xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 40b8ba1496e54066b69c181b40d37ec1a823862b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
81       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
82       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
83       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
84       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
85       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
86       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
87       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
88       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
89       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
90       LifetimeEndFn(nullptr),
91       SanitizerBlacklist(
92           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
93       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
94                                           : LangOpts.Sanitize) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (SanOpts.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 }
152 
153 CodeGenModule::~CodeGenModule() {
154   delete ObjCRuntime;
155   delete OpenCLRuntime;
156   delete OpenMPRuntime;
157   delete CUDARuntime;
158   delete TheTargetCodeGenInfo;
159   delete TBAA;
160   delete DebugInfo;
161   delete ARCData;
162   delete RRData;
163 }
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime = CreateGNUObjCRuntime(*this);
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178     ObjCRuntime = CreateMacObjCRuntime(*this);
179     return;
180   }
181   llvm_unreachable("bad runtime kind");
182 }
183 
184 void CodeGenModule::createOpenCLRuntime() {
185   OpenCLRuntime = new CGOpenCLRuntime(*this);
186 }
187 
188 void CodeGenModule::createOpenMPRuntime() {
189   OpenMPRuntime = new CGOpenMPRuntime(*this);
190 }
191 
192 void CodeGenModule::createCUDARuntime() {
193   CUDARuntime = CreateNVCUDARuntime(*this);
194 }
195 
196 void CodeGenModule::applyReplacements() {
197   for (ReplacementsTy::iterator I = Replacements.begin(),
198                                 E = Replacements.end();
199        I != E; ++I) {
200     StringRef MangledName = I->first();
201     llvm::Constant *Replacement = I->second;
202     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
203     if (!Entry)
204       continue;
205     auto *OldF = cast<llvm::Function>(Entry);
206     auto *NewF = dyn_cast<llvm::Function>(Replacement);
207     if (!NewF) {
208       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
209         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
210       } else {
211         auto *CE = cast<llvm::ConstantExpr>(Replacement);
212         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
213                CE->getOpcode() == llvm::Instruction::GetElementPtr);
214         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
215       }
216     }
217 
218     // Replace old with new, but keep the old order.
219     OldF->replaceAllUsesWith(Replacement);
220     if (NewF) {
221       NewF->removeFromParent();
222       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
223     }
224     OldF->eraseFromParent();
225   }
226 }
227 
228 // This is only used in aliases that we created and we know they have a
229 // linear structure.
230 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
231   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
232   const llvm::Constant *C = &GA;
233   for (;;) {
234     C = C->stripPointerCasts();
235     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
236       return GO;
237     // stripPointerCasts will not walk over weak aliases.
238     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
239     if (!GA2)
240       return nullptr;
241     if (!Visited.insert(GA2))
242       return nullptr;
243     C = GA2->getAliasee();
244   }
245 }
246 
247 void CodeGenModule::checkAliases() {
248   // Check if the constructed aliases are well formed. It is really unfortunate
249   // that we have to do this in CodeGen, but we only construct mangled names
250   // and aliases during codegen.
251   bool Error = false;
252   DiagnosticsEngine &Diags = getDiags();
253   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
254          E = Aliases.end(); I != E; ++I) {
255     const GlobalDecl &GD = *I;
256     const auto *D = cast<ValueDecl>(GD.getDecl());
257     const AliasAttr *AA = D->getAttr<AliasAttr>();
258     StringRef MangledName = getMangledName(GD);
259     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
260     auto *Alias = cast<llvm::GlobalAlias>(Entry);
261     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
262     if (!GV) {
263       Error = true;
264       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
265     } else if (GV->isDeclaration()) {
266       Error = true;
267       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
268     }
269 
270     llvm::Constant *Aliasee = Alias->getAliasee();
271     llvm::GlobalValue *AliaseeGV;
272     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
273       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
274     else
275       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
276 
277     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
278       StringRef AliasSection = SA->getName();
279       if (AliasSection != AliaseeGV->getSection())
280         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
281             << AliasSection;
282     }
283 
284     // We have to handle alias to weak aliases in here. LLVM itself disallows
285     // this since the object semantics would not match the IL one. For
286     // compatibility with gcc we implement it by just pointing the alias
287     // to its aliasee's aliasee. We also warn, since the user is probably
288     // expecting the link to be weak.
289     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
290       if (GA->mayBeOverridden()) {
291         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
292             << GV->getName() << GA->getName();
293         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
294             GA->getAliasee(), Alias->getType());
295         Alias->setAliasee(Aliasee);
296       }
297     }
298   }
299   if (!Error)
300     return;
301 
302   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
303          E = Aliases.end(); I != E; ++I) {
304     const GlobalDecl &GD = *I;
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias = cast<llvm::GlobalAlias>(Entry);
308     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
309     Alias->eraseFromParent();
310   }
311 }
312 
313 void CodeGenModule::clear() {
314   DeferredDeclsToEmit.clear();
315 }
316 
317 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
318                                        StringRef MainFile) {
319   if (!hasDiagnostics())
320     return;
321   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
322     if (MainFile.empty())
323       MainFile = "<stdin>";
324     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
325   } else
326     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
327                                                       << Mismatched;
328 }
329 
330 void CodeGenModule::Release() {
331   EmitDeferred();
332   applyReplacements();
333   checkAliases();
334   EmitCXXGlobalInitFunc();
335   EmitCXXGlobalDtorFunc();
336   EmitCXXThreadLocalInitFunc();
337   if (ObjCRuntime)
338     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
339       AddGlobalCtor(ObjCInitFunction);
340   if (getCodeGenOpts().ProfileInstrGenerate)
341     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
342       AddGlobalCtor(PGOInit, 0);
343   if (PGOReader && PGOStats.hasDiagnostics())
344     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
345   EmitCtorList(GlobalCtors, "llvm.global_ctors");
346   EmitCtorList(GlobalDtors, "llvm.global_dtors");
347   EmitGlobalAnnotations();
348   EmitStaticExternCAliases();
349   emitLLVMUsed();
350 
351   if (CodeGenOpts.Autolink &&
352       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
353     EmitModuleLinkOptions();
354   }
355   if (CodeGenOpts.DwarfVersion)
356     // We actually want the latest version when there are conflicts.
357     // We can change from Warning to Latest if such mode is supported.
358     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
359                               CodeGenOpts.DwarfVersion);
360   if (DebugInfo)
361     // We support a single version in the linked module. The LLVM
362     // parser will drop debug info with a different version number
363     // (and warn about it, too).
364     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
365                               llvm::DEBUG_METADATA_VERSION);
366 
367   // We need to record the widths of enums and wchar_t, so that we can generate
368   // the correct build attributes in the ARM backend.
369   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
370   if (   Arch == llvm::Triple::arm
371       || Arch == llvm::Triple::armeb
372       || Arch == llvm::Triple::thumb
373       || Arch == llvm::Triple::thumbeb) {
374     // Width of wchar_t in bytes
375     uint64_t WCharWidth =
376         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
377     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
378 
379     // The minimum width of an enum in bytes
380     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
381     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
382   }
383 
384   SimplifyPersonality();
385 
386   if (getCodeGenOpts().EmitDeclMetadata)
387     EmitDeclMetadata();
388 
389   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
390     EmitCoverageFile();
391 
392   if (DebugInfo)
393     DebugInfo->finalize();
394 
395   EmitVersionIdentMetadata();
396 }
397 
398 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
399   // Make sure that this type is translated.
400   Types.UpdateCompletedType(TD);
401 }
402 
403 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
404   if (!TBAA)
405     return nullptr;
406   return TBAA->getTBAAInfo(QTy);
407 }
408 
409 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
410   if (!TBAA)
411     return nullptr;
412   return TBAA->getTBAAInfoForVTablePtr();
413 }
414 
415 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
416   if (!TBAA)
417     return nullptr;
418   return TBAA->getTBAAStructInfo(QTy);
419 }
420 
421 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
422   if (!TBAA)
423     return nullptr;
424   return TBAA->getTBAAStructTypeInfo(QTy);
425 }
426 
427 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
428                                                   llvm::MDNode *AccessN,
429                                                   uint64_t O) {
430   if (!TBAA)
431     return nullptr;
432   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
433 }
434 
435 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
436 /// and struct-path aware TBAA, the tag has the same format:
437 /// base type, access type and offset.
438 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
439 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
440                                         llvm::MDNode *TBAAInfo,
441                                         bool ConvertTypeToTag) {
442   if (ConvertTypeToTag && TBAA)
443     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
444                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
445   else
446     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
447 }
448 
449 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
450   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
451   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
452 }
453 
454 /// ErrorUnsupported - Print out an error that codegen doesn't support the
455 /// specified stmt yet.
456 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
457   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
458                                                "cannot compile this %0 yet");
459   std::string Msg = Type;
460   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
461     << Msg << S->getSourceRange();
462 }
463 
464 /// ErrorUnsupported - Print out an error that codegen doesn't support the
465 /// specified decl yet.
466 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
467   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
468                                                "cannot compile this %0 yet");
469   std::string Msg = Type;
470   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
471 }
472 
473 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
474   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
475 }
476 
477 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
478                                         const NamedDecl *D) const {
479   // Internal definitions always have default visibility.
480   if (GV->hasLocalLinkage()) {
481     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
482     return;
483   }
484 
485   // Set visibility for definitions.
486   LinkageInfo LV = D->getLinkageAndVisibility();
487   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
488     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
489 }
490 
491 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
492   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
493       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
494       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
495       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
496       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
497 }
498 
499 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
500     CodeGenOptions::TLSModel M) {
501   switch (M) {
502   case CodeGenOptions::GeneralDynamicTLSModel:
503     return llvm::GlobalVariable::GeneralDynamicTLSModel;
504   case CodeGenOptions::LocalDynamicTLSModel:
505     return llvm::GlobalVariable::LocalDynamicTLSModel;
506   case CodeGenOptions::InitialExecTLSModel:
507     return llvm::GlobalVariable::InitialExecTLSModel;
508   case CodeGenOptions::LocalExecTLSModel:
509     return llvm::GlobalVariable::LocalExecTLSModel;
510   }
511   llvm_unreachable("Invalid TLS model!");
512 }
513 
514 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
515                                const VarDecl &D) const {
516   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
517 
518   llvm::GlobalVariable::ThreadLocalMode TLM;
519   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
520 
521   // Override the TLS model if it is explicitly specified.
522   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
523     TLM = GetLLVMTLSModel(Attr->getModel());
524   }
525 
526   GV->setThreadLocalMode(TLM);
527 }
528 
529 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
530   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
531   if (!FoundStr.empty())
532     return FoundStr;
533 
534   const auto *ND = cast<NamedDecl>(GD.getDecl());
535   SmallString<256> Buffer;
536   StringRef Str;
537   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
538     llvm::raw_svector_ostream Out(Buffer);
539     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
540       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
541     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
542       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
543     else
544       getCXXABI().getMangleContext().mangleName(ND, Out);
545     Str = Out.str();
546   } else {
547     IdentifierInfo *II = ND->getIdentifier();
548     assert(II && "Attempt to mangle unnamed decl.");
549     Str = II->getName();
550   }
551 
552   auto &Mangled = Manglings.GetOrCreateValue(Str);
553   Mangled.second = GD;
554   return FoundStr = Mangled.first();
555 }
556 
557 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
558                                              const BlockDecl *BD) {
559   MangleContext &MangleCtx = getCXXABI().getMangleContext();
560   const Decl *D = GD.getDecl();
561 
562   SmallString<256> Buffer;
563   llvm::raw_svector_ostream Out(Buffer);
564   if (!D)
565     MangleCtx.mangleGlobalBlock(BD,
566       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
567   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
568     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
569   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
570     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
571   else
572     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
573 
574   auto &Mangled = Manglings.GetOrCreateValue(Out.str());
575   Mangled.second = BD;
576   return Mangled.first();
577 }
578 
579 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
580   return getModule().getNamedValue(Name);
581 }
582 
583 /// AddGlobalCtor - Add a function to the list that will be called before
584 /// main() runs.
585 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
586                                   llvm::Constant *AssociatedData) {
587   // FIXME: Type coercion of void()* types.
588   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
589 }
590 
591 /// AddGlobalDtor - Add a function to the list that will be called
592 /// when the module is unloaded.
593 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
594   // FIXME: Type coercion of void()* types.
595   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
596 }
597 
598 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
599   // Ctor function type is void()*.
600   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
601   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
602 
603   // Get the type of a ctor entry, { i32, void ()*, i8* }.
604   llvm::StructType *CtorStructTy = llvm::StructType::get(
605       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
606 
607   // Construct the constructor and destructor arrays.
