1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::WatchOS: 69 case TargetCXXABI::GenericMIPS: 70 case TargetCXXABI::GenericItanium: 71 case TargetCXXABI::WebAssembly: 72 return CreateItaniumCXXABI(CGM); 73 case TargetCXXABI::Microsoft: 74 return CreateMicrosoftCXXABI(CGM); 75 } 76 77 llvm_unreachable("invalid C++ ABI kind"); 78 } 79 80 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 81 const PreprocessorOptions &PPO, 82 const CodeGenOptions &CGO, llvm::Module &M, 83 DiagnosticsEngine &diags, 84 CoverageSourceInfo *CoverageInfo) 85 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 86 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 87 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 88 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 89 Types(*this), VTables(*this), ObjCRuntime(nullptr), 90 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 91 DebugInfo(nullptr), ObjCData(nullptr), 92 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 93 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 94 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 95 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 96 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 97 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 98 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 99 100 // Initialize the type cache. 101 llvm::LLVMContext &LLVMContext = M.getContext(); 102 VoidTy = llvm::Type::getVoidTy(LLVMContext); 103 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 104 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 105 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 106 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 IntAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 114 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 115 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 116 Int8PtrTy = Int8Ty->getPointerTo(0); 117 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 118 119 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 120 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 121 122 if (LangOpts.ObjC1) 123 createObjCRuntime(); 124 if (LangOpts.OpenCL) 125 createOpenCLRuntime(); 126 if (LangOpts.OpenMP) 127 createOpenMPRuntime(); 128 if (LangOpts.CUDA) 129 createCUDARuntime(); 130 131 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 132 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 133 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 134 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 135 getCXXABI().getMangleContext()); 136 137 // If debug info or coverage generation is enabled, create the CGDebugInfo 138 // object. 139 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 140 CodeGenOpts.EmitGcovArcs || 141 CodeGenOpts.EmitGcovNotes) 142 DebugInfo = new CGDebugInfo(*this); 143 144 Block.GlobalUniqueCount = 0; 145 146 if (C.getLangOpts().ObjC1) 147 ObjCData = new ObjCEntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ObjCData; 176 } 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime = CreateGNUObjCRuntime(*this); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 239 NewF); 240 } 241 OldF->eraseFromParent(); 242 } 243 } 244 245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 246 GlobalValReplacements.push_back(std::make_pair(GV, C)); 247 } 248 249 void CodeGenModule::applyGlobalValReplacements() { 250 for (auto &I : GlobalValReplacements) { 251 llvm::GlobalValue *GV = I.first; 252 llvm::Constant *C = I.second; 253 254 GV->replaceAllUsesWith(C); 255 GV->eraseFromParent(); 256 } 257 } 258 259 // This is only used in aliases that we created and we know they have a 260 // linear structure. 261 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 262 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 263 const llvm::Constant *C = &GA; 264 for (;;) { 265 C = C->stripPointerCasts(); 266 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 267 return GO; 268 // stripPointerCasts will not walk over weak aliases. 269 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 270 if (!GA2) 271 return nullptr; 272 if (!Visited.insert(GA2).second) 273 return nullptr; 274 C = GA2->getAliasee(); 275 } 276 } 277 278 void CodeGenModule::checkAliases() { 279 // Check if the constructed aliases are well formed. It is really unfortunate 280 // that we have to do this in CodeGen, but we only construct mangled names 281 // and aliases during codegen. 282 bool Error = false; 283 DiagnosticsEngine &Diags = getDiags(); 284 for (const GlobalDecl &GD : Aliases) { 285 const auto *D = cast<ValueDecl>(GD.getDecl()); 286 const AliasAttr *AA = D->getAttr<AliasAttr>(); 287 StringRef MangledName = getMangledName(GD); 288 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 289 auto *Alias = cast<llvm::GlobalAlias>(Entry); 290 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 291 if (!GV) { 292 Error = true; 293 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 294 } else if (GV->isDeclaration()) { 295 Error = true; 296 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 297 } 298 299 llvm::Constant *Aliasee = Alias->getAliasee(); 300 llvm::GlobalValue *AliaseeGV; 301 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 302 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 303 else 304 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 305 306 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 307 StringRef AliasSection = SA->getName(); 308 if (AliasSection != AliaseeGV->getSection()) 309 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 310 << AliasSection; 311 } 312 313 // We have to handle alias to weak aliases in here. LLVM itself disallows 314 // this since the object semantics would not match the IL one. For 315 // compatibility with gcc we implement it by just pointing the alias 316 // to its aliasee's aliasee. We also warn, since the user is probably 317 // expecting the link to be weak. 318 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 319 if (GA->mayBeOverridden()) { 320 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 321 << GV->getName() << GA->getName(); 322 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 323 GA->getAliasee(), Alias->getType()); 324 Alias->setAliasee(Aliasee); 325 } 326 } 327 } 328 if (!Error) 329 return; 330 331 for (const GlobalDecl &GD : Aliases) { 332 StringRef MangledName = getMangledName(GD); 333 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 334 auto *Alias = cast<llvm::GlobalAlias>(Entry); 335 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 336 Alias->eraseFromParent(); 337 } 338 } 339 340 void CodeGenModule::clear() { 341 DeferredDeclsToEmit.clear(); 342 if (OpenMPRuntime) 343 OpenMPRuntime->clear(); 344 } 345 346 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 347 StringRef MainFile) { 348 if (!hasDiagnostics()) 349 return; 350 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 351 if (MainFile.empty()) 352 MainFile = "<stdin>"; 353 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 354 } else 355 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 356 << Mismatched; 357 } 358 359 void CodeGenModule::Release() { 360 EmitDeferred(); 361 applyGlobalValReplacements(); 362 applyReplacements(); 363 checkAliases(); 364 EmitCXXGlobalInitFunc(); 365 EmitCXXGlobalDtorFunc(); 366 EmitCXXThreadLocalInitFunc(); 367 if (ObjCRuntime) 368 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 369 AddGlobalCtor(ObjCInitFunction); 370 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 371 CUDARuntime) { 372 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 373 AddGlobalCtor(CudaCtorFunction); 374 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 375 AddGlobalDtor(CudaDtorFunction); 376 } 377 if (PGOReader && PGOStats.hasDiagnostics()) 378 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 379 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 380 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 381 EmitGlobalAnnotations(); 382 EmitStaticExternCAliases(); 383 EmitDeferredUnusedCoverageMappings(); 384 if (CoverageMapping) 385 CoverageMapping->emit(); 386 emitLLVMUsed(); 387 388 if (CodeGenOpts.Autolink && 389 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 390 EmitModuleLinkOptions(); 391 } 392 if (CodeGenOpts.DwarfVersion) { 393 // We actually want the latest version when there are conflicts. 394 // We can change from Warning to Latest if such mode is supported. 395 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 396 CodeGenOpts.DwarfVersion); 397 } 398 if (CodeGenOpts.EmitCodeView) { 399 // Indicate that we want CodeView in the metadata. 400 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 401 } 402 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 403 // We don't support LTO with 2 with different StrictVTablePointers 404 // FIXME: we could support it by stripping all the information introduced 405 // by StrictVTablePointers. 406 407 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 408 409 llvm::Metadata *Ops[2] = { 410 llvm::MDString::get(VMContext, "StrictVTablePointers"), 411 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 412 llvm::Type::getInt32Ty(VMContext), 1))}; 413 414 getModule().addModuleFlag(llvm::Module::Require, 415 "StrictVTablePointersRequirement", 416 llvm::MDNode::get(VMContext, Ops)); 417 } 418 if (DebugInfo) 419 // We support a single version in the linked module. The LLVM 420 // parser will drop debug info with a different version number 421 // (and warn about it, too). 422 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 423 llvm::DEBUG_METADATA_VERSION); 424 425 // We need to record the widths of enums and wchar_t, so that we can generate 426 // the correct build attributes in the ARM backend. 427 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 428 if ( Arch == llvm::Triple::arm 429 || Arch == llvm::Triple::armeb 430 || Arch == llvm::Triple::thumb 431 || Arch == llvm::Triple::thumbeb) { 432 // Width of wchar_t in bytes 433 uint64_t WCharWidth = 434 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 435 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 436 437 // The minimum width of an enum in bytes 438 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 439 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 440 } 441 442 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 443 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 444 switch (PLevel) { 445 case 0: break; 446 case 1: PL = llvm::PICLevel::Small; break; 447 case 2: PL = llvm::PICLevel::Large; break; 448 default: llvm_unreachable("Invalid PIC Level"); 449 } 450 451 getModule().setPICLevel(PL); 452 } 453 454 SimplifyPersonality(); 455 456 if (getCodeGenOpts().EmitDeclMetadata) 457 EmitDeclMetadata(); 458 459 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 460 EmitCoverageFile(); 461 462 if (DebugInfo) 463 DebugInfo->finalize(); 464 465 EmitVersionIdentMetadata(); 466 467 EmitTargetMetadata(); 468 } 469 470 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 471 // Make sure that this type is translated. 472 Types.UpdateCompletedType(TD); 473 } 474 475 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 476 if (!TBAA) 477 return nullptr; 478 return TBAA->getTBAAInfo(QTy); 479 } 480 481 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 482 if (!TBAA) 483 return nullptr; 484 return TBAA->getTBAAInfoForVTablePtr(); 485 } 486 487 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 488 if (!TBAA) 489 return nullptr; 490 return TBAA->getTBAAStructInfo(QTy); 491 } 492 493 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 494 llvm::MDNode *AccessN, 495 uint64_t O) { 496 if (!TBAA) 497 return nullptr; 498 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 499 } 500 501 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 502 /// and struct-path aware TBAA, the tag has the same format: 503 /// base type, access type and offset. 504 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 505 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 506 llvm::MDNode *TBAAInfo, 507 bool ConvertTypeToTag) { 508 if (ConvertTypeToTag && TBAA) 509 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 510 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 511 else 512 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 513 } 514 515 void CodeGenModule::DecorateInstructionWithInvariantGroup( 516 llvm::Instruction *I, const CXXRecordDecl *RD) { 517 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 518 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 519 // Check if we have to wrap MDString in MDNode. 520 if (!MetaDataNode) 521 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 522 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 523 } 524 525 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 526 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 527 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 528 } 529 530 /// ErrorUnsupported - Print out an error that codegen doesn't support the 531 /// specified stmt yet. 532 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 533 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 534 "cannot compile this %0 yet"); 535 std::string Msg = Type; 536 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 537 << Msg << S->getSourceRange(); 538 } 539 540 /// ErrorUnsupported - Print out an error that codegen doesn't support the 541 /// specified decl yet. 542 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 543 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 544 "cannot compile this %0 yet"); 545 std::string Msg = Type; 546 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 547 } 548 549 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 550 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 551 } 552 553 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 554 const NamedDecl *D) const { 555 // Internal definitions always have default visibility. 556 if (GV->hasLocalLinkage()) { 557 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 558 return; 559 } 560 561 // Set visibility for definitions. 562 LinkageInfo LV = D->getLinkageAndVisibility(); 563 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 564 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 565 } 566 567 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 568 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 569 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 570 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 571 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 572 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 573 } 574 575 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 576 CodeGenOptions::TLSModel M) { 577 switch (M) { 578 case CodeGenOptions::GeneralDynamicTLSModel: 579 return llvm::GlobalVariable::GeneralDynamicTLSModel; 580 case CodeGenOptions::LocalDynamicTLSModel: 581 return llvm::GlobalVariable::LocalDynamicTLSModel; 582 case CodeGenOptions::InitialExecTLSModel: 583 return llvm::GlobalVariable::InitialExecTLSModel; 584 case CodeGenOptions::LocalExecTLSModel: 585 return llvm::GlobalVariable::LocalExecTLSModel; 586 } 587 llvm_unreachable("Invalid TLS model!"); 588 } 589 590 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 591 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 592 593 llvm::GlobalValue::ThreadLocalMode TLM; 594 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 595 596 // Override the TLS model if it is explicitly specified. 