1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MD5.h" 57 58 using namespace clang; 59 using namespace CodeGen; 60 61 static const char AnnotationSection[] = "llvm.metadata"; 62 63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 64 switch (CGM.getTarget().getCXXABI().getKind()) { 65 case TargetCXXABI::GenericAArch64: 66 case TargetCXXABI::GenericARM: 67 case TargetCXXABI::iOS: 68 case TargetCXXABI::iOS64: 69 case TargetCXXABI::WatchOS: 70 case TargetCXXABI::GenericMIPS: 71 case TargetCXXABI::GenericItanium: 72 case TargetCXXABI::WebAssembly: 73 return CreateItaniumCXXABI(CGM); 74 case TargetCXXABI::Microsoft: 75 return CreateMicrosoftCXXABI(CGM); 76 } 77 78 llvm_unreachable("invalid C++ ABI kind"); 79 } 80 81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 82 const PreprocessorOptions &PPO, 83 const CodeGenOptions &CGO, llvm::Module &M, 84 DiagnosticsEngine &diags, 85 CoverageSourceInfo *CoverageInfo) 86 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 87 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 88 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 89 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 90 Types(*this), VTables(*this), ObjCRuntime(nullptr), 91 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 92 DebugInfo(nullptr), ObjCData(nullptr), 93 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 94 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 95 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 96 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 97 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 98 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 99 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 FloatTy = llvm::Type::getFloatTy(LLVMContext); 109 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 110 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 111 PointerAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 117 Int8PtrTy = Int8Ty->getPointerTo(0); 118 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 119 120 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 121 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 122 123 if (LangOpts.ObjC1) 124 createObjCRuntime(); 125 if (LangOpts.OpenCL) 126 createOpenCLRuntime(); 127 if (LangOpts.OpenMP) 128 createOpenMPRuntime(); 129 if (LangOpts.CUDA) 130 createCUDARuntime(); 131 132 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 133 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 134 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 135 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 136 getCXXABI().getMangleContext()); 137 138 // If debug info or coverage generation is enabled, create the CGDebugInfo 139 // object. 140 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 141 CodeGenOpts.EmitGcovArcs || 142 CodeGenOpts.EmitGcovNotes) 143 DebugInfo = new CGDebugInfo(*this); 144 145 Block.GlobalUniqueCount = 0; 146 147 if (C.getLangOpts().ObjC1) 148 ObjCData = new ObjCEntrypoints(); 149 150 if (!CodeGenOpts.InstrProfileInput.empty()) { 151 auto ReaderOrErr = 152 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 153 if (std::error_code EC = ReaderOrErr.getError()) { 154 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 155 "Could not read profile %0: %1"); 156 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 157 << EC.message(); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() { 169 delete ObjCRuntime; 170 delete OpenCLRuntime; 171 delete OpenMPRuntime; 172 delete CUDARuntime; 173 delete TheTargetCodeGenInfo; 174 delete TBAA; 175 delete DebugInfo; 176 delete ObjCData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 case ObjCRuntime::WatchOS: 193 ObjCRuntime = CreateMacObjCRuntime(*this); 194 return; 195 } 196 llvm_unreachable("bad runtime kind"); 197 } 198 199 void CodeGenModule::createOpenCLRuntime() { 200 OpenCLRuntime = new CGOpenCLRuntime(*this); 201 } 202 203 void CodeGenModule::createOpenMPRuntime() { 204 OpenMPRuntime = new CGOpenMPRuntime(*this); 205 } 206 207 void CodeGenModule::createCUDARuntime() { 208 CUDARuntime = CreateNVCUDARuntime(*this); 209 } 210 211 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 212 Replacements[Name] = C; 213 } 214 215 void CodeGenModule::applyReplacements() { 216 for (auto &I : Replacements) { 217 StringRef MangledName = I.first(); 218 llvm::Constant *Replacement = I.second; 219 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 220 if (!Entry) 221 continue; 222 auto *OldF = cast<llvm::Function>(Entry); 223 auto *NewF = dyn_cast<llvm::Function>(Replacement); 224 if (!NewF) { 225 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 226 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 227 } else { 228 auto *CE = cast<llvm::ConstantExpr>(Replacement); 229 assert(CE->getOpcode() == llvm::Instruction::BitCast || 230 CE->getOpcode() == llvm::Instruction::GetElementPtr); 231 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 232 } 233 } 234 235 // Replace old with new, but keep the old order. 236 OldF->replaceAllUsesWith(Replacement); 237 if (NewF) { 238 NewF->removeFromParent(); 239 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 240 NewF); 241 } 242 OldF->eraseFromParent(); 243 } 244 } 245 246 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 247 GlobalValReplacements.push_back(std::make_pair(GV, C)); 248 } 249 250 void CodeGenModule::applyGlobalValReplacements() { 251 for (auto &I : GlobalValReplacements) { 252 llvm::GlobalValue *GV = I.first; 253 llvm::Constant *C = I.second; 254 255 GV->replaceAllUsesWith(C); 256 GV->eraseFromParent(); 257 } 258 } 259 260 // This is only used in aliases that we created and we know they have a 261 // linear structure. 262 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 263 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 264 const llvm::Constant *C = &GA; 265 for (;;) { 266 C = C->stripPointerCasts(); 267 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 268 return GO; 269 // stripPointerCasts will not walk over weak aliases. 270 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 271 if (!GA2) 272 return nullptr; 273 if (!Visited.insert(GA2).second) 274 return nullptr; 275 C = GA2->getAliasee(); 276 } 277 } 278 279 void CodeGenModule::checkAliases() { 280 // Check if the constructed aliases are well formed. It is really unfortunate 281 // that we have to do this in CodeGen, but we only construct mangled names 282 // and aliases during codegen. 283 bool Error = false; 284 DiagnosticsEngine &Diags = getDiags(); 285 for (const GlobalDecl &GD : Aliases) { 286 const auto *D = cast<ValueDecl>(GD.getDecl()); 287 const AliasAttr *AA = D->getAttr<AliasAttr>(); 288 StringRef MangledName = getMangledName(GD); 289 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 290 auto *Alias = cast<llvm::GlobalAlias>(Entry); 291 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 292 if (!GV) { 293 Error = true; 294 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 295 } else if (GV->isDeclaration()) { 296 Error = true; 297 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 298 } 299 300 llvm::Constant *Aliasee = Alias->getAliasee(); 301 llvm::GlobalValue *AliaseeGV; 302 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 303 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 304 else 305 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 306 307 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 308 StringRef AliasSection = SA->getName(); 309 if (AliasSection != AliaseeGV->getSection()) 310 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 311 << AliasSection; 312 } 313 314 // We have to handle alias to weak aliases in here. LLVM itself disallows 315 // this since the object semantics would not match the IL one. For 316 // compatibility with gcc we implement it by just pointing the alias 317 // to its aliasee's aliasee. We also warn, since the user is probably 318 // expecting the link to be weak. 319 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 320 if (GA->mayBeOverridden()) { 321 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 322 << GV->getName() << GA->getName(); 323 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 324 GA->getAliasee(), Alias->getType()); 325 Alias->setAliasee(Aliasee); 326 } 327 } 328 } 329 if (!Error) 330 return; 331 332 for (const GlobalDecl &GD : Aliases) { 333 StringRef MangledName = getMangledName(GD); 334 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 335 auto *Alias = cast<llvm::GlobalAlias>(Entry); 336 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 337 Alias->eraseFromParent(); 338 } 339 } 340 341 void CodeGenModule::clear() { 342 DeferredDeclsToEmit.clear(); 343 if (OpenMPRuntime) 344 OpenMPRuntime->clear(); 345 } 346 347 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 348 StringRef MainFile) { 349 if (!hasDiagnostics()) 350 return; 351 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 352 if (MainFile.empty()) 353 MainFile = "<stdin>"; 354 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 355 } else 356 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 357 << Mismatched; 358 } 359 360 void CodeGenModule::Release() { 361 EmitDeferred(); 362 applyGlobalValReplacements(); 363 applyReplacements(); 364 checkAliases(); 365 EmitCXXGlobalInitFunc(); 366 EmitCXXGlobalDtorFunc(); 367 EmitCXXThreadLocalInitFunc(); 368 if (ObjCRuntime) 369 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 370 AddGlobalCtor(ObjCInitFunction); 371 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 372 CUDARuntime) { 373 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 374 AddGlobalCtor(CudaCtorFunction); 375 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 376 AddGlobalDtor(CudaDtorFunction); 377 } 378 if (OpenMPRuntime) 379 if (llvm::Function *OpenMPRegistrationFunction = 380 OpenMPRuntime->emitRegistrationFunction()) 381 AddGlobalCtor(OpenMPRegistrationFunction, 0); 382 if (PGOReader) { 383 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 384 if (PGOStats.hasDiagnostics()) 385 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 386 } 387 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 388 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 389 EmitGlobalAnnotations(); 390 EmitStaticExternCAliases(); 391 EmitDeferredUnusedCoverageMappings(); 392 if (CoverageMapping) 393 CoverageMapping->emit(); 394 if (CodeGenOpts.SanitizeCfiCrossDso) 395 CodeGenFunction(*this).EmitCfiCheckFail(); 396 emitLLVMUsed(); 397 if (SanStats) 398 SanStats->finish(); 399 400 if (CodeGenOpts.Autolink && 401 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 402 EmitModuleLinkOptions(); 403 } 404 if (CodeGenOpts.DwarfVersion) { 405 // We actually want the latest version when there are conflicts. 406 // We can change from Warning to Latest if such mode is supported. 407 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 408 CodeGenOpts.DwarfVersion); 409 } 410 if (CodeGenOpts.EmitCodeView) { 411 // Indicate that we want CodeView in the metadata. 412 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 413 } 414 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 415 // We don't support LTO with 2 with different StrictVTablePointers 416 // FIXME: we could support it by stripping all the information introduced 417 // by StrictVTablePointers. 418 419 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 420 421 llvm::Metadata *Ops[2] = { 422 llvm::MDString::get(VMContext, "StrictVTablePointers"), 423 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 424 llvm::Type::getInt32Ty(VMContext), 1))}; 425 426 getModule().addModuleFlag(llvm::Module::Require, 427 "StrictVTablePointersRequirement", 428 llvm::MDNode::get(VMContext, Ops)); 429 } 430 if (DebugInfo) 431 // We support a single version in the linked module. The LLVM 432 // parser will drop debug info with a different version number 433 // (and warn about it, too). 434 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 435 llvm::DEBUG_METADATA_VERSION); 436 437 // We need to record the widths of enums and wchar_t, so that we can generate 438 // the correct build attributes in the ARM backend. 439 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 440 if ( Arch == llvm::Triple::arm 441 || Arch == llvm::Triple::armeb 442 || Arch == llvm::Triple::thumb 443 || Arch == llvm::Triple::thumbeb) { 444 // Width of wchar_t in bytes 445 uint64_t WCharWidth = 446 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 447 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 448 449 // The minimum width of an enum in bytes 450 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 451 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 452 } 453 454 if (CodeGenOpts.SanitizeCfiCrossDso) { 455 // Indicate that we want cross-DSO control flow integrity checks. 456 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 457 } 458 459 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 460 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 461 switch (PLevel) { 462 case 0: break; 463 case 1: PL = llvm::PICLevel::Small; break; 464 case 2: PL = llvm::PICLevel::Large; break; 465 default: llvm_unreachable("Invalid PIC Level"); 466 } 467 468 getModule().setPICLevel(PL); 469 } 470 471 SimplifyPersonality(); 472 473 if (getCodeGenOpts().EmitDeclMetadata) 474 EmitDeclMetadata(); 475 476 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 477 EmitCoverageFile(); 478 479 if (DebugInfo) 480 DebugInfo->finalize(); 481 482 EmitVersionIdentMetadata(); 483 484 EmitTargetMetadata(); 485 } 486 487 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 488 // Make sure that this type is translated. 489 Types.UpdateCompletedType(TD); 490 } 491 492 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 493 if (!TBAA) 494 return nullptr; 495 return TBAA->getTBAAInfo(QTy); 496 } 497 498 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 499 if (!TBAA) 500 return nullptr; 501 return TBAA->getTBAAInfoForVTablePtr(); 502 } 503 504 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 505 if (!TBAA) 506 return nullptr; 507 return TBAA->getTBAAStructInfo(QTy); 508 } 509 510 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 511 llvm::MDNode *AccessN, 512 uint64_t O) { 513 if (!TBAA) 514 return nullptr; 515 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 516 } 517 518 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 519 /// and struct-path aware TBAA, the tag has the same format: 520 /// base type, access type and offset. 521 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 522 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 523 llvm::MDNode *TBAAInfo, 524 bool ConvertTypeToTag) { 525 if (ConvertTypeToTag && TBAA) 526 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 527 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 528 else 529 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 530 } 531 532 void CodeGenModule::DecorateInstructionWithInvariantGroup( 533 llvm::Instruction *I, const CXXRecordDecl *RD) { 534 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 535 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 536 // Check if we have to wrap MDString in MDNode. 537 if (!MetaDataNode) 538 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 539 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 540 } 541 542 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 543 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 544 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 545 } 546 547 /// ErrorUnsupported - Print out an error that codegen doesn't support the 548 /// specified stmt yet. 549 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 550 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 551 "cannot compile this %0 yet"); 552 std::string Msg = Type; 553 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 554 << Msg << S->getSourceRange(); 555 } 556 557 /// ErrorUnsupported - Print out an error that codegen doesn't support the 558 /// specified decl yet. 559 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 560 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 561 "cannot compile this %0 yet"); 562 std::string Msg = Type; 563 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 564 } 565 566 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 567 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 568 } 569 570 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 571 const NamedDecl *D) const { 572 // Internal definitions always have default visibility. 573 if (GV->hasLocalLinkage()) { 574 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 575 return; 576 } 577 578 // Set visibility for definitions. 579 LinkageInfo LV = D->getLinkageAndVisibility(); 580 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 581 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 582 } 583 584 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 585 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 586 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 587 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 588 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 589 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 590 } 591 592 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 593 CodeGenOptions::TLSModel M) { 594 switch (M) { 595 case CodeGenOptions::GeneralDynamicTLSModel: 596 return llvm::GlobalVariable::GeneralDynamicTLSModel; 597 case CodeGenOptions::LocalDynamicTLSModel: 598 return llvm::GlobalVariable::LocalDynamicTLSModel; 599 case CodeGenOptions::InitialExecTLSModel: 600 return llvm::GlobalVariable::InitialExecTLSModel; 601 case CodeGenOptions::LocalExecTLSModel: 602 return llvm::GlobalVariable::LocalExecTLSModel; 603 } 604 llvm_unreachable("Invalid TLS model!"); 605 } 606 607 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 608 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 609 610 llvm::GlobalValue::ThreadLocalMode TLM; 611 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 612 613 // Override the TLS model if it is explicitly specified. 