasDiagnostics()) 328 return; 329 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 330 if (MainFile.empty()) 331 MainFile = "<stdin>"; 332 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 333 } else 334 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 335 << Mismatched; 336 } 337 338 void CodeGenModule::Release() { 339 EmitDeferred(); 340 applyReplacements(); 341 checkAliases(); 342 EmitCXXGlobalInitFunc(); 343 EmitCXXGlobalDtorFunc(); 344 EmitCXXThreadLocalInitFunc(); 345 if (ObjCRuntime) 346 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 347 AddGlobalCtor(ObjCInitFunction); 348 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 349 CUDARuntime) { 350 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 351 AddGlobalCtor(CudaCtorFunction); 352 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 353 AddGlobalDtor(CudaDtorFunction); 354 } 355 if (PGOReader && PGOStats.hasDiagnostics()) 356 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 357 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 358 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 359 EmitGlobalAnnotations(); 360 EmitStaticExternCAliases(); 361 EmitDeferredUnusedCoverageMappings(); 362 if (CoverageMapping) 363 CoverageMapping->emit(); 364 emitLLVMUsed(); 365 366 if (CodeGenOpts.Autolink && 367 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 368 EmitModuleLinkOptions(); 369 } 370 if (CodeGenOpts.DwarfVersion) 371 // We actually want the latest version when there are conflicts. 372 // We can change from Warning to Latest if such mode is supported. 373 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 374 CodeGenOpts.DwarfVersion); 375 if (DebugInfo) 376 // We support a single version in the linked module. The LLVM 377 // parser will drop debug info with a different version number 378 // (and warn about it, too). 379 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 380 llvm::DEBUG_METADATA_VERSION); 381 382 // We need to record the widths of enums and wchar_t, so that we can generate 383 // the correct build attributes in the ARM backend. 384 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 385 if ( Arch == llvm::Triple::arm 386 || Arch == llvm::Triple::armeb 387 || Arch == llvm::Triple::thumb 388 || Arch == llvm::Triple::thumbeb) { 389 // Width of wchar_t in bytes 390 uint64_t WCharWidth = 391 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 392 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 393 394 // The minimum width of an enum in bytes 395 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 396 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 397 } 398 399 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 400 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 401 switch (PLevel) { 402 case 0: break; 403 case 1: PL = llvm::PICLevel::Small; break; 404 case 2: PL = llvm::PICLevel::Large; break; 405 default: llvm_unreachable("Invalid PIC Level"); 406 } 407 408 getModule().setPICLevel(PL); 409 } 410 411 SimplifyPersonality(); 412 413 if (getCodeGenOpts().EmitDeclMetadata) 414 EmitDeclMetadata(); 415 416 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 417 EmitCoverageFile(); 418 419 if (DebugInfo) 420 DebugInfo->finalize(); 421 422 EmitVersionIdentMetadata(); 423 424 EmitTargetMetadata(); 425 } 426 427 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 428 // Make sure that this type is translated. 429 Types.UpdateCompletedType(TD); 430 } 431 432 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 433 if (!TBAA) 434 return nullptr; 435 return TBAA->getTBAAInfo(QTy); 436 } 437 438 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 439 if (!TBAA) 440 return nullptr; 441 return TBAA->getTBAAInfoForVTablePtr(); 442 } 443 444 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 445 if (!TBAA) 446 return nullptr; 447 return TBAA->getTBAAStructInfo(QTy); 448 } 449 450 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 451 if (!TBAA) 452 return nullptr; 453 return TBAA->getTBAAStructTypeInfo(QTy); 454 } 455 456 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 457 llvm::MDNode *AccessN, 458 uint64_t O) { 459 if (!TBAA) 460 return nullptr; 461 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 462 } 463 464 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 465 /// and struct-path aware TBAA, the tag has the same format: 466 /// base type, access type and offset. 467 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 468 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 469 llvm::MDNode *TBAAInfo, 470 bool ConvertTypeToTag) { 471 if (ConvertTypeToTag && TBAA) 472 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 473 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 474 else 475 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 476 } 477 478 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 479 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 480 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 481 } 482 483 /// ErrorUnsupported - Print out an error that codegen doesn't support the 484 /// specified stmt yet. 485 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 486 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 487 "cannot compile this %0 yet"); 488 std::string Msg = Type; 489 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 490 << Msg << S->getSourceRange(); 491 } 492 493 /// ErrorUnsupported - Print out an error that codegen doesn't support the 494 /// specified decl yet. 495 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 496 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 497 "cannot compile this %0 yet"); 498 std::string Msg = Type; 499 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 500 } 501 502 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 503 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 504 } 505 506 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 507 const NamedDecl *D) const { 508 // Internal definitions always have default visibility. 509 if (GV->hasLocalLinkage()) { 510 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 511 return; 512 } 513 514 // Set visibility for definitions. 515 LinkageInfo LV = D->getLinkageAndVisibility(); 516 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 517 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 518 } 519 520 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 521 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 522 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 523 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 524 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 525 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 526 } 527 528 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 529 CodeGenOptions::TLSModel M) { 530 switch (M) { 531 case CodeGenOptions::GeneralDynamicTLSModel: 532 return llvm::GlobalVariable::GeneralDynamicTLSModel; 533 case CodeGenOptions::LocalDynamicTLSModel: 534 return llvm::GlobalVariable::LocalDynamicTLSModel; 535 case CodeGenOptions::InitialExecTLSModel: 536 return llvm::GlobalVariable::InitialExecTLSModel; 537 case CodeGenOptions::LocalExecTLSModel: 538 return llvm::GlobalVariable::LocalExecTLSModel; 539 } 540 llvm_unreachable("Invalid TLS model!"); 541 } 542 543 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 544 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 545 546 llvm::GlobalValue::ThreadLocalMode TLM; 547 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 548 549 // Override the TLS model if it is explicitly specified. 550 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 551 TLM = GetLLVMTLSModel(Attr->getModel()); 552 } 553 554 GV->setThreadLocalMode(TLM); 555 } 556 557 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 558 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 559 if (!FoundStr.empty()) 560 return FoundStr; 561 562 const auto *ND = cast<NamedDecl>(GD.getDecl()); 563 SmallString<256> Buffer; 564 StringRef Str; 565 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 566 llvm::raw_svector_ostream Out(Buffer); 567 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 568 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 569 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 570 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 571 else 572 getCXXABI().getMangleContext().mangleName(ND, Out); 573 Str = Out.str(); 574 } else { 575 IdentifierInfo *II = ND->getIdentifier(); 576 assert(II && "Attempt to mangle unnamed decl."); 577 Str = II->getName(); 578 } 579 580 // Keep the first result in the case of a mangling collision. 581 auto Result = Manglings.insert(std::make_pair(Str, GD)); 582 return FoundStr = Result.first->first(); 583 } 584 585 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 586 const BlockDecl *BD) { 587 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 588 const Decl *D = GD.getDecl(); 589 590 SmallString<256> Buffer; 591 llvm::raw_svector_ostream Out(Buffer); 592 if (!D) 593 MangleCtx.mangleGlobalBlock(BD, 594 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 595 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 596 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 597 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 598 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 599 else 600 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 601 602 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 603 return Result.first->first(); 604 } 605 606 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 607 return getModule().getNamedValue(Name); 608 } 609 610 /// AddGlobalCtor - Add a function to the list that will be called before 611 /// main() runs. 612 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 613 llvm::Constant *AssociatedData) { 614 // FIXME: Type coercion of void()* types. 615 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 616 } 617 618 /// AddGlobalDtor - Add a function to the list that will be called 619 /// when the module is unloaded. 620 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 621 // FIXME: Type coercion of void()* types. 622 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 623 } 624 625 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 626 // Ctor function type is void()*. 627 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 628 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 629 630 // Get the type of a ctor entry, { i32, void ()*, i8* }. 631 llvm::StructType *CtorStructTy = llvm::StructType::get( 632 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 633 634 // Construct the constructor and destructor arrays. 635 SmallVector<llvm::Constant *, 8> Ctors; 636 for (const auto &I : Fns) { 637 llvm::Constant *S[] = { 638 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 639 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 640 (I.AssociatedData 641 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 642 : llvm::Constant::getNullValue(VoidPtrTy))}; 643 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 644 } 645 646 if (!Ctors.empty()) { 647 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 648 new llvm::GlobalVariable(TheModule, AT, false, 649 llvm::GlobalValue::AppendingLinkage, 650 llvm::ConstantArray::get(AT, Ctors), 651 GlobalName); 652 } 653 } 654 655 llvm::GlobalValue::LinkageTypes 656 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 657 const auto *D = cast<FunctionDecl>(GD.getDecl()); 658 659 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 660 661 if (isa<CXXDestructorDecl>(D) && 662 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 663 GD.getDtorType())) { 664 // Destructor variants in the Microsoft C++ ABI are always internal or 665 // linkonce_odr thunks emitted on an as-needed basis. 666 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 667 : llvm::GlobalValue::LinkOnceODRLinkage; 668 } 669 670 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 671 } 672 673 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 674 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 675 676 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 677 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 678 // Don't dllexport/import destructor thunks. 679 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 680 return; 681 } 682 } 683 684 if (FD->hasAttr<DLLImportAttr>()) 685 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 686 else if (FD->hasAttr<DLLExportAttr>()) 687 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 688 else 689 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 690 } 691 692 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 693 llvm::Function *F) { 694 setNonAliasAttributes(D, F); 695 } 696 697 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 698 const CGFunctionInfo &Info, 699 llvm::Function *F) { 700 unsigned CallingConv; 701 AttributeListType AttributeList; 702 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 703 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 704 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 705 } 706 707 /// Determines whether the language options require us to model 708 /// unwind exceptions. We treat -fexceptions as mandating this 709 /// except under the fragile ObjC ABI with only ObjC exceptions 710 /// enabled. This means, for example, that C with -fexceptions 711 /// enables this. 712 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 713 // If exceptions are completely disabled, obviously this is false. 714 if (!LangOpts.Exceptions) return false; 715 716 // If C++ exceptions are enabled, this is true. 717 if (LangOpts.CXXExceptions) return true; 718 719 // If ObjC exceptions are enabled, this depends on the ABI. 720 if (LangOpts.ObjCExceptions) { 721 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 722 } 723 724 return true; 725 } 726 727 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 728 llvm::Function *F) { 729 llvm::AttrBuilder B; 730 731 if (CodeGenOpts.UnwindTables) 732 B.addAttribute(llvm::Attribute::UWTable); 733 734 if (!hasUnwindExceptions(LangOpts)) 735 B.addAttribute(llvm::Attribute::NoUnwind); 736 737 if (D->hasAttr<NakedAttr>()) { 738 // Naked implies noinline: we should not be inlining such functions. 739 B.addAttribute(llvm::Attribute::Naked); 740 B.addAttribute(llvm::Attribute::NoInline); 741 } else if (D->hasAttr<NoDuplicateAttr>()) { 742 B.addAttribute(llvm::Attribute::NoDuplicate); 743 } else if (D->hasAttr<NoInlineAttr>()) { 744 B.addAttribute(llvm::Attribute::NoInline); 745 } else if (D->hasAttr<AlwaysInlineAttr>() && 746 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 747 llvm::Attribute::NoInline)) { 748 // (noinline wins over always_inline, and we can't specify both in IR) 749 B.addAttribute(llvm::Attribute::AlwaysInline); 750 } 751 752 if (D->hasAttr<ColdAttr>()) { 753 if (!D->hasAttr<OptimizeNoneAttr>()) 754 B.addAttribute(llvm::Attribute::OptimizeForSize); 755 B.addAttribute(llvm::Attribute::Cold); 756 } 757 758 if (D->hasAttr<MinSizeAttr>()) 759 B.addAttribute(llvm::Attribute::MinSize); 760 761 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 762 B.addAttribute(llvm::Attribute::StackProtect); 763 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 764 B.addAttribute(llvm::Attribute::StackProtectStrong); 765 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 766 B.addAttribute(llvm::Attribute::StackProtectReq); 767 768 F->addAttributes(llvm::AttributeSet::FunctionIndex, 769 llvm::AttributeSet::get( 770 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 771 772 if (D->hasAttr<OptimizeNoneAttr>()) { 773 // OptimizeNone implies noinline; we should not be inlining such functions. 