597 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 598 TLM = GetLLVMTLSModel(Attr->getModel()); 599 } 600 601 GV->setThreadLocalMode(TLM); 602 } 603 604 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 605 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 606 if (!FoundStr.empty()) 607 return FoundStr; 608 609 const auto *ND = cast<NamedDecl>(GD.getDecl()); 610 SmallString<256> Buffer; 611 StringRef Str; 612 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 613 llvm::raw_svector_ostream Out(Buffer); 614 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 615 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 616 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 617 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 618 else 619 getCXXABI().getMangleContext().mangleName(ND, Out); 620 Str = Out.str(); 621 } else { 622 IdentifierInfo *II = ND->getIdentifier(); 623 assert(II && "Attempt to mangle unnamed decl."); 624 Str = II->getName(); 625 } 626 627 // Keep the first result in the case of a mangling collision. 628 auto Result = Manglings.insert(std::make_pair(Str, GD)); 629 return FoundStr = Result.first->first(); 630 } 631 632 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 633 const BlockDecl *BD) { 634 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 635 const Decl *D = GD.getDecl(); 636 637 SmallString<256> Buffer; 638 llvm::raw_svector_ostream Out(Buffer); 639 if (!D) 640 MangleCtx.mangleGlobalBlock(BD, 641 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 642 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 643 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 644 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 645 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 646 else 647 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 648 649 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 650 return Result.first->first(); 651 } 652 653 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 654 return getModule().getNamedValue(Name); 655 } 656 657 /// AddGlobalCtor - Add a function to the list that will be called before 658 /// main() runs. 659 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 660 llvm::Constant *AssociatedData) { 661 // FIXME: Type coercion of void()* types. 662 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 663 } 664 665 /// AddGlobalDtor - Add a function to the list that will be called 666 /// when the module is unloaded. 667 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 668 // FIXME: Type coercion of void()* types. 669 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 670 } 671 672 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 673 // Ctor function type is void()*. 674 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 675 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 676 677 // Get the type of a ctor entry, { i32, void ()*, i8* }. 678 llvm::StructType *CtorStructTy = llvm::StructType::get( 679 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 680 681 // Construct the constructor and destructor arrays. 682 SmallVector<llvm::Constant *, 8> Ctors; 683 for (const auto &I : Fns) { 684 llvm::Constant *S[] = { 685 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 686 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 687 (I.AssociatedData 688 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 689 : llvm::Constant::getNullValue(VoidPtrTy))}; 690 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 691 } 692 693 if (!Ctors.empty()) { 694 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 695 new llvm::GlobalVariable(TheModule, AT, false, 696 llvm::GlobalValue::AppendingLinkage, 697 llvm::ConstantArray::get(AT, Ctors), 698 GlobalName); 699 } 700 } 701 702 llvm::GlobalValue::LinkageTypes 703 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 704 const auto *D = cast<FunctionDecl>(GD.getDecl()); 705 706 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 707 708 if (isa<CXXDestructorDecl>(D) && 709 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 710 GD.getDtorType())) { 711 // Destructor variants in the Microsoft C++ ABI are always internal or 712 // linkonce_odr thunks emitted on an as-needed basis. 713 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 714 : llvm::GlobalValue::LinkOnceODRLinkage; 715 } 716 717 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 718 } 719 720 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 721 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 722 723 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 724 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 725 // Don't dllexport/import destructor thunks. 726 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 727 return; 728 } 729 } 730 731 if (FD->hasAttr<DLLImportAttr>()) 732 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 733 else if (FD->hasAttr<DLLExportAttr>()) 734 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 735 else 736 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 737 } 738 739 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 740 llvm::Function *F) { 741 setNonAliasAttributes(D, F); 742 } 743 744 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 745 const CGFunctionInfo &Info, 746 llvm::Function *F) { 747 unsigned CallingConv; 748 AttributeListType AttributeList; 749 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 750 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 751 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 752 } 753 754 /// Determines whether the language options require us to model 755 /// unwind exceptions. We treat -fexceptions as mandating this 756 /// except under the fragile ObjC ABI with only ObjC exceptions 757 /// enabled. This means, for example, that C with -fexceptions 758 /// enables this. 759 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 760 // If exceptions are completely disabled, obviously this is false. 761 if (!LangOpts.Exceptions) return false; 762 763 // If C++ exceptions are enabled, this is true. 764 if (LangOpts.CXXExceptions) return true; 765 766 // If ObjC exceptions are enabled, this depends on the ABI. 767 if (LangOpts.ObjCExceptions) { 768 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 769 } 770 771 return true; 772 } 773 774 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 775 llvm::Function *F) { 776 llvm::AttrBuilder B; 777 778 if (CodeGenOpts.UnwindTables) 779 B.addAttribute(llvm::Attribute::UWTable); 780 781 if (!hasUnwindExceptions(LangOpts)) 782 B.addAttribute(llvm::Attribute::NoUnwind); 783 784 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 785 B.addAttribute(llvm::Attribute::StackProtect); 786 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 787 B.addAttribute(llvm::Attribute::StackProtectStrong); 788 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 789 B.addAttribute(llvm::Attribute::StackProtectReq); 790 791 if (!D) { 792 F->addAttributes(llvm::AttributeSet::FunctionIndex, 793 llvm::AttributeSet::get( 794 F->getContext(), 795 llvm::AttributeSet::FunctionIndex, B)); 796 return; 797 } 798 799 if (D->hasAttr<NakedAttr>()) { 800 // Naked implies noinline: we should not be inlining such functions. 801 B.addAttribute(llvm::Attribute::Naked); 802 B.addAttribute(llvm::Attribute::NoInline); 803 } else if (D->hasAttr<NoDuplicateAttr>()) { 804 B.addAttribute(llvm::Attribute::NoDuplicate); 805 } else if (D->hasAttr<NoInlineAttr>()) { 806 B.addAttribute(llvm::Attribute::NoInline); 807 } else if (D->hasAttr<AlwaysInlineAttr>() && 808 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 809 llvm::Attribute::NoInline)) { 810 // (noinline wins over always_inline, and we can't specify both in IR) 811 B.addAttribute(llvm::Attribute::AlwaysInline); 812 } 813 814 if (D->hasAttr<ColdAttr>()) { 815 if (!D->hasAttr<OptimizeNoneAttr>()) 816 B.addAttribute(llvm::Attribute::OptimizeForSize); 817 B.addAttribute(llvm::Attribute::Cold); 818 } 819 820 if (D->hasAttr<MinSizeAttr>()) 821 B.addAttribute(llvm::Attribute::MinSize); 822 823 F->addAttributes(llvm::AttributeSet::FunctionIndex, 824 llvm::AttributeSet::get( 825 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 826 827 if (D->hasAttr<OptimizeNoneAttr>()) { 828 // OptimizeNone implies noinline; we should not be inlining such functions. 829 F->addFnAttr(llvm::Attribute::OptimizeNone); 830 F->addFnAttr(llvm::Attribute::NoInline); 831 832 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 833 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 834 F->removeFnAttr(llvm::Attribute::MinSize); 835 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 836 "OptimizeNone and AlwaysInline on same function!"); 837 838 // Attribute 'inlinehint' has no effect on 'optnone' functions. 839 // Explicitly remove it from the set of function attributes. 840 F->removeFnAttr(llvm::Attribute::InlineHint); 841 } 842 843 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 844 F->setUnnamedAddr(true); 845 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 846 if (MD->isVirtual()) 847 F->setUnnamedAddr(true); 848 849 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 850 if (alignment) 851 F->setAlignment(alignment); 852 853 // Some C++ ABIs require 2-byte alignment for member functions, in order to 854 // reserve a bit for differentiating between virtual and non-virtual member 855 // functions. If the current target's C++ ABI requires this and this is a 856 // member function, set its alignment accordingly. 857 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 858 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 859 F->setAlignment(2); 860 } 861 } 862 863 void CodeGenModule::SetCommonAttributes(const Decl *D, 864 llvm::GlobalValue *GV) { 865 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 866 setGlobalVisibility(GV, ND); 867 else 868 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 869 870 if (D && D->hasAttr<UsedAttr>()) 871 addUsedGlobal(GV); 872 } 873 874 void CodeGenModule::setAliasAttributes(const Decl *D, 875 llvm::GlobalValue *GV) { 876 SetCommonAttributes(D, GV); 877 878 // Process the dllexport attribute based on whether the original definition 879 // (not necessarily the aliasee) was exported. 880 if (D->hasAttr<DLLExportAttr>()) 881 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 882 } 883 884 void CodeGenModule::setNonAliasAttributes(const Decl *D, 885 llvm::GlobalObject *GO) { 886 SetCommonAttributes(D, GO); 887 888 if (D) 889 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 890 GO->setSection(SA->getName()); 891 892 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 893 } 894 895 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 896 llvm::Function *F, 897 const CGFunctionInfo &FI) { 898 SetLLVMFunctionAttributes(D, FI, F); 899 SetLLVMFunctionAttributesForDefinition(D, F); 900 901 F->setLinkage(llvm::Function::InternalLinkage); 902 903 setNonAliasAttributes(D, F); 904 } 905 906 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 907 const NamedDecl *ND) { 908 // Set linkage and visibility in case we never see a definition. 909 LinkageInfo LV = ND->getLinkageAndVisibility(); 910 if (LV.getLinkage() != ExternalLinkage) { 911 // Don't set internal linkage on declarations. 912 } else { 913 if (ND->hasAttr<DLLImportAttr>()) { 914 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 915 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 916 } else if (ND->hasAttr<DLLExportAttr>()) { 917 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 918 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 919 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 920 // "extern_weak" is overloaded in LLVM; we probably should have 921 // separate linkage types for this. 922 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 923 } 924 925 // Set visibility on a declaration only if it's explicit. 926 if (LV.isVisibilityExplicit()) 927 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 928 } 929 } 930 931 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 932 bool IsIncompleteFunction, 933 bool IsThunk) { 934 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 935 // If this is an intrinsic function, set the function's attributes 936 // to the intrinsic's attributes. 937 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 938 return; 939 } 940 941 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 942 943 if (!IsIncompleteFunction) 944 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 945 946 // Add the Returned attribute for "this", except for iOS 5 and earlier 947 // where substantial code, including the libstdc++ dylib, was compiled with 948 // GCC and does not actually return "this". 949 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 950 !(getTarget().getTriple().isiOS() && 951 getTarget().getTriple().isOSVersionLT(6))) { 952 assert(!F->arg_empty() && 953 F->arg_begin()->getType() 954 ->canLosslesslyBitCastTo(F->getReturnType()) && 955 "unexpected this return"); 956 F->addAttribute(1, llvm::Attribute::Returned); 957 } 958 959 // Only a few attributes are set on declarations; these may later be 960 // overridden by a definition. 961 962 setLinkageAndVisibilityForGV(F, FD); 963 964 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 965 F->setSection(SA->getName()); 966 967 // A replaceable global allocation function does not act like a builtin by 968 // default, only if it is invoked by a new-expression or delete-expression. 969 if (FD->isReplaceableGlobalAllocationFunction()) 970 F->addAttribute(llvm::AttributeSet::FunctionIndex, 971 llvm::Attribute::NoBuiltin); 972 973 // If we are checking indirect calls and this is not a non-static member 974 // function, emit a bit set entry for the function type. 975 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 976 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 977 llvm::NamedMDNode *BitsetsMD = 978 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 979 980 llvm::Metadata *BitsetOps[] = { 981 CreateMetadataIdentifierForType(FD->getType()), 982 llvm::ConstantAsMetadata::get(F), 983 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 984 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 985 } 986 } 987 988 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 989 assert(!GV->isDeclaration() && 990 "Only globals with definition can force usage."); 991 LLVMUsed.emplace_back(GV); 992 } 993 994 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 995 assert(!GV->isDeclaration() && 996 "Only globals with definition can force usage."); 997 LLVMCompilerUsed.emplace_back(GV); 998 } 999 1000 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1001 std::vector<llvm::WeakVH> &List) { 1002 // Don't create llvm.used if there is no need. 1003 if (List.empty()) 1004 return; 1005 1006 // Convert List to what ConstantArray needs. 1007 SmallVector<llvm::Constant*, 8> UsedArray; 1008 UsedArray.resize(List.size()); 1009 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1010 UsedArray[i] = 1011 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1012 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1013 } 1014 1015 if (UsedArray.empty()) 1016 return; 1017 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1018 1019 auto *GV = new llvm::GlobalVariable( 1020 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1021 llvm::ConstantArray::get(ATy, UsedArray), Name); 1022 1023 GV->setSection("llvm.metadata"); 1024 } 1025 1026 void CodeGenModule::emitLLVMUsed() { 1027 emitUsed(*this, "llvm.used", LLVMUsed); 1028 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1029 } 1030 1031 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1032 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1033 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1034 } 1035 1036 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1037 llvm::SmallString<32> Opt; 1038 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1039 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1040 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1041 } 1042 1043 void CodeGenModule::AddDependentLib(StringRef Lib) { 1044 llvm::SmallString<24> Opt; 1045 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1046 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1047 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1048 } 1049 1050 /// \brief Add link options implied by the given module, including modules 1051 /// it depends on, using a postorder walk. 1052 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1053 SmallVectorImpl<llvm::Metadata *> &Metadata, 1054 llvm::SmallPtrSet<Module *, 16> &Visited) { 1055 // Import this module's parent. 