xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 3f1b5d077b7e68c0c801a56f17b05dab96f7f992)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0), DebugInfo(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info or coverage generation is enabled, create the CGDebugInfo
84   // object.
85   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86       CodeGenOpts.EmitGcovNotes)
87     DebugInfo = new CGDebugInfo(*this);
88 
89   Block.GlobalUniqueCount = 0;
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
94   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
95   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
96   PointerWidthInBits = C.Target.getPointerWidth(0);
97   PointerAlignInBytes =
98     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
99   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
100   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
101   Int8PtrTy = Int8Ty->getPointerTo(0);
102   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
103 }
104 
105 CodeGenModule::~CodeGenModule() {
106   delete Runtime;
107   delete &ABI;
108   delete TBAA;
109   delete DebugInfo;
110 }
111 
112 void CodeGenModule::createObjCRuntime() {
113   if (!Features.NeXTRuntime)
114     Runtime = CreateGNUObjCRuntime(*this);
115   else
116     Runtime = CreateMacObjCRuntime(*this);
117 }
118 
119 void CodeGenModule::Release() {
120   EmitDeferred();
121   EmitCXXGlobalInitFunc();
122   EmitCXXGlobalDtorFunc();
123   if (Runtime)
124     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
125       AddGlobalCtor(ObjCInitFunction);
126   EmitCtorList(GlobalCtors, "llvm.global_ctors");
127   EmitCtorList(GlobalDtors, "llvm.global_dtors");
128   EmitAnnotations();
129   EmitLLVMUsed();
130 
131   SimplifyPersonality();
132 
133   if (getCodeGenOpts().EmitDeclMetadata)
134     EmitDeclMetadata();
135 
136   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
137     EmitCoverageFile();
138 }
139 
140 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
141   // Make sure that this type is translated.
142   Types.UpdateCompletedType(TD);
143   if (DebugInfo)
144     DebugInfo->UpdateCompletedType(TD);
145 }
146 
147 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
148   if (!TBAA)
149     return 0;
150   return TBAA->getTBAAInfo(QTy);
151 }
152 
153 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
154                                         llvm::MDNode *TBAAInfo) {
155   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
156 }
157 
158 bool CodeGenModule::isTargetDarwin() const {
159   return getContext().Target.getTriple().isOSDarwin();
160 }
161 
162 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
163   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
164   getDiags().Report(Context.getFullLoc(loc), diagID);
165 }
166 
167 /// ErrorUnsupported - Print out an error that codegen doesn't support the
168 /// specified stmt yet.
169 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
170                                      bool OmitOnError) {
171   if (OmitOnError && getDiags().hasErrorOccurred())
172     return;
173   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
174                                                "cannot compile this %0 yet");
175   std::string Msg = Type;
176   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
177     << Msg << S->getSourceRange();
178 }
179 
180 /// ErrorUnsupported - Print out an error that codegen doesn't support the
181 /// specified decl yet.
182 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
183                                      bool OmitOnError) {
184   if (OmitOnError && getDiags().hasErrorOccurred())
185     return;
186   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
187                                                "cannot compile this %0 yet");
188   std::string Msg = Type;
189   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
190 }
191 
192 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
193                                         const NamedDecl *D) const {
194   // Internal definitions always have default visibility.
195   if (GV->hasLocalLinkage()) {
196     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
197     return;
198   }
199 
200   // Set visibility for definitions.
201   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
202   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
203     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
204 }
205 
206 /// Set the symbol visibility of type information (vtable and RTTI)
207 /// associated with the given type.
208 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
209                                       const CXXRecordDecl *RD,
210                                       TypeVisibilityKind TVK) const {
211   setGlobalVisibility(GV, RD);
212 
213   if (!CodeGenOpts.HiddenWeakVTables)
214     return;
215 
216   // We never want to drop the visibility for RTTI names.
217   if (TVK == TVK_ForRTTIName)
218     return;
219 
220   // We want to drop the visibility to hidden for weak type symbols.
221   // This isn't possible if there might be unresolved references
222   // elsewhere that rely on this symbol being visible.
223 
224   // This should be kept roughly in sync with setThunkVisibility
225   // in CGVTables.cpp.
226 
227   // Preconditions.
228   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
229       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
230     return;
231 
232   // Don't override an explicit visibility attribute.
233   if (RD->getExplicitVisibility())
234     return;
235 
236   switch (RD->getTemplateSpecializationKind()) {
237   // We have to disable the optimization if this is an EI definition
238   // because there might be EI declarations in other shared objects.
239   case TSK_ExplicitInstantiationDefinition:
240   case TSK_ExplicitInstantiationDeclaration:
241     return;
242 
243   // Every use of a non-template class's type information has to emit it.
244   case TSK_Undeclared:
245     break;
246 
247   // In theory, implicit instantiations can ignore the possibility of
248   // an explicit instantiation declaration because there necessarily
249   // must be an EI definition somewhere with default visibility.  In
250   // practice, it's possible to have an explicit instantiation for
251   // an arbitrary template class, and linkers aren't necessarily able
252   // to deal with mixed-visibility symbols.
253   case TSK_ExplicitSpecialization:
254   case TSK_ImplicitInstantiation:
255     if (!CodeGenOpts.HiddenWeakTemplateVTables)
256       return;
257     break;
258   }
259 
260   // If there's a key function, there may be translation units
261   // that don't have the key function's definition.  But ignore
262   // this if we're emitting RTTI under -fno-rtti.
263   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
264     if (Context.getKeyFunction(RD))
265       return;
266   }
267 
268   // Otherwise, drop the visibility to hidden.
269   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
270   GV->setUnnamedAddr(true);
271 }
272 
273 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
274   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
275 
276   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
277   if (!Str.empty())
278     return Str;
279 
280   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
281     IdentifierInfo *II = ND->getIdentifier();
282     assert(II && "Attempt to mangle unnamed decl.");
283 
284     Str = II->getName();
285     return Str;
286   }
287 
288   llvm::SmallString<256> Buffer;
289   llvm::raw_svector_ostream Out(Buffer);
290   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
291     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
292   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
293     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
294   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
295     getCXXABI().getMangleContext().mangleBlock(BD, Out);
296   else
297     getCXXABI().getMangleContext().mangleName(ND, Out);
298 
299   // Allocate space for the mangled name.
300   Out.flush();
301   size_t Length = Buffer.size();
302   char *Name = MangledNamesAllocator.Allocate<char>(Length);
303   std::copy(Buffer.begin(), Buffer.end(), Name);
304 
305   Str = llvm::StringRef(Name, Length);
306 
307   return Str;
308 }
309 
310 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
311                                         const BlockDecl *BD) {
312   MangleContext &MangleCtx = getCXXABI().getMangleContext();
313   const Decl *D = GD.getDecl();
314   llvm::raw_svector_ostream Out(Buffer.getBuffer());
315   if (D == 0)
316     MangleCtx.mangleGlobalBlock(BD, Out);
317   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
318     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
319   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
320     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
321   else
322     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
323 }
324 
325 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
326   return getModule().getNamedValue(Name);
327 }
328 
329 /// AddGlobalCtor - Add a function to the list that will be called before
330 /// main() runs.
331 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
332   // FIXME: Type coercion of void()* types.
333   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
334 }
335 
336 /// AddGlobalDtor - Add a function to the list that will be called
337 /// when the module is unloaded.
338 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
339   // FIXME: Type coercion of void()* types.
340   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
341 }
342 
343 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
344   // Ctor function type is void()*.
345   llvm::FunctionType* CtorFTy =
346     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
347   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
348 
349   // Get the type of a ctor entry, { i32, void ()* }.
350   llvm::StructType* CtorStructTy =
351     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
352                           llvm::PointerType::getUnqual(CtorFTy), NULL);
353 
354   // Construct the constructor and destructor arrays.
355   std::vector<llvm::Constant*> Ctors;
356   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
357     std::vector<llvm::Constant*> S;
358     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
359                 I->second, false));
360     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
361     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
362   }
363 
364   if (!Ctors.empty()) {
365     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
366     new llvm::GlobalVariable(TheModule, AT, false,
367                              llvm::GlobalValue::AppendingLinkage,
368                              llvm::ConstantArray::get(AT, Ctors),
369                              GlobalName);
370   }
371 }
372 
373 void CodeGenModule::EmitAnnotations() {
374   if (Annotations.empty())
375     return;
376 
377   // Create a new global variable for the ConstantStruct in the Module.
378   llvm::Constant *Array =
379   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
380                                                 Annotations.size()),
381                            Annotations);
382   llvm::GlobalValue *gv =
383   new llvm::GlobalVariable(TheModule, Array->getType(), false,
384                            llvm::GlobalValue::AppendingLinkage, Array,
385                            "llvm.global.annotations");
386   gv->setSection("llvm.metadata");
387 }
388 
389 llvm::GlobalValue::LinkageTypes
390 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
391   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
392 
393   if (Linkage == GVA_Internal)
394     return llvm::Function::InternalLinkage;
395 
396   if (D->hasAttr<DLLExportAttr>())
397     return llvm::Function::DLLExportLinkage;
398 
399   if (D->hasAttr<WeakAttr>())
400     return llvm::Function::WeakAnyLinkage;
401 
402   // In C99 mode, 'inline' functions are guaranteed to have a strong
403   // definition somewhere else, so we can use available_externally linkage.