774 F->addFnAttr(llvm::Attribute::OptimizeNone); 775 F->addFnAttr(llvm::Attribute::NoInline); 776 777 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 778 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 779 "OptimizeNone and OptimizeForSize on same function!"); 780 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 781 "OptimizeNone and MinSize on same function!"); 782 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 783 "OptimizeNone and AlwaysInline on same function!"); 784 785 // Attribute 'inlinehint' has no effect on 'optnone' functions. 786 // Explicitly remove it from the set of function attributes. 787 F->removeFnAttr(llvm::Attribute::InlineHint); 788 } 789 790 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 791 F->setUnnamedAddr(true); 792 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 793 if (MD->isVirtual()) 794 F->setUnnamedAddr(true); 795 796 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 797 if (alignment) 798 F->setAlignment(alignment); 799 800 // C++ ABI requires 2-byte alignment for member functions. 801 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 802 F->setAlignment(2); 803 } 804 805 void CodeGenModule::SetCommonAttributes(const Decl *D, 806 llvm::GlobalValue *GV) { 807 if (const auto *ND = dyn_cast<NamedDecl>(D)) 808 setGlobalVisibility(GV, ND); 809 else 810 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 811 812 if (D->hasAttr<UsedAttr>()) 813 addUsedGlobal(GV); 814 } 815 816 void CodeGenModule::setAliasAttributes(const Decl *D, 817 llvm::GlobalValue *GV) { 818 SetCommonAttributes(D, GV); 819 820 // Process the dllexport attribute based on whether the original definition 821 // (not necessarily the aliasee) was exported. 822 if (D->hasAttr<DLLExportAttr>()) 823 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 824 } 825 826 void CodeGenModule::setNonAliasAttributes(const Decl *D, 827 llvm::GlobalObject *GO) { 828 SetCommonAttributes(D, GO); 829 830 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 831 GO->setSection(SA->getName()); 832 833 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 834 } 835 836 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 837 llvm::Function *F, 838 const CGFunctionInfo &FI) { 839 SetLLVMFunctionAttributes(D, FI, F); 840 SetLLVMFunctionAttributesForDefinition(D, F); 841 842 F->setLinkage(llvm::Function::InternalLinkage); 843 844 setNonAliasAttributes(D, F); 845 } 846 847 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 848 const NamedDecl *ND) { 849 // Set linkage and visibility in case we never see a definition. 850 LinkageInfo LV = ND->getLinkageAndVisibility(); 851 if (LV.getLinkage() != ExternalLinkage) { 852 // Don't set internal linkage on declarations. 853 } else { 854 if (ND->hasAttr<DLLImportAttr>()) { 855 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 856 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 857 } else if (ND->hasAttr<DLLExportAttr>()) { 858 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 859 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 860 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 861 // "extern_weak" is overloaded in LLVM; we probably should have 862 // separate linkage types for this. 863 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 864 } 865 866 // Set visibility on a declaration only if it's explicit. 867 if (LV.isVisibilityExplicit()) 868 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 869 } 870 } 871 872 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 873 bool IsIncompleteFunction, 874 bool IsThunk) { 875 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 876 // If this is an intrinsic function, set the function's attributes 877 // to the intrinsic's attributes. 878 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 879 return; 880 } 881 882 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 883 884 if (!IsIncompleteFunction) 885 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 886 887 // Add the Returned attribute for "this", except for iOS 5 and earlier 888 // where substantial code, including the libstdc++ dylib, was compiled with 889 // GCC and does not actually return "this". 890 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 891 !(getTarget().getTriple().isiOS() && 892 getTarget().getTriple().isOSVersionLT(6))) { 893 assert(!F->arg_empty() && 894 F->arg_begin()->getType() 895 ->canLosslesslyBitCastTo(F->getReturnType()) && 896 "unexpected this return"); 897 F->addAttribute(1, llvm::Attribute::Returned); 898 } 899 900 // Only a few attributes are set on declarations; these may later be 901 // overridden by a definition. 902 903 setLinkageAndVisibilityForGV(F, FD); 904 905 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 906 F->setSection(SA->getName()); 907 908 // A replaceable global allocation function does not act like a builtin by 909 // default, only if it is invoked by a new-expression or delete-expression. 910 if (FD->isReplaceableGlobalAllocationFunction()) 911 F->addAttribute(llvm::AttributeSet::FunctionIndex, 912 llvm::Attribute::NoBuiltin); 913 } 914 915 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 916 assert(!GV->isDeclaration() && 917 "Only globals with definition can force usage."); 918 LLVMUsed.emplace_back(GV); 919 } 920 921 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 922 assert(!GV->isDeclaration() && 923 "Only globals with definition can force usage."); 924 LLVMCompilerUsed.emplace_back(GV); 925 } 926 927 static void emitUsed(CodeGenModule &CGM, StringRef Name, 928 std::vector<llvm::WeakVH> &List) { 929 // Don't create llvm.used if there is no need. 930 if (List.empty()) 931 return; 932 933 // Convert List to what ConstantArray needs. 934 SmallVector<llvm::Constant*, 8> UsedArray; 935 UsedArray.resize(List.size()); 936 for (unsigned i = 0, e = List.size(); i != e; ++i) { 937 UsedArray[i] = 938 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 939 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 940 } 941 942 if (UsedArray.empty()) 943 return; 944 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 945 946 auto *GV = new llvm::GlobalVariable( 947 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 948 llvm::ConstantArray::get(ATy, UsedArray), Name); 949 950 GV->setSection("llvm.metadata"); 951 } 952 953 void CodeGenModule::emitLLVMUsed() { 954 emitUsed(*this, "llvm.used", LLVMUsed); 955 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 956 } 957 958 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 959 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 960 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 961 } 962 963 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 964 llvm::SmallString<32> Opt; 965 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 966 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 967 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 968 } 969 970 void CodeGenModule::AddDependentLib(StringRef Lib) { 971 llvm::SmallString<24> Opt; 972 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 973 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 974 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 975 } 976 977 /// \brief Add link options implied by the given module, including modules 978 /// it depends on, using a postorder walk. 979 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 980 SmallVectorImpl<llvm::Metadata *> &Metadata, 981 llvm::SmallPtrSet<Module *, 16> &Visited) { 982 // Import this module's parent. 983 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 984 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 985 } 986 987 // Import this module's dependencies. 988 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 989 if (Visited.insert(Mod->Imports[I - 1]).second) 990 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 991 } 992 993 // Add linker options to link against the libraries/frameworks 994 // described by this module. 995 llvm::LLVMContext &Context = CGM.getLLVMContext(); 996 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 997 // Link against a framework. Frameworks are currently Darwin only, so we 998 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 999 if (Mod->LinkLibraries[I-1].IsFramework) { 1000 llvm::Metadata *Args[2] = { 1001 llvm::MDString::get(Context, "-framework"), 1002 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1003 1004 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1005 continue; 1006 } 1007 1008 // Link against a library. 1009 llvm::SmallString<24> Opt; 1010 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1011 Mod->LinkLibraries[I-1].Library, Opt); 1012 auto *OptString = llvm::MDString::get(Context, Opt); 1013 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1014 } 1015 } 1016 1017 void CodeGenModule::EmitModuleLinkOptions() { 1018 // Collect the set of all of the modules we want to visit to emit link 1019 // options, which is essentially the imported modules and all of their 1020 // non-explicit child modules. 1021 llvm::SetVector<clang::Module *> LinkModules; 1022 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1023 SmallVector<clang::Module *, 16> Stack; 1024 1025 // Seed the stack with imported modules. 1026 for (Module *M : ImportedModules) 1027 if (Visited.insert(M).second) 1028 Stack.push_back(M); 1029 1030 // Find all of the modules to import, making a little effort to prune 1031 // non-leaf modules. 1032 while (!Stack.empty()) { 1033 clang::Module *Mod = Stack.pop_back_val(); 1034 1035 bool AnyChildren = false; 1036 1037 // Visit the submodules of this module. 1038 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1039 SubEnd = Mod->submodule_end(); 1040 Sub != SubEnd; ++Sub) { 1041 // Skip explicit children; they need to be explicitly imported to be 1042 // linked against. 1043 if ((*Sub)->IsExplicit) 1044 continue; 1045 1046 if (Visited.insert(*Sub).second) { 1047 Stack.push_back(*Sub); 1048 AnyChildren = true; 1049 } 1050 } 1051 1052 // We didn't find any children, so add this module to the list of 1053 // modules to link against. 1054 if (!AnyChildren) { 1055 LinkModules.insert(Mod); 1056 } 1057 } 1058 1059 // Add link options for all of the imported modules in reverse topological 1060 // order. We don't do anything to try to order import link flags with respect 1061 // to linker options inserted by things like #pragma comment(). 1062 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1063 Visited.clear(); 1064 for (Module *M : LinkModules) 1065 if (Visited.insert(M).second) 1066 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1067 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1068 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1069 1070 // Add the linker options metadata flag. 1071 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1072 llvm::MDNode::get(getLLVMContext(), 1073 LinkerOptionsMetadata)); 1074 } 1075 1076 void CodeGenModule::EmitDeferred() { 1077 // Emit code for any potentially referenced deferred decls. Since a 1078 // previously unused static decl may become used during the generation of code 1079 // for a static function, iterate until no changes are made. 1080 1081 if (!DeferredVTables.empty()) { 1082 EmitDeferredVTables(); 1083 1084 // Emitting a v-table doesn't directly cause more v-tables to 1085 // become deferred, although it can cause functions to be 1086 // emitted that then need those v-tables. 1087 assert(DeferredVTables.empty()); 1088 } 1089 1090 // Stop if we're out of both deferred v-tables and deferred declarations. 1091 if (DeferredDeclsToEmit.empty()) 1092 return; 1093 1094 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1095 // work, it will not interfere with this. 1096 std::vector<DeferredGlobal> CurDeclsToEmit; 1097 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1098 1099 for (DeferredGlobal &G : CurDeclsToEmit) { 1100 GlobalDecl D = G.GD; 1101 llvm::GlobalValue *GV = G.GV; 1102 G.GV = nullptr; 1103 1104 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1105 if (!GV) 1106 GV = GetGlobalValue(getMangledName(D)); 1107 1108 // Check to see if we've already emitted this. This is necessary 1109 // for a couple of reasons: first, decls can end up in the 1110 // deferred-decls queue multiple times, and second, decls can end 1111 // up with definitions in unusual ways (e.g. by an extern inline 1112 // function acquiring a strong function redefinition). Just 1113 // ignore these cases. 1114 if (GV && !GV->isDeclaration()) 1115 continue; 1116 1117 // Otherwise, emit the definition and move on to the next one. 1118 EmitGlobalDefinition(D, GV); 1119 1120 // If we found out that we need to emit more decls, do that recursively. 1121 // This has the advantage that the decls are emitted in a DFS and related 1122 // ones are close together, which is convenient for testing. 1123 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1124 EmitDeferred(); 1125 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1126 } 1127 } 1128 } 1129 1130 void CodeGenModule::EmitGlobalAnnotations() { 1131 if (Annotations.empty()) 1132 return; 1133 1134 // Create a new global variable for the ConstantStruct in the Module. 1135 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1136 Annotations[0]->getType(), Annotations.size()), Annotations); 1137 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1138 llvm::GlobalValue::AppendingLinkage, 1139 Array, "llvm.global.annotations"); 1140 gv->setSection(AnnotationSection); 1141 } 1142 1143 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1144 llvm::Constant *&AStr = AnnotationStrings[Str]; 1145 if (AStr) 1146 return AStr; 1147 1148 // Not found yet, create a new global. 1149 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1150 auto *gv = 1151 new llvm::GlobalVariable(getModule(), s->getType(), true, 1152 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1153 gv->setSection(AnnotationSection); 1154 gv->setUnnamedAddr(true); 1155 AStr = gv; 1156 return gv; 1157 } 1158 1159 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1160 SourceManager &SM = getContext().getSourceManager(); 1161 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1162 if (PLoc.isValid()) 1163 return EmitAnnotationString(PLoc.getFilename()); 1164 return EmitAnnotationString(SM.getBufferName(Loc)); 1165 } 1166 1167 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1168 SourceManager &SM = getContext().getSourceManager(); 1169 PresumedLoc PLoc = SM.getPresumedLoc(L); 1170 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1171 SM.getExpansionLineNumber(L); 1172 return llvm::ConstantInt::get(Int32Ty, LineNo); 1173 } 1174 1175 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1176 const AnnotateAttr *AA, 1177 SourceLocation L) { 1178 // Get the globals for file name, annotation, and the line number. 