614 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 615 TLM = GetLLVMTLSModel(Attr->getModel()); 616 } 617 618 GV->setThreadLocalMode(TLM); 619 } 620 621 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 622 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 623 624 // Some ABIs don't have constructor variants. Make sure that base and 625 // complete constructors get mangled the same. 626 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 627 if (!getTarget().getCXXABI().hasConstructorVariants()) { 628 CXXCtorType OrigCtorType = GD.getCtorType(); 629 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 630 if (OrigCtorType == Ctor_Base) 631 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 632 } 633 } 634 635 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 636 if (!FoundStr.empty()) 637 return FoundStr; 638 639 const auto *ND = cast<NamedDecl>(GD.getDecl()); 640 SmallString<256> Buffer; 641 StringRef Str; 642 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 643 llvm::raw_svector_ostream Out(Buffer); 644 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 645 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 646 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 647 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 648 else 649 getCXXABI().getMangleContext().mangleName(ND, Out); 650 Str = Out.str(); 651 } else { 652 IdentifierInfo *II = ND->getIdentifier(); 653 assert(II && "Attempt to mangle unnamed decl."); 654 Str = II->getName(); 655 } 656 657 // Keep the first result in the case of a mangling collision. 658 auto Result = Manglings.insert(std::make_pair(Str, GD)); 659 return FoundStr = Result.first->first(); 660 } 661 662 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 663 const BlockDecl *BD) { 664 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 665 const Decl *D = GD.getDecl(); 666 667 SmallString<256> Buffer; 668 llvm::raw_svector_ostream Out(Buffer); 669 if (!D) 670 MangleCtx.mangleGlobalBlock(BD, 671 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 672 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 673 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 674 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 675 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 676 else 677 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 678 679 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 680 return Result.first->first(); 681 } 682 683 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 684 return getModule().getNamedValue(Name); 685 } 686 687 /// AddGlobalCtor - Add a function to the list that will be called before 688 /// main() runs. 689 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 690 llvm::Constant *AssociatedData) { 691 // FIXME: Type coercion of void()* types. 692 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 693 } 694 695 /// AddGlobalDtor - Add a function to the list that will be called 696 /// when the module is unloaded. 697 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 698 // FIXME: Type coercion of void()* types. 699 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 700 } 701 702 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 703 // Ctor function type is void()*. 704 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 705 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 706 707 // Get the type of a ctor entry, { i32, void ()*, i8* }. 708 llvm::StructType *CtorStructTy = llvm::StructType::get( 709 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 710 711 // Construct the constructor and destructor arrays. 712 SmallVector<llvm::Constant *, 8> Ctors; 713 for (const auto &I : Fns) { 714 llvm::Constant *S[] = { 715 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 716 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 717 (I.AssociatedData 718 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 719 : llvm::Constant::getNullValue(VoidPtrTy))}; 720 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 721 } 722 723 if (!Ctors.empty()) { 724 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 725 new llvm::GlobalVariable(TheModule, AT, false, 726 llvm::GlobalValue::AppendingLinkage, 727 llvm::ConstantArray::get(AT, Ctors), 728 GlobalName); 729 } 730 } 731 732 llvm::GlobalValue::LinkageTypes 733 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 734 const auto *D = cast<FunctionDecl>(GD.getDecl()); 735 736 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 737 738 if (isa<CXXDestructorDecl>(D) && 739 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 740 GD.getDtorType())) { 741 // Destructor variants in the Microsoft C++ ABI are always internal or 742 // linkonce_odr thunks emitted on an as-needed basis. 743 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 744 : llvm::GlobalValue::LinkOnceODRLinkage; 745 } 746 747 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 748 } 749 750 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 751 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 752 753 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 754 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 755 // Don't dllexport/import destructor thunks. 756 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 757 return; 758 } 759 } 760 761 if (FD->hasAttr<DLLImportAttr>()) 762 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 763 else if (FD->hasAttr<DLLExportAttr>()) 764 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 765 else 766 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 767 } 768 769 llvm::ConstantInt * 770 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 771 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 772 if (!MDS) return nullptr; 773 774 llvm::MD5 md5; 775 llvm::MD5::MD5Result result; 776 md5.update(MDS->getString()); 777 md5.final(result); 778 uint64_t id = 0; 779 for (int i = 0; i < 8; ++i) 780 id |= static_cast<uint64_t>(result[i]) << (i * 8); 781 return llvm::ConstantInt::get(Int64Ty, id); 782 } 783 784 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 785 llvm::Function *F) { 786 setNonAliasAttributes(D, F); 787 } 788 789 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 790 const CGFunctionInfo &Info, 791 llvm::Function *F) { 792 unsigned CallingConv; 793 AttributeListType AttributeList; 794 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 795 false); 796 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 797 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 798 } 799 800 /// Determines whether the language options require us to model 801 /// unwind exceptions. We treat -fexceptions as mandating this 802 /// except under the fragile ObjC ABI with only ObjC exceptions 803 /// enabled. This means, for example, that C with -fexceptions 804 /// enables this. 805 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 806 // If exceptions are completely disabled, obviously this is false. 807 if (!LangOpts.Exceptions) return false; 808 809 // If C++ exceptions are enabled, this is true. 810 if (LangOpts.CXXExceptions) return true; 811 812 // If ObjC exceptions are enabled, this depends on the ABI. 813 if (LangOpts.ObjCExceptions) { 814 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 815 } 816 817 return true; 818 } 819 820 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 821 llvm::Function *F) { 822 llvm::AttrBuilder B; 823 824 if (CodeGenOpts.UnwindTables) 825 B.addAttribute(llvm::Attribute::UWTable); 826 827 if (!hasUnwindExceptions(LangOpts)) 828 B.addAttribute(llvm::Attribute::NoUnwind); 829 830 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 831 B.addAttribute(llvm::Attribute::StackProtect); 832 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 833 B.addAttribute(llvm::Attribute::StackProtectStrong); 834 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 835 B.addAttribute(llvm::Attribute::StackProtectReq); 836 837 if (!D) { 838 F->addAttributes(llvm::AttributeSet::FunctionIndex, 839 llvm::AttributeSet::get( 840 F->getContext(), 841 llvm::AttributeSet::FunctionIndex, B)); 842 return; 843 } 844 845 if (D->hasAttr<NakedAttr>()) { 846 // Naked implies noinline: we should not be inlining such functions. 847 B.addAttribute(llvm::Attribute::Naked); 848 B.addAttribute(llvm::Attribute::NoInline); 849 } else if (D->hasAttr<NoDuplicateAttr>()) { 850 B.addAttribute(llvm::Attribute::NoDuplicate); 851 } else if (D->hasAttr<NoInlineAttr>()) { 852 B.addAttribute(llvm::Attribute::NoInline); 853 } else if (D->hasAttr<AlwaysInlineAttr>() && 854 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 855 llvm::Attribute::NoInline)) { 856 // (noinline wins over always_inline, and we can't specify both in IR) 857 B.addAttribute(llvm::Attribute::AlwaysInline); 858 } 859 860 if (D->hasAttr<ColdAttr>()) { 861 if (!D->hasAttr<OptimizeNoneAttr>()) 862 B.addAttribute(llvm::Attribute::OptimizeForSize); 863 B.addAttribute(llvm::Attribute::Cold); 864 } 865 866 if (D->hasAttr<MinSizeAttr>()) 867 B.addAttribute(llvm::Attribute::MinSize); 868 869 F->addAttributes(llvm::AttributeSet::FunctionIndex, 870 llvm::AttributeSet::get( 871 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 872 873 if (D->hasAttr<OptimizeNoneAttr>()) { 874 // OptimizeNone implies noinline; we should not be inlining such functions. 875 F->addFnAttr(llvm::Attribute::OptimizeNone); 876 F->addFnAttr(llvm::Attribute::NoInline); 877 878 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 879 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 880 F->removeFnAttr(llvm::Attribute::MinSize); 881 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 882 "OptimizeNone and AlwaysInline on same function!"); 883 884 // Attribute 'inlinehint' has no effect on 'optnone' functions. 885 // Explicitly remove it from the set of function attributes. 886 F->removeFnAttr(llvm::Attribute::InlineHint); 887 } 888 889 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 890 F->setUnnamedAddr(true); 891 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 892 if (MD->isVirtual()) 893 F->setUnnamedAddr(true); 894 895 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 896 if (alignment) 897 F->setAlignment(alignment); 898 899 // Some C++ ABIs require 2-byte alignment for member functions, in order to 900 // reserve a bit for differentiating between virtual and non-virtual member 901 // functions. If the current target's C++ ABI requires this and this is a 902 // member function, set its alignment accordingly. 903 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 904 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 905 F->setAlignment(2); 906 } 907 } 908 909 void CodeGenModule::SetCommonAttributes(const Decl *D, 910 llvm::GlobalValue *GV) { 911 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 912 setGlobalVisibility(GV, ND); 913 else 914 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 915 916 if (D && D->hasAttr<UsedAttr>()) 917 addUsedGlobal(GV); 918 } 919 920 void CodeGenModule::setAliasAttributes(const Decl *D, 921 llvm::GlobalValue *GV) { 922 SetCommonAttributes(D, GV); 923 924 // Process the dllexport attribute based on whether the original definition 925 // (not necessarily the aliasee) was exported. 926 if (D->hasAttr<DLLExportAttr>()) 927 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 928 } 929 930 void CodeGenModule::setNonAliasAttributes(const Decl *D, 931 llvm::GlobalObject *GO) { 932 SetCommonAttributes(D, GO); 933 934 if (D) 935 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 936 GO->setSection(SA->getName()); 937 938 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 939 } 940 941 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 942 llvm::Function *F, 943 const CGFunctionInfo &FI) { 944 SetLLVMFunctionAttributes(D, FI, F); 945 SetLLVMFunctionAttributesForDefinition(D, F); 946 947 F->setLinkage(llvm::Function::InternalLinkage); 948 949 setNonAliasAttributes(D, F); 950 } 951 952 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 953 const NamedDecl *ND) { 954 // Set linkage and visibility in case we never see a definition. 955 LinkageInfo LV = ND->getLinkageAndVisibility(); 956 if (LV.getLinkage() != ExternalLinkage) { 957 // Don't set internal linkage on declarations. 958 } else { 959 if (ND->hasAttr<DLLImportAttr>()) { 960 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 961 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 962 } else if (ND->hasAttr<DLLExportAttr>()) { 963 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 964 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 965 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 966 // "extern_weak" is overloaded in LLVM; we probably should have 967 // separate linkage types for this. 968 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 969 } 970 971 // Set visibility on a declaration only if it's explicit. 972 if (LV.isVisibilityExplicit()) 973 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 974 } 975 } 976 977 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 978 llvm::Function *F) { 979 // Only if we are checking indirect calls. 980 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 981 return; 982 983 // Non-static class methods are handled via vtable pointer checks elsewhere. 984 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 985 return; 986 987 // Additionally, if building with cross-DSO support... 988 if (CodeGenOpts.SanitizeCfiCrossDso) { 989 // Don't emit entries for function declarations. In cross-DSO mode these are 990 // handled with better precision at run time. 991 if (!FD->hasBody()) 992 return; 993 // Skip available_externally functions. They won't be codegen'ed in the 994 // current module anyway. 995 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 996 return; 997 } 998 999 llvm::NamedMDNode *BitsetsMD = 1000 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1001 1002 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1003 llvm::Metadata *BitsetOps[] = { 1004 MD, llvm::ConstantAsMetadata::get(F), 1005 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1006 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1007 1008 // Emit a hash-based bit set entry for cross-DSO calls. 1009 if (CodeGenOpts.SanitizeCfiCrossDso) { 1010 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 1011 llvm::Metadata *BitsetOps2[] = { 1012 llvm::ConstantAsMetadata::get(TypeId), 1013 llvm::ConstantAsMetadata::get(F), 1014 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1015 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 1016 } 1017 } 1018 } 1019 1020 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1021 bool IsIncompleteFunction, 1022 bool IsThunk) { 1023 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1024 // If this is an intrinsic function, set the function's attributes 1025 // to the intrinsic's attributes. 1026 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1027 return; 1028 } 1029 1030 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1031 1032 if (!IsIncompleteFunction) 1033 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1034 1035 // Add the Returned attribute for "this", except for iOS 5 and earlier 1036 // where substantial code, including the libstdc++ dylib, was compiled with 1037 // GCC and does not actually return "this". 1038 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1039 !(getTarget().getTriple().isiOS() && 1040 getTarget().getTriple().isOSVersionLT(6))) { 1041 assert(!F->arg_empty() && 1042 F->arg_begin()->getType() 1043 ->canLosslesslyBitCastTo(F->getReturnType()) && 1044 "unexpected this return"); 1045 F->addAttribute(1, llvm::Attribute::Returned); 1046 } 1047 1048 // Only a few attributes are set on declarations; these may later be 1049 // overridden by a definition. 1050 1051 setLinkageAndVisibilityForGV(F, FD); 1052 1053 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1054 F->setSection(SA->getName()); 1055 1056 // A replaceable global allocation function does not act like a builtin by 1057 // default, only if it is invoked by a new-expression or delete-expression. 1058 if (FD->isReplaceableGlobalAllocationFunction()) 1059 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1060 llvm::Attribute::NoBuiltin); 1061 1062 CreateFunctionBitSetEntry(FD, F); 1063 } 1064 1065 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1066 assert(!GV->isDeclaration() && 1067 "Only globals with definition can force usage."); 1068 LLVMUsed.emplace_back(GV); 1069 } 1070 1071 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1072 assert(!GV->isDeclaration() && 1073 "Only globals with definition can force usage."); 1074 LLVMCompilerUsed.emplace_back(GV); 1075 } 1076 1077 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1078 std::vector<llvm::WeakVH> &List) { 1079 // Don't create llvm.used if there is no need. 1080 if (List.empty()) 1081 return; 1082 1083 // Convert List to what ConstantArray needs. 1084 SmallVector<llvm::Constant*, 8> UsedArray; 1085 UsedArray.resize(List.size()); 1086 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1087 UsedArray[i] = 1088 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1089 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1090 } 1091 1092 if (UsedArray.empty()) 1093 return; 1094 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1095 1096 auto *GV = new llvm::GlobalVariable( 1097 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1098 llvm::ConstantArray::get(ATy, UsedArray), Name); 1099 1100 GV->setSection("llvm.metadata"); 1101 } 1102 1103 void CodeGenModule::emitLLVMUsed() { 1104 emitUsed(*this, "llvm.used", LLVMUsed); 1105 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1106 } 1107 1108 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1109 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1110 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1111 } 1112 1113 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1114 llvm::SmallString<32> Opt; 1115 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1116 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1117 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1118 } 1119 1120 void CodeGenModule::AddDependentLib(StringRef Lib) { 1121 llvm::SmallString<24> Opt; 1122 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1123 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1124 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1125 } 1126 1127 /// \brief Add link options implied by the given module, including modules 1128 /// it depends on, using a postorder walk. 1129 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1130 SmallVectorImpl<llvm::Metadata *> &Metadata, 1131 llvm::SmallPtrSet<Module *, 16> &Visited) { 1132 // Import this module's parent. 