608   SmallVector<llvm::Constant*, 8> Ctors;
609   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
610     llvm::Constant *S[] = {
611       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
612       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
613       (I->AssociatedData
614            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
615            : llvm::Constant::getNullValue(VoidPtrTy))
616     };
617     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
618   }
619 
620   if (!Ctors.empty()) {
621     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
622     new llvm::GlobalVariable(TheModule, AT, false,
623                              llvm::GlobalValue::AppendingLinkage,
624                              llvm::ConstantArray::get(AT, Ctors),
625                              GlobalName);
626   }
627 }
628 
629 llvm::GlobalValue::LinkageTypes
630 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
631   const auto *D = cast<FunctionDecl>(GD.getDecl());
632 
633   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
634 
635   if (isa<CXXDestructorDecl>(D) &&
636       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
637                                          GD.getDtorType())) {
638     // Destructor variants in the Microsoft C++ ABI are always internal or
639     // linkonce_odr thunks emitted on an as-needed basis.
640     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
641                                    : llvm::GlobalValue::LinkOnceODRLinkage;
642   }
643 
644   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
645 }
646 
647 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
648                                                     llvm::Function *F) {
649   setNonAliasAttributes(D, F);
650 }
651 
652 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
653                                               const CGFunctionInfo &Info,
654                                               llvm::Function *F) {
655   unsigned CallingConv;
656   AttributeListType AttributeList;
657   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
658   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
659   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
660 }
661 
662 /// Determines whether the language options require us to model
663 /// unwind exceptions.  We treat -fexceptions as mandating this
664 /// except under the fragile ObjC ABI with only ObjC exceptions
665 /// enabled.  This means, for example, that C with -fexceptions
666 /// enables this.
667 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
668   // If exceptions are completely disabled, obviously this is false.
669   if (!LangOpts.Exceptions) return false;
670 
671   // If C++ exceptions are enabled, this is true.
672   if (LangOpts.CXXExceptions) return true;
673 
674   // If ObjC exceptions are enabled, this depends on the ABI.
675   if (LangOpts.ObjCExceptions) {
676     return LangOpts.ObjCRuntime.hasUnwindExceptions();
677   }
678 
679   return true;
680 }
681 
682 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
683                                                            llvm::Function *F) {
684   llvm::AttrBuilder B;
685 
686   if (CodeGenOpts.UnwindTables)
687     B.addAttribute(llvm::Attribute::UWTable);
688 
689   if (!hasUnwindExceptions(LangOpts))
690     B.addAttribute(llvm::Attribute::NoUnwind);
691 
692   if (D->hasAttr<NakedAttr>()) {
693     // Naked implies noinline: we should not be inlining such functions.
694     B.addAttribute(llvm::Attribute::Naked);
695     B.addAttribute(llvm::Attribute::NoInline);
696   } else if (D->hasAttr<OptimizeNoneAttr>()) {
697     // OptimizeNone implies noinline; we should not be inlining such functions.
698     B.addAttribute(llvm::Attribute::OptimizeNone);
699     B.addAttribute(llvm::Attribute::NoInline);
700   } else if (D->hasAttr<NoDuplicateAttr>()) {
701     B.addAttribute(llvm::Attribute::NoDuplicate);
702   } else if (D->hasAttr<NoInlineAttr>()) {
703     B.addAttribute(llvm::Attribute::NoInline);
704   } else if (D->hasAttr<AlwaysInlineAttr>() &&
705              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
706                                               llvm::Attribute::NoInline)) {
707     // (noinline wins over always_inline, and we can't specify both in IR)
708     B.addAttribute(llvm::Attribute::AlwaysInline);
709   }
710 
711   if (D->hasAttr<ColdAttr>()) {
712     B.addAttribute(llvm::Attribute::OptimizeForSize);
713     B.addAttribute(llvm::Attribute::Cold);
714   }
715 
716   if (D->hasAttr<MinSizeAttr>())
717     B.addAttribute(llvm::Attribute::MinSize);
718 
719   if (D->hasAttr<OptimizeNoneAttr>()) {
720     // OptimizeNone wins over OptimizeForSize and MinSize.
721     B.removeAttribute(llvm::Attribute::OptimizeForSize);
722     B.removeAttribute(llvm::Attribute::MinSize);
723   }
724 
725   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
726     B.addAttribute(llvm::Attribute::StackProtect);
727   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
728     B.addAttribute(llvm::Attribute::StackProtectStrong);
729   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
730     B.addAttribute(llvm::Attribute::StackProtectReq);
731 
732   // Add sanitizer attributes if function is not blacklisted.
733   if (!SanitizerBlacklist->isIn(*F)) {
734     // When AddressSanitizer is enabled, set SanitizeAddress attribute
735     // unless __attribute__((no_sanitize_address)) is used.
736     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
737       B.addAttribute(llvm::Attribute::SanitizeAddress);
738     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
739     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
740       B.addAttribute(llvm::Attribute::SanitizeThread);
741     }
742     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
743     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
744       B.addAttribute(llvm::Attribute::SanitizeMemory);
745   }
746 
747   F->addAttributes(llvm::AttributeSet::FunctionIndex,
748                    llvm::AttributeSet::get(
749                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
750 
751   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
752     F->setUnnamedAddr(true);
753   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
754     if (MD->isVirtual())
755       F->setUnnamedAddr(true);
756 
757   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
758   if (alignment)
759     F->setAlignment(alignment);
760 
761   // C++ ABI requires 2-byte alignment for member functions.
762   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
763     F->setAlignment(2);
764 }
765 
766 void CodeGenModule::SetCommonAttributes(const Decl *D,
767                                         llvm::GlobalValue *GV) {
768   if (const auto *ND = dyn_cast<NamedDecl>(D))
769     setGlobalVisibility(GV, ND);
770   else
771     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
772 
773   if (D->hasAttr<UsedAttr>())
774     addUsedGlobal(GV);
775 }
776 
777 void CodeGenModule::setNonAliasAttributes(const Decl *D,
778                                           llvm::GlobalObject *GO) {
779   SetCommonAttributes(D, GO);
780 
781   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
782     GO->setSection(SA->getName());
783 
784   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
785 }
786 
787 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
788                                                   llvm::Function *F,
789                                                   const CGFunctionInfo &FI) {
790   SetLLVMFunctionAttributes(D, FI, F);
791   SetLLVMFunctionAttributesForDefinition(D, F);
792 
793   F->setLinkage(llvm::Function::InternalLinkage);
794 
795   setNonAliasAttributes(D, F);
796 }
797 
798 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
799                                          const NamedDecl *ND) {
800   // Set linkage and visibility in case we never see a definition.
801   LinkageInfo LV = ND->getLinkageAndVisibility();
802   if (LV.getLinkage() != ExternalLinkage) {
803     // Don't set internal linkage on declarations.
804   } else {
805     if (ND->hasAttr<DLLImportAttr>()) {
806       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
807       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
808     } else if (ND->hasAttr<DLLExportAttr>()) {
809       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
810       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
811     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
812       // "extern_weak" is overloaded in LLVM; we probably should have
813       // separate linkage types for this.
814       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
815     }
816 
817     // Set visibility on a declaration only if it's explicit.
818     if (LV.isVisibilityExplicit())
819       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
820   }
821 }
822 
823 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
824                                           llvm::Function *F,
825                                           bool IsIncompleteFunction) {
826   if (unsigned IID = F->getIntrinsicID()) {
827     // If this is an intrinsic function, set the function's attributes
828     // to the intrinsic's attributes.
829     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
830                                                     (llvm::Intrinsic::ID)IID));
831     return;
832   }
833 
834   const auto *FD = cast<FunctionDecl>(GD.getDecl());
835 
836   if (!IsIncompleteFunction)
837     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
838 
839   // Add the Returned attribute for "this", except for iOS 5 and earlier
840   // where substantial code, including the libstdc++ dylib, was compiled with
841   // GCC and does not actually return "this".
842   if (getCXXABI().HasThisReturn(GD) &&
843       !(getTarget().getTriple().isiOS() &&
844         getTarget().getTriple().isOSVersionLT(6))) {
845     assert(!F->arg_empty() &&
846            F->arg_begin()->getType()
847              ->canLosslesslyBitCastTo(F->getReturnType()) &&
848            "unexpected this return");
849     F->addAttribute(1, llvm::Attribute::Returned);
850   }
851 
852   // Only a few attributes are set on declarations; these may later be
853   // overridden by a definition.
854 
855   setLinkageAndVisibilityForGV(F, FD);
856 
857   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
858     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
859       // Don't dllexport/import destructor thunks.
860       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
861     }
862   }
863 
864   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
865     F->setSection(SA->getName());
866 
867   // A replaceable global allocation function does not act like a builtin by
868   // default, only if it is invoked by a new-expression or delete-expression.
869   if (FD->isReplaceableGlobalAllocationFunction())
870     F->addAttribute(llvm::AttributeSet::FunctionIndex,
871                     llvm::Attribute::NoBuiltin);
872 }
873 
874 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
875   assert(!GV->isDeclaration() &&
876          "Only globals with definition can force usage.");
877   LLVMUsed.push_back(GV);
878 }
879 
880 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
881   assert(!GV->isDeclaration() &&
882          "Only globals with definition can force usage.");
883   LLVMCompilerUsed.push_back(GV);
884 }
885 
886 static void emitUsed(CodeGenModule &CGM, StringRef Name,
887                      std::vector<llvm::WeakVH> &List) {
888   // Don't create llvm.used if there is no need.
889   if (List.empty())
890     return;
891 
892   // Convert List to what ConstantArray needs.
893   SmallVector<llvm::Constant*, 8> UsedArray;
894   UsedArray.resize(List.size());
895   for (unsigned i = 0, e = List.size(); i != e; ++i) {
896     UsedArray[i] =
897      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
898                                     CGM.Int8PtrTy);
899   }
900 
901   if (UsedArray.empty())
902     return;
903   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
904 
905   auto *GV = new llvm::GlobalVariable(
906       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
907       llvm::ConstantArray::get(ATy, UsedArray), Name);
908 
909   GV->setSection("llvm.metadata");
910 }
911 
912 void CodeGenModule::emitLLVMUsed() {
913   emitUsed(*this, "llvm.used", LLVMUsed);
914   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
915 }
916 
917 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
918   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
919   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
920 }
921 
922 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
923   llvm::SmallString<32> Opt;
924   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
925   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
926   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
927 }
928 
929 void CodeGenModule::AddDependentLib(StringRef Lib) {
930   llvm::SmallString<24> Opt;
931   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
932   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
933   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
934 }
935 
936 /// \brief Add link options implied by the given module, including modules
937 /// it depends on, using a postorder walk.
938 static void addLinkOptionsPostorder(CodeGenModule &CGM,
939                                     Module *Mod,
940                                     SmallVectorImpl<llvm::Value *> &Metadata,
941                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
942   // Import this module's parent.
943   if (Mod->Parent && Visited.insert(Mod->Parent)) {
944     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
945   }
946 
947   // Import this module's dependencies.
948   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
949     if (Visited.insert(Mod->Imports[I-1]))
950       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
951   }
952 
953   // Add linker options to link against the libraries/frameworks
954   // described by this module.
955   llvm::LLVMContext &Context = CGM.getLLVMContext();
956   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
957     // Link against a framework.  Frameworks are currently Darwin only, so we
958     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
959     if (Mod->LinkLibraries[I-1].IsFramework) {
960       llvm::Value *Args[2] = {
961         llvm::MDString::get(Context, "-framework"),
962         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
963       };
964 
965       Metadata.push_back(llvm::MDNode::get(Context, Args));
966       continue;
967     }
968 
969     // Link against a library.
970     llvm::SmallString<24> Opt;
971     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
972       Mod->LinkLibraries[I-1].Library, Opt);
973     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
974     Metadata.push_back(llvm::MDNode::get(Context, OptString));
975   }
976 }
977 
978 void CodeGenModule::EmitModuleLinkOptions() {
979   // Collect the set of all of the modules we want to visit to emit link
980   // options, which is essentially the imported modules and all of their
981   // non-explicit child modules.
982   llvm::SetVector<clang::Module *> LinkModules;
983   llvm::SmallPtrSet<clang::Module *, 16> Visited;
984   SmallVector<clang::Module *, 16> Stack;
985 
986   // Seed the stack with imported modules.
987   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
988                                                MEnd = ImportedModules.end();
989        M != MEnd; ++M) {
990     if (Visited.insert(*M))
991       Stack.push_back(*M);
992   }
993 
994   // Find all of the modules to import, making a little effort to prune
995   // non-leaf modules.
996   while (!Stack.empty()) {
997     clang::Module *Mod = Stack.pop_back_val();
998 
999     bool AnyChildren = false;
1000 
1001     // Visit the submodules of this module.