404   if (Linkage == GVA_C99Inline)
405     return llvm::Function::AvailableExternallyLinkage;
406 
407   // In C++, the compiler has to emit a definition in every translation unit
408   // that references the function.  We should use linkonce_odr because
409   // a) if all references in this translation unit are optimized away, we
410   // don't need to codegen it.  b) if the function persists, it needs to be
411   // merged with other definitions. c) C++ has the ODR, so we know the
412   // definition is dependable.
413   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
414     return !Context.getLangOptions().AppleKext
415              ? llvm::Function::LinkOnceODRLinkage
416              : llvm::Function::InternalLinkage;
417 
418   // An explicit instantiation of a template has weak linkage, since
419   // explicit instantiations can occur in multiple translation units
420   // and must all be equivalent. However, we are not allowed to
421   // throw away these explicit instantiations.
422   if (Linkage == GVA_ExplicitTemplateInstantiation)
423     return !Context.getLangOptions().AppleKext
424              ? llvm::Function::WeakODRLinkage
425              : llvm::Function::InternalLinkage;
426 
427   // Otherwise, we have strong external linkage.
428   assert(Linkage == GVA_StrongExternal);
429   return llvm::Function::ExternalLinkage;
430 }
431 
432 
433 /// SetFunctionDefinitionAttributes - Set attributes for a global.
434 ///
435 /// FIXME: This is currently only done for aliases and functions, but not for
436 /// variables (these details are set in EmitGlobalVarDefinition for variables).
437 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
438                                                     llvm::GlobalValue *GV) {
439   SetCommonAttributes(D, GV);
440 }
441 
442 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
443                                               const CGFunctionInfo &Info,
444                                               llvm::Function *F) {
445   unsigned CallingConv;
446   AttributeListType AttributeList;
447   ConstructAttributeList(Info, D, AttributeList, CallingConv);
448   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
449                                           AttributeList.size()));
450   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
451 }
452 
453 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
454                                                            llvm::Function *F) {
455   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
456     F->addFnAttr(llvm::Attribute::NoUnwind);
457 
458   if (D->hasAttr<AlwaysInlineAttr>())
459     F->addFnAttr(llvm::Attribute::AlwaysInline);
460 
461   if (D->hasAttr<NakedAttr>())
462     F->addFnAttr(llvm::Attribute::Naked);
463 
464   if (D->hasAttr<NoInlineAttr>())
465     F->addFnAttr(llvm::Attribute::NoInline);
466 
467   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
468     F->setUnnamedAddr(true);
469 
470   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
471     F->addFnAttr(llvm::Attribute::StackProtect);
472   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
473     F->addFnAttr(llvm::Attribute::StackProtectReq);
474 
475   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
476   if (alignment)
477     F->setAlignment(alignment);
478 
479   // C++ ABI requires 2-byte alignment for member functions.
480   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
481     F->setAlignment(2);
482 }
483 
484 void CodeGenModule::SetCommonAttributes(const Decl *D,
485                                         llvm::GlobalValue *GV) {
486   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
487     setGlobalVisibility(GV, ND);
488   else
489     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
490 
491   if (D->hasAttr<UsedAttr>())
492     AddUsedGlobal(GV);
493 
494   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
495     GV->setSection(SA->getName());
496 
497   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
498 }
499 
500 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
501                                                   llvm::Function *F,
502                                                   const CGFunctionInfo &FI) {
503   SetLLVMFunctionAttributes(D, FI, F);
504   SetLLVMFunctionAttributesForDefinition(D, F);
505 
506   F->setLinkage(llvm::Function::InternalLinkage);
507 
508   SetCommonAttributes(D, F);
509 }
510 
511 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
512                                           llvm::Function *F,
513                                           bool IsIncompleteFunction) {
514   if (unsigned IID = F->getIntrinsicID()) {
515     // If this is an intrinsic function, set the function's attributes
516     // to the intrinsic's attributes.
517     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
518     return;
519   }
520 
521   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
522 
523   if (!IsIncompleteFunction)
524     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
525 
526   // Only a few attributes are set on declarations; these may later be
527   // overridden by a definition.
528 
529   if (FD->hasAttr<DLLImportAttr>()) {
530     F->setLinkage(llvm::Function::DLLImportLinkage);
531   } else if (FD->hasAttr<WeakAttr>() ||
532              FD->isWeakImported()) {
533     // "extern_weak" is overloaded in LLVM; we probably should have
534     // separate linkage types for this.
535     F->setLinkage(llvm::Function::ExternalWeakLinkage);
536   } else {
537     F->setLinkage(llvm::Function::ExternalLinkage);
538 
539     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
540     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
541       F->setVisibility(GetLLVMVisibility(LV.visibility()));
542     }
543   }
544 
545   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
546     F->setSection(SA->getName());
547 }
548 
549 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
550   assert(!GV->isDeclaration() &&
551          "Only globals with definition can force usage.");
552   LLVMUsed.push_back(GV);
553 }
554 
555 void CodeGenModule::EmitLLVMUsed() {
556   // Don't create llvm.used if there is no need.
557   if (LLVMUsed.empty())
558     return;
559 
560   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
561 
562   // Convert LLVMUsed to what ConstantArray needs.
563   std::vector<llvm::Constant*> UsedArray;
564   UsedArray.resize(LLVMUsed.size());
565   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
566     UsedArray[i] =
567      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
568                                       i8PTy);
569   }
570 
571   if (UsedArray.empty())
572     return;
573   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
574 
575   llvm::GlobalVariable *GV =
576     new llvm::GlobalVariable(getModule(), ATy, false,
577                              llvm::GlobalValue::AppendingLinkage,
578                              llvm::ConstantArray::get(ATy, UsedArray),
579                              "llvm.used");
580 
581   GV->setSection("llvm.metadata");
582 }
583 
584 void CodeGenModule::EmitDeferred() {
585   // Emit code for any potentially referenced deferred decls.  Since a
586   // previously unused static decl may become used during the generation of code
587   // for a static function, iterate until no  changes are made.
588 
589   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
590     if (!DeferredVTables.empty()) {
591       const CXXRecordDecl *RD = DeferredVTables.back();
592       DeferredVTables.pop_back();
593       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
594       continue;
595     }
596 
597     GlobalDecl D = DeferredDeclsToEmit.back();
598     DeferredDeclsToEmit.pop_back();
599 
600     // Check to see if we've already emitted this.  This is necessary
601     // for a couple of reasons: first, decls can end up in the
602     // deferred-decls queue multiple times, and second, decls can end
603     // up with definitions in unusual ways (e.g. by an extern inline
604     // function acquiring a strong function redefinition).  Just
605     // ignore these cases.
606     //
607     // TODO: That said, looking this up multiple times is very wasteful.
608     llvm::StringRef Name = getMangledName(D);
609     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
610     assert(CGRef && "Deferred decl wasn't referenced?");
611 
612     if (!CGRef->isDeclaration())
613       continue;
614 
615     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
616     // purposes an alias counts as a definition.
617     if (isa<llvm::GlobalAlias>(CGRef))
618       continue;
619 
620     // Otherwise, emit the definition and move on to the next one.
621     EmitGlobalDefinition(D);
622   }
623 }
624 
625 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
626 /// annotation information for a given GlobalValue.  The annotation struct is
627 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
628 /// GlobalValue being annotated.  The second field is the constant string
629 /// created from the AnnotateAttr's annotation.  The third field is a constant
630 /// string containing the name of the translation unit.  The fourth field is
631 /// the line number in the file of the annotated value declaration.
632 ///
633 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
634 ///        appears to.
635 ///
636 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
637                                                 const AnnotateAttr *AA,
638                                                 unsigned LineNo) {
639   llvm::Module *M = &getModule();
640 
641   // get [N x i8] constants for the annotation string, and the filename string
642   // which are the 2nd and 3rd elements of the global annotation structure.
643   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
644   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
645                                                   AA->getAnnotation(), true);
646   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
647                                                   M->getModuleIdentifier(),
648                                                   true);
649 
650   // Get the two global values corresponding to the ConstantArrays we just
651   // created to hold the bytes of the strings.
652   llvm::GlobalValue *annoGV =
653     new llvm::GlobalVariable(*M, anno->getType(), false,
654                              llvm::GlobalValue::PrivateLinkage, anno,
655                              GV->getName());
656   // translation unit name string, emitted into the llvm.metadata section.