1133 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1134 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1135 } 1136 1137 // Import this module's dependencies. 1138 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1139 if (Visited.insert(Mod->Imports[I - 1]).second) 1140 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1141 } 1142 1143 // Add linker options to link against the libraries/frameworks 1144 // described by this module. 1145 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1146 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1147 // Link against a framework. Frameworks are currently Darwin only, so we 1148 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1149 if (Mod->LinkLibraries[I-1].IsFramework) { 1150 llvm::Metadata *Args[2] = { 1151 llvm::MDString::get(Context, "-framework"), 1152 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1153 1154 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1155 continue; 1156 } 1157 1158 // Link against a library. 1159 llvm::SmallString<24> Opt; 1160 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1161 Mod->LinkLibraries[I-1].Library, Opt); 1162 auto *OptString = llvm::MDString::get(Context, Opt); 1163 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1164 } 1165 } 1166 1167 void CodeGenModule::EmitModuleLinkOptions() { 1168 // Collect the set of all of the modules we want to visit to emit link 1169 // options, which is essentially the imported modules and all of their 1170 // non-explicit child modules. 1171 llvm::SetVector<clang::Module *> LinkModules; 1172 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1173 SmallVector<clang::Module *, 16> Stack; 1174 1175 // Seed the stack with imported modules. 1176 for (Module *M : ImportedModules) 1177 if (Visited.insert(M).second) 1178 Stack.push_back(M); 1179 1180 // Find all of the modules to import, making a little effort to prune 1181 // non-leaf modules. 1182 while (!Stack.empty()) { 1183 clang::Module *Mod = Stack.pop_back_val(); 1184 1185 bool AnyChildren = false; 1186 1187 // Visit the submodules of this module. 1188 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1189 SubEnd = Mod->submodule_end(); 1190 Sub != SubEnd; ++Sub) { 1191 // Skip explicit children; they need to be explicitly imported to be 1192 // linked against. 1193 if ((*Sub)->IsExplicit) 1194 continue; 1195 1196 if (Visited.insert(*Sub).second) { 1197 Stack.push_back(*Sub); 1198 AnyChildren = true; 1199 } 1200 } 1201 1202 // We didn't find any children, so add this module to the list of 1203 // modules to link against. 1204 if (!AnyChildren) { 1205 LinkModules.insert(Mod); 1206 } 1207 } 1208 1209 // Add link options for all of the imported modules in reverse topological 1210 // order. We don't do anything to try to order import link flags with respect 1211 // to linker options inserted by things like #pragma comment(). 1212 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1213 Visited.clear(); 1214 for (Module *M : LinkModules) 1215 if (Visited.insert(M).second) 1216 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1217 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1218 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1219 1220 // Add the linker options metadata flag. 1221 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1222 llvm::MDNode::get(getLLVMContext(), 1223 LinkerOptionsMetadata)); 1224 } 1225 1226 void CodeGenModule::EmitDeferred() { 1227 // Emit code for any potentially referenced deferred decls. Since a 1228 // previously unused static decl may become used during the generation of code 1229 // for a static function, iterate until no changes are made. 1230 1231 if (!DeferredVTables.empty()) { 1232 EmitDeferredVTables(); 1233 1234 // Emitting a v-table doesn't directly cause more v-tables to 1235 // become deferred, although it can cause functions to be 1236 // emitted that then need those v-tables. 1237 assert(DeferredVTables.empty()); 1238 } 1239 1240 // Stop if we're out of both deferred v-tables and deferred declarations. 1241 if (DeferredDeclsToEmit.empty()) 1242 return; 1243 1244 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1245 // work, it will not interfere with this. 1246 std::vector<DeferredGlobal> CurDeclsToEmit; 1247 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1248 1249 for (DeferredGlobal &G : CurDeclsToEmit) { 1250 GlobalDecl D = G.GD; 1251 G.GV = nullptr; 1252 1253 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1254 // to get GlobalValue with exactly the type we need, not something that 1255 // might had been created for another decl with the same mangled name but 1256 // different type. 1257 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1258 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1259 1260 // In case of different address spaces, we may still get a cast, even with 1261 // IsForDefinition equal to true. Query mangled names table to get 1262 // GlobalValue. 1263 if (!GV) 1264 GV = GetGlobalValue(getMangledName(D)); 1265 1266 // Make sure GetGlobalValue returned non-null. 1267 assert(GV); 1268 1269 // Check to see if we've already emitted this. This is necessary 1270 // for a couple of reasons: first, decls can end up in the 1271 // deferred-decls queue multiple times, and second, decls can end 1272 // up with definitions in unusual ways (e.g. by an extern inline 1273 // function acquiring a strong function redefinition). Just 1274 // ignore these cases. 1275 if (!GV->isDeclaration()) 1276 continue; 1277 1278 // Otherwise, emit the definition and move on to the next one. 1279 EmitGlobalDefinition(D, GV); 1280 1281 // If we found out that we need to emit more decls, do that recursively. 1282 // This has the advantage that the decls are emitted in a DFS and related 1283 // ones are close together, which is convenient for testing. 1284 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1285 EmitDeferred(); 1286 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1287 } 1288 } 1289 } 1290 1291 void CodeGenModule::EmitGlobalAnnotations() { 1292 if (Annotations.empty()) 1293 return; 1294 1295 // Create a new global variable for the ConstantStruct in the Module. 1296 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1297 Annotations[0]->getType(), Annotations.size()), Annotations); 1298 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1299 llvm::GlobalValue::AppendingLinkage, 1300 Array, "llvm.global.annotations"); 1301 gv->setSection(AnnotationSection); 1302 } 1303 1304 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1305 llvm::Constant *&AStr = AnnotationStrings[Str]; 1306 if (AStr) 1307 return AStr; 1308 1309 // Not found yet, create a new global. 1310 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1311 auto *gv = 1312 new llvm::GlobalVariable(getModule(), s->getType(), true, 1313 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1314 gv->setSection(AnnotationSection); 1315 gv->setUnnamedAddr(true); 1316 AStr = gv; 1317 return gv; 1318 } 1319 1320 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1321 SourceManager &SM = getContext().getSourceManager(); 1322 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1323 if (PLoc.isValid()) 1324 return EmitAnnotationString(PLoc.getFilename()); 1325 return EmitAnnotationString(SM.getBufferName(Loc)); 1326 } 1327 1328 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1329 SourceManager &SM = getContext().getSourceManager(); 1330 PresumedLoc PLoc = SM.getPresumedLoc(L); 1331 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1332 SM.getExpansionLineNumber(L); 1333 return llvm::ConstantInt::get(Int32Ty, LineNo); 1334 } 1335 1336 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1337 const AnnotateAttr *AA, 1338 SourceLocation L) { 1339 // Get the globals for file name, annotation, and the line number. 1340 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1341 *UnitGV = EmitAnnotationUnit(L), 1342 *LineNoCst = EmitAnnotationLineNo(L); 1343 1344 // Create the ConstantStruct for the global annotation. 1345 llvm::Constant *Fields[4] = { 1346 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1347 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1348 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1349 LineNoCst 1350 }; 1351 return llvm::ConstantStruct::getAnon(Fields); 1352 } 1353 1354 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1355 llvm::GlobalValue *GV) { 1356 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1357 // Get the struct elements for these annotations. 1358 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1359 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1360 } 1361 1362 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1363 SourceLocation Loc) const { 1364 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1365 // Blacklist by function name. 1366 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1367 return true; 1368 // Blacklist by location. 1369 if (Loc.isValid()) 1370 return SanitizerBL.isBlacklistedLocation(Loc); 1371 // If location is unknown, this may be a compiler-generated function. Assume 1372 // it's located in the main file. 1373 auto &SM = Context.getSourceManager(); 1374 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1375 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1376 } 1377 return false; 1378 } 1379 1380 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1381 SourceLocation Loc, QualType Ty, 1382 StringRef Category) const { 1383 // For now globals can be blacklisted only in ASan and KASan. 1384 if (!LangOpts.Sanitize.hasOneOf( 1385 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1386 return false; 1387 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1388 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1389 return true; 1390 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1391 return true; 1392 // Check global type. 1393 if (!Ty.isNull()) { 1394 // Drill down the array types: if global variable of a fixed type is 1395 // blacklisted, we also don't instrument arrays of them. 1396 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1397 Ty = AT->getElementType(); 1398 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1399 // We allow to blacklist only record types (classes, structs etc.) 1400 if (Ty->isRecordType()) { 1401 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1402 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1403 return true; 1404 } 1405 } 1406 return false; 1407 } 1408 1409 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1410 // Never defer when EmitAllDecls is specified. 1411 if (LangOpts.EmitAllDecls) 1412 return true; 1413 1414 return getContext().DeclMustBeEmitted(Global); 1415 } 1416 1417 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1418 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1419 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1420 // Implicit template instantiations may change linkage if they are later 1421 // explicitly instantiated, so they should not be emitted eagerly. 1422 return false; 1423 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1424 // codegen for global variables, because they may be marked as threadprivate. 1425 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1426 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1427 return false; 1428 1429 return true; 1430 } 1431 1432 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1433 const CXXUuidofExpr* E) { 1434 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1435 // well-formed. 1436 StringRef Uuid = E->getUuidAsStringRef(Context); 1437 std::string Name = "_GUID_" + Uuid.lower(); 1438 std::replace(Name.begin(), Name.end(), '-', '_'); 1439 1440 // Contains a 32-bit field. 1441 CharUnits Alignment = CharUnits::fromQuantity(4); 1442 1443 // Look for an existing global. 1444 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1445 return ConstantAddress(GV, Alignment); 1446 1447 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1448 assert(Init && "failed to initialize as constant"); 1449 1450 auto *GV = new llvm::GlobalVariable( 1451 getModule(), Init->getType(), 1452 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1453 if (supportsCOMDAT()) 1454 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1455 return ConstantAddress(GV, Alignment); 1456 } 1457 1458 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1459 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1460 assert(AA && "No alias?"); 1461 1462 CharUnits Alignment = getContext().getDeclAlign(VD); 1463 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1464 1465 // See if there is already something with the target's name in the module. 1466 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1467 if (Entry) { 1468 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1469 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1470 return ConstantAddress(Ptr, Alignment); 1471 } 1472 1473 llvm::Constant *Aliasee; 1474 if (isa<llvm::FunctionType>(DeclTy)) 1475 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1476 GlobalDecl(cast<FunctionDecl>(VD)), 1477 /*ForVTable=*/false); 1478 else 1479 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1480 llvm::PointerType::getUnqual(DeclTy), 1481 nullptr); 1482 1483 auto *F = cast<llvm::GlobalValue>(Aliasee); 1484 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1485 WeakRefReferences.insert(F); 1486 1487 return ConstantAddress(Aliasee, Alignment); 1488 } 1489 1490 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1491 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1492 1493 // Weak references don't produce any output by themselves. 1494 if (Global->hasAttr<WeakRefAttr>()) 1495 return; 1496 1497 // If this is an alias definition (which otherwise looks like a declaration) 1498 // emit it now. 1499 if (Global->hasAttr<AliasAttr>()) 1500 return EmitAliasDefinition(GD); 1501 1502 // If this is CUDA, be selective about which declarations we emit. 1503 if (LangOpts.CUDA) { 1504 if (LangOpts.CUDAIsDevice) { 1505 if (!Global->hasAttr<CUDADeviceAttr>() && 1506 !Global->hasAttr<CUDAGlobalAttr>() && 1507 !Global->hasAttr<CUDAConstantAttr>() && 1508 !Global->hasAttr<CUDASharedAttr>()) 1509 return; 1510 } else { 1511 if (!Global->hasAttr<CUDAHostAttr>() && ( 1512 Global->hasAttr<CUDADeviceAttr>() || 1513 Global->hasAttr<CUDAConstantAttr>() || 1514 Global->hasAttr<CUDASharedAttr>())) 1515 return; 1516 } 1517 } 1518 1519 // If this is OpenMP device, check if it is legal to emit this global 1520 // normally. 1521 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1522 return; 1523 1524 // Ignore declarations, they will be emitted on their first use. 1525 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1526 // Forward declarations are emitted lazily on first use. 1527 if (!FD->doesThisDeclarationHaveABody()) { 1528 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1529 return; 1530 1531 StringRef MangledName = getMangledName(GD); 1532 1533 // Compute the function info and LLVM type. 1534 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1535 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1536 1537 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1538 /*DontDefer=*/false); 1539 return; 1540 } 1541 } else { 1542 const auto *VD = cast<VarDecl>(Global); 1543 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1544 1545 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1546 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1547 return; 1548 } 1549 1550 // Defer code generation to first use when possible, e.g. if this is an inline 1551 // function. If the global must always be emitted, do it eagerly if possible 1552 // to benefit from cache locality. 1553 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1554 // Emit the definition if it can't be deferred. 1555 EmitGlobalDefinition(GD); 1556 return; 1557 } 1558 1559 // If we're deferring emission of a C++ variable with an 1560 // initializer, remember the order in which it appeared in the file. 1561 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1562 cast<VarDecl>(Global)->hasInit()) { 1563 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1564 CXXGlobalInits.push_back(nullptr); 1565 } 1566 1567 StringRef MangledName = getMangledName(GD); 1568 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1569 // The value has already been used and should therefore be emitted. 1570 addDeferredDeclToEmit(GV, GD); 1571 } else if (MustBeEmitted(Global)) { 1572 // The value must be emitted, but cannot be emitted eagerly. 1573 assert(!MayBeEmittedEagerly(Global)); 1574 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1575 } else { 1576 // Otherwise, remember that we saw a deferred decl with this name. The 1577 // first use of the mangled name will cause it to move into 1578 // DeferredDeclsToEmit. 1579 DeferredDecls[MangledName] = GD; 1580 } 1581 } 1582 1583 namespace { 1584 struct FunctionIsDirectlyRecursive : 1585 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1586 const StringRef Name; 1587 const Builtin::Context &BI; 1588 bool Result; 1589 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1590 Name(N), BI(C), Result(false) { 1591 } 1592 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1593 1594 bool TraverseCallExpr(CallExpr *E) { 1595 const FunctionDecl *FD = E->getDirectCallee(); 1596 if (!FD) 1597 return true; 1598 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1599 if (Attr && Name == Attr->getLabel()) { 1600 Result = true; 1601 return false; 1602 } 1603 unsigned BuiltinID = FD->getBuiltinID(); 1604 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1605 return true; 1606 StringRef BuiltinName = BI.getName(BuiltinID); 1607 if (BuiltinName.startswith("__builtin_") && 1608 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1609 Result = true; 1610 return false; 1611 } 1612 return true; 1613 } 1614 }; 1615 1616 struct DLLImportFunctionVisitor 1617 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1618 bool SafeToInline = true; 1619 1620 bool VisitVarDecl(VarDecl *VD) { 1621 // A thread-local variable cannot be imported. 