1002     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1003                                         SubEnd = Mod->submodule_end();
1004          Sub != SubEnd; ++Sub) {
1005       // Skip explicit children; they need to be explicitly imported to be
1006       // linked against.
1007       if ((*Sub)->IsExplicit)
1008         continue;
1009 
1010       if (Visited.insert(*Sub)) {
1011         Stack.push_back(*Sub);
1012         AnyChildren = true;
1013       }
1014     }
1015 
1016     // We didn't find any children, so add this module to the list of
1017     // modules to link against.
1018     if (!AnyChildren) {
1019       LinkModules.insert(Mod);
1020     }
1021   }
1022 
1023   // Add link options for all of the imported modules in reverse topological
1024   // order.  We don't do anything to try to order import link flags with respect
1025   // to linker options inserted by things like #pragma comment().
1026   SmallVector<llvm::Value *, 16> MetadataArgs;
1027   Visited.clear();
1028   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1029                                                MEnd = LinkModules.end();
1030        M != MEnd; ++M) {
1031     if (Visited.insert(*M))
1032       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1033   }
1034   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1035   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1036 
1037   // Add the linker options metadata flag.
1038   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1039                             llvm::MDNode::get(getLLVMContext(),
1040                                               LinkerOptionsMetadata));
1041 }
1042 
1043 void CodeGenModule::EmitDeferred() {
1044   // Emit code for any potentially referenced deferred decls.  Since a
1045   // previously unused static decl may become used during the generation of code
1046   // for a static function, iterate until no changes are made.
1047 
1048   while (true) {
1049     if (!DeferredVTables.empty()) {
1050       EmitDeferredVTables();
1051 
1052       // Emitting a v-table doesn't directly cause more v-tables to
1053       // become deferred, although it can cause functions to be
1054       // emitted that then need those v-tables.
1055       assert(DeferredVTables.empty());
1056     }
1057 
1058     // Stop if we're out of both deferred v-tables and deferred declarations.
1059     if (DeferredDeclsToEmit.empty()) break;
1060 
1061     DeferredGlobal &G = DeferredDeclsToEmit.back();
1062     GlobalDecl D = G.GD;
1063     llvm::GlobalValue *GV = G.GV;
1064     DeferredDeclsToEmit.pop_back();
1065 
1066     assert(GV == GetGlobalValue(getMangledName(D)));
1067     // Check to see if we've already emitted this.  This is necessary
1068     // for a couple of reasons: first, decls can end up in the
1069     // deferred-decls queue multiple times, and second, decls can end
1070     // up with definitions in unusual ways (e.g. by an extern inline
1071     // function acquiring a strong function redefinition).  Just
1072     // ignore these cases.
1073     if(!GV->isDeclaration())
1074       continue;
1075 
1076     // Otherwise, emit the definition and move on to the next one.
1077     EmitGlobalDefinition(D, GV);
1078   }
1079 }
1080 
1081 void CodeGenModule::EmitGlobalAnnotations() {
1082   if (Annotations.empty())
1083     return;
1084 
1085   // Create a new global variable for the ConstantStruct in the Module.
1086   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1087     Annotations[0]->getType(), Annotations.size()), Annotations);
1088   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1089                                       llvm::GlobalValue::AppendingLinkage,
1090                                       Array, "llvm.global.annotations");
1091   gv->setSection(AnnotationSection);
1092 }
1093 
1094 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1095   llvm::Constant *&AStr = AnnotationStrings[Str];
1096   if (AStr)
1097     return AStr;
1098 
1099   // Not found yet, create a new global.
1100   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1101   auto *gv =
1102       new llvm::GlobalVariable(getModule(), s->getType(), true,
1103                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1104   gv->setSection(AnnotationSection);
1105   gv->setUnnamedAddr(true);
1106   AStr = gv;
1107   return gv;
1108 }
1109 
1110 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1111   SourceManager &SM = getContext().getSourceManager();
1112   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1113   if (PLoc.isValid())
1114     return EmitAnnotationString(PLoc.getFilename());
1115   return EmitAnnotationString(SM.getBufferName(Loc));
1116 }
1117 
1118 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1119   SourceManager &SM = getContext().getSourceManager();
1120   PresumedLoc PLoc = SM.getPresumedLoc(L);
1121   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1122     SM.getExpansionLineNumber(L);
1123   return llvm::ConstantInt::get(Int32Ty, LineNo);
1124 }
1125 
1126 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1127                                                 const AnnotateAttr *AA,
1128                                                 SourceLocation L) {
1129   // Get the globals for file name, annotation, and the line number.
1130   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1131                  *UnitGV = EmitAnnotationUnit(L),
1132                  *LineNoCst = EmitAnnotationLineNo(L);
1133 
1134   // Create the ConstantStruct for the global annotation.
1135   llvm::Constant *Fields[4] = {
1136     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1137     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1138     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1139     LineNoCst
1140   };
1141   return llvm::ConstantStruct::getAnon(Fields);
1142 }
1143 
1144 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1145                                          llvm::GlobalValue *GV) {
1146   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1147   // Get the struct elements for these annotations.
1148   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1149     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1150 }
1151 
1152 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1153   // Never defer when EmitAllDecls is specified.
1154   if (LangOpts.EmitAllDecls)
1155     return false;
1156 
1157   return !getContext().DeclMustBeEmitted(Global);
1158 }
1159 
1160 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1161     const CXXUuidofExpr* E) {
1162   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1163   // well-formed.
1164   StringRef Uuid = E->getUuidAsStringRef(Context);
1165   std::string Name = "_GUID_" + Uuid.lower();
1166   std::replace(Name.begin(), Name.end(), '-', '_');
1167 
1168   // Look for an existing global.
1169   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1170     return GV;
1171 
1172   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1173   assert(Init && "failed to initialize as constant");
1174 
1175   auto *GV = new llvm::GlobalVariable(
1176       getModule(), Init->getType(),
1177       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1178   return GV;
1179 }
1180 
1181 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1182   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1183   assert(AA && "No alias?");
1184 
1185   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1186 
1187   // See if there is already something with the target's name in the module.
1188   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1189   if (Entry) {
1190     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1191     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1192   }
1193 
1194   llvm::Constant *Aliasee;
1195   if (isa<llvm::FunctionType>(DeclTy))
1196     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1197                                       GlobalDecl(cast<FunctionDecl>(VD)),
1198                                       /*ForVTable=*/false);
1199   else
1200     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1201                                     llvm::PointerType::getUnqual(DeclTy),
1202                                     nullptr);
1203 
1204   auto *F = cast<llvm::GlobalValue>(Aliasee);
1205   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1206   WeakRefReferences.insert(F);
1207 
1208   return Aliasee;
1209 }
1210 
1211 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1212   const auto *Global = cast<ValueDecl>(GD.getDecl());
1213 
1214   // Weak references don't produce any output by themselves.
1215   if (Global->hasAttr<WeakRefAttr>())
1216     return;
1217 
1218   // If this is an alias definition (which otherwise looks like a declaration)
1219   // emit it now.
1220   if (Global->hasAttr<AliasAttr>())
1221     return EmitAliasDefinition(GD);
1222 
1223   // If this is CUDA, be selective about which declarations we emit.
1224   if (LangOpts.CUDA) {
1225     if (CodeGenOpts.CUDAIsDevice) {
1226       if (!Global->hasAttr<CUDADeviceAttr>() &&
1227           !Global->hasAttr<CUDAGlobalAttr>() &&
1228           !Global->hasAttr<CUDAConstantAttr>() &&
1229           !Global->hasAttr<CUDASharedAttr>())
1230         return;
1231     } else {
1232       if (!Global->hasAttr<CUDAHostAttr>() && (
1233             Global->hasAttr<CUDADeviceAttr>() ||
1234             Global->hasAttr<CUDAConstantAttr>() ||
1235             Global->hasAttr<CUDASharedAttr>()))
1236         return;
1237     }
1238   }
1239 
1240   // Ignore declarations, they will be emitted on their first use.
1241   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1242     // Forward declarations are emitted lazily on first use.
1243     if (!FD->doesThisDeclarationHaveABody()) {
1244       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1245         return;
1246 
1247       StringRef MangledName = getMangledName(GD);
1248 
1249       // Compute the function info and LLVM type.
1250       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1251       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1252 
1253       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1254                               /*DontDefer=*/false);
1255       return;
1256     }
1257   } else {
1258     const auto *VD = cast<VarDecl>(Global);
1259     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1260 
1261     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1262       return;
1263   }
1264 
1265   // Defer code generation when possible if this is a static definition, inline
1266   // function etc.  These we only want to emit if they are used.
1267   if (!MayDeferGeneration(Global)) {
1268     // Emit the definition if it can't be deferred.
1269     EmitGlobalDefinition(GD);
1270     return;
1271   }
1272 
1273   // If we're deferring emission of a C++ variable with an
1274   // initializer, remember the order in which it appeared in the file.
1275   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1276       cast<VarDecl>(Global)->hasInit()) {
1277     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1278     CXXGlobalInits.push_back(nullptr);
1279   }
1280 
1281   // If the value has already been used, add it directly to the
1282   // DeferredDeclsToEmit list.
1283   StringRef MangledName = getMangledName(GD);
1284   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1285     addDeferredDeclToEmit(GV, GD);
1286   else {
1287     // Otherwise, remember that we saw a deferred decl with this name.  The
1288     // first use of the mangled name will cause it to move into
1289     // DeferredDeclsToEmit.
1290     DeferredDecls[MangledName] = GD;
1291   }
1292 }
1293 
1294 namespace {
1295   struct FunctionIsDirectlyRecursive :
1296     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1297     const StringRef Name;
1298     const Builtin::Context &BI;
1299     bool Result;
1300     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1301       Name(N), BI(C), Result(false) {
1302     }
1303     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1304 
1305     bool TraverseCallExpr(CallExpr *E) {
1306       const FunctionDecl *FD = E->getDirectCallee();
1307       if (!FD)
1308         return true;
1309       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1310       if (Attr && Name == Attr->getLabel()) {
1311         Result = true;
1312         return false;
1313       }
1314       unsigned BuiltinID = FD->getBuiltinID();
1315       if (!BuiltinID)
1316         return true;
1317       StringRef BuiltinName = BI.GetName(BuiltinID);
1318       if (BuiltinName.startswith("__builtin_") &&
1319           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1320         Result = true;
1321         return false;
1322       }
1323       return true;
1324     }
1325   };
1326 }
1327 
1328 // isTriviallyRecursive - Check if this function calls another
1329 // decl that, because of the asm attribute or the other decl being a builtin,
1330 // ends up pointing to itself.
1331 bool
1332 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1333   StringRef Name;
1334   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1335     // asm labels are a special kind of mangling we have to support.
1336     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1337     if (!Attr)
1338       return false;
1339     Name = Attr->getLabel();
1340   } else {
1341     Name = FD->getName();
1342   }
1343 
1344   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1345   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1346   return Walker.Result;
1347 }
1348 
1349 bool
1350 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1351   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1352     return true;
1353   const auto *F = cast<FunctionDecl>(GD.getDecl());
1354   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1355     return false;
1356   // PR9614. Avoid cases where the source code is lying to us. An available
1357   // externally function should have an equivalent function somewhere else,
1358   // but a function that calls itself is clearly not equivalent to the real
1359   // implementation.
1360   // This happens in glibc's btowc and in some configure checks.
1361   return !isTriviallyRecursive(F);
1362 }
1363 
1364 /// If the type for the method's class was generated by
1365 /// CGDebugInfo::createContextChain(), the cache contains only a
1366 /// limited DIType without any declarations. Since EmitFunctionStart()
1367 /// needs to find the canonical declaration for each method, we need
1368 /// to construct the complete type prior to emitting the method.
1369 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1370   if (!D->isInstance())
1371     return;
1372 
1373   if (CGDebugInfo *DI = getModuleDebugInfo())
1374     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1375       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1376       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1377     }
1378 }
1379 
1380 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1381   const auto *D = cast<ValueDecl>(GD.getDecl());
1382 
1383   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1384                                  Context.getSourceManager(),
1385                                  "Generating code for declaration");
1386 
1387   if (isa<FunctionDecl>(D)) {
1388     // At -O0, don't generate IR for functions with available_externally
1389     // linkage.
1390     if (!shouldEmitFunction(GD))
1391       return;
1392 
1393     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1394       CompleteDIClassType(Method);
1395       // Make sure to emit the definition(s) before we emit the thunks.
1396       // This is necessary for the generation of certain thunks.