1056 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1057 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1058 } 1059 1060 // Import this module's dependencies. 1061 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1062 if (Visited.insert(Mod->Imports[I - 1]).second) 1063 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1064 } 1065 1066 // Add linker options to link against the libraries/frameworks 1067 // described by this module. 1068 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1069 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1070 // Link against a framework. Frameworks are currently Darwin only, so we 1071 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1072 if (Mod->LinkLibraries[I-1].IsFramework) { 1073 llvm::Metadata *Args[2] = { 1074 llvm::MDString::get(Context, "-framework"), 1075 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1076 1077 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1078 continue; 1079 } 1080 1081 // Link against a library. 1082 llvm::SmallString<24> Opt; 1083 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1084 Mod->LinkLibraries[I-1].Library, Opt); 1085 auto *OptString = llvm::MDString::get(Context, Opt); 1086 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1087 } 1088 } 1089 1090 void CodeGenModule::EmitModuleLinkOptions() { 1091 // Collect the set of all of the modules we want to visit to emit link 1092 // options, which is essentially the imported modules and all of their 1093 // non-explicit child modules. 1094 llvm::SetVector<clang::Module *> LinkModules; 1095 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1096 SmallVector<clang::Module *, 16> Stack; 1097 1098 // Seed the stack with imported modules. 1099 for (Module *M : ImportedModules) 1100 if (Visited.insert(M).second) 1101 Stack.push_back(M); 1102 1103 // Find all of the modules to import, making a little effort to prune 1104 // non-leaf modules. 1105 while (!Stack.empty()) { 1106 clang::Module *Mod = Stack.pop_back_val(); 1107 1108 bool AnyChildren = false; 1109 1110 // Visit the submodules of this module. 1111 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1112 SubEnd = Mod->submodule_end(); 1113 Sub != SubEnd; ++Sub) { 1114 // Skip explicit children; they need to be explicitly imported to be 1115 // linked against. 1116 if ((*Sub)->IsExplicit) 1117 continue; 1118 1119 if (Visited.insert(*Sub).second) { 1120 Stack.push_back(*Sub); 1121 AnyChildren = true; 1122 } 1123 } 1124 1125 // We didn't find any children, so add this module to the list of 1126 // modules to link against. 1127 if (!AnyChildren) { 1128 LinkModules.insert(Mod); 1129 } 1130 } 1131 1132 // Add link options for all of the imported modules in reverse topological 1133 // order. We don't do anything to try to order import link flags with respect 1134 // to linker options inserted by things like #pragma comment(). 1135 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1136 Visited.clear(); 1137 for (Module *M : LinkModules) 1138 if (Visited.insert(M).second) 1139 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1140 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1141 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1142 1143 // Add the linker options metadata flag. 1144 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1145 llvm::MDNode::get(getLLVMContext(), 1146 LinkerOptionsMetadata)); 1147 } 1148 1149 void CodeGenModule::EmitDeferred() { 1150 // Emit code for any potentially referenced deferred decls. Since a 1151 // previously unused static decl may become used during the generation of code 1152 // for a static function, iterate until no changes are made. 1153 1154 if (!DeferredVTables.empty()) { 1155 EmitDeferredVTables(); 1156 1157 // Emitting a v-table doesn't directly cause more v-tables to 1158 // become deferred, although it can cause functions to be 1159 // emitted that then need those v-tables. 1160 assert(DeferredVTables.empty()); 1161 } 1162 1163 // Stop if we're out of both deferred v-tables and deferred declarations. 1164 if (DeferredDeclsToEmit.empty()) 1165 return; 1166 1167 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1168 // work, it will not interfere with this. 1169 std::vector<DeferredGlobal> CurDeclsToEmit; 1170 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1171 1172 for (DeferredGlobal &G : CurDeclsToEmit) { 1173 GlobalDecl D = G.GD; 1174 llvm::GlobalValue *GV = G.GV; 1175 G.GV = nullptr; 1176 1177 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1178 // to get GlobalValue with exactly the type we need, not something that 1179 // might had been created for another decl with the same mangled name but 1180 // different type. 1181 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1182 1183 // Check to see if we've already emitted this. This is necessary 1184 // for a couple of reasons: first, decls can end up in the 1185 // deferred-decls queue multiple times, and second, decls can end 1186 // up with definitions in unusual ways (e.g. by an extern inline 1187 // function acquiring a strong function redefinition). Just 1188 // ignore these cases. 1189 if (GV && !GV->isDeclaration()) 1190 continue; 1191 1192 // Otherwise, emit the definition and move on to the next one. 1193 EmitGlobalDefinition(D, GV); 1194 1195 // If we found out that we need to emit more decls, do that recursively. 1196 // This has the advantage that the decls are emitted in a DFS and related 1197 // ones are close together, which is convenient for testing. 1198 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1199 EmitDeferred(); 1200 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1201 } 1202 } 1203 } 1204 1205 void CodeGenModule::EmitGlobalAnnotations() { 1206 if (Annotations.empty()) 1207 return; 1208 1209 // Create a new global variable for the ConstantStruct in the Module. 1210 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1211 Annotations[0]->getType(), Annotations.size()), Annotations); 1212 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1213 llvm::GlobalValue::AppendingLinkage, 1214 Array, "llvm.global.annotations"); 1215 gv->setSection(AnnotationSection); 1216 } 1217 1218 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1219 llvm::Constant *&AStr = AnnotationStrings[Str]; 1220 if (AStr) 1221 return AStr; 1222 1223 // Not found yet, create a new global. 1224 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1225 auto *gv = 1226 new llvm::GlobalVariable(getModule(), s->getType(), true, 1227 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1228 gv->setSection(AnnotationSection); 1229 gv->setUnnamedAddr(true); 1230 AStr = gv; 1231 return gv; 1232 } 1233 1234 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1235 SourceManager &SM = getContext().getSourceManager(); 1236 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1237 if (PLoc.isValid()) 1238 return EmitAnnotationString(PLoc.getFilename()); 1239 return EmitAnnotationString(SM.getBufferName(Loc)); 1240 } 1241 1242 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1243 SourceManager &SM = getContext().getSourceManager(); 1244 PresumedLoc PLoc = SM.getPresumedLoc(L); 1245 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1246 SM.getExpansionLineNumber(L); 1247 return llvm::ConstantInt::get(Int32Ty, LineNo); 1248 } 1249 1250 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1251 const AnnotateAttr *AA, 1252 SourceLocation L) { 1253 // Get the globals for file name, annotation, and the line number. 1254 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1255 *UnitGV = EmitAnnotationUnit(L), 1256 *LineNoCst = EmitAnnotationLineNo(L); 1257 1258 // Create the ConstantStruct for the global annotation. 1259 llvm::Constant *Fields[4] = { 1260 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1261 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1262 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1263 LineNoCst 1264 }; 1265 return llvm::ConstantStruct::getAnon(Fields); 1266 } 1267 1268 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1269 llvm::GlobalValue *GV) { 1270 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1271 // Get the struct elements for these annotations. 1272 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1273 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1274 } 1275 1276 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1277 SourceLocation Loc) const { 1278 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1279 // Blacklist by function name. 1280 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1281 return true; 1282 // Blacklist by location. 1283 if (Loc.isValid()) 1284 return SanitizerBL.isBlacklistedLocation(Loc); 1285 // If location is unknown, this may be a compiler-generated function. Assume 1286 // it's located in the main file. 1287 auto &SM = Context.getSourceManager(); 1288 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1289 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1290 } 1291 return false; 1292 } 1293 1294 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1295 SourceLocation Loc, QualType Ty, 1296 StringRef Category) const { 1297 // For now globals can be blacklisted only in ASan and KASan. 1298 if (!LangOpts.Sanitize.hasOneOf( 1299 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1300 return false; 1301 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1302 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1303 return true; 1304 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1305 return true; 1306 // Check global type. 1307 if (!Ty.isNull()) { 1308 // Drill down the array types: if global variable of a fixed type is 1309 // blacklisted, we also don't instrument arrays of them. 1310 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1311 Ty = AT->getElementType(); 1312 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1313 // We allow to blacklist only record types (classes, structs etc.) 1314 if (Ty->isRecordType()) { 1315 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1316 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1317 return true; 1318 } 1319 } 1320 return false; 1321 } 1322 1323 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1324 // Never defer when EmitAllDecls is specified. 1325 if (LangOpts.EmitAllDecls) 1326 return true; 1327 1328 return getContext().DeclMustBeEmitted(Global); 1329 } 1330 1331 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1332 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1333 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1334 // Implicit template instantiations may change linkage if they are later 1335 // explicitly instantiated, so they should not be emitted eagerly. 1336 return false; 1337 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1338 // codegen for global variables, because they may be marked as threadprivate. 1339 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1340 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1341 return false; 1342 1343 return true; 1344 } 1345 1346 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1347 const CXXUuidofExpr* E) { 1348 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1349 // well-formed. 1350 StringRef Uuid = E->getUuidAsStringRef(Context); 1351 std::string Name = "_GUID_" + Uuid.lower(); 1352 std::replace(Name.begin(), Name.end(), '-', '_'); 1353 1354 // Contains a 32-bit field. 1355 CharUnits Alignment = CharUnits::fromQuantity(4); 1356 1357 // Look for an existing global. 1358 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1359 return ConstantAddress(GV, Alignment); 1360 1361 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1362 assert(Init && "failed to initialize as constant"); 1363 1364 auto *GV = new llvm::GlobalVariable( 1365 getModule(), Init->getType(), 1366 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1367 if (supportsCOMDAT()) 1368 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1369 return ConstantAddress(GV, Alignment); 1370 } 1371 1372 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1373 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1374 assert(AA && "No alias?"); 1375 1376 CharUnits Alignment = getContext().getDeclAlign(VD); 1377 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1378 1379 // See if there is already something with the target's name in the module. 1380 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1381 if (Entry) { 1382 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1383 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1384 return ConstantAddress(Ptr, Alignment); 1385 } 1386 1387 llvm::Constant *Aliasee; 1388 if (isa<llvm::FunctionType>(DeclTy)) 1389 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1390 GlobalDecl(cast<FunctionDecl>(VD)), 1391 /*ForVTable=*/false); 1392 else 1393 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1394 llvm::PointerType::getUnqual(DeclTy), 1395 nullptr); 1396 1397 auto *F = cast<llvm::GlobalValue>(Aliasee); 1398 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1399 WeakRefReferences.insert(F); 1400 1401 return ConstantAddress(Aliasee, Alignment); 1402 } 1403 1404 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1405 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1406 1407 // Weak references don't produce any output by themselves. 1408 if (Global->hasAttr<WeakRefAttr>()) 1409 return; 1410 1411 // If this is an alias definition (which otherwise looks like a declaration) 1412 // emit it now. 1413 if (Global->hasAttr<AliasAttr>()) 1414 return EmitAliasDefinition(GD); 1415 1416 // If this is CUDA, be selective about which declarations we emit. 1417 if (LangOpts.CUDA) { 1418 if (LangOpts.CUDAIsDevice) { 1419 if (!Global->hasAttr<CUDADeviceAttr>() && 1420 !Global->hasAttr<CUDAGlobalAttr>() && 1421 !Global->hasAttr<CUDAConstantAttr>() && 1422 !Global->hasAttr<CUDASharedAttr>()) 1423 return; 1424 } else { 1425 if (!Global->hasAttr<CUDAHostAttr>() && ( 1426 Global->hasAttr<CUDADeviceAttr>() || 1427 Global->hasAttr<CUDAConstantAttr>() || 1428 Global->hasAttr<CUDASharedAttr>())) 1429 return; 1430 } 1431 } 1432 1433 // Ignore declarations, they will be emitted on their first use. 1434 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1435 // Forward declarations are emitted lazily on first use. 1436 if (!FD->doesThisDeclarationHaveABody()) { 1437 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1438 return; 1439 1440 StringRef MangledName = getMangledName(GD); 1441 1442 // Compute the function info and LLVM type. 1443 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1444 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1445 1446 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1447 /*DontDefer=*/false); 1448 return; 1449 } 1450 } else { 1451 const auto *VD = cast<VarDecl>(Global); 1452 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1453 1454 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1455 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1456 return; 1457 } 1458 1459 // Defer code generation to first use when possible, e.g. if this is an inline 1460 // function. If the global must always be emitted, do it eagerly if possible 1461 // to benefit from cache locality. 1462 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1463 // Emit the definition if it can't be deferred. 1464 EmitGlobalDefinition(GD); 1465 return; 1466 } 1467 1468 // If we're deferring emission of a C++ variable with an 1469 // initializer, remember the order in which it appeared in the file. 1470 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1471 cast<VarDecl>(Global)->hasInit()) { 1472 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1473 CXXGlobalInits.push_back(nullptr); 1474 } 1475 1476 StringRef MangledName = getMangledName(GD); 1477 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1478 // The value has already been used and should therefore be emitted. 