1179 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1180 *UnitGV = EmitAnnotationUnit(L), 1181 *LineNoCst = EmitAnnotationLineNo(L); 1182 1183 // Create the ConstantStruct for the global annotation. 1184 llvm::Constant *Fields[4] = { 1185 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1186 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1187 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1188 LineNoCst 1189 }; 1190 return llvm::ConstantStruct::getAnon(Fields); 1191 } 1192 1193 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1194 llvm::GlobalValue *GV) { 1195 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1196 // Get the struct elements for these annotations. 1197 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1198 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1199 } 1200 1201 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1202 SourceLocation Loc) const { 1203 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1204 // Blacklist by function name. 1205 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1206 return true; 1207 // Blacklist by location. 1208 if (!Loc.isInvalid()) 1209 return SanitizerBL.isBlacklistedLocation(Loc); 1210 // If location is unknown, this may be a compiler-generated function. Assume 1211 // it's located in the main file. 1212 auto &SM = Context.getSourceManager(); 1213 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1214 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1215 } 1216 return false; 1217 } 1218 1219 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1220 SourceLocation Loc, QualType Ty, 1221 StringRef Category) const { 1222 // For now globals can be blacklisted only in ASan and KASan. 1223 if (!LangOpts.Sanitize.hasOneOf( 1224 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1225 return false; 1226 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1227 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1228 return true; 1229 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1230 return true; 1231 // Check global type. 1232 if (!Ty.isNull()) { 1233 // Drill down the array types: if global variable of a fixed type is 1234 // blacklisted, we also don't instrument arrays of them. 1235 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1236 Ty = AT->getElementType(); 1237 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1238 // We allow to blacklist only record types (classes, structs etc.) 1239 if (Ty->isRecordType()) { 1240 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1241 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1242 return true; 1243 } 1244 } 1245 return false; 1246 } 1247 1248 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1249 // Never defer when EmitAllDecls is specified. 1250 if (LangOpts.EmitAllDecls) 1251 return true; 1252 1253 return getContext().DeclMustBeEmitted(Global); 1254 } 1255 1256 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1257 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1258 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1259 // Implicit template instantiations may change linkage if they are later 1260 // explicitly instantiated, so they should not be emitted eagerly. 1261 return false; 1262 1263 return true; 1264 } 1265 1266 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1267 const CXXUuidofExpr* E) { 1268 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1269 // well-formed. 1270 StringRef Uuid = E->getUuidAsStringRef(Context); 1271 std::string Name = "_GUID_" + Uuid.lower(); 1272 std::replace(Name.begin(), Name.end(), '-', '_'); 1273 1274 // Look for an existing global. 1275 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1276 return GV; 1277 1278 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1279 assert(Init && "failed to initialize as constant"); 1280 1281 auto *GV = new llvm::GlobalVariable( 1282 getModule(), Init->getType(), 1283 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1284 if (supportsCOMDAT()) 1285 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1286 return GV; 1287 } 1288 1289 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1290 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1291 assert(AA && "No alias?"); 1292 1293 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1294 1295 // See if there is already something with the target's name in the module. 1296 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1297 if (Entry) { 1298 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1299 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1300 } 1301 1302 llvm::Constant *Aliasee; 1303 if (isa<llvm::FunctionType>(DeclTy)) 1304 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1305 GlobalDecl(cast<FunctionDecl>(VD)), 1306 /*ForVTable=*/false); 1307 else 1308 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1309 llvm::PointerType::getUnqual(DeclTy), 1310 nullptr); 1311 1312 auto *F = cast<llvm::GlobalValue>(Aliasee); 1313 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1314 WeakRefReferences.insert(F); 1315 1316 return Aliasee; 1317 } 1318 1319 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1320 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1321 1322 // Weak references don't produce any output by themselves. 1323 if (Global->hasAttr<WeakRefAttr>()) 1324 return; 1325 1326 // If this is an alias definition (which otherwise looks like a declaration) 1327 // emit it now. 1328 if (Global->hasAttr<AliasAttr>()) 1329 return EmitAliasDefinition(GD); 1330 1331 // If this is CUDA, be selective about which declarations we emit. 1332 if (LangOpts.CUDA) { 1333 if (LangOpts.CUDAIsDevice) { 1334 if (!Global->hasAttr<CUDADeviceAttr>() && 1335 !Global->hasAttr<CUDAGlobalAttr>() && 1336 !Global->hasAttr<CUDAConstantAttr>() && 1337 !Global->hasAttr<CUDASharedAttr>()) 1338 return; 1339 } else { 1340 if (!Global->hasAttr<CUDAHostAttr>() && ( 1341 Global->hasAttr<CUDADeviceAttr>() || 1342 Global->hasAttr<CUDAConstantAttr>() || 1343 Global->hasAttr<CUDASharedAttr>())) 1344 return; 1345 } 1346 } 1347 1348 // Ignore declarations, they will be emitted on their first use. 1349 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1350 // Forward declarations are emitted lazily on first use. 1351 if (!FD->doesThisDeclarationHaveABody()) { 1352 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1353 return; 1354 1355 StringRef MangledName = getMangledName(GD); 1356 1357 // Compute the function info and LLVM type. 1358 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1359 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1360 1361 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1362 /*DontDefer=*/false); 1363 return; 1364 } 1365 } else { 1366 const auto *VD = cast<VarDecl>(Global); 1367 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1368 1369 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1370 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1371 return; 1372 } 1373 1374 // Defer code generation to first use when possible, e.g. if this is an inline 1375 // function. If the global must always be emitted, do it eagerly if possible 1376 // to benefit from cache locality. 1377 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1378 // Emit the definition if it can't be deferred. 1379 EmitGlobalDefinition(GD); 1380 return; 1381 } 1382 1383 // If we're deferring emission of a C++ variable with an 1384 // initializer, remember the order in which it appeared in the file. 1385 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1386 cast<VarDecl>(Global)->hasInit()) { 1387 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1388 CXXGlobalInits.push_back(nullptr); 1389 } 1390 1391 StringRef MangledName = getMangledName(GD); 1392 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1393 // The value has already been used and should therefore be emitted. 1394 addDeferredDeclToEmit(GV, GD); 1395 } else if (MustBeEmitted(Global)) { 1396 // The value must be emitted, but cannot be emitted eagerly. 1397 assert(!MayBeEmittedEagerly(Global)); 1398 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1399 } else { 1400 // Otherwise, remember that we saw a deferred decl with this name. The 1401 // first use of the mangled name will cause it to move into 1402 // DeferredDeclsToEmit. 1403 DeferredDecls[MangledName] = GD; 1404 } 1405 } 1406 1407 namespace { 1408 struct FunctionIsDirectlyRecursive : 1409 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1410 const StringRef Name; 1411 const Builtin::Context &BI; 1412 bool Result; 1413 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1414 Name(N), BI(C), Result(false) { 1415 } 1416 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1417 1418 bool TraverseCallExpr(CallExpr *E) { 1419 const FunctionDecl *FD = E->getDirectCallee(); 1420 if (!FD) 1421 return true; 1422 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1423 if (Attr && Name == Attr->getLabel()) { 1424 Result = true; 1425 return false; 1426 } 1427 unsigned BuiltinID = FD->getBuiltinID(); 1428 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1429 return true; 1430 StringRef BuiltinName = BI.GetName(BuiltinID); 1431 if (BuiltinName.startswith("__builtin_") && 1432 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1433 Result = true; 1434 return false; 1435 } 1436 return true; 1437 } 1438 }; 1439 } 1440 1441 // isTriviallyRecursive - Check if this function calls another 1442 // decl that, because of the asm attribute or the other decl being a builtin, 1443 // ends up pointing to itself. 1444 bool 1445 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1446 StringRef Name; 1447 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1448 // asm labels are a special kind of mangling we have to support. 1449 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1450 if (!Attr) 1451 return false; 1452 Name = Attr->getLabel(); 1453 } else { 1454 Name = FD->getName(); 1455 } 1456 1457 auto &BI = Context.BuiltinInfo; 1458 unsigned BuiltinID = Context.Idents.get(Name).getBuiltinID(); 1459 if (!BuiltinID || !BI.isPredefinedLibFunction(BuiltinID)) 1460 return false; 1461 1462 FunctionIsDirectlyRecursive Walker(Name, BI); 1463 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1464 return Walker.Result; 1465 } 1466 1467 bool 1468 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1469 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1470 return true; 1471 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1472 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1473 return false; 1474 // PR9614. Avoid cases where the source code is lying to us. An available 1475 // externally function should have an equivalent function somewhere else, 1476 // but a function that calls itself is clearly not equivalent to the real 1477 // implementation. 1478 // This happens in glibc's btowc and in some configure checks. 1479 return !isTriviallyRecursive(F); 1480 } 1481 1482 /// If the type for the method's class was generated by 1483 /// CGDebugInfo::createContextChain(), the cache contains only a 1484 /// limited DIType without any declarations. Since EmitFunctionStart() 1485 /// needs to find the canonical declaration for each method, we need 1486 /// to construct the complete type prior to emitting the method. 1487 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1488 if (!D->isInstance()) 1489 return; 1490 1491 if (CGDebugInfo *DI = getModuleDebugInfo()) 1492 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1493 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1494 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1495 } 1496 } 1497 1498 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1499 const auto *D = cast<ValueDecl>(GD.getDecl()); 1500 1501 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1502 Context.getSourceManager(), 1503 "Generating code for declaration"); 1504 1505 if (isa<FunctionDecl>(D)) { 1506 // At -O0, don't generate IR for functions with available_externally 1507 // linkage. 1508 if (!shouldEmitFunction(GD)) 1509 return; 1510 1511 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1512 CompleteDIClassType(Method); 1513 // Make sure to emit the definition(s) before we emit the thunks. 1514 // This is necessary for the generation of certain thunks. 1515 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1516 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1517 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1518 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1519 else 1520 EmitGlobalFunctionDefinition(GD, GV); 1521 1522 if (Method->isVirtual()) 1523 getVTables().EmitThunks(GD); 1524 1525 return; 1526 } 1527 1528 return EmitGlobalFunctionDefinition(GD, GV); 1529 } 1530 1531 if (const auto *VD = dyn_cast<VarDecl>(D)) 1532 return EmitGlobalVarDefinition(VD); 1533 1534 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1535 } 1536 1537 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1538 /// module, create and return an llvm Function with the specified type. If there 1539 /// is something in the module with the specified name, return it potentially 1540 /// bitcasted to the right type. 1541 /// 1542 /// If D is non-null, it specifies a decl that correspond to this. This is used 1543 /// to set the attributes on the function when it is first created. 1544 llvm::Constant * 1545 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1546 llvm::Type *Ty, 1547 GlobalDecl GD, bool ForVTable, 1548 bool DontDefer, bool IsThunk, 1549 llvm::AttributeSet ExtraAttrs) { 1550 const Decl *D = GD.getDecl(); 1551 1552 // Lookup the entry, lazily creating it if necessary. 1553 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1554 if (Entry) { 1555 if (WeakRefReferences.erase(Entry)) { 1556 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1557 if (FD && !FD->hasAttr<WeakAttr>()) 1558 Entry->setLinkage(llvm::Function::ExternalLinkage); 1559 } 1560 1561 // Handle dropped DLL attributes. 1562 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1563 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1564 1565 if (Entry->getType()->getElementType() == Ty) 1566 return Entry; 1567 1568 // Make sure the result is of the correct type. 1569 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1570 } 1571 1572 // This function doesn't have a complete type (for example, the return 1573 // type is an incomplete struct). Use a fake type instead, and make 1574 // sure not to try to set attributes. 