1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/APSInt.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 91 Types(*this), VTables(*this), ObjCRuntime(nullptr), 92 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 93 DebugInfo(nullptr), ObjCData(nullptr), 94 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 95 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 96 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 97 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 98 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 99 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 100 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 118 Int8PtrTy = Int8Ty->getPointerTo(0); 119 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 120 121 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 122 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 123 124 if (LangOpts.ObjC1) 125 createObjCRuntime(); 126 if (LangOpts.OpenCL) 127 createOpenCLRuntime(); 128 if (LangOpts.OpenMP) 129 createOpenMPRuntime(); 130 if (LangOpts.CUDA) 131 createCUDARuntime(); 132 133 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 134 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 135 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 136 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 137 getCXXABI().getMangleContext()); 138 139 // If debug info or coverage generation is enabled, create the CGDebugInfo 140 // object. 141 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 142 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 143 DebugInfo = new CGDebugInfo(*this); 144 145 Block.GlobalUniqueCount = 0; 146 147 if (C.getLangOpts().ObjC1) 148 ObjCData = new ObjCEntrypoints(); 149 150 if (!CodeGenOpts.InstrProfileInput.empty()) { 151 auto ReaderOrErr = 152 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 153 if (std::error_code EC = ReaderOrErr.getError()) { 154 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 155 "Could not read profile %0: %1"); 156 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 157 << EC.message(); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() { 169 delete ObjCRuntime; 170 delete OpenCLRuntime; 171 delete OpenMPRuntime; 172 delete CUDARuntime; 173 delete TheTargetCodeGenInfo; 174 delete TBAA; 175 delete DebugInfo; 176 delete ObjCData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 case ObjCRuntime::WatchOS: 193 ObjCRuntime = CreateMacObjCRuntime(*this); 194 return; 195 } 196 llvm_unreachable("bad runtime kind"); 197 } 198 199 void CodeGenModule::createOpenCLRuntime() { 200 OpenCLRuntime = new CGOpenCLRuntime(*this); 201 } 202 203 void CodeGenModule::createOpenMPRuntime() { 204 // Select a specialized code generation class based on the target, if any. 205 // If it does not exist use the default implementation. 206 switch (getTarget().getTriple().getArch()) { 207 208 case llvm::Triple::nvptx: 209 case llvm::Triple::nvptx64: 210 assert(getLangOpts().OpenMPIsDevice && 211 "OpenMP NVPTX is only prepared to deal with device code."); 212 OpenMPRuntime = new CGOpenMPRuntimeNVPTX(*this); 213 break; 214 default: 215 OpenMPRuntime = new CGOpenMPRuntime(*this); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime = CreateNVCUDARuntime(*this); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 276 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 277 const llvm::Constant *C = &GA; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 284 if (!GA2) 285 return nullptr; 286 if (!Visited.insert(GA2).second) 287 return nullptr; 288 C = GA2->getAliasee(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 const AliasAttr *AA = D->getAttr<AliasAttr>(); 301 StringRef MangledName = getMangledName(GD); 302 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 303 auto *Alias = cast<llvm::GlobalAlias>(Entry); 304 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 305 if (!GV) { 306 Error = true; 307 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 308 } else if (GV->isDeclaration()) { 309 Error = true; 310 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 311 } 312 313 llvm::Constant *Aliasee = Alias->getAliasee(); 314 llvm::GlobalValue *AliaseeGV; 315 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 316 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 317 else 318 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 319 320 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 321 StringRef AliasSection = SA->getName(); 322 if (AliasSection != AliaseeGV->getSection()) 323 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 324 << AliasSection; 325 } 326 327 // We have to handle alias to weak aliases in here. LLVM itself disallows 328 // this since the object semantics would not match the IL one. For 329 // compatibility with gcc we implement it by just pointing the alias 330 // to its aliasee's aliasee. We also warn, since the user is probably 331 // expecting the link to be weak. 332 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 333 if (GA->mayBeOverridden()) { 334 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 335 << GV->getName() << GA->getName(); 336 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 337 GA->getAliasee(), Alias->getType()); 338 Alias->setAliasee(Aliasee); 339 } 340 } 341 } 342 if (!Error) 343 return; 344 345 for (const GlobalDecl &GD : Aliases) { 346 StringRef MangledName = getMangledName(GD); 347 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 348 auto *Alias = cast<llvm::GlobalAlias>(Entry); 349 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 350 Alias->eraseFromParent(); 351 } 352 } 353 354 void CodeGenModule::clear() { 355 DeferredDeclsToEmit.clear(); 356 if (OpenMPRuntime) 357 OpenMPRuntime->clear(); 358 } 359 360 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 361 StringRef MainFile) { 362 if (!hasDiagnostics()) 363 return; 364 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 365 if (MainFile.empty()) 366 MainFile = "<stdin>"; 367 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 368 } else 369 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 370 << Mismatched; 371 } 372 373 void CodeGenModule::Release() { 374 EmitDeferred(); 375 applyGlobalValReplacements(); 376 applyReplacements(); 377 checkAliases(); 378 EmitCXXGlobalInitFunc(); 379 EmitCXXGlobalDtorFunc(); 380 EmitCXXThreadLocalInitFunc(); 381 if (ObjCRuntime) 382 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 383 AddGlobalCtor(ObjCInitFunction); 384 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 385 CUDARuntime) { 386 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 387 AddGlobalCtor(CudaCtorFunction); 388 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 389 AddGlobalDtor(CudaDtorFunction); 390 } 391 if (OpenMPRuntime) 392 if (llvm::Function *OpenMPRegistrationFunction = 393 OpenMPRuntime->emitRegistrationFunction()) 394 AddGlobalCtor(OpenMPRegistrationFunction, 0); 395 if (PGOReader) { 396 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 397 if (PGOStats.hasDiagnostics()) 398 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 399 } 400 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 401 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 402 EmitGlobalAnnotations(); 403 EmitStaticExternCAliases(); 404 EmitDeferredUnusedCoverageMappings(); 405 if (CoverageMapping) 406 CoverageMapping->emit(); 407 if (CodeGenOpts.SanitizeCfiCrossDso) 408 CodeGenFunction(*this).EmitCfiCheckFail(); 409 emitLLVMUsed(); 410 if (SanStats) 411 SanStats->finish(); 412 413 if (CodeGenOpts.Autolink && 414 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 415 EmitModuleLinkOptions(); 416 } 417 if (CodeGenOpts.DwarfVersion) { 418 // We actually want the latest version when there are conflicts. 419 // We can change from Warning to Latest if such mode is supported. 420 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 421 CodeGenOpts.DwarfVersion); 422 } 423 if (CodeGenOpts.EmitCodeView) { 424 // Indicate that we want CodeView in the metadata. 425 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 426 } 427 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 428 // We don't support LTO with 2 with different StrictVTablePointers 429 // FIXME: we could support it by stripping all the information introduced 430 // by StrictVTablePointers. 431 432 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 433 434 llvm::Metadata *Ops[2] = { 435 llvm::MDString::get(VMContext, "StrictVTablePointers"), 436 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 437 llvm::Type::getInt32Ty(VMContext), 1))}; 438 439 getModule().addModuleFlag(llvm::Module::Require, 440 "StrictVTablePointersRequirement", 441 llvm::MDNode::get(VMContext, Ops)); 442 } 443 if (DebugInfo) 444 // We support a single version in the linked module. The LLVM 445 // parser will drop debug info with a different version number 446 // (and warn about it, too). 447 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 448 llvm::DEBUG_METADATA_VERSION); 449 450 // We need to record the widths of enums and wchar_t, so that we can generate 451 // the correct build attributes in the ARM backend. 452 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 453 if ( Arch == llvm::Triple::arm 454 || Arch == llvm::Triple::armeb 455 || Arch == llvm::Triple::thumb 456 || Arch == llvm::Triple::thumbeb) { 457 // Width of wchar_t in bytes 458 uint64_t WCharWidth = 459 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 460 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 461 462 // The minimum width of an enum in bytes 463 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 464 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 465 } 466 467 if (CodeGenOpts.SanitizeCfiCrossDso) { 468 // Indicate that we want cross-DSO control flow integrity checks. 469 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 470 } 471 472 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 473 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 474 switch (PLevel) { 475 case 0: break; 476 case 1: PL = llvm::PICLevel::Small; break; 477 case 2: PL = llvm::PICLevel::Large; break; 478 default: llvm_unreachable("Invalid PIC Level"); 479 } 480 481 getModule().setPICLevel(PL); 482 } 483 484 SimplifyPersonality(); 485 486 if (getCodeGenOpts().EmitDeclMetadata) 487 EmitDeclMetadata(); 488 489 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 490 EmitCoverageFile(); 491 492 if (DebugInfo) 493 DebugInfo->finalize(); 494 495 EmitVersionIdentMetadata(); 496 497 EmitTargetMetadata(); 498 } 499 500 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 501 // Make sure that this type is translated. 502 Types.UpdateCompletedType(TD); 503 } 504 505 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 506 // Make sure that this type is translated. 507 Types.RefreshTypeCacheForClass(RD); 508 } 509 510 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 511 if (!TBAA) 512 return nullptr; 513 return TBAA->getTBAAInfo(QTy); 514 } 515 516 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 517 if (!TBAA) 518 return nullptr; 519 return TBAA->getTBAAInfoForVTablePtr(); 520 } 521 522 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 523 if (!TBAA) 524 return nullptr; 525 return TBAA->getTBAAStructInfo(QTy); 526 } 527 528 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 529 llvm::MDNode *AccessN, 530 uint64_t O) { 531 if (!TBAA) 532 return nullptr; 533 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 534 } 535 536 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 537 /// and struct-path aware TBAA, the tag has the same format: 538 /// base type, access type and offset. 539 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 540 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 541 llvm::MDNode *TBAAInfo, 542 bool ConvertTypeToTag) { 543 if (ConvertTypeToTag && TBAA) 544 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 545 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 546 else 547 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 548 } 549 550 void CodeGenModule::DecorateInstructionWithInvariantGroup( 551 llvm::Instruction *I, const CXXRecordDecl *RD) { 552 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 553 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 554 // Check if we have to wrap MDString in MDNode. 555 if (!MetaDataNode) 556 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 557 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 558 } 559 560 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 561 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 562 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 563 } 564 565 /// ErrorUnsupported - Print out an error that codegen doesn't support the 566 /// specified stmt yet. 567 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 568 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 569 "cannot compile this %0 yet"); 570 std::string Msg = Type; 571 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 572 << Msg << S->getSourceRange(); 573 } 574 575 /// ErrorUnsupported - Print out an error that codegen doesn't support the 576 /// specified decl yet. 577 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 578 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 579 "cannot compile this %0 yet"); 580 std::string Msg = Type; 581 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 582 } 583 584 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 585 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 586 } 587 588 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 589 const NamedDecl *D) const { 590 // Internal definitions always have default visibility. 591 if (GV->hasLocalLinkage()) { 592 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 593 return; 594 } 595 596 // Set visibility for definitions. 597 LinkageInfo LV = D->getLinkageAndVisibility(); 598 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 599 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 600 } 601 602 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 603 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 604 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 605 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 606 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 607 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 608 } 609 610 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 611 CodeGenOptions::TLSModel M) { 612 switch (M) { 613 case CodeGenOptions::GeneralDynamicTLSModel: 614 return llvm::GlobalVariable::GeneralDynamicTLSModel; 615 case CodeGenOptions::LocalDynamicTLSModel: 616 return llvm::GlobalVariable::LocalDynamicTLSModel; 617 case CodeGenOptions::InitialExecTLSModel: 618 return llvm::GlobalVariable::InitialExecTLSModel; 619 case CodeGenOptions::LocalExecTLSModel: 620 return llvm::GlobalVariable::LocalExecTLSModel; 621 } 622 llvm_unreachable("Invalid TLS model!"); 623 } 624 625 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 626 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 627 628 llvm::GlobalValue::ThreadLocalMode TLM; 629 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 630 631 // Override the TLS model if it is explicitly specified. 632 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 633 TLM = GetLLVMTLSModel(Attr->getModel()); 634 } 635 636 GV->setThreadLocalMode(TLM); 637 } 638 639 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 640 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 641 642 // Some ABIs don't have constructor variants. Make sure that base and 643 // complete constructors get mangled the same. 644 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 645 if (!getTarget().getCXXABI().hasConstructorVariants()) { 646 CXXCtorType OrigCtorType = GD.getCtorType(); 647 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 648 if (OrigCtorType == Ctor_Base) 649 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 650 } 651 } 652 653 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 654 if (!FoundStr.empty()) 655 return FoundStr; 656 657 const auto *ND = cast<NamedDecl>(GD.getDecl()); 658 SmallString<256> Buffer; 659 StringRef Str; 660 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 661 llvm::raw_svector_ostream Out(Buffer); 662 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 663 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 664 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 665 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 666 else 667 getCXXABI().getMangleContext().mangleName(ND, Out); 668 Str = Out.str(); 669 } else { 670 IdentifierInfo *II = ND->getIdentifier(); 671 assert(II && "Attempt to mangle unnamed decl."); 672 Str = II->getName(); 673 } 674 675 // Keep the first result in the case of a mangling collision. 676 auto Result = Manglings.insert(std::make_pair(Str, GD)); 677 return FoundStr = Result.first->first(); 678 } 679 680 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 681 const BlockDecl *BD) { 682 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 683 const Decl *D = GD.getDecl(); 684 685 SmallString<256> Buffer; 686 llvm::raw_svector_ostream Out(Buffer); 687 if (!D) 688 MangleCtx.mangleGlobalBlock(BD, 689 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 690 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 691 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 692 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 693 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 694 else 695 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 696 697 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 698 return Result.first->first(); 699 } 700 701 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 702 return getModule().getNamedValue(Name); 703 } 704 705 /// AddGlobalCtor - Add a function to the list that will be called before 706 /// main() runs. 707 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 708 llvm::Constant *AssociatedData) { 709 // FIXME: Type coercion of void()* types. 