1622 SafeToInline = !VD->getTLSKind(); 1623 return SafeToInline; 1624 } 1625 1626 // Make sure we're not referencing non-imported vars or functions. 1627 bool VisitDeclRefExpr(DeclRefExpr *E) { 1628 ValueDecl *VD = E->getDecl(); 1629 if (isa<FunctionDecl>(VD)) 1630 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1631 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1632 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1633 return SafeToInline; 1634 } 1635 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1636 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1637 return SafeToInline; 1638 } 1639 bool VisitCXXNewExpr(CXXNewExpr *E) { 1640 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1641 return SafeToInline; 1642 } 1643 }; 1644 } 1645 1646 // isTriviallyRecursive - Check if this function calls another 1647 // decl that, because of the asm attribute or the other decl being a builtin, 1648 // ends up pointing to itself. 1649 bool 1650 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1651 StringRef Name; 1652 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1653 // asm labels are a special kind of mangling we have to support. 1654 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1655 if (!Attr) 1656 return false; 1657 Name = Attr->getLabel(); 1658 } else { 1659 Name = FD->getName(); 1660 } 1661 1662 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1663 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1664 return Walker.Result; 1665 } 1666 1667 bool 1668 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1669 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1670 return true; 1671 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1672 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1673 return false; 1674 1675 if (F->hasAttr<DLLImportAttr>()) { 1676 // Check whether it would be safe to inline this dllimport function. 1677 DLLImportFunctionVisitor Visitor; 1678 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1679 if (!Visitor.SafeToInline) 1680 return false; 1681 } 1682 1683 // PR9614. Avoid cases where the source code is lying to us. An available 1684 // externally function should have an equivalent function somewhere else, 1685 // but a function that calls itself is clearly not equivalent to the real 1686 // implementation. 1687 // This happens in glibc's btowc and in some configure checks. 1688 return !isTriviallyRecursive(F); 1689 } 1690 1691 /// If the type for the method's class was generated by 1692 /// CGDebugInfo::createContextChain(), the cache contains only a 1693 /// limited DIType without any declarations. Since EmitFunctionStart() 1694 /// needs to find the canonical declaration for each method, we need 1695 /// to construct the complete type prior to emitting the method. 1696 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1697 if (!D->isInstance()) 1698 return; 1699 1700 if (CGDebugInfo *DI = getModuleDebugInfo()) 1701 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1702 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1703 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1704 } 1705 } 1706 1707 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1708 const auto *D = cast<ValueDecl>(GD.getDecl()); 1709 1710 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1711 Context.getSourceManager(), 1712 "Generating code for declaration"); 1713 1714 if (isa<FunctionDecl>(D)) { 1715 // At -O0, don't generate IR for functions with available_externally 1716 // linkage. 1717 if (!shouldEmitFunction(GD)) 1718 return; 1719 1720 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1721 CompleteDIClassType(Method); 1722 // Make sure to emit the definition(s) before we emit the thunks. 1723 // This is necessary for the generation of certain thunks. 1724 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1725 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1726 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1727 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1728 else 1729 EmitGlobalFunctionDefinition(GD, GV); 1730 1731 if (Method->isVirtual()) 1732 getVTables().EmitThunks(GD); 1733 1734 return; 1735 } 1736 1737 return EmitGlobalFunctionDefinition(GD, GV); 1738 } 1739 1740 if (const auto *VD = dyn_cast<VarDecl>(D)) 1741 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1742 1743 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1744 } 1745 1746 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1747 llvm::Function *NewFn); 1748 1749 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1750 /// module, create and return an llvm Function with the specified type. If there 1751 /// is something in the module with the specified name, return it potentially 1752 /// bitcasted to the right type. 1753 /// 1754 /// If D is non-null, it specifies a decl that correspond to this. This is used 1755 /// to set the attributes on the function when it is first created. 1756 llvm::Constant * 1757 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1758 llvm::Type *Ty, 1759 GlobalDecl GD, bool ForVTable, 1760 bool DontDefer, bool IsThunk, 1761 llvm::AttributeSet ExtraAttrs, 1762 bool IsForDefinition) { 1763 const Decl *D = GD.getDecl(); 1764 1765 // Lookup the entry, lazily creating it if necessary. 1766 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1767 if (Entry) { 1768 if (WeakRefReferences.erase(Entry)) { 1769 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1770 if (FD && !FD->hasAttr<WeakAttr>()) 1771 Entry->setLinkage(llvm::Function::ExternalLinkage); 1772 } 1773 1774 // Handle dropped DLL attributes. 1775 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1776 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1777 1778 // If there are two attempts to define the same mangled name, issue an 1779 // error. 1780 if (IsForDefinition && !Entry->isDeclaration()) { 1781 GlobalDecl OtherGD; 1782 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1783 // to make sure that we issue an error only once. 1784 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1785 (GD.getCanonicalDecl().getDecl() != 1786 OtherGD.getCanonicalDecl().getDecl()) && 1787 DiagnosedConflictingDefinitions.insert(GD).second) { 1788 getDiags().Report(D->getLocation(), 1789 diag::err_duplicate_mangled_name); 1790 getDiags().Report(OtherGD.getDecl()->getLocation(), 1791 diag::note_previous_definition); 1792 } 1793 } 1794 1795 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1796 (Entry->getType()->getElementType() == Ty)) { 1797 return Entry; 1798 } 1799 1800 // Make sure the result is of the correct type. 1801 // (If function is requested for a definition, we always need to create a new 1802 // function, not just return a bitcast.) 1803 if (!IsForDefinition) 1804 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1805 } 1806 1807 // This function doesn't have a complete type (for example, the return 1808 // type is an incomplete struct). Use a fake type instead, and make 1809 // sure not to try to set attributes. 1810 bool IsIncompleteFunction = false; 1811 1812 llvm::FunctionType *FTy; 1813 if (isa<llvm::FunctionType>(Ty)) { 1814 FTy = cast<llvm::FunctionType>(Ty); 1815 } else { 1816 FTy = llvm::FunctionType::get(VoidTy, false); 1817 IsIncompleteFunction = true; 1818 } 1819 1820 llvm::Function *F = 1821 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1822 Entry ? StringRef() : MangledName, &getModule()); 1823 1824 // If we already created a function with the same mangled name (but different 1825 // type) before, take its name and add it to the list of functions to be 1826 // replaced with F at the end of CodeGen. 1827 // 1828 // This happens if there is a prototype for a function (e.g. "int f()") and 1829 // then a definition of a different type (e.g. "int f(int x)"). 1830 if (Entry) { 1831 F->takeName(Entry); 1832 1833 // This might be an implementation of a function without a prototype, in 1834 // which case, try to do special replacement of calls which match the new 1835 // prototype. The really key thing here is that we also potentially drop 1836 // arguments from the call site so as to make a direct call, which makes the 1837 // inliner happier and suppresses a number of optimizer warnings (!) about 1838 // dropping arguments. 1839 if (!Entry->use_empty()) { 1840 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1841 Entry->removeDeadConstantUsers(); 1842 } 1843 1844 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1845 F, Entry->getType()->getElementType()->getPointerTo()); 1846 addGlobalValReplacement(Entry, BC); 1847 } 1848 1849 assert(F->getName() == MangledName && "name was uniqued!"); 1850 if (D) 1851 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1852 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1853 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1854 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1855 llvm::AttributeSet::get(VMContext, 1856 llvm::AttributeSet::FunctionIndex, 1857 B)); 1858 } 1859 1860 if (!DontDefer) { 1861 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1862 // each other bottoming out with the base dtor. Therefore we emit non-base 1863 // dtors on usage, even if there is no dtor definition in the TU. 1864 if (D && isa<CXXDestructorDecl>(D) && 1865 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1866 GD.getDtorType())) 1867 addDeferredDeclToEmit(F, GD); 1868 1869 // This is the first use or definition of a mangled name. If there is a 1870 // deferred decl with this name, remember that we need to emit it at the end 1871 // of the file. 1872 auto DDI = DeferredDecls.find(MangledName); 1873 if (DDI != DeferredDecls.end()) { 1874 // Move the potentially referenced deferred decl to the 1875 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1876 // don't need it anymore). 1877 addDeferredDeclToEmit(F, DDI->second); 1878 DeferredDecls.erase(DDI); 1879 1880 // Otherwise, there are cases we have to worry about where we're 1881 // using a declaration for which we must emit a definition but where 1882 // we might not find a top-level definition: 1883 // - member functions defined inline in their classes 1884 // - friend functions defined inline in some class 1885 // - special member functions with implicit definitions 1886 // If we ever change our AST traversal to walk into class methods, 1887 // this will be unnecessary. 1888 // 1889 // We also don't emit a definition for a function if it's going to be an 1890 // entry in a vtable, unless it's already marked as used. 1891 } else if (getLangOpts().CPlusPlus && D) { 1892 // Look for a declaration that's lexically in a record. 1893 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1894 FD = FD->getPreviousDecl()) { 1895 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1896 if (FD->doesThisDeclarationHaveABody()) { 1897 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1898 break; 1899 } 1900 } 1901 } 1902 } 1903 } 1904 1905 // Make sure the result is of the requested type. 1906 if (!IsIncompleteFunction) { 1907 assert(F->getType()->getElementType() == Ty); 1908 return F; 1909 } 1910 1911 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1912 return llvm::ConstantExpr::getBitCast(F, PTy); 1913 } 1914 1915 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1916 /// non-null, then this function will use the specified type if it has to 1917 /// create it (this occurs when we see a definition of the function). 1918 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1919 llvm::Type *Ty, 1920 bool ForVTable, 1921 bool DontDefer, 1922 bool IsForDefinition) { 1923 // If there was no specific requested type, just convert it now. 1924 if (!Ty) { 1925 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1926 auto CanonTy = Context.getCanonicalType(FD->getType()); 1927 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1928 } 1929 1930 StringRef MangledName = getMangledName(GD); 1931 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1932 /*IsThunk=*/false, llvm::AttributeSet(), 1933 IsForDefinition); 1934 } 1935 1936 /// CreateRuntimeFunction - Create a new runtime function with the specified 1937 /// type and name. 1938 llvm::Constant * 1939 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1940 StringRef Name, 1941 llvm::AttributeSet ExtraAttrs) { 1942 llvm::Constant *C = 1943 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1944 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1945 if (auto *F = dyn_cast<llvm::Function>(C)) 1946 if (F->empty()) 1947 F->setCallingConv(getRuntimeCC()); 1948 return C; 1949 } 1950 1951 /// CreateBuiltinFunction - Create a new builtin function with the specified 1952 /// type and name. 1953 llvm::Constant * 1954 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1955 StringRef Name, 1956 llvm::AttributeSet ExtraAttrs) { 1957 llvm::Constant *C = 1958 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1959 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1960 if (auto *F = dyn_cast<llvm::Function>(C)) 1961 if (F->empty()) 1962 F->setCallingConv(getBuiltinCC()); 1963 return C; 1964 } 1965 1966 /// isTypeConstant - Determine whether an object of this type can be emitted 1967 /// as a constant. 1968 /// 1969 /// If ExcludeCtor is true, the duration when the object's constructor runs 1970 /// will not be considered. The caller will need to verify that the object is 1971 /// not written to during its construction. 1972 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1973 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1974 return false; 1975 1976 if (Context.getLangOpts().CPlusPlus) { 1977 if (const CXXRecordDecl *Record 1978 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1979 return ExcludeCtor && !Record->hasMutableFields() && 1980 Record->hasTrivialDestructor(); 1981 } 1982 1983 return true; 1984 } 1985 1986 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1987 /// create and return an llvm GlobalVariable with the specified type. If there 1988 /// is something in the module with the specified name, return it potentially 1989 /// bitcasted to the right type. 1990 /// 1991 /// If D is non-null, it specifies a decl that correspond to this. This is used 1992 /// to set the attributes on the global when it is first created. 1993 /// 1994 /// If IsForDefinition is true, it is guranteed that an actual global with 1995 /// type Ty will be returned, not conversion of a variable with the same 1996 /// mangled name but some other type. 1997 llvm::Constant * 1998 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1999 llvm::PointerType *Ty, 2000 const VarDecl *D, 2001 bool IsForDefinition) { 2002 // Lookup the entry, lazily creating it if necessary. 2003 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2004 if (Entry) { 2005 if (WeakRefReferences.erase(Entry)) { 2006 if (D && !D->hasAttr<WeakAttr>()) 2007 Entry->setLinkage(llvm::Function::ExternalLinkage); 2008 } 2009 2010 // Handle dropped DLL attributes. 2011 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2012 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2013 2014 if (Entry->getType() == Ty) 2015 return Entry; 2016 2017 // If there are two attempts to define the same mangled name, issue an 2018 // error. 2019 if (IsForDefinition && !Entry->isDeclaration()) { 2020 GlobalDecl OtherGD; 2021 const VarDecl *OtherD; 2022 2023 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2024 // to make sure that we issue an error only once. 2025 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2026 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2027 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2028 OtherD->hasInit() && 2029 DiagnosedConflictingDefinitions.insert(D).second) { 2030 getDiags().Report(D->getLocation(), 2031 diag::err_duplicate_mangled_name); 2032 getDiags().Report(OtherGD.getDecl()->getLocation(), 2033 diag::note_previous_definition); 2034 } 2035 } 2036 2037 // Make sure the result is of the correct type. 2038 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2039 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2040 2041 // (If global is requested for a definition, we always need to create a new 2042 // global, not just return a bitcast.) 2043 if (!IsForDefinition) 2044 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2045 } 2046 2047 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2048 auto *GV = new llvm::GlobalVariable( 2049 getModule(), Ty->getElementType(), false, 2050 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2051 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2052 2053 // If we already created a global with the same mangled name (but different 2054 // type) before, take its name and remove it from its parent. 2055 if (Entry) { 2056 GV->takeName(Entry); 2057 2058 if (!Entry->use_empty()) { 2059 llvm::Constant *NewPtrForOldDecl = 2060 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2061 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2062 } 2063 2064 Entry->eraseFromParent(); 2065 } 2066 2067 // This is the first use or definition of a mangled name. If there is a 2068 // deferred decl with this name, remember that we need to emit it at the end 2069 // of the file. 2070 auto DDI = DeferredDecls.find(MangledName); 2071 if (DDI != DeferredDecls.end()) { 2072 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2073 // list, and remove it from DeferredDecls (since we don't need it anymore). 2074 addDeferredDeclToEmit(GV, DDI->second); 2075 DeferredDecls.erase(DDI); 2076 } 2077 2078 // Handle things which are present even on external declarations. 2079 if (D) { 2080 // FIXME: This code is overly simple and should be merged with other global 2081 // handling. 