1397       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1398         EmitCXXConstructor(CD, GD.getCtorType());
1399       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1400         EmitCXXDestructor(DD, GD.getDtorType());
1401       else
1402         EmitGlobalFunctionDefinition(GD, GV);
1403 
1404       if (Method->isVirtual())
1405         getVTables().EmitThunks(GD);
1406 
1407       return;
1408     }
1409 
1410     return EmitGlobalFunctionDefinition(GD, GV);
1411   }
1412 
1413   if (const auto *VD = dyn_cast<VarDecl>(D))
1414     return EmitGlobalVarDefinition(VD);
1415 
1416   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1417 }
1418 
1419 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1420 /// module, create and return an llvm Function with the specified type. If there
1421 /// is something in the module with the specified name, return it potentially
1422 /// bitcasted to the right type.
1423 ///
1424 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1425 /// to set the attributes on the function when it is first created.
1426 llvm::Constant *
1427 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1428                                        llvm::Type *Ty,
1429                                        GlobalDecl GD, bool ForVTable,
1430                                        bool DontDefer,
1431                                        llvm::AttributeSet ExtraAttrs) {
1432   const Decl *D = GD.getDecl();
1433 
1434   // Lookup the entry, lazily creating it if necessary.
1435   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1436   if (Entry) {
1437     if (WeakRefReferences.erase(Entry)) {
1438       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1439       if (FD && !FD->hasAttr<WeakAttr>())
1440         Entry->setLinkage(llvm::Function::ExternalLinkage);
1441     }
1442 
1443     if (Entry->getType()->getElementType() == Ty)
1444       return Entry;
1445 
1446     // Make sure the result is of the correct type.
1447     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1448   }
1449 
1450   // This function doesn't have a complete type (for example, the return
1451   // type is an incomplete struct). Use a fake type instead, and make
1452   // sure not to try to set attributes.
1453   bool IsIncompleteFunction = false;
1454 
1455   llvm::FunctionType *FTy;
1456   if (isa<llvm::FunctionType>(Ty)) {
1457     FTy = cast<llvm::FunctionType>(Ty);
1458   } else {
1459     FTy = llvm::FunctionType::get(VoidTy, false);
1460     IsIncompleteFunction = true;
1461   }
1462 
1463   llvm::Function *F = llvm::Function::Create(FTy,
1464                                              llvm::Function::ExternalLinkage,
1465                                              MangledName, &getModule());
1466   assert(F->getName() == MangledName && "name was uniqued!");
1467   if (D)
1468     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1469   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1470     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1471     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1472                      llvm::AttributeSet::get(VMContext,
1473                                              llvm::AttributeSet::FunctionIndex,
1474                                              B));
1475   }
1476 
1477   if (!DontDefer) {
1478     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1479     // each other bottoming out with the base dtor.  Therefore we emit non-base
1480     // dtors on usage, even if there is no dtor definition in the TU.
1481     if (D && isa<CXXDestructorDecl>(D) &&
1482         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1483                                            GD.getDtorType()))
1484       addDeferredDeclToEmit(F, GD);
1485 
1486     // This is the first use or definition of a mangled name.  If there is a
1487     // deferred decl with this name, remember that we need to emit it at the end
1488     // of the file.
1489     auto DDI = DeferredDecls.find(MangledName);
1490     if (DDI != DeferredDecls.end()) {
1491       // Move the potentially referenced deferred decl to the
1492       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1493       // don't need it anymore).
1494       addDeferredDeclToEmit(F, DDI->second);
1495       DeferredDecls.erase(DDI);
1496 
1497       // Otherwise, if this is a sized deallocation function, emit a weak
1498       // definition
1499       // for it at the end of the translation unit.
1500     } else if (D && cast<FunctionDecl>(D)
1501                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1502       addDeferredDeclToEmit(F, GD);
1503 
1504       // Otherwise, there are cases we have to worry about where we're
1505       // using a declaration for which we must emit a definition but where
1506       // we might not find a top-level definition:
1507       //   - member functions defined inline in their classes
1508       //   - friend functions defined inline in some class
1509       //   - special member functions with implicit definitions
1510       // If we ever change our AST traversal to walk into class methods,
1511       // this will be unnecessary.
1512       //
1513       // We also don't emit a definition for a function if it's going to be an
1514       // entry
1515       // in a vtable, unless it's already marked as used.
1516     } else if (getLangOpts().CPlusPlus && D) {
1517       // Look for a declaration that's lexically in a record.
1518       const auto *FD = cast<FunctionDecl>(D);
1519       FD = FD->getMostRecentDecl();
1520       do {
1521         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1522           if (FD->isImplicit() && !ForVTable) {
1523             assert(FD->isUsed() &&
1524                    "Sema didn't mark implicit function as used!");
1525             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1526             break;
1527           } else if (FD->doesThisDeclarationHaveABody()) {
1528             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1529             break;
1530           }
1531         }
1532         FD = FD->getPreviousDecl();
1533       } while (FD);
1534     }
1535   }
1536 
1537   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1538 
1539   // Make sure the result is of the requested type.
1540   if (!IsIncompleteFunction) {
1541     assert(F->getType()->getElementType() == Ty);
1542     return F;
1543   }
1544 
1545   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1546   return llvm::ConstantExpr::getBitCast(F, PTy);
1547 }
1548 
1549 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1550 /// non-null, then this function will use the specified type if it has to
1551 /// create it (this occurs when we see a definition of the function).
1552 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1553                                                  llvm::Type *Ty,
1554                                                  bool ForVTable,
1555                                                  bool DontDefer) {
1556   // If there was no specific requested type, just convert it now.
1557   if (!Ty)
1558     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1559 
1560   StringRef MangledName = getMangledName(GD);
1561   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1562 }
1563 
1564 /// CreateRuntimeFunction - Create a new runtime function with the specified
1565 /// type and name.
1566 llvm::Constant *
1567 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1568                                      StringRef Name,
1569                                      llvm::AttributeSet ExtraAttrs) {
1570   llvm::Constant *C =
1571       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1572                               /*DontDefer=*/false, ExtraAttrs);
1573   if (auto *F = dyn_cast<llvm::Function>(C))
1574     if (F->empty())
1575       F->setCallingConv(getRuntimeCC());
1576   return C;
1577 }
1578 
1579 /// isTypeConstant - Determine whether an object of this type can be emitted
1580 /// as a constant.
1581 ///
1582 /// If ExcludeCtor is true, the duration when the object's constructor runs
1583 /// will not be considered. The caller will need to verify that the object is
1584 /// not written to during its construction.
1585 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1586   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1587     return false;
1588 
1589   if (Context.getLangOpts().CPlusPlus) {
1590     if (const CXXRecordDecl *Record
1591           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1592       return ExcludeCtor && !Record->hasMutableFields() &&
1593              Record->hasTrivialDestructor();
1594   }
1595 
1596   return true;
1597 }
1598 
1599 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1600   if (!VD->isStaticDataMember())
1601     return false;
1602   const VarDecl *InitDecl;
1603   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1604   if (!InitExpr)
1605     return false;
1606   if (InitDecl->isThisDeclarationADefinition())
1607     return false;
1608   return true;
1609 }
1610 
1611 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1612 /// create and return an llvm GlobalVariable with the specified type.  If there
1613 /// is something in the module with the specified name, return it potentially
1614 /// bitcasted to the right type.
1615 ///
1616 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1617 /// to set the attributes on the global when it is first created.
1618 llvm::Constant *
1619 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1620                                      llvm::PointerType *Ty,
1621                                      const VarDecl *D) {
1622   // Lookup the entry, lazily creating it if necessary.
1623   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1624   if (Entry) {
1625     if (WeakRefReferences.erase(Entry)) {
1626       if (D && !D->hasAttr<WeakAttr>())
1627         Entry->setLinkage(llvm::Function::ExternalLinkage);
1628     }
1629 
1630     if (Entry->getType() == Ty)
1631       return Entry;
1632 
1633     // Make sure the result is of the correct type.
1634     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1635       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1636 
1637     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1638   }
1639 
1640   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1641   auto *GV = new llvm::GlobalVariable(
1642       getModule(), Ty->getElementType(), false,
1643       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1644       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1645 
1646   // This is the first use or definition of a mangled name.  If there is a
1647   // deferred decl with this name, remember that we need to emit it at the end
1648   // of the file.
1649   auto DDI = DeferredDecls.find(MangledName);
1650   if (DDI != DeferredDecls.end()) {
1651     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1652     // list, and remove it from DeferredDecls (since we don't need it anymore).
1653     addDeferredDeclToEmit(GV, DDI->second);
1654     DeferredDecls.erase(DDI);
1655   }
1656 
1657   // Handle things which are present even on external declarations.
1658   if (D) {
1659     // FIXME: This code is overly simple and should be merged with other global
1660     // handling.
1661     GV->setConstant(isTypeConstant(D->getType(), false));
1662 
1663     setLinkageAndVisibilityForGV(GV, D);
1664 
1665     if (D->getTLSKind()) {
1666       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1667         CXXThreadLocals.push_back(std::make_pair(D, GV));
1668       setTLSMode(GV, *D);
1669     }
1670 
1671     // If required by the ABI, treat declarations of static data members with
1672     // inline initializers as definitions.
1673     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1674         isVarDeclInlineInitializedStaticDataMember(D))
1675       EmitGlobalVarDefinition(D);
1676 
1677     // Handle XCore specific ABI requirements.
1678     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1679         D->getLanguageLinkage() == CLanguageLinkage &&
1680         D->getType().isConstant(Context) &&
1681         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1682       GV->setSection(".cp.rodata");
1683   }
1684 
1685   if (AddrSpace != Ty->getAddressSpace())
1686     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1687 
1688   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1689 
1690   return GV;
1691 }
1692 
1693 
1694 llvm::GlobalVariable *
1695 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1696                                       llvm::Type *Ty,
1697                                       llvm::GlobalValue::LinkageTypes Linkage) {
1698   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1699   llvm::GlobalVariable *OldGV = nullptr;
1700 
1701   if (GV) {
1702     // Check if the variable has the right type.
1703     if (GV->getType()->getElementType() == Ty)
1704       return GV;
1705 
1706     // Because C++ name mangling, the only way we can end up with an already
1707     // existing global with the same name is if it has been declared extern "C".
1708     assert(GV->isDeclaration() && "Declaration has wrong type!");
1709     OldGV = GV;
1710   }
1711 
1712   // Create a new variable.
1713   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1714                                 Linkage, nullptr, Name);
1715 
1716   if (OldGV) {
1717     // Replace occurrences of the old variable if needed.
1718     GV->takeName(OldGV);
1719 
1720     if (!OldGV->use_empty()) {
1721       llvm::Constant *NewPtrForOldDecl =
1722       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1723       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1724     }
1725 
1726     OldGV->eraseFromParent();
1727   }
1728 
1729   return GV;
1730 }
1731 
1732 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1733 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1734 /// then it will be created with the specified type instead of whatever the
1735 /// normal requested type would be.
1736 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1737                                                   llvm::Type *Ty) {
1738   assert(D->hasGlobalStorage() && "Not a global variable");
1739   QualType ASTTy = D->getType();
1740   if (!Ty)
1741     Ty = getTypes().ConvertTypeForMem(ASTTy);
1742 
1743   llvm::PointerType *PTy =
1744     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1745 
1746   StringRef MangledName = getMangledName(D);
1747   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1748 }
1749 
1750 /// CreateRuntimeVariable - Create a new runtime global variable with the
1751 /// specified type and name.
1752 llvm::Constant *
1753 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1754                                      StringRef Name) {
1755   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1756 }
1757 
1758 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1759   assert(!D->getInit() && "Cannot emit definite definitions here!");
1760 
1761   if (MayDeferGeneration(D)) {
1762     // If we have not seen a reference to this variable yet, place it
1763     // into the deferred declarations table to be emitted if needed
1764     // later.
1765     StringRef MangledName = getMangledName(D);
1766     if (!GetGlobalValue(MangledName)) {
1767       DeferredDecls[MangledName] = D;
1768       return;
1769     }
1770   }
1771 
1772   // The tentative definition is the only definition.
1773   EmitGlobalVarDefinition(D);
1774 }
1775 
1776 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1777     return Context.toCharUnitsFromBits(
1778       TheDataLayout.getTypeStoreSizeInBits(Ty));
1779 }
1780 
1781 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1782                                                  unsigned AddrSpace) {
1783   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1784     if (D->hasAttr<CUDAConstantAttr>())
1785       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1786     else if (D->hasAttr<CUDASharedAttr>())
1787       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1788     else
1789       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1790   }
1791 
1792   return AddrSpace;
1793 }
1794 
1795 template<typename SomeDecl>
1796 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1797                                                llvm::GlobalValue *GV) {
1798   if (!getLangOpts().CPlusPlus)
1799     return;
1800 
1801   // Must have 'used' attribute, or else inline assembly can't rely on
1802   // the name existing.
