1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "ConstantBuilder.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecordLayout.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 115 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 116 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 117 118 if (LangOpts.ObjC1) 119 createObjCRuntime(); 120 if (LangOpts.OpenCL) 121 createOpenCLRuntime(); 122 if (LangOpts.OpenMP) 123 createOpenMPRuntime(); 124 if (LangOpts.CUDA) 125 createCUDARuntime(); 126 127 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 128 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 129 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 130 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 131 getCXXABI().getMangleContext())); 132 133 // If debug info or coverage generation is enabled, create the CGDebugInfo 134 // object. 135 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 136 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 137 DebugInfo.reset(new CGDebugInfo(*this)); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjC1) 142 ObjCData.reset(new ObjCEntrypoints()); 143 144 if (CodeGenOpts.hasProfileClangUse()) { 145 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 146 CodeGenOpts.ProfileInstrumentUsePath); 147 if (auto E = ReaderOrErr.takeError()) { 148 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 149 "Could not read profile %0: %1"); 150 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 151 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 152 << EI.message(); 153 }); 154 } else 155 PGOReader = std::move(ReaderOrErr.get()); 156 } 157 158 // If coverage mapping generation is enabled, create the 159 // CoverageMappingModuleGen object. 160 if (CodeGenOpts.CoverageMapping) 161 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 162 } 163 164 CodeGenModule::~CodeGenModule() {} 165 166 void CodeGenModule::createObjCRuntime() { 167 // This is just isGNUFamily(), but we want to force implementors of 168 // new ABIs to decide how best to do this. 169 switch (LangOpts.ObjCRuntime.getKind()) { 170 case ObjCRuntime::GNUstep: 171 case ObjCRuntime::GCC: 172 case ObjCRuntime::ObjFW: 173 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 174 return; 175 176 case ObjCRuntime::FragileMacOSX: 177 case ObjCRuntime::MacOSX: 178 case ObjCRuntime::iOS: 179 case ObjCRuntime::WatchOS: 180 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 181 return; 182 } 183 llvm_unreachable("bad runtime kind"); 184 } 185 186 void CodeGenModule::createOpenCLRuntime() { 187 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 188 } 189 190 void CodeGenModule::createOpenMPRuntime() { 191 // Select a specialized code generation class based on the target, if any. 192 // If it does not exist use the default implementation. 193 switch (getTriple().getArch()) { 194 case llvm::Triple::nvptx: 195 case llvm::Triple::nvptx64: 196 assert(getLangOpts().OpenMPIsDevice && 197 "OpenMP NVPTX is only prepared to deal with device code."); 198 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 199 break; 200 default: 201 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 202 break; 203 } 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 239 NewF); 240 } 241 OldF->eraseFromParent(); 242 } 243 } 244 245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 246 GlobalValReplacements.push_back(std::make_pair(GV, C)); 247 } 248 249 void CodeGenModule::applyGlobalValReplacements() { 250 for (auto &I : GlobalValReplacements) { 251 llvm::GlobalValue *GV = I.first; 252 llvm::Constant *C = I.second; 253 254 GV->replaceAllUsesWith(C); 255 GV->eraseFromParent(); 256 } 257 } 258 259 // This is only used in aliases that we created and we know they have a 260 // linear structure. 261 static const llvm::GlobalObject *getAliasedGlobal( 262 const llvm::GlobalIndirectSymbol &GIS) { 263 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 264 const llvm::Constant *C = &GIS; 265 for (;;) { 266 C = C->stripPointerCasts(); 267 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 268 return GO; 269 // stripPointerCasts will not walk over weak aliases. 270 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 271 if (!GIS2) 272 return nullptr; 273 if (!Visited.insert(GIS2).second) 274 return nullptr; 275 C = GIS2->getIndirectSymbol(); 276 } 277 } 278 279 void CodeGenModule::checkAliases() { 280 // Check if the constructed aliases are well formed. It is really unfortunate 281 // that we have to do this in CodeGen, but we only construct mangled names 282 // and aliases during codegen. 283 bool Error = false; 284 DiagnosticsEngine &Diags = getDiags(); 285 for (const GlobalDecl &GD : Aliases) { 286 const auto *D = cast<ValueDecl>(GD.getDecl()); 287 SourceLocation Location; 288 bool IsIFunc = D->hasAttr<IFuncAttr>(); 289 if (const Attr *A = D->getDefiningAttr()) 290 Location = A->getLocation(); 291 else 292 llvm_unreachable("Not an alias or ifunc?"); 293 StringRef MangledName = getMangledName(GD); 294 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 295 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 296 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 297 if (!GV) { 298 Error = true; 299 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 300 } else if (GV->isDeclaration()) { 301 Error = true; 302 Diags.Report(Location, diag::err_alias_to_undefined) 303 << IsIFunc << IsIFunc; 304 } else if (IsIFunc) { 305 // Check resolver function type. 306 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 307 GV->getType()->getPointerElementType()); 308 assert(FTy); 309 if (!FTy->getReturnType()->isPointerTy()) 310 Diags.Report(Location, diag::err_ifunc_resolver_return); 311 if (FTy->getNumParams()) 312 Diags.Report(Location, diag::err_ifunc_resolver_params); 313 } 314 315 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 316 llvm::GlobalValue *AliaseeGV; 317 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 318 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 319 else 320 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 321 322 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 323 StringRef AliasSection = SA->getName(); 324 if (AliasSection != AliaseeGV->getSection()) 325 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 326 << AliasSection << IsIFunc << IsIFunc; 327 } 328 329 // We have to handle alias to weak aliases in here. LLVM itself disallows 330 // this since the object semantics would not match the IL one. For 331 // compatibility with gcc we implement it by just pointing the alias 332 // to its aliasee's aliasee. We also warn, since the user is probably 333 // expecting the link to be weak. 334 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 335 if (GA->isInterposable()) { 336 Diags.Report(Location, diag::warn_alias_to_weak_alias) 337 << GV->getName() << GA->getName() << IsIFunc; 338 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 339 GA->getIndirectSymbol(), Alias->getType()); 340 Alias->setIndirectSymbol(Aliasee); 341 } 342 } 343 } 344 if (!Error) 345 return; 346 347 for (const GlobalDecl &GD : Aliases) { 348 StringRef MangledName = getMangledName(GD); 349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 350 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 351 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 352 Alias->eraseFromParent(); 353 } 354 } 355 356 void CodeGenModule::clear() { 357 DeferredDeclsToEmit.clear(); 358 if (OpenMPRuntime) 359 OpenMPRuntime->clear(); 360 } 361 362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 363 StringRef MainFile) { 364 if (!hasDiagnostics()) 365 return; 366 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 367 if (MainFile.empty()) 368 MainFile = "<stdin>"; 369 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 370 } else 371 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 372 << Mismatched; 373 } 374 375 void CodeGenModule::Release() { 376 EmitDeferred(); 377 applyGlobalValReplacements(); 378 applyReplacements(); 379 checkAliases(); 380 EmitCXXGlobalInitFunc(); 381 EmitCXXGlobalDtorFunc(); 382 EmitCXXThreadLocalInitFunc(); 383 if (ObjCRuntime) 384 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 385 AddGlobalCtor(ObjCInitFunction); 386 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 387 CUDARuntime) { 388 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 389 AddGlobalCtor(CudaCtorFunction); 390 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 391 AddGlobalDtor(CudaDtorFunction); 392 } 393 if (OpenMPRuntime) 394 if (llvm::Function *OpenMPRegistrationFunction = 395 OpenMPRuntime->emitRegistrationFunction()) 396 AddGlobalCtor(OpenMPRegistrationFunction, 0); 397 if (PGOReader) { 398 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 399 if (PGOStats.hasDiagnostics()) 400 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 401 } 402 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 403 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 404 EmitGlobalAnnotations(); 405 EmitStaticExternCAliases(); 406 EmitDeferredUnusedCoverageMappings(); 407 if (CoverageMapping) 408 CoverageMapping->emit(); 409 if (CodeGenOpts.SanitizeCfiCrossDso) 410 CodeGenFunction(*this).EmitCfiCheckFail(); 411 emitLLVMUsed(); 412 if (SanStats) 413 SanStats->finish(); 414 415 if (CodeGenOpts.Autolink && 416 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 417 EmitModuleLinkOptions(); 418 } 419 if (CodeGenOpts.DwarfVersion) { 420 // We actually want the latest version when there are conflicts. 421 // We can change from Warning to Latest if such mode is supported. 422 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 423 CodeGenOpts.DwarfVersion); 424 } 425 if (CodeGenOpts.EmitCodeView) { 426 // Indicate that we want CodeView in the metadata. 427 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 428 } 429 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 430 // We don't support LTO with 2 with different StrictVTablePointers 431 // FIXME: we could support it by stripping all the information introduced 432 // by StrictVTablePointers. 433 434 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 435 436 llvm::Metadata *Ops[2] = { 437 llvm::MDString::get(VMContext, "StrictVTablePointers"), 438 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 439 llvm::Type::getInt32Ty(VMContext), 1))}; 440 441 getModule().addModuleFlag(llvm::Module::Require, 442 "StrictVTablePointersRequirement", 443 llvm::MDNode::get(VMContext, Ops)); 444 } 445 if (DebugInfo) 446 // We support a single version in the linked module. The LLVM 447 // parser will drop debug info with a different version number 448 // (and warn about it, too). 449 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 450 llvm::DEBUG_METADATA_VERSION); 451 452 // We need to record the widths of enums and wchar_t, so that we can generate 453 // the correct build attributes in the ARM backend. 454 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 455 if ( Arch == llvm::Triple::arm 456 || Arch == llvm::Triple::armeb 457 || Arch == llvm::Triple::thumb 458 || Arch == llvm::Triple::thumbeb) { 459 // Width of wchar_t in bytes 460 uint64_t WCharWidth = 461 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 462 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 463 464 // The minimum width of an enum in bytes 465 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 466 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 467 } 468 469 if (CodeGenOpts.SanitizeCfiCrossDso) { 470 // Indicate that we want cross-DSO control flow integrity checks. 471 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 472 } 473 474 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 475 // Indicate whether __nvvm_reflect should be configured to flush denormal 476 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 477 // property.) 478 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 479 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 480 } 481 482 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 483 assert(PLevel < 3 && "Invalid PIC Level"); 484 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 485 if (Context.getLangOpts().PIE) 486 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 487 } 488 489 SimplifyPersonality(); 490 491 if (getCodeGenOpts().EmitDeclMetadata) 492 EmitDeclMetadata(); 493 494 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 495 EmitCoverageFile(); 496 497 if (DebugInfo) 498 DebugInfo->finalize(); 499 500 EmitVersionIdentMetadata(); 501 502 EmitTargetMetadata(); 503 } 504 505 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 506 // Make sure that this type is translated. 507 Types.UpdateCompletedType(TD); 508 } 509 510 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 511 // Make sure that this type is translated. 512 Types.RefreshTypeCacheForClass(RD); 513 } 514 515 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 516 if (!TBAA) 517 return nullptr; 518 return TBAA->getTBAAInfo(QTy); 519 } 520 521 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 522 if (!TBAA) 523 return nullptr; 524 return TBAA->getTBAAInfoForVTablePtr(); 525 } 526 527 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 528 if (!TBAA) 529 return nullptr; 530 return TBAA->getTBAAStructInfo(QTy); 531 } 532 533 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 534 llvm::MDNode *AccessN, 535 uint64_t O) { 536 if (!TBAA) 537 return nullptr; 538 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 539 } 540 541 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 542 /// and struct-path aware TBAA, the tag has the same format: 543 /// base type, access type and offset. 544 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 545 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 546 llvm::MDNode *TBAAInfo, 547 bool ConvertTypeToTag) { 548 if (ConvertTypeToTag && TBAA) 549 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 550 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 551 else 552 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 553 } 554 555 void CodeGenModule::DecorateInstructionWithInvariantGroup( 556 llvm::Instruction *I, const CXXRecordDecl *RD) { 557 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 558 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 559 // Check if we have to wrap MDString in MDNode. 560 if (!MetaDataNode) 561 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 562 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 563 } 564 565 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 566 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 567 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 568 } 569 570 /// ErrorUnsupported - Print out an error that codegen doesn't support the 571 /// specified stmt yet. 572 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 573 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 574 "cannot compile this %0 yet"); 575 std::string Msg = Type; 576 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 577 << Msg << S->getSourceRange(); 578 } 579 580 /// ErrorUnsupported - Print out an error that codegen doesn't support the 581 /// specified decl yet. 582 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 583 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 584 "cannot compile this %0 yet"); 585 std::string Msg = Type; 586 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 587 } 588 589 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 590 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 591 } 592 593 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 594 const NamedDecl *D) const { 595 // Internal definitions always have default visibility. 596 if (GV->hasLocalLinkage()) { 597 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 598 return; 599 } 600 601 // Set visibility for definitions. 602 LinkageInfo LV = D->getLinkageAndVisibility(); 603 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 604 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 605 } 606 607 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 608 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 609 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 610 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 611 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 612 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 613 } 614 615 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 616 CodeGenOptions::TLSModel M) { 617 switch (M) { 618 case CodeGenOptions::GeneralDynamicTLSModel: 619 return llvm::GlobalVariable::GeneralDynamicTLSModel; 620 case CodeGenOptions::LocalDynamicTLSModel: 621 return llvm::GlobalVariable::LocalDynamicTLSModel; 622 case CodeGenOptions::InitialExecTLSModel: 623 return llvm::GlobalVariable::InitialExecTLSModel; 624 case CodeGenOptions::LocalExecTLSModel: 625 return llvm::GlobalVariable::LocalExecTLSModel; 626 } 627 llvm_unreachable("Invalid TLS model!"); 628 } 629 630 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 631 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 632 633 llvm::GlobalValue::ThreadLocalMode TLM; 634 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 635 636 // Override the TLS model if it is explicitly specified. 637 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 638 TLM = GetLLVMTLSModel(Attr->getModel()); 639 } 640 641 GV->setThreadLocalMode(TLM); 642 } 643 644 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 645 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 646 647 // Some ABIs don't have constructor variants. Make sure that base and 648 // complete constructors get mangled the same. 649 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 650 if (!getTarget().getCXXABI().hasConstructorVariants()) { 651 CXXCtorType OrigCtorType = GD.getCtorType(); 652 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 653 if (OrigCtorType == Ctor_Base) 654 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 655 } 656 } 657 658 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 659 if (!FoundStr.empty()) 660 return FoundStr; 661 662 const auto *ND = cast<NamedDecl>(GD.getDecl()); 663 SmallString<256> Buffer; 664 StringRef Str; 665 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 666 llvm::raw_svector_ostream Out(Buffer); 667 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 668 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 669 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 670 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 671 else 672 getCXXABI().getMangleContext().mangleName(ND, Out); 673 Str = Out.str(); 674 } else { 675 IdentifierInfo *II = ND->getIdentifier(); 676 assert(II && "Attempt to mangle unnamed decl."); 677 const auto *FD = dyn_cast<FunctionDecl>(ND); 678 679 if (FD && 680 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 681 llvm::raw_svector_ostream Out(Buffer); 682 Out << "__regcall3__" << II->getName(); 683 Str = Out.str(); 684 } else { 685 Str = II->getName(); 686 } 687 } 688 689 // Keep the first result in the case of a mangling collision. 