2082 GV->setConstant(isTypeConstant(D->getType(), false)); 2083 2084 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2085 2086 setLinkageAndVisibilityForGV(GV, D); 2087 2088 if (D->getTLSKind()) { 2089 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2090 CXXThreadLocals.push_back(D); 2091 setTLSMode(GV, *D); 2092 } 2093 2094 // If required by the ABI, treat declarations of static data members with 2095 // inline initializers as definitions. 2096 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2097 EmitGlobalVarDefinition(D); 2098 } 2099 2100 // Handle XCore specific ABI requirements. 2101 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2102 D->getLanguageLinkage() == CLanguageLinkage && 2103 D->getType().isConstant(Context) && 2104 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2105 GV->setSection(".cp.rodata"); 2106 } 2107 2108 if (AddrSpace != Ty->getAddressSpace()) 2109 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2110 2111 return GV; 2112 } 2113 2114 llvm::Constant * 2115 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2116 bool IsForDefinition) { 2117 if (isa<CXXConstructorDecl>(GD.getDecl())) 2118 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2119 getFromCtorType(GD.getCtorType()), 2120 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2121 /*DontDefer=*/false, IsForDefinition); 2122 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2123 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2124 getFromDtorType(GD.getDtorType()), 2125 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2126 /*DontDefer=*/false, IsForDefinition); 2127 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2128 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2129 cast<CXXMethodDecl>(GD.getDecl())); 2130 auto Ty = getTypes().GetFunctionType(*FInfo); 2131 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2132 IsForDefinition); 2133 } else if (isa<FunctionDecl>(GD.getDecl())) { 2134 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2135 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2136 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2137 IsForDefinition); 2138 } else 2139 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2140 IsForDefinition); 2141 } 2142 2143 llvm::GlobalVariable * 2144 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2145 llvm::Type *Ty, 2146 llvm::GlobalValue::LinkageTypes Linkage) { 2147 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2148 llvm::GlobalVariable *OldGV = nullptr; 2149 2150 if (GV) { 2151 // Check if the variable has the right type. 2152 if (GV->getType()->getElementType() == Ty) 2153 return GV; 2154 2155 // Because C++ name mangling, the only way we can end up with an already 2156 // existing global with the same name is if it has been declared extern "C". 2157 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2158 OldGV = GV; 2159 } 2160 2161 // Create a new variable. 2162 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2163 Linkage, nullptr, Name); 2164 2165 if (OldGV) { 2166 // Replace occurrences of the old variable if needed. 2167 GV->takeName(OldGV); 2168 2169 if (!OldGV->use_empty()) { 2170 llvm::Constant *NewPtrForOldDecl = 2171 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2172 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2173 } 2174 2175 OldGV->eraseFromParent(); 2176 } 2177 2178 if (supportsCOMDAT() && GV->isWeakForLinker() && 2179 !GV->hasAvailableExternallyLinkage()) 2180 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2181 2182 return GV; 2183 } 2184 2185 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2186 /// given global variable. If Ty is non-null and if the global doesn't exist, 2187 /// then it will be created with the specified type instead of whatever the 2188 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2189 /// that an actual global with type Ty will be returned, not conversion of a 2190 /// variable with the same mangled name but some other type. 2191 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2192 llvm::Type *Ty, 2193 bool IsForDefinition) { 2194 assert(D->hasGlobalStorage() && "Not a global variable"); 2195 QualType ASTTy = D->getType(); 2196 if (!Ty) 2197 Ty = getTypes().ConvertTypeForMem(ASTTy); 2198 2199 llvm::PointerType *PTy = 2200 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2201 2202 StringRef MangledName = getMangledName(D); 2203 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2204 } 2205 2206 /// CreateRuntimeVariable - Create a new runtime global variable with the 2207 /// specified type and name. 2208 llvm::Constant * 2209 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2210 StringRef Name) { 2211 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2212 } 2213 2214 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2215 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2216 2217 StringRef MangledName = getMangledName(D); 2218 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2219 2220 // We already have a definition, not declaration, with the same mangled name. 2221 // Emitting of declaration is not required (and actually overwrites emitted 2222 // definition). 2223 if (GV && !GV->isDeclaration()) 2224 return; 2225 2226 // If we have not seen a reference to this variable yet, place it into the 2227 // deferred declarations table to be emitted if needed later. 2228 if (!MustBeEmitted(D) && !GV) { 2229 DeferredDecls[MangledName] = D; 2230 return; 2231 } 2232 2233 // The tentative definition is the only definition. 2234 EmitGlobalVarDefinition(D); 2235 } 2236 2237 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2238 return Context.toCharUnitsFromBits( 2239 getDataLayout().getTypeStoreSizeInBits(Ty)); 2240 } 2241 2242 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2243 unsigned AddrSpace) { 2244 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2245 if (D->hasAttr<CUDAConstantAttr>()) 2246 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2247 else if (D->hasAttr<CUDASharedAttr>()) 2248 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2249 else 2250 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2251 } 2252 2253 return AddrSpace; 2254 } 2255 2256 template<typename SomeDecl> 2257 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2258 llvm::GlobalValue *GV) { 2259 if (!getLangOpts().CPlusPlus) 2260 return; 2261 2262 // Must have 'used' attribute, or else inline assembly can't rely on 2263 // the name existing. 2264 if (!D->template hasAttr<UsedAttr>()) 2265 return; 2266 2267 // Must have internal linkage and an ordinary name. 2268 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2269 return; 2270 2271 // Must be in an extern "C" context. Entities declared directly within 2272 // a record are not extern "C" even if the record is in such a context. 2273 const SomeDecl *First = D->getFirstDecl(); 2274 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2275 return; 2276 2277 // OK, this is an internal linkage entity inside an extern "C" linkage 2278 // specification. Make a note of that so we can give it the "expected" 2279 // mangled name if nothing else is using that name. 2280 std::pair<StaticExternCMap::iterator, bool> R = 2281 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2282 2283 // If we have multiple internal linkage entities with the same name 2284 // in extern "C" regions, none of them gets that name. 2285 if (!R.second) 2286 R.first->second = nullptr; 2287 } 2288 2289 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2290 if (!CGM.supportsCOMDAT()) 2291 return false; 2292 2293 if (D.hasAttr<SelectAnyAttr>()) 2294 return true; 2295 2296 GVALinkage Linkage; 2297 if (auto *VD = dyn_cast<VarDecl>(&D)) 2298 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2299 else 2300 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2301 2302 switch (Linkage) { 2303 case GVA_Internal: 2304 case GVA_AvailableExternally: 2305 case GVA_StrongExternal: 2306 return false; 2307 case GVA_DiscardableODR: 2308 case GVA_StrongODR: 2309 return true; 2310 } 2311 llvm_unreachable("No such linkage"); 2312 } 2313 2314 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2315 llvm::GlobalObject &GO) { 2316 if (!shouldBeInCOMDAT(*this, D)) 2317 return; 2318 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2319 } 2320 2321 /// Pass IsTentative as true if you want to create a tentative definition. 2322 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2323 bool IsTentative) { 2324 llvm::Constant *Init = nullptr; 2325 QualType ASTTy = D->getType(); 2326 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2327 bool NeedsGlobalCtor = false; 2328 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2329 2330 const VarDecl *InitDecl; 2331 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2332 2333 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2334 // of their declaration." 2335 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2336 && D->hasAttr<CUDASharedAttr>()) { 2337 if (InitExpr) { 2338 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2339 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2340 Error(D->getLocation(), 2341 "__shared__ variable cannot have an initialization."); 2342 } 2343 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2344 } else if (!InitExpr) { 2345 // This is a tentative definition; tentative definitions are 2346 // implicitly initialized with { 0 }. 2347 // 2348 // Note that tentative definitions are only emitted at the end of 2349 // a translation unit, so they should never have incomplete 2350 // type. In addition, EmitTentativeDefinition makes sure that we 2351 // never attempt to emit a tentative definition if a real one 2352 // exists. A use may still exists, however, so we still may need 2353 // to do a RAUW. 2354 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2355 Init = EmitNullConstant(D->getType()); 2356 } else { 2357 initializedGlobalDecl = GlobalDecl(D); 2358 Init = EmitConstantInit(*InitDecl); 2359 2360 if (!Init) { 2361 QualType T = InitExpr->getType(); 2362 if (D->getType()->isReferenceType()) 2363 T = D->getType(); 2364 2365 if (getLangOpts().CPlusPlus) { 2366 Init = EmitNullConstant(T); 2367 NeedsGlobalCtor = true; 2368 } else { 2369 ErrorUnsupported(D, "static initializer"); 2370 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2371 } 2372 } else { 2373 // We don't need an initializer, so remove the entry for the delayed 2374 // initializer position (just in case this entry was delayed) if we 2375 // also don't need to register a destructor. 2376 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2377 DelayedCXXInitPosition.erase(D); 2378 } 2379 } 2380 2381 llvm::Type* InitType = Init->getType(); 2382 llvm::Constant *Entry = 2383 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2384 2385 // Strip off a bitcast if we got one back. 2386 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2387 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2388 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2389 // All zero index gep. 2390 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2391 Entry = CE->getOperand(0); 2392 } 2393 2394 // Entry is now either a Function or GlobalVariable. 2395 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2396 2397 // We have a definition after a declaration with the wrong type. 2398 // We must make a new GlobalVariable* and update everything that used OldGV 2399 // (a declaration or tentative definition) with the new GlobalVariable* 2400 // (which will be a definition). 2401 // 2402 // This happens if there is a prototype for a global (e.g. 2403 // "extern int x[];") and then a definition of a different type (e.g. 2404 // "int x[10];"). This also happens when an initializer has a different type 2405 // from the type of the global (this happens with unions). 2406 if (!GV || 2407 GV->getType()->getElementType() != InitType || 2408 GV->getType()->getAddressSpace() != 2409 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2410 2411 // Move the old entry aside so that we'll create a new one. 2412 Entry->setName(StringRef()); 2413 2414 // Make a new global with the correct type, this is now guaranteed to work. 2415 GV = cast<llvm::GlobalVariable>( 2416 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2417 2418 // Replace all uses of the old global with the new global 2419 llvm::Constant *NewPtrForOldDecl = 2420 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2421 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2422 2423 // Erase the old global, since it is no longer used. 2424 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2425 } 2426 2427 MaybeHandleStaticInExternC(D, GV); 2428 2429 if (D->hasAttr<AnnotateAttr>()) 2430 AddGlobalAnnotations(D, GV); 2431 2432 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2433 // the device. [...]" 2434 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2435 // __device__, declares a variable that: [...] 2436 // Is accessible from all the threads within the grid and from the host 2437 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2438 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2439 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2440 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2441 GV->setExternallyInitialized(true); 2442 } 2443 GV->setInitializer(Init); 2444 2445 // If it is safe to mark the global 'constant', do so now. 2446 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2447 isTypeConstant(D->getType(), true)); 2448 2449 // If it is in a read-only section, mark it 'constant'. 2450 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2451 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2452 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2453 GV->setConstant(true); 2454 } 2455 2456 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2457 2458 // Set the llvm linkage type as appropriate. 2459 llvm::GlobalValue::LinkageTypes Linkage = 2460 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2461 2462 // On Darwin, if the normal linkage of a C++ thread_local variable is 2463 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2464 // copies within a linkage unit; otherwise, the backing variable has 2465 // internal linkage and all accesses should just be calls to the 2466 // Itanium-specified entry point, which has the normal linkage of the 2467 // variable. This is to preserve the ability to change the implementation 2468 // behind the scenes. 2469 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2470 Context.getTargetInfo().getTriple().isOSDarwin() && 2471 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2472 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2473 Linkage = llvm::GlobalValue::InternalLinkage; 2474 2475 GV->setLinkage(Linkage); 2476 if (D->hasAttr<DLLImportAttr>()) 2477 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2478 else if (D->hasAttr<DLLExportAttr>()) 2479 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2480 else 2481 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2482 2483 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2484 // common vars aren't constant even if declared const. 2485 GV->setConstant(false); 2486 2487 setNonAliasAttributes(D, GV); 2488 2489 if (D->getTLSKind() && !GV->isThreadLocal()) { 2490 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2491 CXXThreadLocals.push_back(D); 2492 setTLSMode(GV, *D); 2493 } 2494 2495 maybeSetTrivialComdat(*D, *GV); 2496 2497 // Emit the initializer function if necessary. 2498 if (NeedsGlobalCtor || NeedsGlobalDtor) 2499 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2500 2501 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2502 2503 // Emit global variable debug information. 2504 if (CGDebugInfo *DI = getModuleDebugInfo()) 2505 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2506 DI->EmitGlobalVariable(GV, D); 2507 } 2508 2509 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2510 CodeGenModule &CGM, const VarDecl *D, 2511 bool NoCommon) { 2512 // Don't give variables common linkage if -fno-common was specified unless it 2513 // was overridden by a NoCommon attribute. 2514 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2515 return true; 2516 2517 // C11 6.9.2/2: 2518 // A declaration of an identifier for an object that has file scope without 2519 // an initializer, and without a storage-class specifier or with the 2520 // storage-class specifier static, constitutes a tentative definition. 2521 if (D->getInit() || D->hasExternalStorage()) 2522 return true; 2523 2524 // A variable cannot be both common and exist in a section. 2525 if (D->hasAttr<SectionAttr>()) 2526 return true; 2527 2528 // Thread local vars aren't considered common linkage. 2529 if (D->getTLSKind()) 2530 return true; 2531 2532 // Tentative definitions marked with WeakImportAttr are true definitions. 2533 if (D->hasAttr<WeakImportAttr>()) 2534 return true; 2535 2536 // A variable cannot be both common and exist in a comdat. 2537 if (shouldBeInCOMDAT(CGM, *D)) 2538 return true; 2539 2540 // Declarations with a required alignment do not have common linakge in MSVC 2541 // mode. 2542 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2543 if (D->hasAttr<AlignedAttr>()) 2544 return true; 2545 QualType VarType = D->getType(); 2546 if (Context.isAlignmentRequired(VarType)) 2547 return true; 2548 2549 if (const auto *RT = VarType->getAs<RecordType>()) { 2550 const RecordDecl *RD = RT->getDecl(); 2551 for (const FieldDecl *FD : RD->fields()) { 2552 if (FD->isBitField()) 2553 continue; 2554 if (FD->hasAttr<AlignedAttr>()) 2555 return true; 2556 if (Context.isAlignmentRequired(FD->getType())) 2557 return true; 2558 } 2559 } 2560 } 2561 2562 return false; 2563 } 2564 2565 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2566 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2567 if (Linkage == GVA_Internal) 2568 return llvm::Function::InternalLinkage; 2569 2570 if (D->hasAttr<WeakAttr>()) { 2571 if (IsConstantVariable) 2572 return llvm::GlobalVariable::WeakODRLinkage; 2573 else 2574 return llvm::GlobalVariable::WeakAnyLinkage; 2575 } 2576 2577 // We are guaranteed to have a strong definition somewhere else, 2578 // so we can use available_externally linkage. 