1479 addDeferredDeclToEmit(GV, GD); 1480 } else if (MustBeEmitted(Global)) { 1481 // The value must be emitted, but cannot be emitted eagerly. 1482 assert(!MayBeEmittedEagerly(Global)); 1483 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1484 } else { 1485 // Otherwise, remember that we saw a deferred decl with this name. The 1486 // first use of the mangled name will cause it to move into 1487 // DeferredDeclsToEmit. 1488 DeferredDecls[MangledName] = GD; 1489 } 1490 } 1491 1492 namespace { 1493 struct FunctionIsDirectlyRecursive : 1494 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1495 const StringRef Name; 1496 const Builtin::Context &BI; 1497 bool Result; 1498 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1499 Name(N), BI(C), Result(false) { 1500 } 1501 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1502 1503 bool TraverseCallExpr(CallExpr *E) { 1504 const FunctionDecl *FD = E->getDirectCallee(); 1505 if (!FD) 1506 return true; 1507 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1508 if (Attr && Name == Attr->getLabel()) { 1509 Result = true; 1510 return false; 1511 } 1512 unsigned BuiltinID = FD->getBuiltinID(); 1513 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1514 return true; 1515 StringRef BuiltinName = BI.getName(BuiltinID); 1516 if (BuiltinName.startswith("__builtin_") && 1517 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1518 Result = true; 1519 return false; 1520 } 1521 return true; 1522 } 1523 }; 1524 1525 struct DLLImportFunctionVisitor 1526 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1527 bool SafeToInline = true; 1528 1529 bool VisitVarDecl(VarDecl *VD) { 1530 // A thread-local variable cannot be imported. 1531 SafeToInline = !VD->getTLSKind(); 1532 return SafeToInline; 1533 } 1534 1535 // Make sure we're not referencing non-imported vars or functions. 1536 bool VisitDeclRefExpr(DeclRefExpr *E) { 1537 ValueDecl *VD = E->getDecl(); 1538 if (isa<FunctionDecl>(VD)) 1539 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1540 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1541 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1542 return SafeToInline; 1543 } 1544 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1545 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1546 return SafeToInline; 1547 } 1548 bool VisitCXXNewExpr(CXXNewExpr *E) { 1549 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1550 return SafeToInline; 1551 } 1552 }; 1553 } 1554 1555 // isTriviallyRecursive - Check if this function calls another 1556 // decl that, because of the asm attribute or the other decl being a builtin, 1557 // ends up pointing to itself. 1558 bool 1559 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1560 StringRef Name; 1561 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1562 // asm labels are a special kind of mangling we have to support. 1563 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1564 if (!Attr) 1565 return false; 1566 Name = Attr->getLabel(); 1567 } else { 1568 Name = FD->getName(); 1569 } 1570 1571 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1572 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1573 return Walker.Result; 1574 } 1575 1576 bool 1577 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1578 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1579 return true; 1580 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1581 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1582 return false; 1583 1584 if (F->hasAttr<DLLImportAttr>()) { 1585 // Check whether it would be safe to inline this dllimport function. 1586 DLLImportFunctionVisitor Visitor; 1587 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1588 if (!Visitor.SafeToInline) 1589 return false; 1590 } 1591 1592 // PR9614. Avoid cases where the source code is lying to us. An available 1593 // externally function should have an equivalent function somewhere else, 1594 // but a function that calls itself is clearly not equivalent to the real 1595 // implementation. 1596 // This happens in glibc's btowc and in some configure checks. 1597 return !isTriviallyRecursive(F); 1598 } 1599 1600 /// If the type for the method's class was generated by 1601 /// CGDebugInfo::createContextChain(), the cache contains only a 1602 /// limited DIType without any declarations. Since EmitFunctionStart() 1603 /// needs to find the canonical declaration for each method, we need 1604 /// to construct the complete type prior to emitting the method. 1605 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1606 if (!D->isInstance()) 1607 return; 1608 1609 if (CGDebugInfo *DI = getModuleDebugInfo()) 1610 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1611 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1612 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1613 } 1614 } 1615 1616 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1617 const auto *D = cast<ValueDecl>(GD.getDecl()); 1618 1619 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1620 Context.getSourceManager(), 1621 "Generating code for declaration"); 1622 1623 if (isa<FunctionDecl>(D)) { 1624 // At -O0, don't generate IR for functions with available_externally 1625 // linkage. 1626 if (!shouldEmitFunction(GD)) 1627 return; 1628 1629 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1630 CompleteDIClassType(Method); 1631 // Make sure to emit the definition(s) before we emit the thunks. 1632 // This is necessary for the generation of certain thunks. 1633 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1634 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1635 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1636 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1637 else 1638 EmitGlobalFunctionDefinition(GD, GV); 1639 1640 if (Method->isVirtual()) 1641 getVTables().EmitThunks(GD); 1642 1643 return; 1644 } 1645 1646 return EmitGlobalFunctionDefinition(GD, GV); 1647 } 1648 1649 if (const auto *VD = dyn_cast<VarDecl>(D)) 1650 return EmitGlobalVarDefinition(VD); 1651 1652 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1653 } 1654 1655 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1656 llvm::Function *NewFn); 1657 1658 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1659 /// module, create and return an llvm Function with the specified type. If there 1660 /// is something in the module with the specified name, return it potentially 1661 /// bitcasted to the right type. 1662 /// 1663 /// If D is non-null, it specifies a decl that correspond to this. This is used 1664 /// to set the attributes on the function when it is first created. 1665 llvm::Constant * 1666 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1667 llvm::Type *Ty, 1668 GlobalDecl GD, bool ForVTable, 1669 bool DontDefer, bool IsThunk, 1670 llvm::AttributeSet ExtraAttrs, 1671 bool IsForDefinition) { 1672 const Decl *D = GD.getDecl(); 1673 1674 // Lookup the entry, lazily creating it if necessary. 1675 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1676 if (Entry) { 1677 if (WeakRefReferences.erase(Entry)) { 1678 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1679 if (FD && !FD->hasAttr<WeakAttr>()) 1680 Entry->setLinkage(llvm::Function::ExternalLinkage); 1681 } 1682 1683 // Handle dropped DLL attributes. 1684 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1685 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1686 1687 // If there are two attempts to define the same mangled name, issue an 1688 // error. 1689 if (IsForDefinition && !Entry->isDeclaration()) { 1690 GlobalDecl OtherGD; 1691 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1692 // to make sure that we issue an error only once. 1693 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1694 (GD.getCanonicalDecl().getDecl() != 1695 OtherGD.getCanonicalDecl().getDecl()) && 1696 DiagnosedConflictingDefinitions.insert(GD).second) { 1697 getDiags().Report(D->getLocation(), 1698 diag::err_duplicate_mangled_name); 1699 getDiags().Report(OtherGD.getDecl()->getLocation(), 1700 diag::note_previous_definition); 1701 } 1702 } 1703 1704 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1705 (Entry->getType()->getElementType() == Ty)) { 1706 return Entry; 1707 } 1708 1709 // Make sure the result is of the correct type. 1710 // (If function is requested for a definition, we always need to create a new 1711 // function, not just return a bitcast.) 1712 if (!IsForDefinition) 1713 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1714 } 1715 1716 // This function doesn't have a complete type (for example, the return 1717 // type is an incomplete struct). Use a fake type instead, and make 1718 // sure not to try to set attributes. 1719 bool IsIncompleteFunction = false; 1720 1721 llvm::FunctionType *FTy; 1722 if (isa<llvm::FunctionType>(Ty)) { 1723 FTy = cast<llvm::FunctionType>(Ty); 1724 } else { 1725 FTy = llvm::FunctionType::get(VoidTy, false); 1726 IsIncompleteFunction = true; 1727 } 1728 1729 llvm::Function *F = 1730 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1731 Entry ? StringRef() : MangledName, &getModule()); 1732 1733 // If we already created a function with the same mangled name (but different 1734 // type) before, take its name and add it to the list of functions to be 1735 // replaced with F at the end of CodeGen. 1736 // 1737 // This happens if there is a prototype for a function (e.g. "int f()") and 1738 // then a definition of a different type (e.g. "int f(int x)"). 1739 if (Entry) { 1740 F->takeName(Entry); 1741 1742 // This might be an implementation of a function without a prototype, in 1743 // which case, try to do special replacement of calls which match the new 1744 // prototype. The really key thing here is that we also potentially drop 1745 // arguments from the call site so as to make a direct call, which makes the 1746 // inliner happier and suppresses a number of optimizer warnings (!) about 1747 // dropping arguments. 1748 if (!Entry->use_empty()) { 1749 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1750 Entry->removeDeadConstantUsers(); 1751 } 1752 1753 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1754 F, Entry->getType()->getElementType()->getPointerTo()); 1755 addGlobalValReplacement(Entry, BC); 1756 } 1757 1758 assert(F->getName() == MangledName && "name was uniqued!"); 1759 if (D) 1760 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1761 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1762 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1763 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1764 llvm::AttributeSet::get(VMContext, 1765 llvm::AttributeSet::FunctionIndex, 1766 B)); 1767 } 1768 1769 if (!DontDefer) { 1770 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1771 // each other bottoming out with the base dtor. Therefore we emit non-base 1772 // dtors on usage, even if there is no dtor definition in the TU. 1773 if (D && isa<CXXDestructorDecl>(D) && 1774 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1775 GD.getDtorType())) 1776 addDeferredDeclToEmit(F, GD); 1777 1778 // This is the first use or definition of a mangled name. If there is a 1779 // deferred decl with this name, remember that we need to emit it at the end 1780 // of the file. 1781 auto DDI = DeferredDecls.find(MangledName); 1782 if (DDI != DeferredDecls.end()) { 1783 // Move the potentially referenced deferred decl to the 1784 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1785 // don't need it anymore). 1786 addDeferredDeclToEmit(F, DDI->second); 1787 DeferredDecls.erase(DDI); 1788 1789 // Otherwise, there are cases we have to worry about where we're 1790 // using a declaration for which we must emit a definition but where 1791 // we might not find a top-level definition: 1792 // - member functions defined inline in their classes 1793 // - friend functions defined inline in some class 1794 // - special member functions with implicit definitions 1795 // If we ever change our AST traversal to walk into class methods, 1796 // this will be unnecessary. 1797 // 1798 // We also don't emit a definition for a function if it's going to be an 1799 // entry in a vtable, unless it's already marked as used. 1800 } else if (getLangOpts().CPlusPlus && D) { 1801 // Look for a declaration that's lexically in a record. 1802 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1803 FD = FD->getPreviousDecl()) { 1804 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1805 if (FD->doesThisDeclarationHaveABody()) { 1806 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1807 break; 1808 } 1809 } 1810 } 1811 } 1812 } 1813 1814 // Make sure the result is of the requested type. 1815 if (!IsIncompleteFunction) { 1816 assert(F->getType()->getElementType() == Ty); 1817 return F; 1818 } 1819 1820 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1821 return llvm::ConstantExpr::getBitCast(F, PTy); 1822 } 1823 1824 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1825 /// non-null, then this function will use the specified type if it has to 1826 /// create it (this occurs when we see a definition of the function). 1827 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1828 llvm::Type *Ty, 1829 bool ForVTable, 1830 bool DontDefer, 1831 bool IsForDefinition) { 1832 // If there was no specific requested type, just convert it now. 1833 if (!Ty) { 1834 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1835 auto CanonTy = Context.getCanonicalType(FD->getType()); 1836 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1837 } 1838 1839 StringRef MangledName = getMangledName(GD); 1840 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1841 /*IsThunk=*/false, llvm::AttributeSet(), 1842 IsForDefinition); 1843 } 1844 1845 /// CreateRuntimeFunction - Create a new runtime function with the specified 1846 /// type and name. 1847 llvm::Constant * 1848 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1849 StringRef Name, 1850 llvm::AttributeSet ExtraAttrs) { 1851 llvm::Constant *C = 1852 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1853 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1854 if (auto *F = dyn_cast<llvm::Function>(C)) 1855 if (F->empty()) 1856 F->setCallingConv(getRuntimeCC()); 1857 return C; 1858 } 1859 1860 /// CreateBuiltinFunction - Create a new builtin function with the specified 1861 /// type and name. 1862 llvm::Constant * 1863 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1864 StringRef Name, 1865 llvm::AttributeSet ExtraAttrs) { 1866 llvm::Constant *C = 1867 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1868 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1869 if (auto *F = dyn_cast<llvm::Function>(C)) 1870 if (F->empty()) 1871 F->setCallingConv(getBuiltinCC()); 1872 return C; 1873 } 1874 1875 /// isTypeConstant - Determine whether an object of this type can be emitted 1876 /// as a constant. 1877 /// 1878 /// If ExcludeCtor is true, the duration when the object's constructor runs 1879 /// will not be considered. The caller will need to verify that the object is 1880 /// not written to during its construction. 1881 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1882 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1883 return false; 1884 1885 if (Context.getLangOpts().CPlusPlus) { 1886 if (const CXXRecordDecl *Record 1887 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1888 return ExcludeCtor && !Record->hasMutableFields() && 1889 Record->hasTrivialDestructor(); 1890 } 1891 1892 return true; 1893 } 1894 1895 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1896 /// create and return an llvm GlobalVariable with the specified type. If there 1897 /// is something in the module with the specified name, return it potentially 1898 /// bitcasted to the right type. 1899 /// 1900 /// If D is non-null, it specifies a decl that correspond to this. This is used 1901 /// to set the attributes on the global when it is first created. 