710 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 711 } 712 713 /// AddGlobalDtor - Add a function to the list that will be called 714 /// when the module is unloaded. 715 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 716 // FIXME: Type coercion of void()* types. 717 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 718 } 719 720 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 721 // Ctor function type is void()*. 722 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 723 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 724 725 // Get the type of a ctor entry, { i32, void ()*, i8* }. 726 llvm::StructType *CtorStructTy = llvm::StructType::get( 727 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 728 729 // Construct the constructor and destructor arrays. 730 SmallVector<llvm::Constant *, 8> Ctors; 731 for (const auto &I : Fns) { 732 llvm::Constant *S[] = { 733 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 734 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 735 (I.AssociatedData 736 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 737 : llvm::Constant::getNullValue(VoidPtrTy))}; 738 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 739 } 740 741 if (!Ctors.empty()) { 742 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 743 new llvm::GlobalVariable(TheModule, AT, false, 744 llvm::GlobalValue::AppendingLinkage, 745 llvm::ConstantArray::get(AT, Ctors), 746 GlobalName); 747 } 748 } 749 750 llvm::GlobalValue::LinkageTypes 751 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 752 const auto *D = cast<FunctionDecl>(GD.getDecl()); 753 754 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 755 756 if (isa<CXXDestructorDecl>(D) && 757 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 758 GD.getDtorType())) { 759 // Destructor variants in the Microsoft C++ ABI are always internal or 760 // linkonce_odr thunks emitted on an as-needed basis. 761 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 762 : llvm::GlobalValue::LinkOnceODRLinkage; 763 } 764 765 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 766 } 767 768 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 769 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 770 771 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 772 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 773 // Don't dllexport/import destructor thunks. 774 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 775 return; 776 } 777 } 778 779 if (FD->hasAttr<DLLImportAttr>()) 780 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 781 else if (FD->hasAttr<DLLExportAttr>()) 782 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 783 else 784 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 785 } 786 787 llvm::ConstantInt * 788 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 789 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 790 if (!MDS) return nullptr; 791 792 llvm::MD5 md5; 793 llvm::MD5::MD5Result result; 794 md5.update(MDS->getString()); 795 md5.final(result); 796 uint64_t id = 0; 797 for (int i = 0; i < 8; ++i) 798 id |= static_cast<uint64_t>(result[i]) << (i * 8); 799 return llvm::ConstantInt::get(Int64Ty, id); 800 } 801 802 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 803 llvm::Function *F) { 804 setNonAliasAttributes(D, F); 805 } 806 807 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 808 const CGFunctionInfo &Info, 809 llvm::Function *F) { 810 unsigned CallingConv; 811 AttributeListType AttributeList; 812 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 813 false); 814 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 815 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 816 } 817 818 /// Determines whether the language options require us to model 819 /// unwind exceptions. We treat -fexceptions as mandating this 820 /// except under the fragile ObjC ABI with only ObjC exceptions 821 /// enabled. This means, for example, that C with -fexceptions 822 /// enables this. 823 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 824 // If exceptions are completely disabled, obviously this is false. 825 if (!LangOpts.Exceptions) return false; 826 827 // If C++ exceptions are enabled, this is true. 828 if (LangOpts.CXXExceptions) return true; 829 830 // If ObjC exceptions are enabled, this depends on the ABI. 831 if (LangOpts.ObjCExceptions) { 832 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 833 } 834 835 return true; 836 } 837 838 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 839 llvm::Function *F) { 840 llvm::AttrBuilder B; 841 842 if (CodeGenOpts.UnwindTables) 843 B.addAttribute(llvm::Attribute::UWTable); 844 845 if (!hasUnwindExceptions(LangOpts)) 846 B.addAttribute(llvm::Attribute::NoUnwind); 847 848 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 849 B.addAttribute(llvm::Attribute::StackProtect); 850 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 851 B.addAttribute(llvm::Attribute::StackProtectStrong); 852 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 853 B.addAttribute(llvm::Attribute::StackProtectReq); 854 855 if (!D) { 856 F->addAttributes(llvm::AttributeSet::FunctionIndex, 857 llvm::AttributeSet::get( 858 F->getContext(), 859 llvm::AttributeSet::FunctionIndex, B)); 860 return; 861 } 862 863 if (D->hasAttr<NakedAttr>()) { 864 // Naked implies noinline: we should not be inlining such functions. 865 B.addAttribute(llvm::Attribute::Naked); 866 B.addAttribute(llvm::Attribute::NoInline); 867 } else if (D->hasAttr<NoDuplicateAttr>()) { 868 B.addAttribute(llvm::Attribute::NoDuplicate); 869 } else if (D->hasAttr<NoInlineAttr>()) { 870 B.addAttribute(llvm::Attribute::NoInline); 871 } else if (D->hasAttr<AlwaysInlineAttr>() && 872 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 873 llvm::Attribute::NoInline)) { 874 // (noinline wins over always_inline, and we can't specify both in IR) 875 B.addAttribute(llvm::Attribute::AlwaysInline); 876 } 877 878 if (D->hasAttr<ColdAttr>()) { 879 if (!D->hasAttr<OptimizeNoneAttr>()) 880 B.addAttribute(llvm::Attribute::OptimizeForSize); 881 B.addAttribute(llvm::Attribute::Cold); 882 } 883 884 if (D->hasAttr<MinSizeAttr>()) 885 B.addAttribute(llvm::Attribute::MinSize); 886 887 F->addAttributes(llvm::AttributeSet::FunctionIndex, 888 llvm::AttributeSet::get( 889 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 890 891 if (D->hasAttr<OptimizeNoneAttr>()) { 892 // OptimizeNone implies noinline; we should not be inlining such functions. 893 F->addFnAttr(llvm::Attribute::OptimizeNone); 894 F->addFnAttr(llvm::Attribute::NoInline); 895 896 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 897 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 898 F->removeFnAttr(llvm::Attribute::MinSize); 899 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 900 "OptimizeNone and AlwaysInline on same function!"); 901 902 // Attribute 'inlinehint' has no effect on 'optnone' functions. 903 // Explicitly remove it from the set of function attributes. 904 F->removeFnAttr(llvm::Attribute::InlineHint); 905 } 906 907 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 908 F->setUnnamedAddr(true); 909 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 910 if (MD->isVirtual()) 911 F->setUnnamedAddr(true); 912 913 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 914 if (alignment) 915 F->setAlignment(alignment); 916 917 // Some C++ ABIs require 2-byte alignment for member functions, in order to 918 // reserve a bit for differentiating between virtual and non-virtual member 919 // functions. If the current target's C++ ABI requires this and this is a 920 // member function, set its alignment accordingly. 921 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 922 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 923 F->setAlignment(2); 924 } 925 } 926 927 void CodeGenModule::SetCommonAttributes(const Decl *D, 928 llvm::GlobalValue *GV) { 929 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 930 setGlobalVisibility(GV, ND); 931 else 932 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 933 934 if (D && D->hasAttr<UsedAttr>()) 935 addUsedGlobal(GV); 936 } 937 938 void CodeGenModule::setAliasAttributes(const Decl *D, 939 llvm::GlobalValue *GV) { 940 SetCommonAttributes(D, GV); 941 942 // Process the dllexport attribute based on whether the original definition 943 // (not necessarily the aliasee) was exported. 944 if (D->hasAttr<DLLExportAttr>()) 945 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 946 } 947 948 void CodeGenModule::setNonAliasAttributes(const Decl *D, 949 llvm::GlobalObject *GO) { 950 SetCommonAttributes(D, GO); 951 952 if (D) 953 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 954 GO->setSection(SA->getName()); 955 956 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 957 } 958 959 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 960 llvm::Function *F, 961 const CGFunctionInfo &FI) { 962 SetLLVMFunctionAttributes(D, FI, F); 963 SetLLVMFunctionAttributesForDefinition(D, F); 964 965 F->setLinkage(llvm::Function::InternalLinkage); 966 967 setNonAliasAttributes(D, F); 968 } 969 970 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 971 const NamedDecl *ND) { 972 // Set linkage and visibility in case we never see a definition. 973 LinkageInfo LV = ND->getLinkageAndVisibility(); 974 if (LV.getLinkage() != ExternalLinkage) { 975 // Don't set internal linkage on declarations. 976 } else { 977 if (ND->hasAttr<DLLImportAttr>()) { 978 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 979 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 980 } else if (ND->hasAttr<DLLExportAttr>()) { 981 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 982 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 983 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 984 // "extern_weak" is overloaded in LLVM; we probably should have 985 // separate linkage types for this. 986 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 987 } 988 989 // Set visibility on a declaration only if it's explicit. 990 if (LV.isVisibilityExplicit()) 991 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 992 } 993 } 994 995 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 996 llvm::Function *F) { 997 // Only if we are checking indirect calls. 998 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 999 return; 1000 1001 // Non-static class methods are handled via vtable pointer checks elsewhere. 1002 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1003 return; 1004 1005 // Additionally, if building with cross-DSO support... 1006 if (CodeGenOpts.SanitizeCfiCrossDso) { 1007 // Don't emit entries for function declarations. In cross-DSO mode these are 1008 // handled with better precision at run time. 1009 if (!FD->hasBody()) 1010 return; 1011 // Skip available_externally functions. They won't be codegen'ed in the 1012 // current module anyway. 1013 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1014 return; 1015 } 1016 1017 llvm::NamedMDNode *BitsetsMD = 1018 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1019 1020 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1021 llvm::Metadata *BitsetOps[] = { 1022 MD, llvm::ConstantAsMetadata::get(F), 1023 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1024 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1025 1026 // Emit a hash-based bit set entry for cross-DSO calls. 1027 if (CodeGenOpts.SanitizeCfiCrossDso) { 1028 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 1029 llvm::Metadata *BitsetOps2[] = { 1030 llvm::ConstantAsMetadata::get(TypeId), 1031 llvm::ConstantAsMetadata::get(F), 1032 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1033 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 1034 } 1035 } 1036 } 1037 1038 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1039 bool IsIncompleteFunction, 1040 bool IsThunk) { 1041 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1042 // If this is an intrinsic function, set the function's attributes 1043 // to the intrinsic's attributes. 1044 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1045 return; 1046 } 1047 1048 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1049 1050 if (!IsIncompleteFunction) 1051 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1052 1053 // Add the Returned attribute for "this", except for iOS 5 and earlier 1054 // where substantial code, including the libstdc++ dylib, was compiled with 1055 // GCC and does not actually return "this". 1056 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1057 !(getTarget().getTriple().isiOS() && 1058 getTarget().getTriple().isOSVersionLT(6))) { 1059 assert(!F->arg_empty() && 1060 F->arg_begin()->getType() 1061 ->canLosslesslyBitCastTo(F->getReturnType()) && 1062 "unexpected this return"); 1063 F->addAttribute(1, llvm::Attribute::Returned); 1064 } 1065 1066 // Only a few attributes are set on declarations; these may later be 1067 // overridden by a definition. 1068 1069 setLinkageAndVisibilityForGV(F, FD); 1070 1071 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1072 F->setSection(SA->getName()); 1073 1074 // A replaceable global allocation function does not act like a builtin by 1075 // default, only if it is invoked by a new-expression or delete-expression. 1076 if (FD->isReplaceableGlobalAllocationFunction()) 1077 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1078 llvm::Attribute::NoBuiltin); 1079 1080 CreateFunctionBitSetEntry(FD, F); 1081 } 1082 1083 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1084 assert(!GV->isDeclaration() && 1085 "Only globals with definition can force usage."); 1086 LLVMUsed.emplace_back(GV); 1087 } 1088 1089 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1090 assert(!GV->isDeclaration() && 1091 "Only globals with definition can force usage."); 1092 LLVMCompilerUsed.emplace_back(GV); 1093 } 1094 1095 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1096 std::vector<llvm::WeakVH> &List) { 1097 // Don't create llvm.used if there is no need. 1098 if (List.empty()) 1099 return; 1100 1101 // Convert List to what ConstantArray needs. 1102 SmallVector<llvm::Constant*, 8> UsedArray; 1103 UsedArray.resize(List.size()); 1104 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1105 UsedArray[i] = 1106 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1107 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1108 } 1109 1110 if (UsedArray.empty()) 1111 return; 1112 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1113 1114 auto *GV = new llvm::GlobalVariable( 1115 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1116 llvm::ConstantArray::get(ATy, UsedArray), Name); 1117 1118 GV->setSection("llvm.metadata"); 1119 } 1120 1121 void CodeGenModule::emitLLVMUsed() { 1122 emitUsed(*this, "llvm.used", LLVMUsed); 1123 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1124 } 1125 1126 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1127 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1128 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1129 } 1130 1131 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1132 llvm::SmallString<32> Opt; 1133 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1134 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1135 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1136 } 1137 1138 void CodeGenModule::AddDependentLib(StringRef Lib) { 1139 llvm::SmallString<24> Opt; 1140 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1141 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1142 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1143 } 1144 1145 /// \brief Add link options implied by the given module, including modules 1146 /// it depends on, using a postorder walk. 1147 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1148 SmallVectorImpl<llvm::Metadata *> &Metadata, 1149 llvm::SmallPtrSet<Module *, 16> &Visited) { 1150 // Import this module's parent. 1151 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1152 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1153 } 1154 1155 // Import this module's dependencies. 1156 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1157 if (Visited.insert(Mod->Imports[I - 1]).second) 1158 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1159 } 1160 1161 // Add linker options to link against the libraries/frameworks 1162 // described by this module. 1163 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1164 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1165 // Link against a framework. Frameworks are currently Darwin only, so we 1166 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1167 if (Mod->LinkLibraries[I-1].IsFramework) { 1168 llvm::Metadata *Args[2] = { 1169 llvm::MDString::get(Context, "-framework"), 1170 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1171 1172 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1173 continue; 1174 } 1175 1176 // Link against a library. 1177 llvm::SmallString<24> Opt; 1178 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1179 Mod->LinkLibraries[I-1].Library, Opt); 1180 auto *OptString = llvm::MDString::get(Context, Opt); 1181 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1182 } 1183 } 1184 1185 void CodeGenModule::EmitModuleLinkOptions() { 1186 // Collect the set of all of the modules we want to visit to emit link 1187 // options, which is essentially the imported modules and all of their 1188 // non-explicit child modules. 1189 llvm::SetVector<clang::Module *> LinkModules; 1190 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1191 SmallVector<clang::Module *, 16> Stack; 1192 1193 // Seed the stack with imported modules. 1194 for (Module *M : ImportedModules) 1195 if (Visited.insert(M).second) 1196 Stack.push_back(M); 1197 1198 // Find all of the modules to import, making a little effort to prune 1199 // non-leaf modules. 