1575 bool IsIncompleteFunction = false; 1576 1577 llvm::FunctionType *FTy; 1578 if (isa<llvm::FunctionType>(Ty)) { 1579 FTy = cast<llvm::FunctionType>(Ty); 1580 } else { 1581 FTy = llvm::FunctionType::get(VoidTy, false); 1582 IsIncompleteFunction = true; 1583 } 1584 1585 llvm::Function *F = llvm::Function::Create(FTy, 1586 llvm::Function::ExternalLinkage, 1587 MangledName, &getModule()); 1588 assert(F->getName() == MangledName && "name was uniqued!"); 1589 if (D) 1590 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1591 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1592 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1593 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1594 llvm::AttributeSet::get(VMContext, 1595 llvm::AttributeSet::FunctionIndex, 1596 B)); 1597 } 1598 1599 if (!DontDefer) { 1600 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1601 // each other bottoming out with the base dtor. Therefore we emit non-base 1602 // dtors on usage, even if there is no dtor definition in the TU. 1603 if (D && isa<CXXDestructorDecl>(D) && 1604 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1605 GD.getDtorType())) 1606 addDeferredDeclToEmit(F, GD); 1607 1608 // This is the first use or definition of a mangled name. If there is a 1609 // deferred decl with this name, remember that we need to emit it at the end 1610 // of the file. 1611 auto DDI = DeferredDecls.find(MangledName); 1612 if (DDI != DeferredDecls.end()) { 1613 // Move the potentially referenced deferred decl to the 1614 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1615 // don't need it anymore). 1616 addDeferredDeclToEmit(F, DDI->second); 1617 DeferredDecls.erase(DDI); 1618 1619 // Otherwise, there are cases we have to worry about where we're 1620 // using a declaration for which we must emit a definition but where 1621 // we might not find a top-level definition: 1622 // - member functions defined inline in their classes 1623 // - friend functions defined inline in some class 1624 // - special member functions with implicit definitions 1625 // If we ever change our AST traversal to walk into class methods, 1626 // this will be unnecessary. 1627 // 1628 // We also don't emit a definition for a function if it's going to be an 1629 // entry in a vtable, unless it's already marked as used. 1630 } else if (getLangOpts().CPlusPlus && D) { 1631 // Look for a declaration that's lexically in a record. 1632 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1633 FD = FD->getPreviousDecl()) { 1634 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1635 if (FD->doesThisDeclarationHaveABody()) { 1636 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1637 break; 1638 } 1639 } 1640 } 1641 } 1642 } 1643 1644 // Make sure the result is of the requested type. 1645 if (!IsIncompleteFunction) { 1646 assert(F->getType()->getElementType() == Ty); 1647 return F; 1648 } 1649 1650 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1651 return llvm::ConstantExpr::getBitCast(F, PTy); 1652 } 1653 1654 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1655 /// non-null, then this function will use the specified type if it has to 1656 /// create it (this occurs when we see a definition of the function). 1657 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1658 llvm::Type *Ty, 1659 bool ForVTable, 1660 bool DontDefer) { 1661 // If there was no specific requested type, just convert it now. 1662 if (!Ty) 1663 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1664 1665 StringRef MangledName = getMangledName(GD); 1666 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1667 } 1668 1669 /// CreateRuntimeFunction - Create a new runtime function with the specified 1670 /// type and name. 1671 llvm::Constant * 1672 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1673 StringRef Name, 1674 llvm::AttributeSet ExtraAttrs) { 1675 llvm::Constant *C = 1676 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1677 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1678 if (auto *F = dyn_cast<llvm::Function>(C)) 1679 if (F->empty()) 1680 F->setCallingConv(getRuntimeCC()); 1681 return C; 1682 } 1683 1684 /// CreateBuiltinFunction - Create a new builtin function with the specified 1685 /// type and name. 1686 llvm::Constant * 1687 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1688 StringRef Name, 1689 llvm::AttributeSet ExtraAttrs) { 1690 llvm::Constant *C = 1691 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1692 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1693 if (auto *F = dyn_cast<llvm::Function>(C)) 1694 if (F->empty()) 1695 F->setCallingConv(getBuiltinCC()); 1696 return C; 1697 } 1698 1699 /// isTypeConstant - Determine whether an object of this type can be emitted 1700 /// as a constant. 1701 /// 1702 /// If ExcludeCtor is true, the duration when the object's constructor runs 1703 /// will not be considered. The caller will need to verify that the object is 1704 /// not written to during its construction. 1705 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1706 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1707 return false; 1708 1709 if (Context.getLangOpts().CPlusPlus) { 1710 if (const CXXRecordDecl *Record 1711 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1712 return ExcludeCtor && !Record->hasMutableFields() && 1713 Record->hasTrivialDestructor(); 1714 } 1715 1716 return true; 1717 } 1718 1719 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1720 /// create and return an llvm GlobalVariable with the specified type. If there 1721 /// is something in the module with the specified name, return it potentially 1722 /// bitcasted to the right type. 1723 /// 1724 /// If D is non-null, it specifies a decl that correspond to this. This is used 1725 /// to set the attributes on the global when it is first created. 1726 llvm::Constant * 1727 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1728 llvm::PointerType *Ty, 1729 const VarDecl *D) { 1730 // Lookup the entry, lazily creating it if necessary. 1731 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1732 if (Entry) { 1733 if (WeakRefReferences.erase(Entry)) { 1734 if (D && !D->hasAttr<WeakAttr>()) 1735 Entry->setLinkage(llvm::Function::ExternalLinkage); 1736 } 1737 1738 // Handle dropped DLL attributes. 1739 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1740 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1741 1742 if (Entry->getType() == Ty) 1743 return Entry; 1744 1745 // Make sure the result is of the correct type. 1746 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1747 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1748 1749 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1750 } 1751 1752 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1753 auto *GV = new llvm::GlobalVariable( 1754 getModule(), Ty->getElementType(), false, 1755 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1756 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1757 1758 // This is the first use or definition of a mangled name. If there is a 1759 // deferred decl with this name, remember that we need to emit it at the end 1760 // of the file. 1761 auto DDI = DeferredDecls.find(MangledName); 1762 if (DDI != DeferredDecls.end()) { 1763 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1764 // list, and remove it from DeferredDecls (since we don't need it anymore). 1765 addDeferredDeclToEmit(GV, DDI->second); 1766 DeferredDecls.erase(DDI); 1767 } 1768 1769 // Handle things which are present even on external declarations. 1770 if (D) { 1771 // FIXME: This code is overly simple and should be merged with other global 1772 // handling. 1773 GV->setConstant(isTypeConstant(D->getType(), false)); 1774 1775 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1776 1777 setLinkageAndVisibilityForGV(GV, D); 1778 1779 if (D->getTLSKind()) { 1780 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1781 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1782 setTLSMode(GV, *D); 1783 } 1784 1785 // If required by the ABI, treat declarations of static data members with 1786 // inline initializers as definitions. 1787 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1788 EmitGlobalVarDefinition(D); 1789 } 1790 1791 // Handle XCore specific ABI requirements. 1792 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1793 D->getLanguageLinkage() == CLanguageLinkage && 1794 D->getType().isConstant(Context) && 1795 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1796 GV->setSection(".cp.rodata"); 1797 } 1798 1799 if (AddrSpace != Ty->getAddressSpace()) 1800 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1801 1802 return GV; 1803 } 1804 1805 1806 llvm::GlobalVariable * 1807 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1808 llvm::Type *Ty, 1809 llvm::GlobalValue::LinkageTypes Linkage) { 1810 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1811 llvm::GlobalVariable *OldGV = nullptr; 1812 1813 if (GV) { 1814 // Check if the variable has the right type. 1815 if (GV->getType()->getElementType() == Ty) 1816 return GV; 1817 1818 // Because C++ name mangling, the only way we can end up with an already 1819 // existing global with the same name is if it has been declared extern "C". 1820 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1821 OldGV = GV; 1822 } 1823 1824 // Create a new variable. 1825 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1826 Linkage, nullptr, Name); 1827 1828 if (OldGV) { 1829 // Replace occurrences of the old variable if needed. 1830 GV->takeName(OldGV); 1831 1832 if (!OldGV->use_empty()) { 1833 llvm::Constant *NewPtrForOldDecl = 1834 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1835 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1836 } 1837 1838 OldGV->eraseFromParent(); 1839 } 1840 1841 if (supportsCOMDAT() && GV->isWeakForLinker() && 1842 !GV->hasAvailableExternallyLinkage()) 1843 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1844 1845 return GV; 1846 } 1847 1848 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1849 /// given global variable. If Ty is non-null and if the global doesn't exist, 1850 /// then it will be created with the specified type instead of whatever the 1851 /// normal requested type would be. 1852 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1853 llvm::Type *Ty) { 1854 assert(D->hasGlobalStorage() && "Not a global variable"); 1855 QualType ASTTy = D->getType(); 1856 if (!Ty) 1857 Ty = getTypes().ConvertTypeForMem(ASTTy); 1858 1859 llvm::PointerType *PTy = 1860 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1861 1862 StringRef MangledName = getMangledName(D); 1863 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1864 } 1865 1866 /// CreateRuntimeVariable - Create a new runtime global variable with the 1867 /// specified type and name. 1868 llvm::Constant * 1869 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1870 StringRef Name) { 1871 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1872 } 1873 1874 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1875 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1876 1877 if (!MustBeEmitted(D)) { 1878 // If we have not seen a reference to this variable yet, place it 1879 // into the deferred declarations table to be emitted if needed 1880 // later. 1881 StringRef MangledName = getMangledName(D); 1882 if (!GetGlobalValue(MangledName)) { 1883 DeferredDecls[MangledName] = D; 1884 return; 1885 } 1886 } 1887 1888 // The tentative definition is the only definition. 1889 EmitGlobalVarDefinition(D); 1890 } 1891 1892 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1893 return Context.toCharUnitsFromBits( 1894 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1895 } 1896 1897 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1898 unsigned AddrSpace) { 1899 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 1900 if (D->hasAttr<CUDAConstantAttr>()) 1901 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1902 else if (D->hasAttr<CUDASharedAttr>()) 1903 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1904 else 1905 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1906 } 1907 1908 return AddrSpace; 1909 } 1910 1911 template<typename SomeDecl> 1912 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1913 llvm::GlobalValue *GV) { 1914 if (!getLangOpts().CPlusPlus) 1915 return; 1916 1917 // Must have 'used' attribute, or else inline assembly can't rely on 1918 // the name existing. 1919 if (!D->template hasAttr<UsedAttr>()) 1920 return; 1921 1922 // Must have internal linkage and an ordinary name. 1923 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1924 return; 1925 1926 // Must be in an extern "C" context. Entities declared directly within 1927 // a record are not extern "C" even if the record is in such a context. 1928 const SomeDecl *First = D->getFirstDecl(); 1929 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1930 return; 1931 1932 // OK, this is an internal linkage entity inside an extern "C" linkage 1933 // specification. Make a note of that so we can give it the "expected" 1934 // mangled name if nothing else is using that name. 1935 std::pair<StaticExternCMap::iterator, bool> R = 1936 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1937 1938 // If we have multiple internal linkage entities with the same name 1939 // in extern "C" regions, none of them gets that name. 1940 if (!R.second) 1941 R.first->second = nullptr; 1942 } 1943 1944 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1945 if (!CGM.supportsCOMDAT()) 1946 return false; 1947 1948 if (D.hasAttr<SelectAnyAttr>()) 1949 return true; 1950 1951 GVALinkage Linkage; 1952 if (auto *VD = dyn_cast<VarDecl>(&D)) 1953 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1954 else 1955 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1956 1957 switch (Linkage) { 1958 case GVA_Internal: 1959 case GVA_AvailableExternally: 1960 case GVA_StrongExternal: 1961 return false; 1962 case GVA_DiscardableODR: 1963 case GVA_StrongODR: 1964 return true; 1965 } 1966 llvm_unreachable("No such linkage"); 1967 } 1968 1969 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1970 llvm::GlobalObject &GO) { 1971 if (!shouldBeInCOMDAT(*this, D)) 1972 return; 1973 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1974 } 1975 1976 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1977 llvm::Constant *Init = nullptr; 1978 QualType ASTTy = D->getType(); 1979 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1980 bool NeedsGlobalCtor = false; 1981 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1982 1983 const VarDecl *InitDecl; 1984 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1985 1986 if (!InitExpr) { 1987 // This is a tentative definition; tentative definitions are 1988 // implicitly initialized with { 0 }. 1989 // 1990 // Note that tentative definitions are only emitted at the end of 1991 // a translation unit, so they should never have incomplete 1992 // type. In addition, EmitTentativeDefinition makes sure that we 1993 // never attempt to emit a tentative definition if a real one 1994 // exists. A use may still exists, however, so we still may need 1995 // to do a RAUW. 1996 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1997 Init = EmitNullConstant(D->getType()); 1998 } else { 1999 initializedGlobalDecl = GlobalDecl(D); 2000 Init = EmitConstantInit(*InitDecl); 2001 2002 if (!Init) { 2003 QualType T = InitExpr->getType(); 2004 if (D->getType()->isReferenceType()) 2005 T = D->getType(); 2006 2007 if (getLangOpts().CPlusPlus) { 2008 Init = EmitNullConstant(T); 2009 NeedsGlobalCtor = true; 2010 } else { 2011 ErrorUnsupported(D, "static initializer"); 2012 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2013 } 2014 } else { 2015 // We don't need an initializer, so remove the entry for the delayed 2016 // initializer position (just in case this entry was delayed) if we 2017 // also don't need to register a destructor. 