657   llvm::GlobalValue *unitGV =
658     new llvm::GlobalVariable(*M, unit->getType(), false,
659                              llvm::GlobalValue::PrivateLinkage, unit,
660                              ".str");
661   unitGV->setUnnamedAddr(true);
662 
663   // Create the ConstantStruct for the global annotation.
664   llvm::Constant *Fields[4] = {
665     llvm::ConstantExpr::getBitCast(GV, SBP),
666     llvm::ConstantExpr::getBitCast(annoGV, SBP),
667     llvm::ConstantExpr::getBitCast(unitGV, SBP),
668     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
669   };
670   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
671 }
672 
673 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
674   // Never defer when EmitAllDecls is specified.
675   if (Features.EmitAllDecls)
676     return false;
677 
678   return !getContext().DeclMustBeEmitted(Global);
679 }
680 
681 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
682   const AliasAttr *AA = VD->getAttr<AliasAttr>();
683   assert(AA && "No alias?");
684 
685   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
686 
687   // See if there is already something with the target's name in the module.
688   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
689 
690   llvm::Constant *Aliasee;
691   if (isa<llvm::FunctionType>(DeclTy))
692     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
693                                       /*ForVTable=*/false);
694   else
695     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
696                                     llvm::PointerType::getUnqual(DeclTy), 0);
697   if (!Entry) {
698     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
699     F->setLinkage(llvm::Function::ExternalWeakLinkage);
700     WeakRefReferences.insert(F);
701   }
702 
703   return Aliasee;
704 }
705 
706 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
707   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
708 
709   // Weak references don't produce any output by themselves.
710   if (Global->hasAttr<WeakRefAttr>())
711     return;
712 
713   // If this is an alias definition (which otherwise looks like a declaration)
714   // emit it now.
715   if (Global->hasAttr<AliasAttr>())
716     return EmitAliasDefinition(GD);
717 
718   // Ignore declarations, they will be emitted on their first use.
719   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
720     if (FD->getIdentifier()) {
721       llvm::StringRef Name = FD->getName();
722       if (Name == "_Block_object_assign") {
723         BlockObjectAssignDecl = FD;
724       } else if (Name == "_Block_object_dispose") {
725         BlockObjectDisposeDecl = FD;
726       }
727     }
728 
729     // Forward declarations are emitted lazily on first use.
730     if (!FD->isThisDeclarationADefinition())
731       return;
732   } else {
733     const VarDecl *VD = cast<VarDecl>(Global);
734     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
735 
736     if (VD->getIdentifier()) {
737       llvm::StringRef Name = VD->getName();
738       if (Name == "_NSConcreteGlobalBlock") {
739         NSConcreteGlobalBlockDecl = VD;
740       } else if (Name == "_NSConcreteStackBlock") {
741         NSConcreteStackBlockDecl = VD;
742       }
743     }
744 
745 
746     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
747       return;
748   }
749 
750   // Defer code generation when possible if this is a static definition, inline
751   // function etc.  These we only want to emit if they are used.
752   if (!MayDeferGeneration(Global)) {
753     // Emit the definition if it can't be deferred.
754     EmitGlobalDefinition(GD);
755     return;
756   }
757 
758   // If we're deferring emission of a C++ variable with an
759   // initializer, remember the order in which it appeared in the file.
760   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
761       cast<VarDecl>(Global)->hasInit()) {
762     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
763     CXXGlobalInits.push_back(0);
764   }
765 
766   // If the value has already been used, add it directly to the
767   // DeferredDeclsToEmit list.
768   llvm::StringRef MangledName = getMangledName(GD);
769   if (GetGlobalValue(MangledName))
770     DeferredDeclsToEmit.push_back(GD);
771   else {
772     // Otherwise, remember that we saw a deferred decl with this name.  The
773     // first use of the mangled name will cause it to move into
774     // DeferredDeclsToEmit.
775     DeferredDecls[MangledName] = GD;
776   }
777 }
778 
779 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
780   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
781 
782   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
783                                  Context.getSourceManager(),
784                                  "Generating code for declaration");
785 
786   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
787     // At -O0, don't generate IR for functions with available_externally
788     // linkage.
789     if (CodeGenOpts.OptimizationLevel == 0 &&
790         !Function->hasAttr<AlwaysInlineAttr>() &&
791         getFunctionLinkage(Function)
792                                   == llvm::Function::AvailableExternallyLinkage)
793       return;
794 
795     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
796       if (Method->isVirtual())
797         getVTables().EmitThunks(GD);
798 
799       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
800         return EmitCXXConstructor(CD, GD.getCtorType());
801 
802       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
803         return EmitCXXDestructor(DD, GD.getDtorType());
804     }
805 
806     return EmitGlobalFunctionDefinition(GD);
807   }
808 
809   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
810     return EmitGlobalVarDefinition(VD);
811 
812   assert(0 && "Invalid argument to EmitGlobalDefinition()");
813 }
814 
815 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
816 /// module, create and return an llvm Function with the specified type. If there
817 /// is something in the module with the specified name, return it potentially
818 /// bitcasted to the right type.
819 ///
820 /// If D is non-null, it specifies a decl that correspond to this.  This is used
821 /// to set the attributes on the function when it is first created.
822 llvm::Constant *
823 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
824                                        const llvm::Type *Ty,
825                                        GlobalDecl D, bool ForVTable) {
826   // Lookup the entry, lazily creating it if necessary.
827   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
828   if (Entry) {
829     if (WeakRefReferences.count(Entry)) {
830       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
831       if (FD && !FD->hasAttr<WeakAttr>())
832         Entry->setLinkage(llvm::Function::ExternalLinkage);
833 
834       WeakRefReferences.erase(Entry);
835     }
836 
837     if (Entry->getType()->getElementType() == Ty)
838       return Entry;
839 
840     // Make sure the result is of the correct type.
841     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
842     return llvm::ConstantExpr::getBitCast(Entry, PTy);
843   }
844 
845   // This function doesn't have a complete type (for example, the return
846   // type is an incomplete struct). Use a fake type instead, and make
847   // sure not to try to set attributes.
848   bool IsIncompleteFunction = false;
849 
850   const llvm::FunctionType *FTy;
851   if (isa<llvm::FunctionType>(Ty)) {
852     FTy = cast<llvm::FunctionType>(Ty);
853   } else {
854     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
855     IsIncompleteFunction = true;
856   }
857 
858   llvm::Function *F = llvm::Function::Create(FTy,
859                                              llvm::Function::ExternalLinkage,
860                                              MangledName, &getModule());
861   assert(F->getName() == MangledName && "name was uniqued!");
862   if (D.getDecl())
863     SetFunctionAttributes(D, F, IsIncompleteFunction);
864 
865   // This is the first use or definition of a mangled name.  If there is a
866   // deferred decl with this name, remember that we need to emit it at the end
867   // of the file.
868   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
869   if (DDI != DeferredDecls.end()) {
870     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
871     // list, and remove it from DeferredDecls (since we don't need it anymore).
872     DeferredDeclsToEmit.push_back(DDI->second);
873     DeferredDecls.erase(DDI);
874 
875   // Otherwise, there are cases we have to worry about where we're
876   // using a declaration for which we must emit a definition but where
877   // we might not find a top-level definition:
878   //   - member functions defined inline in their classes
879   //   - friend functions defined inline in some class
880   //   - special member functions with implicit definitions
881   // If we ever change our AST traversal to walk into class methods,
882   // this will be unnecessary.
883   //
884   // We also don't emit a definition for a function if it's going to be an entry
885   // in a vtable, unless it's already marked as used.
886   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
887     // Look for a declaration that's lexically in a record.
888     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
889     do {
890       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
891         if (FD->isImplicit() && !ForVTable) {
892           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
893           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
894           break;
895         } else if (FD->isThisDeclarationADefinition()) {
896           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
897           break;
898         }
899       }
900       FD = FD->getPreviousDeclaration();
901     } while (FD);
902   }
903 
904   // Make sure the result is of the requested type.
905   if (!IsIncompleteFunction) {
906     assert(F->getType()->getElementType() == Ty);
907     return F;
908   }
909 
910   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
911   return llvm::ConstantExpr::getBitCast(F, PTy);
912 }
913 
914 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
915 /// non-null, then this function will use the specified type if it has to
916 /// create it (this occurs when we see a definition of the function).
917 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
918                                                  const llvm::Type *Ty,
919                                                  bool ForVTable) {
920   // If there was no specific requested type, just convert it now.
921   if (!Ty)
922     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
923 
924   llvm::StringRef MangledName = getMangledName(GD);
925   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
926 }
927 
928 /// CreateRuntimeFunction - Create a new runtime function with the specified
929 /// type and name.
930 llvm::Constant *
931 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
932                                      llvm::StringRef Name) {
933   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
934 }
935 
936 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
937   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
938     return false;
939   if (Context.getLangOptions().CPlusPlus &&
940       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
941     // FIXME: We should do something fancier here!