1200 while (!Stack.empty()) { 1201 clang::Module *Mod = Stack.pop_back_val(); 1202 1203 bool AnyChildren = false; 1204 1205 // Visit the submodules of this module. 1206 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1207 SubEnd = Mod->submodule_end(); 1208 Sub != SubEnd; ++Sub) { 1209 // Skip explicit children; they need to be explicitly imported to be 1210 // linked against. 1211 if ((*Sub)->IsExplicit) 1212 continue; 1213 1214 if (Visited.insert(*Sub).second) { 1215 Stack.push_back(*Sub); 1216 AnyChildren = true; 1217 } 1218 } 1219 1220 // We didn't find any children, so add this module to the list of 1221 // modules to link against. 1222 if (!AnyChildren) { 1223 LinkModules.insert(Mod); 1224 } 1225 } 1226 1227 // Add link options for all of the imported modules in reverse topological 1228 // order. We don't do anything to try to order import link flags with respect 1229 // to linker options inserted by things like #pragma comment(). 1230 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1231 Visited.clear(); 1232 for (Module *M : LinkModules) 1233 if (Visited.insert(M).second) 1234 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1235 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1236 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1237 1238 // Add the linker options metadata flag. 1239 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1240 llvm::MDNode::get(getLLVMContext(), 1241 LinkerOptionsMetadata)); 1242 } 1243 1244 void CodeGenModule::EmitDeferred() { 1245 // Emit code for any potentially referenced deferred decls. Since a 1246 // previously unused static decl may become used during the generation of code 1247 // for a static function, iterate until no changes are made. 1248 1249 if (!DeferredVTables.empty()) { 1250 EmitDeferredVTables(); 1251 1252 // Emitting a vtable doesn't directly cause more vtables to 1253 // become deferred, although it can cause functions to be 1254 // emitted that then need those vtables. 1255 assert(DeferredVTables.empty()); 1256 } 1257 1258 // Stop if we're out of both deferred vtables and deferred declarations. 1259 if (DeferredDeclsToEmit.empty()) 1260 return; 1261 1262 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1263 // work, it will not interfere with this. 1264 std::vector<DeferredGlobal> CurDeclsToEmit; 1265 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1266 1267 for (DeferredGlobal &G : CurDeclsToEmit) { 1268 GlobalDecl D = G.GD; 1269 G.GV = nullptr; 1270 1271 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1272 // to get GlobalValue with exactly the type we need, not something that 1273 // might had been created for another decl with the same mangled name but 1274 // different type. 1275 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1276 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1277 1278 // In case of different address spaces, we may still get a cast, even with 1279 // IsForDefinition equal to true. Query mangled names table to get 1280 // GlobalValue. 1281 if (!GV) 1282 GV = GetGlobalValue(getMangledName(D)); 1283 1284 // Make sure GetGlobalValue returned non-null. 1285 assert(GV); 1286 1287 // Check to see if we've already emitted this. This is necessary 1288 // for a couple of reasons: first, decls can end up in the 1289 // deferred-decls queue multiple times, and second, decls can end 1290 // up with definitions in unusual ways (e.g. by an extern inline 1291 // function acquiring a strong function redefinition). Just 1292 // ignore these cases. 1293 if (!GV->isDeclaration()) 1294 continue; 1295 1296 // Otherwise, emit the definition and move on to the next one. 1297 EmitGlobalDefinition(D, GV); 1298 1299 // If we found out that we need to emit more decls, do that recursively. 1300 // This has the advantage that the decls are emitted in a DFS and related 1301 // ones are close together, which is convenient for testing. 1302 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1303 EmitDeferred(); 1304 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1305 } 1306 } 1307 } 1308 1309 void CodeGenModule::EmitGlobalAnnotations() { 1310 if (Annotations.empty()) 1311 return; 1312 1313 // Create a new global variable for the ConstantStruct in the Module. 1314 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1315 Annotations[0]->getType(), Annotations.size()), Annotations); 1316 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1317 llvm::GlobalValue::AppendingLinkage, 1318 Array, "llvm.global.annotations"); 1319 gv->setSection(AnnotationSection); 1320 } 1321 1322 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1323 llvm::Constant *&AStr = AnnotationStrings[Str]; 1324 if (AStr) 1325 return AStr; 1326 1327 // Not found yet, create a new global. 1328 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1329 auto *gv = 1330 new llvm::GlobalVariable(getModule(), s->getType(), true, 1331 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1332 gv->setSection(AnnotationSection); 1333 gv->setUnnamedAddr(true); 1334 AStr = gv; 1335 return gv; 1336 } 1337 1338 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1339 SourceManager &SM = getContext().getSourceManager(); 1340 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1341 if (PLoc.isValid()) 1342 return EmitAnnotationString(PLoc.getFilename()); 1343 return EmitAnnotationString(SM.getBufferName(Loc)); 1344 } 1345 1346 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1347 SourceManager &SM = getContext().getSourceManager(); 1348 PresumedLoc PLoc = SM.getPresumedLoc(L); 1349 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1350 SM.getExpansionLineNumber(L); 1351 return llvm::ConstantInt::get(Int32Ty, LineNo); 1352 } 1353 1354 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1355 const AnnotateAttr *AA, 1356 SourceLocation L) { 1357 // Get the globals for file name, annotation, and the line number. 1358 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1359 *UnitGV = EmitAnnotationUnit(L), 1360 *LineNoCst = EmitAnnotationLineNo(L); 1361 1362 // Create the ConstantStruct for the global annotation. 1363 llvm::Constant *Fields[4] = { 1364 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1365 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1366 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1367 LineNoCst 1368 }; 1369 return llvm::ConstantStruct::getAnon(Fields); 1370 } 1371 1372 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1373 llvm::GlobalValue *GV) { 1374 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1375 // Get the struct elements for these annotations. 1376 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1377 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1378 } 1379 1380 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1381 SourceLocation Loc) const { 1382 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1383 // Blacklist by function name. 1384 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1385 return true; 1386 // Blacklist by location. 1387 if (Loc.isValid()) 1388 return SanitizerBL.isBlacklistedLocation(Loc); 1389 // If location is unknown, this may be a compiler-generated function. Assume 1390 // it's located in the main file. 1391 auto &SM = Context.getSourceManager(); 1392 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1393 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1394 } 1395 return false; 1396 } 1397 1398 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1399 SourceLocation Loc, QualType Ty, 1400 StringRef Category) const { 1401 // For now globals can be blacklisted only in ASan and KASan. 1402 if (!LangOpts.Sanitize.hasOneOf( 1403 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1404 return false; 1405 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1406 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1407 return true; 1408 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1409 return true; 1410 // Check global type. 1411 if (!Ty.isNull()) { 1412 // Drill down the array types: if global variable of a fixed type is 1413 // blacklisted, we also don't instrument arrays of them. 1414 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1415 Ty = AT->getElementType(); 1416 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1417 // We allow to blacklist only record types (classes, structs etc.) 1418 if (Ty->isRecordType()) { 1419 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1420 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1421 return true; 1422 } 1423 } 1424 return false; 1425 } 1426 1427 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1428 // Never defer when EmitAllDecls is specified. 1429 if (LangOpts.EmitAllDecls) 1430 return true; 1431 1432 return getContext().DeclMustBeEmitted(Global); 1433 } 1434 1435 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1436 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1437 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1438 // Implicit template instantiations may change linkage if they are later 1439 // explicitly instantiated, so they should not be emitted eagerly. 1440 return false; 1441 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1442 // codegen for global variables, because they may be marked as threadprivate. 1443 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1444 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1445 return false; 1446 1447 return true; 1448 } 1449 1450 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1451 const CXXUuidofExpr* E) { 1452 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1453 // well-formed. 1454 StringRef Uuid = E->getUuidAsStringRef(Context); 1455 std::string Name = "_GUID_" + Uuid.lower(); 1456 std::replace(Name.begin(), Name.end(), '-', '_'); 1457 1458 // Contains a 32-bit field. 1459 CharUnits Alignment = CharUnits::fromQuantity(4); 1460 1461 // Look for an existing global. 1462 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1463 return ConstantAddress(GV, Alignment); 1464 1465 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1466 assert(Init && "failed to initialize as constant"); 1467 1468 auto *GV = new llvm::GlobalVariable( 1469 getModule(), Init->getType(), 1470 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1471 if (supportsCOMDAT()) 1472 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1473 return ConstantAddress(GV, Alignment); 1474 } 1475 1476 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1477 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1478 assert(AA && "No alias?"); 1479 1480 CharUnits Alignment = getContext().getDeclAlign(VD); 1481 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1482 1483 // See if there is already something with the target's name in the module. 1484 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1485 if (Entry) { 1486 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1487 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1488 return ConstantAddress(Ptr, Alignment); 1489 } 1490 1491 llvm::Constant *Aliasee; 1492 if (isa<llvm::FunctionType>(DeclTy)) 1493 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1494 GlobalDecl(cast<FunctionDecl>(VD)), 1495 /*ForVTable=*/false); 1496 else 1497 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1498 llvm::PointerType::getUnqual(DeclTy), 1499 nullptr); 1500 1501 auto *F = cast<llvm::GlobalValue>(Aliasee); 1502 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1503 WeakRefReferences.insert(F); 1504 1505 return ConstantAddress(Aliasee, Alignment); 1506 } 1507 1508 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1509 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1510 1511 // Weak references don't produce any output by themselves. 1512 if (Global->hasAttr<WeakRefAttr>()) 1513 return; 1514 1515 // If this is an alias definition (which otherwise looks like a declaration) 1516 // emit it now. 1517 if (Global->hasAttr<AliasAttr>()) 1518 return EmitAliasDefinition(GD); 1519 1520 // If this is CUDA, be selective about which declarations we emit. 1521 if (LangOpts.CUDA) { 1522 if (LangOpts.CUDAIsDevice) { 1523 if (!Global->hasAttr<CUDADeviceAttr>() && 1524 !Global->hasAttr<CUDAGlobalAttr>() && 1525 !Global->hasAttr<CUDAConstantAttr>() && 1526 !Global->hasAttr<CUDASharedAttr>()) 1527 return; 1528 } else { 1529 if (!Global->hasAttr<CUDAHostAttr>() && ( 1530 Global->hasAttr<CUDADeviceAttr>() || 1531 Global->hasAttr<CUDAConstantAttr>() || 1532 Global->hasAttr<CUDASharedAttr>())) 1533 return; 1534 } 1535 } 1536 1537 // If this is OpenMP device, check if it is legal to emit this global 1538 // normally. 1539 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1540 return; 1541 1542 // Ignore declarations, they will be emitted on their first use. 1543 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1544 // Forward declarations are emitted lazily on first use. 1545 if (!FD->doesThisDeclarationHaveABody()) { 1546 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1547 return; 1548 1549 StringRef MangledName = getMangledName(GD); 1550 1551 // Compute the function info and LLVM type. 1552 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1553 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1554 1555 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1556 /*DontDefer=*/false); 1557 return; 1558 } 1559 } else { 1560 const auto *VD = cast<VarDecl>(Global); 1561 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1562 1563 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1564 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1565 return; 1566 } 1567 1568 // Defer code generation to first use when possible, e.g. if this is an inline 1569 // function. If the global must always be emitted, do it eagerly if possible 1570 // to benefit from cache locality. 1571 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1572 // Emit the definition if it can't be deferred. 1573 EmitGlobalDefinition(GD); 1574 return; 1575 } 1576 1577 // If we're deferring emission of a C++ variable with an 1578 // initializer, remember the order in which it appeared in the file. 1579 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1580 cast<VarDecl>(Global)->hasInit()) { 1581 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1582 CXXGlobalInits.push_back(nullptr); 1583 } 1584 1585 StringRef MangledName = getMangledName(GD); 1586 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1587 // The value has already been used and should therefore be emitted. 1588 addDeferredDeclToEmit(GV, GD); 1589 } else if (MustBeEmitted(Global)) { 1590 // The value must be emitted, but cannot be emitted eagerly. 1591 assert(!MayBeEmittedEagerly(Global)); 1592 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1593 } else { 1594 // Otherwise, remember that we saw a deferred decl with this name. The 1595 // first use of the mangled name will cause it to move into 1596 // DeferredDeclsToEmit. 1597 DeferredDecls[MangledName] = GD; 1598 } 1599 } 1600 1601 namespace { 1602 struct FunctionIsDirectlyRecursive : 1603 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1604 const StringRef Name; 1605 const Builtin::Context &BI; 1606 bool Result; 1607 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1608 Name(N), BI(C), Result(false) { 1609 } 1610 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1611 1612 bool TraverseCallExpr(CallExpr *E) { 1613 const FunctionDecl *FD = E->getDirectCallee(); 1614 if (!FD) 1615 return true; 1616 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1617 if (Attr && Name == Attr->getLabel()) { 1618 Result = true; 1619 return false; 1620 } 1621 unsigned BuiltinID = FD->getBuiltinID(); 1622 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1623 return true; 1624 StringRef BuiltinName = BI.getName(BuiltinID); 1625 if (BuiltinName.startswith("__builtin_") && 1626 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1627 Result = true; 1628 return false; 1629 } 1630 return true; 1631 } 1632 }; 1633 1634 struct DLLImportFunctionVisitor 1635 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1636 bool SafeToInline = true; 1637 1638 bool VisitVarDecl(VarDecl *VD) { 1639 // A thread-local variable cannot be imported. 1640 SafeToInline = !VD->getTLSKind(); 1641 return SafeToInline; 1642 } 1643 1644 // Make sure we're not referencing non-imported vars or functions. 1645 bool VisitDeclRefExpr(DeclRefExpr *E) { 1646 ValueDecl *VD = E->getDecl(); 1647 if (isa<FunctionDecl>(VD)) 1648 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1649 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1650 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1651 return SafeToInline; 1652 } 1653 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1654 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1655 return SafeToInline; 1656 } 1657 bool VisitCXXNewExpr(CXXNewExpr *E) { 1658 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1659 return SafeToInline; 1660 } 1661 }; 1662 } 1663 1664 // isTriviallyRecursive - Check if this function calls another 1665 // decl that, because of the asm attribute or the other decl being a builtin, 1666 // ends up pointing to itself. 1667 bool 1668 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1669 StringRef Name; 1670 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1671 // asm labels are a special kind of mangling we have to support. 1672 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1673 if (!Attr) 1674 return false; 1675 Name = Attr->getLabel(); 1676 } else { 1677 Name = FD->getName(); 1678 } 1679 1680 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1681 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1682 return Walker.Result; 1683 } 1684 1685 bool 1686 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1687 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1688 return true; 1689 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1690 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1691 return false; 1692 1693 if (F->hasAttr<DLLImportAttr>()) { 1694 // Check whether it would be safe to inline this dllimport function. 