2579 if (Linkage == GVA_AvailableExternally) 2580 return llvm::Function::AvailableExternallyLinkage; 2581 2582 // Note that Apple's kernel linker doesn't support symbol 2583 // coalescing, so we need to avoid linkonce and weak linkages there. 2584 // Normally, this means we just map to internal, but for explicit 2585 // instantiations we'll map to external. 2586 2587 // In C++, the compiler has to emit a definition in every translation unit 2588 // that references the function. We should use linkonce_odr because 2589 // a) if all references in this translation unit are optimized away, we 2590 // don't need to codegen it. b) if the function persists, it needs to be 2591 // merged with other definitions. c) C++ has the ODR, so we know the 2592 // definition is dependable. 2593 if (Linkage == GVA_DiscardableODR) 2594 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2595 : llvm::Function::InternalLinkage; 2596 2597 // An explicit instantiation of a template has weak linkage, since 2598 // explicit instantiations can occur in multiple translation units 2599 // and must all be equivalent. However, we are not allowed to 2600 // throw away these explicit instantiations. 2601 if (Linkage == GVA_StrongODR) 2602 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2603 : llvm::Function::ExternalLinkage; 2604 2605 // C++ doesn't have tentative definitions and thus cannot have common 2606 // linkage. 2607 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2608 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2609 CodeGenOpts.NoCommon)) 2610 return llvm::GlobalVariable::CommonLinkage; 2611 2612 // selectany symbols are externally visible, so use weak instead of 2613 // linkonce. MSVC optimizes away references to const selectany globals, so 2614 // all definitions should be the same and ODR linkage should be used. 2615 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2616 if (D->hasAttr<SelectAnyAttr>()) 2617 return llvm::GlobalVariable::WeakODRLinkage; 2618 2619 // Otherwise, we have strong external linkage. 2620 assert(Linkage == GVA_StrongExternal); 2621 return llvm::GlobalVariable::ExternalLinkage; 2622 } 2623 2624 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2625 const VarDecl *VD, bool IsConstant) { 2626 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2627 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2628 } 2629 2630 /// Replace the uses of a function that was declared with a non-proto type. 2631 /// We want to silently drop extra arguments from call sites 2632 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2633 llvm::Function *newFn) { 2634 // Fast path. 2635 if (old->use_empty()) return; 2636 2637 llvm::Type *newRetTy = newFn->getReturnType(); 2638 SmallVector<llvm::Value*, 4> newArgs; 2639 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2640 2641 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2642 ui != ue; ) { 2643 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2644 llvm::User *user = use->getUser(); 2645 2646 // Recognize and replace uses of bitcasts. Most calls to 2647 // unprototyped functions will use bitcasts. 2648 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2649 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2650 replaceUsesOfNonProtoConstant(bitcast, newFn); 2651 continue; 2652 } 2653 2654 // Recognize calls to the function. 2655 llvm::CallSite callSite(user); 2656 if (!callSite) continue; 2657 if (!callSite.isCallee(&*use)) continue; 2658 2659 // If the return types don't match exactly, then we can't 2660 // transform this call unless it's dead. 2661 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2662 continue; 2663 2664 // Get the call site's attribute list. 2665 SmallVector<llvm::AttributeSet, 8> newAttrs; 2666 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2667 2668 // Collect any return attributes from the call. 2669 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2670 newAttrs.push_back( 2671 llvm::AttributeSet::get(newFn->getContext(), 2672 oldAttrs.getRetAttributes())); 2673 2674 // If the function was passed too few arguments, don't transform. 2675 unsigned newNumArgs = newFn->arg_size(); 2676 if (callSite.arg_size() < newNumArgs) continue; 2677 2678 // If extra arguments were passed, we silently drop them. 2679 // If any of the types mismatch, we don't transform. 2680 unsigned argNo = 0; 2681 bool dontTransform = false; 2682 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2683 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2684 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2685 dontTransform = true; 2686 break; 2687 } 2688 2689 // Add any parameter attributes. 2690 if (oldAttrs.hasAttributes(argNo + 1)) 2691 newAttrs. 2692 push_back(llvm:: 2693 AttributeSet::get(newFn->getContext(), 2694 oldAttrs.getParamAttributes(argNo + 1))); 2695 } 2696 if (dontTransform) 2697 continue; 2698 2699 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2700 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2701 oldAttrs.getFnAttributes())); 2702 2703 // Okay, we can transform this. Create the new call instruction and copy 2704 // over the required information. 2705 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2706 2707 // Copy over any operand bundles. 2708 callSite.getOperandBundlesAsDefs(newBundles); 2709 2710 llvm::CallSite newCall; 2711 if (callSite.isCall()) { 2712 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2713 callSite.getInstruction()); 2714 } else { 2715 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2716 newCall = llvm::InvokeInst::Create(newFn, 2717 oldInvoke->getNormalDest(), 2718 oldInvoke->getUnwindDest(), 2719 newArgs, newBundles, "", 2720 callSite.getInstruction()); 2721 } 2722 newArgs.clear(); // for the next iteration 2723 2724 if (!newCall->getType()->isVoidTy()) 2725 newCall->takeName(callSite.getInstruction()); 2726 newCall.setAttributes( 2727 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2728 newCall.setCallingConv(callSite.getCallingConv()); 2729 2730 // Finally, remove the old call, replacing any uses with the new one. 2731 if (!callSite->use_empty()) 2732 callSite->replaceAllUsesWith(newCall.getInstruction()); 2733 2734 // Copy debug location attached to CI. 2735 if (callSite->getDebugLoc()) 2736 newCall->setDebugLoc(callSite->getDebugLoc()); 2737 2738 callSite->eraseFromParent(); 2739 } 2740 } 2741 2742 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2743 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2744 /// existing call uses of the old function in the module, this adjusts them to 2745 /// call the new function directly. 2746 /// 2747 /// This is not just a cleanup: the always_inline pass requires direct calls to 2748 /// functions to be able to inline them. If there is a bitcast in the way, it 2749 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2750 /// run at -O0. 2751 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2752 llvm::Function *NewFn) { 2753 // If we're redefining a global as a function, don't transform it. 2754 if (!isa<llvm::Function>(Old)) return; 2755 2756 replaceUsesOfNonProtoConstant(Old, NewFn); 2757 } 2758 2759 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2760 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2761 // If we have a definition, this might be a deferred decl. If the 2762 // instantiation is explicit, make sure we emit it at the end. 2763 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2764 GetAddrOfGlobalVar(VD); 2765 2766 EmitTopLevelDecl(VD); 2767 } 2768 2769 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2770 llvm::GlobalValue *GV) { 2771 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2772 2773 // Compute the function info and LLVM type. 2774 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2775 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2776 2777 // Get or create the prototype for the function. 2778 if (!GV || (GV->getType()->getElementType() != Ty)) 2779 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2780 /*DontDefer=*/true, 2781 /*IsForDefinition=*/true)); 2782 2783 // Already emitted. 2784 if (!GV->isDeclaration()) 2785 return; 2786 2787 // We need to set linkage and visibility on the function before 2788 // generating code for it because various parts of IR generation 2789 // want to propagate this information down (e.g. to local static 2790 // declarations). 2791 auto *Fn = cast<llvm::Function>(GV); 2792 setFunctionLinkage(GD, Fn); 2793 setFunctionDLLStorageClass(GD, Fn); 2794 2795 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2796 setGlobalVisibility(Fn, D); 2797 2798 MaybeHandleStaticInExternC(D, Fn); 2799 2800 maybeSetTrivialComdat(*D, *Fn); 2801 2802 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2803 2804 setFunctionDefinitionAttributes(D, Fn); 2805 SetLLVMFunctionAttributesForDefinition(D, Fn); 2806 2807 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2808 AddGlobalCtor(Fn, CA->getPriority()); 2809 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2810 AddGlobalDtor(Fn, DA->getPriority()); 2811 if (D->hasAttr<AnnotateAttr>()) 2812 AddGlobalAnnotations(D, Fn); 2813 } 2814 2815 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2816 const auto *D = cast<ValueDecl>(GD.getDecl()); 2817 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2818 assert(AA && "Not an alias?"); 2819 2820 StringRef MangledName = getMangledName(GD); 2821 2822 if (AA->getAliasee() == MangledName) { 2823 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2824 return; 2825 } 2826 2827 // If there is a definition in the module, then it wins over the alias. 2828 // This is dubious, but allow it to be safe. Just ignore the alias. 2829 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2830 if (Entry && !Entry->isDeclaration()) 2831 return; 2832 2833 Aliases.push_back(GD); 2834 2835 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2836 2837 // Create a reference to the named value. This ensures that it is emitted 2838 // if a deferred decl. 2839 llvm::Constant *Aliasee; 2840 if (isa<llvm::FunctionType>(DeclTy)) 2841 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2842 /*ForVTable=*/false); 2843 else 2844 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2845 llvm::PointerType::getUnqual(DeclTy), 2846 /*D=*/nullptr); 2847 2848 // Create the new alias itself, but don't set a name yet. 2849 auto *GA = llvm::GlobalAlias::create( 2850 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2851 2852 if (Entry) { 2853 if (GA->getAliasee() == Entry) { 2854 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2855 return; 2856 } 2857 2858 assert(Entry->isDeclaration()); 2859 2860 // If there is a declaration in the module, then we had an extern followed 2861 // by the alias, as in: 2862 // extern int test6(); 2863 // ... 2864 // int test6() __attribute__((alias("test7"))); 2865 // 2866 // Remove it and replace uses of it with the alias. 2867 GA->takeName(Entry); 2868 2869 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2870 Entry->getType())); 2871 Entry->eraseFromParent(); 2872 } else { 2873 GA->setName(MangledName); 2874 } 2875 2876 // Set attributes which are particular to an alias; this is a 2877 // specialization of the attributes which may be set on a global 2878 // variable/function. 2879 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2880 D->isWeakImported()) { 2881 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2882 } 2883 2884 if (const auto *VD = dyn_cast<VarDecl>(D)) 2885 if (VD->getTLSKind()) 2886 setTLSMode(GA, *VD); 2887 2888 setAliasAttributes(D, GA); 2889 } 2890 2891 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2892 ArrayRef<llvm::Type*> Tys) { 2893 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2894 Tys); 2895 } 2896 2897 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2898 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2899 const StringLiteral *Literal, bool TargetIsLSB, 2900 bool &IsUTF16, unsigned &StringLength) { 2901 StringRef String = Literal->getString(); 2902 unsigned NumBytes = String.size(); 2903 2904 // Check for simple case. 2905 if (!Literal->containsNonAsciiOrNull()) { 2906 StringLength = NumBytes; 2907 return *Map.insert(std::make_pair(String, nullptr)).first; 2908 } 2909 2910 // Otherwise, convert the UTF8 literals into a string of shorts. 2911 IsUTF16 = true; 2912 2913 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2914 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2915 UTF16 *ToPtr = &ToBuf[0]; 2916 2917 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2918 &ToPtr, ToPtr + NumBytes, 2919 strictConversion); 2920 2921 // ConvertUTF8toUTF16 returns the length in ToPtr. 2922 StringLength = ToPtr - &ToBuf[0]; 2923 2924 // Add an explicit null. 2925 *ToPtr = 0; 2926 return *Map.insert(std::make_pair( 2927 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2928 (StringLength + 1) * 2), 2929 nullptr)).first; 2930 } 2931 2932 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2933 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2934 const StringLiteral *Literal, unsigned &StringLength) { 2935 StringRef String = Literal->getString(); 2936 StringLength = String.size(); 2937 return *Map.insert(std::make_pair(String, nullptr)).first; 2938 } 2939 2940 ConstantAddress 2941 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2942 unsigned StringLength = 0; 2943 bool isUTF16 = false; 2944 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2945 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2946 getDataLayout().isLittleEndian(), isUTF16, 2947 StringLength); 2948 2949 if (auto *C = Entry.second) 2950 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2951 2952 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2953 llvm::Constant *Zeros[] = { Zero, Zero }; 2954 llvm::Value *V; 2955 2956 // If we don't already have it, get __CFConstantStringClassReference. 2957 if (!CFConstantStringClassRef) { 2958 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2959 Ty = llvm::ArrayType::get(Ty, 0); 2960 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2961 "__CFConstantStringClassReference"); 2962 // Decay array -> ptr 2963 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2964 CFConstantStringClassRef = V; 2965 } 2966 else 2967 V = CFConstantStringClassRef; 2968 2969 QualType CFTy = getContext().getCFConstantStringType(); 2970 2971 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2972 2973 llvm::Constant *Fields[4]; 2974 2975 // Class pointer. 2976 Fields[0] = cast<llvm::ConstantExpr>(V); 2977 2978 // Flags. 2979 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2980 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2981 llvm::ConstantInt::get(Ty, 0x07C8); 2982 2983 // String pointer. 2984 llvm::Constant *C = nullptr; 2985 if (isUTF16) { 2986 auto Arr = llvm::makeArrayRef( 2987 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2988 Entry.first().size() / 2); 2989 C = llvm::ConstantDataArray::get(VMContext, Arr); 2990 } else { 2991 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2992 } 2993 2994 // Note: -fwritable-strings doesn't make the backing store strings of 2995 // CFStrings writable. (See <rdar://problem/10657500>) 2996 auto *GV = 2997 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2998 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2999 GV->setUnnamedAddr(true); 3000 // Don't enforce the target's minimum global alignment, since the only use 3001 // of the string is via this class initializer. 3002 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 3003 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 3004 // that changes the section it ends in, which surprises ld64. 3005 if (isUTF16) { 3006 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 3007 GV->setAlignment(Align.getQuantity()); 3008 GV->setSection("__TEXT,__ustring"); 3009 } else { 3010 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3011 GV->setAlignment(Align.getQuantity()); 3012 GV->setSection("__TEXT,__cstring,cstring_literals"); 3013 } 3014 3015 // String. 3016 Fields[2] = 3017 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3018 3019 if (isUTF16) 3020 // Cast the UTF16 string to the correct type. 3021 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3022 3023 // String length. 3024 Ty = getTypes().ConvertType(getContext().LongTy); 3025 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3026 3027 CharUnits Alignment = getPointerAlign(); 3028 3029 // The struct. 3030 C = llvm::ConstantStruct::get(STy, Fields); 3031 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3032 llvm::GlobalVariable::PrivateLinkage, C, 3033 "_unnamed_cfstring_"); 3034 GV->setSection("__DATA,__cfstring"); 3035 GV->setAlignment(Alignment.getQuantity()); 3036 Entry.second = GV; 3037 3038 return ConstantAddress(GV, Alignment); 3039 } 3040 3041 ConstantAddress 3042 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3043 unsigned StringLength = 0; 3044 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3045 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3046 3047 if (auto *C = Entry.second) 3048 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3049 3050 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3051 llvm::Constant *Zeros[] = { Zero, Zero }; 3052 llvm::Value *V; 3053 // If we don't already have it, get _NSConstantStringClassReference. 3054 if (!ConstantStringClassRef) { 3055 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3056 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3057 llvm::Constant *GV; 3058 if (LangOpts.ObjCRuntime.isNonFragile()) { 3059 std::string str = 3060 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3061 : "OBJC_CLASS_$_" + StringClass; 3062 GV = getObjCRuntime().GetClassGlobal(str); 3063 // Make sure the result is of the correct type. 3064 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3065 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3066 ConstantStringClassRef = V; 3067 } else { 3068 std::string str = 3069 StringClass.empty() ? "_NSConstantStringClassReference" 3070 : "_" + StringClass + "ClassReference"; 3071 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3072 GV = CreateRuntimeVariable(PTy, str); 3073 // Decay array -> ptr 3074 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3075 ConstantStringClassRef = V; 3076 } 3077 } else 3078 V = ConstantStringClassRef; 3079 3080 if (!NSConstantStringType) { 3081 // Construct the type for a constant NSString. 