690 auto Result = Manglings.insert(std::make_pair(Str, GD)); 691 return FoundStr = Result.first->first(); 692 } 693 694 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 695 const BlockDecl *BD) { 696 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 697 const Decl *D = GD.getDecl(); 698 699 SmallString<256> Buffer; 700 llvm::raw_svector_ostream Out(Buffer); 701 if (!D) 702 MangleCtx.mangleGlobalBlock(BD, 703 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 704 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 705 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 706 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 707 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 708 else 709 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 710 711 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 712 return Result.first->first(); 713 } 714 715 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 716 return getModule().getNamedValue(Name); 717 } 718 719 /// AddGlobalCtor - Add a function to the list that will be called before 720 /// main() runs. 721 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 722 llvm::Constant *AssociatedData) { 723 // FIXME: Type coercion of void()* types. 724 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 725 } 726 727 /// AddGlobalDtor - Add a function to the list that will be called 728 /// when the module is unloaded. 729 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 730 // FIXME: Type coercion of void()* types. 731 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 732 } 733 734 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 735 if (Fns.empty()) return; 736 737 // Ctor function type is void()*. 738 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 739 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 740 741 // Get the type of a ctor entry, { i32, void ()*, i8* }. 742 llvm::StructType *CtorStructTy = llvm::StructType::get( 743 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 744 745 // Construct the constructor and destructor arrays. 746 ConstantInitBuilder builder(*this); 747 auto ctors = builder.beginArray(CtorStructTy); 748 for (const auto &I : Fns) { 749 auto ctor = ctors.beginStruct(CtorStructTy); 750 ctor.addInt(Int32Ty, I.Priority); 751 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 752 if (I.AssociatedData) 753 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 754 else 755 ctor.addNullPointer(VoidPtrTy); 756 ctor.finishAndAddTo(ctors); 757 } 758 759 auto list = 760 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 761 /*constant*/ false, 762 llvm::GlobalValue::AppendingLinkage); 763 764 // The LTO linker doesn't seem to like it when we set an alignment 765 // on appending variables. Take it off as a workaround. 766 list->setAlignment(0); 767 768 Fns.clear(); 769 } 770 771 llvm::GlobalValue::LinkageTypes 772 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 773 const auto *D = cast<FunctionDecl>(GD.getDecl()); 774 775 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 776 777 if (isa<CXXDestructorDecl>(D) && 778 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 779 GD.getDtorType())) { 780 // Destructor variants in the Microsoft C++ ABI are always internal or 781 // linkonce_odr thunks emitted on an as-needed basis. 782 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 783 : llvm::GlobalValue::LinkOnceODRLinkage; 784 } 785 786 if (isa<CXXConstructorDecl>(D) && 787 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 788 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 789 // Our approach to inheriting constructors is fundamentally different from 790 // that used by the MS ABI, so keep our inheriting constructor thunks 791 // internal rather than trying to pick an unambiguous mangling for them. 792 return llvm::GlobalValue::InternalLinkage; 793 } 794 795 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 796 } 797 798 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 799 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 800 801 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 802 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 803 // Don't dllexport/import destructor thunks. 804 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 805 return; 806 } 807 } 808 809 if (FD->hasAttr<DLLImportAttr>()) 810 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 811 else if (FD->hasAttr<DLLExportAttr>()) 812 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 813 else 814 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 815 } 816 817 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 818 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 819 if (!MDS) return nullptr; 820 821 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 822 } 823 824 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 825 llvm::Function *F) { 826 setNonAliasAttributes(D, F); 827 } 828 829 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 830 const CGFunctionInfo &Info, 831 llvm::Function *F) { 832 unsigned CallingConv; 833 AttributeListType AttributeList; 834 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 835 false); 836 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 837 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 838 } 839 840 /// Determines whether the language options require us to model 841 /// unwind exceptions. We treat -fexceptions as mandating this 842 /// except under the fragile ObjC ABI with only ObjC exceptions 843 /// enabled. This means, for example, that C with -fexceptions 844 /// enables this. 845 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 846 // If exceptions are completely disabled, obviously this is false. 847 if (!LangOpts.Exceptions) return false; 848 849 // If C++ exceptions are enabled, this is true. 850 if (LangOpts.CXXExceptions) return true; 851 852 // If ObjC exceptions are enabled, this depends on the ABI. 853 if (LangOpts.ObjCExceptions) { 854 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 855 } 856 857 return true; 858 } 859 860 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 861 llvm::Function *F) { 862 llvm::AttrBuilder B; 863 864 if (CodeGenOpts.UnwindTables) 865 B.addAttribute(llvm::Attribute::UWTable); 866 867 if (!hasUnwindExceptions(LangOpts)) 868 B.addAttribute(llvm::Attribute::NoUnwind); 869 870 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 871 B.addAttribute(llvm::Attribute::StackProtect); 872 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 873 B.addAttribute(llvm::Attribute::StackProtectStrong); 874 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 875 B.addAttribute(llvm::Attribute::StackProtectReq); 876 877 if (!D) { 878 F->addAttributes(llvm::AttributeSet::FunctionIndex, 879 llvm::AttributeSet::get( 880 F->getContext(), 881 llvm::AttributeSet::FunctionIndex, B)); 882 return; 883 } 884 885 if (D->hasAttr<NakedAttr>()) { 886 // Naked implies noinline: we should not be inlining such functions. 887 B.addAttribute(llvm::Attribute::Naked); 888 B.addAttribute(llvm::Attribute::NoInline); 889 } else if (D->hasAttr<NoDuplicateAttr>()) { 890 B.addAttribute(llvm::Attribute::NoDuplicate); 891 } else if (D->hasAttr<NoInlineAttr>()) { 892 B.addAttribute(llvm::Attribute::NoInline); 893 } else if (D->hasAttr<AlwaysInlineAttr>() && 894 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 895 llvm::Attribute::NoInline)) { 896 // (noinline wins over always_inline, and we can't specify both in IR) 897 B.addAttribute(llvm::Attribute::AlwaysInline); 898 } 899 900 if (D->hasAttr<ColdAttr>()) { 901 if (!D->hasAttr<OptimizeNoneAttr>()) 902 B.addAttribute(llvm::Attribute::OptimizeForSize); 903 B.addAttribute(llvm::Attribute::Cold); 904 } 905 906 if (D->hasAttr<MinSizeAttr>()) 907 B.addAttribute(llvm::Attribute::MinSize); 908 909 F->addAttributes(llvm::AttributeSet::FunctionIndex, 910 llvm::AttributeSet::get( 911 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 912 913 if (D->hasAttr<OptimizeNoneAttr>()) { 914 // OptimizeNone implies noinline; we should not be inlining such functions. 915 F->addFnAttr(llvm::Attribute::OptimizeNone); 916 F->addFnAttr(llvm::Attribute::NoInline); 917 918 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 919 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 920 F->removeFnAttr(llvm::Attribute::MinSize); 921 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 922 "OptimizeNone and AlwaysInline on same function!"); 923 924 // Attribute 'inlinehint' has no effect on 'optnone' functions. 925 // Explicitly remove it from the set of function attributes. 926 F->removeFnAttr(llvm::Attribute::InlineHint); 927 } 928 929 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 930 if (alignment) 931 F->setAlignment(alignment); 932 933 // Some C++ ABIs require 2-byte alignment for member functions, in order to 934 // reserve a bit for differentiating between virtual and non-virtual member 935 // functions. If the current target's C++ ABI requires this and this is a 936 // member function, set its alignment accordingly. 937 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 938 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 939 F->setAlignment(2); 940 } 941 942 // In the cross-dso CFI mode, we want !type attributes on definitions only. 943 if (CodeGenOpts.SanitizeCfiCrossDso) 944 if (auto *FD = dyn_cast<FunctionDecl>(D)) 945 CreateFunctionTypeMetadata(FD, F); 946 } 947 948 void CodeGenModule::SetCommonAttributes(const Decl *D, 949 llvm::GlobalValue *GV) { 950 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 951 setGlobalVisibility(GV, ND); 952 else 953 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 954 955 if (D && D->hasAttr<UsedAttr>()) 956 addUsedGlobal(GV); 957 } 958 959 void CodeGenModule::setAliasAttributes(const Decl *D, 960 llvm::GlobalValue *GV) { 961 SetCommonAttributes(D, GV); 962 963 // Process the dllexport attribute based on whether the original definition 964 // (not necessarily the aliasee) was exported. 965 if (D->hasAttr<DLLExportAttr>()) 966 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 967 } 968 969 void CodeGenModule::setNonAliasAttributes(const Decl *D, 970 llvm::GlobalObject *GO) { 971 SetCommonAttributes(D, GO); 972 973 if (D) 974 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 975 GO->setSection(SA->getName()); 976 977 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 978 } 979 980 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 981 llvm::Function *F, 982 const CGFunctionInfo &FI) { 983 SetLLVMFunctionAttributes(D, FI, F); 984 SetLLVMFunctionAttributesForDefinition(D, F); 985 986 F->setLinkage(llvm::Function::InternalLinkage); 987 988 setNonAliasAttributes(D, F); 989 } 990 991 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 992 const NamedDecl *ND) { 993 // Set linkage and visibility in case we never see a definition. 994 LinkageInfo LV = ND->getLinkageAndVisibility(); 995 if (LV.getLinkage() != ExternalLinkage) { 996 // Don't set internal linkage on declarations. 997 } else { 998 if (ND->hasAttr<DLLImportAttr>()) { 999 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1000 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1001 } else if (ND->hasAttr<DLLExportAttr>()) { 1002 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1003 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1004 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1005 // "extern_weak" is overloaded in LLVM; we probably should have 1006 // separate linkage types for this. 1007 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1008 } 1009 1010 // Set visibility on a declaration only if it's explicit. 1011 if (LV.isVisibilityExplicit()) 1012 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1013 } 1014 } 1015 1016 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1017 llvm::Function *F) { 1018 // Only if we are checking indirect calls. 1019 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1020 return; 1021 1022 // Non-static class methods are handled via vtable pointer checks elsewhere. 1023 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1024 return; 1025 1026 // Additionally, if building with cross-DSO support... 1027 if (CodeGenOpts.SanitizeCfiCrossDso) { 1028 // Skip available_externally functions. They won't be codegen'ed in the 1029 // current module anyway. 1030 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1031 return; 1032 } 1033 1034 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1035 F->addTypeMetadata(0, MD); 1036 1037 // Emit a hash-based bit set entry for cross-DSO calls. 1038 if (CodeGenOpts.SanitizeCfiCrossDso) 1039 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1040 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1041 } 1042 1043 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1044 bool IsIncompleteFunction, 1045 bool IsThunk) { 1046 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1047 // If this is an intrinsic function, set the function's attributes 1048 // to the intrinsic's attributes. 1049 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1050 return; 1051 } 1052 1053 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1054 1055 if (!IsIncompleteFunction) 1056 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1057 1058 // Add the Returned attribute for "this", except for iOS 5 and earlier 1059 // where substantial code, including the libstdc++ dylib, was compiled with 1060 // GCC and does not actually return "this". 1061 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1062 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1063 assert(!F->arg_empty() && 1064 F->arg_begin()->getType() 1065 ->canLosslesslyBitCastTo(F->getReturnType()) && 1066 "unexpected this return"); 1067 F->addAttribute(1, llvm::Attribute::Returned); 1068 } 1069 1070 // Only a few attributes are set on declarations; these may later be 1071 // overridden by a definition. 1072 1073 setLinkageAndVisibilityForGV(F, FD); 1074 1075 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1076 F->setSection(SA->getName()); 1077 1078 if (FD->isReplaceableGlobalAllocationFunction()) { 1079 // A replaceable global allocation function does not act like a builtin by 1080 // default, only if it is invoked by a new-expression or delete-expression. 1081 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1082 llvm::Attribute::NoBuiltin); 1083 1084 // A sane operator new returns a non-aliasing pointer. 1085 // FIXME: Also add NonNull attribute to the return value 1086 // for the non-nothrow forms? 1087 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1088 if (getCodeGenOpts().AssumeSaneOperatorNew && 1089 (Kind == OO_New || Kind == OO_Array_New)) 1090 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1091 llvm::Attribute::NoAlias); 1092 } 1093 1094 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1095 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1096 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1097 if (MD->isVirtual()) 1098 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1099 1100 // Don't emit entries for function declarations in the cross-DSO mode. This 1101 // is handled with better precision by the receiving DSO. 1102 if (!CodeGenOpts.SanitizeCfiCrossDso) 1103 CreateFunctionTypeMetadata(FD, F); 1104 } 1105 1106 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1107 assert(!GV->isDeclaration() && 1108 "Only globals with definition can force usage."); 1109 LLVMUsed.emplace_back(GV); 1110 } 1111 1112 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1113 assert(!GV->isDeclaration() && 1114 "Only globals with definition can force usage."); 1115 LLVMCompilerUsed.emplace_back(GV); 1116 } 1117 1118 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1119 std::vector<llvm::WeakVH> &List) { 1120 // Don't create llvm.used if there is no need. 1121 if (List.empty()) 1122 return; 1123 1124 // Convert List to what ConstantArray needs. 1125 SmallVector<llvm::Constant*, 8> UsedArray; 1126 UsedArray.resize(List.size()); 1127 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1128 UsedArray[i] = 1129 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1130 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1131 } 1132 1133 if (UsedArray.empty()) 1134 return; 1135 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1136 1137 auto *GV = new llvm::GlobalVariable( 1138 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1139 llvm::ConstantArray::get(ATy, UsedArray), Name); 1140 1141 GV->setSection("llvm.metadata"); 1142 } 1143 1144 void CodeGenModule::emitLLVMUsed() { 1145 emitUsed(*this, "llvm.used", LLVMUsed); 1146 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1147 } 1148 1149 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1150 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1151 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1152 } 1153 1154 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1155 llvm::SmallString<32> Opt; 1156 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1157 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1158 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1159 } 1160 1161 void CodeGenModule::AddDependentLib(StringRef Lib) { 1162 llvm::SmallString<24> Opt; 1163 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1164 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1165 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1166 } 1167 1168 /// \brief Add link options implied by the given module, including modules 1169 /// it depends on, using a postorder walk. 1170 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1171 SmallVectorImpl<llvm::Metadata *> &Metadata, 1172 llvm::SmallPtrSet<Module *, 16> &Visited) { 1173 // Import this module's parent. 1174 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1175 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1176 } 1177 1178 // Import this module's dependencies. 1179 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1180 if (Visited.insert(Mod->Imports[I - 1]).second) 1181 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1182 } 1183 1184 // Add linker options to link against the libraries/frameworks 1185 // described by this module. 1186 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1187 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1188 // Link against a framework. Frameworks are currently Darwin only, so we 1189 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1190 if (Mod->LinkLibraries[I-1].IsFramework) { 1191 llvm::Metadata *Args[2] = { 1192 llvm::MDString::get(Context, "-framework"), 1193 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1194 1195 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1196 continue; 1197 } 1198 1199 // Link against a library. 1200 llvm::SmallString<24> Opt; 1201 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1202 Mod->LinkLibraries[I-1].Library, Opt); 1203 auto *OptString = llvm::MDString::get(Context, Opt); 1204 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1205 } 1206 } 1207 1208 void CodeGenModule::EmitModuleLinkOptions() { 1209 // Collect the set of all of the modules we want to visit to emit link 1210 // options, which is essentially the imported modules and all of their 1211 // non-explicit child modules. 