1695 DLLImportFunctionVisitor Visitor; 1696 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1697 if (!Visitor.SafeToInline) 1698 return false; 1699 } 1700 1701 // PR9614. Avoid cases where the source code is lying to us. An available 1702 // externally function should have an equivalent function somewhere else, 1703 // but a function that calls itself is clearly not equivalent to the real 1704 // implementation. 1705 // This happens in glibc's btowc and in some configure checks. 1706 return !isTriviallyRecursive(F); 1707 } 1708 1709 /// If the type for the method's class was generated by 1710 /// CGDebugInfo::createContextChain(), the cache contains only a 1711 /// limited DIType without any declarations. Since EmitFunctionStart() 1712 /// needs to find the canonical declaration for each method, we need 1713 /// to construct the complete type prior to emitting the method. 1714 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1715 if (!D->isInstance()) 1716 return; 1717 1718 if (CGDebugInfo *DI = getModuleDebugInfo()) 1719 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1720 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1721 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1722 } 1723 } 1724 1725 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1726 const auto *D = cast<ValueDecl>(GD.getDecl()); 1727 1728 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1729 Context.getSourceManager(), 1730 "Generating code for declaration"); 1731 1732 if (isa<FunctionDecl>(D)) { 1733 // At -O0, don't generate IR for functions with available_externally 1734 // linkage. 1735 if (!shouldEmitFunction(GD)) 1736 return; 1737 1738 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1739 CompleteDIClassType(Method); 1740 // Make sure to emit the definition(s) before we emit the thunks. 1741 // This is necessary for the generation of certain thunks. 1742 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1743 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1744 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1745 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1746 else 1747 EmitGlobalFunctionDefinition(GD, GV); 1748 1749 if (Method->isVirtual()) 1750 getVTables().EmitThunks(GD); 1751 1752 return; 1753 } 1754 1755 return EmitGlobalFunctionDefinition(GD, GV); 1756 } 1757 1758 if (const auto *VD = dyn_cast<VarDecl>(D)) 1759 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1760 1761 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1762 } 1763 1764 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1765 llvm::Function *NewFn); 1766 1767 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1768 /// module, create and return an llvm Function with the specified type. If there 1769 /// is something in the module with the specified name, return it potentially 1770 /// bitcasted to the right type. 1771 /// 1772 /// If D is non-null, it specifies a decl that correspond to this. This is used 1773 /// to set the attributes on the function when it is first created. 1774 llvm::Constant * 1775 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1776 llvm::Type *Ty, 1777 GlobalDecl GD, bool ForVTable, 1778 bool DontDefer, bool IsThunk, 1779 llvm::AttributeSet ExtraAttrs, 1780 bool IsForDefinition) { 1781 const Decl *D = GD.getDecl(); 1782 1783 // Lookup the entry, lazily creating it if necessary. 1784 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1785 if (Entry) { 1786 if (WeakRefReferences.erase(Entry)) { 1787 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1788 if (FD && !FD->hasAttr<WeakAttr>()) 1789 Entry->setLinkage(llvm::Function::ExternalLinkage); 1790 } 1791 1792 // Handle dropped DLL attributes. 1793 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1794 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1795 1796 // If there are two attempts to define the same mangled name, issue an 1797 // error. 1798 if (IsForDefinition && !Entry->isDeclaration()) { 1799 GlobalDecl OtherGD; 1800 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1801 // to make sure that we issue an error only once. 1802 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1803 (GD.getCanonicalDecl().getDecl() != 1804 OtherGD.getCanonicalDecl().getDecl()) && 1805 DiagnosedConflictingDefinitions.insert(GD).second) { 1806 getDiags().Report(D->getLocation(), 1807 diag::err_duplicate_mangled_name); 1808 getDiags().Report(OtherGD.getDecl()->getLocation(), 1809 diag::note_previous_definition); 1810 } 1811 } 1812 1813 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1814 (Entry->getType()->getElementType() == Ty)) { 1815 return Entry; 1816 } 1817 1818 // Make sure the result is of the correct type. 1819 // (If function is requested for a definition, we always need to create a new 1820 // function, not just return a bitcast.) 1821 if (!IsForDefinition) 1822 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1823 } 1824 1825 // This function doesn't have a complete type (for example, the return 1826 // type is an incomplete struct). Use a fake type instead, and make 1827 // sure not to try to set attributes. 1828 bool IsIncompleteFunction = false; 1829 1830 llvm::FunctionType *FTy; 1831 if (isa<llvm::FunctionType>(Ty)) { 1832 FTy = cast<llvm::FunctionType>(Ty); 1833 } else { 1834 FTy = llvm::FunctionType::get(VoidTy, false); 1835 IsIncompleteFunction = true; 1836 } 1837 1838 llvm::Function *F = 1839 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1840 Entry ? StringRef() : MangledName, &getModule()); 1841 1842 // If we already created a function with the same mangled name (but different 1843 // type) before, take its name and add it to the list of functions to be 1844 // replaced with F at the end of CodeGen. 1845 // 1846 // This happens if there is a prototype for a function (e.g. "int f()") and 1847 // then a definition of a different type (e.g. "int f(int x)"). 1848 if (Entry) { 1849 F->takeName(Entry); 1850 1851 // This might be an implementation of a function without a prototype, in 1852 // which case, try to do special replacement of calls which match the new 1853 // prototype. The really key thing here is that we also potentially drop 1854 // arguments from the call site so as to make a direct call, which makes the 1855 // inliner happier and suppresses a number of optimizer warnings (!) about 1856 // dropping arguments. 1857 if (!Entry->use_empty()) { 1858 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1859 Entry->removeDeadConstantUsers(); 1860 } 1861 1862 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1863 F, Entry->getType()->getElementType()->getPointerTo()); 1864 addGlobalValReplacement(Entry, BC); 1865 } 1866 1867 assert(F->getName() == MangledName && "name was uniqued!"); 1868 if (D) 1869 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1870 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1871 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1872 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1873 llvm::AttributeSet::get(VMContext, 1874 llvm::AttributeSet::FunctionIndex, 1875 B)); 1876 } 1877 1878 if (!DontDefer) { 1879 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1880 // each other bottoming out with the base dtor. Therefore we emit non-base 1881 // dtors on usage, even if there is no dtor definition in the TU. 1882 if (D && isa<CXXDestructorDecl>(D) && 1883 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1884 GD.getDtorType())) 1885 addDeferredDeclToEmit(F, GD); 1886 1887 // This is the first use or definition of a mangled name. If there is a 1888 // deferred decl with this name, remember that we need to emit it at the end 1889 // of the file. 1890 auto DDI = DeferredDecls.find(MangledName); 1891 if (DDI != DeferredDecls.end()) { 1892 // Move the potentially referenced deferred decl to the 1893 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1894 // don't need it anymore). 1895 addDeferredDeclToEmit(F, DDI->second); 1896 DeferredDecls.erase(DDI); 1897 1898 // Otherwise, there are cases we have to worry about where we're 1899 // using a declaration for which we must emit a definition but where 1900 // we might not find a top-level definition: 1901 // - member functions defined inline in their classes 1902 // - friend functions defined inline in some class 1903 // - special member functions with implicit definitions 1904 // If we ever change our AST traversal to walk into class methods, 1905 // this will be unnecessary. 1906 // 1907 // We also don't emit a definition for a function if it's going to be an 1908 // entry in a vtable, unless it's already marked as used. 1909 } else if (getLangOpts().CPlusPlus && D) { 1910 // Look for a declaration that's lexically in a record. 1911 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1912 FD = FD->getPreviousDecl()) { 1913 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1914 if (FD->doesThisDeclarationHaveABody()) { 1915 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1916 break; 1917 } 1918 } 1919 } 1920 } 1921 } 1922 1923 // Make sure the result is of the requested type. 1924 if (!IsIncompleteFunction) { 1925 assert(F->getType()->getElementType() == Ty); 1926 return F; 1927 } 1928 1929 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1930 return llvm::ConstantExpr::getBitCast(F, PTy); 1931 } 1932 1933 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1934 /// non-null, then this function will use the specified type if it has to 1935 /// create it (this occurs when we see a definition of the function). 1936 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1937 llvm::Type *Ty, 1938 bool ForVTable, 1939 bool DontDefer, 1940 bool IsForDefinition) { 1941 // If there was no specific requested type, just convert it now. 1942 if (!Ty) { 1943 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1944 auto CanonTy = Context.getCanonicalType(FD->getType()); 1945 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1946 } 1947 1948 StringRef MangledName = getMangledName(GD); 1949 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1950 /*IsThunk=*/false, llvm::AttributeSet(), 1951 IsForDefinition); 1952 } 1953 1954 /// CreateRuntimeFunction - Create a new runtime function with the specified 1955 /// type and name. 1956 llvm::Constant * 1957 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1958 StringRef Name, 1959 llvm::AttributeSet ExtraAttrs) { 1960 llvm::Constant *C = 1961 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1962 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1963 if (auto *F = dyn_cast<llvm::Function>(C)) 1964 if (F->empty()) 1965 F->setCallingConv(getRuntimeCC()); 1966 return C; 1967 } 1968 1969 /// CreateBuiltinFunction - Create a new builtin function with the specified 1970 /// type and name. 1971 llvm::Constant * 1972 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1973 StringRef Name, 1974 llvm::AttributeSet ExtraAttrs) { 1975 llvm::Constant *C = 1976 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1977 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1978 if (auto *F = dyn_cast<llvm::Function>(C)) 1979 if (F->empty()) 1980 F->setCallingConv(getBuiltinCC()); 1981 return C; 1982 } 1983 1984 /// isTypeConstant - Determine whether an object of this type can be emitted 1985 /// as a constant. 1986 /// 1987 /// If ExcludeCtor is true, the duration when the object's constructor runs 1988 /// will not be considered. The caller will need to verify that the object is 1989 /// not written to during its construction. 1990 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1991 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1992 return false; 1993 1994 if (Context.getLangOpts().CPlusPlus) { 1995 if (const CXXRecordDecl *Record 1996 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1997 return ExcludeCtor && !Record->hasMutableFields() && 1998 Record->hasTrivialDestructor(); 1999 } 2000 2001 return true; 2002 } 2003 2004 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2005 /// create and return an llvm GlobalVariable with the specified type. If there 2006 /// is something in the module with the specified name, return it potentially 2007 /// bitcasted to the right type. 2008 /// 2009 /// If D is non-null, it specifies a decl that correspond to this. This is used 2010 /// to set the attributes on the global when it is first created. 2011 /// 2012 /// If IsForDefinition is true, it is guranteed that an actual global with 2013 /// type Ty will be returned, not conversion of a variable with the same 2014 /// mangled name but some other type. 2015 llvm::Constant * 2016 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2017 llvm::PointerType *Ty, 2018 const VarDecl *D, 2019 bool IsForDefinition) { 2020 // Lookup the entry, lazily creating it if necessary. 2021 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2022 if (Entry) { 2023 if (WeakRefReferences.erase(Entry)) { 2024 if (D && !D->hasAttr<WeakAttr>()) 2025 Entry->setLinkage(llvm::Function::ExternalLinkage); 2026 } 2027 2028 // Handle dropped DLL attributes. 2029 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2030 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2031 2032 if (Entry->getType() == Ty) 2033 return Entry; 2034 2035 // If there are two attempts to define the same mangled name, issue an 2036 // error. 2037 if (IsForDefinition && !Entry->isDeclaration()) { 2038 GlobalDecl OtherGD; 2039 const VarDecl *OtherD; 2040 2041 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2042 // to make sure that we issue an error only once. 2043 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2044 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2045 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2046 OtherD->hasInit() && 2047 DiagnosedConflictingDefinitions.insert(D).second) { 2048 getDiags().Report(D->getLocation(), 2049 diag::err_duplicate_mangled_name); 2050 getDiags().Report(OtherGD.getDecl()->getLocation(), 2051 diag::note_previous_definition); 2052 } 2053 } 2054 2055 // Make sure the result is of the correct type. 2056 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2057 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2058 2059 // (If global is requested for a definition, we always need to create a new 2060 // global, not just return a bitcast.) 2061 if (!IsForDefinition) 2062 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2063 } 2064 2065 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2066 auto *GV = new llvm::GlobalVariable( 2067 getModule(), Ty->getElementType(), false, 2068 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2069 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2070 2071 // If we already created a global with the same mangled name (but different 2072 // type) before, take its name and remove it from its parent. 2073 if (Entry) { 2074 GV->takeName(Entry); 2075 2076 if (!Entry->use_empty()) { 2077 llvm::Constant *NewPtrForOldDecl = 2078 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2079 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2080 } 2081 2082 Entry->eraseFromParent(); 2083 } 2084 2085 // This is the first use or definition of a mangled name. If there is a 2086 // deferred decl with this name, remember that we need to emit it at the end 2087 // of the file. 2088 auto DDI = DeferredDecls.find(MangledName); 2089 if (DDI != DeferredDecls.end()) { 2090 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2091 // list, and remove it from DeferredDecls (since we don't need it anymore). 2092 addDeferredDeclToEmit(GV, DDI->second); 2093 DeferredDecls.erase(DDI); 2094 } 2095 2096 // Handle things which are present even on external declarations. 2097 if (D) { 2098 // FIXME: This code is overly simple and should be merged with other global 2099 // handling. 2100 GV->setConstant(isTypeConstant(D->getType(), false)); 2101 2102 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2103 2104 setLinkageAndVisibilityForGV(GV, D); 2105 2106 if (D->getTLSKind()) { 2107 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2108 CXXThreadLocals.push_back(D); 2109 setTLSMode(GV, *D); 2110 } 2111 2112 // If required by the ABI, treat declarations of static data members with 2113 // inline initializers as definitions. 2114 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2115 EmitGlobalVarDefinition(D); 2116 } 2117 2118 // Handle XCore specific ABI requirements. 2119 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2120 D->getLanguageLinkage() == CLanguageLinkage && 2121 D->getType().isConstant(Context) && 2122 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2123 GV->setSection(".cp.rodata"); 2124 } 2125 2126 if (AddrSpace != Ty->getAddressSpace()) 2127 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2128 2129 return GV; 2130 } 2131 2132 llvm::Constant * 2133 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2134 bool IsForDefinition) { 2135 if (isa<CXXConstructorDecl>(GD.getDecl())) 2136 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2137 getFromCtorType(GD.getCtorType()), 2138 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2139 /*DontDefer=*/false, IsForDefinition); 2140 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2141 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2142 getFromDtorType(GD.getDtorType()), 2143 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2144 /*DontDefer=*/false, IsForDefinition); 2145 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2146 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2147 cast<CXXMethodDecl>(GD.getDecl())); 2148 auto Ty = getTypes().GetFunctionType(*FInfo); 2149 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2150 IsForDefinition); 2151 } else if (isa<FunctionDecl>(GD.getDecl())) { 2152 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2153 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2154 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2155 IsForDefinition); 2156 } else 2157 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2158 IsForDefinition); 2159 } 2160 2161 llvm::GlobalVariable * 2162 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2163 llvm::Type *Ty, 2164 llvm::GlobalValue::LinkageTypes Linkage) { 2165 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2166 llvm::GlobalVariable *OldGV = nullptr; 2167 2168 if (GV) { 2169 // Check if the variable has the right type. 2170 if (GV->getType()->getElementType() == Ty) 2171 return GV; 2172 2173 // Because C++ name mangling, the only way we can end up with an already 2174 // existing global with the same name is if it has been declared extern "C". 