942     return false;
943   }
944   return true;
945 }
946 
947 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
948 /// create and return an llvm GlobalVariable with the specified type.  If there
949 /// is something in the module with the specified name, return it potentially
950 /// bitcasted to the right type.
951 ///
952 /// If D is non-null, it specifies a decl that correspond to this.  This is used
953 /// to set the attributes on the global when it is first created.
954 llvm::Constant *
955 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
956                                      const llvm::PointerType *Ty,
957                                      const VarDecl *D,
958                                      bool UnnamedAddr) {
959   // Lookup the entry, lazily creating it if necessary.
960   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
961   if (Entry) {
962     if (WeakRefReferences.count(Entry)) {
963       if (D && !D->hasAttr<WeakAttr>())
964         Entry->setLinkage(llvm::Function::ExternalLinkage);
965 
966       WeakRefReferences.erase(Entry);
967     }
968 
969     if (UnnamedAddr)
970       Entry->setUnnamedAddr(true);
971 
972     if (Entry->getType() == Ty)
973       return Entry;
974 
975     // Make sure the result is of the correct type.
976     return llvm::ConstantExpr::getBitCast(Entry, Ty);
977   }
978 
979   // This is the first use or definition of a mangled name.  If there is a
980   // deferred decl with this name, remember that we need to emit it at the end
981   // of the file.
982   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
983   if (DDI != DeferredDecls.end()) {
984     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
985     // list, and remove it from DeferredDecls (since we don't need it anymore).
986     DeferredDeclsToEmit.push_back(DDI->second);
987     DeferredDecls.erase(DDI);
988   }
989 
990   llvm::GlobalVariable *GV =
991     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
992                              llvm::GlobalValue::ExternalLinkage,
993                              0, MangledName, 0,
994                              false, Ty->getAddressSpace());
995 
996   // Handle things which are present even on external declarations.
997   if (D) {
998     // FIXME: This code is overly simple and should be merged with other global
999     // handling.
1000     GV->setConstant(DeclIsConstantGlobal(Context, D));
1001 
1002     // Set linkage and visibility in case we never see a definition.
1003     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1004     if (LV.linkage() != ExternalLinkage) {
1005       // Don't set internal linkage on declarations.
1006     } else {
1007       if (D->hasAttr<DLLImportAttr>())
1008         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1009       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1010         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1011 
1012       // Set visibility on a declaration only if it's explicit.
1013       if (LV.visibilityExplicit())
1014         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1015     }
1016 
1017     GV->setThreadLocal(D->isThreadSpecified());
1018   }
1019 
1020   return GV;
1021 }
1022 
1023 
1024 llvm::GlobalVariable *
1025 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1026                                       const llvm::Type *Ty,
1027                                       llvm::GlobalValue::LinkageTypes Linkage) {
1028   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1029   llvm::GlobalVariable *OldGV = 0;
1030 
1031 
1032   if (GV) {
1033     // Check if the variable has the right type.
1034     if (GV->getType()->getElementType() == Ty)
1035       return GV;
1036 
1037     // Because C++ name mangling, the only way we can end up with an already
1038     // existing global with the same name is if it has been declared extern "C".
1039       assert(GV->isDeclaration() && "Declaration has wrong type!");
1040     OldGV = GV;
1041   }
1042 
1043   // Create a new variable.
1044   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1045                                 Linkage, 0, Name);
1046 
1047   if (OldGV) {
1048     // Replace occurrences of the old variable if needed.
1049     GV->takeName(OldGV);
1050 
1051     if (!OldGV->use_empty()) {
1052       llvm::Constant *NewPtrForOldDecl =
1053       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1054       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1055     }
1056 
1057     OldGV->eraseFromParent();
1058   }
1059 
1060   return GV;
1061 }
1062 
1063 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1064 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1065 /// then it will be greated with the specified type instead of whatever the
1066 /// normal requested type would be.
1067 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1068                                                   const llvm::Type *Ty) {
1069   assert(D->hasGlobalStorage() && "Not a global variable");
1070   QualType ASTTy = D->getType();
1071   if (Ty == 0)
1072     Ty = getTypes().ConvertTypeForMem(ASTTy);
1073 
1074   const llvm::PointerType *PTy =
1075     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1076 
1077   llvm::StringRef MangledName = getMangledName(D);
1078   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1079 }
1080 
1081 /// CreateRuntimeVariable - Create a new runtime global variable with the
1082 /// specified type and name.
1083 llvm::Constant *
1084 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1085                                      llvm::StringRef Name) {
1086   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1087                                true);
1088 }
1089 
1090 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1091   assert(!D->getInit() && "Cannot emit definite definitions here!");
1092 
1093   if (MayDeferGeneration(D)) {
1094     // If we have not seen a reference to this variable yet, place it
1095     // into the deferred declarations table to be emitted if needed
1096     // later.
1097     llvm::StringRef MangledName = getMangledName(D);
1098     if (!GetGlobalValue(MangledName)) {
1099       DeferredDecls[MangledName] = D;
1100       return;
1101     }
1102   }
1103 
1104   // The tentative definition is the only definition.
1105   EmitGlobalVarDefinition(D);
1106 }
1107 
1108 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1109   if (DefinitionRequired)
1110     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1111 }
1112 
1113 llvm::GlobalVariable::LinkageTypes
1114 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1115   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1116     return llvm::GlobalVariable::InternalLinkage;
1117 
1118   if (const CXXMethodDecl *KeyFunction
1119                                     = RD->getASTContext().getKeyFunction(RD)) {
1120     // If this class has a key function, use that to determine the linkage of
1121     // the vtable.
1122     const FunctionDecl *Def = 0;
1123     if (KeyFunction->hasBody(Def))
1124       KeyFunction = cast<CXXMethodDecl>(Def);
1125 
1126     switch (KeyFunction->getTemplateSpecializationKind()) {
1127       case TSK_Undeclared:
1128       case TSK_ExplicitSpecialization:
1129         // When compiling with optimizations turned on, we emit all vtables,
1130         // even if the key function is not defined in the current translation
1131         // unit. If this is the case, use available_externally linkage.
1132         if (!Def && CodeGenOpts.OptimizationLevel)
1133           return llvm::GlobalVariable::AvailableExternallyLinkage;
1134 
1135         if (KeyFunction->isInlined())
1136           return !Context.getLangOptions().AppleKext ?
1137                    llvm::GlobalVariable::LinkOnceODRLinkage :
1138                    llvm::Function::InternalLinkage;
1139 
1140         return llvm::GlobalVariable::ExternalLinkage;
1141 
1142       case TSK_ImplicitInstantiation:
1143         return !Context.getLangOptions().AppleKext ?
1144                  llvm::GlobalVariable::LinkOnceODRLinkage :
1145                  llvm::Function::InternalLinkage;
1146 
1147       case TSK_ExplicitInstantiationDefinition:
1148         return !Context.getLangOptions().AppleKext ?
1149                  llvm::GlobalVariable::WeakODRLinkage :
1150                  llvm::Function::InternalLinkage;
1151 
1152       case TSK_ExplicitInstantiationDeclaration:
1153         // FIXME: Use available_externally linkage. However, this currently
1154         // breaks LLVM's build due to undefined symbols.
1155         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1156         return !Context.getLangOptions().AppleKext ?
1157                  llvm::GlobalVariable::LinkOnceODRLinkage :
1158                  llvm::Function::InternalLinkage;
1159     }
1160   }
1161 
1162   if (Context.getLangOptions().AppleKext)
1163     return llvm::Function::InternalLinkage;
1164 
1165   switch (RD->getTemplateSpecializationKind()) {
1166   case TSK_Undeclared:
1167   case TSK_ExplicitSpecialization:
1168   case TSK_ImplicitInstantiation:
1169     // FIXME: Use available_externally linkage. However, this currently
1170     // breaks LLVM's build due to undefined symbols.
1171     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1172   case TSK_ExplicitInstantiationDeclaration:
1173     return llvm::GlobalVariable::LinkOnceODRLinkage;
1174 
1175   case TSK_ExplicitInstantiationDefinition:
1176       return llvm::GlobalVariable::WeakODRLinkage;
1177   }
1178 
1179   // Silence GCC warning.
1180   return llvm::GlobalVariable::LinkOnceODRLinkage;
1181 }
1182 
1183 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1184     return Context.toCharUnitsFromBits(
1185       TheTargetData.getTypeStoreSizeInBits(Ty));
1186 }
1187 
1188 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1189   llvm::Constant *Init = 0;
1190   QualType ASTTy = D->getType();
1191   bool NonConstInit = false;
1192 
1193   const Expr *InitExpr = D->getAnyInitializer();
1194 
1195   if (!InitExpr) {
1196     // This is a tentative definition; tentative definitions are
1197     // implicitly initialized with { 0 }.