1902 llvm::Constant * 1903 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1904 llvm::PointerType *Ty, 1905 const VarDecl *D, 1906 bool IsForDefinition) { 1907 // Lookup the entry, lazily creating it if necessary. 1908 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1909 if (Entry) { 1910 if (WeakRefReferences.erase(Entry)) { 1911 if (D && !D->hasAttr<WeakAttr>()) 1912 Entry->setLinkage(llvm::Function::ExternalLinkage); 1913 } 1914 1915 // Handle dropped DLL attributes. 1916 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1917 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1918 1919 if (Entry->getType() == Ty) 1920 return Entry; 1921 1922 // If there are two attempts to define the same mangled name, issue an 1923 // error. 1924 if (IsForDefinition && !Entry->isDeclaration()) { 1925 GlobalDecl OtherGD; 1926 // Check that D is not yet in DiagnosedConflictingDefinitions is required 1927 // to make sure that we issue an error only once. 1928 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1929 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 1930 DiagnosedConflictingDefinitions.insert(D).second) { 1931 getDiags().Report(D->getLocation(), 1932 diag::err_duplicate_mangled_name); 1933 getDiags().Report(OtherGD.getDecl()->getLocation(), 1934 diag::note_previous_definition); 1935 } 1936 } 1937 1938 // Make sure the result is of the correct type. 1939 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1940 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1941 1942 // Make sure the result is of the correct type. 1943 // (If global is requested for a definition, we always need to create a new 1944 // global, not just return a bitcast.) 1945 if (!IsForDefinition) 1946 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1947 } 1948 1949 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1950 auto *GV = new llvm::GlobalVariable( 1951 getModule(), Ty->getElementType(), false, 1952 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1953 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1954 1955 // If we already created a global with the same mangled name (but different 1956 // type) before, take its name and remove it from its parent. 1957 if (Entry) { 1958 GV->takeName(Entry); 1959 1960 if (!Entry->use_empty()) { 1961 llvm::Constant *NewPtrForOldDecl = 1962 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1963 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1964 } 1965 1966 Entry->eraseFromParent(); 1967 } 1968 1969 // This is the first use or definition of a mangled name. If there is a 1970 // deferred decl with this name, remember that we need to emit it at the end 1971 // of the file. 1972 auto DDI = DeferredDecls.find(MangledName); 1973 if (DDI != DeferredDecls.end()) { 1974 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1975 // list, and remove it from DeferredDecls (since we don't need it anymore). 1976 addDeferredDeclToEmit(GV, DDI->second); 1977 DeferredDecls.erase(DDI); 1978 } 1979 1980 // Handle things which are present even on external declarations. 1981 if (D) { 1982 // FIXME: This code is overly simple and should be merged with other global 1983 // handling. 1984 GV->setConstant(isTypeConstant(D->getType(), false)); 1985 1986 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1987 1988 setLinkageAndVisibilityForGV(GV, D); 1989 1990 if (D->getTLSKind()) { 1991 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1992 CXXThreadLocals.push_back(D); 1993 setTLSMode(GV, *D); 1994 } 1995 1996 // If required by the ABI, treat declarations of static data members with 1997 // inline initializers as definitions. 1998 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1999 EmitGlobalVarDefinition(D); 2000 } 2001 2002 // Handle XCore specific ABI requirements. 2003 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2004 D->getLanguageLinkage() == CLanguageLinkage && 2005 D->getType().isConstant(Context) && 2006 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2007 GV->setSection(".cp.rodata"); 2008 } 2009 2010 if (AddrSpace != Ty->getAddressSpace()) 2011 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2012 2013 return GV; 2014 } 2015 2016 llvm::Constant * 2017 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2018 bool IsForDefinition) { 2019 if (isa<CXXConstructorDecl>(GD.getDecl())) 2020 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2021 getFromCtorType(GD.getCtorType()), 2022 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2023 /*DontDefer=*/false, IsForDefinition); 2024 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2025 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2026 getFromDtorType(GD.getDtorType()), 2027 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2028 /*DontDefer=*/false, IsForDefinition); 2029 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2030 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2031 cast<CXXMethodDecl>(GD.getDecl())); 2032 auto Ty = getTypes().GetFunctionType(*FInfo); 2033 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2034 IsForDefinition); 2035 } else if (isa<FunctionDecl>(GD.getDecl())) { 2036 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2037 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2038 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2039 IsForDefinition); 2040 } else 2041 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2042 IsForDefinition); 2043 } 2044 2045 llvm::GlobalVariable * 2046 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2047 llvm::Type *Ty, 2048 llvm::GlobalValue::LinkageTypes Linkage) { 2049 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2050 llvm::GlobalVariable *OldGV = nullptr; 2051 2052 if (GV) { 2053 // Check if the variable has the right type. 2054 if (GV->getType()->getElementType() == Ty) 2055 return GV; 2056 2057 // Because C++ name mangling, the only way we can end up with an already 2058 // existing global with the same name is if it has been declared extern "C". 2059 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2060 OldGV = GV; 2061 } 2062 2063 // Create a new variable. 2064 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2065 Linkage, nullptr, Name); 2066 2067 if (OldGV) { 2068 // Replace occurrences of the old variable if needed. 2069 GV->takeName(OldGV); 2070 2071 if (!OldGV->use_empty()) { 2072 llvm::Constant *NewPtrForOldDecl = 2073 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2074 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2075 } 2076 2077 OldGV->eraseFromParent(); 2078 } 2079 2080 if (supportsCOMDAT() && GV->isWeakForLinker() && 2081 !GV->hasAvailableExternallyLinkage()) 2082 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2083 2084 return GV; 2085 } 2086 2087 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2088 /// given global variable. If Ty is non-null and if the global doesn't exist, 2089 /// then it will be created with the specified type instead of whatever the 2090 /// normal requested type would be. 2091 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2092 llvm::Type *Ty, 2093 bool IsForDefinition) { 2094 assert(D->hasGlobalStorage() && "Not a global variable"); 2095 QualType ASTTy = D->getType(); 2096 if (!Ty) 2097 Ty = getTypes().ConvertTypeForMem(ASTTy); 2098 2099 llvm::PointerType *PTy = 2100 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2101 2102 StringRef MangledName = getMangledName(D); 2103 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2104 } 2105 2106 /// CreateRuntimeVariable - Create a new runtime global variable with the 2107 /// specified type and name. 2108 llvm::Constant * 2109 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2110 StringRef Name) { 2111 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2112 } 2113 2114 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2115 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2116 2117 if (!MustBeEmitted(D)) { 2118 // If we have not seen a reference to this variable yet, place it 2119 // into the deferred declarations table to be emitted if needed 2120 // later. 2121 StringRef MangledName = getMangledName(D); 2122 if (!GetGlobalValue(MangledName)) { 2123 DeferredDecls[MangledName] = D; 2124 return; 2125 } 2126 } 2127 2128 // The tentative definition is the only definition. 2129 EmitGlobalVarDefinition(D, true); 2130 } 2131 2132 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2133 return Context.toCharUnitsFromBits( 2134 getDataLayout().getTypeStoreSizeInBits(Ty)); 2135 } 2136 2137 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2138 unsigned AddrSpace) { 2139 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2140 if (D->hasAttr<CUDAConstantAttr>()) 2141 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2142 else if (D->hasAttr<CUDASharedAttr>()) 2143 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2144 else 2145 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2146 } 2147 2148 return AddrSpace; 2149 } 2150 2151 template<typename SomeDecl> 2152 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2153 llvm::GlobalValue *GV) { 2154 if (!getLangOpts().CPlusPlus) 2155 return; 2156 2157 // Must have 'used' attribute, or else inline assembly can't rely on 2158 // the name existing. 2159 if (!D->template hasAttr<UsedAttr>()) 2160 return; 2161 2162 // Must have internal linkage and an ordinary name. 2163 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2164 return; 2165 2166 // Must be in an extern "C" context. Entities declared directly within 2167 // a record are not extern "C" even if the record is in such a context. 2168 const SomeDecl *First = D->getFirstDecl(); 2169 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2170 return; 2171 2172 // OK, this is an internal linkage entity inside an extern "C" linkage 2173 // specification. Make a note of that so we can give it the "expected" 2174 // mangled name if nothing else is using that name. 2175 std::pair<StaticExternCMap::iterator, bool> R = 2176 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2177 2178 // If we have multiple internal linkage entities with the same name 2179 // in extern "C" regions, none of them gets that name. 2180 if (!R.second) 2181 R.first->second = nullptr; 2182 } 2183 2184 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2185 if (!CGM.supportsCOMDAT()) 2186 return false; 2187 2188 if (D.hasAttr<SelectAnyAttr>()) 2189 return true; 2190 2191 GVALinkage Linkage; 2192 if (auto *VD = dyn_cast<VarDecl>(&D)) 2193 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2194 else 2195 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2196 2197 switch (Linkage) { 2198 case GVA_Internal: 2199 case GVA_AvailableExternally: 2200 case GVA_StrongExternal: 2201 return false; 2202 case GVA_DiscardableODR: 2203 case GVA_StrongODR: 2204 return true; 2205 } 2206 llvm_unreachable("No such linkage"); 2207 } 2208 2209 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2210 llvm::GlobalObject &GO) { 2211 if (!shouldBeInCOMDAT(*this, D)) 2212 return; 2213 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2214 } 2215 2216 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2217 bool IsTentative) { 2218 llvm::Constant *Init = nullptr; 2219 QualType ASTTy = D->getType(); 2220 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2221 bool NeedsGlobalCtor = false; 2222 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2223 2224 const VarDecl *InitDecl; 2225 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2226 2227 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2228 // of their declaration." 2229 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2230 && D->hasAttr<CUDASharedAttr>()) { 2231 if (InitExpr) { 2232 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2233 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2234 Error(D->getLocation(), 2235 "__shared__ variable cannot have an initialization."); 2236 } 2237 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2238 } else if (!InitExpr) { 2239 // This is a tentative definition; tentative definitions are 2240 // implicitly initialized with { 0 }. 2241 // 2242 // Note that tentative definitions are only emitted at the end of 2243 // a translation unit, so they should never have incomplete 2244 // type. In addition, EmitTentativeDefinition makes sure that we 2245 // never attempt to emit a tentative definition if a real one 2246 // exists. A use may still exists, however, so we still may need 2247 // to do a RAUW. 2248 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2249 Init = EmitNullConstant(D->getType()); 2250 } else { 2251 initializedGlobalDecl = GlobalDecl(D); 2252 Init = EmitConstantInit(*InitDecl); 2253 2254 if (!Init) { 2255 QualType T = InitExpr->getType(); 2256 if (D->getType()->isReferenceType()) 2257 T = D->getType(); 2258 2259 if (getLangOpts().CPlusPlus) { 2260 Init = EmitNullConstant(T); 2261 NeedsGlobalCtor = true; 2262 } else { 2263 ErrorUnsupported(D, "static initializer"); 2264 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2265 } 2266 } else { 2267 // We don't need an initializer, so remove the entry for the delayed 2268 // initializer position (just in case this entry was delayed) if we 2269 // also don't need to register a destructor. 2270 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2271 DelayedCXXInitPosition.erase(D); 2272 } 2273 } 2274 2275 llvm::Type* InitType = Init->getType(); 2276 llvm::Constant *Entry = 2277 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2278 2279 // Strip off a bitcast if we got one back. 2280 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2281 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2282 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2283 // All zero index gep. 2284 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2285 Entry = CE->getOperand(0); 2286 } 2287 2288 // Entry is now either a Function or GlobalVariable. 2289 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2290 2291 // We have a definition after a declaration with the wrong type. 2292 // We must make a new GlobalVariable* and update everything that used OldGV 2293 // (a declaration or tentative definition) with the new GlobalVariable* 2294 // (which will be a definition). 2295 // 2296 // This happens if there is a prototype for a global (e.g. 2297 // "extern int x[];") and then a definition of a different type (e.g. 2298 // "int x[10];"). This also happens when an initializer has a different type 2299 // from the type of the global (this happens with unions). 2300 if (!GV || 2301 GV->getType()->getElementType() != InitType || 2302 GV->getType()->getAddressSpace() != 2303 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2304 2305 // Move the old entry aside so that we'll create a new one. 2306 Entry->setName(StringRef()); 2307 2308 // Make a new global with the correct type, this is now guaranteed to work. 2309 GV = cast<llvm::GlobalVariable>( 2310 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2311 2312 // Replace all uses of the old global with the new global 2313 llvm::Constant *NewPtrForOldDecl = 2314 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2315 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2316 2317 // Erase the old global, since it is no longer used. 2318 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2319 } 2320 2321 MaybeHandleStaticInExternC(D, GV); 2322 2323 if (D->hasAttr<AnnotateAttr>()) 2324 AddGlobalAnnotations(D, GV); 2325 2326 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2327 // the device. [...]" 2328 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2329 // __device__, declares a variable that: [...] 