1212 llvm::SetVector<clang::Module *> LinkModules; 1213 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1214 SmallVector<clang::Module *, 16> Stack; 1215 1216 // Seed the stack with imported modules. 1217 for (Module *M : ImportedModules) 1218 if (Visited.insert(M).second) 1219 Stack.push_back(M); 1220 1221 // Find all of the modules to import, making a little effort to prune 1222 // non-leaf modules. 1223 while (!Stack.empty()) { 1224 clang::Module *Mod = Stack.pop_back_val(); 1225 1226 bool AnyChildren = false; 1227 1228 // Visit the submodules of this module. 1229 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1230 SubEnd = Mod->submodule_end(); 1231 Sub != SubEnd; ++Sub) { 1232 // Skip explicit children; they need to be explicitly imported to be 1233 // linked against. 1234 if ((*Sub)->IsExplicit) 1235 continue; 1236 1237 if (Visited.insert(*Sub).second) { 1238 Stack.push_back(*Sub); 1239 AnyChildren = true; 1240 } 1241 } 1242 1243 // We didn't find any children, so add this module to the list of 1244 // modules to link against. 1245 if (!AnyChildren) { 1246 LinkModules.insert(Mod); 1247 } 1248 } 1249 1250 // Add link options for all of the imported modules in reverse topological 1251 // order. We don't do anything to try to order import link flags with respect 1252 // to linker options inserted by things like #pragma comment(). 1253 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1254 Visited.clear(); 1255 for (Module *M : LinkModules) 1256 if (Visited.insert(M).second) 1257 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1258 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1259 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1260 1261 // Add the linker options metadata flag. 1262 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1263 llvm::MDNode::get(getLLVMContext(), 1264 LinkerOptionsMetadata)); 1265 } 1266 1267 void CodeGenModule::EmitDeferred() { 1268 // Emit code for any potentially referenced deferred decls. Since a 1269 // previously unused static decl may become used during the generation of code 1270 // for a static function, iterate until no changes are made. 1271 1272 if (!DeferredVTables.empty()) { 1273 EmitDeferredVTables(); 1274 1275 // Emitting a vtable doesn't directly cause more vtables to 1276 // become deferred, although it can cause functions to be 1277 // emitted that then need those vtables. 1278 assert(DeferredVTables.empty()); 1279 } 1280 1281 // Stop if we're out of both deferred vtables and deferred declarations. 1282 if (DeferredDeclsToEmit.empty()) 1283 return; 1284 1285 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1286 // work, it will not interfere with this. 1287 std::vector<DeferredGlobal> CurDeclsToEmit; 1288 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1289 1290 for (DeferredGlobal &G : CurDeclsToEmit) { 1291 GlobalDecl D = G.GD; 1292 G.GV = nullptr; 1293 1294 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1295 // to get GlobalValue with exactly the type we need, not something that 1296 // might had been created for another decl with the same mangled name but 1297 // different type. 1298 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1299 GetAddrOfGlobal(D, ForDefinition)); 1300 1301 // In case of different address spaces, we may still get a cast, even with 1302 // IsForDefinition equal to true. Query mangled names table to get 1303 // GlobalValue. 1304 if (!GV) 1305 GV = GetGlobalValue(getMangledName(D)); 1306 1307 // Make sure GetGlobalValue returned non-null. 1308 assert(GV); 1309 1310 // Check to see if we've already emitted this. This is necessary 1311 // for a couple of reasons: first, decls can end up in the 1312 // deferred-decls queue multiple times, and second, decls can end 1313 // up with definitions in unusual ways (e.g. by an extern inline 1314 // function acquiring a strong function redefinition). Just 1315 // ignore these cases. 1316 if (!GV->isDeclaration()) 1317 continue; 1318 1319 // Otherwise, emit the definition and move on to the next one. 1320 EmitGlobalDefinition(D, GV); 1321 1322 // If we found out that we need to emit more decls, do that recursively. 1323 // This has the advantage that the decls are emitted in a DFS and related 1324 // ones are close together, which is convenient for testing. 1325 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1326 EmitDeferred(); 1327 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1328 } 1329 } 1330 } 1331 1332 void CodeGenModule::EmitGlobalAnnotations() { 1333 if (Annotations.empty()) 1334 return; 1335 1336 // Create a new global variable for the ConstantStruct in the Module. 1337 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1338 Annotations[0]->getType(), Annotations.size()), Annotations); 1339 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1340 llvm::GlobalValue::AppendingLinkage, 1341 Array, "llvm.global.annotations"); 1342 gv->setSection(AnnotationSection); 1343 } 1344 1345 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1346 llvm::Constant *&AStr = AnnotationStrings[Str]; 1347 if (AStr) 1348 return AStr; 1349 1350 // Not found yet, create a new global. 1351 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1352 auto *gv = 1353 new llvm::GlobalVariable(getModule(), s->getType(), true, 1354 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1355 gv->setSection(AnnotationSection); 1356 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1357 AStr = gv; 1358 return gv; 1359 } 1360 1361 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1362 SourceManager &SM = getContext().getSourceManager(); 1363 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1364 if (PLoc.isValid()) 1365 return EmitAnnotationString(PLoc.getFilename()); 1366 return EmitAnnotationString(SM.getBufferName(Loc)); 1367 } 1368 1369 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1370 SourceManager &SM = getContext().getSourceManager(); 1371 PresumedLoc PLoc = SM.getPresumedLoc(L); 1372 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1373 SM.getExpansionLineNumber(L); 1374 return llvm::ConstantInt::get(Int32Ty, LineNo); 1375 } 1376 1377 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1378 const AnnotateAttr *AA, 1379 SourceLocation L) { 1380 // Get the globals for file name, annotation, and the line number. 1381 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1382 *UnitGV = EmitAnnotationUnit(L), 1383 *LineNoCst = EmitAnnotationLineNo(L); 1384 1385 // Create the ConstantStruct for the global annotation. 1386 llvm::Constant *Fields[4] = { 1387 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1388 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1389 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1390 LineNoCst 1391 }; 1392 return llvm::ConstantStruct::getAnon(Fields); 1393 } 1394 1395 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1396 llvm::GlobalValue *GV) { 1397 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1398 // Get the struct elements for these annotations. 1399 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1400 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1401 } 1402 1403 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1404 SourceLocation Loc) const { 1405 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1406 // Blacklist by function name. 1407 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1408 return true; 1409 // Blacklist by location. 1410 if (Loc.isValid()) 1411 return SanitizerBL.isBlacklistedLocation(Loc); 1412 // If location is unknown, this may be a compiler-generated function. Assume 1413 // it's located in the main file. 1414 auto &SM = Context.getSourceManager(); 1415 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1416 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1417 } 1418 return false; 1419 } 1420 1421 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1422 SourceLocation Loc, QualType Ty, 1423 StringRef Category) const { 1424 // For now globals can be blacklisted only in ASan and KASan. 1425 if (!LangOpts.Sanitize.hasOneOf( 1426 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1427 return false; 1428 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1429 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1430 return true; 1431 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1432 return true; 1433 // Check global type. 1434 if (!Ty.isNull()) { 1435 // Drill down the array types: if global variable of a fixed type is 1436 // blacklisted, we also don't instrument arrays of them. 1437 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1438 Ty = AT->getElementType(); 1439 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1440 // We allow to blacklist only record types (classes, structs etc.) 1441 if (Ty->isRecordType()) { 1442 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1443 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1444 return true; 1445 } 1446 } 1447 return false; 1448 } 1449 1450 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1451 // Never defer when EmitAllDecls is specified. 1452 if (LangOpts.EmitAllDecls) 1453 return true; 1454 1455 return getContext().DeclMustBeEmitted(Global); 1456 } 1457 1458 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1459 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1460 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1461 // Implicit template instantiations may change linkage if they are later 1462 // explicitly instantiated, so they should not be emitted eagerly. 1463 return false; 1464 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1465 if (Context.getInlineVariableDefinitionKind(VD) == 1466 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1467 // A definition of an inline constexpr static data member may change 1468 // linkage later if it's redeclared outside the class. 1469 return false; 1470 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1471 // codegen for global variables, because they may be marked as threadprivate. 1472 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1473 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1474 return false; 1475 1476 return true; 1477 } 1478 1479 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1480 const CXXUuidofExpr* E) { 1481 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1482 // well-formed. 1483 StringRef Uuid = E->getUuidStr(); 1484 std::string Name = "_GUID_" + Uuid.lower(); 1485 std::replace(Name.begin(), Name.end(), '-', '_'); 1486 1487 // The UUID descriptor should be pointer aligned. 1488 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1489 1490 // Look for an existing global. 1491 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1492 return ConstantAddress(GV, Alignment); 1493 1494 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1495 assert(Init && "failed to initialize as constant"); 1496 1497 auto *GV = new llvm::GlobalVariable( 1498 getModule(), Init->getType(), 1499 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1500 if (supportsCOMDAT()) 1501 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1502 return ConstantAddress(GV, Alignment); 1503 } 1504 1505 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1506 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1507 assert(AA && "No alias?"); 1508 1509 CharUnits Alignment = getContext().getDeclAlign(VD); 1510 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1511 1512 // See if there is already something with the target's name in the module. 1513 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1514 if (Entry) { 1515 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1516 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1517 return ConstantAddress(Ptr, Alignment); 1518 } 1519 1520 llvm::Constant *Aliasee; 1521 if (isa<llvm::FunctionType>(DeclTy)) 1522 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1523 GlobalDecl(cast<FunctionDecl>(VD)), 1524 /*ForVTable=*/false); 1525 else 1526 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1527 llvm::PointerType::getUnqual(DeclTy), 1528 nullptr); 1529 1530 auto *F = cast<llvm::GlobalValue>(Aliasee); 1531 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1532 WeakRefReferences.insert(F); 1533 1534 return ConstantAddress(Aliasee, Alignment); 1535 } 1536 1537 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1538 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1539 1540 // Weak references don't produce any output by themselves. 1541 if (Global->hasAttr<WeakRefAttr>()) 1542 return; 1543 1544 // If this is an alias definition (which otherwise looks like a declaration) 1545 // emit it now. 1546 if (Global->hasAttr<AliasAttr>()) 1547 return EmitAliasDefinition(GD); 1548 1549 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1550 if (Global->hasAttr<IFuncAttr>()) 1551 return emitIFuncDefinition(GD); 1552 1553 // If this is CUDA, be selective about which declarations we emit. 1554 if (LangOpts.CUDA) { 1555 if (LangOpts.CUDAIsDevice) { 1556 if (!Global->hasAttr<CUDADeviceAttr>() && 1557 !Global->hasAttr<CUDAGlobalAttr>() && 1558 !Global->hasAttr<CUDAConstantAttr>() && 1559 !Global->hasAttr<CUDASharedAttr>()) 1560 return; 1561 } else { 1562 // We need to emit host-side 'shadows' for all global 1563 // device-side variables because the CUDA runtime needs their 1564 // size and host-side address in order to provide access to 1565 // their device-side incarnations. 1566 1567 // So device-only functions are the only things we skip. 1568 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1569 Global->hasAttr<CUDADeviceAttr>()) 1570 return; 1571 1572 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1573 "Expected Variable or Function"); 1574 } 1575 } 1576 1577 if (LangOpts.OpenMP) { 1578 // If this is OpenMP device, check if it is legal to emit this global 1579 // normally. 1580 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1581 return; 1582 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1583 if (MustBeEmitted(Global)) 1584 EmitOMPDeclareReduction(DRD); 1585 return; 1586 } 1587 } 1588 1589 // Ignore declarations, they will be emitted on their first use. 1590 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1591 // Forward declarations are emitted lazily on first use. 1592 if (!FD->doesThisDeclarationHaveABody()) { 1593 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1594 return; 1595 1596 StringRef MangledName = getMangledName(GD); 1597 1598 // Compute the function info and LLVM type. 1599 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1600 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1601 1602 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1603 /*DontDefer=*/false); 1604 return; 1605 } 1606 } else { 1607 const auto *VD = cast<VarDecl>(Global); 1608 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1609 // We need to emit device-side global CUDA variables even if a 1610 // variable does not have a definition -- we still need to define 1611 // host-side shadow for it. 1612 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1613 !VD->hasDefinition() && 1614 (VD->hasAttr<CUDAConstantAttr>() || 1615 VD->hasAttr<CUDADeviceAttr>()); 1616 if (!MustEmitForCuda && 1617 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1618 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1619 // If this declaration may have caused an inline variable definition to 1620 // change linkage, make sure that it's emitted. 1621 if (Context.getInlineVariableDefinitionKind(VD) == 1622 ASTContext::InlineVariableDefinitionKind::Strong) 1623 GetAddrOfGlobalVar(VD); 1624 return; 1625 } 1626 } 1627 1628 // Defer code generation to first use when possible, e.g. if this is an inline 1629 // function. If the global must always be emitted, do it eagerly if possible 1630 // to benefit from cache locality. 1631 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1632 // Emit the definition if it can't be deferred. 1633 EmitGlobalDefinition(GD); 1634 return; 1635 } 1636 1637 // If we're deferring emission of a C++ variable with an 1638 // initializer, remember the order in which it appeared in the file. 1639 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1640 cast<VarDecl>(Global)->hasInit()) { 1641 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1642 CXXGlobalInits.push_back(nullptr); 1643 } 1644 1645 StringRef MangledName = getMangledName(GD); 1646 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1647 // The value has already been used and should therefore be emitted. 1648 addDeferredDeclToEmit(GV, GD); 1649 } else if (MustBeEmitted(Global)) { 1650 // The value must be emitted, but cannot be emitted eagerly. 1651 assert(!MayBeEmittedEagerly(Global)); 1652 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1653 } else { 1654 // Otherwise, remember that we saw a deferred decl with this name. The 1655 // first use of the mangled name will cause it to move into 1656 // DeferredDeclsToEmit. 1657 DeferredDecls[MangledName] = GD; 1658 } 1659 } 1660 1661 namespace { 1662 struct FunctionIsDirectlyRecursive : 1663 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1664 const StringRef Name; 1665 const Builtin::Context &BI; 1666 bool Result; 1667 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1668 Name(N), BI(C), Result(false) { 1669 } 1670 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1671 1672 bool TraverseCallExpr(CallExpr *E) { 1673 const FunctionDecl *FD = E->getDirectCallee(); 1674 if (!FD) 1675 return true; 1676 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1677 if (Attr && Name == Attr->getLabel()) { 1678 Result = true; 1679 return false; 1680 } 1681 unsigned BuiltinID = FD->getBuiltinID(); 1682 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1683 return true; 1684 StringRef BuiltinName = BI.getName(BuiltinID); 1685 if (BuiltinName.startswith("__builtin_") && 1686 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1687 Result = true; 1688 return false; 1689 } 1690 return true; 1691 } 1692 }; 1693 1694 struct DLLImportFunctionVisitor 1695 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1696 bool SafeToInline = true; 1697 1698 bool shouldVisitImplicitCode() const { return true; } 1699 1700 bool VisitVarDecl(VarDecl *VD) { 1701 // A thread-local variable cannot be imported. 1702 SafeToInline = !VD->getTLSKind(); 1703 return SafeToInline; 1704 } 1705 1706 // Make sure we're not referencing non-imported vars or functions. 1707 bool VisitDeclRefExpr(DeclRefExpr *E) { 1708 ValueDecl *VD = E->getDecl(); 1709 if (isa<FunctionDecl>(VD)) 1710 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1711 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1712 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1713 return SafeToInline; 1714 } 1715 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1716 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1717 return SafeToInline; 1718 } 1719 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1720 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1721 return SafeToInline; 1722 } 1723 bool VisitCXXNewExpr(CXXNewExpr *E) { 1724 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1725 return SafeToInline; 1726 } 1727 }; 1728 } 1729 1730 // isTriviallyRecursive - Check if this function calls another 1731 // decl that, because of the asm attribute or the other decl being a builtin, 1732 // ends up pointing to itself. 