2175 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2176 OldGV = GV; 2177 } 2178 2179 // Create a new variable. 2180 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2181 Linkage, nullptr, Name); 2182 2183 if (OldGV) { 2184 // Replace occurrences of the old variable if needed. 2185 GV->takeName(OldGV); 2186 2187 if (!OldGV->use_empty()) { 2188 llvm::Constant *NewPtrForOldDecl = 2189 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2190 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2191 } 2192 2193 OldGV->eraseFromParent(); 2194 } 2195 2196 if (supportsCOMDAT() && GV->isWeakForLinker() && 2197 !GV->hasAvailableExternallyLinkage()) 2198 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2199 2200 return GV; 2201 } 2202 2203 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2204 /// given global variable. If Ty is non-null and if the global doesn't exist, 2205 /// then it will be created with the specified type instead of whatever the 2206 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2207 /// that an actual global with type Ty will be returned, not conversion of a 2208 /// variable with the same mangled name but some other type. 2209 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2210 llvm::Type *Ty, 2211 bool IsForDefinition) { 2212 assert(D->hasGlobalStorage() && "Not a global variable"); 2213 QualType ASTTy = D->getType(); 2214 if (!Ty) 2215 Ty = getTypes().ConvertTypeForMem(ASTTy); 2216 2217 llvm::PointerType *PTy = 2218 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2219 2220 StringRef MangledName = getMangledName(D); 2221 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2222 } 2223 2224 /// CreateRuntimeVariable - Create a new runtime global variable with the 2225 /// specified type and name. 2226 llvm::Constant * 2227 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2228 StringRef Name) { 2229 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2230 } 2231 2232 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2233 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2234 2235 StringRef MangledName = getMangledName(D); 2236 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2237 2238 // We already have a definition, not declaration, with the same mangled name. 2239 // Emitting of declaration is not required (and actually overwrites emitted 2240 // definition). 2241 if (GV && !GV->isDeclaration()) 2242 return; 2243 2244 // If we have not seen a reference to this variable yet, place it into the 2245 // deferred declarations table to be emitted if needed later. 2246 if (!MustBeEmitted(D) && !GV) { 2247 DeferredDecls[MangledName] = D; 2248 return; 2249 } 2250 2251 // The tentative definition is the only definition. 2252 EmitGlobalVarDefinition(D); 2253 } 2254 2255 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2256 return Context.toCharUnitsFromBits( 2257 getDataLayout().getTypeStoreSizeInBits(Ty)); 2258 } 2259 2260 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2261 unsigned AddrSpace) { 2262 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2263 if (D->hasAttr<CUDAConstantAttr>()) 2264 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2265 else if (D->hasAttr<CUDASharedAttr>()) 2266 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2267 else 2268 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2269 } 2270 2271 return AddrSpace; 2272 } 2273 2274 template<typename SomeDecl> 2275 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2276 llvm::GlobalValue *GV) { 2277 if (!getLangOpts().CPlusPlus) 2278 return; 2279 2280 // Must have 'used' attribute, or else inline assembly can't rely on 2281 // the name existing. 2282 if (!D->template hasAttr<UsedAttr>()) 2283 return; 2284 2285 // Must have internal linkage and an ordinary name. 2286 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2287 return; 2288 2289 // Must be in an extern "C" context. Entities declared directly within 2290 // a record are not extern "C" even if the record is in such a context. 2291 const SomeDecl *First = D->getFirstDecl(); 2292 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2293 return; 2294 2295 // OK, this is an internal linkage entity inside an extern "C" linkage 2296 // specification. Make a note of that so we can give it the "expected" 2297 // mangled name if nothing else is using that name. 2298 std::pair<StaticExternCMap::iterator, bool> R = 2299 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2300 2301 // If we have multiple internal linkage entities with the same name 2302 // in extern "C" regions, none of them gets that name. 2303 if (!R.second) 2304 R.first->second = nullptr; 2305 } 2306 2307 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2308 if (!CGM.supportsCOMDAT()) 2309 return false; 2310 2311 if (D.hasAttr<SelectAnyAttr>()) 2312 return true; 2313 2314 GVALinkage Linkage; 2315 if (auto *VD = dyn_cast<VarDecl>(&D)) 2316 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2317 else 2318 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2319 2320 switch (Linkage) { 2321 case GVA_Internal: 2322 case GVA_AvailableExternally: 2323 case GVA_StrongExternal: 2324 return false; 2325 case GVA_DiscardableODR: 2326 case GVA_StrongODR: 2327 return true; 2328 } 2329 llvm_unreachable("No such linkage"); 2330 } 2331 2332 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2333 llvm::GlobalObject &GO) { 2334 if (!shouldBeInCOMDAT(*this, D)) 2335 return; 2336 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2337 } 2338 2339 /// Pass IsTentative as true if you want to create a tentative definition. 2340 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2341 bool IsTentative) { 2342 llvm::Constant *Init = nullptr; 2343 QualType ASTTy = D->getType(); 2344 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2345 bool NeedsGlobalCtor = false; 2346 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2347 2348 const VarDecl *InitDecl; 2349 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2350 2351 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2352 // as part of their declaration." Sema has already checked for 2353 // error cases, so we just need to set Init to UndefValue. 2354 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2355 D->hasAttr<CUDASharedAttr>()) 2356 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2357 else if (!InitExpr) { 2358 // This is a tentative definition; tentative definitions are 2359 // implicitly initialized with { 0 }. 2360 // 2361 // Note that tentative definitions are only emitted at the end of 2362 // a translation unit, so they should never have incomplete 2363 // type. In addition, EmitTentativeDefinition makes sure that we 2364 // never attempt to emit a tentative definition if a real one 2365 // exists. A use may still exists, however, so we still may need 2366 // to do a RAUW. 2367 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2368 Init = EmitNullConstant(D->getType()); 2369 } else { 2370 initializedGlobalDecl = GlobalDecl(D); 2371 Init = EmitConstantInit(*InitDecl); 2372 2373 if (!Init) { 2374 QualType T = InitExpr->getType(); 2375 if (D->getType()->isReferenceType()) 2376 T = D->getType(); 2377 2378 if (getLangOpts().CPlusPlus) { 2379 Init = EmitNullConstant(T); 2380 NeedsGlobalCtor = true; 2381 } else { 2382 ErrorUnsupported(D, "static initializer"); 2383 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2384 } 2385 } else { 2386 // We don't need an initializer, so remove the entry for the delayed 2387 // initializer position (just in case this entry was delayed) if we 2388 // also don't need to register a destructor. 2389 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2390 DelayedCXXInitPosition.erase(D); 2391 } 2392 } 2393 2394 llvm::Type* InitType = Init->getType(); 2395 llvm::Constant *Entry = 2396 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2397 2398 // Strip off a bitcast if we got one back. 2399 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2400 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2401 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2402 // All zero index gep. 2403 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2404 Entry = CE->getOperand(0); 2405 } 2406 2407 // Entry is now either a Function or GlobalVariable. 2408 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2409 2410 // We have a definition after a declaration with the wrong type. 2411 // We must make a new GlobalVariable* and update everything that used OldGV 2412 // (a declaration or tentative definition) with the new GlobalVariable* 2413 // (which will be a definition). 2414 // 2415 // This happens if there is a prototype for a global (e.g. 2416 // "extern int x[];") and then a definition of a different type (e.g. 2417 // "int x[10];"). This also happens when an initializer has a different type 2418 // from the type of the global (this happens with unions). 2419 if (!GV || 2420 GV->getType()->getElementType() != InitType || 2421 GV->getType()->getAddressSpace() != 2422 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2423 2424 // Move the old entry aside so that we'll create a new one. 2425 Entry->setName(StringRef()); 2426 2427 // Make a new global with the correct type, this is now guaranteed to work. 2428 GV = cast<llvm::GlobalVariable>( 2429 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2430 2431 // Replace all uses of the old global with the new global 2432 llvm::Constant *NewPtrForOldDecl = 2433 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2434 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2435 2436 // Erase the old global, since it is no longer used. 2437 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2438 } 2439 2440 MaybeHandleStaticInExternC(D, GV); 2441 2442 if (D->hasAttr<AnnotateAttr>()) 2443 AddGlobalAnnotations(D, GV); 2444 2445 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2446 // the device. [...]" 2447 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2448 // __device__, declares a variable that: [...] 2449 // Is accessible from all the threads within the grid and from the host 2450 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2451 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2452 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2453 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2454 GV->setExternallyInitialized(true); 2455 } 2456 GV->setInitializer(Init); 2457 2458 // If it is safe to mark the global 'constant', do so now. 2459 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2460 isTypeConstant(D->getType(), true)); 2461 2462 // If it is in a read-only section, mark it 'constant'. 2463 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2464 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2465 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2466 GV->setConstant(true); 2467 } 2468 2469 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2470 2471 // Set the llvm linkage type as appropriate. 2472 llvm::GlobalValue::LinkageTypes Linkage = 2473 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2474 2475 // On Darwin, if the normal linkage of a C++ thread_local variable is 2476 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2477 // copies within a linkage unit; otherwise, the backing variable has 2478 // internal linkage and all accesses should just be calls to the 2479 // Itanium-specified entry point, which has the normal linkage of the 2480 // variable. This is to preserve the ability to change the implementation 2481 // behind the scenes. 2482 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2483 Context.getTargetInfo().getTriple().isOSDarwin() && 2484 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2485 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2486 Linkage = llvm::GlobalValue::InternalLinkage; 2487 2488 GV->setLinkage(Linkage); 2489 if (D->hasAttr<DLLImportAttr>()) 2490 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2491 else if (D->hasAttr<DLLExportAttr>()) 2492 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2493 else 2494 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2495 2496 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2497 // common vars aren't constant even if declared const. 2498 GV->setConstant(false); 2499 2500 setNonAliasAttributes(D, GV); 2501 2502 if (D->getTLSKind() && !GV->isThreadLocal()) { 2503 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2504 CXXThreadLocals.push_back(D); 2505 setTLSMode(GV, *D); 2506 } 2507 2508 maybeSetTrivialComdat(*D, *GV); 2509 2510 // Emit the initializer function if necessary. 2511 if (NeedsGlobalCtor || NeedsGlobalDtor) 2512 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2513 2514 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2515 2516 // Emit global variable debug information. 2517 if (CGDebugInfo *DI = getModuleDebugInfo()) 2518 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2519 DI->EmitGlobalVariable(GV, D); 2520 } 2521 2522 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2523 CodeGenModule &CGM, const VarDecl *D, 2524 bool NoCommon) { 2525 // Don't give variables common linkage if -fno-common was specified unless it 2526 // was overridden by a NoCommon attribute. 2527 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2528 return true; 2529 2530 // C11 6.9.2/2: 2531 // A declaration of an identifier for an object that has file scope without 2532 // an initializer, and without a storage-class specifier or with the 2533 // storage-class specifier static, constitutes a tentative definition. 2534 if (D->getInit() || D->hasExternalStorage()) 2535 return true; 2536 2537 // A variable cannot be both common and exist in a section. 2538 if (D->hasAttr<SectionAttr>()) 2539 return true; 2540 2541 // Thread local vars aren't considered common linkage. 2542 if (D->getTLSKind()) 2543 return true; 2544 2545 // Tentative definitions marked with WeakImportAttr are true definitions. 2546 if (D->hasAttr<WeakImportAttr>()) 2547 return true; 2548 2549 // A variable cannot be both common and exist in a comdat. 2550 if (shouldBeInCOMDAT(CGM, *D)) 2551 return true; 2552 2553 // Declarations with a required alignment do not have common linakge in MSVC 2554 // mode. 2555 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2556 if (D->hasAttr<AlignedAttr>()) 2557 return true; 2558 QualType VarType = D->getType(); 2559 if (Context.isAlignmentRequired(VarType)) 2560 return true; 2561 2562 if (const auto *RT = VarType->getAs<RecordType>()) { 2563 const RecordDecl *RD = RT->getDecl(); 2564 for (const FieldDecl *FD : RD->fields()) { 2565 if (FD->isBitField()) 2566 continue; 2567 if (FD->hasAttr<AlignedAttr>()) 2568 return true; 2569 if (Context.isAlignmentRequired(FD->getType())) 2570 return true; 2571 } 2572 } 2573 } 2574 2575 return false; 2576 } 2577 2578 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2579 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2580 if (Linkage == GVA_Internal) 2581 return llvm::Function::InternalLinkage; 2582 2583 if (D->hasAttr<WeakAttr>()) { 2584 if (IsConstantVariable) 2585 return llvm::GlobalVariable::WeakODRLinkage; 2586 else 2587 return llvm::GlobalVariable::WeakAnyLinkage; 2588 } 2589 2590 // We are guaranteed to have a strong definition somewhere else, 2591 // so we can use available_externally linkage. 2592 if (Linkage == GVA_AvailableExternally) 2593 return llvm::Function::AvailableExternallyLinkage; 2594 2595 // Note that Apple's kernel linker doesn't support symbol 2596 // coalescing, so we need to avoid linkonce and weak linkages there. 2597 // Normally, this means we just map to internal, but for explicit 2598 // instantiations we'll map to external. 2599 2600 // In C++, the compiler has to emit a definition in every translation unit 2601 // that references the function. We should use linkonce_odr because 2602 // a) if all references in this translation unit are optimized away, we 2603 // don't need to codegen it. b) if the function persists, it needs to be 2604 // merged with other definitions. c) C++ has the ODR, so we know the 2605 // definition is dependable. 2606 if (Linkage == GVA_DiscardableODR) 2607 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2608 : llvm::Function::InternalLinkage; 2609 2610 // An explicit instantiation of a template has weak linkage, since 2611 // explicit instantiations can occur in multiple translation units 2612 // and must all be equivalent. However, we are not allowed to 2613 // throw away these explicit instantiations. 2614 if (Linkage == GVA_StrongODR) 2615 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2616 : llvm::Function::ExternalLinkage; 2617 2618 // C++ doesn't have tentative definitions and thus cannot have common 2619 // linkage. 2620 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2621 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2622 CodeGenOpts.NoCommon)) 2623 return llvm::GlobalVariable::CommonLinkage; 2624 2625 // selectany symbols are externally visible, so use weak instead of 2626 // linkonce. MSVC optimizes away references to const selectany globals, so 2627 // all definitions should be the same and ODR linkage should be used. 2628 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2629 if (D->hasAttr<SelectAnyAttr>()) 2630 return llvm::GlobalVariable::WeakODRLinkage; 2631 2632 // Otherwise, we have strong external linkage. 