2018 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2019 DelayedCXXInitPosition.erase(D); 2020 } 2021 } 2022 2023 llvm::Type* InitType = Init->getType(); 2024 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2025 2026 // Strip off a bitcast if we got one back. 2027 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2028 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2029 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2030 // All zero index gep. 2031 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2032 Entry = CE->getOperand(0); 2033 } 2034 2035 // Entry is now either a Function or GlobalVariable. 2036 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2037 2038 // We have a definition after a declaration with the wrong type. 2039 // We must make a new GlobalVariable* and update everything that used OldGV 2040 // (a declaration or tentative definition) with the new GlobalVariable* 2041 // (which will be a definition). 2042 // 2043 // This happens if there is a prototype for a global (e.g. 2044 // "extern int x[];") and then a definition of a different type (e.g. 2045 // "int x[10];"). This also happens when an initializer has a different type 2046 // from the type of the global (this happens with unions). 2047 if (!GV || 2048 GV->getType()->getElementType() != InitType || 2049 GV->getType()->getAddressSpace() != 2050 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2051 2052 // Move the old entry aside so that we'll create a new one. 2053 Entry->setName(StringRef()); 2054 2055 // Make a new global with the correct type, this is now guaranteed to work. 2056 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2057 2058 // Replace all uses of the old global with the new global 2059 llvm::Constant *NewPtrForOldDecl = 2060 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2061 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2062 2063 // Erase the old global, since it is no longer used. 2064 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2065 } 2066 2067 MaybeHandleStaticInExternC(D, GV); 2068 2069 if (D->hasAttr<AnnotateAttr>()) 2070 AddGlobalAnnotations(D, GV); 2071 2072 GV->setInitializer(Init); 2073 2074 // If it is safe to mark the global 'constant', do so now. 2075 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2076 isTypeConstant(D->getType(), true)); 2077 2078 // If it is in a read-only section, mark it 'constant'. 2079 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2080 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2081 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2082 GV->setConstant(true); 2083 } 2084 2085 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2086 2087 // Set the llvm linkage type as appropriate. 2088 llvm::GlobalValue::LinkageTypes Linkage = 2089 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2090 2091 // On Darwin, the backing variable for a C++11 thread_local variable always 2092 // has internal linkage; all accesses should just be calls to the 2093 // Itanium-specified entry point, which has the normal linkage of the 2094 // variable. 2095 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2096 Context.getTargetInfo().getTriple().isMacOSX()) 2097 Linkage = llvm::GlobalValue::InternalLinkage; 2098 2099 GV->setLinkage(Linkage); 2100 if (D->hasAttr<DLLImportAttr>()) 2101 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2102 else if (D->hasAttr<DLLExportAttr>()) 2103 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2104 else 2105 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2106 2107 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2108 // common vars aren't constant even if declared const. 2109 GV->setConstant(false); 2110 2111 setNonAliasAttributes(D, GV); 2112 2113 if (D->getTLSKind() && !GV->isThreadLocal()) { 2114 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2115 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2116 setTLSMode(GV, *D); 2117 } 2118 2119 maybeSetTrivialComdat(*D, *GV); 2120 2121 // Emit the initializer function if necessary. 2122 if (NeedsGlobalCtor || NeedsGlobalDtor) 2123 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2124 2125 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2126 2127 // Emit global variable debug information. 2128 if (CGDebugInfo *DI = getModuleDebugInfo()) 2129 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2130 DI->EmitGlobalVariable(GV, D); 2131 } 2132 2133 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2134 CodeGenModule &CGM, const VarDecl *D, 2135 bool NoCommon) { 2136 // Don't give variables common linkage if -fno-common was specified unless it 2137 // was overridden by a NoCommon attribute. 2138 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2139 return true; 2140 2141 // C11 6.9.2/2: 2142 // A declaration of an identifier for an object that has file scope without 2143 // an initializer, and without a storage-class specifier or with the 2144 // storage-class specifier static, constitutes a tentative definition. 2145 if (D->getInit() || D->hasExternalStorage()) 2146 return true; 2147 2148 // A variable cannot be both common and exist in a section. 2149 if (D->hasAttr<SectionAttr>()) 2150 return true; 2151 2152 // Thread local vars aren't considered common linkage. 2153 if (D->getTLSKind()) 2154 return true; 2155 2156 // Tentative definitions marked with WeakImportAttr are true definitions. 2157 if (D->hasAttr<WeakImportAttr>()) 2158 return true; 2159 2160 // A variable cannot be both common and exist in a comdat. 2161 if (shouldBeInCOMDAT(CGM, *D)) 2162 return true; 2163 2164 // Declarations with a required alignment do not have common linakge in MSVC 2165 // mode. 2166 if (Context.getLangOpts().MSVCCompat) { 2167 if (D->hasAttr<AlignedAttr>()) 2168 return true; 2169 QualType VarType = D->getType(); 2170 if (Context.isAlignmentRequired(VarType)) 2171 return true; 2172 2173 if (const auto *RT = VarType->getAs<RecordType>()) { 2174 const RecordDecl *RD = RT->getDecl(); 2175 for (const FieldDecl *FD : RD->fields()) { 2176 if (FD->isBitField()) 2177 continue; 2178 if (FD->hasAttr<AlignedAttr>()) 2179 return true; 2180 if (Context.isAlignmentRequired(FD->getType())) 2181 return true; 2182 } 2183 } 2184 } 2185 2186 return false; 2187 } 2188 2189 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2190 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2191 if (Linkage == GVA_Internal) 2192 return llvm::Function::InternalLinkage; 2193 2194 if (D->hasAttr<WeakAttr>()) { 2195 if (IsConstantVariable) 2196 return llvm::GlobalVariable::WeakODRLinkage; 2197 else 2198 return llvm::GlobalVariable::WeakAnyLinkage; 2199 } 2200 2201 // We are guaranteed to have a strong definition somewhere else, 2202 // so we can use available_externally linkage. 2203 if (Linkage == GVA_AvailableExternally) 2204 return llvm::Function::AvailableExternallyLinkage; 2205 2206 // Note that Apple's kernel linker doesn't support symbol 2207 // coalescing, so we need to avoid linkonce and weak linkages there. 2208 // Normally, this means we just map to internal, but for explicit 2209 // instantiations we'll map to external. 2210 2211 // In C++, the compiler has to emit a definition in every translation unit 2212 // that references the function. We should use linkonce_odr because 2213 // a) if all references in this translation unit are optimized away, we 2214 // don't need to codegen it. b) if the function persists, it needs to be 2215 // merged with other definitions. c) C++ has the ODR, so we know the 2216 // definition is dependable. 2217 if (Linkage == GVA_DiscardableODR) 2218 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2219 : llvm::Function::InternalLinkage; 2220 2221 // An explicit instantiation of a template has weak linkage, since 2222 // explicit instantiations can occur in multiple translation units 2223 // and must all be equivalent. However, we are not allowed to 2224 // throw away these explicit instantiations. 2225 if (Linkage == GVA_StrongODR) 2226 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2227 : llvm::Function::ExternalLinkage; 2228 2229 // C++ doesn't have tentative definitions and thus cannot have common 2230 // linkage. 2231 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2232 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2233 CodeGenOpts.NoCommon)) 2234 return llvm::GlobalVariable::CommonLinkage; 2235 2236 // selectany symbols are externally visible, so use weak instead of 2237 // linkonce. MSVC optimizes away references to const selectany globals, so 2238 // all definitions should be the same and ODR linkage should be used. 2239 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2240 if (D->hasAttr<SelectAnyAttr>()) 2241 return llvm::GlobalVariable::WeakODRLinkage; 2242 2243 // Otherwise, we have strong external linkage. 2244 assert(Linkage == GVA_StrongExternal); 2245 return llvm::GlobalVariable::ExternalLinkage; 2246 } 2247 2248 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2249 const VarDecl *VD, bool IsConstant) { 2250 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2251 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2252 } 2253 2254 /// Replace the uses of a function that was declared with a non-proto type. 2255 /// We want to silently drop extra arguments from call sites 2256 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2257 llvm::Function *newFn) { 2258 // Fast path. 2259 if (old->use_empty()) return; 2260 2261 llvm::Type *newRetTy = newFn->getReturnType(); 2262 SmallVector<llvm::Value*, 4> newArgs; 2263 2264 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2265 ui != ue; ) { 2266 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2267 llvm::User *user = use->getUser(); 2268 2269 // Recognize and replace uses of bitcasts. Most calls to 2270 // unprototyped functions will use bitcasts. 2271 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2272 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2273 replaceUsesOfNonProtoConstant(bitcast, newFn); 2274 continue; 2275 } 2276 2277 // Recognize calls to the function. 2278 llvm::CallSite callSite(user); 2279 if (!callSite) continue; 2280 if (!callSite.isCallee(&*use)) continue; 2281 2282 // If the return types don't match exactly, then we can't 2283 // transform this call unless it's dead. 2284 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2285 continue; 2286 2287 // Get the call site's attribute list. 2288 SmallVector<llvm::AttributeSet, 8> newAttrs; 2289 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2290 2291 // Collect any return attributes from the call. 2292 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2293 newAttrs.push_back( 2294 llvm::AttributeSet::get(newFn->getContext(), 2295 oldAttrs.getRetAttributes())); 2296 2297 // If the function was passed too few arguments, don't transform. 2298 unsigned newNumArgs = newFn->arg_size(); 2299 if (callSite.arg_size() < newNumArgs) continue; 2300 2301 // If extra arguments were passed, we silently drop them. 2302 // If any of the types mismatch, we don't transform. 2303 unsigned argNo = 0; 2304 bool dontTransform = false; 2305 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2306 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2307 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2308 dontTransform = true; 2309 break; 2310 } 2311 2312 // Add any parameter attributes. 2313 if (oldAttrs.hasAttributes(argNo + 1)) 2314 newAttrs. 2315 push_back(llvm:: 2316 AttributeSet::get(newFn->getContext(), 2317 oldAttrs.getParamAttributes(argNo + 1))); 2318 } 2319 if (dontTransform) 2320 continue; 2321 2322 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2323 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2324 oldAttrs.getFnAttributes())); 2325 2326 // Okay, we can transform this. Create the new call instruction and copy 2327 // over the required information. 2328 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2329 2330 llvm::CallSite newCall; 2331 if (callSite.isCall()) { 2332 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2333 callSite.getInstruction()); 2334 } else { 2335 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2336 newCall = llvm::InvokeInst::Create(newFn, 2337 oldInvoke->getNormalDest(), 2338 oldInvoke->getUnwindDest(), 2339 newArgs, "", 2340 callSite.getInstruction()); 2341 } 2342 newArgs.clear(); // for the next iteration 2343 2344 if (!newCall->getType()->isVoidTy()) 2345 newCall->takeName(callSite.getInstruction()); 2346 newCall.setAttributes( 2347 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2348 newCall.setCallingConv(callSite.getCallingConv()); 2349 2350 // Finally, remove the old call, replacing any uses with the new one. 2351 if (!callSite->use_empty()) 2352 callSite->replaceAllUsesWith(newCall.getInstruction()); 2353 2354 // Copy debug location attached to CI. 2355 if (callSite->getDebugLoc()) 2356 newCall->setDebugLoc(callSite->getDebugLoc()); 2357 callSite->eraseFromParent(); 2358 } 2359 } 2360 2361 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2362 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2363 /// existing call uses of the old function in the module, this adjusts them to 2364 /// call the new function directly. 2365 /// 2366 /// This is not just a cleanup: the always_inline pass requires direct calls to 2367 /// functions to be able to inline them. If there is a bitcast in the way, it 2368 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2369 /// run at -O0. 2370 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2371 llvm::Function *NewFn) { 2372 // If we're redefining a global as a function, don't transform it. 2373 if (!isa<llvm::Function>(Old)) return; 2374 2375 replaceUsesOfNonProtoConstant(Old, NewFn); 2376 } 2377 2378 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2379 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2380 // If we have a definition, this might be a deferred decl. If the 2381 // instantiation is explicit, make sure we emit it at the end. 2382 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2383 GetAddrOfGlobalVar(VD); 2384 2385 EmitTopLevelDecl(VD); 2386 } 2387 2388 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2389 llvm::GlobalValue *GV) { 2390 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2391 2392 // Compute the function info and LLVM type. 2393 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2394 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2395 2396 // Get or create the prototype for the function. 