3082 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3083 D->startDefinition(); 3084 3085 QualType FieldTypes[3]; 3086 3087 // const int *isa; 3088 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3089 // const char *str; 3090 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3091 // unsigned int length; 3092 FieldTypes[2] = Context.UnsignedIntTy; 3093 3094 // Create fields 3095 for (unsigned i = 0; i < 3; ++i) { 3096 FieldDecl *Field = FieldDecl::Create(Context, D, 3097 SourceLocation(), 3098 SourceLocation(), nullptr, 3099 FieldTypes[i], /*TInfo=*/nullptr, 3100 /*BitWidth=*/nullptr, 3101 /*Mutable=*/false, 3102 ICIS_NoInit); 3103 Field->setAccess(AS_public); 3104 D->addDecl(Field); 3105 } 3106 3107 D->completeDefinition(); 3108 QualType NSTy = Context.getTagDeclType(D); 3109 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3110 } 3111 3112 llvm::Constant *Fields[3]; 3113 3114 // Class pointer. 3115 Fields[0] = cast<llvm::ConstantExpr>(V); 3116 3117 // String pointer. 3118 llvm::Constant *C = 3119 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3120 3121 llvm::GlobalValue::LinkageTypes Linkage; 3122 bool isConstant; 3123 Linkage = llvm::GlobalValue::PrivateLinkage; 3124 isConstant = !LangOpts.WritableStrings; 3125 3126 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3127 Linkage, C, ".str"); 3128 GV->setUnnamedAddr(true); 3129 // Don't enforce the target's minimum global alignment, since the only use 3130 // of the string is via this class initializer. 3131 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3132 GV->setAlignment(Align.getQuantity()); 3133 Fields[1] = 3134 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3135 3136 // String length. 3137 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3138 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3139 3140 // The struct. 3141 CharUnits Alignment = getPointerAlign(); 3142 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3143 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3144 llvm::GlobalVariable::PrivateLinkage, C, 3145 "_unnamed_nsstring_"); 3146 GV->setAlignment(Alignment.getQuantity()); 3147 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3148 const char *NSStringNonFragileABISection = 3149 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3150 // FIXME. Fix section. 3151 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3152 ? NSStringNonFragileABISection 3153 : NSStringSection); 3154 Entry.second = GV; 3155 3156 return ConstantAddress(GV, Alignment); 3157 } 3158 3159 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3160 if (ObjCFastEnumerationStateType.isNull()) { 3161 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3162 D->startDefinition(); 3163 3164 QualType FieldTypes[] = { 3165 Context.UnsignedLongTy, 3166 Context.getPointerType(Context.getObjCIdType()), 3167 Context.getPointerType(Context.UnsignedLongTy), 3168 Context.getConstantArrayType(Context.UnsignedLongTy, 3169 llvm::APInt(32, 5), ArrayType::Normal, 0) 3170 }; 3171 3172 for (size_t i = 0; i < 4; ++i) { 3173 FieldDecl *Field = FieldDecl::Create(Context, 3174 D, 3175 SourceLocation(), 3176 SourceLocation(), nullptr, 3177 FieldTypes[i], /*TInfo=*/nullptr, 3178 /*BitWidth=*/nullptr, 3179 /*Mutable=*/false, 3180 ICIS_NoInit); 3181 Field->setAccess(AS_public); 3182 D->addDecl(Field); 3183 } 3184 3185 D->completeDefinition(); 3186 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3187 } 3188 3189 return ObjCFastEnumerationStateType; 3190 } 3191 3192 llvm::Constant * 3193 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3194 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3195 3196 // Don't emit it as the address of the string, emit the string data itself 3197 // as an inline array. 3198 if (E->getCharByteWidth() == 1) { 3199 SmallString<64> Str(E->getString()); 3200 3201 // Resize the string to the right size, which is indicated by its type. 3202 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3203 Str.resize(CAT->getSize().getZExtValue()); 3204 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3205 } 3206 3207 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3208 llvm::Type *ElemTy = AType->getElementType(); 3209 unsigned NumElements = AType->getNumElements(); 3210 3211 // Wide strings have either 2-byte or 4-byte elements. 3212 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3213 SmallVector<uint16_t, 32> Elements; 3214 Elements.reserve(NumElements); 3215 3216 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3217 Elements.push_back(E->getCodeUnit(i)); 3218 Elements.resize(NumElements); 3219 return llvm::ConstantDataArray::get(VMContext, Elements); 3220 } 3221 3222 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3223 SmallVector<uint32_t, 32> Elements; 3224 Elements.reserve(NumElements); 3225 3226 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3227 Elements.push_back(E->getCodeUnit(i)); 3228 Elements.resize(NumElements); 3229 return llvm::ConstantDataArray::get(VMContext, Elements); 3230 } 3231 3232 static llvm::GlobalVariable * 3233 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3234 CodeGenModule &CGM, StringRef GlobalName, 3235 CharUnits Alignment) { 3236 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3237 unsigned AddrSpace = 0; 3238 if (CGM.getLangOpts().OpenCL) 3239 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3240 3241 llvm::Module &M = CGM.getModule(); 3242 // Create a global variable for this string 3243 auto *GV = new llvm::GlobalVariable( 3244 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3245 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3246 GV->setAlignment(Alignment.getQuantity()); 3247 GV->setUnnamedAddr(true); 3248 if (GV->isWeakForLinker()) { 3249 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3250 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3251 } 3252 3253 return GV; 3254 } 3255 3256 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3257 /// constant array for the given string literal. 3258 ConstantAddress 3259 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3260 StringRef Name) { 3261 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3262 3263 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3264 llvm::GlobalVariable **Entry = nullptr; 3265 if (!LangOpts.WritableStrings) { 3266 Entry = &ConstantStringMap[C]; 3267 if (auto GV = *Entry) { 3268 if (Alignment.getQuantity() > GV->getAlignment()) 3269 GV->setAlignment(Alignment.getQuantity()); 3270 return ConstantAddress(GV, Alignment); 3271 } 3272 } 3273 3274 SmallString<256> MangledNameBuffer; 3275 StringRef GlobalVariableName; 3276 llvm::GlobalValue::LinkageTypes LT; 3277 3278 // Mangle the string literal if the ABI allows for it. However, we cannot 3279 // do this if we are compiling with ASan or -fwritable-strings because they 3280 // rely on strings having normal linkage. 3281 if (!LangOpts.WritableStrings && 3282 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3283 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3284 llvm::raw_svector_ostream Out(MangledNameBuffer); 3285 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3286 3287 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3288 GlobalVariableName = MangledNameBuffer; 3289 } else { 3290 LT = llvm::GlobalValue::PrivateLinkage; 3291 GlobalVariableName = Name; 3292 } 3293 3294 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3295 if (Entry) 3296 *Entry = GV; 3297 3298 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3299 QualType()); 3300 return ConstantAddress(GV, Alignment); 3301 } 3302 3303 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3304 /// array for the given ObjCEncodeExpr node. 3305 ConstantAddress 3306 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3307 std::string Str; 3308 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3309 3310 return GetAddrOfConstantCString(Str); 3311 } 3312 3313 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3314 /// the literal and a terminating '\0' character. 3315 /// The result has pointer to array type. 3316 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3317 const std::string &Str, const char *GlobalName) { 3318 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3319 CharUnits Alignment = 3320 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3321 3322 llvm::Constant *C = 3323 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3324 3325 // Don't share any string literals if strings aren't constant. 3326 llvm::GlobalVariable **Entry = nullptr; 3327 if (!LangOpts.WritableStrings) { 3328 Entry = &ConstantStringMap[C]; 3329 if (auto GV = *Entry) { 3330 if (Alignment.getQuantity() > GV->getAlignment()) 3331 GV->setAlignment(Alignment.getQuantity()); 3332 return ConstantAddress(GV, Alignment); 3333 } 3334 } 3335 3336 // Get the default prefix if a name wasn't specified. 3337 if (!GlobalName) 3338 GlobalName = ".str"; 3339 // Create a global variable for this. 3340 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3341 GlobalName, Alignment); 3342 if (Entry) 3343 *Entry = GV; 3344 return ConstantAddress(GV, Alignment); 3345 } 3346 3347 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3348 const MaterializeTemporaryExpr *E, const Expr *Init) { 3349 assert((E->getStorageDuration() == SD_Static || 3350 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3351 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3352 3353 // If we're not materializing a subobject of the temporary, keep the 3354 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3355 QualType MaterializedType = Init->getType(); 3356 if (Init == E->GetTemporaryExpr()) 3357 MaterializedType = E->getType(); 3358 3359 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3360 3361 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3362 return ConstantAddress(Slot, Align); 3363 3364 // FIXME: If an externally-visible declaration extends multiple temporaries, 3365 // we need to give each temporary the same name in every translation unit (and 3366 // we also need to make the temporaries externally-visible). 3367 SmallString<256> Name; 3368 llvm::raw_svector_ostream Out(Name); 3369 getCXXABI().getMangleContext().mangleReferenceTemporary( 3370 VD, E->getManglingNumber(), Out); 3371 3372 APValue *Value = nullptr; 3373 if (E->getStorageDuration() == SD_Static) { 3374 // We might have a cached constant initializer for this temporary. Note 3375 // that this might have a different value from the value computed by 3376 // evaluating the initializer if the surrounding constant expression 3377 // modifies the temporary. 3378 Value = getContext().getMaterializedTemporaryValue(E, false); 3379 if (Value && Value->isUninit()) 3380 Value = nullptr; 3381 } 3382 3383 // Try evaluating it now, it might have a constant initializer. 3384 Expr::EvalResult EvalResult; 3385 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3386 !EvalResult.hasSideEffects()) 3387 Value = &EvalResult.Val; 3388 3389 llvm::Constant *InitialValue = nullptr; 3390 bool Constant = false; 3391 llvm::Type *Type; 3392 if (Value) { 3393 // The temporary has a constant initializer, use it. 3394 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3395 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3396 Type = InitialValue->getType(); 3397 } else { 3398 // No initializer, the initialization will be provided when we 3399 // initialize the declaration which performed lifetime extension. 3400 Type = getTypes().ConvertTypeForMem(MaterializedType); 3401 } 3402 3403 // Create a global variable for this lifetime-extended temporary. 3404 llvm::GlobalValue::LinkageTypes Linkage = 3405 getLLVMLinkageVarDefinition(VD, Constant); 3406 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3407 const VarDecl *InitVD; 3408 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3409 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3410 // Temporaries defined inside a class get linkonce_odr linkage because the 3411 // class can be defined in multipe translation units. 3412 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3413 } else { 3414 // There is no need for this temporary to have external linkage if the 3415 // VarDecl has external linkage. 3416 Linkage = llvm::GlobalVariable::InternalLinkage; 3417 } 3418 } 3419 unsigned AddrSpace = GetGlobalVarAddressSpace( 3420 VD, getContext().getTargetAddressSpace(MaterializedType)); 3421 auto *GV = new llvm::GlobalVariable( 3422 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3423 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3424 AddrSpace); 3425 setGlobalVisibility(GV, VD); 3426 GV->setAlignment(Align.getQuantity()); 3427 if (supportsCOMDAT() && GV->isWeakForLinker()) 3428 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3429 if (VD->getTLSKind()) 3430 setTLSMode(GV, *VD); 3431 MaterializedGlobalTemporaryMap[E] = GV; 3432 return ConstantAddress(GV, Align); 3433 } 3434 3435 /// EmitObjCPropertyImplementations - Emit information for synthesized 3436 /// properties for an implementation. 3437 void CodeGenModule::EmitObjCPropertyImplementations(const 3438 ObjCImplementationDecl *D) { 3439 for (const auto *PID : D->property_impls()) { 3440 // Dynamic is just for type-checking. 3441 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3442 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3443 3444 // Determine which methods need to be implemented, some may have 3445 // been overridden. Note that ::isPropertyAccessor is not the method 3446 // we want, that just indicates if the decl came from a 3447 // property. What we want to know is if the method is defined in 3448 // this implementation. 3449 if (!D->getInstanceMethod(PD->getGetterName())) 3450 CodeGenFunction(*this).GenerateObjCGetter( 3451 const_cast<ObjCImplementationDecl *>(D), PID); 3452 if (!PD->isReadOnly() && 3453 !D->getInstanceMethod(PD->getSetterName())) 3454 CodeGenFunction(*this).GenerateObjCSetter( 3455 const_cast<ObjCImplementationDecl *>(D), PID); 3456 } 3457 } 3458 } 3459 3460 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3461 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3462 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3463 ivar; ivar = ivar->getNextIvar()) 3464 if (ivar->getType().isDestructedType()) 3465 return true; 3466 3467 return false; 3468 } 3469 3470 static bool AllTrivialInitializers(CodeGenModule &CGM, 3471 ObjCImplementationDecl *D) { 3472 CodeGenFunction CGF(CGM); 3473 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3474 E = D->init_end(); B != E; ++B) { 3475 CXXCtorInitializer *CtorInitExp = *B; 3476 Expr *Init = CtorInitExp->getInit(); 3477 if (!CGF.isTrivialInitializer(Init)) 3478 return false; 3479 } 3480 return true; 3481 } 3482 3483 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3484 /// for an implementation. 3485 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3486 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3487 if (needsDestructMethod(D)) { 3488 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3489 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3490 ObjCMethodDecl *DTORMethod = 3491 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3492 cxxSelector, getContext().VoidTy, nullptr, D, 3493 /*isInstance=*/true, /*isVariadic=*/false, 3494 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3495 /*isDefined=*/false, ObjCMethodDecl::Required); 3496 D->addInstanceMethod(DTORMethod); 3497 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3498 D->setHasDestructors(true); 3499 } 3500 3501 // If the implementation doesn't have any ivar initializers, we don't need 3502 // a .cxx_construct. 3503 if (D->getNumIvarInitializers() == 0 || 3504 AllTrivialInitializers(*this, D)) 3505 return; 3506 3507 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3508 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3509 // The constructor returns 'self'. 3510 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3511 D->getLocation(), 3512 D->getLocation(), 3513 cxxSelector, 3514 getContext().getObjCIdType(), 3515 nullptr, D, /*isInstance=*/true, 3516 /*isVariadic=*/false, 3517 /*isPropertyAccessor=*/true, 3518 /*isImplicitlyDeclared=*/true, 3519 /*isDefined=*/false, 3520 ObjCMethodDecl::Required); 3521 D->addInstanceMethod(CTORMethod); 3522 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3523 D->setHasNonZeroConstructors(true); 3524 } 3525 3526 /// EmitNamespace - Emit all declarations in a namespace. 3527 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3528 for (auto *I : ND->decls()) { 3529 if (const auto *VD = dyn_cast<VarDecl>(I)) 3530 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3531 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3532 continue; 3533 EmitTopLevelDecl(I); 3534 } 3535 } 3536 3537 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3538 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3539 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3540 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3541 ErrorUnsupported(LSD, "linkage spec"); 3542 return; 3543 } 3544 3545 for (auto *I : LSD->decls()) { 3546 // Meta-data for ObjC class includes references to implemented methods. 3547 // Generate class's method definitions first. 3548 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3549 for (auto *M : OID->methods()) 3550 EmitTopLevelDecl(M); 3551 } 3552 EmitTopLevelDecl(I); 3553 } 3554 } 3555 3556 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3557 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3558 // Ignore dependent declarations. 3559 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3560 return; 3561 3562 switch (D->getKind()) { 3563 case Decl::CXXConversion: 3564 case Decl::CXXMethod: 3565 case Decl::Function: 3566 // Skip function templates 3567 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3568 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3569 return; 3570 3571 EmitGlobal(cast<FunctionDecl>(D)); 3572 // Always provide some coverage mapping 3573 // even for the functions that aren't emitted. 