2330 // Is accessible from all the threads within the grid and from the host 2331 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2332 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2333 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2334 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2335 GV->setExternallyInitialized(true); 2336 } 2337 GV->setInitializer(Init); 2338 2339 // If it is safe to mark the global 'constant', do so now. 2340 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2341 isTypeConstant(D->getType(), true)); 2342 2343 // If it is in a read-only section, mark it 'constant'. 2344 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2345 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2346 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2347 GV->setConstant(true); 2348 } 2349 2350 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2351 2352 // Set the llvm linkage type as appropriate. 2353 llvm::GlobalValue::LinkageTypes Linkage = 2354 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2355 2356 // On Darwin, if the normal linkage of a C++ thread_local variable is 2357 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2358 // copies within a linkage unit; otherwise, the backing variable has 2359 // internal linkage and all accesses should just be calls to the 2360 // Itanium-specified entry point, which has the normal linkage of the 2361 // variable. This is to preserve the ability to change the implementation 2362 // behind the scenes. 2363 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2364 Context.getTargetInfo().getTriple().isOSDarwin() && 2365 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2366 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2367 Linkage = llvm::GlobalValue::InternalLinkage; 2368 2369 GV->setLinkage(Linkage); 2370 if (D->hasAttr<DLLImportAttr>()) 2371 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2372 else if (D->hasAttr<DLLExportAttr>()) 2373 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2374 else 2375 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2376 2377 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2378 // common vars aren't constant even if declared const. 2379 GV->setConstant(false); 2380 2381 setNonAliasAttributes(D, GV); 2382 2383 if (D->getTLSKind() && !GV->isThreadLocal()) { 2384 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2385 CXXThreadLocals.push_back(D); 2386 setTLSMode(GV, *D); 2387 } 2388 2389 maybeSetTrivialComdat(*D, *GV); 2390 2391 // Emit the initializer function if necessary. 2392 if (NeedsGlobalCtor || NeedsGlobalDtor) 2393 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2394 2395 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2396 2397 // Emit global variable debug information. 2398 if (CGDebugInfo *DI = getModuleDebugInfo()) 2399 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2400 DI->EmitGlobalVariable(GV, D); 2401 } 2402 2403 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2404 CodeGenModule &CGM, const VarDecl *D, 2405 bool NoCommon) { 2406 // Don't give variables common linkage if -fno-common was specified unless it 2407 // was overridden by a NoCommon attribute. 2408 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2409 return true; 2410 2411 // C11 6.9.2/2: 2412 // A declaration of an identifier for an object that has file scope without 2413 // an initializer, and without a storage-class specifier or with the 2414 // storage-class specifier static, constitutes a tentative definition. 2415 if (D->getInit() || D->hasExternalStorage()) 2416 return true; 2417 2418 // A variable cannot be both common and exist in a section. 2419 if (D->hasAttr<SectionAttr>()) 2420 return true; 2421 2422 // Thread local vars aren't considered common linkage. 2423 if (D->getTLSKind()) 2424 return true; 2425 2426 // Tentative definitions marked with WeakImportAttr are true definitions. 2427 if (D->hasAttr<WeakImportAttr>()) 2428 return true; 2429 2430 // A variable cannot be both common and exist in a comdat. 2431 if (shouldBeInCOMDAT(CGM, *D)) 2432 return true; 2433 2434 // Declarations with a required alignment do not have common linakge in MSVC 2435 // mode. 2436 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2437 if (D->hasAttr<AlignedAttr>()) 2438 return true; 2439 QualType VarType = D->getType(); 2440 if (Context.isAlignmentRequired(VarType)) 2441 return true; 2442 2443 if (const auto *RT = VarType->getAs<RecordType>()) { 2444 const RecordDecl *RD = RT->getDecl(); 2445 for (const FieldDecl *FD : RD->fields()) { 2446 if (FD->isBitField()) 2447 continue; 2448 if (FD->hasAttr<AlignedAttr>()) 2449 return true; 2450 if (Context.isAlignmentRequired(FD->getType())) 2451 return true; 2452 } 2453 } 2454 } 2455 2456 return false; 2457 } 2458 2459 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2460 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2461 if (Linkage == GVA_Internal) 2462 return llvm::Function::InternalLinkage; 2463 2464 if (D->hasAttr<WeakAttr>()) { 2465 if (IsConstantVariable) 2466 return llvm::GlobalVariable::WeakODRLinkage; 2467 else 2468 return llvm::GlobalVariable::WeakAnyLinkage; 2469 } 2470 2471 // We are guaranteed to have a strong definition somewhere else, 2472 // so we can use available_externally linkage. 2473 if (Linkage == GVA_AvailableExternally) 2474 return llvm::Function::AvailableExternallyLinkage; 2475 2476 // Note that Apple's kernel linker doesn't support symbol 2477 // coalescing, so we need to avoid linkonce and weak linkages there. 2478 // Normally, this means we just map to internal, but for explicit 2479 // instantiations we'll map to external. 2480 2481 // In C++, the compiler has to emit a definition in every translation unit 2482 // that references the function. We should use linkonce_odr because 2483 // a) if all references in this translation unit are optimized away, we 2484 // don't need to codegen it. b) if the function persists, it needs to be 2485 // merged with other definitions. c) C++ has the ODR, so we know the 2486 // definition is dependable. 2487 if (Linkage == GVA_DiscardableODR) 2488 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2489 : llvm::Function::InternalLinkage; 2490 2491 // An explicit instantiation of a template has weak linkage, since 2492 // explicit instantiations can occur in multiple translation units 2493 // and must all be equivalent. However, we are not allowed to 2494 // throw away these explicit instantiations. 2495 if (Linkage == GVA_StrongODR) 2496 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2497 : llvm::Function::ExternalLinkage; 2498 2499 // C++ doesn't have tentative definitions and thus cannot have common 2500 // linkage. 2501 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2502 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2503 CodeGenOpts.NoCommon)) 2504 return llvm::GlobalVariable::CommonLinkage; 2505 2506 // selectany symbols are externally visible, so use weak instead of 2507 // linkonce. MSVC optimizes away references to const selectany globals, so 2508 // all definitions should be the same and ODR linkage should be used. 2509 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2510 if (D->hasAttr<SelectAnyAttr>()) 2511 return llvm::GlobalVariable::WeakODRLinkage; 2512 2513 // Otherwise, we have strong external linkage. 2514 assert(Linkage == GVA_StrongExternal); 2515 return llvm::GlobalVariable::ExternalLinkage; 2516 } 2517 2518 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2519 const VarDecl *VD, bool IsConstant) { 2520 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2521 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2522 } 2523 2524 /// Replace the uses of a function that was declared with a non-proto type. 2525 /// We want to silently drop extra arguments from call sites 2526 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2527 llvm::Function *newFn) { 2528 // Fast path. 2529 if (old->use_empty()) return; 2530 2531 llvm::Type *newRetTy = newFn->getReturnType(); 2532 SmallVector<llvm::Value*, 4> newArgs; 2533 2534 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2535 ui != ue; ) { 2536 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2537 llvm::User *user = use->getUser(); 2538 2539 // Recognize and replace uses of bitcasts. Most calls to 2540 // unprototyped functions will use bitcasts. 2541 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2542 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2543 replaceUsesOfNonProtoConstant(bitcast, newFn); 2544 continue; 2545 } 2546 2547 // Recognize calls to the function. 2548 llvm::CallSite callSite(user); 2549 if (!callSite) continue; 2550 if (!callSite.isCallee(&*use)) continue; 2551 2552 // If the return types don't match exactly, then we can't 2553 // transform this call unless it's dead. 2554 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2555 continue; 2556 2557 // Get the call site's attribute list. 2558 SmallVector<llvm::AttributeSet, 8> newAttrs; 2559 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2560 2561 // Collect any return attributes from the call. 2562 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2563 newAttrs.push_back( 2564 llvm::AttributeSet::get(newFn->getContext(), 2565 oldAttrs.getRetAttributes())); 2566 2567 // If the function was passed too few arguments, don't transform. 2568 unsigned newNumArgs = newFn->arg_size(); 2569 if (callSite.arg_size() < newNumArgs) continue; 2570 2571 // If extra arguments were passed, we silently drop them. 2572 // If any of the types mismatch, we don't transform. 2573 unsigned argNo = 0; 2574 bool dontTransform = false; 2575 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2576 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2577 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2578 dontTransform = true; 2579 break; 2580 } 2581 2582 // Add any parameter attributes. 2583 if (oldAttrs.hasAttributes(argNo + 1)) 2584 newAttrs. 2585 push_back(llvm:: 2586 AttributeSet::get(newFn->getContext(), 2587 oldAttrs.getParamAttributes(argNo + 1))); 2588 } 2589 if (dontTransform) 2590 continue; 2591 2592 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2593 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2594 oldAttrs.getFnAttributes())); 2595 2596 // Okay, we can transform this. Create the new call instruction and copy 2597 // over the required information. 2598 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2599 2600 llvm::CallSite newCall; 2601 if (callSite.isCall()) { 2602 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2603 callSite.getInstruction()); 2604 } else { 2605 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2606 newCall = llvm::InvokeInst::Create(newFn, 2607 oldInvoke->getNormalDest(), 2608 oldInvoke->getUnwindDest(), 2609 newArgs, "", 2610 callSite.getInstruction()); 2611 } 2612 newArgs.clear(); // for the next iteration 2613 2614 if (!newCall->getType()->isVoidTy()) 2615 newCall->takeName(callSite.getInstruction()); 2616 newCall.setAttributes( 2617 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2618 newCall.setCallingConv(callSite.getCallingConv()); 2619 2620 // Finally, remove the old call, replacing any uses with the new one. 2621 if (!callSite->use_empty()) 2622 callSite->replaceAllUsesWith(newCall.getInstruction()); 2623 2624 // Copy debug location attached to CI. 2625 if (callSite->getDebugLoc()) 2626 newCall->setDebugLoc(callSite->getDebugLoc()); 2627 callSite->eraseFromParent(); 2628 } 2629 } 2630 2631 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2632 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2633 /// existing call uses of the old function in the module, this adjusts them to 2634 /// call the new function directly. 2635 /// 2636 /// This is not just a cleanup: the always_inline pass requires direct calls to 2637 /// functions to be able to inline them. If there is a bitcast in the way, it 2638 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2639 /// run at -O0. 2640 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2641 llvm::Function *NewFn) { 2642 // If we're redefining a global as a function, don't transform it. 2643 if (!isa<llvm::Function>(Old)) return; 2644 2645 replaceUsesOfNonProtoConstant(Old, NewFn); 2646 } 2647 2648 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2649 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2650 // If we have a definition, this might be a deferred decl. If the 2651 // instantiation is explicit, make sure we emit it at the end. 2652 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2653 GetAddrOfGlobalVar(VD); 2654 2655 EmitTopLevelDecl(VD); 2656 } 2657 2658 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2659 llvm::GlobalValue *GV) { 2660 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2661 2662 // Compute the function info and LLVM type. 2663 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2664 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2665 2666 // Get or create the prototype for the function. 2667 if (!GV || (GV->getType()->getElementType() != Ty)) 2668 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2669 /*DontDefer=*/true, 2670 /*IsForDefinition=*/true)); 2671 2672 // Already emitted. 2673 if (!GV->isDeclaration()) 2674 return; 2675 2676 // We need to set linkage and visibility on the function before 2677 // generating code for it because various parts of IR generation 2678 // want to propagate this information down (e.g. to local static 2679 // declarations). 2680 auto *Fn = cast<llvm::Function>(GV); 2681 setFunctionLinkage(GD, Fn); 2682 setFunctionDLLStorageClass(GD, Fn); 2683 2684 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2685 setGlobalVisibility(Fn, D); 2686 2687 MaybeHandleStaticInExternC(D, Fn); 2688 2689 maybeSetTrivialComdat(*D, *Fn); 2690 2691 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2692 2693 setFunctionDefinitionAttributes(D, Fn); 2694 SetLLVMFunctionAttributesForDefinition(D, Fn); 2695 2696 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2697 AddGlobalCtor(Fn, CA->getPriority()); 2698 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2699 AddGlobalDtor(Fn, DA->getPriority()); 2700 if (D->hasAttr<AnnotateAttr>()) 2701 AddGlobalAnnotations(D, Fn); 2702 } 2703 2704 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2705 const auto *D = cast<ValueDecl>(GD.getDecl()); 2706 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2707 assert(AA && "Not an alias?"); 2708 2709 StringRef MangledName = getMangledName(GD); 2710 2711 if (AA->getAliasee() == MangledName) { 2712 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2713 return; 2714 } 2715 2716 // If there is a definition in the module, then it wins over the alias. 2717 // This is dubious, but allow it to be safe. Just ignore the alias. 2718 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2719 if (Entry && !Entry->isDeclaration()) 2720 return; 2721 2722 Aliases.push_back(GD); 2723 2724 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2725 2726 // Create a reference to the named value. This ensures that it is emitted 2727 // if a deferred decl. 2728 llvm::Constant *Aliasee; 2729 if (isa<llvm::FunctionType>(DeclTy)) 2730 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2731 /*ForVTable=*/false); 2732 else 2733 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2734 llvm::PointerType::getUnqual(DeclTy), 2735 /*D=*/nullptr); 2736 2737 // Create the new alias itself, but don't set a name yet. 2738 auto *GA = llvm::GlobalAlias::create( 2739 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2740 2741 if (Entry) { 2742 if (GA->getAliasee() == Entry) { 2743 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2744 return; 2745 } 2746 2747 assert(Entry->isDeclaration()); 2748 2749 // If there is a declaration in the module, then we had an extern followed 2750 // by the alias, as in: 2751 // extern int test6(); 2752 // ... 2753 // int test6() __attribute__((alias("test7"))); 2754 // 2755 // Remove it and replace uses of it with the alias. 