2397 if (!GV) { 2398 llvm::Constant *C = 2399 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2400 2401 // Strip off a bitcast if we got one back. 2402 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2403 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2404 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2405 } else { 2406 GV = cast<llvm::GlobalValue>(C); 2407 } 2408 } 2409 2410 if (!GV->isDeclaration()) { 2411 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2412 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2413 if (auto *Prev = OldGD.getDecl()) 2414 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2415 return; 2416 } 2417 2418 if (GV->getType()->getElementType() != Ty) { 2419 // If the types mismatch then we have to rewrite the definition. 2420 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2421 2422 // F is the Function* for the one with the wrong type, we must make a new 2423 // Function* and update everything that used F (a declaration) with the new 2424 // Function* (which will be a definition). 2425 // 2426 // This happens if there is a prototype for a function 2427 // (e.g. "int f()") and then a definition of a different type 2428 // (e.g. "int f(int x)"). Move the old function aside so that it 2429 // doesn't interfere with GetAddrOfFunction. 2430 GV->setName(StringRef()); 2431 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2432 2433 // This might be an implementation of a function without a 2434 // prototype, in which case, try to do special replacement of 2435 // calls which match the new prototype. The really key thing here 2436 // is that we also potentially drop arguments from the call site 2437 // so as to make a direct call, which makes the inliner happier 2438 // and suppresses a number of optimizer warnings (!) about 2439 // dropping arguments. 2440 if (!GV->use_empty()) { 2441 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2442 GV->removeDeadConstantUsers(); 2443 } 2444 2445 // Replace uses of F with the Function we will endow with a body. 2446 if (!GV->use_empty()) { 2447 llvm::Constant *NewPtrForOldDecl = 2448 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2449 GV->replaceAllUsesWith(NewPtrForOldDecl); 2450 } 2451 2452 // Ok, delete the old function now, which is dead. 2453 GV->eraseFromParent(); 2454 2455 GV = NewFn; 2456 } 2457 2458 // We need to set linkage and visibility on the function before 2459 // generating code for it because various parts of IR generation 2460 // want to propagate this information down (e.g. to local static 2461 // declarations). 2462 auto *Fn = cast<llvm::Function>(GV); 2463 setFunctionLinkage(GD, Fn); 2464 setFunctionDLLStorageClass(GD, Fn); 2465 2466 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2467 setGlobalVisibility(Fn, D); 2468 2469 MaybeHandleStaticInExternC(D, Fn); 2470 2471 maybeSetTrivialComdat(*D, *Fn); 2472 2473 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2474 2475 setFunctionDefinitionAttributes(D, Fn); 2476 SetLLVMFunctionAttributesForDefinition(D, Fn); 2477 2478 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2479 AddGlobalCtor(Fn, CA->getPriority()); 2480 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2481 AddGlobalDtor(Fn, DA->getPriority()); 2482 if (D->hasAttr<AnnotateAttr>()) 2483 AddGlobalAnnotations(D, Fn); 2484 } 2485 2486 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2487 const auto *D = cast<ValueDecl>(GD.getDecl()); 2488 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2489 assert(AA && "Not an alias?"); 2490 2491 StringRef MangledName = getMangledName(GD); 2492 2493 // If there is a definition in the module, then it wins over the alias. 2494 // This is dubious, but allow it to be safe. Just ignore the alias. 2495 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2496 if (Entry && !Entry->isDeclaration()) 2497 return; 2498 2499 Aliases.push_back(GD); 2500 2501 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2502 2503 // Create a reference to the named value. This ensures that it is emitted 2504 // if a deferred decl. 2505 llvm::Constant *Aliasee; 2506 if (isa<llvm::FunctionType>(DeclTy)) 2507 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2508 /*ForVTable=*/false); 2509 else 2510 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2511 llvm::PointerType::getUnqual(DeclTy), 2512 /*D=*/nullptr); 2513 2514 // Create the new alias itself, but don't set a name yet. 2515 auto *GA = llvm::GlobalAlias::create( 2516 cast<llvm::PointerType>(Aliasee->getType()), 2517 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2518 2519 if (Entry) { 2520 if (GA->getAliasee() == Entry) { 2521 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2522 return; 2523 } 2524 2525 assert(Entry->isDeclaration()); 2526 2527 // If there is a declaration in the module, then we had an extern followed 2528 // by the alias, as in: 2529 // extern int test6(); 2530 // ... 2531 // int test6() __attribute__((alias("test7"))); 2532 // 2533 // Remove it and replace uses of it with the alias. 2534 GA->takeName(Entry); 2535 2536 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2537 Entry->getType())); 2538 Entry->eraseFromParent(); 2539 } else { 2540 GA->setName(MangledName); 2541 } 2542 2543 // Set attributes which are particular to an alias; this is a 2544 // specialization of the attributes which may be set on a global 2545 // variable/function. 2546 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2547 D->isWeakImported()) { 2548 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2549 } 2550 2551 if (const auto *VD = dyn_cast<VarDecl>(D)) 2552 if (VD->getTLSKind()) 2553 setTLSMode(GA, *VD); 2554 2555 setAliasAttributes(D, GA); 2556 } 2557 2558 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2559 ArrayRef<llvm::Type*> Tys) { 2560 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2561 Tys); 2562 } 2563 2564 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2565 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2566 const StringLiteral *Literal, bool TargetIsLSB, 2567 bool &IsUTF16, unsigned &StringLength) { 2568 StringRef String = Literal->getString(); 2569 unsigned NumBytes = String.size(); 2570 2571 // Check for simple case. 2572 if (!Literal->containsNonAsciiOrNull()) { 2573 StringLength = NumBytes; 2574 return *Map.insert(std::make_pair(String, nullptr)).first; 2575 } 2576 2577 // Otherwise, convert the UTF8 literals into a string of shorts. 2578 IsUTF16 = true; 2579 2580 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2581 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2582 UTF16 *ToPtr = &ToBuf[0]; 2583 2584 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2585 &ToPtr, ToPtr + NumBytes, 2586 strictConversion); 2587 2588 // ConvertUTF8toUTF16 returns the length in ToPtr. 2589 StringLength = ToPtr - &ToBuf[0]; 2590 2591 // Add an explicit null. 2592 *ToPtr = 0; 2593 return *Map.insert(std::make_pair( 2594 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2595 (StringLength + 1) * 2), 2596 nullptr)).first; 2597 } 2598 2599 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2600 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2601 const StringLiteral *Literal, unsigned &StringLength) { 2602 StringRef String = Literal->getString(); 2603 StringLength = String.size(); 2604 return *Map.insert(std::make_pair(String, nullptr)).first; 2605 } 2606 2607 llvm::Constant * 2608 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2609 unsigned StringLength = 0; 2610 bool isUTF16 = false; 2611 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2612 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2613 getDataLayout().isLittleEndian(), isUTF16, 2614 StringLength); 2615 2616 if (auto *C = Entry.second) 2617 return C; 2618 2619 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2620 llvm::Constant *Zeros[] = { Zero, Zero }; 2621 llvm::Value *V; 2622 2623 // If we don't already have it, get __CFConstantStringClassReference. 2624 if (!CFConstantStringClassRef) { 2625 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2626 Ty = llvm::ArrayType::get(Ty, 0); 2627 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2628 "__CFConstantStringClassReference"); 2629 // Decay array -> ptr 2630 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2631 CFConstantStringClassRef = V; 2632 } 2633 else 2634 V = CFConstantStringClassRef; 2635 2636 QualType CFTy = getContext().getCFConstantStringType(); 2637 2638 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2639 2640 llvm::Constant *Fields[4]; 2641 2642 // Class pointer. 2643 Fields[0] = cast<llvm::ConstantExpr>(V); 2644 2645 // Flags. 2646 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2647 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2648 llvm::ConstantInt::get(Ty, 0x07C8); 2649 2650 // String pointer. 2651 llvm::Constant *C = nullptr; 2652 if (isUTF16) { 2653 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2654 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2655 Entry.first().size() / 2); 2656 C = llvm::ConstantDataArray::get(VMContext, Arr); 2657 } else { 2658 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2659 } 2660 2661 // Note: -fwritable-strings doesn't make the backing store strings of 2662 // CFStrings writable. (See <rdar://problem/10657500>) 2663 auto *GV = 2664 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2665 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2666 GV->setUnnamedAddr(true); 2667 // Don't enforce the target's minimum global alignment, since the only use 2668 // of the string is via this class initializer. 2669 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2670 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2671 // that changes the section it ends in, which surprises ld64. 2672 if (isUTF16) { 2673 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2674 GV->setAlignment(Align.getQuantity()); 2675 GV->setSection("__TEXT,__ustring"); 2676 } else { 2677 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2678 GV->setAlignment(Align.getQuantity()); 2679 GV->setSection("__TEXT,__cstring,cstring_literals"); 2680 } 2681 2682 // String. 2683 Fields[2] = 2684 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2685 2686 if (isUTF16) 2687 // Cast the UTF16 string to the correct type. 2688 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2689 2690 // String length. 2691 Ty = getTypes().ConvertType(getContext().LongTy); 2692 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2693 2694 // The struct. 2695 C = llvm::ConstantStruct::get(STy, Fields); 2696 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2697 llvm::GlobalVariable::PrivateLinkage, C, 2698 "_unnamed_cfstring_"); 2699 GV->setSection("__DATA,__cfstring"); 2700 Entry.second = GV; 2701 2702 return GV; 2703 } 2704 2705 llvm::GlobalVariable * 2706 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2707 unsigned StringLength = 0; 2708 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2709 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2710 2711 if (auto *C = Entry.second) 2712 return C; 2713 2714 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2715 llvm::Constant *Zeros[] = { Zero, Zero }; 2716 llvm::Value *V; 2717 // If we don't already have it, get _NSConstantStringClassReference. 2718 if (!ConstantStringClassRef) { 2719 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2720 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2721 llvm::Constant *GV; 2722 if (LangOpts.ObjCRuntime.isNonFragile()) { 2723 std::string str = 2724 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2725 : "OBJC_CLASS_$_" + StringClass; 2726 GV = getObjCRuntime().GetClassGlobal(str); 2727 // Make sure the result is of the correct type. 2728 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2729 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2730 ConstantStringClassRef = V; 2731 } else { 2732 std::string str = 2733 StringClass.empty() ? "_NSConstantStringClassReference" 2734 : "_" + StringClass + "ClassReference"; 2735 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2736 GV = CreateRuntimeVariable(PTy, str); 2737 // Decay array -> ptr 2738 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2739 ConstantStringClassRef = V; 2740 } 2741 } else 2742 V = ConstantStringClassRef; 2743 2744 if (!NSConstantStringType) { 2745 // Construct the type for a constant NSString. 2746 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2747 D->startDefinition(); 2748 2749 QualType FieldTypes[3]; 2750 2751 // const int *isa; 2752 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2753 // const char *str; 2754 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2755 // unsigned int length; 2756 FieldTypes[2] = Context.UnsignedIntTy; 2757 2758 // Create fields 2759 for (unsigned i = 0; i < 3; ++i) { 2760 FieldDecl *Field = FieldDecl::Create(Context, D, 2761 SourceLocation(), 2762 SourceLocation(), nullptr, 2763 FieldTypes[i], /*TInfo=*/nullptr, 2764 /*BitWidth=*/nullptr, 2765 /*Mutable=*/false, 2766 ICIS_NoInit); 2767 Field->setAccess(AS_public); 2768 D->addDecl(Field); 2769 } 2770 2771 D->completeDefinition(); 2772 QualType NSTy = Context.getTagDeclType(D); 2773 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2774 } 2775 2776 llvm::Constant *Fields[3]; 2777 2778 // Class pointer. 2779 Fields[0] = cast<llvm::ConstantExpr>(V); 2780 2781 // String pointer. 2782 llvm::Constant *C = 2783 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2784 2785 llvm::GlobalValue::LinkageTypes Linkage; 2786 bool isConstant; 2787 Linkage = llvm::GlobalValue::PrivateLinkage; 2788 isConstant = !LangOpts.WritableStrings; 2789 2790 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2791 Linkage, C, ".str"); 2792 GV->setUnnamedAddr(true); 2793 // Don't enforce the target's minimum global alignment, since the only use 2794 // of the string is via this class initializer. 2795 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2796 GV->setAlignment(Align.getQuantity()); 2797 Fields[1] = 2798 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2799 2800 // String length. 2801 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2802 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2803 2804 // The struct. 2805 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2806 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2807 llvm::GlobalVariable::PrivateLinkage, C, 2808 "_unnamed_nsstring_"); 2809 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2810 const char *NSStringNonFragileABISection = 2811 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2812 // FIXME. Fix section. 