3574 AddDeferredUnusedCoverageMapping(D); 3575 break; 3576 3577 case Decl::Var: 3578 // Skip variable templates 3579 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3580 return; 3581 case Decl::VarTemplateSpecialization: 3582 EmitGlobal(cast<VarDecl>(D)); 3583 break; 3584 3585 // Indirect fields from global anonymous structs and unions can be 3586 // ignored; only the actual variable requires IR gen support. 3587 case Decl::IndirectField: 3588 break; 3589 3590 // C++ Decls 3591 case Decl::Namespace: 3592 EmitNamespace(cast<NamespaceDecl>(D)); 3593 break; 3594 // No code generation needed. 3595 case Decl::UsingShadow: 3596 case Decl::ClassTemplate: 3597 case Decl::VarTemplate: 3598 case Decl::VarTemplatePartialSpecialization: 3599 case Decl::FunctionTemplate: 3600 case Decl::TypeAliasTemplate: 3601 case Decl::Block: 3602 case Decl::Empty: 3603 break; 3604 case Decl::Using: // using X; [C++] 3605 if (CGDebugInfo *DI = getModuleDebugInfo()) 3606 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3607 return; 3608 case Decl::NamespaceAlias: 3609 if (CGDebugInfo *DI = getModuleDebugInfo()) 3610 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3611 return; 3612 case Decl::UsingDirective: // using namespace X; [C++] 3613 if (CGDebugInfo *DI = getModuleDebugInfo()) 3614 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3615 return; 3616 case Decl::CXXConstructor: 3617 // Skip function templates 3618 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3619 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3620 return; 3621 3622 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3623 break; 3624 case Decl::CXXDestructor: 3625 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3626 return; 3627 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3628 break; 3629 3630 case Decl::StaticAssert: 3631 // Nothing to do. 3632 break; 3633 3634 // Objective-C Decls 3635 3636 // Forward declarations, no (immediate) code generation. 3637 case Decl::ObjCInterface: 3638 case Decl::ObjCCategory: 3639 break; 3640 3641 case Decl::ObjCProtocol: { 3642 auto *Proto = cast<ObjCProtocolDecl>(D); 3643 if (Proto->isThisDeclarationADefinition()) 3644 ObjCRuntime->GenerateProtocol(Proto); 3645 break; 3646 } 3647 3648 case Decl::ObjCCategoryImpl: 3649 // Categories have properties but don't support synthesize so we 3650 // can ignore them here. 3651 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3652 break; 3653 3654 case Decl::ObjCImplementation: { 3655 auto *OMD = cast<ObjCImplementationDecl>(D); 3656 EmitObjCPropertyImplementations(OMD); 3657 EmitObjCIvarInitializations(OMD); 3658 ObjCRuntime->GenerateClass(OMD); 3659 // Emit global variable debug information. 3660 if (CGDebugInfo *DI = getModuleDebugInfo()) 3661 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3662 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3663 OMD->getClassInterface()), OMD->getLocation()); 3664 break; 3665 } 3666 case Decl::ObjCMethod: { 3667 auto *OMD = cast<ObjCMethodDecl>(D); 3668 // If this is not a prototype, emit the body. 3669 if (OMD->getBody()) 3670 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3671 break; 3672 } 3673 case Decl::ObjCCompatibleAlias: 3674 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3675 break; 3676 3677 case Decl::LinkageSpec: 3678 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3679 break; 3680 3681 case Decl::FileScopeAsm: { 3682 // File-scope asm is ignored during device-side CUDA compilation. 3683 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3684 break; 3685 // File-scope asm is ignored during device-side OpenMP compilation. 3686 if (LangOpts.OpenMPIsDevice) 3687 break; 3688 auto *AD = cast<FileScopeAsmDecl>(D); 3689 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3690 break; 3691 } 3692 3693 case Decl::Import: { 3694 auto *Import = cast<ImportDecl>(D); 3695 3696 // Ignore import declarations that come from imported modules. 3697 if (Import->getImportedOwningModule()) 3698 break; 3699 if (CGDebugInfo *DI = getModuleDebugInfo()) 3700 DI->EmitImportDecl(*Import); 3701 3702 ImportedModules.insert(Import->getImportedModule()); 3703 break; 3704 } 3705 3706 case Decl::OMPThreadPrivate: 3707 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3708 break; 3709 3710 case Decl::ClassTemplateSpecialization: { 3711 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3712 if (DebugInfo && 3713 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3714 Spec->hasDefinition()) 3715 DebugInfo->completeTemplateDefinition(*Spec); 3716 break; 3717 } 3718 3719 default: 3720 // Make sure we handled everything we should, every other kind is a 3721 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3722 // function. Need to recode Decl::Kind to do that easily. 3723 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3724 break; 3725 } 3726 } 3727 3728 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3729 // Do we need to generate coverage mapping? 3730 if (!CodeGenOpts.CoverageMapping) 3731 return; 3732 switch (D->getKind()) { 3733 case Decl::CXXConversion: 3734 case Decl::CXXMethod: 3735 case Decl::Function: 3736 case Decl::ObjCMethod: 3737 case Decl::CXXConstructor: 3738 case Decl::CXXDestructor: { 3739 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3740 return; 3741 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3742 if (I == DeferredEmptyCoverageMappingDecls.end()) 3743 DeferredEmptyCoverageMappingDecls[D] = true; 3744 break; 3745 } 3746 default: 3747 break; 3748 }; 3749 } 3750 3751 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3752 // Do we need to generate coverage mapping? 3753 if (!CodeGenOpts.CoverageMapping) 3754 return; 3755 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3756 if (Fn->isTemplateInstantiation()) 3757 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3758 } 3759 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3760 if (I == DeferredEmptyCoverageMappingDecls.end()) 3761 DeferredEmptyCoverageMappingDecls[D] = false; 3762 else 3763 I->second = false; 3764 } 3765 3766 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3767 std::vector<const Decl *> DeferredDecls; 3768 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3769 if (!I.second) 3770 continue; 3771 DeferredDecls.push_back(I.first); 3772 } 3773 // Sort the declarations by their location to make sure that the tests get a 3774 // predictable order for the coverage mapping for the unused declarations. 3775 if (CodeGenOpts.DumpCoverageMapping) 3776 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3777 [] (const Decl *LHS, const Decl *RHS) { 3778 return LHS->getLocStart() < RHS->getLocStart(); 3779 }); 3780 for (const auto *D : DeferredDecls) { 3781 switch (D->getKind()) { 3782 case Decl::CXXConversion: 3783 case Decl::CXXMethod: 3784 case Decl::Function: 3785 case Decl::ObjCMethod: { 3786 CodeGenPGO PGO(*this); 3787 GlobalDecl GD(cast<FunctionDecl>(D)); 3788 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3789 getFunctionLinkage(GD)); 3790 break; 3791 } 3792 case Decl::CXXConstructor: { 3793 CodeGenPGO PGO(*this); 3794 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3795 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3796 getFunctionLinkage(GD)); 3797 break; 3798 } 3799 case Decl::CXXDestructor: { 3800 CodeGenPGO PGO(*this); 3801 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3802 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3803 getFunctionLinkage(GD)); 3804 break; 3805 } 3806 default: 3807 break; 3808 }; 3809 } 3810 } 3811 3812 /// Turns the given pointer into a constant. 3813 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3814 const void *Ptr) { 3815 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3816 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3817 return llvm::ConstantInt::get(i64, PtrInt); 3818 } 3819 3820 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3821 llvm::NamedMDNode *&GlobalMetadata, 3822 GlobalDecl D, 3823 llvm::GlobalValue *Addr) { 3824 if (!GlobalMetadata) 3825 GlobalMetadata = 3826 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3827 3828 // TODO: should we report variant information for ctors/dtors? 3829 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3830 llvm::ConstantAsMetadata::get(GetPointerConstant( 3831 CGM.getLLVMContext(), D.getDecl()))}; 3832 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3833 } 3834 3835 /// For each function which is declared within an extern "C" region and marked 3836 /// as 'used', but has internal linkage, create an alias from the unmangled 3837 /// name to the mangled name if possible. People expect to be able to refer 3838 /// to such functions with an unmangled name from inline assembly within the 3839 /// same translation unit. 3840 void CodeGenModule::EmitStaticExternCAliases() { 3841 // Don't do anything if we're generating CUDA device code -- the NVPTX 3842 // assembly target doesn't support aliases. 3843 if (Context.getTargetInfo().getTriple().isNVPTX()) 3844 return; 3845 for (auto &I : StaticExternCValues) { 3846 IdentifierInfo *Name = I.first; 3847 llvm::GlobalValue *Val = I.second; 3848 if (Val && !getModule().getNamedValue(Name->getName())) 3849 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3850 } 3851 } 3852 3853 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3854 GlobalDecl &Result) const { 3855 auto Res = Manglings.find(MangledName); 3856 if (Res == Manglings.end()) 3857 return false; 3858 Result = Res->getValue(); 3859 return true; 3860 } 3861 3862 /// Emits metadata nodes associating all the global values in the 3863 /// current module with the Decls they came from. This is useful for 3864 /// projects using IR gen as a subroutine. 3865 /// 3866 /// Since there's currently no way to associate an MDNode directly 3867 /// with an llvm::GlobalValue, we create a global named metadata 3868 /// with the name 'clang.global.decl.ptrs'. 3869 void CodeGenModule::EmitDeclMetadata() { 3870 llvm::NamedMDNode *GlobalMetadata = nullptr; 3871 3872 for (auto &I : MangledDeclNames) { 3873 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3874 // Some mangled names don't necessarily have an associated GlobalValue 3875 // in this module, e.g. if we mangled it for DebugInfo. 3876 if (Addr) 3877 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3878 } 3879 } 3880 3881 /// Emits metadata nodes for all the local variables in the current 3882 /// function. 3883 void CodeGenFunction::EmitDeclMetadata() { 3884 if (LocalDeclMap.empty()) return; 3885 3886 llvm::LLVMContext &Context = getLLVMContext(); 3887 3888 // Find the unique metadata ID for this name. 3889 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3890 3891 llvm::NamedMDNode *GlobalMetadata = nullptr; 3892 3893 for (auto &I : LocalDeclMap) { 3894 const Decl *D = I.first; 3895 llvm::Value *Addr = I.second.getPointer(); 3896 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3897 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3898 Alloca->setMetadata( 3899 DeclPtrKind, llvm::MDNode::get( 3900 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3901 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3902 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3903 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3904 } 3905 } 3906 } 3907 3908 void CodeGenModule::EmitVersionIdentMetadata() { 3909 llvm::NamedMDNode *IdentMetadata = 3910 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3911 std::string Version = getClangFullVersion(); 3912 llvm::LLVMContext &Ctx = TheModule.getContext(); 3913 3914 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3915 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3916 } 3917 3918 void CodeGenModule::EmitTargetMetadata() { 3919 // Warning, new MangledDeclNames may be appended within this loop. 3920 // We rely on MapVector insertions adding new elements to the end 3921 // of the container. 3922 // FIXME: Move this loop into the one target that needs it, and only 3923 // loop over those declarations for which we couldn't emit the target 3924 // metadata when we emitted the declaration. 3925 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3926 auto Val = *(MangledDeclNames.begin() + I); 3927 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3928 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3929 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3930 } 3931 } 3932 3933 void CodeGenModule::EmitCoverageFile() { 3934 if (!getCodeGenOpts().CoverageFile.empty()) { 3935 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3936 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3937 llvm::LLVMContext &Ctx = TheModule.getContext(); 3938 llvm::MDString *CoverageFile = 3939 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3940 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3941 llvm::MDNode *CU = CUNode->getOperand(i); 3942 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3943 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3944 } 3945 } 3946 } 3947 } 3948 3949 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3950 // Sema has checked that all uuid strings are of the form 3951 // "12345678-1234-1234-1234-1234567890ab". 3952 assert(Uuid.size() == 36); 3953 for (unsigned i = 0; i < 36; ++i) { 3954 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3955 else assert(isHexDigit(Uuid[i])); 3956 } 3957 3958 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3959 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3960 3961 llvm::Constant *Field3[8]; 3962 for (unsigned Idx = 0; Idx < 8; ++Idx) 3963 Field3[Idx] = llvm::ConstantInt::get( 3964 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3965 3966 llvm::Constant *Fields[4] = { 3967 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3968 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3969 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3970 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3971 }; 3972 3973 return llvm::ConstantStruct::getAnon(Fields); 3974 } 3975 3976 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3977 bool ForEH) { 3978 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3979 // FIXME: should we even be calling this method if RTTI is disabled 3980 // and it's not for EH? 3981 if (!ForEH && !getLangOpts().RTTI) 3982 return llvm::Constant::getNullValue(Int8PtrTy); 3983 3984 if (ForEH && Ty->isObjCObjectPointerType() && 3985 LangOpts.ObjCRuntime.isGNUFamily()) 3986 return ObjCRuntime->GetEHType(Ty); 3987 3988 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3989 } 3990 3991 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3992 for (auto RefExpr : D->varlists()) { 3993 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3994 bool PerformInit = 3995 VD->getAnyInitializer() && 3996 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3997 /*ForRef=*/false); 3998 3999 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4000 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4001 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4002 CXXGlobalInits.push_back(InitFunction); 4003 } 4004 } 4005 4006 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4007 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4008 if (InternalId) 4009 return InternalId; 4010 4011 if (isExternallyVisible(T->getLinkage())) { 4012 std::string OutName; 4013 llvm::raw_string_ostream Out(OutName); 4014 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4015 4016 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4017 } else { 4018 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4019 llvm::ArrayRef<llvm::Metadata *>()); 4020 } 4021 4022 return InternalId; 4023 } 4024 4025 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 4026 llvm::GlobalVariable *VTable, 4027 CharUnits Offset, 4028 const CXXRecordDecl *RD) { 4029 llvm::Metadata *MD = 4030 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4031 llvm::Metadata *BitsetOps[] = { 4032 MD, llvm::ConstantAsMetadata::get(VTable), 4033 llvm::ConstantAsMetadata::get( 4034 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4035 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4036 4037 if (CodeGenOpts.SanitizeCfiCrossDso) { 4038 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 4039 llvm::Metadata *BitsetOps2[] = { 4040 llvm::ConstantAsMetadata::get(TypeId), 4041 llvm::ConstantAsMetadata::get(VTable), 4042 llvm::ConstantAsMetadata::get( 4043 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4044 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 4045 } 4046 } 4047 } 4048 4049 // Fills in the supplied string map with the set of target features for the 4050 // passed in function. 4051 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4052 const FunctionDecl *FD) { 4053 StringRef TargetCPU = Target.getTargetOpts().CPU; 4054 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4055 // If we have a TargetAttr build up the feature map based on that. 4056 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4057 4058 // Make a copy of the features as passed on the command line into the 4059 // beginning of the additional features from the function to override. 4060 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4061 Target.getTargetOpts().FeaturesAsWritten.begin(), 4062 Target.getTargetOpts().FeaturesAsWritten.end()); 4063 4064 if (ParsedAttr.second != "") 4065 TargetCPU = ParsedAttr.second; 4066 4067 // Now populate the feature map, first with the TargetCPU which is either 4068 // the default or a new one from the target attribute string. Then we'll use 4069 // the passed in features (FeaturesAsWritten) along with the new ones from 4070 // the attribute. 4071 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4072 } else { 4073 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4074 Target.getTargetOpts().Features); 4075 } 4076 } 4077 4078 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4079 if (!SanStats) 4080 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4081 4082 return *SanStats; 4083 } 4084