2756 GA->takeName(Entry); 2757 2758 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2759 Entry->getType())); 2760 Entry->eraseFromParent(); 2761 } else { 2762 GA->setName(MangledName); 2763 } 2764 2765 // Set attributes which are particular to an alias; this is a 2766 // specialization of the attributes which may be set on a global 2767 // variable/function. 2768 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2769 D->isWeakImported()) { 2770 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2771 } 2772 2773 if (const auto *VD = dyn_cast<VarDecl>(D)) 2774 if (VD->getTLSKind()) 2775 setTLSMode(GA, *VD); 2776 2777 setAliasAttributes(D, GA); 2778 } 2779 2780 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2781 ArrayRef<llvm::Type*> Tys) { 2782 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2783 Tys); 2784 } 2785 2786 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2787 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2788 const StringLiteral *Literal, bool TargetIsLSB, 2789 bool &IsUTF16, unsigned &StringLength) { 2790 StringRef String = Literal->getString(); 2791 unsigned NumBytes = String.size(); 2792 2793 // Check for simple case. 2794 if (!Literal->containsNonAsciiOrNull()) { 2795 StringLength = NumBytes; 2796 return *Map.insert(std::make_pair(String, nullptr)).first; 2797 } 2798 2799 // Otherwise, convert the UTF8 literals into a string of shorts. 2800 IsUTF16 = true; 2801 2802 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2803 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2804 UTF16 *ToPtr = &ToBuf[0]; 2805 2806 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2807 &ToPtr, ToPtr + NumBytes, 2808 strictConversion); 2809 2810 // ConvertUTF8toUTF16 returns the length in ToPtr. 2811 StringLength = ToPtr - &ToBuf[0]; 2812 2813 // Add an explicit null. 2814 *ToPtr = 0; 2815 return *Map.insert(std::make_pair( 2816 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2817 (StringLength + 1) * 2), 2818 nullptr)).first; 2819 } 2820 2821 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2822 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2823 const StringLiteral *Literal, unsigned &StringLength) { 2824 StringRef String = Literal->getString(); 2825 StringLength = String.size(); 2826 return *Map.insert(std::make_pair(String, nullptr)).first; 2827 } 2828 2829 ConstantAddress 2830 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2831 unsigned StringLength = 0; 2832 bool isUTF16 = false; 2833 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2834 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2835 getDataLayout().isLittleEndian(), isUTF16, 2836 StringLength); 2837 2838 if (auto *C = Entry.second) 2839 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2840 2841 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2842 llvm::Constant *Zeros[] = { Zero, Zero }; 2843 llvm::Value *V; 2844 2845 // If we don't already have it, get __CFConstantStringClassReference. 2846 if (!CFConstantStringClassRef) { 2847 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2848 Ty = llvm::ArrayType::get(Ty, 0); 2849 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2850 "__CFConstantStringClassReference"); 2851 // Decay array -> ptr 2852 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2853 CFConstantStringClassRef = V; 2854 } 2855 else 2856 V = CFConstantStringClassRef; 2857 2858 QualType CFTy = getContext().getCFConstantStringType(); 2859 2860 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2861 2862 llvm::Constant *Fields[4]; 2863 2864 // Class pointer. 2865 Fields[0] = cast<llvm::ConstantExpr>(V); 2866 2867 // Flags. 2868 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2869 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2870 llvm::ConstantInt::get(Ty, 0x07C8); 2871 2872 // String pointer. 2873 llvm::Constant *C = nullptr; 2874 if (isUTF16) { 2875 auto Arr = llvm::makeArrayRef( 2876 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2877 Entry.first().size() / 2); 2878 C = llvm::ConstantDataArray::get(VMContext, Arr); 2879 } else { 2880 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2881 } 2882 2883 // Note: -fwritable-strings doesn't make the backing store strings of 2884 // CFStrings writable. (See <rdar://problem/10657500>) 2885 auto *GV = 2886 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2887 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2888 GV->setUnnamedAddr(true); 2889 // Don't enforce the target's minimum global alignment, since the only use 2890 // of the string is via this class initializer. 2891 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2892 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2893 // that changes the section it ends in, which surprises ld64. 2894 if (isUTF16) { 2895 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2896 GV->setAlignment(Align.getQuantity()); 2897 GV->setSection("__TEXT,__ustring"); 2898 } else { 2899 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2900 GV->setAlignment(Align.getQuantity()); 2901 GV->setSection("__TEXT,__cstring,cstring_literals"); 2902 } 2903 2904 // String. 2905 Fields[2] = 2906 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2907 2908 if (isUTF16) 2909 // Cast the UTF16 string to the correct type. 2910 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2911 2912 // String length. 2913 Ty = getTypes().ConvertType(getContext().LongTy); 2914 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2915 2916 CharUnits Alignment = getPointerAlign(); 2917 2918 // The struct. 2919 C = llvm::ConstantStruct::get(STy, Fields); 2920 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2921 llvm::GlobalVariable::PrivateLinkage, C, 2922 "_unnamed_cfstring_"); 2923 GV->setSection("__DATA,__cfstring"); 2924 GV->setAlignment(Alignment.getQuantity()); 2925 Entry.second = GV; 2926 2927 return ConstantAddress(GV, Alignment); 2928 } 2929 2930 ConstantAddress 2931 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2932 unsigned StringLength = 0; 2933 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2934 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2935 2936 if (auto *C = Entry.second) 2937 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2938 2939 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2940 llvm::Constant *Zeros[] = { Zero, Zero }; 2941 llvm::Value *V; 2942 // If we don't already have it, get _NSConstantStringClassReference. 2943 if (!ConstantStringClassRef) { 2944 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2945 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2946 llvm::Constant *GV; 2947 if (LangOpts.ObjCRuntime.isNonFragile()) { 2948 std::string str = 2949 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2950 : "OBJC_CLASS_$_" + StringClass; 2951 GV = getObjCRuntime().GetClassGlobal(str); 2952 // Make sure the result is of the correct type. 2953 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2954 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2955 ConstantStringClassRef = V; 2956 } else { 2957 std::string str = 2958 StringClass.empty() ? "_NSConstantStringClassReference" 2959 : "_" + StringClass + "ClassReference"; 2960 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2961 GV = CreateRuntimeVariable(PTy, str); 2962 // Decay array -> ptr 2963 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2964 ConstantStringClassRef = V; 2965 } 2966 } else 2967 V = ConstantStringClassRef; 2968 2969 if (!NSConstantStringType) { 2970 // Construct the type for a constant NSString. 2971 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2972 D->startDefinition(); 2973 2974 QualType FieldTypes[3]; 2975 2976 // const int *isa; 2977 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2978 // const char *str; 2979 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2980 // unsigned int length; 2981 FieldTypes[2] = Context.UnsignedIntTy; 2982 2983 // Create fields 2984 for (unsigned i = 0; i < 3; ++i) { 2985 FieldDecl *Field = FieldDecl::Create(Context, D, 2986 SourceLocation(), 2987 SourceLocation(), nullptr, 2988 FieldTypes[i], /*TInfo=*/nullptr, 2989 /*BitWidth=*/nullptr, 2990 /*Mutable=*/false, 2991 ICIS_NoInit); 2992 Field->setAccess(AS_public); 2993 D->addDecl(Field); 2994 } 2995 2996 D->completeDefinition(); 2997 QualType NSTy = Context.getTagDeclType(D); 2998 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2999 } 3000 3001 llvm::Constant *Fields[3]; 3002 3003 // Class pointer. 3004 Fields[0] = cast<llvm::ConstantExpr>(V); 3005 3006 // String pointer. 3007 llvm::Constant *C = 3008 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3009 3010 llvm::GlobalValue::LinkageTypes Linkage; 3011 bool isConstant; 3012 Linkage = llvm::GlobalValue::PrivateLinkage; 3013 isConstant = !LangOpts.WritableStrings; 3014 3015 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3016 Linkage, C, ".str"); 3017 GV->setUnnamedAddr(true); 3018 // Don't enforce the target's minimum global alignment, since the only use 3019 // of the string is via this class initializer. 3020 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3021 GV->setAlignment(Align.getQuantity()); 3022 Fields[1] = 3023 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3024 3025 // String length. 3026 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3027 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3028 3029 // The struct. 3030 CharUnits Alignment = getPointerAlign(); 3031 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3032 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3033 llvm::GlobalVariable::PrivateLinkage, C, 3034 "_unnamed_nsstring_"); 3035 GV->setAlignment(Alignment.getQuantity()); 3036 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3037 const char *NSStringNonFragileABISection = 3038 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3039 // FIXME. Fix section. 3040 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3041 ? NSStringNonFragileABISection 3042 : NSStringSection); 3043 Entry.second = GV; 3044 3045 return ConstantAddress(GV, Alignment); 3046 } 3047 3048 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3049 if (ObjCFastEnumerationStateType.isNull()) { 3050 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3051 D->startDefinition(); 3052 3053 QualType FieldTypes[] = { 3054 Context.UnsignedLongTy, 3055 Context.getPointerType(Context.getObjCIdType()), 3056 Context.getPointerType(Context.UnsignedLongTy), 3057 Context.getConstantArrayType(Context.UnsignedLongTy, 3058 llvm::APInt(32, 5), ArrayType::Normal, 0) 3059 }; 3060 3061 for (size_t i = 0; i < 4; ++i) { 3062 FieldDecl *Field = FieldDecl::Create(Context, 3063 D, 3064 SourceLocation(), 3065 SourceLocation(), nullptr, 3066 FieldTypes[i], /*TInfo=*/nullptr, 3067 /*BitWidth=*/nullptr, 3068 /*Mutable=*/false, 3069 ICIS_NoInit); 3070 Field->setAccess(AS_public); 3071 D->addDecl(Field); 3072 } 3073 3074 D->completeDefinition(); 3075 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3076 } 3077 3078 return ObjCFastEnumerationStateType; 3079 } 3080 3081 llvm::Constant * 3082 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3083 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3084 3085 // Don't emit it as the address of the string, emit the string data itself 3086 // as an inline array. 3087 if (E->getCharByteWidth() == 1) { 3088 SmallString<64> Str(E->getString()); 3089 3090 // Resize the string to the right size, which is indicated by its type. 3091 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3092 Str.resize(CAT->getSize().getZExtValue()); 3093 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3094 } 3095 3096 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3097 llvm::Type *ElemTy = AType->getElementType(); 3098 unsigned NumElements = AType->getNumElements(); 3099 3100 // Wide strings have either 2-byte or 4-byte elements. 3101 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3102 SmallVector<uint16_t, 32> Elements; 3103 Elements.reserve(NumElements); 3104 3105 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3106 Elements.push_back(E->getCodeUnit(i)); 3107 Elements.resize(NumElements); 3108 return llvm::ConstantDataArray::get(VMContext, Elements); 3109 } 3110 3111 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3112 SmallVector<uint32_t, 32> Elements; 3113 Elements.reserve(NumElements); 3114 3115 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3116 Elements.push_back(E->getCodeUnit(i)); 3117 Elements.resize(NumElements); 3118 return llvm::ConstantDataArray::get(VMContext, Elements); 3119 } 3120 3121 static llvm::GlobalVariable * 3122 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3123 CodeGenModule &CGM, StringRef GlobalName, 3124 CharUnits Alignment) { 3125 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3126 unsigned AddrSpace = 0; 3127 if (CGM.getLangOpts().OpenCL) 3128 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3129 3130 llvm::Module &M = CGM.getModule(); 3131 // Create a global variable for this string 3132 auto *GV = new llvm::GlobalVariable( 3133 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3134 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3135 GV->setAlignment(Alignment.getQuantity()); 3136 GV->setUnnamedAddr(true); 3137 if (GV->isWeakForLinker()) { 3138 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3139 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3140 } 3141 3142 return GV; 3143 } 3144 3145 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3146 /// constant array for the given string literal. 3147 ConstantAddress 3148 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3149 StringRef Name) { 3150 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3151 3152 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3153 llvm::GlobalVariable **Entry = nullptr; 3154 if (!LangOpts.WritableStrings) { 3155 Entry = &ConstantStringMap[C]; 3156 if (auto GV = *Entry) { 3157 if (Alignment.getQuantity() > GV->getAlignment()) 3158 GV->setAlignment(Alignment.getQuantity()); 3159 return ConstantAddress(GV, Alignment); 3160 } 3161 } 3162 3163 SmallString<256> MangledNameBuffer; 3164 StringRef GlobalVariableName; 3165 llvm::GlobalValue::LinkageTypes LT; 3166 3167 // Mangle the string literal if the ABI allows for it. However, we cannot 3168 // do this if we are compiling with ASan or -fwritable-strings because they 3169 // rely on strings having normal linkage. 3170 if (!LangOpts.WritableStrings && 3171 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3172 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3173 llvm::raw_svector_ostream Out(MangledNameBuffer); 3174 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3175 3176 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3177 GlobalVariableName = MangledNameBuffer; 3178 } else { 3179 LT = llvm::GlobalValue::PrivateLinkage; 3180 GlobalVariableName = Name; 3181 } 3182 3183 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3184 if (Entry) 3185 *Entry = GV; 3186 3187 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3188 QualType()); 3189 return ConstantAddress(GV, Alignment); 3190 } 3191 3192 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3193 /// array for the given ObjCEncodeExpr node. 3194 ConstantAddress 3195 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3196 std::string Str; 3197 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3198 3199 return GetAddrOfConstantCString(Str); 3200 } 3201 3202 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3203 /// the literal and a terminating '\0' character. 3204 /// The result has pointer to array type. 3205 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3206 const std::string &Str, const char *GlobalName) { 3207 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3208 CharUnits Alignment = 3209 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3210 3211 llvm::Constant *C = 3212 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3213 3214 // Don't share any string literals if strings aren't constant. 