1803   if (!D->template hasAttr<UsedAttr>())
1804     return;
1805 
1806   // Must have internal linkage and an ordinary name.
1807   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1808     return;
1809 
1810   // Must be in an extern "C" context. Entities declared directly within
1811   // a record are not extern "C" even if the record is in such a context.
1812   const SomeDecl *First = D->getFirstDecl();
1813   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1814     return;
1815 
1816   // OK, this is an internal linkage entity inside an extern "C" linkage
1817   // specification. Make a note of that so we can give it the "expected"
1818   // mangled name if nothing else is using that name.
1819   std::pair<StaticExternCMap::iterator, bool> R =
1820       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1821 
1822   // If we have multiple internal linkage entities with the same name
1823   // in extern "C" regions, none of them gets that name.
1824   if (!R.second)
1825     R.first->second = nullptr;
1826 }
1827 
1828 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1829   llvm::Constant *Init = nullptr;
1830   QualType ASTTy = D->getType();
1831   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1832   bool NeedsGlobalCtor = false;
1833   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1834 
1835   const VarDecl *InitDecl;
1836   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1837 
1838   if (!InitExpr) {
1839     // This is a tentative definition; tentative definitions are
1840     // implicitly initialized with { 0 }.
1841     //
1842     // Note that tentative definitions are only emitted at the end of
1843     // a translation unit, so they should never have incomplete
1844     // type. In addition, EmitTentativeDefinition makes sure that we
1845     // never attempt to emit a tentative definition if a real one
1846     // exists. A use may still exists, however, so we still may need
1847     // to do a RAUW.
1848     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1849     Init = EmitNullConstant(D->getType());
1850   } else {
1851     initializedGlobalDecl = GlobalDecl(D);
1852     Init = EmitConstantInit(*InitDecl);
1853 
1854     if (!Init) {
1855       QualType T = InitExpr->getType();
1856       if (D->getType()->isReferenceType())
1857         T = D->getType();
1858 
1859       if (getLangOpts().CPlusPlus) {
1860         Init = EmitNullConstant(T);
1861         NeedsGlobalCtor = true;
1862       } else {
1863         ErrorUnsupported(D, "static initializer");
1864         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1865       }
1866     } else {
1867       // We don't need an initializer, so remove the entry for the delayed
1868       // initializer position (just in case this entry was delayed) if we
1869       // also don't need to register a destructor.
1870       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1871         DelayedCXXInitPosition.erase(D);
1872     }
1873   }
1874 
1875   llvm::Type* InitType = Init->getType();
1876   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1877 
1878   // Strip off a bitcast if we got one back.
1879   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1880     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1881            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1882            // All zero index gep.
1883            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1884     Entry = CE->getOperand(0);
1885   }
1886 
1887   // Entry is now either a Function or GlobalVariable.
1888   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1889 
1890   // We have a definition after a declaration with the wrong type.
1891   // We must make a new GlobalVariable* and update everything that used OldGV
1892   // (a declaration or tentative definition) with the new GlobalVariable*
1893   // (which will be a definition).
1894   //
1895   // This happens if there is a prototype for a global (e.g.
1896   // "extern int x[];") and then a definition of a different type (e.g.
1897   // "int x[10];"). This also happens when an initializer has a different type
1898   // from the type of the global (this happens with unions).
1899   if (!GV ||
1900       GV->getType()->getElementType() != InitType ||
1901       GV->getType()->getAddressSpace() !=
1902        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1903 
1904     // Move the old entry aside so that we'll create a new one.
1905     Entry->setName(StringRef());
1906 
1907     // Make a new global with the correct type, this is now guaranteed to work.
1908     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1909 
1910     // Replace all uses of the old global with the new global
1911     llvm::Constant *NewPtrForOldDecl =
1912         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1913     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1914 
1915     // Erase the old global, since it is no longer used.
1916     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1917   }
1918 
1919   MaybeHandleStaticInExternC(D, GV);
1920 
1921   if (D->hasAttr<AnnotateAttr>())
1922     AddGlobalAnnotations(D, GV);
1923 
1924   GV->setInitializer(Init);
1925 
1926   // If it is safe to mark the global 'constant', do so now.
1927   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1928                   isTypeConstant(D->getType(), true));
1929 
1930   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1931 
1932   // Set the llvm linkage type as appropriate.
1933   llvm::GlobalValue::LinkageTypes Linkage =
1934       getLLVMLinkageVarDefinition(D, GV->isConstant());
1935 
1936   // On Darwin, the backing variable for a C++11 thread_local variable always
1937   // has internal linkage; all accesses should just be calls to the
1938   // Itanium-specified entry point, which has the normal linkage of the
1939   // variable.
1940   if (const auto *VD = dyn_cast<VarDecl>(D))
1941     if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1942         Context.getTargetInfo().getTriple().isMacOSX())
1943       Linkage = llvm::GlobalValue::InternalLinkage;
1944 
1945   GV->setLinkage(Linkage);
1946   if (D->hasAttr<DLLImportAttr>())
1947     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1948   else if (D->hasAttr<DLLExportAttr>())
1949     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1950 
1951   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1952     // common vars aren't constant even if declared const.
1953     GV->setConstant(false);
1954 
1955   setNonAliasAttributes(D, GV);
1956 
1957   // Emit the initializer function if necessary.
1958   if (NeedsGlobalCtor || NeedsGlobalDtor)
1959     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1960 
1961   // If we are compiling with ASan, add metadata indicating dynamically
1962   // initialized (and not blacklisted) globals.
1963   if (SanOpts.Address && NeedsGlobalCtor &&
1964       !SanitizerBlacklist->isIn(*GV, "init")) {
1965     llvm::NamedMDNode *DynamicInitializers = TheModule.getOrInsertNamedMetadata(
1966         "llvm.asan.dynamically_initialized_globals");
1967     llvm::Value *GlobalToAdd[] = { GV };
1968     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1969     DynamicInitializers->addOperand(ThisGlobal);
1970   }
1971 
1972   // Emit global variable debug information.
1973   if (CGDebugInfo *DI = getModuleDebugInfo())
1974     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1975       DI->EmitGlobalVariable(GV, D);
1976 }
1977 
1978 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1979   // Don't give variables common linkage if -fno-common was specified unless it
1980   // was overridden by a NoCommon attribute.
1981   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1982     return true;
1983 
1984   // C11 6.9.2/2:
1985   //   A declaration of an identifier for an object that has file scope without
1986   //   an initializer, and without a storage-class specifier or with the
1987   //   storage-class specifier static, constitutes a tentative definition.
1988   if (D->getInit() || D->hasExternalStorage())
1989     return true;
1990 
1991   // A variable cannot be both common and exist in a section.
1992   if (D->hasAttr<SectionAttr>())
1993     return true;
1994 
1995   // Thread local vars aren't considered common linkage.
1996   if (D->getTLSKind())
1997     return true;
1998 
1999   // Tentative definitions marked with WeakImportAttr are true definitions.
2000   if (D->hasAttr<WeakImportAttr>())
2001     return true;
2002 
2003   return false;
2004 }
2005 
2006 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2007     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2008   if (Linkage == GVA_Internal)
2009     return llvm::Function::InternalLinkage;
2010 
2011   if (D->hasAttr<WeakAttr>()) {
2012     if (IsConstantVariable)
2013       return llvm::GlobalVariable::WeakODRLinkage;
2014     else
2015       return llvm::GlobalVariable::WeakAnyLinkage;
2016   }
2017 
2018   // We are guaranteed to have a strong definition somewhere else,
2019   // so we can use available_externally linkage.
2020   if (Linkage == GVA_AvailableExternally)
2021     return llvm::Function::AvailableExternallyLinkage;
2022 
2023   // Note that Apple's kernel linker doesn't support symbol
2024   // coalescing, so we need to avoid linkonce and weak linkages there.
2025   // Normally, this means we just map to internal, but for explicit
2026   // instantiations we'll map to external.
2027 
2028   // In C++, the compiler has to emit a definition in every translation unit
2029   // that references the function.  We should use linkonce_odr because
2030   // a) if all references in this translation unit are optimized away, we
2031   // don't need to codegen it.  b) if the function persists, it needs to be
2032   // merged with other definitions. c) C++ has the ODR, so we know the
2033   // definition is dependable.
2034   if (Linkage == GVA_DiscardableODR)
2035     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2036                                             : llvm::Function::InternalLinkage;
2037 
2038   // An explicit instantiation of a template has weak linkage, since
2039   // explicit instantiations can occur in multiple translation units
2040   // and must all be equivalent. However, we are not allowed to
2041   // throw away these explicit instantiations.
2042   if (Linkage == GVA_StrongODR)
2043     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2044                                             : llvm::Function::ExternalLinkage;
2045 
2046   // If required by the ABI, give definitions of static data members with inline
2047   // initializers at least linkonce_odr linkage.
2048   auto const VD = dyn_cast<VarDecl>(D);
2049   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
2050       VD && isVarDeclInlineInitializedStaticDataMember(VD)) {
2051     if (VD->hasAttr<DLLImportAttr>())
2052       return llvm::GlobalValue::AvailableExternallyLinkage;
2053     if (VD->hasAttr<DLLExportAttr>())
2054       return llvm::GlobalValue::WeakODRLinkage;
2055     return llvm::GlobalValue::LinkOnceODRLinkage;
2056   }
2057 
2058   // C++ doesn't have tentative definitions and thus cannot have common
2059   // linkage.
2060   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2061       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
2062     return llvm::GlobalVariable::CommonLinkage;
2063 
2064   // selectany symbols are externally visible, so use weak instead of
2065   // linkonce.  MSVC optimizes away references to const selectany globals, so
2066   // all definitions should be the same and ODR linkage should be used.
2067   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2068   if (D->hasAttr<SelectAnyAttr>())
2069     return llvm::GlobalVariable::WeakODRLinkage;
2070 
2071   // Otherwise, we have strong external linkage.
2072   assert(Linkage == GVA_StrongExternal);
2073   return llvm::GlobalVariable::ExternalLinkage;
2074 }
2075 
2076 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2077     const VarDecl *VD, bool IsConstant) {
2078   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2079   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2080 }
2081 
2082 /// Replace the uses of a function that was declared with a non-proto type.
2083 /// We want to silently drop extra arguments from call sites
2084 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2085                                           llvm::Function *newFn) {
2086   // Fast path.
2087   if (old->use_empty()) return;
2088 
2089   llvm::Type *newRetTy = newFn->getReturnType();
2090   SmallVector<llvm::Value*, 4> newArgs;
2091 
2092   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2093          ui != ue; ) {
2094     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2095     llvm::User *user = use->getUser();
2096 
2097     // Recognize and replace uses of bitcasts.  Most calls to
2098     // unprototyped functions will use bitcasts.
2099     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2100       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2101         replaceUsesOfNonProtoConstant(bitcast, newFn);
2102       continue;
2103     }
2104 
2105     // Recognize calls to the function.
2106     llvm::CallSite callSite(user);
2107     if (!callSite) continue;
2108     if (!callSite.isCallee(&*use)) continue;
2109 
2110     // If the return types don't match exactly, then we can't
2111     // transform this call unless it's dead.
2112     if (callSite->getType() != newRetTy && !callSite->use_empty())
2113       continue;
2114 
2115     // Get the call site's attribute list.
2116     SmallVector<llvm::AttributeSet, 8> newAttrs;
2117     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2118 
2119     // Collect any return attributes from the call.
2120     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2121       newAttrs.push_back(
2122         llvm::AttributeSet::get(newFn->getContext(),
2123                                 oldAttrs.getRetAttributes()));
2124 
2125     // If the function was passed too few arguments, don't transform.
2126     unsigned newNumArgs = newFn->arg_size();
2127     if (callSite.arg_size() < newNumArgs) continue;
2128 
2129     // If extra arguments were passed, we silently drop them.
2130     // If any of the types mismatch, we don't transform.
2131     unsigned argNo = 0;
2132     bool dontTransform = false;
2133     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2134            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2135       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2136         dontTransform = true;
2137         break;
2138       }
2139 
2140       // Add any parameter attributes.
2141       if (oldAttrs.hasAttributes(argNo + 1))
2142         newAttrs.
2143           push_back(llvm::
2144                     AttributeSet::get(newFn->getContext(),
2145                                       oldAttrs.getParamAttributes(argNo + 1)));
2146     }
2147     if (dontTransform)
2148       continue;
2149 
2150     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2151       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2152                                                  oldAttrs.getFnAttributes()));
2153 
2154     // Okay, we can transform this.  Create the new call instruction and copy
2155     // over the required information.