2633 assert(Linkage == GVA_StrongExternal); 2634 return llvm::GlobalVariable::ExternalLinkage; 2635 } 2636 2637 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2638 const VarDecl *VD, bool IsConstant) { 2639 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2640 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2641 } 2642 2643 /// Replace the uses of a function that was declared with a non-proto type. 2644 /// We want to silently drop extra arguments from call sites 2645 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2646 llvm::Function *newFn) { 2647 // Fast path. 2648 if (old->use_empty()) return; 2649 2650 llvm::Type *newRetTy = newFn->getReturnType(); 2651 SmallVector<llvm::Value*, 4> newArgs; 2652 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2653 2654 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2655 ui != ue; ) { 2656 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2657 llvm::User *user = use->getUser(); 2658 2659 // Recognize and replace uses of bitcasts. Most calls to 2660 // unprototyped functions will use bitcasts. 2661 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2662 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2663 replaceUsesOfNonProtoConstant(bitcast, newFn); 2664 continue; 2665 } 2666 2667 // Recognize calls to the function. 2668 llvm::CallSite callSite(user); 2669 if (!callSite) continue; 2670 if (!callSite.isCallee(&*use)) continue; 2671 2672 // If the return types don't match exactly, then we can't 2673 // transform this call unless it's dead. 2674 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2675 continue; 2676 2677 // Get the call site's attribute list. 2678 SmallVector<llvm::AttributeSet, 8> newAttrs; 2679 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2680 2681 // Collect any return attributes from the call. 2682 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2683 newAttrs.push_back( 2684 llvm::AttributeSet::get(newFn->getContext(), 2685 oldAttrs.getRetAttributes())); 2686 2687 // If the function was passed too few arguments, don't transform. 2688 unsigned newNumArgs = newFn->arg_size(); 2689 if (callSite.arg_size() < newNumArgs) continue; 2690 2691 // If extra arguments were passed, we silently drop them. 2692 // If any of the types mismatch, we don't transform. 2693 unsigned argNo = 0; 2694 bool dontTransform = false; 2695 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2696 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2697 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2698 dontTransform = true; 2699 break; 2700 } 2701 2702 // Add any parameter attributes. 2703 if (oldAttrs.hasAttributes(argNo + 1)) 2704 newAttrs. 2705 push_back(llvm:: 2706 AttributeSet::get(newFn->getContext(), 2707 oldAttrs.getParamAttributes(argNo + 1))); 2708 } 2709 if (dontTransform) 2710 continue; 2711 2712 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2713 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2714 oldAttrs.getFnAttributes())); 2715 2716 // Okay, we can transform this. Create the new call instruction and copy 2717 // over the required information. 2718 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2719 2720 // Copy over any operand bundles. 2721 callSite.getOperandBundlesAsDefs(newBundles); 2722 2723 llvm::CallSite newCall; 2724 if (callSite.isCall()) { 2725 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2726 callSite.getInstruction()); 2727 } else { 2728 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2729 newCall = llvm::InvokeInst::Create(newFn, 2730 oldInvoke->getNormalDest(), 2731 oldInvoke->getUnwindDest(), 2732 newArgs, newBundles, "", 2733 callSite.getInstruction()); 2734 } 2735 newArgs.clear(); // for the next iteration 2736 2737 if (!newCall->getType()->isVoidTy()) 2738 newCall->takeName(callSite.getInstruction()); 2739 newCall.setAttributes( 2740 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2741 newCall.setCallingConv(callSite.getCallingConv()); 2742 2743 // Finally, remove the old call, replacing any uses with the new one. 2744 if (!callSite->use_empty()) 2745 callSite->replaceAllUsesWith(newCall.getInstruction()); 2746 2747 // Copy debug location attached to CI. 2748 if (callSite->getDebugLoc()) 2749 newCall->setDebugLoc(callSite->getDebugLoc()); 2750 2751 callSite->eraseFromParent(); 2752 } 2753 } 2754 2755 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2756 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2757 /// existing call uses of the old function in the module, this adjusts them to 2758 /// call the new function directly. 2759 /// 2760 /// This is not just a cleanup: the always_inline pass requires direct calls to 2761 /// functions to be able to inline them. If there is a bitcast in the way, it 2762 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2763 /// run at -O0. 2764 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2765 llvm::Function *NewFn) { 2766 // If we're redefining a global as a function, don't transform it. 2767 if (!isa<llvm::Function>(Old)) return; 2768 2769 replaceUsesOfNonProtoConstant(Old, NewFn); 2770 } 2771 2772 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2773 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2774 // If we have a definition, this might be a deferred decl. If the 2775 // instantiation is explicit, make sure we emit it at the end. 2776 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2777 GetAddrOfGlobalVar(VD); 2778 2779 EmitTopLevelDecl(VD); 2780 } 2781 2782 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2783 llvm::GlobalValue *GV) { 2784 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2785 2786 // Compute the function info and LLVM type. 2787 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2788 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2789 2790 // Get or create the prototype for the function. 2791 if (!GV || (GV->getType()->getElementType() != Ty)) 2792 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2793 /*DontDefer=*/true, 2794 /*IsForDefinition=*/true)); 2795 2796 // Already emitted. 2797 if (!GV->isDeclaration()) 2798 return; 2799 2800 // We need to set linkage and visibility on the function before 2801 // generating code for it because various parts of IR generation 2802 // want to propagate this information down (e.g. to local static 2803 // declarations). 2804 auto *Fn = cast<llvm::Function>(GV); 2805 setFunctionLinkage(GD, Fn); 2806 setFunctionDLLStorageClass(GD, Fn); 2807 2808 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2809 setGlobalVisibility(Fn, D); 2810 2811 MaybeHandleStaticInExternC(D, Fn); 2812 2813 maybeSetTrivialComdat(*D, *Fn); 2814 2815 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2816 2817 setFunctionDefinitionAttributes(D, Fn); 2818 SetLLVMFunctionAttributesForDefinition(D, Fn); 2819 2820 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2821 AddGlobalCtor(Fn, CA->getPriority()); 2822 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2823 AddGlobalDtor(Fn, DA->getPriority()); 2824 if (D->hasAttr<AnnotateAttr>()) 2825 AddGlobalAnnotations(D, Fn); 2826 } 2827 2828 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2829 const auto *D = cast<ValueDecl>(GD.getDecl()); 2830 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2831 assert(AA && "Not an alias?"); 2832 2833 StringRef MangledName = getMangledName(GD); 2834 2835 if (AA->getAliasee() == MangledName) { 2836 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2837 return; 2838 } 2839 2840 // If there is a definition in the module, then it wins over the alias. 2841 // This is dubious, but allow it to be safe. Just ignore the alias. 2842 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2843 if (Entry && !Entry->isDeclaration()) 2844 return; 2845 2846 Aliases.push_back(GD); 2847 2848 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2849 2850 // Create a reference to the named value. This ensures that it is emitted 2851 // if a deferred decl. 2852 llvm::Constant *Aliasee; 2853 if (isa<llvm::FunctionType>(DeclTy)) 2854 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2855 /*ForVTable=*/false); 2856 else 2857 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2858 llvm::PointerType::getUnqual(DeclTy), 2859 /*D=*/nullptr); 2860 2861 // Create the new alias itself, but don't set a name yet. 2862 auto *GA = llvm::GlobalAlias::create( 2863 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2864 2865 if (Entry) { 2866 if (GA->getAliasee() == Entry) { 2867 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2868 return; 2869 } 2870 2871 assert(Entry->isDeclaration()); 2872 2873 // If there is a declaration in the module, then we had an extern followed 2874 // by the alias, as in: 2875 // extern int test6(); 2876 // ... 2877 // int test6() __attribute__((alias("test7"))); 2878 // 2879 // Remove it and replace uses of it with the alias. 2880 GA->takeName(Entry); 2881 2882 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2883 Entry->getType())); 2884 Entry->eraseFromParent(); 2885 } else { 2886 GA->setName(MangledName); 2887 } 2888 2889 // Set attributes which are particular to an alias; this is a 2890 // specialization of the attributes which may be set on a global 2891 // variable/function. 2892 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2893 D->isWeakImported()) { 2894 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2895 } 2896 2897 if (const auto *VD = dyn_cast<VarDecl>(D)) 2898 if (VD->getTLSKind()) 2899 setTLSMode(GA, *VD); 2900 2901 setAliasAttributes(D, GA); 2902 } 2903 2904 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2905 ArrayRef<llvm::Type*> Tys) { 2906 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2907 Tys); 2908 } 2909 2910 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2911 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2912 const StringLiteral *Literal, bool TargetIsLSB, 2913 bool &IsUTF16, unsigned &StringLength) { 2914 StringRef String = Literal->getString(); 2915 unsigned NumBytes = String.size(); 2916 2917 // Check for simple case. 2918 if (!Literal->containsNonAsciiOrNull()) { 2919 StringLength = NumBytes; 2920 return *Map.insert(std::make_pair(String, nullptr)).first; 2921 } 2922 2923 // Otherwise, convert the UTF8 literals into a string of shorts. 2924 IsUTF16 = true; 2925 2926 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2927 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2928 UTF16 *ToPtr = &ToBuf[0]; 2929 2930 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2931 &ToPtr, ToPtr + NumBytes, 2932 strictConversion); 2933 2934 // ConvertUTF8toUTF16 returns the length in ToPtr. 2935 StringLength = ToPtr - &ToBuf[0]; 2936 2937 // Add an explicit null. 2938 *ToPtr = 0; 2939 return *Map.insert(std::make_pair( 2940 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2941 (StringLength + 1) * 2), 2942 nullptr)).first; 2943 } 2944 2945 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2946 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2947 const StringLiteral *Literal, unsigned &StringLength) { 2948 StringRef String = Literal->getString(); 2949 StringLength = String.size(); 2950 return *Map.insert(std::make_pair(String, nullptr)).first; 2951 } 2952 2953 ConstantAddress 2954 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2955 unsigned StringLength = 0; 2956 bool isUTF16 = false; 2957 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2958 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2959 getDataLayout().isLittleEndian(), isUTF16, 2960 StringLength); 2961 2962 if (auto *C = Entry.second) 2963 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2964 2965 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2966 llvm::Constant *Zeros[] = { Zero, Zero }; 2967 llvm::Value *V; 2968 2969 // If we don't already have it, get __CFConstantStringClassReference. 2970 if (!CFConstantStringClassRef) { 2971 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2972 Ty = llvm::ArrayType::get(Ty, 0); 2973 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2974 "__CFConstantStringClassReference"); 2975 // Decay array -> ptr 2976 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2977 CFConstantStringClassRef = V; 2978 } 2979 else 2980 V = CFConstantStringClassRef; 2981 2982 QualType CFTy = getContext().getCFConstantStringType(); 2983 2984 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2985 2986 llvm::Constant *Fields[4]; 2987 2988 // Class pointer. 2989 Fields[0] = cast<llvm::ConstantExpr>(V); 2990 2991 // Flags. 2992 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2993 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2994 llvm::ConstantInt::get(Ty, 0x07C8); 2995 2996 // String pointer. 2997 llvm::Constant *C = nullptr; 2998 if (isUTF16) { 2999 auto Arr = llvm::makeArrayRef( 3000 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3001 Entry.first().size() / 2); 3002 C = llvm::ConstantDataArray::get(VMContext, Arr); 3003 } else { 3004 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3005 } 3006 3007 // Note: -fwritable-strings doesn't make the backing store strings of 3008 // CFStrings writable. (See <rdar://problem/10657500>) 3009 auto *GV = 3010 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3011 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3012 GV->setUnnamedAddr(true); 3013 // Don't enforce the target's minimum global alignment, since the only use 3014 // of the string is via this class initializer. 3015 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 3016 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 3017 // that changes the section it ends in, which surprises ld64. 3018 if (isUTF16) { 3019 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 3020 GV->setAlignment(Align.getQuantity()); 3021 GV->setSection("__TEXT,__ustring"); 3022 } else { 3023 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3024 GV->setAlignment(Align.getQuantity()); 3025 GV->setSection("__TEXT,__cstring,cstring_literals"); 3026 } 3027 3028 // String. 3029 Fields[2] = 3030 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3031 3032 if (isUTF16) 3033 // Cast the UTF16 string to the correct type. 3034 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3035 3036 // String length. 3037 Ty = getTypes().ConvertType(getContext().LongTy); 3038 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3039 3040 CharUnits Alignment = getPointerAlign(); 3041 3042 // The struct. 3043 C = llvm::ConstantStruct::get(STy, Fields); 3044 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3045 llvm::GlobalVariable::PrivateLinkage, C, 3046 "_unnamed_cfstring_"); 3047 GV->setSection("__DATA,__cfstring"); 3048 GV->setAlignment(Alignment.getQuantity()); 3049 Entry.second = GV; 3050 3051 return ConstantAddress(GV, Alignment); 3052 } 3053 3054 ConstantAddress 3055 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3056 unsigned StringLength = 0; 3057 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3058 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3059 3060 if (auto *C = Entry.second) 3061 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3062 3063 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3064 llvm::Constant *Zeros[] = { Zero, Zero }; 3065 llvm::Value *V; 3066 // If we don't already have it, get _NSConstantStringClassReference. 3067 if (!ConstantStringClassRef) { 3068 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3069 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3070 llvm::Constant *GV; 3071 if (LangOpts.ObjCRuntime.isNonFragile()) { 3072 std::string str = 3073 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3074 : "OBJC_CLASS_$_" + StringClass; 3075 GV = getObjCRuntime().GetClassGlobal(str); 3076 // Make sure the result is of the correct type. 3077 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3078 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3079 ConstantStringClassRef = V; 3080 } else { 3081 std::string str = 3082 StringClass.empty() ? "_NSConstantStringClassReference" 3083 : "_" + StringClass + "ClassReference"; 3084 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3085 GV = CreateRuntimeVariable(PTy, str); 3086 // Decay array -> ptr 3087 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3088 ConstantStringClassRef = V; 3089 } 3090 } else 3091 V = ConstantStringClassRef; 3092 3093 if (!NSConstantStringType) { 3094 // Construct the type for a constant NSString. 3095 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3096 D->startDefinition(); 3097 3098 QualType FieldTypes[3]; 3099 3100 // const int *isa; 3101 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3102 // const char *str; 3103 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3104 // unsigned int length; 3105 FieldTypes[2] = Context.UnsignedIntTy; 3106 3107 // Create fields 3108 for (unsigned i = 0; i < 3; ++i) { 3109 FieldDecl *Field = FieldDecl::Create(Context, D, 3110 SourceLocation(), 3111 SourceLocation(), nullptr, 3112 FieldTypes[i], /*TInfo=*/nullptr, 3113 /*BitWidth=*/nullptr, 3114 /*Mutable=*/false, 3115 ICIS_NoInit); 3116 Field->setAccess(AS_public); 3117 D->addDecl(Field); 3118 } 3119 3120 D->completeDefinition(); 3121 QualType NSTy = Context.getTagDeclType(D); 3122 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3123 } 3124 3125 llvm::Constant *Fields[3]; 3126 3127 // Class pointer. 3128 Fields[0] = cast<llvm::ConstantExpr>(V); 3129 3130 // String pointer. 3131 llvm::Constant *C = 3132 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3133 3134 llvm::GlobalValue::LinkageTypes Linkage; 3135 bool isConstant; 3136 Linkage = llvm::GlobalValue::PrivateLinkage; 3137 isConstant = !LangOpts.WritableStrings; 3138 3139 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3140 Linkage, C, ".str"); 3141 GV->setUnnamedAddr(true); 3142 // Don't enforce the target's minimum global alignment, since the only use 3143 // of the string is via this class initializer. 