1198     //
1199     // Note that tentative definitions are only emitted at the end of
1200     // a translation unit, so they should never have incomplete
1201     // type. In addition, EmitTentativeDefinition makes sure that we
1202     // never attempt to emit a tentative definition if a real one
1203     // exists. A use may still exists, however, so we still may need
1204     // to do a RAUW.
1205     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1206     Init = EmitNullConstant(D->getType());
1207   } else {
1208     Init = EmitConstantExpr(InitExpr, D->getType());
1209     if (!Init) {
1210       QualType T = InitExpr->getType();
1211       if (D->getType()->isReferenceType())
1212         T = D->getType();
1213 
1214       if (getLangOptions().CPlusPlus) {
1215         Init = EmitNullConstant(T);
1216         NonConstInit = true;
1217       } else {
1218         ErrorUnsupported(D, "static initializer");
1219         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1220       }
1221     } else {
1222       // We don't need an initializer, so remove the entry for the delayed
1223       // initializer position (just in case this entry was delayed).
1224       if (getLangOptions().CPlusPlus)
1225         DelayedCXXInitPosition.erase(D);
1226     }
1227   }
1228 
1229   const llvm::Type* InitType = Init->getType();
1230   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1231 
1232   // Strip off a bitcast if we got one back.
1233   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1234     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1235            // all zero index gep.
1236            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1237     Entry = CE->getOperand(0);
1238   }
1239 
1240   // Entry is now either a Function or GlobalVariable.
1241   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1242 
1243   // We have a definition after a declaration with the wrong type.
1244   // We must make a new GlobalVariable* and update everything that used OldGV
1245   // (a declaration or tentative definition) with the new GlobalVariable*
1246   // (which will be a definition).
1247   //
1248   // This happens if there is a prototype for a global (e.g.
1249   // "extern int x[];") and then a definition of a different type (e.g.
1250   // "int x[10];"). This also happens when an initializer has a different type
1251   // from the type of the global (this happens with unions).
1252   if (GV == 0 ||
1253       GV->getType()->getElementType() != InitType ||
1254       GV->getType()->getAddressSpace() !=
1255         getContext().getTargetAddressSpace(ASTTy)) {
1256 
1257     // Move the old entry aside so that we'll create a new one.
1258     Entry->setName(llvm::StringRef());
1259 
1260     // Make a new global with the correct type, this is now guaranteed to work.
1261     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1262 
1263     // Replace all uses of the old global with the new global
1264     llvm::Constant *NewPtrForOldDecl =
1265         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1266     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1267 
1268     // Erase the old global, since it is no longer used.
1269     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1270   }
1271 
1272   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1273     SourceManager &SM = Context.getSourceManager();
1274     AddAnnotation(EmitAnnotateAttr(GV, AA,
1275                               SM.getInstantiationLineNumber(D->getLocation())));
1276   }
1277 
1278   GV->setInitializer(Init);
1279 
1280   // If it is safe to mark the global 'constant', do so now.
1281   GV->setConstant(false);
1282   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1283     GV->setConstant(true);
1284 
1285   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1286 
1287   // Set the llvm linkage type as appropriate.
1288   llvm::GlobalValue::LinkageTypes Linkage =
1289     GetLLVMLinkageVarDefinition(D, GV);
1290   GV->setLinkage(Linkage);
1291   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1292     // common vars aren't constant even if declared const.
1293     GV->setConstant(false);
1294 
1295   SetCommonAttributes(D, GV);
1296 
1297   // Emit the initializer function if necessary.
1298   if (NonConstInit)
1299     EmitCXXGlobalVarDeclInitFunc(D, GV);
1300 
1301   // Emit global variable debug information.
1302   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1303     DI->setLocation(D->getLocation());
1304     DI->EmitGlobalVariable(GV, D);
1305   }
1306 }
1307 
1308 llvm::GlobalValue::LinkageTypes
1309 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1310                                            llvm::GlobalVariable *GV) {
1311   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1312   if (Linkage == GVA_Internal)
1313     return llvm::Function::InternalLinkage;
1314   else if (D->hasAttr<DLLImportAttr>())
1315     return llvm::Function::DLLImportLinkage;
1316   else if (D->hasAttr<DLLExportAttr>())
1317     return llvm::Function::DLLExportLinkage;
1318   else if (D->hasAttr<WeakAttr>()) {
1319     if (GV->isConstant())
1320       return llvm::GlobalVariable::WeakODRLinkage;
1321     else
1322       return llvm::GlobalVariable::WeakAnyLinkage;
1323   } else if (Linkage == GVA_TemplateInstantiation ||
1324              Linkage == GVA_ExplicitTemplateInstantiation)
1325     return llvm::GlobalVariable::WeakODRLinkage;
1326   else if (!getLangOptions().CPlusPlus &&
1327            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1328              D->getAttr<CommonAttr>()) &&
1329            !D->hasExternalStorage() && !D->getInit() &&
1330            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1331     // Thread local vars aren't considered common linkage.
1332     return llvm::GlobalVariable::CommonLinkage;
1333   }
1334   return llvm::GlobalVariable::ExternalLinkage;
1335 }
1336 
1337 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1338 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1339 /// existing call uses of the old function in the module, this adjusts them to
1340 /// call the new function directly.
1341 ///
1342 /// This is not just a cleanup: the always_inline pass requires direct calls to
1343 /// functions to be able to inline them.  If there is a bitcast in the way, it
1344 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1345 /// run at -O0.
1346 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1347                                                       llvm::Function *NewFn) {
1348   // If we're redefining a global as a function, don't transform it.
1349   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1350   if (OldFn == 0) return;
1351 
1352   const llvm::Type *NewRetTy = NewFn->getReturnType();
1353   llvm::SmallVector<llvm::Value*, 4> ArgList;
1354 
1355   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1356        UI != E; ) {
1357     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1358     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1359     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1360     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1361     llvm::CallSite CS(CI);
1362     if (!CI || !CS.isCallee(I)) continue;
1363 
1364     // If the return types don't match exactly, and if the call isn't dead, then
1365     // we can't transform this call.
1366     if (CI->getType() != NewRetTy && !CI->use_empty())
1367       continue;
1368 
1369     // If the function was passed too few arguments, don't transform.  If extra
1370     // arguments were passed, we silently drop them.  If any of the types
1371     // mismatch, we don't transform.
1372     unsigned ArgNo = 0;
1373     bool DontTransform = false;
1374     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1375          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1376       if (CS.arg_size() == ArgNo ||
1377           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1378         DontTransform = true;
1379         break;
1380       }
1381     }
1382     if (DontTransform)
1383       continue;
1384 
1385     // Okay, we can transform this.  Create the new call instruction and copy
1386     // over the required information.
1387     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1388     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1389                                                      ArgList.end(), "", CI);
1390     ArgList.clear();
1391     if (!NewCall->getType()->isVoidTy())
1392       NewCall->takeName(CI);
1393     NewCall->setAttributes(CI->getAttributes());
1394     NewCall->setCallingConv(CI->getCallingConv());
1395 
1396     // Finally, remove the old call, replacing any uses with the new one.
1397     if (!CI->use_empty())
1398       CI->replaceAllUsesWith(NewCall);
1399 
1400     // Copy debug location attached to CI.
1401     if (!CI->getDebugLoc().isUnknown())
1402       NewCall->setDebugLoc(CI->getDebugLoc());
1403     CI->eraseFromParent();
1404   }
1405 }
1406 
1407 
1408 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1409   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1410 
1411   // Compute the function info and LLVM type.
1412   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1413   bool variadic = false;
1414   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1415     variadic = fpt->isVariadic();
1416   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1417 
1418   // Get or create the prototype for the function.
1419   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1420 
1421   // Strip off a bitcast if we got one back.
1422   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1423     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1424     Entry = CE->getOperand(0);
1425   }
1426 
1427 
1428   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1429     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1430 
1431     // If the types mismatch then we have to rewrite the definition.
1432     assert(OldFn->isDeclaration() &&
1433            "Shouldn't replace non-declaration");
1434 
1435     // F is the Function* for the one with the wrong type, we must make a new
1436     // Function* and update everything that used F (a declaration) with the new
1437     // Function* (which will be a definition).
1438     //
1439     // This happens if there is a prototype for a function
1440     // (e.g. "int f()") and then a definition of a different type
1441     // (e.g. "int f(int x)").  Move the old function aside so that it
1442     // doesn't interfere with GetAddrOfFunction.
1443     OldFn->setName(llvm::StringRef());
1444     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1445 
1446     // If this is an implementation of a function without a prototype, try to
1447     // replace any existing uses of the function (which may be calls) with uses
1448     // of the new function
1449     if (D->getType()->isFunctionNoProtoType()) {
1450       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1451       OldFn->removeDeadConstantUsers();
1452     }
1453 
1454     // Replace uses of F with the Function we will endow with a body.
1455     if (!Entry->use_empty()) {
1456       llvm::Constant *NewPtrForOldDecl =
1457         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1458       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1459     }
1460 
1461     // Ok, delete the old function now, which is dead.