1733 bool 1734 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1735 StringRef Name; 1736 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1737 // asm labels are a special kind of mangling we have to support. 1738 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1739 if (!Attr) 1740 return false; 1741 Name = Attr->getLabel(); 1742 } else { 1743 Name = FD->getName(); 1744 } 1745 1746 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1747 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1748 return Walker.Result; 1749 } 1750 1751 // Check if T is a class type with a destructor that's not dllimport. 1752 static bool HasNonDllImportDtor(QualType T) { 1753 if (const RecordType *RT = dyn_cast<RecordType>(T)) 1754 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1755 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1756 return true; 1757 1758 return false; 1759 } 1760 1761 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1762 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1763 return true; 1764 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1765 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1766 return false; 1767 1768 if (F->hasAttr<DLLImportAttr>()) { 1769 // Check whether it would be safe to inline this dllimport function. 1770 DLLImportFunctionVisitor Visitor; 1771 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1772 if (!Visitor.SafeToInline) 1773 return false; 1774 1775 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1776 // Implicit destructor invocations aren't captured in the AST, so the 1777 // check above can't see them. Check for them manually here. 1778 for (const Decl *Member : Dtor->getParent()->decls()) 1779 if (isa<FieldDecl>(Member)) 1780 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1781 return false; 1782 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1783 if (HasNonDllImportDtor(B.getType())) 1784 return false; 1785 } 1786 } 1787 1788 // PR9614. Avoid cases where the source code is lying to us. An available 1789 // externally function should have an equivalent function somewhere else, 1790 // but a function that calls itself is clearly not equivalent to the real 1791 // implementation. 1792 // This happens in glibc's btowc and in some configure checks. 1793 return !isTriviallyRecursive(F); 1794 } 1795 1796 /// If the type for the method's class was generated by 1797 /// CGDebugInfo::createContextChain(), the cache contains only a 1798 /// limited DIType without any declarations. Since EmitFunctionStart() 1799 /// needs to find the canonical declaration for each method, we need 1800 /// to construct the complete type prior to emitting the method. 1801 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1802 if (!D->isInstance()) 1803 return; 1804 1805 if (CGDebugInfo *DI = getModuleDebugInfo()) 1806 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1807 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1808 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1809 } 1810 } 1811 1812 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1813 const auto *D = cast<ValueDecl>(GD.getDecl()); 1814 1815 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1816 Context.getSourceManager(), 1817 "Generating code for declaration"); 1818 1819 if (isa<FunctionDecl>(D)) { 1820 // At -O0, don't generate IR for functions with available_externally 1821 // linkage. 1822 if (!shouldEmitFunction(GD)) 1823 return; 1824 1825 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1826 CompleteDIClassType(Method); 1827 // Make sure to emit the definition(s) before we emit the thunks. 1828 // This is necessary for the generation of certain thunks. 1829 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1830 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1831 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1832 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1833 else 1834 EmitGlobalFunctionDefinition(GD, GV); 1835 1836 if (Method->isVirtual()) 1837 getVTables().EmitThunks(GD); 1838 1839 return; 1840 } 1841 1842 return EmitGlobalFunctionDefinition(GD, GV); 1843 } 1844 1845 if (const auto *VD = dyn_cast<VarDecl>(D)) 1846 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1847 1848 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1849 } 1850 1851 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1852 llvm::Function *NewFn); 1853 1854 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1855 /// module, create and return an llvm Function with the specified type. If there 1856 /// is something in the module with the specified name, return it potentially 1857 /// bitcasted to the right type. 1858 /// 1859 /// If D is non-null, it specifies a decl that correspond to this. This is used 1860 /// to set the attributes on the function when it is first created. 1861 llvm::Constant * 1862 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1863 llvm::Type *Ty, 1864 GlobalDecl GD, bool ForVTable, 1865 bool DontDefer, bool IsThunk, 1866 llvm::AttributeSet ExtraAttrs, 1867 ForDefinition_t IsForDefinition) { 1868 const Decl *D = GD.getDecl(); 1869 1870 // Lookup the entry, lazily creating it if necessary. 1871 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1872 if (Entry) { 1873 if (WeakRefReferences.erase(Entry)) { 1874 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1875 if (FD && !FD->hasAttr<WeakAttr>()) 1876 Entry->setLinkage(llvm::Function::ExternalLinkage); 1877 } 1878 1879 // Handle dropped DLL attributes. 1880 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1881 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1882 1883 // If there are two attempts to define the same mangled name, issue an 1884 // error. 1885 if (IsForDefinition && !Entry->isDeclaration()) { 1886 GlobalDecl OtherGD; 1887 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1888 // to make sure that we issue an error only once. 1889 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1890 (GD.getCanonicalDecl().getDecl() != 1891 OtherGD.getCanonicalDecl().getDecl()) && 1892 DiagnosedConflictingDefinitions.insert(GD).second) { 1893 getDiags().Report(D->getLocation(), 1894 diag::err_duplicate_mangled_name); 1895 getDiags().Report(OtherGD.getDecl()->getLocation(), 1896 diag::note_previous_definition); 1897 } 1898 } 1899 1900 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1901 (Entry->getType()->getElementType() == Ty)) { 1902 return Entry; 1903 } 1904 1905 // Make sure the result is of the correct type. 1906 // (If function is requested for a definition, we always need to create a new 1907 // function, not just return a bitcast.) 1908 if (!IsForDefinition) 1909 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1910 } 1911 1912 // This function doesn't have a complete type (for example, the return 1913 // type is an incomplete struct). Use a fake type instead, and make 1914 // sure not to try to set attributes. 1915 bool IsIncompleteFunction = false; 1916 1917 llvm::FunctionType *FTy; 1918 if (isa<llvm::FunctionType>(Ty)) { 1919 FTy = cast<llvm::FunctionType>(Ty); 1920 } else { 1921 FTy = llvm::FunctionType::get(VoidTy, false); 1922 IsIncompleteFunction = true; 1923 } 1924 1925 llvm::Function *F = 1926 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1927 Entry ? StringRef() : MangledName, &getModule()); 1928 1929 // If we already created a function with the same mangled name (but different 1930 // type) before, take its name and add it to the list of functions to be 1931 // replaced with F at the end of CodeGen. 1932 // 1933 // This happens if there is a prototype for a function (e.g. "int f()") and 1934 // then a definition of a different type (e.g. "int f(int x)"). 1935 if (Entry) { 1936 F->takeName(Entry); 1937 1938 // This might be an implementation of a function without a prototype, in 1939 // which case, try to do special replacement of calls which match the new 1940 // prototype. The really key thing here is that we also potentially drop 1941 // arguments from the call site so as to make a direct call, which makes the 1942 // inliner happier and suppresses a number of optimizer warnings (!) about 1943 // dropping arguments. 1944 if (!Entry->use_empty()) { 1945 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1946 Entry->removeDeadConstantUsers(); 1947 } 1948 1949 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1950 F, Entry->getType()->getElementType()->getPointerTo()); 1951 addGlobalValReplacement(Entry, BC); 1952 } 1953 1954 assert(F->getName() == MangledName && "name was uniqued!"); 1955 if (D) 1956 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1957 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1958 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1959 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1960 llvm::AttributeSet::get(VMContext, 1961 llvm::AttributeSet::FunctionIndex, 1962 B)); 1963 } 1964 1965 if (!DontDefer) { 1966 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1967 // each other bottoming out with the base dtor. Therefore we emit non-base 1968 // dtors on usage, even if there is no dtor definition in the TU. 1969 if (D && isa<CXXDestructorDecl>(D) && 1970 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1971 GD.getDtorType())) 1972 addDeferredDeclToEmit(F, GD); 1973 1974 // This is the first use or definition of a mangled name. If there is a 1975 // deferred decl with this name, remember that we need to emit it at the end 1976 // of the file. 1977 auto DDI = DeferredDecls.find(MangledName); 1978 if (DDI != DeferredDecls.end()) { 1979 // Move the potentially referenced deferred decl to the 1980 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1981 // don't need it anymore). 1982 addDeferredDeclToEmit(F, DDI->second); 1983 DeferredDecls.erase(DDI); 1984 1985 // Otherwise, there are cases we have to worry about where we're 1986 // using a declaration for which we must emit a definition but where 1987 // we might not find a top-level definition: 1988 // - member functions defined inline in their classes 1989 // - friend functions defined inline in some class 1990 // - special member functions with implicit definitions 1991 // If we ever change our AST traversal to walk into class methods, 1992 // this will be unnecessary. 1993 // 1994 // We also don't emit a definition for a function if it's going to be an 1995 // entry in a vtable, unless it's already marked as used. 1996 } else if (getLangOpts().CPlusPlus && D) { 1997 // Look for a declaration that's lexically in a record. 1998 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1999 FD = FD->getPreviousDecl()) { 2000 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2001 if (FD->doesThisDeclarationHaveABody()) { 2002 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2003 break; 2004 } 2005 } 2006 } 2007 } 2008 } 2009 2010 // Make sure the result is of the requested type. 2011 if (!IsIncompleteFunction) { 2012 assert(F->getType()->getElementType() == Ty); 2013 return F; 2014 } 2015 2016 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2017 return llvm::ConstantExpr::getBitCast(F, PTy); 2018 } 2019 2020 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2021 /// non-null, then this function will use the specified type if it has to 2022 /// create it (this occurs when we see a definition of the function). 2023 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2024 llvm::Type *Ty, 2025 bool ForVTable, 2026 bool DontDefer, 2027 ForDefinition_t IsForDefinition) { 2028 // If there was no specific requested type, just convert it now. 2029 if (!Ty) { 2030 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2031 auto CanonTy = Context.getCanonicalType(FD->getType()); 2032 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2033 } 2034 2035 StringRef MangledName = getMangledName(GD); 2036 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2037 /*IsThunk=*/false, llvm::AttributeSet(), 2038 IsForDefinition); 2039 } 2040 2041 static const FunctionDecl * 2042 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2043 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2044 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2045 2046 IdentifierInfo &CII = C.Idents.get(Name); 2047 for (const auto &Result : DC->lookup(&CII)) 2048 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2049 return FD; 2050 2051 if (!C.getLangOpts().CPlusPlus) 2052 return nullptr; 2053 2054 // Demangle the premangled name from getTerminateFn() 2055 IdentifierInfo &CXXII = 2056 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2057 ? C.Idents.get("terminate") 2058 : C.Idents.get(Name); 2059 2060 for (const auto &N : {"__cxxabiv1", "std"}) { 2061 IdentifierInfo &NS = C.Idents.get(N); 2062 for (const auto &Result : DC->lookup(&NS)) { 2063 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2064 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2065 for (const auto &Result : LSD->lookup(&NS)) 2066 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2067 break; 2068 2069 if (ND) 2070 for (const auto &Result : ND->lookup(&CXXII)) 2071 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2072 return FD; 2073 } 2074 } 2075 2076 return nullptr; 2077 } 2078 2079 /// CreateRuntimeFunction - Create a new runtime function with the specified 2080 /// type and name. 2081 llvm::Constant * 2082 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2083 llvm::AttributeSet ExtraAttrs, 2084 bool Local) { 2085 llvm::Constant *C = 2086 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2087 /*DontDefer=*/false, /*IsThunk=*/false, 2088 ExtraAttrs); 2089 2090 if (auto *F = dyn_cast<llvm::Function>(C)) { 2091 if (F->empty()) { 2092 F->setCallingConv(getRuntimeCC()); 2093 2094 if (!Local && getTriple().isOSBinFormatCOFF() && 2095 !getCodeGenOpts().LTOVisibilityPublicStd) { 2096 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2097 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2098 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2099 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2100 } 2101 } 2102 } 2103 } 2104 2105 return C; 2106 } 2107 2108 /// CreateBuiltinFunction - Create a new builtin function with the specified 2109 /// type and name. 2110 llvm::Constant * 2111 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2112 StringRef Name, 2113 llvm::AttributeSet ExtraAttrs) { 2114 llvm::Constant *C = 2115 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2116 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2117 if (auto *F = dyn_cast<llvm::Function>(C)) 2118 if (F->empty()) 2119 F->setCallingConv(getBuiltinCC()); 2120 return C; 2121 } 2122 2123 /// isTypeConstant - Determine whether an object of this type can be emitted 2124 /// as a constant. 2125 /// 2126 /// If ExcludeCtor is true, the duration when the object's constructor runs 2127 /// will not be considered. The caller will need to verify that the object is 2128 /// not written to during its construction. 2129 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2130 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2131 return false; 2132 2133 if (Context.getLangOpts().CPlusPlus) { 2134 if (const CXXRecordDecl *Record 2135 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2136 return ExcludeCtor && !Record->hasMutableFields() && 2137 Record->hasTrivialDestructor(); 2138 } 2139 2140 return true; 2141 } 2142 2143 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2144 /// create and return an llvm GlobalVariable with the specified type. If there 2145 /// is something in the module with the specified name, return it potentially 2146 /// bitcasted to the right type. 2147 /// 2148 /// If D is non-null, it specifies a decl that correspond to this. This is used 2149 /// to set the attributes on the global when it is first created. 2150 /// 2151 /// If IsForDefinition is true, it is guranteed that an actual global with 2152 /// type Ty will be returned, not conversion of a variable with the same 2153 /// mangled name but some other type. 2154 llvm::Constant * 2155 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2156 llvm::PointerType *Ty, 2157 const VarDecl *D, 2158 ForDefinition_t IsForDefinition) { 2159 // Lookup the entry, lazily creating it if necessary. 2160 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2161 if (Entry) { 2162 if (WeakRefReferences.erase(Entry)) { 2163 if (D && !D->hasAttr<WeakAttr>()) 2164 Entry->setLinkage(llvm::Function::ExternalLinkage); 2165 } 2166 2167 // Handle dropped DLL attributes. 2168 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2169 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2170 2171 if (Entry->getType() == Ty) 2172 return Entry; 2173 2174 // If there are two attempts to define the same mangled name, issue an 2175 // error. 2176 if (IsForDefinition && !Entry->isDeclaration()) { 2177 GlobalDecl OtherGD; 2178 const VarDecl *OtherD; 2179 2180 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2181 // to make sure that we issue an error only once. 2182 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2183 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2184 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2185 OtherD->hasInit() && 2186 DiagnosedConflictingDefinitions.insert(D).second) { 2187 getDiags().Report(D->getLocation(), 2188 diag::err_duplicate_mangled_name); 2189 getDiags().Report(OtherGD.getDecl()->getLocation(), 2190 diag::note_previous_definition); 2191 } 2192 } 2193 2194 // Make sure the result is of the correct type. 2195 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2196 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2197 2198 // (If global is requested for a definition, we always need to create a new 2199 // global, not just return a bitcast.) 2200 if (!IsForDefinition) 2201 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2202 } 2203 2204 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2205 auto *GV = new llvm::GlobalVariable( 2206 getModule(), Ty->getElementType(), false, 2207 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2208 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2209 2210 // If we already created a global with the same mangled name (but different 2211 // type) before, take its name and remove it from its parent. 2212 if (Entry) { 2213 GV->takeName(Entry); 2214 2215 if (!Entry->use_empty()) { 2216 llvm::Constant *NewPtrForOldDecl = 2217 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2218 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2219 } 2220 2221 Entry->eraseFromParent(); 2222 } 2223 2224 // This is the first use or definition of a mangled name. If there is a 2225 // deferred decl with this name, remember that we need to emit it at the end 2226 // of the file. 2227 auto DDI = DeferredDecls.find(MangledName); 2228 if (DDI != DeferredDecls.end()) { 2229 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2230 // list, and remove it from DeferredDecls (since we don't need it anymore). 2231 addDeferredDeclToEmit(GV, DDI->second); 2232 DeferredDecls.erase(DDI); 2233 } 2234 2235 // Handle things which are present even on external declarations. 