2156     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2157 
2158     llvm::CallSite newCall;
2159     if (callSite.isCall()) {
2160       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2161                                        callSite.getInstruction());
2162     } else {
2163       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2164       newCall = llvm::InvokeInst::Create(newFn,
2165                                          oldInvoke->getNormalDest(),
2166                                          oldInvoke->getUnwindDest(),
2167                                          newArgs, "",
2168                                          callSite.getInstruction());
2169     }
2170     newArgs.clear(); // for the next iteration
2171 
2172     if (!newCall->getType()->isVoidTy())
2173       newCall->takeName(callSite.getInstruction());
2174     newCall.setAttributes(
2175                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2176     newCall.setCallingConv(callSite.getCallingConv());
2177 
2178     // Finally, remove the old call, replacing any uses with the new one.
2179     if (!callSite->use_empty())
2180       callSite->replaceAllUsesWith(newCall.getInstruction());
2181 
2182     // Copy debug location attached to CI.
2183     if (!callSite->getDebugLoc().isUnknown())
2184       newCall->setDebugLoc(callSite->getDebugLoc());
2185     callSite->eraseFromParent();
2186   }
2187 }
2188 
2189 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2190 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2191 /// existing call uses of the old function in the module, this adjusts them to
2192 /// call the new function directly.
2193 ///
2194 /// This is not just a cleanup: the always_inline pass requires direct calls to
2195 /// functions to be able to inline them.  If there is a bitcast in the way, it
2196 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2197 /// run at -O0.
2198 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2199                                                       llvm::Function *NewFn) {
2200   // If we're redefining a global as a function, don't transform it.
2201   if (!isa<llvm::Function>(Old)) return;
2202 
2203   replaceUsesOfNonProtoConstant(Old, NewFn);
2204 }
2205 
2206 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2207   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2208   // If we have a definition, this might be a deferred decl. If the
2209   // instantiation is explicit, make sure we emit it at the end.
2210   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2211     GetAddrOfGlobalVar(VD);
2212 
2213   EmitTopLevelDecl(VD);
2214 }
2215 
2216 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2217                                                  llvm::GlobalValue *GV) {
2218   const auto *D = cast<FunctionDecl>(GD.getDecl());
2219 
2220   // Compute the function info and LLVM type.
2221   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2222   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2223 
2224   // Get or create the prototype for the function.
2225   if (!GV) {
2226     llvm::Constant *C =
2227         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2228 
2229     // Strip off a bitcast if we got one back.
2230     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2231       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2232       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2233     } else {
2234       GV = cast<llvm::GlobalValue>(C);
2235     }
2236   }
2237 
2238   if (!GV->isDeclaration()) {
2239     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2240     return;
2241   }
2242 
2243   if (GV->getType()->getElementType() != Ty) {
2244     // If the types mismatch then we have to rewrite the definition.
2245     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2246 
2247     // F is the Function* for the one with the wrong type, we must make a new
2248     // Function* and update everything that used F (a declaration) with the new
2249     // Function* (which will be a definition).
2250     //
2251     // This happens if there is a prototype for a function
2252     // (e.g. "int f()") and then a definition of a different type
2253     // (e.g. "int f(int x)").  Move the old function aside so that it
2254     // doesn't interfere with GetAddrOfFunction.
2255     GV->setName(StringRef());
2256     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2257 
2258     // This might be an implementation of a function without a
2259     // prototype, in which case, try to do special replacement of
2260     // calls which match the new prototype.  The really key thing here
2261     // is that we also potentially drop arguments from the call site
2262     // so as to make a direct call, which makes the inliner happier
2263     // and suppresses a number of optimizer warnings (!) about
2264     // dropping arguments.
2265     if (!GV->use_empty()) {
2266       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2267       GV->removeDeadConstantUsers();
2268     }
2269 
2270     // Replace uses of F with the Function we will endow with a body.
2271     if (!GV->use_empty()) {
2272       llvm::Constant *NewPtrForOldDecl =
2273           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2274       GV->replaceAllUsesWith(NewPtrForOldDecl);
2275     }
2276 
2277     // Ok, delete the old function now, which is dead.
2278     GV->eraseFromParent();
2279 
2280     GV = NewFn;
2281   }
2282 
2283   // We need to set linkage and visibility on the function before
2284   // generating code for it because various parts of IR generation
2285   // want to propagate this information down (e.g. to local static
2286   // declarations).
2287   auto *Fn = cast<llvm::Function>(GV);
2288   setFunctionLinkage(GD, Fn);
2289 
2290   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2291   setGlobalVisibility(Fn, D);
2292 
2293   MaybeHandleStaticInExternC(D, Fn);
2294 
2295   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2296 
2297   setFunctionDefinitionAttributes(D, Fn);
2298   SetLLVMFunctionAttributesForDefinition(D, Fn);
2299 
2300   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2301     AddGlobalCtor(Fn, CA->getPriority());
2302   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2303     AddGlobalDtor(Fn, DA->getPriority());
2304   if (D->hasAttr<AnnotateAttr>())
2305     AddGlobalAnnotations(D, Fn);
2306 }
2307 
2308 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2309   const auto *D = cast<ValueDecl>(GD.getDecl());
2310   const AliasAttr *AA = D->getAttr<AliasAttr>();
2311   assert(AA && "Not an alias?");
2312 
2313   StringRef MangledName = getMangledName(GD);
2314 
2315   // If there is a definition in the module, then it wins over the alias.
2316   // This is dubious, but allow it to be safe.  Just ignore the alias.
2317   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2318   if (Entry && !Entry->isDeclaration())
2319     return;
2320 
2321   Aliases.push_back(GD);
2322 
2323   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2324 
2325   // Create a reference to the named value.  This ensures that it is emitted
2326   // if a deferred decl.
2327   llvm::Constant *Aliasee;
2328   if (isa<llvm::FunctionType>(DeclTy))
2329     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2330                                       /*ForVTable=*/false);
2331   else
2332     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2333                                     llvm::PointerType::getUnqual(DeclTy),
2334                                     nullptr);
2335 
2336   // Create the new alias itself, but don't set a name yet.
2337   auto *GA = llvm::GlobalAlias::create(
2338       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2339       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2340 
2341   if (Entry) {
2342     if (GA->getAliasee() == Entry) {
2343       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2344       return;
2345     }
2346 
2347     assert(Entry->isDeclaration());
2348 
2349     // If there is a declaration in the module, then we had an extern followed
2350     // by the alias, as in:
2351     //   extern int test6();
2352     //   ...
2353     //   int test6() __attribute__((alias("test7")));
2354     //
2355     // Remove it and replace uses of it with the alias.
2356     GA->takeName(Entry);
2357 
2358     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2359                                                           Entry->getType()));
2360     Entry->eraseFromParent();
2361   } else {
2362     GA->setName(MangledName);
2363   }
2364 
2365   // Set attributes which are particular to an alias; this is a
2366   // specialization of the attributes which may be set on a global
2367   // variable/function.
2368   if (D->hasAttr<DLLExportAttr>()) {
2369     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2370       // The dllexport attribute is ignored for undefined symbols.
2371       if (FD->hasBody())
2372         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2373     } else {
2374       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2375     }
2376   } else if (D->hasAttr<WeakAttr>() ||
2377              D->hasAttr<WeakRefAttr>() ||
2378              D->isWeakImported()) {
2379     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2380   }
2381 
2382   SetCommonAttributes(D, GA);
2383 }
2384 
2385 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2386                                             ArrayRef<llvm::Type*> Tys) {
2387   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2388                                          Tys);
2389 }
2390 
2391 static llvm::StringMapEntry<llvm::Constant*> &
2392 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2393                          const StringLiteral *Literal,
2394                          bool TargetIsLSB,
2395                          bool &IsUTF16,
2396                          unsigned &StringLength) {
2397   StringRef String = Literal->getString();
2398   unsigned NumBytes = String.size();
2399 
2400   // Check for simple case.
2401   if (!Literal->containsNonAsciiOrNull()) {
2402     StringLength = NumBytes;
2403     return Map.GetOrCreateValue(String);
2404   }
2405 
2406   // Otherwise, convert the UTF8 literals into a string of shorts.
2407   IsUTF16 = true;
2408 
2409   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2410   const UTF8 *FromPtr = (const UTF8 *)String.data();
2411   UTF16 *ToPtr = &ToBuf[0];
2412 
2413   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2414                            &ToPtr, ToPtr + NumBytes,
2415                            strictConversion);
2416 
2417   // ConvertUTF8toUTF16 returns the length in ToPtr.
2418   StringLength = ToPtr - &ToBuf[0];
2419 
2420   // Add an explicit null.
2421   *ToPtr = 0;
2422   return Map.
2423     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2424                                (StringLength + 1) * 2));
2425 }
2426 
2427 static llvm::StringMapEntry<llvm::Constant*> &
2428 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2429                        const StringLiteral *Literal,
2430                        unsigned &StringLength) {
2431   StringRef String = Literal->getString();
2432   StringLength = String.size();
2433   return Map.GetOrCreateValue(String);
2434 }
2435 
2436 llvm::Constant *
2437 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2438   unsigned StringLength = 0;
2439   bool isUTF16 = false;
2440   llvm::StringMapEntry<llvm::Constant*> &Entry =
2441     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2442                              getDataLayout().isLittleEndian(),
2443                              isUTF16, StringLength);
2444 
2445   if (llvm::Constant *C = Entry.getValue())
2446     return C;
2447 
2448   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2449   llvm::Constant *Zeros[] = { Zero, Zero };
2450   llvm::Value *V;
2451 
2452   // If we don't already have it, get __CFConstantStringClassReference.
2453   if (!CFConstantStringClassRef) {
2454     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2455     Ty = llvm::ArrayType::get(Ty, 0);
2456     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2457                                            "__CFConstantStringClassReference");
2458     // Decay array -> ptr
2459     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2460     CFConstantStringClassRef = V;
2461   }
2462   else
2463     V = CFConstantStringClassRef;
2464 
2465   QualType CFTy = getContext().getCFConstantStringType();
2466 
2467   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2468 
2469   llvm::Constant *Fields[4];
2470 
2471   // Class pointer.
2472   Fields[0] = cast<llvm::ConstantExpr>(V);
2473 
2474   // Flags.
2475   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2476   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2477     llvm::ConstantInt::get(Ty, 0x07C8);
2478 
2479   // String pointer.
2480   llvm::Constant *C = nullptr;
2481   if (isUTF16) {
2482     ArrayRef<uint16_t> Arr =
2483       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2484                                      const_cast<char *>(Entry.getKey().data())),
2485                                    Entry.getKey().size() / 2);
2486     C = llvm::ConstantDataArray::get(VMContext, Arr);
2487   } else {
2488     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2489   }
2490 
2491   // Note: -fwritable-strings doesn't make the backing store strings of
2492   // CFStrings writable. (See <rdar://problem/10657500>)
2493   auto *GV =
2494       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2495                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2496   GV->setUnnamedAddr(true);
2497   // Don't enforce the target's minimum global alignment, since the only use
2498   // of the string is via this class initializer.
2499   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2500   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2501   // that changes the section it ends in, which surprises ld64.
2502   if (isUTF16) {
2503     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2504     GV->setAlignment(Align.getQuantity());
2505     GV->setSection("__TEXT,__ustring");
2506   } else {
2507     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2508     GV->setAlignment(Align.getQuantity());
2509     GV->setSection("__TEXT,__cstring,cstring_literals");
2510   }
2511 
2512   // String.
2513   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2514 
2515   if (isUTF16)
2516     // Cast the UTF16 string to the correct type.
2517     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2518 
2519   // String length.
2520   Ty = getTypes().ConvertType(getContext().LongTy);
2521   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2522 
2523   // The struct.
2524   C = llvm::ConstantStruct::get(STy, Fields);
2525   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2526                                 llvm::GlobalVariable::PrivateLinkage, C,
2527                                 "_unnamed_cfstring_");
2528   GV->setSection("__DATA,__cfstring");
2529   Entry.setValue(GV);
2530 
2531   return GV;
2532 }
2533 
2534 llvm::Constant *
2535 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2536   unsigned StringLength = 0;
2537   llvm::StringMapEntry<llvm::Constant*> &Entry =
2538     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2539 
2540   if (llvm::Constant *C = Entry.getValue())
2541     return C;
2542 
2543   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2544   llvm::Constant *Zeros[] = { Zero, Zero };
2545   llvm::Value *V;
2546   // If we don't already have it, get _NSConstantStringClassReference.
2547   if (!ConstantStringClassRef) {
2548     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2549     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2550     llvm::Constant *GV;
2551     if (LangOpts.ObjCRuntime.isNonFragile()) {
2552       std::string str =
2553         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2554                             : "OBJC_CLASS_$_" + StringClass;
2555       GV = getObjCRuntime().GetClassGlobal(str);
2556       // Make sure the result is of the correct type.