1462     OldFn->eraseFromParent();
1463 
1464     Entry = NewFn;
1465   }
1466 
1467   // We need to set linkage and visibility on the function before
1468   // generating code for it because various parts of IR generation
1469   // want to propagate this information down (e.g. to local static
1470   // declarations).
1471   llvm::Function *Fn = cast<llvm::Function>(Entry);
1472   setFunctionLinkage(D, Fn);
1473 
1474   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1475   setGlobalVisibility(Fn, D);
1476 
1477   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1478 
1479   SetFunctionDefinitionAttributes(D, Fn);
1480   SetLLVMFunctionAttributesForDefinition(D, Fn);
1481 
1482   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1483     AddGlobalCtor(Fn, CA->getPriority());
1484   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1485     AddGlobalDtor(Fn, DA->getPriority());
1486 }
1487 
1488 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1489   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1490   const AliasAttr *AA = D->getAttr<AliasAttr>();
1491   assert(AA && "Not an alias?");
1492 
1493   llvm::StringRef MangledName = getMangledName(GD);
1494 
1495   // If there is a definition in the module, then it wins over the alias.
1496   // This is dubious, but allow it to be safe.  Just ignore the alias.
1497   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1498   if (Entry && !Entry->isDeclaration())
1499     return;
1500 
1501   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1502 
1503   // Create a reference to the named value.  This ensures that it is emitted
1504   // if a deferred decl.
1505   llvm::Constant *Aliasee;
1506   if (isa<llvm::FunctionType>(DeclTy))
1507     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1508                                       /*ForVTable=*/false);
1509   else
1510     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1511                                     llvm::PointerType::getUnqual(DeclTy), 0);
1512 
1513   // Create the new alias itself, but don't set a name yet.
1514   llvm::GlobalValue *GA =
1515     new llvm::GlobalAlias(Aliasee->getType(),
1516                           llvm::Function::ExternalLinkage,
1517                           "", Aliasee, &getModule());
1518 
1519   if (Entry) {
1520     assert(Entry->isDeclaration());
1521 
1522     // If there is a declaration in the module, then we had an extern followed
1523     // by the alias, as in:
1524     //   extern int test6();
1525     //   ...
1526     //   int test6() __attribute__((alias("test7")));
1527     //
1528     // Remove it and replace uses of it with the alias.
1529     GA->takeName(Entry);
1530 
1531     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1532                                                           Entry->getType()));
1533     Entry->eraseFromParent();
1534   } else {
1535     GA->setName(MangledName);
1536   }
1537 
1538   // Set attributes which are particular to an alias; this is a
1539   // specialization of the attributes which may be set on a global
1540   // variable/function.
1541   if (D->hasAttr<DLLExportAttr>()) {
1542     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1543       // The dllexport attribute is ignored for undefined symbols.
1544       if (FD->hasBody())
1545         GA->setLinkage(llvm::Function::DLLExportLinkage);
1546     } else {
1547       GA->setLinkage(llvm::Function::DLLExportLinkage);
1548     }
1549   } else if (D->hasAttr<WeakAttr>() ||
1550              D->hasAttr<WeakRefAttr>() ||
1551              D->isWeakImported()) {
1552     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1553   }
1554 
1555   SetCommonAttributes(D, GA);
1556 }
1557 
1558 /// getBuiltinLibFunction - Given a builtin id for a function like
1559 /// "__builtin_fabsf", return a Function* for "fabsf".
1560 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1561                                                   unsigned BuiltinID) {
1562   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1563           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1564          "isn't a lib fn");
1565 
1566   // Get the name, skip over the __builtin_ prefix (if necessary).
1567   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1568   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1569     Name += 10;
1570 
1571   const llvm::FunctionType *Ty =
1572     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1573 
1574   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1575 }
1576 
1577 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1578                                             unsigned NumTys) {
1579   return llvm::Intrinsic::getDeclaration(&getModule(),
1580                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1581 }
1582 
1583 static llvm::StringMapEntry<llvm::Constant*> &
1584 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1585                          const StringLiteral *Literal,
1586                          bool TargetIsLSB,
1587                          bool &IsUTF16,
1588                          unsigned &StringLength) {
1589   llvm::StringRef String = Literal->getString();
1590   unsigned NumBytes = String.size();
1591 
1592   // Check for simple case.
1593   if (!Literal->containsNonAsciiOrNull()) {
1594     StringLength = NumBytes;
1595     return Map.GetOrCreateValue(String);
1596   }
1597 
1598   // Otherwise, convert the UTF8 literals into a byte string.
1599   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1600   const UTF8 *FromPtr = (UTF8 *)String.data();
1601   UTF16 *ToPtr = &ToBuf[0];
1602 
1603   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1604                            &ToPtr, ToPtr + NumBytes,
1605                            strictConversion);
1606 
1607   // ConvertUTF8toUTF16 returns the length in ToPtr.
1608   StringLength = ToPtr - &ToBuf[0];
1609 
1610   // Render the UTF-16 string into a byte array and convert to the target byte
1611   // order.
1612   //
1613   // FIXME: This isn't something we should need to do here.
1614   llvm::SmallString<128> AsBytes;
1615   AsBytes.reserve(StringLength * 2);
1616   for (unsigned i = 0; i != StringLength; ++i) {
1617     unsigned short Val = ToBuf[i];
1618     if (TargetIsLSB) {
1619       AsBytes.push_back(Val & 0xFF);
1620       AsBytes.push_back(Val >> 8);
1621     } else {
1622       AsBytes.push_back(Val >> 8);
1623       AsBytes.push_back(Val & 0xFF);
1624     }
1625   }
1626   // Append one extra null character, the second is automatically added by our
1627   // caller.
1628   AsBytes.push_back(0);
1629 
1630   IsUTF16 = true;
1631   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1632 }
1633 
1634 llvm::Constant *
1635 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1636   unsigned StringLength = 0;
1637   bool isUTF16 = false;
1638   llvm::StringMapEntry<llvm::Constant*> &Entry =
1639     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1640                              getTargetData().isLittleEndian(),
1641                              isUTF16, StringLength);
1642 
1643   if (llvm::Constant *C = Entry.getValue())
1644     return C;
1645 
1646   llvm::Constant *Zero =
1647       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1648   llvm::Constant *Zeros[] = { Zero, Zero };
1649 
1650   // If we don't already have it, get __CFConstantStringClassReference.
1651   if (!CFConstantStringClassRef) {
1652     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1653     Ty = llvm::ArrayType::get(Ty, 0);
1654     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1655                                            "__CFConstantStringClassReference");
1656     // Decay array -> ptr
1657     CFConstantStringClassRef =
1658       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1659   }
1660 
1661   QualType CFTy = getContext().getCFConstantStringType();
1662 
1663   const llvm::StructType *STy =
1664     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1665 
1666   std::vector<llvm::Constant*> Fields(4);
1667 
1668   // Class pointer.
1669   Fields[0] = CFConstantStringClassRef;
1670 
1671   // Flags.
1672   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1673   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1674     llvm::ConstantInt::get(Ty, 0x07C8);
1675 
1676   // String pointer.
1677   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1678 
1679   llvm::GlobalValue::LinkageTypes Linkage;
1680   bool isConstant;
1681   if (isUTF16) {
1682     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1683     Linkage = llvm::GlobalValue::InternalLinkage;
1684     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1685     // does make plain ascii ones writable.
1686     isConstant = true;
1687   } else {
1688     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1689     // when using private linkage. It is not clear if this is a bug in ld
1690     // or a reasonable new restriction.
1691     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1692     isConstant = !Features.WritableStrings;
1693   }
1694 
1695   llvm::GlobalVariable *GV =
1696     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1697                              ".str");
1698   GV->setUnnamedAddr(true);
1699   if (isUTF16) {
1700     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1701     GV->setAlignment(Align.getQuantity());
1702   } else {
1703     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1704     GV->setAlignment(Align.getQuantity());
1705   }
1706   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1707 
1708   // String length.
1709   Ty = getTypes().ConvertType(getContext().LongTy);
1710   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1711 
1712   // The struct.
1713   C = llvm::ConstantStruct::get(STy, Fields);
1714   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1715                                 llvm::GlobalVariable::PrivateLinkage, C,
1716                                 "_unnamed_cfstring_");
1717   if (const char *Sect = getContext().Target.getCFStringSection())
1718     GV->setSection(Sect);
1719   Entry.setValue(GV);
1720 
1721   return GV;
1722 }
1723 
1724 llvm::Constant *
1725 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1726   unsigned StringLength = 0;
1727   bool isUTF16 = false;
1728   llvm::StringMapEntry<llvm::Constant*> &Entry =
1729     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1730                              getTargetData().isLittleEndian(),
1731                              isUTF16, StringLength);
1732 
1733   if (llvm::Constant *C = Entry.getValue())
1734     return C;
1735 
1736   llvm::Constant *Zero =
1737   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1738   llvm::Constant *Zeros[] = { Zero, Zero };
1739 
1740   // If we don't already have it, get _NSConstantStringClassReference.