2813 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2814 ? NSStringNonFragileABISection 2815 : NSStringSection); 2816 Entry.second = GV; 2817 2818 return GV; 2819 } 2820 2821 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2822 if (ObjCFastEnumerationStateType.isNull()) { 2823 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2824 D->startDefinition(); 2825 2826 QualType FieldTypes[] = { 2827 Context.UnsignedLongTy, 2828 Context.getPointerType(Context.getObjCIdType()), 2829 Context.getPointerType(Context.UnsignedLongTy), 2830 Context.getConstantArrayType(Context.UnsignedLongTy, 2831 llvm::APInt(32, 5), ArrayType::Normal, 0) 2832 }; 2833 2834 for (size_t i = 0; i < 4; ++i) { 2835 FieldDecl *Field = FieldDecl::Create(Context, 2836 D, 2837 SourceLocation(), 2838 SourceLocation(), nullptr, 2839 FieldTypes[i], /*TInfo=*/nullptr, 2840 /*BitWidth=*/nullptr, 2841 /*Mutable=*/false, 2842 ICIS_NoInit); 2843 Field->setAccess(AS_public); 2844 D->addDecl(Field); 2845 } 2846 2847 D->completeDefinition(); 2848 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2849 } 2850 2851 return ObjCFastEnumerationStateType; 2852 } 2853 2854 llvm::Constant * 2855 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2856 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2857 2858 // Don't emit it as the address of the string, emit the string data itself 2859 // as an inline array. 2860 if (E->getCharByteWidth() == 1) { 2861 SmallString<64> Str(E->getString()); 2862 2863 // Resize the string to the right size, which is indicated by its type. 2864 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2865 Str.resize(CAT->getSize().getZExtValue()); 2866 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2867 } 2868 2869 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2870 llvm::Type *ElemTy = AType->getElementType(); 2871 unsigned NumElements = AType->getNumElements(); 2872 2873 // Wide strings have either 2-byte or 4-byte elements. 2874 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2875 SmallVector<uint16_t, 32> Elements; 2876 Elements.reserve(NumElements); 2877 2878 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2879 Elements.push_back(E->getCodeUnit(i)); 2880 Elements.resize(NumElements); 2881 return llvm::ConstantDataArray::get(VMContext, Elements); 2882 } 2883 2884 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2885 SmallVector<uint32_t, 32> Elements; 2886 Elements.reserve(NumElements); 2887 2888 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2889 Elements.push_back(E->getCodeUnit(i)); 2890 Elements.resize(NumElements); 2891 return llvm::ConstantDataArray::get(VMContext, Elements); 2892 } 2893 2894 static llvm::GlobalVariable * 2895 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2896 CodeGenModule &CGM, StringRef GlobalName, 2897 unsigned Alignment) { 2898 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2899 unsigned AddrSpace = 0; 2900 if (CGM.getLangOpts().OpenCL) 2901 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2902 2903 llvm::Module &M = CGM.getModule(); 2904 // Create a global variable for this string 2905 auto *GV = new llvm::GlobalVariable( 2906 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2907 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2908 GV->setAlignment(Alignment); 2909 GV->setUnnamedAddr(true); 2910 if (GV->isWeakForLinker()) { 2911 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2912 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2913 } 2914 2915 return GV; 2916 } 2917 2918 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2919 /// constant array for the given string literal. 2920 llvm::GlobalVariable * 2921 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2922 StringRef Name) { 2923 auto Alignment = 2924 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2925 2926 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2927 llvm::GlobalVariable **Entry = nullptr; 2928 if (!LangOpts.WritableStrings) { 2929 Entry = &ConstantStringMap[C]; 2930 if (auto GV = *Entry) { 2931 if (Alignment > GV->getAlignment()) 2932 GV->setAlignment(Alignment); 2933 return GV; 2934 } 2935 } 2936 2937 SmallString<256> MangledNameBuffer; 2938 StringRef GlobalVariableName; 2939 llvm::GlobalValue::LinkageTypes LT; 2940 2941 // Mangle the string literal if the ABI allows for it. However, we cannot 2942 // do this if we are compiling with ASan or -fwritable-strings because they 2943 // rely on strings having normal linkage. 2944 if (!LangOpts.WritableStrings && 2945 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2946 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2947 llvm::raw_svector_ostream Out(MangledNameBuffer); 2948 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2949 Out.flush(); 2950 2951 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2952 GlobalVariableName = MangledNameBuffer; 2953 } else { 2954 LT = llvm::GlobalValue::PrivateLinkage; 2955 GlobalVariableName = Name; 2956 } 2957 2958 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2959 if (Entry) 2960 *Entry = GV; 2961 2962 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2963 QualType()); 2964 return GV; 2965 } 2966 2967 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2968 /// array for the given ObjCEncodeExpr node. 2969 llvm::GlobalVariable * 2970 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2971 std::string Str; 2972 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2973 2974 return GetAddrOfConstantCString(Str); 2975 } 2976 2977 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2978 /// the literal and a terminating '\0' character. 2979 /// The result has pointer to array type. 2980 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2981 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2982 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2983 if (Alignment == 0) { 2984 Alignment = getContext() 2985 .getAlignOfGlobalVarInChars(getContext().CharTy) 2986 .getQuantity(); 2987 } 2988 2989 llvm::Constant *C = 2990 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2991 2992 // Don't share any string literals if strings aren't constant. 2993 llvm::GlobalVariable **Entry = nullptr; 2994 if (!LangOpts.WritableStrings) { 2995 Entry = &ConstantStringMap[C]; 2996 if (auto GV = *Entry) { 2997 if (Alignment > GV->getAlignment()) 2998 GV->setAlignment(Alignment); 2999 return GV; 3000 } 3001 } 3002 3003 // Get the default prefix if a name wasn't specified. 3004 if (!GlobalName) 3005 GlobalName = ".str"; 3006 // Create a global variable for this. 3007 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3008 GlobalName, Alignment); 3009 if (Entry) 3010 *Entry = GV; 3011 return GV; 3012 } 3013 3014 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3015 const MaterializeTemporaryExpr *E, const Expr *Init) { 3016 assert((E->getStorageDuration() == SD_Static || 3017 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3018 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3019 3020 // If we're not materializing a subobject of the temporary, keep the 3021 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3022 QualType MaterializedType = Init->getType(); 3023 if (Init == E->GetTemporaryExpr()) 3024 MaterializedType = E->getType(); 3025 3026 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 3027 if (Slot) 3028 return Slot; 3029 3030 // FIXME: If an externally-visible declaration extends multiple temporaries, 3031 // we need to give each temporary the same name in every translation unit (and 3032 // we also need to make the temporaries externally-visible). 3033 SmallString<256> Name; 3034 llvm::raw_svector_ostream Out(Name); 3035 getCXXABI().getMangleContext().mangleReferenceTemporary( 3036 VD, E->getManglingNumber(), Out); 3037 Out.flush(); 3038 3039 APValue *Value = nullptr; 3040 if (E->getStorageDuration() == SD_Static) { 3041 // We might have a cached constant initializer for this temporary. Note 3042 // that this might have a different value from the value computed by 3043 // evaluating the initializer if the surrounding constant expression 3044 // modifies the temporary. 3045 Value = getContext().getMaterializedTemporaryValue(E, false); 3046 if (Value && Value->isUninit()) 3047 Value = nullptr; 3048 } 3049 3050 // Try evaluating it now, it might have a constant initializer. 3051 Expr::EvalResult EvalResult; 3052 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3053 !EvalResult.hasSideEffects()) 3054 Value = &EvalResult.Val; 3055 3056 llvm::Constant *InitialValue = nullptr; 3057 bool Constant = false; 3058 llvm::Type *Type; 3059 if (Value) { 3060 // The temporary has a constant initializer, use it. 3061 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3062 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3063 Type = InitialValue->getType(); 3064 } else { 3065 // No initializer, the initialization will be provided when we 3066 // initialize the declaration which performed lifetime extension. 3067 Type = getTypes().ConvertTypeForMem(MaterializedType); 3068 } 3069 3070 // Create a global variable for this lifetime-extended temporary. 3071 llvm::GlobalValue::LinkageTypes Linkage = 3072 getLLVMLinkageVarDefinition(VD, Constant); 3073 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3074 const VarDecl *InitVD; 3075 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3076 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3077 // Temporaries defined inside a class get linkonce_odr linkage because the 3078 // class can be defined in multipe translation units. 3079 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3080 } else { 3081 // There is no need for this temporary to have external linkage if the 3082 // VarDecl has external linkage. 3083 Linkage = llvm::GlobalVariable::InternalLinkage; 3084 } 3085 } 3086 unsigned AddrSpace = GetGlobalVarAddressSpace( 3087 VD, getContext().getTargetAddressSpace(MaterializedType)); 3088 auto *GV = new llvm::GlobalVariable( 3089 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3090 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3091 AddrSpace); 3092 setGlobalVisibility(GV, VD); 3093 GV->setAlignment( 3094 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3095 if (supportsCOMDAT() && GV->isWeakForLinker()) 3096 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3097 if (VD->getTLSKind()) 3098 setTLSMode(GV, *VD); 3099 Slot = GV; 3100 return GV; 3101 } 3102 3103 /// EmitObjCPropertyImplementations - Emit information for synthesized 3104 /// properties for an implementation. 3105 void CodeGenModule::EmitObjCPropertyImplementations(const 3106 ObjCImplementationDecl *D) { 3107 for (const auto *PID : D->property_impls()) { 3108 // Dynamic is just for type-checking. 3109 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3110 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3111 3112 // Determine which methods need to be implemented, some may have 3113 // been overridden. Note that ::isPropertyAccessor is not the method 3114 // we want, that just indicates if the decl came from a 3115 // property. What we want to know is if the method is defined in 3116 // this implementation. 3117 if (!D->getInstanceMethod(PD->getGetterName())) 3118 CodeGenFunction(*this).GenerateObjCGetter( 3119 const_cast<ObjCImplementationDecl *>(D), PID); 3120 if (!PD->isReadOnly() && 3121 !D->getInstanceMethod(PD->getSetterName())) 3122 CodeGenFunction(*this).GenerateObjCSetter( 3123 const_cast<ObjCImplementationDecl *>(D), PID); 3124 } 3125 } 3126 } 3127 3128 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3129 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3130 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3131 ivar; ivar = ivar->getNextIvar()) 3132 if (ivar->getType().isDestructedType()) 3133 return true; 3134 3135 return false; 3136 } 3137 3138 static bool AllTrivialInitializers(CodeGenModule &CGM, 3139 ObjCImplementationDecl *D) { 3140 CodeGenFunction CGF(CGM); 3141 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3142 E = D->init_end(); B != E; ++B) { 3143 CXXCtorInitializer *CtorInitExp = *B; 3144 Expr *Init = CtorInitExp->getInit(); 3145 if (!CGF.isTrivialInitializer(Init)) 3146 return false; 3147 } 3148 return true; 3149 } 3150 3151 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3152 /// for an implementation. 3153 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3154 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3155 if (needsDestructMethod(D)) { 3156 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3157 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3158 ObjCMethodDecl *DTORMethod = 3159 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3160 cxxSelector, getContext().VoidTy, nullptr, D, 3161 /*isInstance=*/true, /*isVariadic=*/false, 3162 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3163 /*isDefined=*/false, ObjCMethodDecl::Required); 3164 D->addInstanceMethod(DTORMethod); 3165 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3166 D->setHasDestructors(true); 3167 } 3168 3169 // If the implementation doesn't have any ivar initializers, we don't need 3170 // a .cxx_construct. 3171 if (D->getNumIvarInitializers() == 0 || 3172 AllTrivialInitializers(*this, D)) 3173 return; 3174 3175 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3176 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3177 // The constructor returns 'self'. 3178 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3179 D->getLocation(), 3180 D->getLocation(), 3181 cxxSelector, 3182 getContext().getObjCIdType(), 3183 nullptr, D, /*isInstance=*/true, 3184 /*isVariadic=*/false, 3185 /*isPropertyAccessor=*/true, 3186 /*isImplicitlyDeclared=*/true, 3187 /*isDefined=*/false, 3188 ObjCMethodDecl::Required); 3189 D->addInstanceMethod(CTORMethod); 3190 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3191 D->setHasNonZeroConstructors(true); 3192 } 3193 3194 /// EmitNamespace - Emit all declarations in a namespace. 3195 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3196 for (auto *I : ND->decls()) { 3197 if (const auto *VD = dyn_cast<VarDecl>(I)) 3198 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3199 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3200 continue; 3201 EmitTopLevelDecl(I); 3202 } 3203 } 3204 3205 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3206 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3207 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3208 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3209 ErrorUnsupported(LSD, "linkage spec"); 3210 return; 3211 } 3212 3213 for (auto *I : LSD->decls()) { 3214 // Meta-data for ObjC class includes references to implemented methods. 3215 // Generate class's method definitions first. 3216 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3217 for (auto *M : OID->methods()) 3218 EmitTopLevelDecl(M); 3219 } 3220 EmitTopLevelDecl(I); 3221 } 3222 } 3223 3224 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3225 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3226 // Ignore dependent declarations. 3227 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3228 return; 3229 3230 switch (D->getKind()) { 3231 case Decl::CXXConversion: 3232 case Decl::CXXMethod: 3233 case Decl::Function: 3234 // Skip function templates 3235 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3236 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3237 return; 3238 3239 EmitGlobal(cast<FunctionDecl>(D)); 3240 // Always provide some coverage mapping 3241 // even for the functions that aren't emitted. 3242 AddDeferredUnusedCoverageMapping(D); 3243 break; 3244 3245 case Decl::Var: 3246 // Skip variable templates 3247 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3248 return; 3249 case Decl::VarTemplateSpecialization: 3250 EmitGlobal(cast<VarDecl>(D)); 3251 break; 3252 3253 // Indirect fields from global anonymous structs and unions can be 3254 // ignored; only the actual variable requires IR gen support. 