3144 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3145 GV->setAlignment(Align.getQuantity()); 3146 Fields[1] = 3147 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3148 3149 // String length. 3150 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3151 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3152 3153 // The struct. 3154 CharUnits Alignment = getPointerAlign(); 3155 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3156 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3157 llvm::GlobalVariable::PrivateLinkage, C, 3158 "_unnamed_nsstring_"); 3159 GV->setAlignment(Alignment.getQuantity()); 3160 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3161 const char *NSStringNonFragileABISection = 3162 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3163 // FIXME. Fix section. 3164 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3165 ? NSStringNonFragileABISection 3166 : NSStringSection); 3167 Entry.second = GV; 3168 3169 return ConstantAddress(GV, Alignment); 3170 } 3171 3172 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3173 if (ObjCFastEnumerationStateType.isNull()) { 3174 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3175 D->startDefinition(); 3176 3177 QualType FieldTypes[] = { 3178 Context.UnsignedLongTy, 3179 Context.getPointerType(Context.getObjCIdType()), 3180 Context.getPointerType(Context.UnsignedLongTy), 3181 Context.getConstantArrayType(Context.UnsignedLongTy, 3182 llvm::APInt(32, 5), ArrayType::Normal, 0) 3183 }; 3184 3185 for (size_t i = 0; i < 4; ++i) { 3186 FieldDecl *Field = FieldDecl::Create(Context, 3187 D, 3188 SourceLocation(), 3189 SourceLocation(), nullptr, 3190 FieldTypes[i], /*TInfo=*/nullptr, 3191 /*BitWidth=*/nullptr, 3192 /*Mutable=*/false, 3193 ICIS_NoInit); 3194 Field->setAccess(AS_public); 3195 D->addDecl(Field); 3196 } 3197 3198 D->completeDefinition(); 3199 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3200 } 3201 3202 return ObjCFastEnumerationStateType; 3203 } 3204 3205 llvm::Constant * 3206 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3207 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3208 3209 // Don't emit it as the address of the string, emit the string data itself 3210 // as an inline array. 3211 if (E->getCharByteWidth() == 1) { 3212 SmallString<64> Str(E->getString()); 3213 3214 // Resize the string to the right size, which is indicated by its type. 3215 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3216 Str.resize(CAT->getSize().getZExtValue()); 3217 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3218 } 3219 3220 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3221 llvm::Type *ElemTy = AType->getElementType(); 3222 unsigned NumElements = AType->getNumElements(); 3223 3224 // Wide strings have either 2-byte or 4-byte elements. 3225 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3226 SmallVector<uint16_t, 32> Elements; 3227 Elements.reserve(NumElements); 3228 3229 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3230 Elements.push_back(E->getCodeUnit(i)); 3231 Elements.resize(NumElements); 3232 return llvm::ConstantDataArray::get(VMContext, Elements); 3233 } 3234 3235 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3236 SmallVector<uint32_t, 32> Elements; 3237 Elements.reserve(NumElements); 3238 3239 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3240 Elements.push_back(E->getCodeUnit(i)); 3241 Elements.resize(NumElements); 3242 return llvm::ConstantDataArray::get(VMContext, Elements); 3243 } 3244 3245 static llvm::GlobalVariable * 3246 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3247 CodeGenModule &CGM, StringRef GlobalName, 3248 CharUnits Alignment) { 3249 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3250 unsigned AddrSpace = 0; 3251 if (CGM.getLangOpts().OpenCL) 3252 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3253 3254 llvm::Module &M = CGM.getModule(); 3255 // Create a global variable for this string 3256 auto *GV = new llvm::GlobalVariable( 3257 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3258 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3259 GV->setAlignment(Alignment.getQuantity()); 3260 GV->setUnnamedAddr(true); 3261 if (GV->isWeakForLinker()) { 3262 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3263 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3264 } 3265 3266 return GV; 3267 } 3268 3269 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3270 /// constant array for the given string literal. 3271 ConstantAddress 3272 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3273 StringRef Name) { 3274 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3275 3276 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3277 llvm::GlobalVariable **Entry = nullptr; 3278 if (!LangOpts.WritableStrings) { 3279 Entry = &ConstantStringMap[C]; 3280 if (auto GV = *Entry) { 3281 if (Alignment.getQuantity() > GV->getAlignment()) 3282 GV->setAlignment(Alignment.getQuantity()); 3283 return ConstantAddress(GV, Alignment); 3284 } 3285 } 3286 3287 SmallString<256> MangledNameBuffer; 3288 StringRef GlobalVariableName; 3289 llvm::GlobalValue::LinkageTypes LT; 3290 3291 // Mangle the string literal if the ABI allows for it. However, we cannot 3292 // do this if we are compiling with ASan or -fwritable-strings because they 3293 // rely on strings having normal linkage. 3294 if (!LangOpts.WritableStrings && 3295 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3296 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3297 llvm::raw_svector_ostream Out(MangledNameBuffer); 3298 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3299 3300 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3301 GlobalVariableName = MangledNameBuffer; 3302 } else { 3303 LT = llvm::GlobalValue::PrivateLinkage; 3304 GlobalVariableName = Name; 3305 } 3306 3307 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3308 if (Entry) 3309 *Entry = GV; 3310 3311 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3312 QualType()); 3313 return ConstantAddress(GV, Alignment); 3314 } 3315 3316 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3317 /// array for the given ObjCEncodeExpr node. 3318 ConstantAddress 3319 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3320 std::string Str; 3321 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3322 3323 return GetAddrOfConstantCString(Str); 3324 } 3325 3326 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3327 /// the literal and a terminating '\0' character. 3328 /// The result has pointer to array type. 3329 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3330 const std::string &Str, const char *GlobalName) { 3331 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3332 CharUnits Alignment = 3333 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3334 3335 llvm::Constant *C = 3336 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3337 3338 // Don't share any string literals if strings aren't constant. 3339 llvm::GlobalVariable **Entry = nullptr; 3340 if (!LangOpts.WritableStrings) { 3341 Entry = &ConstantStringMap[C]; 3342 if (auto GV = *Entry) { 3343 if (Alignment.getQuantity() > GV->getAlignment()) 3344 GV->setAlignment(Alignment.getQuantity()); 3345 return ConstantAddress(GV, Alignment); 3346 } 3347 } 3348 3349 // Get the default prefix if a name wasn't specified. 3350 if (!GlobalName) 3351 GlobalName = ".str"; 3352 // Create a global variable for this. 3353 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3354 GlobalName, Alignment); 3355 if (Entry) 3356 *Entry = GV; 3357 return ConstantAddress(GV, Alignment); 3358 } 3359 3360 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3361 const MaterializeTemporaryExpr *E, const Expr *Init) { 3362 assert((E->getStorageDuration() == SD_Static || 3363 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3364 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3365 3366 // If we're not materializing a subobject of the temporary, keep the 3367 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3368 QualType MaterializedType = Init->getType(); 3369 if (Init == E->GetTemporaryExpr()) 3370 MaterializedType = E->getType(); 3371 3372 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3373 3374 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3375 return ConstantAddress(Slot, Align); 3376 3377 // FIXME: If an externally-visible declaration extends multiple temporaries, 3378 // we need to give each temporary the same name in every translation unit (and 3379 // we also need to make the temporaries externally-visible). 3380 SmallString<256> Name; 3381 llvm::raw_svector_ostream Out(Name); 3382 getCXXABI().getMangleContext().mangleReferenceTemporary( 3383 VD, E->getManglingNumber(), Out); 3384 3385 APValue *Value = nullptr; 3386 if (E->getStorageDuration() == SD_Static) { 3387 // We might have a cached constant initializer for this temporary. Note 3388 // that this might have a different value from the value computed by 3389 // evaluating the initializer if the surrounding constant expression 3390 // modifies the temporary. 3391 Value = getContext().getMaterializedTemporaryValue(E, false); 3392 if (Value && Value->isUninit()) 3393 Value = nullptr; 3394 } 3395 3396 // Try evaluating it now, it might have a constant initializer. 3397 Expr::EvalResult EvalResult; 3398 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3399 !EvalResult.hasSideEffects()) 3400 Value = &EvalResult.Val; 3401 3402 llvm::Constant *InitialValue = nullptr; 3403 bool Constant = false; 3404 llvm::Type *Type; 3405 if (Value) { 3406 // The temporary has a constant initializer, use it. 3407 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3408 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3409 Type = InitialValue->getType(); 3410 } else { 3411 // No initializer, the initialization will be provided when we 3412 // initialize the declaration which performed lifetime extension. 3413 Type = getTypes().ConvertTypeForMem(MaterializedType); 3414 } 3415 3416 // Create a global variable for this lifetime-extended temporary. 3417 llvm::GlobalValue::LinkageTypes Linkage = 3418 getLLVMLinkageVarDefinition(VD, Constant); 3419 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3420 const VarDecl *InitVD; 3421 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3422 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3423 // Temporaries defined inside a class get linkonce_odr linkage because the 3424 // class can be defined in multipe translation units. 3425 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3426 } else { 3427 // There is no need for this temporary to have external linkage if the 3428 // VarDecl has external linkage. 3429 Linkage = llvm::GlobalVariable::InternalLinkage; 3430 } 3431 } 3432 unsigned AddrSpace = GetGlobalVarAddressSpace( 3433 VD, getContext().getTargetAddressSpace(MaterializedType)); 3434 auto *GV = new llvm::GlobalVariable( 3435 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3436 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3437 AddrSpace); 3438 setGlobalVisibility(GV, VD); 3439 GV->setAlignment(Align.getQuantity()); 3440 if (supportsCOMDAT() && GV->isWeakForLinker()) 3441 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3442 if (VD->getTLSKind()) 3443 setTLSMode(GV, *VD); 3444 MaterializedGlobalTemporaryMap[E] = GV; 3445 return ConstantAddress(GV, Align); 3446 } 3447 3448 /// EmitObjCPropertyImplementations - Emit information for synthesized 3449 /// properties for an implementation. 3450 void CodeGenModule::EmitObjCPropertyImplementations(const 3451 ObjCImplementationDecl *D) { 3452 for (const auto *PID : D->property_impls()) { 3453 // Dynamic is just for type-checking. 3454 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3455 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3456 3457 // Determine which methods need to be implemented, some may have 3458 // been overridden. Note that ::isPropertyAccessor is not the method 3459 // we want, that just indicates if the decl came from a 3460 // property. What we want to know is if the method is defined in 3461 // this implementation. 3462 if (!D->getInstanceMethod(PD->getGetterName())) 3463 CodeGenFunction(*this).GenerateObjCGetter( 3464 const_cast<ObjCImplementationDecl *>(D), PID); 3465 if (!PD->isReadOnly() && 3466 !D->getInstanceMethod(PD->getSetterName())) 3467 CodeGenFunction(*this).GenerateObjCSetter( 3468 const_cast<ObjCImplementationDecl *>(D), PID); 3469 } 3470 } 3471 } 3472 3473 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3474 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3475 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3476 ivar; ivar = ivar->getNextIvar()) 3477 if (ivar->getType().isDestructedType()) 3478 return true; 3479 3480 return false; 3481 } 3482 3483 static bool AllTrivialInitializers(CodeGenModule &CGM, 3484 ObjCImplementationDecl *D) { 3485 CodeGenFunction CGF(CGM); 3486 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3487 E = D->init_end(); B != E; ++B) { 3488 CXXCtorInitializer *CtorInitExp = *B; 3489 Expr *Init = CtorInitExp->getInit(); 3490 if (!CGF.isTrivialInitializer(Init)) 3491 return false; 3492 } 3493 return true; 3494 } 3495 3496 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3497 /// for an implementation. 3498 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3499 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3500 if (needsDestructMethod(D)) { 3501 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3502 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3503 ObjCMethodDecl *DTORMethod = 3504 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3505 cxxSelector, getContext().VoidTy, nullptr, D, 3506 /*isInstance=*/true, /*isVariadic=*/false, 3507 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3508 /*isDefined=*/false, ObjCMethodDecl::Required); 3509 D->addInstanceMethod(DTORMethod); 3510 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3511 D->setHasDestructors(true); 3512 } 3513 3514 // If the implementation doesn't have any ivar initializers, we don't need 3515 // a .cxx_construct. 3516 if (D->getNumIvarInitializers() == 0 || 3517 AllTrivialInitializers(*this, D)) 3518 return; 3519 3520 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3521 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3522 // The constructor returns 'self'. 3523 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3524 D->getLocation(), 3525 D->getLocation(), 3526 cxxSelector, 3527 getContext().getObjCIdType(), 3528 nullptr, D, /*isInstance=*/true, 3529 /*isVariadic=*/false, 3530 /*isPropertyAccessor=*/true, 3531 /*isImplicitlyDeclared=*/true, 3532 /*isDefined=*/false, 3533 ObjCMethodDecl::Required); 3534 D->addInstanceMethod(CTORMethod); 3535 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3536 D->setHasNonZeroConstructors(true); 3537 } 3538 3539 /// EmitNamespace - Emit all declarations in a namespace. 3540 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3541 for (auto *I : ND->decls()) { 3542 if (const auto *VD = dyn_cast<VarDecl>(I)) 3543 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3544 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3545 continue; 3546 EmitTopLevelDecl(I); 3547 } 3548 } 3549 3550 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3551 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3552 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3553 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3554 ErrorUnsupported(LSD, "linkage spec"); 3555 return; 3556 } 3557 3558 for (auto *I : LSD->decls()) { 3559 // Meta-data for ObjC class includes references to implemented methods. 3560 // Generate class's method definitions first. 3561 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3562 for (auto *M : OID->methods()) 3563 EmitTopLevelDecl(M); 3564 } 3565 EmitTopLevelDecl(I); 3566 } 3567 } 3568 3569 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3570 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3571 // Ignore dependent declarations. 3572 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3573 return; 3574 3575 switch (D->getKind()) { 3576 case Decl::CXXConversion: 3577 case Decl::CXXMethod: 3578 case Decl::Function: 3579 // Skip function templates 3580 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3581 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3582 return; 3583 3584 EmitGlobal(cast<FunctionDecl>(D)); 3585 // Always provide some coverage mapping 3586 // even for the functions that aren't emitted. 3587 AddDeferredUnusedCoverageMapping(D); 3588 break; 3589 3590 case Decl::Var: 3591 // Skip variable templates 3592 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3593 return; 3594 case Decl::VarTemplateSpecialization: 3595 EmitGlobal(cast<VarDecl>(D)); 3596 break; 3597 3598 // Indirect fields from global anonymous structs and unions can be 3599 // ignored; only the actual variable requires IR gen support. 3600 case Decl::IndirectField: 3601 break; 3602 3603 // C++ Decls 3604 case Decl::Namespace: 3605 EmitNamespace(cast<NamespaceDecl>(D)); 3606 break; 3607 // No code generation needed. 