2236 if (D) { 2237 // FIXME: This code is overly simple and should be merged with other global 2238 // handling. 2239 GV->setConstant(isTypeConstant(D->getType(), false)); 2240 2241 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2242 2243 setLinkageAndVisibilityForGV(GV, D); 2244 2245 if (D->getTLSKind()) { 2246 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2247 CXXThreadLocals.push_back(D); 2248 setTLSMode(GV, *D); 2249 } 2250 2251 // If required by the ABI, treat declarations of static data members with 2252 // inline initializers as definitions. 2253 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2254 EmitGlobalVarDefinition(D); 2255 } 2256 2257 // Handle XCore specific ABI requirements. 2258 if (getTriple().getArch() == llvm::Triple::xcore && 2259 D->getLanguageLinkage() == CLanguageLinkage && 2260 D->getType().isConstant(Context) && 2261 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2262 GV->setSection(".cp.rodata"); 2263 } 2264 2265 if (AddrSpace != Ty->getAddressSpace()) 2266 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2267 2268 return GV; 2269 } 2270 2271 llvm::Constant * 2272 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2273 ForDefinition_t IsForDefinition) { 2274 if (isa<CXXConstructorDecl>(GD.getDecl())) 2275 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2276 getFromCtorType(GD.getCtorType()), 2277 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2278 /*DontDefer=*/false, IsForDefinition); 2279 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2280 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2281 getFromDtorType(GD.getDtorType()), 2282 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2283 /*DontDefer=*/false, IsForDefinition); 2284 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2285 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2286 cast<CXXMethodDecl>(GD.getDecl())); 2287 auto Ty = getTypes().GetFunctionType(*FInfo); 2288 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2289 IsForDefinition); 2290 } else if (isa<FunctionDecl>(GD.getDecl())) { 2291 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2292 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2293 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2294 IsForDefinition); 2295 } else 2296 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2297 IsForDefinition); 2298 } 2299 2300 llvm::GlobalVariable * 2301 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2302 llvm::Type *Ty, 2303 llvm::GlobalValue::LinkageTypes Linkage) { 2304 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2305 llvm::GlobalVariable *OldGV = nullptr; 2306 2307 if (GV) { 2308 // Check if the variable has the right type. 2309 if (GV->getType()->getElementType() == Ty) 2310 return GV; 2311 2312 // Because C++ name mangling, the only way we can end up with an already 2313 // existing global with the same name is if it has been declared extern "C". 2314 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2315 OldGV = GV; 2316 } 2317 2318 // Create a new variable. 2319 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2320 Linkage, nullptr, Name); 2321 2322 if (OldGV) { 2323 // Replace occurrences of the old variable if needed. 2324 GV->takeName(OldGV); 2325 2326 if (!OldGV->use_empty()) { 2327 llvm::Constant *NewPtrForOldDecl = 2328 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2329 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2330 } 2331 2332 OldGV->eraseFromParent(); 2333 } 2334 2335 if (supportsCOMDAT() && GV->isWeakForLinker() && 2336 !GV->hasAvailableExternallyLinkage()) 2337 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2338 2339 return GV; 2340 } 2341 2342 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2343 /// given global variable. If Ty is non-null and if the global doesn't exist, 2344 /// then it will be created with the specified type instead of whatever the 2345 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2346 /// that an actual global with type Ty will be returned, not conversion of a 2347 /// variable with the same mangled name but some other type. 2348 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2349 llvm::Type *Ty, 2350 ForDefinition_t IsForDefinition) { 2351 assert(D->hasGlobalStorage() && "Not a global variable"); 2352 QualType ASTTy = D->getType(); 2353 if (!Ty) 2354 Ty = getTypes().ConvertTypeForMem(ASTTy); 2355 2356 llvm::PointerType *PTy = 2357 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2358 2359 StringRef MangledName = getMangledName(D); 2360 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2361 } 2362 2363 /// CreateRuntimeVariable - Create a new runtime global variable with the 2364 /// specified type and name. 2365 llvm::Constant * 2366 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2367 StringRef Name) { 2368 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2369 } 2370 2371 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2372 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2373 2374 StringRef MangledName = getMangledName(D); 2375 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2376 2377 // We already have a definition, not declaration, with the same mangled name. 2378 // Emitting of declaration is not required (and actually overwrites emitted 2379 // definition). 2380 if (GV && !GV->isDeclaration()) 2381 return; 2382 2383 // If we have not seen a reference to this variable yet, place it into the 2384 // deferred declarations table to be emitted if needed later. 2385 if (!MustBeEmitted(D) && !GV) { 2386 DeferredDecls[MangledName] = D; 2387 return; 2388 } 2389 2390 // The tentative definition is the only definition. 2391 EmitGlobalVarDefinition(D); 2392 } 2393 2394 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2395 return Context.toCharUnitsFromBits( 2396 getDataLayout().getTypeStoreSizeInBits(Ty)); 2397 } 2398 2399 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2400 unsigned AddrSpace) { 2401 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2402 if (D->hasAttr<CUDAConstantAttr>()) 2403 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2404 else if (D->hasAttr<CUDASharedAttr>()) 2405 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2406 else 2407 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2408 } 2409 2410 return AddrSpace; 2411 } 2412 2413 template<typename SomeDecl> 2414 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2415 llvm::GlobalValue *GV) { 2416 if (!getLangOpts().CPlusPlus) 2417 return; 2418 2419 // Must have 'used' attribute, or else inline assembly can't rely on 2420 // the name existing. 2421 if (!D->template hasAttr<UsedAttr>()) 2422 return; 2423 2424 // Must have internal linkage and an ordinary name. 2425 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2426 return; 2427 2428 // Must be in an extern "C" context. Entities declared directly within 2429 // a record are not extern "C" even if the record is in such a context. 2430 const SomeDecl *First = D->getFirstDecl(); 2431 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2432 return; 2433 2434 // OK, this is an internal linkage entity inside an extern "C" linkage 2435 // specification. Make a note of that so we can give it the "expected" 2436 // mangled name if nothing else is using that name. 2437 std::pair<StaticExternCMap::iterator, bool> R = 2438 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2439 2440 // If we have multiple internal linkage entities with the same name 2441 // in extern "C" regions, none of them gets that name. 2442 if (!R.second) 2443 R.first->second = nullptr; 2444 } 2445 2446 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2447 if (!CGM.supportsCOMDAT()) 2448 return false; 2449 2450 if (D.hasAttr<SelectAnyAttr>()) 2451 return true; 2452 2453 GVALinkage Linkage; 2454 if (auto *VD = dyn_cast<VarDecl>(&D)) 2455 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2456 else 2457 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2458 2459 switch (Linkage) { 2460 case GVA_Internal: 2461 case GVA_AvailableExternally: 2462 case GVA_StrongExternal: 2463 return false; 2464 case GVA_DiscardableODR: 2465 case GVA_StrongODR: 2466 return true; 2467 } 2468 llvm_unreachable("No such linkage"); 2469 } 2470 2471 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2472 llvm::GlobalObject &GO) { 2473 if (!shouldBeInCOMDAT(*this, D)) 2474 return; 2475 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2476 } 2477 2478 /// Pass IsTentative as true if you want to create a tentative definition. 2479 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2480 bool IsTentative) { 2481 // OpenCL global variables of sampler type are translated to function calls, 2482 // therefore no need to be translated. 2483 QualType ASTTy = D->getType(); 2484 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2485 return; 2486 2487 llvm::Constant *Init = nullptr; 2488 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2489 bool NeedsGlobalCtor = false; 2490 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2491 2492 const VarDecl *InitDecl; 2493 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2494 2495 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2496 // as part of their declaration." Sema has already checked for 2497 // error cases, so we just need to set Init to UndefValue. 2498 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2499 D->hasAttr<CUDASharedAttr>()) 2500 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2501 else if (!InitExpr) { 2502 // This is a tentative definition; tentative definitions are 2503 // implicitly initialized with { 0 }. 2504 // 2505 // Note that tentative definitions are only emitted at the end of 2506 // a translation unit, so they should never have incomplete 2507 // type. In addition, EmitTentativeDefinition makes sure that we 2508 // never attempt to emit a tentative definition if a real one 2509 // exists. A use may still exists, however, so we still may need 2510 // to do a RAUW. 2511 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2512 Init = EmitNullConstant(D->getType()); 2513 } else { 2514 initializedGlobalDecl = GlobalDecl(D); 2515 Init = EmitConstantInit(*InitDecl); 2516 2517 if (!Init) { 2518 QualType T = InitExpr->getType(); 2519 if (D->getType()->isReferenceType()) 2520 T = D->getType(); 2521 2522 if (getLangOpts().CPlusPlus) { 2523 Init = EmitNullConstant(T); 2524 NeedsGlobalCtor = true; 2525 } else { 2526 ErrorUnsupported(D, "static initializer"); 2527 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2528 } 2529 } else { 2530 // We don't need an initializer, so remove the entry for the delayed 2531 // initializer position (just in case this entry was delayed) if we 2532 // also don't need to register a destructor. 2533 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2534 DelayedCXXInitPosition.erase(D); 2535 } 2536 } 2537 2538 llvm::Type* InitType = Init->getType(); 2539 llvm::Constant *Entry = 2540 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2541 2542 // Strip off a bitcast if we got one back. 2543 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2544 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2545 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2546 // All zero index gep. 2547 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2548 Entry = CE->getOperand(0); 2549 } 2550 2551 // Entry is now either a Function or GlobalVariable. 2552 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2553 2554 // We have a definition after a declaration with the wrong type. 2555 // We must make a new GlobalVariable* and update everything that used OldGV 2556 // (a declaration or tentative definition) with the new GlobalVariable* 2557 // (which will be a definition). 2558 // 2559 // This happens if there is a prototype for a global (e.g. 2560 // "extern int x[];") and then a definition of a different type (e.g. 2561 // "int x[10];"). This also happens when an initializer has a different type 2562 // from the type of the global (this happens with unions). 2563 if (!GV || 2564 GV->getType()->getElementType() != InitType || 2565 GV->getType()->getAddressSpace() != 2566 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2567 2568 // Move the old entry aside so that we'll create a new one. 2569 Entry->setName(StringRef()); 2570 2571 // Make a new global with the correct type, this is now guaranteed to work. 2572 GV = cast<llvm::GlobalVariable>( 2573 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2574 2575 // Replace all uses of the old global with the new global 2576 llvm::Constant *NewPtrForOldDecl = 2577 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2578 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2579 2580 // Erase the old global, since it is no longer used. 2581 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2582 } 2583 2584 MaybeHandleStaticInExternC(D, GV); 2585 2586 if (D->hasAttr<AnnotateAttr>()) 2587 AddGlobalAnnotations(D, GV); 2588 2589 // Set the llvm linkage type as appropriate. 2590 llvm::GlobalValue::LinkageTypes Linkage = 2591 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2592 2593 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2594 // the device. [...]" 2595 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2596 // __device__, declares a variable that: [...] 2597 // Is accessible from all the threads within the grid and from the host 2598 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2599 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2600 if (GV && LangOpts.CUDA) { 2601 if (LangOpts.CUDAIsDevice) { 2602 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2603 GV->setExternallyInitialized(true); 2604 } else { 2605 // Host-side shadows of external declarations of device-side 2606 // global variables become internal definitions. These have to 2607 // be internal in order to prevent name conflicts with global 2608 // host variables with the same name in a different TUs. 2609 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2610 Linkage = llvm::GlobalValue::InternalLinkage; 2611 2612 // Shadow variables and their properties must be registered 2613 // with CUDA runtime. 2614 unsigned Flags = 0; 2615 if (!D->hasDefinition()) 2616 Flags |= CGCUDARuntime::ExternDeviceVar; 2617 if (D->hasAttr<CUDAConstantAttr>()) 2618 Flags |= CGCUDARuntime::ConstantDeviceVar; 2619 getCUDARuntime().registerDeviceVar(*GV, Flags); 2620 } else if (D->hasAttr<CUDASharedAttr>()) 2621 // __shared__ variables are odd. Shadows do get created, but 2622 // they are not registered with the CUDA runtime, so they 2623 // can't really be used to access their device-side 2624 // counterparts. It's not clear yet whether it's nvcc's bug or 2625 // a feature, but we've got to do the same for compatibility. 2626 Linkage = llvm::GlobalValue::InternalLinkage; 2627 } 2628 } 2629 GV->setInitializer(Init); 2630 2631 // If it is safe to mark the global 'constant', do so now. 2632 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2633 isTypeConstant(D->getType(), true)); 2634 2635 // If it is in a read-only section, mark it 'constant'. 2636 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2637 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2638 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2639 GV->setConstant(true); 2640 } 2641 2642 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2643 2644 2645 // On Darwin, if the normal linkage of a C++ thread_local variable is 2646 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2647 // copies within a linkage unit; otherwise, the backing variable has 2648 // internal linkage and all accesses should just be calls to the 2649 // Itanium-specified entry point, which has the normal linkage of the 2650 // variable. This is to preserve the ability to change the implementation 2651 // behind the scenes. 2652 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2653 Context.getTargetInfo().getTriple().isOSDarwin() && 2654 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2655 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2656 Linkage = llvm::GlobalValue::InternalLinkage; 2657 2658 GV->setLinkage(Linkage); 2659 if (D->hasAttr<DLLImportAttr>()) 2660 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2661 else if (D->hasAttr<DLLExportAttr>()) 2662 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2663 else 2664 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2665 2666 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2667 // common vars aren't constant even if declared const. 2668 GV->setConstant(false); 2669 // Tentative definition of global variables may be initialized with 2670 // non-zero null pointers. In this case they should have weak linkage 2671 // since common linkage must have zero initializer and must not have 2672 // explicit section therefore cannot have non-zero initial value. 2673 if (!GV->getInitializer()->isNullValue()) 2674 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2675 } 2676 2677 setNonAliasAttributes(D, GV); 2678 2679 if (D->getTLSKind() && !GV->isThreadLocal()) { 2680 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2681 CXXThreadLocals.push_back(D); 2682 setTLSMode(GV, *D); 2683 } 2684 2685 maybeSetTrivialComdat(*D, *GV); 2686 2687 // Emit the initializer function if necessary. 2688 if (NeedsGlobalCtor || NeedsGlobalDtor) 2689 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2690 2691 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2692 2693 // Emit global variable debug information. 2694 if (CGDebugInfo *DI = getModuleDebugInfo()) 2695 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2696 DI->EmitGlobalVariable(GV, D); 2697 } 2698 2699 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2700 CodeGenModule &CGM, const VarDecl *D, 2701 bool NoCommon) { 2702 // Don't give variables common linkage if -fno-common was specified unless it 2703 // was overridden by a NoCommon attribute. 2704 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2705 return true; 2706 2707 // C11 6.9.2/2: 2708 // A declaration of an identifier for an object that has file scope without 2709 // an initializer, and without a storage-class specifier or with the 2710 // storage-class specifier static, constitutes a tentative definition. 2711 if (D->getInit() || D->hasExternalStorage()) 2712 return true; 2713 2714 // A variable cannot be both common and exist in a section. 2715 if (D->hasAttr<SectionAttr>()) 2716 return true; 2717 2718 // Thread local vars aren't considered common linkage. 2719 if (D->getTLSKind()) 2720 return true; 2721 2722 // Tentative definitions marked with WeakImportAttr are true definitions. 2723 if (D->hasAttr<WeakImportAttr>()) 2724 return true; 2725 2726 // A variable cannot be both common and exist in a comdat. 