1741   if (!ConstantStringClassRef) {
1742     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1743     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1744     Ty = llvm::ArrayType::get(Ty, 0);
1745     llvm::Constant *GV;
1746     if (StringClass.empty())
1747       GV = CreateRuntimeVariable(Ty,
1748                                  Features.ObjCNonFragileABI ?
1749                                  "OBJC_CLASS_$_NSConstantString" :
1750                                  "_NSConstantStringClassReference");
1751     else {
1752       std::string str;
1753       if (Features.ObjCNonFragileABI)
1754         str = "OBJC_CLASS_$_" + StringClass;
1755       else
1756         str = "_" + StringClass + "ClassReference";
1757       GV = CreateRuntimeVariable(Ty, str);
1758     }
1759     // Decay array -> ptr
1760     ConstantStringClassRef =
1761     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1762   }
1763 
1764   QualType NSTy = getContext().getNSConstantStringType();
1765 
1766   const llvm::StructType *STy =
1767   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1768 
1769   std::vector<llvm::Constant*> Fields(3);
1770 
1771   // Class pointer.
1772   Fields[0] = ConstantStringClassRef;
1773 
1774   // String pointer.
1775   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1776 
1777   llvm::GlobalValue::LinkageTypes Linkage;
1778   bool isConstant;
1779   if (isUTF16) {
1780     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1781     Linkage = llvm::GlobalValue::InternalLinkage;
1782     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1783     // does make plain ascii ones writable.
1784     isConstant = true;
1785   } else {
1786     Linkage = llvm::GlobalValue::PrivateLinkage;
1787     isConstant = !Features.WritableStrings;
1788   }
1789 
1790   llvm::GlobalVariable *GV =
1791   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1792                            ".str");
1793   GV->setUnnamedAddr(true);
1794   if (isUTF16) {
1795     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1796     GV->setAlignment(Align.getQuantity());
1797   } else {
1798     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1799     GV->setAlignment(Align.getQuantity());
1800   }
1801   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1802 
1803   // String length.
1804   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1805   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1806 
1807   // The struct.
1808   C = llvm::ConstantStruct::get(STy, Fields);
1809   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1810                                 llvm::GlobalVariable::PrivateLinkage, C,
1811                                 "_unnamed_nsstring_");
1812   // FIXME. Fix section.
1813   if (const char *Sect =
1814         Features.ObjCNonFragileABI
1815           ? getContext().Target.getNSStringNonFragileABISection()
1816           : getContext().Target.getNSStringSection())
1817     GV->setSection(Sect);
1818   Entry.setValue(GV);
1819 
1820   return GV;
1821 }
1822 
1823 /// GetStringForStringLiteral - Return the appropriate bytes for a
1824 /// string literal, properly padded to match the literal type.
1825 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1826   const ASTContext &Context = getContext();
1827   const ConstantArrayType *CAT =
1828     Context.getAsConstantArrayType(E->getType());
1829   assert(CAT && "String isn't pointer or array!");
1830 
1831   // Resize the string to the right size.
1832   uint64_t RealLen = CAT->getSize().getZExtValue();
1833 
1834   if (E->isWide())
1835     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1836 
1837   std::string Str = E->getString().str();
1838   Str.resize(RealLen, '\0');
1839 
1840   return Str;
1841 }
1842 
1843 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1844 /// constant array for the given string literal.
1845 llvm::Constant *
1846 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1847   // FIXME: This can be more efficient.
1848   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1849   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1850   if (S->isWide()) {
1851     llvm::Type *DestTy =
1852         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1853     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1854   }
1855   return C;
1856 }
1857 
1858 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1859 /// array for the given ObjCEncodeExpr node.
1860 llvm::Constant *
1861 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1862   std::string Str;
1863   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1864 
1865   return GetAddrOfConstantCString(Str);
1866 }
1867 
1868 
1869 /// GenerateWritableString -- Creates storage for a string literal.
1870 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1871                                              bool constant,
1872                                              CodeGenModule &CGM,
1873                                              const char *GlobalName) {
1874   // Create Constant for this string literal. Don't add a '\0'.
1875   llvm::Constant *C =
1876       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1877 
1878   // Create a global variable for this string
1879   llvm::GlobalVariable *GV =
1880     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1881                              llvm::GlobalValue::PrivateLinkage,
1882                              C, GlobalName);
1883   GV->setUnnamedAddr(true);
1884   return GV;
1885 }
1886 
1887 /// GetAddrOfConstantString - Returns a pointer to a character array
1888 /// containing the literal. This contents are exactly that of the
1889 /// given string, i.e. it will not be null terminated automatically;
1890 /// see GetAddrOfConstantCString. Note that whether the result is
1891 /// actually a pointer to an LLVM constant depends on
1892 /// Feature.WriteableStrings.
1893 ///
1894 /// The result has pointer to array type.
1895 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1896                                                        const char *GlobalName) {
1897   bool IsConstant = !Features.WritableStrings;
1898 
1899   // Get the default prefix if a name wasn't specified.
1900   if (!GlobalName)
1901     GlobalName = ".str";
1902 
1903   // Don't share any string literals if strings aren't constant.
1904   if (!IsConstant)
1905     return GenerateStringLiteral(Str, false, *this, GlobalName);
1906 
1907   llvm::StringMapEntry<llvm::Constant *> &Entry =
1908     ConstantStringMap.GetOrCreateValue(Str);
1909 
1910   if (Entry.getValue())
1911     return Entry.getValue();
1912 
1913   // Create a global variable for this.
1914   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1915   Entry.setValue(C);
1916   return C;
1917 }
1918 
1919 /// GetAddrOfConstantCString - Returns a pointer to a character
1920 /// array containing the literal and a terminating '\0'
1921 /// character. The result has pointer to array type.
1922 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1923                                                         const char *GlobalName){
1924   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1925   return GetAddrOfConstantString(StrWithNull, GlobalName);
1926 }
1927 
1928 /// EmitObjCPropertyImplementations - Emit information for synthesized
1929 /// properties for an implementation.
1930 void CodeGenModule::EmitObjCPropertyImplementations(const
1931                                                     ObjCImplementationDecl *D) {
1932   for (ObjCImplementationDecl::propimpl_iterator
1933          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1934     ObjCPropertyImplDecl *PID = *i;
1935 
1936     // Dynamic is just for type-checking.
1937     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1938       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1939 
1940       // Determine which methods need to be implemented, some may have
1941       // been overridden. Note that ::isSynthesized is not the method
1942       // we want, that just indicates if the decl came from a
1943       // property. What we want to know is if the method is defined in
1944       // this implementation.
1945       if (!D->getInstanceMethod(PD->getGetterName()))
1946         CodeGenFunction(*this).GenerateObjCGetter(
1947                                  const_cast<ObjCImplementationDecl *>(D), PID);
1948       if (!PD->isReadOnly() &&
1949           !D->getInstanceMethod(PD->getSetterName()))
1950         CodeGenFunction(*this).GenerateObjCSetter(
1951                                  const_cast<ObjCImplementationDecl *>(D), PID);
1952     }
1953   }
1954 }
1955 
1956 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1957   ObjCInterfaceDecl *iface
1958     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1959   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1960        ivar; ivar = ivar->getNextIvar())
1961     if (ivar->getType().isDestructedType())
1962       return true;
1963 
1964   return false;
1965 }
1966 
1967 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1968 /// for an implementation.
1969 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1970   // We might need a .cxx_destruct even if we don't have any ivar initializers.
1971   if (needsDestructMethod(D)) {
1972     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1973     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1974     ObjCMethodDecl *DTORMethod =
1975       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
1976                              cxxSelector, getContext().VoidTy, 0, D, true,
1977                              false, true, false, ObjCMethodDecl::Required);
1978     D->addInstanceMethod(DTORMethod);
1979     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1980   }
1981 
1982   // If the implementation doesn't have any ivar initializers, we don't need
1983   // a .cxx_construct.
1984   if (D->getNumIvarInitializers() == 0)
1985     return;
1986 
1987   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
1988   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1989   // The constructor returns 'self'.
1990   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1991                                                 D->getLocation(),
1992                                                 D->getLocation(), cxxSelector,
1993                                                 getContext().getObjCIdType(), 0,
1994                                                 D, true, false, true, false,
1995                                                 ObjCMethodDecl::Required);
1996   D->addInstanceMethod(CTORMethod);
1997   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1998 }
1999 
2000 /// EmitNamespace - Emit all declarations in a namespace.
2001 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2002   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2003        I != E; ++I)
2004     EmitTopLevelDecl(*I);
2005 }
2006 
2007 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2008 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2009   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2010       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2011     ErrorUnsupported(LSD, "linkage spec");
2012     return;
2013   }
2014 
2015   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2016        I != E; ++I)
2017     EmitTopLevelDecl(*I);
2018 }
2019 
2020 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2021 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2022   // If an error has occurred, stop code generation, but continue
2023   // parsing and semantic analysis (to ensure all warnings and errors
2024   // are emitted).