2557       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2558       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2559       ConstantStringClassRef = V;
2560     } else {
2561       std::string str =
2562         StringClass.empty() ? "_NSConstantStringClassReference"
2563                             : "_" + StringClass + "ClassReference";
2564       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2565       GV = CreateRuntimeVariable(PTy, str);
2566       // Decay array -> ptr
2567       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2568       ConstantStringClassRef = V;
2569     }
2570   }
2571   else
2572     V = ConstantStringClassRef;
2573 
2574   if (!NSConstantStringType) {
2575     // Construct the type for a constant NSString.
2576     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2577     D->startDefinition();
2578 
2579     QualType FieldTypes[3];
2580 
2581     // const int *isa;
2582     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2583     // const char *str;
2584     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2585     // unsigned int length;
2586     FieldTypes[2] = Context.UnsignedIntTy;
2587 
2588     // Create fields
2589     for (unsigned i = 0; i < 3; ++i) {
2590       FieldDecl *Field = FieldDecl::Create(Context, D,
2591                                            SourceLocation(),
2592                                            SourceLocation(), nullptr,
2593                                            FieldTypes[i], /*TInfo=*/nullptr,
2594                                            /*BitWidth=*/nullptr,
2595                                            /*Mutable=*/false,
2596                                            ICIS_NoInit);
2597       Field->setAccess(AS_public);
2598       D->addDecl(Field);
2599     }
2600 
2601     D->completeDefinition();
2602     QualType NSTy = Context.getTagDeclType(D);
2603     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2604   }
2605 
2606   llvm::Constant *Fields[3];
2607 
2608   // Class pointer.
2609   Fields[0] = cast<llvm::ConstantExpr>(V);
2610 
2611   // String pointer.
2612   llvm::Constant *C =
2613     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2614 
2615   llvm::GlobalValue::LinkageTypes Linkage;
2616   bool isConstant;
2617   Linkage = llvm::GlobalValue::PrivateLinkage;
2618   isConstant = !LangOpts.WritableStrings;
2619 
2620   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2621                                       Linkage, C, ".str");
2622   GV->setUnnamedAddr(true);
2623   // Don't enforce the target's minimum global alignment, since the only use
2624   // of the string is via this class initializer.
2625   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2626   GV->setAlignment(Align.getQuantity());
2627   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2628 
2629   // String length.
2630   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2631   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2632 
2633   // The struct.
2634   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2635   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2636                                 llvm::GlobalVariable::PrivateLinkage, C,
2637                                 "_unnamed_nsstring_");
2638   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2639   const char *NSStringNonFragileABISection =
2640       "__DATA,__objc_stringobj,regular,no_dead_strip";
2641   // FIXME. Fix section.
2642   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2643                      ? NSStringNonFragileABISection
2644                      : NSStringSection);
2645   Entry.setValue(GV);
2646 
2647   return GV;
2648 }
2649 
2650 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2651   if (ObjCFastEnumerationStateType.isNull()) {
2652     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2653     D->startDefinition();
2654 
2655     QualType FieldTypes[] = {
2656       Context.UnsignedLongTy,
2657       Context.getPointerType(Context.getObjCIdType()),
2658       Context.getPointerType(Context.UnsignedLongTy),
2659       Context.getConstantArrayType(Context.UnsignedLongTy,
2660                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2661     };
2662 
2663     for (size_t i = 0; i < 4; ++i) {
2664       FieldDecl *Field = FieldDecl::Create(Context,
2665                                            D,
2666                                            SourceLocation(),
2667                                            SourceLocation(), nullptr,
2668                                            FieldTypes[i], /*TInfo=*/nullptr,
2669                                            /*BitWidth=*/nullptr,
2670                                            /*Mutable=*/false,
2671                                            ICIS_NoInit);
2672       Field->setAccess(AS_public);
2673       D->addDecl(Field);
2674     }
2675 
2676     D->completeDefinition();
2677     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2678   }
2679 
2680   return ObjCFastEnumerationStateType;
2681 }
2682 
2683 llvm::Constant *
2684 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2685   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2686 
2687   // Don't emit it as the address of the string, emit the string data itself
2688   // as an inline array.
2689   if (E->getCharByteWidth() == 1) {
2690     SmallString<64> Str(E->getString());
2691 
2692     // Resize the string to the right size, which is indicated by its type.
2693     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2694     Str.resize(CAT->getSize().getZExtValue());
2695     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2696   }
2697 
2698   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2699   llvm::Type *ElemTy = AType->getElementType();
2700   unsigned NumElements = AType->getNumElements();
2701 
2702   // Wide strings have either 2-byte or 4-byte elements.
2703   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2704     SmallVector<uint16_t, 32> Elements;
2705     Elements.reserve(NumElements);
2706 
2707     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2708       Elements.push_back(E->getCodeUnit(i));
2709     Elements.resize(NumElements);
2710     return llvm::ConstantDataArray::get(VMContext, Elements);
2711   }
2712 
2713   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2714   SmallVector<uint32_t, 32> Elements;
2715   Elements.reserve(NumElements);
2716 
2717   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2718     Elements.push_back(E->getCodeUnit(i));
2719   Elements.resize(NumElements);
2720   return llvm::ConstantDataArray::get(VMContext, Elements);
2721 }
2722 
2723 static llvm::GlobalVariable *
2724 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2725                       CodeGenModule &CGM, StringRef GlobalName,
2726                       unsigned Alignment) {
2727   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2728   unsigned AddrSpace = 0;
2729   if (CGM.getLangOpts().OpenCL)
2730     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2731 
2732   // Create a global variable for this string
2733   auto *GV = new llvm::GlobalVariable(
2734       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2735       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2736   GV->setAlignment(Alignment);
2737   GV->setUnnamedAddr(true);
2738   return GV;
2739 }
2740 
2741 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2742 /// constant array for the given string literal.
2743 llvm::Constant *
2744 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2745   auto Alignment =
2746       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2747 
2748   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2749   if (!LangOpts.WritableStrings) {
2750     Entry = getConstantStringMapEntry(S->getBytes(), S->getCharByteWidth());
2751     if (auto GV = Entry->getValue()) {
2752       if (Alignment > GV->getAlignment())
2753         GV->setAlignment(Alignment);
2754       return GV;
2755     }
2756   }
2757 
2758   SmallString<256> MangledNameBuffer;
2759   StringRef GlobalVariableName;
2760   llvm::GlobalValue::LinkageTypes LT;
2761 
2762   // Mangle the string literal if the ABI allows for it.  However, we cannot
2763   // do this if  we are compiling with ASan or -fwritable-strings because they
2764   // rely on strings having normal linkage.
2765   if (!LangOpts.WritableStrings && !SanOpts.Address &&
2766       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2767     llvm::raw_svector_ostream Out(MangledNameBuffer);
2768     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2769     Out.flush();
2770 
2771     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2772     GlobalVariableName = MangledNameBuffer;
2773   } else {
2774     LT = llvm::GlobalValue::PrivateLinkage;
2775     GlobalVariableName = ".str";
2776   }
2777 
2778   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2779   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2780   if (Entry)
2781     Entry->setValue(GV);
2782   return GV;
2783 }
2784 
2785 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2786 /// array for the given ObjCEncodeExpr node.
2787 llvm::Constant *
2788 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2789   std::string Str;
2790   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2791 
2792   return GetAddrOfConstantCString(Str);
2793 }
2794 
2795 
2796 llvm::StringMapEntry<llvm::GlobalVariable *> *CodeGenModule::getConstantStringMapEntry(
2797     StringRef Str, int CharByteWidth) {
2798   llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2799   switch (CharByteWidth) {
2800   case 1:
2801     ConstantStringMap = &Constant1ByteStringMap;
2802     break;
2803   case 2:
2804     ConstantStringMap = &Constant2ByteStringMap;
2805     break;
2806   case 4:
2807     ConstantStringMap = &Constant4ByteStringMap;
2808     break;
2809   default:
2810     llvm_unreachable("unhandled byte width!");
2811   }
2812   return &ConstantStringMap->GetOrCreateValue(Str);
2813 }
2814 
2815 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2816 /// the literal and a terminating '\0' character.
2817 /// The result has pointer to array type.
2818 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2819                                                         const char *GlobalName,
2820                                                         unsigned Alignment) {
2821   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2822   if (Alignment == 0) {
2823     Alignment = getContext()
2824                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2825                     .getQuantity();
2826   }
2827 
2828   // Don't share any string literals if strings aren't constant.
2829   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2830   if (!LangOpts.WritableStrings) {
2831     Entry = getConstantStringMapEntry(StrWithNull, 1);
2832     if (auto GV = Entry->getValue()) {
2833       if (Alignment > GV->getAlignment())
2834         GV->setAlignment(Alignment);
2835       return GV;
2836     }
2837   }
2838 
2839   llvm::Constant *C =
2840       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2841   // Get the default prefix if a name wasn't specified.
2842   if (!GlobalName)
2843     GlobalName = ".str";
2844   // Create a global variable for this.
2845   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2846                                   GlobalName, Alignment);
2847   if (Entry)
2848     Entry->setValue(GV);
2849   return GV;
2850 }
2851 
2852 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2853     const MaterializeTemporaryExpr *E, const Expr *Init) {
2854   assert((E->getStorageDuration() == SD_Static ||
2855           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2856   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2857 
2858   // If we're not materializing a subobject of the temporary, keep the
2859   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2860   QualType MaterializedType = Init->getType();
2861   if (Init == E->GetTemporaryExpr())
2862     MaterializedType = E->getType();
2863 
2864   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2865   if (Slot)
2866     return Slot;
2867 
2868   // FIXME: If an externally-visible declaration extends multiple temporaries,
2869   // we need to give each temporary the same name in every translation unit (and
2870   // we also need to make the temporaries externally-visible).
2871   SmallString<256> Name;
2872   llvm::raw_svector_ostream Out(Name);
2873   getCXXABI().getMangleContext().mangleReferenceTemporary(
2874       VD, E->getManglingNumber(), Out);
2875   Out.flush();
2876 
2877   APValue *Value = nullptr;
2878   if (E->getStorageDuration() == SD_Static) {
2879     // We might have a cached constant initializer for this temporary. Note
2880     // that this might have a different value from the value computed by
2881     // evaluating the initializer if the surrounding constant expression
2882     // modifies the temporary.
2883     Value = getContext().getMaterializedTemporaryValue(E, false);
2884     if (Value && Value->isUninit())
2885       Value = nullptr;
2886   }
2887 
2888   // Try evaluating it now, it might have a constant initializer.
2889   Expr::EvalResult EvalResult;
2890   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2891       !EvalResult.hasSideEffects())
2892     Value = &EvalResult.Val;
2893 
2894   llvm::Constant *InitialValue = nullptr;
2895   bool Constant = false;
2896   llvm::Type *Type;
2897   if (Value) {
2898     // The temporary has a constant initializer, use it.
2899     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2900     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2901     Type = InitialValue->getType();
2902   } else {
2903     // No initializer, the initialization will be provided when we
2904     // initialize the declaration which performed lifetime extension.
2905     Type = getTypes().ConvertTypeForMem(MaterializedType);
2906   }
2907 
2908   // Create a global variable for this lifetime-extended temporary.
2909   llvm::GlobalValue::LinkageTypes Linkage =
2910       getLLVMLinkageVarDefinition(VD, Constant);
2911   // There is no need for this temporary to have global linkage if the global
2912   // variable has external linkage.
2913   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2914     Linkage = llvm::GlobalVariable::PrivateLinkage;
2915   unsigned AddrSpace = GetGlobalVarAddressSpace(
2916       VD, getContext().getTargetAddressSpace(MaterializedType));
2917   auto *GV = new llvm::GlobalVariable(
2918       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2919       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2920       AddrSpace);
2921   setGlobalVisibility(GV, VD);
2922   GV->setAlignment(
2923       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2924   if (VD->getTLSKind())
2925     setTLSMode(GV, *VD);
2926   Slot = GV;
2927   return GV;
2928 }
2929 
2930 /// EmitObjCPropertyImplementations - Emit information for synthesized
2931 /// properties for an implementation.
2932 void CodeGenModule::EmitObjCPropertyImplementations(const
2933                                                     ObjCImplementationDecl *D) {
2934   for (const auto *PID : D->property_impls()) {
2935     // Dynamic is just for type-checking.
2936     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2937       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2938 
2939       // Determine which methods need to be implemented, some may have
2940       // been overridden. Note that ::isPropertyAccessor is not the method
2941       // we want, that just indicates if the decl came from a
2942       // property. What we want to know is if the method is defined in
2943       // this implementation.