2727 if (shouldBeInCOMDAT(CGM, *D)) 2728 return true; 2729 2730 // Declarations with a required alignment do not have common linkage in MSVC 2731 // mode. 2732 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2733 if (D->hasAttr<AlignedAttr>()) 2734 return true; 2735 QualType VarType = D->getType(); 2736 if (Context.isAlignmentRequired(VarType)) 2737 return true; 2738 2739 if (const auto *RT = VarType->getAs<RecordType>()) { 2740 const RecordDecl *RD = RT->getDecl(); 2741 for (const FieldDecl *FD : RD->fields()) { 2742 if (FD->isBitField()) 2743 continue; 2744 if (FD->hasAttr<AlignedAttr>()) 2745 return true; 2746 if (Context.isAlignmentRequired(FD->getType())) 2747 return true; 2748 } 2749 } 2750 } 2751 2752 return false; 2753 } 2754 2755 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2756 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2757 if (Linkage == GVA_Internal) 2758 return llvm::Function::InternalLinkage; 2759 2760 if (D->hasAttr<WeakAttr>()) { 2761 if (IsConstantVariable) 2762 return llvm::GlobalVariable::WeakODRLinkage; 2763 else 2764 return llvm::GlobalVariable::WeakAnyLinkage; 2765 } 2766 2767 // We are guaranteed to have a strong definition somewhere else, 2768 // so we can use available_externally linkage. 2769 if (Linkage == GVA_AvailableExternally) 2770 return llvm::Function::AvailableExternallyLinkage; 2771 2772 // Note that Apple's kernel linker doesn't support symbol 2773 // coalescing, so we need to avoid linkonce and weak linkages there. 2774 // Normally, this means we just map to internal, but for explicit 2775 // instantiations we'll map to external. 2776 2777 // In C++, the compiler has to emit a definition in every translation unit 2778 // that references the function. We should use linkonce_odr because 2779 // a) if all references in this translation unit are optimized away, we 2780 // don't need to codegen it. b) if the function persists, it needs to be 2781 // merged with other definitions. c) C++ has the ODR, so we know the 2782 // definition is dependable. 2783 if (Linkage == GVA_DiscardableODR) 2784 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2785 : llvm::Function::InternalLinkage; 2786 2787 // An explicit instantiation of a template has weak linkage, since 2788 // explicit instantiations can occur in multiple translation units 2789 // and must all be equivalent. However, we are not allowed to 2790 // throw away these explicit instantiations. 2791 // 2792 // We don't currently support CUDA device code spread out across multiple TUs, 2793 // so say that CUDA templates are either external (for kernels) or internal. 2794 // This lets llvm perform aggressive inter-procedural optimizations. 2795 if (Linkage == GVA_StrongODR) { 2796 if (Context.getLangOpts().AppleKext) 2797 return llvm::Function::ExternalLinkage; 2798 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2799 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2800 : llvm::Function::InternalLinkage; 2801 return llvm::Function::WeakODRLinkage; 2802 } 2803 2804 // C++ doesn't have tentative definitions and thus cannot have common 2805 // linkage. 2806 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2807 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2808 CodeGenOpts.NoCommon)) 2809 return llvm::GlobalVariable::CommonLinkage; 2810 2811 // selectany symbols are externally visible, so use weak instead of 2812 // linkonce. MSVC optimizes away references to const selectany globals, so 2813 // all definitions should be the same and ODR linkage should be used. 2814 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2815 if (D->hasAttr<SelectAnyAttr>()) 2816 return llvm::GlobalVariable::WeakODRLinkage; 2817 2818 // Otherwise, we have strong external linkage. 2819 assert(Linkage == GVA_StrongExternal); 2820 return llvm::GlobalVariable::ExternalLinkage; 2821 } 2822 2823 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2824 const VarDecl *VD, bool IsConstant) { 2825 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2826 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2827 } 2828 2829 /// Replace the uses of a function that was declared with a non-proto type. 2830 /// We want to silently drop extra arguments from call sites 2831 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2832 llvm::Function *newFn) { 2833 // Fast path. 2834 if (old->use_empty()) return; 2835 2836 llvm::Type *newRetTy = newFn->getReturnType(); 2837 SmallVector<llvm::Value*, 4> newArgs; 2838 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2839 2840 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2841 ui != ue; ) { 2842 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2843 llvm::User *user = use->getUser(); 2844 2845 // Recognize and replace uses of bitcasts. Most calls to 2846 // unprototyped functions will use bitcasts. 2847 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2848 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2849 replaceUsesOfNonProtoConstant(bitcast, newFn); 2850 continue; 2851 } 2852 2853 // Recognize calls to the function. 2854 llvm::CallSite callSite(user); 2855 if (!callSite) continue; 2856 if (!callSite.isCallee(&*use)) continue; 2857 2858 // If the return types don't match exactly, then we can't 2859 // transform this call unless it's dead. 2860 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2861 continue; 2862 2863 // Get the call site's attribute list. 2864 SmallVector<llvm::AttributeSet, 8> newAttrs; 2865 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2866 2867 // Collect any return attributes from the call. 2868 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2869 newAttrs.push_back( 2870 llvm::AttributeSet::get(newFn->getContext(), 2871 oldAttrs.getRetAttributes())); 2872 2873 // If the function was passed too few arguments, don't transform. 2874 unsigned newNumArgs = newFn->arg_size(); 2875 if (callSite.arg_size() < newNumArgs) continue; 2876 2877 // If extra arguments were passed, we silently drop them. 2878 // If any of the types mismatch, we don't transform. 2879 unsigned argNo = 0; 2880 bool dontTransform = false; 2881 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2882 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2883 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2884 dontTransform = true; 2885 break; 2886 } 2887 2888 // Add any parameter attributes. 2889 if (oldAttrs.hasAttributes(argNo + 1)) 2890 newAttrs. 2891 push_back(llvm:: 2892 AttributeSet::get(newFn->getContext(), 2893 oldAttrs.getParamAttributes(argNo + 1))); 2894 } 2895 if (dontTransform) 2896 continue; 2897 2898 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2899 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2900 oldAttrs.getFnAttributes())); 2901 2902 // Okay, we can transform this. Create the new call instruction and copy 2903 // over the required information. 2904 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2905 2906 // Copy over any operand bundles. 2907 callSite.getOperandBundlesAsDefs(newBundles); 2908 2909 llvm::CallSite newCall; 2910 if (callSite.isCall()) { 2911 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2912 callSite.getInstruction()); 2913 } else { 2914 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2915 newCall = llvm::InvokeInst::Create(newFn, 2916 oldInvoke->getNormalDest(), 2917 oldInvoke->getUnwindDest(), 2918 newArgs, newBundles, "", 2919 callSite.getInstruction()); 2920 } 2921 newArgs.clear(); // for the next iteration 2922 2923 if (!newCall->getType()->isVoidTy()) 2924 newCall->takeName(callSite.getInstruction()); 2925 newCall.setAttributes( 2926 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2927 newCall.setCallingConv(callSite.getCallingConv()); 2928 2929 // Finally, remove the old call, replacing any uses with the new one. 2930 if (!callSite->use_empty()) 2931 callSite->replaceAllUsesWith(newCall.getInstruction()); 2932 2933 // Copy debug location attached to CI. 2934 if (callSite->getDebugLoc()) 2935 newCall->setDebugLoc(callSite->getDebugLoc()); 2936 2937 callSite->eraseFromParent(); 2938 } 2939 } 2940 2941 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2942 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2943 /// existing call uses of the old function in the module, this adjusts them to 2944 /// call the new function directly. 2945 /// 2946 /// This is not just a cleanup: the always_inline pass requires direct calls to 2947 /// functions to be able to inline them. If there is a bitcast in the way, it 2948 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2949 /// run at -O0. 2950 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2951 llvm::Function *NewFn) { 2952 // If we're redefining a global as a function, don't transform it. 2953 if (!isa<llvm::Function>(Old)) return; 2954 2955 replaceUsesOfNonProtoConstant(Old, NewFn); 2956 } 2957 2958 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2959 auto DK = VD->isThisDeclarationADefinition(); 2960 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2961 return; 2962 2963 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2964 // If we have a definition, this might be a deferred decl. If the 2965 // instantiation is explicit, make sure we emit it at the end. 2966 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2967 GetAddrOfGlobalVar(VD); 2968 2969 EmitTopLevelDecl(VD); 2970 } 2971 2972 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2973 llvm::GlobalValue *GV) { 2974 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2975 2976 // Compute the function info and LLVM type. 2977 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2978 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2979 2980 // Get or create the prototype for the function. 2981 if (!GV || (GV->getType()->getElementType() != Ty)) 2982 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2983 /*DontDefer=*/true, 2984 ForDefinition)); 2985 2986 // Already emitted. 2987 if (!GV->isDeclaration()) 2988 return; 2989 2990 // We need to set linkage and visibility on the function before 2991 // generating code for it because various parts of IR generation 2992 // want to propagate this information down (e.g. to local static 2993 // declarations). 2994 auto *Fn = cast<llvm::Function>(GV); 2995 setFunctionLinkage(GD, Fn); 2996 setFunctionDLLStorageClass(GD, Fn); 2997 2998 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2999 setGlobalVisibility(Fn, D); 3000 3001 MaybeHandleStaticInExternC(D, Fn); 3002 3003 maybeSetTrivialComdat(*D, *Fn); 3004 3005 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3006 3007 setFunctionDefinitionAttributes(D, Fn); 3008 SetLLVMFunctionAttributesForDefinition(D, Fn); 3009 3010 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3011 AddGlobalCtor(Fn, CA->getPriority()); 3012 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3013 AddGlobalDtor(Fn, DA->getPriority()); 3014 if (D->hasAttr<AnnotateAttr>()) 3015 AddGlobalAnnotations(D, Fn); 3016 } 3017 3018 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3019 const auto *D = cast<ValueDecl>(GD.getDecl()); 3020 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3021 assert(AA && "Not an alias?"); 3022 3023 StringRef MangledName = getMangledName(GD); 3024 3025 if (AA->getAliasee() == MangledName) { 3026 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3027 return; 3028 } 3029 3030 // If there is a definition in the module, then it wins over the alias. 3031 // This is dubious, but allow it to be safe. Just ignore the alias. 3032 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3033 if (Entry && !Entry->isDeclaration()) 3034 return; 3035 3036 Aliases.push_back(GD); 3037 3038 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3039 3040 // Create a reference to the named value. This ensures that it is emitted 3041 // if a deferred decl. 3042 llvm::Constant *Aliasee; 3043 if (isa<llvm::FunctionType>(DeclTy)) 3044 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3045 /*ForVTable=*/false); 3046 else 3047 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3048 llvm::PointerType::getUnqual(DeclTy), 3049 /*D=*/nullptr); 3050 3051 // Create the new alias itself, but don't set a name yet. 3052 auto *GA = llvm::GlobalAlias::create( 3053 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3054 3055 if (Entry) { 3056 if (GA->getAliasee() == Entry) { 3057 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3058 return; 3059 } 3060 3061 assert(Entry->isDeclaration()); 3062 3063 // If there is a declaration in the module, then we had an extern followed 3064 // by the alias, as in: 3065 // extern int test6(); 3066 // ... 3067 // int test6() __attribute__((alias("test7"))); 3068 // 3069 // Remove it and replace uses of it with the alias. 3070 GA->takeName(Entry); 3071 3072 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3073 Entry->getType())); 3074 Entry->eraseFromParent(); 3075 } else { 3076 GA->setName(MangledName); 3077 } 3078 3079 // Set attributes which are particular to an alias; this is a 3080 // specialization of the attributes which may be set on a global 3081 // variable/function. 3082 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3083 D->isWeakImported()) { 3084 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3085 } 3086 3087 if (const auto *VD = dyn_cast<VarDecl>(D)) 3088 if (VD->getTLSKind()) 3089 setTLSMode(GA, *VD); 3090 3091 setAliasAttributes(D, GA); 3092 } 3093 3094 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3095 const auto *D = cast<ValueDecl>(GD.getDecl()); 3096 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3097 assert(IFA && "Not an ifunc?"); 3098 3099 StringRef MangledName = getMangledName(GD); 3100 3101 if (IFA->getResolver() == MangledName) { 3102 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3103 return; 3104 } 3105 3106 // Report an error if some definition overrides ifunc. 3107 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3108 if (Entry && !Entry->isDeclaration()) { 3109 GlobalDecl OtherGD; 3110 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3111 DiagnosedConflictingDefinitions.insert(GD).second) { 3112 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3113 Diags.Report(OtherGD.getDecl()->getLocation(), 3114 diag::note_previous_definition); 3115 } 3116 return; 3117 } 3118 3119 Aliases.push_back(GD); 3120 3121 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3122 llvm::Constant *Resolver = 3123 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3124 /*ForVTable=*/false); 3125 llvm::GlobalIFunc *GIF = 3126 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3127 "", Resolver, &getModule()); 3128 if (Entry) { 3129 if (GIF->getResolver() == Entry) { 3130 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3131 return; 3132 } 3133 assert(Entry->isDeclaration()); 3134 3135 // If there is a declaration in the module, then we had an extern followed 3136 // by the ifunc, as in: 3137 // extern int test(); 3138 // ... 3139 // int test() __attribute__((ifunc("resolver"))); 3140 // 3141 // Remove it and replace uses of it with the ifunc. 3142 GIF->takeName(Entry); 3143 3144 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3145 Entry->getType())); 3146 Entry->eraseFromParent(); 3147 } else 3148 GIF->setName(MangledName); 3149 3150 SetCommonAttributes(D, GIF); 3151 } 3152 3153 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3154 ArrayRef<llvm::Type*> Tys) { 3155 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3156 Tys); 3157 } 3158 3159 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3160 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3161 const StringLiteral *Literal, bool TargetIsLSB, 3162 bool &IsUTF16, unsigned &StringLength) { 3163 StringRef String = Literal->getString(); 3164 unsigned NumBytes = String.size(); 3165 3166 // Check for simple case. 3167 if (!Literal->containsNonAsciiOrNull()) { 3168 StringLength = NumBytes; 3169 return *Map.insert(std::make_pair(String, nullptr)).first; 3170 } 3171 3172 // Otherwise, convert the UTF8 literals into a string of shorts. 3173 IsUTF16 = true; 3174 3175 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3176 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3177 llvm::UTF16 *ToPtr = &ToBuf[0]; 3178 3179 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3180 ToPtr + NumBytes, llvm::strictConversion); 3181 3182 // ConvertUTF8toUTF16 returns the length in ToPtr. 3183 StringLength = ToPtr - &ToBuf[0]; 3184 3185 // Add an explicit null. 3186 *ToPtr = 0; 3187 return *Map.insert(std::make_pair( 3188 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3189 (StringLength + 1) * 2), 3190 nullptr)).first; 3191 } 3192 3193 ConstantAddress 3194 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3195 unsigned StringLength = 0; 3196 bool isUTF16 = false; 3197 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3198 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3199 getDataLayout().isLittleEndian(), isUTF16, 3200 StringLength); 3201 3202 if (auto *C = Entry.second) 3203 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3204 3205 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3206 llvm::Constant *Zeros[] = { Zero, Zero }; 3207 3208 // If we don't already have it, get __CFConstantStringClassReference. 3209 if (!CFConstantStringClassRef) { 3210 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3211 Ty = llvm::ArrayType::get(Ty, 0); 3212 llvm::Constant *GV = 3213 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3214 3215 if (getTriple().isOSBinFormatCOFF()) { 3216 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3217 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3218 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3219 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3220 3221 const VarDecl *VD = nullptr; 3222 for (const auto &Result : DC->lookup(&II)) 3223 if ((VD = dyn_cast<VarDecl>(Result))) 3224 break; 3225 3226 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3227 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3228 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3229 } else { 3230 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3231 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3232 } 3233 } 3234 3235 // Decay array -> ptr 3236 CFConstantStringClassRef = 3237 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3238 } 3239 3240 QualType CFTy = getContext().getCFConstantStringType(); 3241 3242 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3243 3244 ConstantInitBuilder Builder(*this); 3245 auto Fields = Builder.beginStruct(STy); 3246 3247 // Class pointer. 3248 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3249 3250 // Flags. 3251 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3252 3253 // String pointer. 3254 llvm::Constant *C = nullptr; 3255 if (isUTF16) { 3256 auto Arr = llvm::makeArrayRef( 3257 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3258 Entry.first().size() / 2); 3259 C = llvm::ConstantDataArray::get(VMContext, Arr); 3260 } else { 3261 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3262 } 3263 3264 // Note: -fwritable-strings doesn't make the backing store strings of 3265 // CFStrings writable. (See <rdar://problem/10657500>) 3266 auto *GV = 3267 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3268 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3269 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3270 // Don't enforce the target's minimum global alignment, since the only use 3271 // of the string is via this class initializer. 