3255 case Decl::IndirectField: 3256 break; 3257 3258 // C++ Decls 3259 case Decl::Namespace: 3260 EmitNamespace(cast<NamespaceDecl>(D)); 3261 break; 3262 // No code generation needed. 3263 case Decl::UsingShadow: 3264 case Decl::ClassTemplate: 3265 case Decl::VarTemplate: 3266 case Decl::VarTemplatePartialSpecialization: 3267 case Decl::FunctionTemplate: 3268 case Decl::TypeAliasTemplate: 3269 case Decl::Block: 3270 case Decl::Empty: 3271 break; 3272 case Decl::Using: // using X; [C++] 3273 if (CGDebugInfo *DI = getModuleDebugInfo()) 3274 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3275 return; 3276 case Decl::NamespaceAlias: 3277 if (CGDebugInfo *DI = getModuleDebugInfo()) 3278 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3279 return; 3280 case Decl::UsingDirective: // using namespace X; [C++] 3281 if (CGDebugInfo *DI = getModuleDebugInfo()) 3282 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3283 return; 3284 case Decl::CXXConstructor: 3285 // Skip function templates 3286 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3287 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3288 return; 3289 3290 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3291 break; 3292 case Decl::CXXDestructor: 3293 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3294 return; 3295 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3296 break; 3297 3298 case Decl::StaticAssert: 3299 // Nothing to do. 3300 break; 3301 3302 // Objective-C Decls 3303 3304 // Forward declarations, no (immediate) code generation. 3305 case Decl::ObjCInterface: 3306 case Decl::ObjCCategory: 3307 break; 3308 3309 case Decl::ObjCProtocol: { 3310 auto *Proto = cast<ObjCProtocolDecl>(D); 3311 if (Proto->isThisDeclarationADefinition()) 3312 ObjCRuntime->GenerateProtocol(Proto); 3313 break; 3314 } 3315 3316 case Decl::ObjCCategoryImpl: 3317 // Categories have properties but don't support synthesize so we 3318 // can ignore them here. 3319 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3320 break; 3321 3322 case Decl::ObjCImplementation: { 3323 auto *OMD = cast<ObjCImplementationDecl>(D); 3324 EmitObjCPropertyImplementations(OMD); 3325 EmitObjCIvarInitializations(OMD); 3326 ObjCRuntime->GenerateClass(OMD); 3327 // Emit global variable debug information. 3328 if (CGDebugInfo *DI = getModuleDebugInfo()) 3329 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3330 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3331 OMD->getClassInterface()), OMD->getLocation()); 3332 break; 3333 } 3334 case Decl::ObjCMethod: { 3335 auto *OMD = cast<ObjCMethodDecl>(D); 3336 // If this is not a prototype, emit the body. 3337 if (OMD->getBody()) 3338 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3339 break; 3340 } 3341 case Decl::ObjCCompatibleAlias: 3342 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3343 break; 3344 3345 case Decl::LinkageSpec: 3346 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3347 break; 3348 3349 case Decl::FileScopeAsm: { 3350 // File-scope asm is ignored during device-side CUDA compilation. 3351 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3352 break; 3353 auto *AD = cast<FileScopeAsmDecl>(D); 3354 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3355 break; 3356 } 3357 3358 case Decl::Import: { 3359 auto *Import = cast<ImportDecl>(D); 3360 3361 // Ignore import declarations that come from imported modules. 3362 if (clang::Module *Owner = Import->getImportedOwningModule()) { 3363 if (getLangOpts().CurrentModule.empty() || 3364 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3365 break; 3366 } 3367 3368 ImportedModules.insert(Import->getImportedModule()); 3369 break; 3370 } 3371 3372 case Decl::OMPThreadPrivate: 3373 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3374 break; 3375 3376 case Decl::ClassTemplateSpecialization: { 3377 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3378 if (DebugInfo && 3379 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3380 Spec->hasDefinition()) 3381 DebugInfo->completeTemplateDefinition(*Spec); 3382 break; 3383 } 3384 3385 default: 3386 // Make sure we handled everything we should, every other kind is a 3387 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3388 // function. Need to recode Decl::Kind to do that easily. 3389 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3390 break; 3391 } 3392 } 3393 3394 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3395 // Do we need to generate coverage mapping? 3396 if (!CodeGenOpts.CoverageMapping) 3397 return; 3398 switch (D->getKind()) { 3399 case Decl::CXXConversion: 3400 case Decl::CXXMethod: 3401 case Decl::Function: 3402 case Decl::ObjCMethod: 3403 case Decl::CXXConstructor: 3404 case Decl::CXXDestructor: { 3405 if (!cast<FunctionDecl>(D)->hasBody()) 3406 return; 3407 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3408 if (I == DeferredEmptyCoverageMappingDecls.end()) 3409 DeferredEmptyCoverageMappingDecls[D] = true; 3410 break; 3411 } 3412 default: 3413 break; 3414 }; 3415 } 3416 3417 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3418 // Do we need to generate coverage mapping? 3419 if (!CodeGenOpts.CoverageMapping) 3420 return; 3421 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3422 if (Fn->isTemplateInstantiation()) 3423 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3424 } 3425 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3426 if (I == DeferredEmptyCoverageMappingDecls.end()) 3427 DeferredEmptyCoverageMappingDecls[D] = false; 3428 else 3429 I->second = false; 3430 } 3431 3432 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3433 std::vector<const Decl *> DeferredDecls; 3434 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3435 if (!I.second) 3436 continue; 3437 DeferredDecls.push_back(I.first); 3438 } 3439 // Sort the declarations by their location to make sure that the tests get a 3440 // predictable order for the coverage mapping for the unused declarations. 3441 if (CodeGenOpts.DumpCoverageMapping) 3442 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3443 [] (const Decl *LHS, const Decl *RHS) { 3444 return LHS->getLocStart() < RHS->getLocStart(); 3445 }); 3446 for (const auto *D : DeferredDecls) { 3447 switch (D->getKind()) { 3448 case Decl::CXXConversion: 3449 case Decl::CXXMethod: 3450 case Decl::Function: 3451 case Decl::ObjCMethod: { 3452 CodeGenPGO PGO(*this); 3453 GlobalDecl GD(cast<FunctionDecl>(D)); 3454 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3455 getFunctionLinkage(GD)); 3456 break; 3457 } 3458 case Decl::CXXConstructor: { 3459 CodeGenPGO PGO(*this); 3460 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3461 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3462 getFunctionLinkage(GD)); 3463 break; 3464 } 3465 case Decl::CXXDestructor: { 3466 CodeGenPGO PGO(*this); 3467 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3468 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3469 getFunctionLinkage(GD)); 3470 break; 3471 } 3472 default: 3473 break; 3474 }; 3475 } 3476 } 3477 3478 /// Turns the given pointer into a constant. 3479 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3480 const void *Ptr) { 3481 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3482 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3483 return llvm::ConstantInt::get(i64, PtrInt); 3484 } 3485 3486 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3487 llvm::NamedMDNode *&GlobalMetadata, 3488 GlobalDecl D, 3489 llvm::GlobalValue *Addr) { 3490 if (!GlobalMetadata) 3491 GlobalMetadata = 3492 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3493 3494 // TODO: should we report variant information for ctors/dtors? 3495 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3496 llvm::ConstantAsMetadata::get(GetPointerConstant( 3497 CGM.getLLVMContext(), D.getDecl()))}; 3498 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3499 } 3500 3501 /// For each function which is declared within an extern "C" region and marked 3502 /// as 'used', but has internal linkage, create an alias from the unmangled 3503 /// name to the mangled name if possible. People expect to be able to refer 3504 /// to such functions with an unmangled name from inline assembly within the 3505 /// same translation unit. 3506 void CodeGenModule::EmitStaticExternCAliases() { 3507 for (auto &I : StaticExternCValues) { 3508 IdentifierInfo *Name = I.first; 3509 llvm::GlobalValue *Val = I.second; 3510 if (Val && !getModule().getNamedValue(Name->getName())) 3511 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3512 } 3513 } 3514 3515 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3516 GlobalDecl &Result) const { 3517 auto Res = Manglings.find(MangledName); 3518 if (Res == Manglings.end()) 3519 return false; 3520 Result = Res->getValue(); 3521 return true; 3522 } 3523 3524 /// Emits metadata nodes associating all the global values in the 3525 /// current module with the Decls they came from. This is useful for 3526 /// projects using IR gen as a subroutine. 3527 /// 3528 /// Since there's currently no way to associate an MDNode directly 3529 /// with an llvm::GlobalValue, we create a global named metadata 3530 /// with the name 'clang.global.decl.ptrs'. 3531 void CodeGenModule::EmitDeclMetadata() { 3532 llvm::NamedMDNode *GlobalMetadata = nullptr; 3533 3534 // StaticLocalDeclMap 3535 for (auto &I : MangledDeclNames) { 3536 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3537 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3538 } 3539 } 3540 3541 /// Emits metadata nodes for all the local variables in the current 3542 /// function. 3543 void CodeGenFunction::EmitDeclMetadata() { 3544 if (LocalDeclMap.empty()) return; 3545 3546 llvm::LLVMContext &Context = getLLVMContext(); 3547 3548 // Find the unique metadata ID for this name. 3549 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3550 3551 llvm::NamedMDNode *GlobalMetadata = nullptr; 3552 3553 for (auto &I : LocalDeclMap) { 3554 const Decl *D = I.first; 3555 llvm::Value *Addr = I.second; 3556 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3557 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3558 Alloca->setMetadata( 3559 DeclPtrKind, llvm::MDNode::get( 3560 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3561 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3562 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3563 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3564 } 3565 } 3566 } 3567 3568 void CodeGenModule::EmitVersionIdentMetadata() { 3569 llvm::NamedMDNode *IdentMetadata = 3570 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3571 std::string Version = getClangFullVersion(); 3572 llvm::LLVMContext &Ctx = TheModule.getContext(); 3573 3574 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3575 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3576 } 3577 3578 void CodeGenModule::EmitTargetMetadata() { 3579 // Warning, new MangledDeclNames may be appended within this loop. 3580 // We rely on MapVector insertions adding new elements to the end 3581 // of the container. 3582 // FIXME: Move this loop into the one target that needs it, and only 3583 // loop over those declarations for which we couldn't emit the target 3584 // metadata when we emitted the declaration. 3585 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3586 auto Val = *(MangledDeclNames.begin() + I); 3587 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3588 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3589 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3590 } 3591 } 3592 3593 void CodeGenModule::EmitCoverageFile() { 3594 if (!getCodeGenOpts().CoverageFile.empty()) { 3595 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3596 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3597 llvm::LLVMContext &Ctx = TheModule.getContext(); 3598 llvm::MDString *CoverageFile = 3599 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3600 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3601 llvm::MDNode *CU = CUNode->getOperand(i); 3602 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3603 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3604 } 3605 } 3606 } 3607 } 3608 3609 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3610 // Sema has checked that all uuid strings are of the form 3611 // "12345678-1234-1234-1234-1234567890ab". 3612 assert(Uuid.size() == 36); 3613 for (unsigned i = 0; i < 36; ++i) { 3614 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3615 else assert(isHexDigit(Uuid[i])); 3616 } 3617 3618 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3619 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3620 3621 llvm::Constant *Field3[8]; 3622 for (unsigned Idx = 0; Idx < 8; ++Idx) 3623 Field3[Idx] = llvm::ConstantInt::get( 3624 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3625 3626 llvm::Constant *Fields[4] = { 3627 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3628 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3629 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3630 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3631 }; 3632 3633 return llvm::ConstantStruct::getAnon(Fields); 3634 } 3635 3636 llvm::Constant * 3637 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3638 QualType CatchHandlerType) { 3639 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3640 } 3641 3642 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3643 bool ForEH) { 3644 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3645 // FIXME: should we even be calling this method if RTTI is disabled 3646 // and it's not for EH? 3647 if (!ForEH && !getLangOpts().RTTI) 3648 return llvm::Constant::getNullValue(Int8PtrTy); 3649 3650 if (ForEH && Ty->isObjCObjectPointerType() && 3651 LangOpts.ObjCRuntime.isGNUFamily()) 3652 return ObjCRuntime->GetEHType(Ty); 3653 3654 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3655 } 3656 3657 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3658 for (auto RefExpr : D->varlists()) { 3659 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3660 bool PerformInit = 3661 VD->getAnyInitializer() && 3662 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3663 /*ForRef=*/false); 3664 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3665 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3666 CXXGlobalInits.push_back(InitFunction); 3667 } 3668 } 3669 3670 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3671 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3672 std::string OutName; 3673 llvm::raw_string_ostream Out(OutName); 3674 getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 3675 3676 llvm::Metadata *BitsetOps[] = { 3677 llvm::MDString::get(getLLVMContext(), Out.str()), 3678 llvm::ConstantAsMetadata::get(VTable), 3679 llvm::ConstantAsMetadata::get( 3680 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3681 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3682 } 3683