2944       if (!D->getInstanceMethod(PD->getGetterName()))
2945         CodeGenFunction(*this).GenerateObjCGetter(
2946                                  const_cast<ObjCImplementationDecl *>(D), PID);
2947       if (!PD->isReadOnly() &&
2948           !D->getInstanceMethod(PD->getSetterName()))
2949         CodeGenFunction(*this).GenerateObjCSetter(
2950                                  const_cast<ObjCImplementationDecl *>(D), PID);
2951     }
2952   }
2953 }
2954 
2955 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2956   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2957   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2958        ivar; ivar = ivar->getNextIvar())
2959     if (ivar->getType().isDestructedType())
2960       return true;
2961 
2962   return false;
2963 }
2964 
2965 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2966 /// for an implementation.
2967 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2968   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2969   if (needsDestructMethod(D)) {
2970     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2971     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2972     ObjCMethodDecl *DTORMethod =
2973       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2974                              cxxSelector, getContext().VoidTy, nullptr, D,
2975                              /*isInstance=*/true, /*isVariadic=*/false,
2976                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2977                              /*isDefined=*/false, ObjCMethodDecl::Required);
2978     D->addInstanceMethod(DTORMethod);
2979     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2980     D->setHasDestructors(true);
2981   }
2982 
2983   // If the implementation doesn't have any ivar initializers, we don't need
2984   // a .cxx_construct.
2985   if (D->getNumIvarInitializers() == 0)
2986     return;
2987 
2988   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2989   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2990   // The constructor returns 'self'.
2991   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2992                                                 D->getLocation(),
2993                                                 D->getLocation(),
2994                                                 cxxSelector,
2995                                                 getContext().getObjCIdType(),
2996                                                 nullptr, D, /*isInstance=*/true,
2997                                                 /*isVariadic=*/false,
2998                                                 /*isPropertyAccessor=*/true,
2999                                                 /*isImplicitlyDeclared=*/true,
3000                                                 /*isDefined=*/false,
3001                                                 ObjCMethodDecl::Required);
3002   D->addInstanceMethod(CTORMethod);
3003   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3004   D->setHasNonZeroConstructors(true);
3005 }
3006 
3007 /// EmitNamespace - Emit all declarations in a namespace.
3008 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3009   for (auto *I : ND->decls()) {
3010     if (const auto *VD = dyn_cast<VarDecl>(I))
3011       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3012           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3013         continue;
3014     EmitTopLevelDecl(I);
3015   }
3016 }
3017 
3018 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3019 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3020   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3021       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3022     ErrorUnsupported(LSD, "linkage spec");
3023     return;
3024   }
3025 
3026   for (auto *I : LSD->decls()) {
3027     // Meta-data for ObjC class includes references to implemented methods.
3028     // Generate class's method definitions first.
3029     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3030       for (auto *M : OID->methods())
3031         EmitTopLevelDecl(M);
3032     }
3033     EmitTopLevelDecl(I);
3034   }
3035 }
3036 
3037 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3038 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3039   // Ignore dependent declarations.
3040   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3041     return;
3042 
3043   switch (D->getKind()) {
3044   case Decl::CXXConversion:
3045   case Decl::CXXMethod:
3046   case Decl::Function:
3047     // Skip function templates
3048     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3049         cast<FunctionDecl>(D)->isLateTemplateParsed())
3050       return;
3051 
3052     EmitGlobal(cast<FunctionDecl>(D));
3053     break;
3054 
3055   case Decl::Var:
3056     // Skip variable templates
3057     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3058       return;
3059   case Decl::VarTemplateSpecialization:
3060     EmitGlobal(cast<VarDecl>(D));
3061     break;
3062 
3063   // Indirect fields from global anonymous structs and unions can be
3064   // ignored; only the actual variable requires IR gen support.
3065   case Decl::IndirectField:
3066     break;
3067 
3068   // C++ Decls
3069   case Decl::Namespace:
3070     EmitNamespace(cast<NamespaceDecl>(D));
3071     break;
3072     // No code generation needed.
3073   case Decl::UsingShadow:
3074   case Decl::ClassTemplate:
3075   case Decl::VarTemplate:
3076   case Decl::VarTemplatePartialSpecialization:
3077   case Decl::FunctionTemplate:
3078   case Decl::TypeAliasTemplate:
3079   case Decl::Block:
3080   case Decl::Empty:
3081     break;
3082   case Decl::Using:          // using X; [C++]
3083     if (CGDebugInfo *DI = getModuleDebugInfo())
3084         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3085     return;
3086   case Decl::NamespaceAlias:
3087     if (CGDebugInfo *DI = getModuleDebugInfo())
3088         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3089     return;
3090   case Decl::UsingDirective: // using namespace X; [C++]
3091     if (CGDebugInfo *DI = getModuleDebugInfo())
3092       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3093     return;
3094   case Decl::CXXConstructor:
3095     // Skip function templates
3096     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3097         cast<FunctionDecl>(D)->isLateTemplateParsed())
3098       return;
3099 
3100     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3101     break;
3102   case Decl::CXXDestructor:
3103     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3104       return;
3105     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3106     break;
3107 
3108   case Decl::StaticAssert:
3109     // Nothing to do.
3110     break;
3111 
3112   // Objective-C Decls
3113 
3114   // Forward declarations, no (immediate) code generation.
3115   case Decl::ObjCInterface:
3116   case Decl::ObjCCategory:
3117     break;
3118 
3119   case Decl::ObjCProtocol: {
3120     auto *Proto = cast<ObjCProtocolDecl>(D);
3121     if (Proto->isThisDeclarationADefinition())
3122       ObjCRuntime->GenerateProtocol(Proto);
3123     break;
3124   }
3125 
3126   case Decl::ObjCCategoryImpl:
3127     // Categories have properties but don't support synthesize so we
3128     // can ignore them here.
3129     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3130     break;
3131 
3132   case Decl::ObjCImplementation: {
3133     auto *OMD = cast<ObjCImplementationDecl>(D);
3134     EmitObjCPropertyImplementations(OMD);
3135     EmitObjCIvarInitializations(OMD);
3136     ObjCRuntime->GenerateClass(OMD);
3137     // Emit global variable debug information.
3138     if (CGDebugInfo *DI = getModuleDebugInfo())
3139       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3140         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3141             OMD->getClassInterface()), OMD->getLocation());
3142     break;
3143   }
3144   case Decl::ObjCMethod: {
3145     auto *OMD = cast<ObjCMethodDecl>(D);
3146     // If this is not a prototype, emit the body.
3147     if (OMD->getBody())
3148       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3149     break;
3150   }
3151   case Decl::ObjCCompatibleAlias:
3152     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3153     break;
3154 
3155   case Decl::LinkageSpec:
3156     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3157     break;
3158 
3159   case Decl::FileScopeAsm: {
3160     auto *AD = cast<FileScopeAsmDecl>(D);
3161     StringRef AsmString = AD->getAsmString()->getString();
3162 
3163     const std::string &S = getModule().getModuleInlineAsm();
3164     if (S.empty())
3165       getModule().setModuleInlineAsm(AsmString);
3166     else if (S.end()[-1] == '\n')
3167       getModule().setModuleInlineAsm(S + AsmString.str());
3168     else
3169       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3170     break;
3171   }
3172 
3173   case Decl::Import: {
3174     auto *Import = cast<ImportDecl>(D);
3175 
3176     // Ignore import declarations that come from imported modules.
3177     if (clang::Module *Owner = Import->getOwningModule()) {
3178       if (getLangOpts().CurrentModule.empty() ||
3179           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3180         break;
3181     }
3182 
3183     ImportedModules.insert(Import->getImportedModule());
3184     break;
3185   }
3186 
3187   case Decl::ClassTemplateSpecialization: {
3188     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3189     if (DebugInfo &&
3190         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3191       DebugInfo->completeTemplateDefinition(*Spec);
3192   }
3193 
3194   default:
3195     // Make sure we handled everything we should, every other kind is a
3196     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3197     // function. Need to recode Decl::Kind to do that easily.
3198     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3199   }
3200 }
3201 
3202 /// Turns the given pointer into a constant.
3203 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3204                                           const void *Ptr) {
3205   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3206   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3207   return llvm::ConstantInt::get(i64, PtrInt);
3208 }
3209 
3210 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3211                                    llvm::NamedMDNode *&GlobalMetadata,
3212                                    GlobalDecl D,
3213                                    llvm::GlobalValue *Addr) {
3214   if (!GlobalMetadata)
3215     GlobalMetadata =
3216       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3217 
3218   // TODO: should we report variant information for ctors/dtors?
3219   llvm::Value *Ops[] = {
3220     Addr,
3221     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3222   };
3223   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3224 }
3225 
3226 /// For each function which is declared within an extern "C" region and marked
3227 /// as 'used', but has internal linkage, create an alias from the unmangled
3228 /// name to the mangled name if possible. People expect to be able to refer
3229 /// to such functions with an unmangled name from inline assembly within the
3230 /// same translation unit.
3231 void CodeGenModule::EmitStaticExternCAliases() {
3232   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3233                                   E = StaticExternCValues.end();
3234        I != E; ++I) {
3235     IdentifierInfo *Name = I->first;
3236     llvm::GlobalValue *Val = I->second;
3237     if (Val && !getModule().getNamedValue(Name->getName()))
3238       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3239   }
3240 }
3241 
3242 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3243                                              GlobalDecl &Result) const {
3244   auto Res = Manglings.find(MangledName);
3245   if (Res == Manglings.end())
3246     return false;
3247   Result = Res->getValue();
3248   return true;
3249 }
3250 
3251 /// Emits metadata nodes associating all the global values in the
3252 /// current module with the Decls they came from.  This is useful for
3253 /// projects using IR gen as a subroutine.
3254 ///
3255 /// Since there's currently no way to associate an MDNode directly
3256 /// with an llvm::GlobalValue, we create a global named metadata
3257 /// with the name 'clang.global.decl.ptrs'.
3258 void CodeGenModule::EmitDeclMetadata() {
3259   llvm::NamedMDNode *GlobalMetadata = nullptr;
3260 
3261   // StaticLocalDeclMap
3262   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3263          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3264        I != E; ++I) {
3265     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3266     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3267   }
3268 }
3269 
3270 /// Emits metadata nodes for all the local variables in the current
3271 /// function.
3272 void CodeGenFunction::EmitDeclMetadata() {
3273   if (LocalDeclMap.empty()) return;
3274 
3275   llvm::LLVMContext &Context = getLLVMContext();
3276 
3277   // Find the unique metadata ID for this name.
3278   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3279 
3280   llvm::NamedMDNode *GlobalMetadata = nullptr;
3281 
3282   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3283          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3284     const Decl *D = I->first;
3285     llvm::Value *Addr = I->second;
3286 
3287     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3288       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3289       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3290     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3291       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3292       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3293     }
3294   }
3295 }
3296 
3297 void CodeGenModule::EmitVersionIdentMetadata() {
3298   llvm::NamedMDNode *IdentMetadata =
3299     TheModule.getOrInsertNamedMetadata("llvm.ident");
3300   std::string Version = getClangFullVersion();
3301   llvm::LLVMContext &Ctx = TheModule.getContext();
3302 
3303   llvm::Value *IdentNode[] = {
3304     llvm::MDString::get(Ctx, Version)
3305   };
3306   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3307 }
3308 
3309 void CodeGenModule::EmitCoverageFile() {
3310   if (!getCodeGenOpts().CoverageFile.empty()) {
3311     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3312       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3313       llvm::LLVMContext &Ctx = TheModule.getContext();
3314       llvm::MDString *CoverageFile =
3315           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3316       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3317         llvm::MDNode *CU = CUNode->getOperand(i);
3318         llvm::Value *node[] = { CoverageFile, CU };
3319         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3320         GCov->addOperand(N);
3321       }
3322     }
3323   }
3324 }
3325 
3326 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3327                                                      QualType GuidType) {
3328   // Sema has checked that all uuid strings are of the form
3329   // "12345678-1234-1234-1234-1234567890ab".
3330   assert(Uuid.size() == 36);
3331   for (unsigned i = 0; i < 36; ++i) {
3332     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3333     else                                         assert(isHexDigit(Uuid[i]));
3334   }
3335 
3336   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3337 
3338   llvm::Constant *Field3[8];
3339   for (unsigned Idx = 0; Idx < 8; ++Idx)
3340     Field3[Idx] = llvm::ConstantInt::get(
3341         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3342 
3343   llvm::Constant *Fields[4] = {
3344     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3345     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3346     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3347     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3348   };
3349 
3350   return llvm::ConstantStruct::getAnon(Fields);
3351 }
3352