3272 CharUnits Align = isUTF16 3273 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3274 : getContext().getTypeAlignInChars(getContext().CharTy); 3275 GV->setAlignment(Align.getQuantity()); 3276 3277 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3278 // Without it LLVM can merge the string with a non unnamed_addr one during 3279 // LTO. Doing that changes the section it ends in, which surprises ld64. 3280 if (getTriple().isOSBinFormatMachO()) 3281 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3282 : "__TEXT,__cstring,cstring_literals"); 3283 3284 // String. 3285 llvm::Constant *Str = 3286 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3287 3288 if (isUTF16) 3289 // Cast the UTF16 string to the correct type. 3290 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3291 Fields.add(Str); 3292 3293 // String length. 3294 auto Ty = getTypes().ConvertType(getContext().LongTy); 3295 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3296 3297 CharUnits Alignment = getPointerAlign(); 3298 3299 // The struct. 3300 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3301 /*isConstant=*/false, 3302 llvm::GlobalVariable::PrivateLinkage); 3303 switch (getTriple().getObjectFormat()) { 3304 case llvm::Triple::UnknownObjectFormat: 3305 llvm_unreachable("unknown file format"); 3306 case llvm::Triple::COFF: 3307 case llvm::Triple::ELF: 3308 GV->setSection("cfstring"); 3309 break; 3310 case llvm::Triple::MachO: 3311 GV->setSection("__DATA,__cfstring"); 3312 break; 3313 } 3314 Entry.second = GV; 3315 3316 return ConstantAddress(GV, Alignment); 3317 } 3318 3319 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3320 if (ObjCFastEnumerationStateType.isNull()) { 3321 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3322 D->startDefinition(); 3323 3324 QualType FieldTypes[] = { 3325 Context.UnsignedLongTy, 3326 Context.getPointerType(Context.getObjCIdType()), 3327 Context.getPointerType(Context.UnsignedLongTy), 3328 Context.getConstantArrayType(Context.UnsignedLongTy, 3329 llvm::APInt(32, 5), ArrayType::Normal, 0) 3330 }; 3331 3332 for (size_t i = 0; i < 4; ++i) { 3333 FieldDecl *Field = FieldDecl::Create(Context, 3334 D, 3335 SourceLocation(), 3336 SourceLocation(), nullptr, 3337 FieldTypes[i], /*TInfo=*/nullptr, 3338 /*BitWidth=*/nullptr, 3339 /*Mutable=*/false, 3340 ICIS_NoInit); 3341 Field->setAccess(AS_public); 3342 D->addDecl(Field); 3343 } 3344 3345 D->completeDefinition(); 3346 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3347 } 3348 3349 return ObjCFastEnumerationStateType; 3350 } 3351 3352 llvm::Constant * 3353 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3354 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3355 3356 // Don't emit it as the address of the string, emit the string data itself 3357 // as an inline array. 3358 if (E->getCharByteWidth() == 1) { 3359 SmallString<64> Str(E->getString()); 3360 3361 // Resize the string to the right size, which is indicated by its type. 3362 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3363 Str.resize(CAT->getSize().getZExtValue()); 3364 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3365 } 3366 3367 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3368 llvm::Type *ElemTy = AType->getElementType(); 3369 unsigned NumElements = AType->getNumElements(); 3370 3371 // Wide strings have either 2-byte or 4-byte elements. 3372 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3373 SmallVector<uint16_t, 32> Elements; 3374 Elements.reserve(NumElements); 3375 3376 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3377 Elements.push_back(E->getCodeUnit(i)); 3378 Elements.resize(NumElements); 3379 return llvm::ConstantDataArray::get(VMContext, Elements); 3380 } 3381 3382 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3383 SmallVector<uint32_t, 32> Elements; 3384 Elements.reserve(NumElements); 3385 3386 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3387 Elements.push_back(E->getCodeUnit(i)); 3388 Elements.resize(NumElements); 3389 return llvm::ConstantDataArray::get(VMContext, Elements); 3390 } 3391 3392 static llvm::GlobalVariable * 3393 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3394 CodeGenModule &CGM, StringRef GlobalName, 3395 CharUnits Alignment) { 3396 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3397 unsigned AddrSpace = 0; 3398 if (CGM.getLangOpts().OpenCL) 3399 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3400 3401 llvm::Module &M = CGM.getModule(); 3402 // Create a global variable for this string 3403 auto *GV = new llvm::GlobalVariable( 3404 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3405 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3406 GV->setAlignment(Alignment.getQuantity()); 3407 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3408 if (GV->isWeakForLinker()) { 3409 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3410 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3411 } 3412 3413 return GV; 3414 } 3415 3416 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3417 /// constant array for the given string literal. 3418 ConstantAddress 3419 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3420 StringRef Name) { 3421 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3422 3423 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3424 llvm::GlobalVariable **Entry = nullptr; 3425 if (!LangOpts.WritableStrings) { 3426 Entry = &ConstantStringMap[C]; 3427 if (auto GV = *Entry) { 3428 if (Alignment.getQuantity() > GV->getAlignment()) 3429 GV->setAlignment(Alignment.getQuantity()); 3430 return ConstantAddress(GV, Alignment); 3431 } 3432 } 3433 3434 SmallString<256> MangledNameBuffer; 3435 StringRef GlobalVariableName; 3436 llvm::GlobalValue::LinkageTypes LT; 3437 3438 // Mangle the string literal if the ABI allows for it. However, we cannot 3439 // do this if we are compiling with ASan or -fwritable-strings because they 3440 // rely on strings having normal linkage. 3441 if (!LangOpts.WritableStrings && 3442 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3443 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3444 llvm::raw_svector_ostream Out(MangledNameBuffer); 3445 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3446 3447 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3448 GlobalVariableName = MangledNameBuffer; 3449 } else { 3450 LT = llvm::GlobalValue::PrivateLinkage; 3451 GlobalVariableName = Name; 3452 } 3453 3454 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3455 if (Entry) 3456 *Entry = GV; 3457 3458 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3459 QualType()); 3460 return ConstantAddress(GV, Alignment); 3461 } 3462 3463 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3464 /// array for the given ObjCEncodeExpr node. 3465 ConstantAddress 3466 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3467 std::string Str; 3468 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3469 3470 return GetAddrOfConstantCString(Str); 3471 } 3472 3473 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3474 /// the literal and a terminating '\0' character. 3475 /// The result has pointer to array type. 3476 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3477 const std::string &Str, const char *GlobalName) { 3478 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3479 CharUnits Alignment = 3480 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3481 3482 llvm::Constant *C = 3483 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3484 3485 // Don't share any string literals if strings aren't constant. 3486 llvm::GlobalVariable **Entry = nullptr; 3487 if (!LangOpts.WritableStrings) { 3488 Entry = &ConstantStringMap[C]; 3489 if (auto GV = *Entry) { 3490 if (Alignment.getQuantity() > GV->getAlignment()) 3491 GV->setAlignment(Alignment.getQuantity()); 3492 return ConstantAddress(GV, Alignment); 3493 } 3494 } 3495 3496 // Get the default prefix if a name wasn't specified. 3497 if (!GlobalName) 3498 GlobalName = ".str"; 3499 // Create a global variable for this. 3500 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3501 GlobalName, Alignment); 3502 if (Entry) 3503 *Entry = GV; 3504 return ConstantAddress(GV, Alignment); 3505 } 3506 3507 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3508 const MaterializeTemporaryExpr *E, const Expr *Init) { 3509 assert((E->getStorageDuration() == SD_Static || 3510 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3511 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3512 3513 // If we're not materializing a subobject of the temporary, keep the 3514 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3515 QualType MaterializedType = Init->getType(); 3516 if (Init == E->GetTemporaryExpr()) 3517 MaterializedType = E->getType(); 3518 3519 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3520 3521 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3522 return ConstantAddress(Slot, Align); 3523 3524 // FIXME: If an externally-visible declaration extends multiple temporaries, 3525 // we need to give each temporary the same name in every translation unit (and 3526 // we also need to make the temporaries externally-visible). 3527 SmallString<256> Name; 3528 llvm::raw_svector_ostream Out(Name); 3529 getCXXABI().getMangleContext().mangleReferenceTemporary( 3530 VD, E->getManglingNumber(), Out); 3531 3532 APValue *Value = nullptr; 3533 if (E->getStorageDuration() == SD_Static) { 3534 // We might have a cached constant initializer for this temporary. Note 3535 // that this might have a different value from the value computed by 3536 // evaluating the initializer if the surrounding constant expression 3537 // modifies the temporary. 3538 Value = getContext().getMaterializedTemporaryValue(E, false); 3539 if (Value && Value->isUninit()) 3540 Value = nullptr; 3541 } 3542 3543 // Try evaluating it now, it might have a constant initializer. 3544 Expr::EvalResult EvalResult; 3545 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3546 !EvalResult.hasSideEffects()) 3547 Value = &EvalResult.Val; 3548 3549 llvm::Constant *InitialValue = nullptr; 3550 bool Constant = false; 3551 llvm::Type *Type; 3552 if (Value) { 3553 // The temporary has a constant initializer, use it. 3554 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3555 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3556 Type = InitialValue->getType(); 3557 } else { 3558 // No initializer, the initialization will be provided when we 3559 // initialize the declaration which performed lifetime extension. 3560 Type = getTypes().ConvertTypeForMem(MaterializedType); 3561 } 3562 3563 // Create a global variable for this lifetime-extended temporary. 3564 llvm::GlobalValue::LinkageTypes Linkage = 3565 getLLVMLinkageVarDefinition(VD, Constant); 3566 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3567 const VarDecl *InitVD; 3568 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3569 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3570 // Temporaries defined inside a class get linkonce_odr linkage because the 3571 // class can be defined in multipe translation units. 3572 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3573 } else { 3574 // There is no need for this temporary to have external linkage if the 3575 // VarDecl has external linkage. 3576 Linkage = llvm::GlobalVariable::InternalLinkage; 3577 } 3578 } 3579 unsigned AddrSpace = GetGlobalVarAddressSpace( 3580 VD, getContext().getTargetAddressSpace(MaterializedType)); 3581 auto *GV = new llvm::GlobalVariable( 3582 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3583 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3584 AddrSpace); 3585 setGlobalVisibility(GV, VD); 3586 GV->setAlignment(Align.getQuantity()); 3587 if (supportsCOMDAT() && GV->isWeakForLinker()) 3588 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3589 if (VD->getTLSKind()) 3590 setTLSMode(GV, *VD); 3591 MaterializedGlobalTemporaryMap[E] = GV; 3592 return ConstantAddress(GV, Align); 3593 } 3594 3595 /// EmitObjCPropertyImplementations - Emit information for synthesized 3596 /// properties for an implementation. 3597 void CodeGenModule::EmitObjCPropertyImplementations(const 3598 ObjCImplementationDecl *D) { 3599 for (const auto *PID : D->property_impls()) { 3600 // Dynamic is just for type-checking. 3601 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3602 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3603 3604 // Determine which methods need to be implemented, some may have 3605 // been overridden. Note that ::isPropertyAccessor is not the method 3606 // we want, that just indicates if the decl came from a 3607 // property. What we want to know is if the method is defined in 3608 // this implementation. 3609 if (!D->getInstanceMethod(PD->getGetterName())) 3610 CodeGenFunction(*this).GenerateObjCGetter( 3611 const_cast<ObjCImplementationDecl *>(D), PID); 3612 if (!PD->isReadOnly() && 3613 !D->getInstanceMethod(PD->getSetterName())) 3614 CodeGenFunction(*this).GenerateObjCSetter( 3615 const_cast<ObjCImplementationDecl *>(D), PID); 3616 } 3617 } 3618 } 3619 3620 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3621 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3622 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3623 ivar; ivar = ivar->getNextIvar()) 3624 if (ivar->getType().isDestructedType()) 3625 return true; 3626 3627 return false; 3628 } 3629 3630 static bool AllTrivialInitializers(CodeGenModule &CGM, 3631 ObjCImplementationDecl *D) { 3632 CodeGenFunction CGF(CGM); 3633 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3634 E = D->init_end(); B != E; ++B) { 3635 CXXCtorInitializer *CtorInitExp = *B; 3636 Expr *Init = CtorInitExp->getInit(); 3637 if (!CGF.isTrivialInitializer(Init)) 3638 return false; 3639 } 3640 return true; 3641 } 3642 3643 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3644 /// for an implementation. 3645 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3646 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3647 if (needsDestructMethod(D)) { 3648 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3649 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3650 ObjCMethodDecl *DTORMethod = 3651 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3652 cxxSelector, getContext().VoidTy, nullptr, D, 3653 /*isInstance=*/true, /*isVariadic=*/false, 3654 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3655 /*isDefined=*/false, ObjCMethodDecl::Required); 3656 D->addInstanceMethod(DTORMethod); 3657 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3658 D->setHasDestructors(true); 3659 } 3660 3661 // If the implementation doesn't have any ivar initializers, we don't need 3662 // a .cxx_construct. 3663 if (D->getNumIvarInitializers() == 0 || 3664 AllTrivialInitializers(*this, D)) 3665 return; 3666 3667 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3668 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3669 // The constructor returns 'self'. 3670 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3671 D->getLocation(), 3672 D->getLocation(), 3673 cxxSelector, 3674 getContext().getObjCIdType(), 3675 nullptr, D, /*isInstance=*/true, 3676 /*isVariadic=*/false, 3677 /*isPropertyAccessor=*/true, 3678 /*isImplicitlyDeclared=*/true, 3679 /*isDefined=*/false, 3680 ObjCMethodDecl::Required); 3681 D->addInstanceMethod(CTORMethod); 3682 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3683 D->setHasNonZeroConstructors(true); 3684 } 3685 3686 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3687 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3688 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3689 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3690 ErrorUnsupported(LSD, "linkage spec"); 3691 return; 3692 } 3693 3694 EmitDeclContext(LSD); 3695 } 3696 3697 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3698 for (auto *I : DC->decls()) { 3699 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3700 // are themselves considered "top-level", so EmitTopLevelDecl on an 3701 // ObjCImplDecl does not recursively visit them. We need to do that in 3702 // case they're nested inside another construct (LinkageSpecDecl / 3703 // ExportDecl) that does stop them from being considered "top-level". 3704 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3705 for (auto *M : OID->methods()) 3706 EmitTopLevelDecl(M); 3707 } 3708 3709 EmitTopLevelDecl(I); 3710 } 3711 } 3712 3713 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3714 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3715 // Ignore dependent declarations. 3716 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3717 return; 3718 3719 switch (D->getKind()) { 3720 case Decl::CXXConversion: 3721 case Decl::CXXMethod: 3722 case Decl::Function: 3723 // Skip function templates 3724 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3725 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3726 return; 3727 3728 EmitGlobal(cast<FunctionDecl>(D)); 3729 // Always provide some coverage mapping 3730 // even for the functions that aren't emitted. 3731 AddDeferredUnusedCoverageMapping(D); 3732 break; 3733 3734 case Decl::Var: 3735 case Decl::Decomposition: 3736 // Skip variable templates 3737 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3738 return; 3739 case Decl::VarTemplateSpecialization: 3740 EmitGlobal(cast<VarDecl>(D)); 3741 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3742 for (auto *B : DD->bindings()) 3743 if (auto *HD = B->getHoldingVar()) 3744 EmitGlobal(HD); 3745 break; 3746 3747 // Indirect fields from global anonymous structs and unions can be 3748 // ignored; only the actual variable requires IR gen support. 3749 case Decl::IndirectField: 3750 break; 3751 3752 // C++ Decls 3753 case Decl::Namespace: 3754 EmitDeclContext(cast<NamespaceDecl>(D)); 3755 break; 3756 case Decl::CXXRecord: 3757 // Emit any static data members, they may be definitions. 3758 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3759 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3760 EmitTopLevelDecl(I); 3761 break; 3762 // No code generation needed. 3763 case Decl::UsingShadow: 3764 case Decl::ClassTemplate: 3765 case Decl::VarTemplate: 3766 case Decl::VarTemplatePartialSpecialization: 3767 case Decl::FunctionTemplate: 3768 case Decl::TypeAliasTemplate: 3769 case Decl::Block: 3770 case Decl::Empty: 3771 break; 3772 case Decl::Using: // using X; [C++] 3773 if (CGDebugInfo *DI = getModuleDebugInfo()) 3774 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3775 return; 3776 case Decl::NamespaceAlias: 3777 if (CGDebugInfo *DI = getModuleDebugInfo()) 3778 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3779 return; 3780 case Decl::UsingDirective: // using namespace X; [C++] 3781 if (CGDebugInfo *DI = getModuleDebugInfo()) 3782 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3783 return; 3784 case Decl::CXXConstructor: 3785 // Skip function templates 3786 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3787 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3788 return; 3789 3790 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3791 break; 3792 case Decl::CXXDestructor: 3793 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3794 return; 3795 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3796 break; 3797 3798 case Decl::StaticAssert: 3799 // Nothing to do. 3800 break; 3801 3802 // Objective-C Decls 3803 3804 // Forward declarations, no (immediate) code generation. 