2025   if (Diags.hasErrorOccurred())
2026     return;
2027 
2028   // Ignore dependent declarations.
2029   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2030     return;
2031 
2032   switch (D->getKind()) {
2033   case Decl::CXXConversion:
2034   case Decl::CXXMethod:
2035   case Decl::Function:
2036     // Skip function templates
2037     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2038         cast<FunctionDecl>(D)->isLateTemplateParsed())
2039       return;
2040 
2041     EmitGlobal(cast<FunctionDecl>(D));
2042     break;
2043 
2044   case Decl::Var:
2045     EmitGlobal(cast<VarDecl>(D));
2046     break;
2047 
2048   // Indirect fields from global anonymous structs and unions can be
2049   // ignored; only the actual variable requires IR gen support.
2050   case Decl::IndirectField:
2051     break;
2052 
2053   // C++ Decls
2054   case Decl::Namespace:
2055     EmitNamespace(cast<NamespaceDecl>(D));
2056     break;
2057     // No code generation needed.
2058   case Decl::UsingShadow:
2059   case Decl::Using:
2060   case Decl::UsingDirective:
2061   case Decl::ClassTemplate:
2062   case Decl::FunctionTemplate:
2063   case Decl::TypeAliasTemplate:
2064   case Decl::NamespaceAlias:
2065     break;
2066   case Decl::CXXConstructor:
2067     // Skip function templates
2068     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2069         cast<FunctionDecl>(D)->isLateTemplateParsed())
2070       return;
2071 
2072     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2073     break;
2074   case Decl::CXXDestructor:
2075     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2076       return;
2077     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2078     break;
2079 
2080   case Decl::StaticAssert:
2081     // Nothing to do.
2082     break;
2083 
2084   // Objective-C Decls
2085 
2086   // Forward declarations, no (immediate) code generation.
2087   case Decl::ObjCClass:
2088   case Decl::ObjCForwardProtocol:
2089   case Decl::ObjCInterface:
2090     break;
2091 
2092   case Decl::ObjCCategory: {
2093     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2094     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2095       Context.ResetObjCLayout(CD->getClassInterface());
2096     break;
2097   }
2098 
2099   case Decl::ObjCProtocol:
2100     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2101     break;
2102 
2103   case Decl::ObjCCategoryImpl:
2104     // Categories have properties but don't support synthesize so we
2105     // can ignore them here.
2106     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2107     break;
2108 
2109   case Decl::ObjCImplementation: {
2110     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2111     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2112       Context.ResetObjCLayout(OMD->getClassInterface());
2113     EmitObjCPropertyImplementations(OMD);
2114     EmitObjCIvarInitializations(OMD);
2115     Runtime->GenerateClass(OMD);
2116     break;
2117   }
2118   case Decl::ObjCMethod: {
2119     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2120     // If this is not a prototype, emit the body.
2121     if (OMD->getBody())
2122       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2123     break;
2124   }
2125   case Decl::ObjCCompatibleAlias:
2126     // compatibility-alias is a directive and has no code gen.
2127     break;
2128 
2129   case Decl::LinkageSpec:
2130     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2131     break;
2132 
2133   case Decl::FileScopeAsm: {
2134     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2135     llvm::StringRef AsmString = AD->getAsmString()->getString();
2136 
2137     const std::string &S = getModule().getModuleInlineAsm();
2138     if (S.empty())
2139       getModule().setModuleInlineAsm(AsmString);
2140     else
2141       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2142     break;
2143   }
2144 
2145   default:
2146     // Make sure we handled everything we should, every other kind is a
2147     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2148     // function. Need to recode Decl::Kind to do that easily.
2149     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2150   }
2151 }
2152 
2153 /// Turns the given pointer into a constant.
2154 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2155                                           const void *Ptr) {
2156   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2157   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2158   return llvm::ConstantInt::get(i64, PtrInt);
2159 }
2160 
2161 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2162                                    llvm::NamedMDNode *&GlobalMetadata,
2163                                    GlobalDecl D,
2164                                    llvm::GlobalValue *Addr) {
2165   if (!GlobalMetadata)
2166     GlobalMetadata =
2167       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2168 
2169   // TODO: should we report variant information for ctors/dtors?
2170   llvm::Value *Ops[] = {
2171     Addr,
2172     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2173   };
2174   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2175 }
2176 
2177 /// Emits metadata nodes associating all the global values in the
2178 /// current module with the Decls they came from.  This is useful for
2179 /// projects using IR gen as a subroutine.
2180 ///
2181 /// Since there's currently no way to associate an MDNode directly
2182 /// with an llvm::GlobalValue, we create a global named metadata
2183 /// with the name 'clang.global.decl.ptrs'.
2184 void CodeGenModule::EmitDeclMetadata() {
2185   llvm::NamedMDNode *GlobalMetadata = 0;
2186 
2187   // StaticLocalDeclMap
2188   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2189          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2190        I != E; ++I) {
2191     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2192     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2193   }
2194 }
2195 
2196 /// Emits metadata nodes for all the local variables in the current
2197 /// function.
2198 void CodeGenFunction::EmitDeclMetadata() {
2199   if (LocalDeclMap.empty()) return;
2200 
2201   llvm::LLVMContext &Context = getLLVMContext();
2202 
2203   // Find the unique metadata ID for this name.
2204   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2205 
2206   llvm::NamedMDNode *GlobalMetadata = 0;
2207 
2208   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2209          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2210     const Decl *D = I->first;
2211     llvm::Value *Addr = I->second;
2212 
2213     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2214       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2215       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2216     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2217       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2218       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2219     }
2220   }
2221 }
2222 
2223 void CodeGenModule::EmitCoverageFile() {
2224   if (!getCodeGenOpts().CoverageFile.empty()) {
2225     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2226       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2227       llvm::LLVMContext &Ctx = TheModule.getContext();
2228       llvm::MDString *CoverageFile =
2229           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2230       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2231         llvm::MDNode *CU = CUNode->getOperand(i);
2232         llvm::Value *node[] = { CoverageFile, CU };
2233         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2234         GCov->addOperand(N);
2235       }
2236     }
2237   }
2238 }
2239 
2240 ///@name Custom Runtime Function Interfaces
2241 ///@{
2242 //
2243 // FIXME: These can be eliminated once we can have clients just get the required
2244 // AST nodes from the builtin tables.
2245 
2246 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2247   if (BlockObjectDispose)
2248     return BlockObjectDispose;
2249 
2250   // If we saw an explicit decl, use that.
2251   if (BlockObjectDisposeDecl) {
2252     return BlockObjectDispose = GetAddrOfFunction(
2253       BlockObjectDisposeDecl,
2254       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2255   }
2256 
2257   // Otherwise construct the function by hand.
2258   const llvm::FunctionType *FTy;
2259   std::vector<const llvm::Type*> ArgTys;
2260   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2261   ArgTys.push_back(Int8PtrTy);
2262   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2263   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2264   return BlockObjectDispose =
2265     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2266 }
2267 
2268 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2269   if (BlockObjectAssign)
2270     return BlockObjectAssign;
2271 
2272   // If we saw an explicit decl, use that.
2273   if (BlockObjectAssignDecl) {
2274     return BlockObjectAssign = GetAddrOfFunction(
2275       BlockObjectAssignDecl,
2276       getTypes().GetFunctionType(BlockObjectAssignDecl));
2277   }
2278 
2279   // Otherwise construct the function by hand.
2280   const llvm::FunctionType *FTy;
2281   std::vector<const llvm::Type*> ArgTys;
2282   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2283   ArgTys.push_back(Int8PtrTy);
2284   ArgTys.push_back(Int8PtrTy);
2285   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2286   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2287   return BlockObjectAssign =
2288     CreateRuntimeFunction(FTy, "_Block_object_assign");
2289 }
2290 
2291 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2292   if (NSConcreteGlobalBlock)
2293     return NSConcreteGlobalBlock;
2294 
2295   // If we saw an explicit decl, use that.
2296   if (NSConcreteGlobalBlockDecl) {
2297     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2298       NSConcreteGlobalBlockDecl,
2299       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2300   }
2301 
2302   // Otherwise construct the variable by hand.
2303   return NSConcreteGlobalBlock =
2304     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2305 }
2306 
2307 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2308   if (NSConcreteStackBlock)
2309     return NSConcreteStackBlock;
2310 
2311   // If we saw an explicit decl, use that.
2312   if (NSConcreteStackBlockDecl) {
2313     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2314       NSConcreteStackBlockDecl,
2315       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2316   }
2317 
2318   // Otherwise construct the variable by hand.
2319   return NSConcreteStackBlock =
2320     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2321 }
2322 
2323 ///@}
2324