3608 case Decl::UsingShadow: 3609 case Decl::ClassTemplate: 3610 case Decl::VarTemplate: 3611 case Decl::VarTemplatePartialSpecialization: 3612 case Decl::FunctionTemplate: 3613 case Decl::TypeAliasTemplate: 3614 case Decl::Block: 3615 case Decl::Empty: 3616 break; 3617 case Decl::Using: // using X; [C++] 3618 if (CGDebugInfo *DI = getModuleDebugInfo()) 3619 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3620 return; 3621 case Decl::NamespaceAlias: 3622 if (CGDebugInfo *DI = getModuleDebugInfo()) 3623 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3624 return; 3625 case Decl::UsingDirective: // using namespace X; [C++] 3626 if (CGDebugInfo *DI = getModuleDebugInfo()) 3627 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3628 return; 3629 case Decl::CXXConstructor: 3630 // Skip function templates 3631 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3632 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3633 return; 3634 3635 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3636 break; 3637 case Decl::CXXDestructor: 3638 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3639 return; 3640 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3641 break; 3642 3643 case Decl::StaticAssert: 3644 // Nothing to do. 3645 break; 3646 3647 // Objective-C Decls 3648 3649 // Forward declarations, no (immediate) code generation. 3650 case Decl::ObjCInterface: 3651 case Decl::ObjCCategory: 3652 break; 3653 3654 case Decl::ObjCProtocol: { 3655 auto *Proto = cast<ObjCProtocolDecl>(D); 3656 if (Proto->isThisDeclarationADefinition()) 3657 ObjCRuntime->GenerateProtocol(Proto); 3658 break; 3659 } 3660 3661 case Decl::ObjCCategoryImpl: 3662 // Categories have properties but don't support synthesize so we 3663 // can ignore them here. 3664 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3665 break; 3666 3667 case Decl::ObjCImplementation: { 3668 auto *OMD = cast<ObjCImplementationDecl>(D); 3669 EmitObjCPropertyImplementations(OMD); 3670 EmitObjCIvarInitializations(OMD); 3671 ObjCRuntime->GenerateClass(OMD); 3672 // Emit global variable debug information. 3673 if (CGDebugInfo *DI = getModuleDebugInfo()) 3674 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3675 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3676 OMD->getClassInterface()), OMD->getLocation()); 3677 break; 3678 } 3679 case Decl::ObjCMethod: { 3680 auto *OMD = cast<ObjCMethodDecl>(D); 3681 // If this is not a prototype, emit the body. 3682 if (OMD->getBody()) 3683 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3684 break; 3685 } 3686 case Decl::ObjCCompatibleAlias: 3687 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3688 break; 3689 3690 case Decl::LinkageSpec: 3691 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3692 break; 3693 3694 case Decl::FileScopeAsm: { 3695 // File-scope asm is ignored during device-side CUDA compilation. 3696 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3697 break; 3698 // File-scope asm is ignored during device-side OpenMP compilation. 3699 if (LangOpts.OpenMPIsDevice) 3700 break; 3701 auto *AD = cast<FileScopeAsmDecl>(D); 3702 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3703 break; 3704 } 3705 3706 case Decl::Import: { 3707 auto *Import = cast<ImportDecl>(D); 3708 3709 // Ignore import declarations that come from imported modules. 3710 if (Import->getImportedOwningModule()) 3711 break; 3712 if (CGDebugInfo *DI = getModuleDebugInfo()) 3713 DI->EmitImportDecl(*Import); 3714 3715 ImportedModules.insert(Import->getImportedModule()); 3716 break; 3717 } 3718 3719 case Decl::OMPThreadPrivate: 3720 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3721 break; 3722 3723 case Decl::ClassTemplateSpecialization: { 3724 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3725 if (DebugInfo && 3726 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3727 Spec->hasDefinition()) 3728 DebugInfo->completeTemplateDefinition(*Spec); 3729 break; 3730 } 3731 3732 default: 3733 // Make sure we handled everything we should, every other kind is a 3734 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3735 // function. Need to recode Decl::Kind to do that easily. 3736 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3737 break; 3738 } 3739 } 3740 3741 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3742 // Do we need to generate coverage mapping? 3743 if (!CodeGenOpts.CoverageMapping) 3744 return; 3745 switch (D->getKind()) { 3746 case Decl::CXXConversion: 3747 case Decl::CXXMethod: 3748 case Decl::Function: 3749 case Decl::ObjCMethod: 3750 case Decl::CXXConstructor: 3751 case Decl::CXXDestructor: { 3752 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3753 return; 3754 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3755 if (I == DeferredEmptyCoverageMappingDecls.end()) 3756 DeferredEmptyCoverageMappingDecls[D] = true; 3757 break; 3758 } 3759 default: 3760 break; 3761 }; 3762 } 3763 3764 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3765 // Do we need to generate coverage mapping? 3766 if (!CodeGenOpts.CoverageMapping) 3767 return; 3768 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3769 if (Fn->isTemplateInstantiation()) 3770 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3771 } 3772 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3773 if (I == DeferredEmptyCoverageMappingDecls.end()) 3774 DeferredEmptyCoverageMappingDecls[D] = false; 3775 else 3776 I->second = false; 3777 } 3778 3779 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3780 std::vector<const Decl *> DeferredDecls; 3781 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3782 if (!I.second) 3783 continue; 3784 DeferredDecls.push_back(I.first); 3785 } 3786 // Sort the declarations by their location to make sure that the tests get a 3787 // predictable order for the coverage mapping for the unused declarations. 3788 if (CodeGenOpts.DumpCoverageMapping) 3789 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3790 [] (const Decl *LHS, const Decl *RHS) { 3791 return LHS->getLocStart() < RHS->getLocStart(); 3792 }); 3793 for (const auto *D : DeferredDecls) { 3794 switch (D->getKind()) { 3795 case Decl::CXXConversion: 3796 case Decl::CXXMethod: 3797 case Decl::Function: 3798 case Decl::ObjCMethod: { 3799 CodeGenPGO PGO(*this); 3800 GlobalDecl GD(cast<FunctionDecl>(D)); 3801 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3802 getFunctionLinkage(GD)); 3803 break; 3804 } 3805 case Decl::CXXConstructor: { 3806 CodeGenPGO PGO(*this); 3807 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3808 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3809 getFunctionLinkage(GD)); 3810 break; 3811 } 3812 case Decl::CXXDestructor: { 3813 CodeGenPGO PGO(*this); 3814 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3815 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3816 getFunctionLinkage(GD)); 3817 break; 3818 } 3819 default: 3820 break; 3821 }; 3822 } 3823 } 3824 3825 /// Turns the given pointer into a constant. 3826 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3827 const void *Ptr) { 3828 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3829 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3830 return llvm::ConstantInt::get(i64, PtrInt); 3831 } 3832 3833 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3834 llvm::NamedMDNode *&GlobalMetadata, 3835 GlobalDecl D, 3836 llvm::GlobalValue *Addr) { 3837 if (!GlobalMetadata) 3838 GlobalMetadata = 3839 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3840 3841 // TODO: should we report variant information for ctors/dtors? 3842 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3843 llvm::ConstantAsMetadata::get(GetPointerConstant( 3844 CGM.getLLVMContext(), D.getDecl()))}; 3845 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3846 } 3847 3848 /// For each function which is declared within an extern "C" region and marked 3849 /// as 'used', but has internal linkage, create an alias from the unmangled 3850 /// name to the mangled name if possible. People expect to be able to refer 3851 /// to such functions with an unmangled name from inline assembly within the 3852 /// same translation unit. 3853 void CodeGenModule::EmitStaticExternCAliases() { 3854 // Don't do anything if we're generating CUDA device code -- the NVPTX 3855 // assembly target doesn't support aliases. 3856 if (Context.getTargetInfo().getTriple().isNVPTX()) 3857 return; 3858 for (auto &I : StaticExternCValues) { 3859 IdentifierInfo *Name = I.first; 3860 llvm::GlobalValue *Val = I.second; 3861 if (Val && !getModule().getNamedValue(Name->getName())) 3862 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3863 } 3864 } 3865 3866 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3867 GlobalDecl &Result) const { 3868 auto Res = Manglings.find(MangledName); 3869 if (Res == Manglings.end()) 3870 return false; 3871 Result = Res->getValue(); 3872 return true; 3873 } 3874 3875 /// Emits metadata nodes associating all the global values in the 3876 /// current module with the Decls they came from. This is useful for 3877 /// projects using IR gen as a subroutine. 3878 /// 3879 /// Since there's currently no way to associate an MDNode directly 3880 /// with an llvm::GlobalValue, we create a global named metadata 3881 /// with the name 'clang.global.decl.ptrs'. 3882 void CodeGenModule::EmitDeclMetadata() { 3883 llvm::NamedMDNode *GlobalMetadata = nullptr; 3884 3885 for (auto &I : MangledDeclNames) { 3886 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3887 // Some mangled names don't necessarily have an associated GlobalValue 3888 // in this module, e.g. if we mangled it for DebugInfo. 3889 if (Addr) 3890 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3891 } 3892 } 3893 3894 /// Emits metadata nodes for all the local variables in the current 3895 /// function. 3896 void CodeGenFunction::EmitDeclMetadata() { 3897 if (LocalDeclMap.empty()) return; 3898 3899 llvm::LLVMContext &Context = getLLVMContext(); 3900 3901 // Find the unique metadata ID for this name. 3902 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3903 3904 llvm::NamedMDNode *GlobalMetadata = nullptr; 3905 3906 for (auto &I : LocalDeclMap) { 3907 const Decl *D = I.first; 3908 llvm::Value *Addr = I.second.getPointer(); 3909 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3910 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3911 Alloca->setMetadata( 3912 DeclPtrKind, llvm::MDNode::get( 3913 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3914 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3915 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3916 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3917 } 3918 } 3919 } 3920 3921 void CodeGenModule::EmitVersionIdentMetadata() { 3922 llvm::NamedMDNode *IdentMetadata = 3923 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3924 std::string Version = getClangFullVersion(); 3925 llvm::LLVMContext &Ctx = TheModule.getContext(); 3926 3927 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3928 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3929 } 3930 3931 void CodeGenModule::EmitTargetMetadata() { 3932 // Warning, new MangledDeclNames may be appended within this loop. 3933 // We rely on MapVector insertions adding new elements to the end 3934 // of the container. 3935 // FIXME: Move this loop into the one target that needs it, and only 3936 // loop over those declarations for which we couldn't emit the target 3937 // metadata when we emitted the declaration. 3938 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3939 auto Val = *(MangledDeclNames.begin() + I); 3940 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3941 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3942 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3943 } 3944 } 3945 3946 void CodeGenModule::EmitCoverageFile() { 3947 if (!getCodeGenOpts().CoverageFile.empty()) { 3948 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3949 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3950 llvm::LLVMContext &Ctx = TheModule.getContext(); 3951 llvm::MDString *CoverageFile = 3952 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3953 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3954 llvm::MDNode *CU = CUNode->getOperand(i); 3955 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3956 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3957 } 3958 } 3959 } 3960 } 3961 3962 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3963 // Sema has checked that all uuid strings are of the form 3964 // "12345678-1234-1234-1234-1234567890ab". 3965 assert(Uuid.size() == 36); 3966 for (unsigned i = 0; i < 36; ++i) { 3967 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3968 else assert(isHexDigit(Uuid[i])); 3969 } 3970 3971 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3972 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3973 3974 llvm::Constant *Field3[8]; 3975 for (unsigned Idx = 0; Idx < 8; ++Idx) 3976 Field3[Idx] = llvm::ConstantInt::get( 3977 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3978 3979 llvm::Constant *Fields[4] = { 3980 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3981 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3982 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3983 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3984 }; 3985 3986 return llvm::ConstantStruct::getAnon(Fields); 3987 } 3988 3989 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3990 bool ForEH) { 3991 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3992 // FIXME: should we even be calling this method if RTTI is disabled 3993 // and it's not for EH? 3994 if (!ForEH && !getLangOpts().RTTI) 3995 return llvm::Constant::getNullValue(Int8PtrTy); 3996 3997 if (ForEH && Ty->isObjCObjectPointerType() && 3998 LangOpts.ObjCRuntime.isGNUFamily()) 3999 return ObjCRuntime->GetEHType(Ty); 4000 4001 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4002 } 4003 4004 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4005 for (auto RefExpr : D->varlists()) { 4006 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4007 bool PerformInit = 4008 VD->getAnyInitializer() && 4009 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4010 /*ForRef=*/false); 4011 4012 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4013 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4014 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4015 CXXGlobalInits.push_back(InitFunction); 4016 } 4017 } 4018 4019 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4020 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4021 if (InternalId) 4022 return InternalId; 4023 4024 if (isExternallyVisible(T->getLinkage())) { 4025 std::string OutName; 4026 llvm::raw_string_ostream Out(OutName); 4027 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4028 4029 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4030 } else { 4031 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4032 llvm::ArrayRef<llvm::Metadata *>()); 4033 } 4034 4035 return InternalId; 4036 } 4037 4038 /// Returns whether this module needs the "all-vtables" bitset. 4039 bool CodeGenModule::NeedAllVtablesBitSet() const { 4040 // Returns true if at least one of vtable-based CFI checkers is enabled and 4041 // is not in the trapping mode. 4042 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4043 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4044 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4045 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4046 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4047 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4048 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4049 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4050 } 4051 4052 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 4053 llvm::GlobalVariable *VTable, 4054 CharUnits Offset, 4055 const CXXRecordDecl *RD) { 4056 llvm::Metadata *MD = 4057 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4058 llvm::Metadata *BitsetOps[] = { 4059 MD, llvm::ConstantAsMetadata::get(VTable), 4060 llvm::ConstantAsMetadata::get( 4061 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4062 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4063 4064 if (CodeGenOpts.SanitizeCfiCrossDso) { 4065 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 4066 llvm::Metadata *BitsetOps2[] = { 4067 llvm::ConstantAsMetadata::get(TypeId), 4068 llvm::ConstantAsMetadata::get(VTable), 4069 llvm::ConstantAsMetadata::get( 4070 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4071 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 4072 } 4073 } 4074 4075 if (NeedAllVtablesBitSet()) { 4076 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4077 llvm::Metadata *BitsetOps[] = { 4078 MD, llvm::ConstantAsMetadata::get(VTable), 4079 llvm::ConstantAsMetadata::get( 4080 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4081 // Avoid adding a node to BitsetsMD twice. 4082 if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps)) 4083 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4084 } 4085 } 4086 4087 // Fills in the supplied string map with the set of target features for the 4088 // passed in function. 4089 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4090 const FunctionDecl *FD) { 4091 StringRef TargetCPU = Target.getTargetOpts().CPU; 4092 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4093 // If we have a TargetAttr build up the feature map based on that. 4094 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4095 4096 // Make a copy of the features as passed on the command line into the 4097 // beginning of the additional features from the function to override. 4098 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4099 Target.getTargetOpts().FeaturesAsWritten.begin(), 4100 Target.getTargetOpts().FeaturesAsWritten.end()); 4101 4102 if (ParsedAttr.second != "") 4103 TargetCPU = ParsedAttr.second; 4104 4105 // Now populate the feature map, first with the TargetCPU which is either 4106 // the default or a new one from the target attribute string. Then we'll use 4107 // the passed in features (FeaturesAsWritten) along with the new ones from 4108 // the attribute. 4109 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4110 } else { 4111 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4112 Target.getTargetOpts().Features); 4113 } 4114 } 4115 4116 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4117 if (!SanStats) 4118 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4119 4120 return *SanStats; 4121 } 4122