3805 case Decl::ObjCInterface: 3806 case Decl::ObjCCategory: 3807 break; 3808 3809 case Decl::ObjCProtocol: { 3810 auto *Proto = cast<ObjCProtocolDecl>(D); 3811 if (Proto->isThisDeclarationADefinition()) 3812 ObjCRuntime->GenerateProtocol(Proto); 3813 break; 3814 } 3815 3816 case Decl::ObjCCategoryImpl: 3817 // Categories have properties but don't support synthesize so we 3818 // can ignore them here. 3819 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3820 break; 3821 3822 case Decl::ObjCImplementation: { 3823 auto *OMD = cast<ObjCImplementationDecl>(D); 3824 EmitObjCPropertyImplementations(OMD); 3825 EmitObjCIvarInitializations(OMD); 3826 ObjCRuntime->GenerateClass(OMD); 3827 // Emit global variable debug information. 3828 if (CGDebugInfo *DI = getModuleDebugInfo()) 3829 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3830 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3831 OMD->getClassInterface()), OMD->getLocation()); 3832 break; 3833 } 3834 case Decl::ObjCMethod: { 3835 auto *OMD = cast<ObjCMethodDecl>(D); 3836 // If this is not a prototype, emit the body. 3837 if (OMD->getBody()) 3838 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3839 break; 3840 } 3841 case Decl::ObjCCompatibleAlias: 3842 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3843 break; 3844 3845 case Decl::PragmaComment: { 3846 const auto *PCD = cast<PragmaCommentDecl>(D); 3847 switch (PCD->getCommentKind()) { 3848 case PCK_Unknown: 3849 llvm_unreachable("unexpected pragma comment kind"); 3850 case PCK_Linker: 3851 AppendLinkerOptions(PCD->getArg()); 3852 break; 3853 case PCK_Lib: 3854 AddDependentLib(PCD->getArg()); 3855 break; 3856 case PCK_Compiler: 3857 case PCK_ExeStr: 3858 case PCK_User: 3859 break; // We ignore all of these. 3860 } 3861 break; 3862 } 3863 3864 case Decl::PragmaDetectMismatch: { 3865 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3866 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3867 break; 3868 } 3869 3870 case Decl::LinkageSpec: 3871 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3872 break; 3873 3874 case Decl::FileScopeAsm: { 3875 // File-scope asm is ignored during device-side CUDA compilation. 3876 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3877 break; 3878 // File-scope asm is ignored during device-side OpenMP compilation. 3879 if (LangOpts.OpenMPIsDevice) 3880 break; 3881 auto *AD = cast<FileScopeAsmDecl>(D); 3882 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3883 break; 3884 } 3885 3886 case Decl::Import: { 3887 auto *Import = cast<ImportDecl>(D); 3888 3889 // If we've already imported this module, we're done. 3890 if (!ImportedModules.insert(Import->getImportedModule())) 3891 break; 3892 3893 // Emit debug information for direct imports. 3894 if (!Import->getImportedOwningModule()) { 3895 if (CGDebugInfo *DI = getModuleDebugInfo()) 3896 DI->EmitImportDecl(*Import); 3897 } 3898 3899 // Find all of the submodules and emit the module initializers. 3900 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3901 SmallVector<clang::Module *, 16> Stack; 3902 Visited.insert(Import->getImportedModule()); 3903 Stack.push_back(Import->getImportedModule()); 3904 3905 while (!Stack.empty()) { 3906 clang::Module *Mod = Stack.pop_back_val(); 3907 if (!EmittedModuleInitializers.insert(Mod).second) 3908 continue; 3909 3910 for (auto *D : Context.getModuleInitializers(Mod)) 3911 EmitTopLevelDecl(D); 3912 3913 // Visit the submodules of this module. 3914 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3915 SubEnd = Mod->submodule_end(); 3916 Sub != SubEnd; ++Sub) { 3917 // Skip explicit children; they need to be explicitly imported to emit 3918 // the initializers. 3919 if ((*Sub)->IsExplicit) 3920 continue; 3921 3922 if (Visited.insert(*Sub).second) 3923 Stack.push_back(*Sub); 3924 } 3925 } 3926 break; 3927 } 3928 3929 case Decl::Export: 3930 EmitDeclContext(cast<ExportDecl>(D)); 3931 break; 3932 3933 case Decl::OMPThreadPrivate: 3934 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3935 break; 3936 3937 case Decl::ClassTemplateSpecialization: { 3938 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3939 if (DebugInfo && 3940 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3941 Spec->hasDefinition()) 3942 DebugInfo->completeTemplateDefinition(*Spec); 3943 break; 3944 } 3945 3946 case Decl::OMPDeclareReduction: 3947 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3948 break; 3949 3950 default: 3951 // Make sure we handled everything we should, every other kind is a 3952 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3953 // function. Need to recode Decl::Kind to do that easily. 3954 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3955 break; 3956 } 3957 } 3958 3959 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3960 // Do we need to generate coverage mapping? 3961 if (!CodeGenOpts.CoverageMapping) 3962 return; 3963 switch (D->getKind()) { 3964 case Decl::CXXConversion: 3965 case Decl::CXXMethod: 3966 case Decl::Function: 3967 case Decl::ObjCMethod: 3968 case Decl::CXXConstructor: 3969 case Decl::CXXDestructor: { 3970 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3971 return; 3972 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3973 if (I == DeferredEmptyCoverageMappingDecls.end()) 3974 DeferredEmptyCoverageMappingDecls[D] = true; 3975 break; 3976 } 3977 default: 3978 break; 3979 }; 3980 } 3981 3982 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3983 // Do we need to generate coverage mapping? 3984 if (!CodeGenOpts.CoverageMapping) 3985 return; 3986 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3987 if (Fn->isTemplateInstantiation()) 3988 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3989 } 3990 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3991 if (I == DeferredEmptyCoverageMappingDecls.end()) 3992 DeferredEmptyCoverageMappingDecls[D] = false; 3993 else 3994 I->second = false; 3995 } 3996 3997 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3998 std::vector<const Decl *> DeferredDecls; 3999 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4000 if (!I.second) 4001 continue; 4002 DeferredDecls.push_back(I.first); 4003 } 4004 // Sort the declarations by their location to make sure that the tests get a 4005 // predictable order for the coverage mapping for the unused declarations. 4006 if (CodeGenOpts.DumpCoverageMapping) 4007 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4008 [] (const Decl *LHS, const Decl *RHS) { 4009 return LHS->getLocStart() < RHS->getLocStart(); 4010 }); 4011 for (const auto *D : DeferredDecls) { 4012 switch (D->getKind()) { 4013 case Decl::CXXConversion: 4014 case Decl::CXXMethod: 4015 case Decl::Function: 4016 case Decl::ObjCMethod: { 4017 CodeGenPGO PGO(*this); 4018 GlobalDecl GD(cast<FunctionDecl>(D)); 4019 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4020 getFunctionLinkage(GD)); 4021 break; 4022 } 4023 case Decl::CXXConstructor: { 4024 CodeGenPGO PGO(*this); 4025 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4026 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4027 getFunctionLinkage(GD)); 4028 break; 4029 } 4030 case Decl::CXXDestructor: { 4031 CodeGenPGO PGO(*this); 4032 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4033 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4034 getFunctionLinkage(GD)); 4035 break; 4036 } 4037 default: 4038 break; 4039 }; 4040 } 4041 } 4042 4043 /// Turns the given pointer into a constant. 4044 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4045 const void *Ptr) { 4046 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4047 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4048 return llvm::ConstantInt::get(i64, PtrInt); 4049 } 4050 4051 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4052 llvm::NamedMDNode *&GlobalMetadata, 4053 GlobalDecl D, 4054 llvm::GlobalValue *Addr) { 4055 if (!GlobalMetadata) 4056 GlobalMetadata = 4057 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4058 4059 // TODO: should we report variant information for ctors/dtors? 4060 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4061 llvm::ConstantAsMetadata::get(GetPointerConstant( 4062 CGM.getLLVMContext(), D.getDecl()))}; 4063 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4064 } 4065 4066 /// For each function which is declared within an extern "C" region and marked 4067 /// as 'used', but has internal linkage, create an alias from the unmangled 4068 /// name to the mangled name if possible. People expect to be able to refer 4069 /// to such functions with an unmangled name from inline assembly within the 4070 /// same translation unit. 4071 void CodeGenModule::EmitStaticExternCAliases() { 4072 // Don't do anything if we're generating CUDA device code -- the NVPTX 4073 // assembly target doesn't support aliases. 4074 if (Context.getTargetInfo().getTriple().isNVPTX()) 4075 return; 4076 for (auto &I : StaticExternCValues) { 4077 IdentifierInfo *Name = I.first; 4078 llvm::GlobalValue *Val = I.second; 4079 if (Val && !getModule().getNamedValue(Name->getName())) 4080 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4081 } 4082 } 4083 4084 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4085 GlobalDecl &Result) const { 4086 auto Res = Manglings.find(MangledName); 4087 if (Res == Manglings.end()) 4088 return false; 4089 Result = Res->getValue(); 4090 return true; 4091 } 4092 4093 /// Emits metadata nodes associating all the global values in the 4094 /// current module with the Decls they came from. This is useful for 4095 /// projects using IR gen as a subroutine. 4096 /// 4097 /// Since there's currently no way to associate an MDNode directly 4098 /// with an llvm::GlobalValue, we create a global named metadata 4099 /// with the name 'clang.global.decl.ptrs'. 4100 void CodeGenModule::EmitDeclMetadata() { 4101 llvm::NamedMDNode *GlobalMetadata = nullptr; 4102 4103 for (auto &I : MangledDeclNames) { 4104 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4105 // Some mangled names don't necessarily have an associated GlobalValue 4106 // in this module, e.g. if we mangled it for DebugInfo. 4107 if (Addr) 4108 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4109 } 4110 } 4111 4112 /// Emits metadata nodes for all the local variables in the current 4113 /// function. 4114 void CodeGenFunction::EmitDeclMetadata() { 4115 if (LocalDeclMap.empty()) return; 4116 4117 llvm::LLVMContext &Context = getLLVMContext(); 4118 4119 // Find the unique metadata ID for this name. 4120 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4121 4122 llvm::NamedMDNode *GlobalMetadata = nullptr; 4123 4124 for (auto &I : LocalDeclMap) { 4125 const Decl *D = I.first; 4126 llvm::Value *Addr = I.second.getPointer(); 4127 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4128 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4129 Alloca->setMetadata( 4130 DeclPtrKind, llvm::MDNode::get( 4131 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4132 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4133 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4134 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4135 } 4136 } 4137 } 4138 4139 void CodeGenModule::EmitVersionIdentMetadata() { 4140 llvm::NamedMDNode *IdentMetadata = 4141 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4142 std::string Version = getClangFullVersion(); 4143 llvm::LLVMContext &Ctx = TheModule.getContext(); 4144 4145 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4146 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4147 } 4148 4149 void CodeGenModule::EmitTargetMetadata() { 4150 // Warning, new MangledDeclNames may be appended within this loop. 4151 // We rely on MapVector insertions adding new elements to the end 4152 // of the container. 4153 // FIXME: Move this loop into the one target that needs it, and only 4154 // loop over those declarations for which we couldn't emit the target 4155 // metadata when we emitted the declaration. 4156 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4157 auto Val = *(MangledDeclNames.begin() + I); 4158 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4159 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4160 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4161 } 4162 } 4163 4164 void CodeGenModule::EmitCoverageFile() { 4165 if (getCodeGenOpts().CoverageDataFile.empty() && 4166 getCodeGenOpts().CoverageNotesFile.empty()) 4167 return; 4168 4169 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4170 if (!CUNode) 4171 return; 4172 4173 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4174 llvm::LLVMContext &Ctx = TheModule.getContext(); 4175 auto *CoverageDataFile = 4176 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4177 auto *CoverageNotesFile = 4178 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4179 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4180 llvm::MDNode *CU = CUNode->getOperand(i); 4181 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4182 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4183 } 4184 } 4185 4186 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4187 // Sema has checked that all uuid strings are of the form 4188 // "12345678-1234-1234-1234-1234567890ab". 4189 assert(Uuid.size() == 36); 4190 for (unsigned i = 0; i < 36; ++i) { 4191 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4192 else assert(isHexDigit(Uuid[i])); 4193 } 4194 4195 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4196 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4197 4198 llvm::Constant *Field3[8]; 4199 for (unsigned Idx = 0; Idx < 8; ++Idx) 4200 Field3[Idx] = llvm::ConstantInt::get( 4201 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4202 4203 llvm::Constant *Fields[4] = { 4204 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4205 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4206 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4207 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4208 }; 4209 4210 return llvm::ConstantStruct::getAnon(Fields); 4211 } 4212 4213 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4214 bool ForEH) { 4215 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4216 // FIXME: should we even be calling this method if RTTI is disabled 4217 // and it's not for EH? 4218 if (!ForEH && !getLangOpts().RTTI) 4219 return llvm::Constant::getNullValue(Int8PtrTy); 4220 4221 if (ForEH && Ty->isObjCObjectPointerType() && 4222 LangOpts.ObjCRuntime.isGNUFamily()) 4223 return ObjCRuntime->GetEHType(Ty); 4224 4225 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4226 } 4227 4228 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4229 for (auto RefExpr : D->varlists()) { 4230 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4231 bool PerformInit = 4232 VD->getAnyInitializer() && 4233 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4234 /*ForRef=*/false); 4235 4236 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4237 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4238 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4239 CXXGlobalInits.push_back(InitFunction); 4240 } 4241 } 4242 4243 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4244 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4245 if (InternalId) 4246 return InternalId; 4247 4248 if (isExternallyVisible(T->getLinkage())) { 4249 std::string OutName; 4250 llvm::raw_string_ostream Out(OutName); 4251 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4252 4253 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4254 } else { 4255 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4256 llvm::ArrayRef<llvm::Metadata *>()); 4257 } 4258 4259 return InternalId; 4260 } 4261 4262 /// Returns whether this module needs the "all-vtables" type identifier. 4263 bool CodeGenModule::NeedAllVtablesTypeId() const { 4264 // Returns true if at least one of vtable-based CFI checkers is enabled and 4265 // is not in the trapping mode. 4266 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4267 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4268 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4269 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4270 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4271 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4272 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4273 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4274 } 4275 4276 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4277 CharUnits Offset, 4278 const CXXRecordDecl *RD) { 4279 llvm::Metadata *MD = 4280 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4281 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4282 4283 if (CodeGenOpts.SanitizeCfiCrossDso) 4284 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4285 VTable->addTypeMetadata(Offset.getQuantity(), 4286 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4287 4288 if (NeedAllVtablesTypeId()) { 4289 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4290 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4291 } 4292 } 4293 4294 // Fills in the supplied string map with the set of target features for the 4295 // passed in function. 4296 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4297 const FunctionDecl *FD) { 4298 StringRef TargetCPU = Target.getTargetOpts().CPU; 4299 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4300 // If we have a TargetAttr build up the feature map based on that. 4301 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4302 4303 // Make a copy of the features as passed on the command line into the 4304 // beginning of the additional features from the function to override. 4305 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4306 Target.getTargetOpts().FeaturesAsWritten.begin(), 4307 Target.getTargetOpts().FeaturesAsWritten.end()); 4308 4309 if (ParsedAttr.second != "") 4310 TargetCPU = ParsedAttr.second; 4311 4312 // Now populate the feature map, first with the TargetCPU which is either 4313 // the default or a new one from the target attribute string. Then we'll use 4314 // the passed in features (FeaturesAsWritten) along with the new ones from 4315 // the attribute. 4316 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4317 } else { 4318 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4319 Target.getTargetOpts().Features); 4320 } 4321 } 4322 4323 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4324 if (!SanStats) 4325 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4326 4327 return *SanStats; 4328 } 4329 llvm::Value * 4330 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4331 CodeGenFunction &CGF) { 4332 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4333 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4334 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4335 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4336 "__translate_sampler_initializer"), 4337 {C}); 4338 } 4339