3215 llvm::GlobalVariable **Entry = nullptr; 3216 if (!LangOpts.WritableStrings) { 3217 Entry = &ConstantStringMap[C]; 3218 if (auto GV = *Entry) { 3219 if (Alignment.getQuantity() > GV->getAlignment()) 3220 GV->setAlignment(Alignment.getQuantity()); 3221 return ConstantAddress(GV, Alignment); 3222 } 3223 } 3224 3225 // Get the default prefix if a name wasn't specified. 3226 if (!GlobalName) 3227 GlobalName = ".str"; 3228 // Create a global variable for this. 3229 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3230 GlobalName, Alignment); 3231 if (Entry) 3232 *Entry = GV; 3233 return ConstantAddress(GV, Alignment); 3234 } 3235 3236 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3237 const MaterializeTemporaryExpr *E, const Expr *Init) { 3238 assert((E->getStorageDuration() == SD_Static || 3239 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3240 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3241 3242 // If we're not materializing a subobject of the temporary, keep the 3243 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3244 QualType MaterializedType = Init->getType(); 3245 if (Init == E->GetTemporaryExpr()) 3246 MaterializedType = E->getType(); 3247 3248 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3249 3250 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3251 return ConstantAddress(Slot, Align); 3252 3253 // FIXME: If an externally-visible declaration extends multiple temporaries, 3254 // we need to give each temporary the same name in every translation unit (and 3255 // we also need to make the temporaries externally-visible). 3256 SmallString<256> Name; 3257 llvm::raw_svector_ostream Out(Name); 3258 getCXXABI().getMangleContext().mangleReferenceTemporary( 3259 VD, E->getManglingNumber(), Out); 3260 3261 APValue *Value = nullptr; 3262 if (E->getStorageDuration() == SD_Static) { 3263 // We might have a cached constant initializer for this temporary. Note 3264 // that this might have a different value from the value computed by 3265 // evaluating the initializer if the surrounding constant expression 3266 // modifies the temporary. 3267 Value = getContext().getMaterializedTemporaryValue(E, false); 3268 if (Value && Value->isUninit()) 3269 Value = nullptr; 3270 } 3271 3272 // Try evaluating it now, it might have a constant initializer. 3273 Expr::EvalResult EvalResult; 3274 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3275 !EvalResult.hasSideEffects()) 3276 Value = &EvalResult.Val; 3277 3278 llvm::Constant *InitialValue = nullptr; 3279 bool Constant = false; 3280 llvm::Type *Type; 3281 if (Value) { 3282 // The temporary has a constant initializer, use it. 3283 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3284 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3285 Type = InitialValue->getType(); 3286 } else { 3287 // No initializer, the initialization will be provided when we 3288 // initialize the declaration which performed lifetime extension. 3289 Type = getTypes().ConvertTypeForMem(MaterializedType); 3290 } 3291 3292 // Create a global variable for this lifetime-extended temporary. 3293 llvm::GlobalValue::LinkageTypes Linkage = 3294 getLLVMLinkageVarDefinition(VD, Constant); 3295 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3296 const VarDecl *InitVD; 3297 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3298 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3299 // Temporaries defined inside a class get linkonce_odr linkage because the 3300 // class can be defined in multipe translation units. 3301 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3302 } else { 3303 // There is no need for this temporary to have external linkage if the 3304 // VarDecl has external linkage. 3305 Linkage = llvm::GlobalVariable::InternalLinkage; 3306 } 3307 } 3308 unsigned AddrSpace = GetGlobalVarAddressSpace( 3309 VD, getContext().getTargetAddressSpace(MaterializedType)); 3310 auto *GV = new llvm::GlobalVariable( 3311 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3312 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3313 AddrSpace); 3314 setGlobalVisibility(GV, VD); 3315 GV->setAlignment(Align.getQuantity()); 3316 if (supportsCOMDAT() && GV->isWeakForLinker()) 3317 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3318 if (VD->getTLSKind()) 3319 setTLSMode(GV, *VD); 3320 MaterializedGlobalTemporaryMap[E] = GV; 3321 return ConstantAddress(GV, Align); 3322 } 3323 3324 /// EmitObjCPropertyImplementations - Emit information for synthesized 3325 /// properties for an implementation. 3326 void CodeGenModule::EmitObjCPropertyImplementations(const 3327 ObjCImplementationDecl *D) { 3328 for (const auto *PID : D->property_impls()) { 3329 // Dynamic is just for type-checking. 3330 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3331 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3332 3333 // Determine which methods need to be implemented, some may have 3334 // been overridden. Note that ::isPropertyAccessor is not the method 3335 // we want, that just indicates if the decl came from a 3336 // property. What we want to know is if the method is defined in 3337 // this implementation. 3338 if (!D->getInstanceMethod(PD->getGetterName())) 3339 CodeGenFunction(*this).GenerateObjCGetter( 3340 const_cast<ObjCImplementationDecl *>(D), PID); 3341 if (!PD->isReadOnly() && 3342 !D->getInstanceMethod(PD->getSetterName())) 3343 CodeGenFunction(*this).GenerateObjCSetter( 3344 const_cast<ObjCImplementationDecl *>(D), PID); 3345 } 3346 } 3347 } 3348 3349 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3350 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3351 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3352 ivar; ivar = ivar->getNextIvar()) 3353 if (ivar->getType().isDestructedType()) 3354 return true; 3355 3356 return false; 3357 } 3358 3359 static bool AllTrivialInitializers(CodeGenModule &CGM, 3360 ObjCImplementationDecl *D) { 3361 CodeGenFunction CGF(CGM); 3362 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3363 E = D->init_end(); B != E; ++B) { 3364 CXXCtorInitializer *CtorInitExp = *B; 3365 Expr *Init = CtorInitExp->getInit(); 3366 if (!CGF.isTrivialInitializer(Init)) 3367 return false; 3368 } 3369 return true; 3370 } 3371 3372 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3373 /// for an implementation. 3374 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3375 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3376 if (needsDestructMethod(D)) { 3377 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3378 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3379 ObjCMethodDecl *DTORMethod = 3380 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3381 cxxSelector, getContext().VoidTy, nullptr, D, 3382 /*isInstance=*/true, /*isVariadic=*/false, 3383 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3384 /*isDefined=*/false, ObjCMethodDecl::Required); 3385 D->addInstanceMethod(DTORMethod); 3386 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3387 D->setHasDestructors(true); 3388 } 3389 3390 // If the implementation doesn't have any ivar initializers, we don't need 3391 // a .cxx_construct. 3392 if (D->getNumIvarInitializers() == 0 || 3393 AllTrivialInitializers(*this, D)) 3394 return; 3395 3396 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3397 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3398 // The constructor returns 'self'. 3399 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3400 D->getLocation(), 3401 D->getLocation(), 3402 cxxSelector, 3403 getContext().getObjCIdType(), 3404 nullptr, D, /*isInstance=*/true, 3405 /*isVariadic=*/false, 3406 /*isPropertyAccessor=*/true, 3407 /*isImplicitlyDeclared=*/true, 3408 /*isDefined=*/false, 3409 ObjCMethodDecl::Required); 3410 D->addInstanceMethod(CTORMethod); 3411 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3412 D->setHasNonZeroConstructors(true); 3413 } 3414 3415 /// EmitNamespace - Emit all declarations in a namespace. 3416 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3417 for (auto *I : ND->decls()) { 3418 if (const auto *VD = dyn_cast<VarDecl>(I)) 3419 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3420 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3421 continue; 3422 EmitTopLevelDecl(I); 3423 } 3424 } 3425 3426 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3427 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3428 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3429 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3430 ErrorUnsupported(LSD, "linkage spec"); 3431 return; 3432 } 3433 3434 for (auto *I : LSD->decls()) { 3435 // Meta-data for ObjC class includes references to implemented methods. 3436 // Generate class's method definitions first. 3437 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3438 for (auto *M : OID->methods()) 3439 EmitTopLevelDecl(M); 3440 } 3441 EmitTopLevelDecl(I); 3442 } 3443 } 3444 3445 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3446 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3447 // Ignore dependent declarations. 3448 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3449 return; 3450 3451 switch (D->getKind()) { 3452 case Decl::CXXConversion: 3453 case Decl::CXXMethod: 3454 case Decl::Function: 3455 // Skip function templates 3456 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3457 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3458 return; 3459 3460 EmitGlobal(cast<FunctionDecl>(D)); 3461 // Always provide some coverage mapping 3462 // even for the functions that aren't emitted. 3463 AddDeferredUnusedCoverageMapping(D); 3464 break; 3465 3466 case Decl::Var: 3467 // Skip variable templates 3468 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3469 return; 3470 case Decl::VarTemplateSpecialization: 3471 EmitGlobal(cast<VarDecl>(D)); 3472 break; 3473 3474 // Indirect fields from global anonymous structs and unions can be 3475 // ignored; only the actual variable requires IR gen support. 3476 case Decl::IndirectField: 3477 break; 3478 3479 // C++ Decls 3480 case Decl::Namespace: 3481 EmitNamespace(cast<NamespaceDecl>(D)); 3482 break; 3483 // No code generation needed. 3484 case Decl::UsingShadow: 3485 case Decl::ClassTemplate: 3486 case Decl::VarTemplate: 3487 case Decl::VarTemplatePartialSpecialization: 3488 case Decl::FunctionTemplate: 3489 case Decl::TypeAliasTemplate: 3490 case Decl::Block: 3491 case Decl::Empty: 3492 break; 3493 case Decl::Using: // using X; [C++] 3494 if (CGDebugInfo *DI = getModuleDebugInfo()) 3495 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3496 return; 3497 case Decl::NamespaceAlias: 3498 if (CGDebugInfo *DI = getModuleDebugInfo()) 3499 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3500 return; 3501 case Decl::UsingDirective: // using namespace X; [C++] 3502 if (CGDebugInfo *DI = getModuleDebugInfo()) 3503 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3504 return; 3505 case Decl::CXXConstructor: 3506 // Skip function templates 3507 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3508 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3509 return; 3510 3511 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3512 break; 3513 case Decl::CXXDestructor: 3514 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3515 return; 3516 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3517 break; 3518 3519 case Decl::StaticAssert: 3520 // Nothing to do. 3521 break; 3522 3523 // Objective-C Decls 3524 3525 // Forward declarations, no (immediate) code generation. 3526 case Decl::ObjCInterface: 3527 case Decl::ObjCCategory: 3528 break; 3529 3530 case Decl::ObjCProtocol: { 3531 auto *Proto = cast<ObjCProtocolDecl>(D); 3532 if (Proto->isThisDeclarationADefinition()) 3533 ObjCRuntime->GenerateProtocol(Proto); 3534 break; 3535 } 3536 3537 case Decl::ObjCCategoryImpl: 3538 // Categories have properties but don't support synthesize so we 3539 // can ignore them here. 3540 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3541 break; 3542 3543 case Decl::ObjCImplementation: { 3544 auto *OMD = cast<ObjCImplementationDecl>(D); 3545 EmitObjCPropertyImplementations(OMD); 3546 EmitObjCIvarInitializations(OMD); 3547 ObjCRuntime->GenerateClass(OMD); 3548 // Emit global variable debug information. 3549 if (CGDebugInfo *DI = getModuleDebugInfo()) 3550 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3551 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3552 OMD->getClassInterface()), OMD->getLocation()); 3553 break; 3554 } 3555 case Decl::ObjCMethod: { 3556 auto *OMD = cast<ObjCMethodDecl>(D); 3557 // If this is not a prototype, emit the body. 3558 if (OMD->getBody()) 3559 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3560 break; 3561 } 3562 case Decl::ObjCCompatibleAlias: 3563 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3564 break; 3565 3566 case Decl::LinkageSpec: 3567 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3568 break; 3569 3570 case Decl::FileScopeAsm: { 3571 // File-scope asm is ignored during device-side CUDA compilation. 3572 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3573 break; 3574 auto *AD = cast<FileScopeAsmDecl>(D); 3575 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3576 break; 3577 } 3578 3579 case Decl::Import: { 3580 auto *Import = cast<ImportDecl>(D); 3581 3582 // Ignore import declarations that come from imported modules. 3583 if (Import->getImportedOwningModule()) 3584 break; 3585 if (CGDebugInfo *DI = getModuleDebugInfo()) 3586 DI->EmitImportDecl(*Import); 3587 3588 ImportedModules.insert(Import->getImportedModule()); 3589 break; 3590 } 3591 3592 case Decl::OMPThreadPrivate: 3593 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3594 break; 3595 3596 case Decl::ClassTemplateSpecialization: { 3597 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3598 if (DebugInfo && 3599 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3600 Spec->hasDefinition()) 3601 DebugInfo->completeTemplateDefinition(*Spec); 3602 break; 3603 } 3604 3605 default: 3606 // Make sure we handled everything we should, every other kind is a 3607 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3608 // function. Need to recode Decl::Kind to do that easily. 3609 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3610 break; 3611 } 3612 } 3613 3614 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3615 // Do we need to generate coverage mapping? 3616 if (!CodeGenOpts.CoverageMapping) 3617 return; 3618 switch (D->getKind()) { 3619 case Decl::CXXConversion: 3620 case Decl::CXXMethod: 3621 case Decl::Function: 3622 case Decl::ObjCMethod: 3623 case Decl::CXXConstructor: 3624 case Decl::CXXDestructor: { 3625 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3626 return; 3627 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3628 if (I == DeferredEmptyCoverageMappingDecls.end()) 3629 DeferredEmptyCoverageMappingDecls[D] = true; 3630 break; 3631 } 3632 default: 3633 break; 3634 }; 3635 } 3636 3637 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3638 // Do we need to generate coverage mapping? 3639 if (!CodeGenOpts.CoverageMapping) 3640 return; 3641 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3642 if (Fn->isTemplateInstantiation()) 3643 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3644 } 3645 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3646 if (I == DeferredEmptyCoverageMappingDecls.end()) 3647 DeferredEmptyCoverageMappingDecls[D] = false; 3648 else 3649 I->second = false; 3650 } 3651 3652 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3653 std::vector<const Decl *> DeferredDecls; 3654 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3655 if (!I.second) 3656 continue; 3657 DeferredDecls.push_back(I.first); 3658 } 3659 // Sort the declarations by their location to make sure that the tests get a 3660 // predictable order for the coverage mapping for the unused declarations. 3661 if (CodeGenOpts.DumpCoverageMapping) 3662 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3663 [] (const Decl *LHS, const Decl *RHS) { 3664 return LHS->getLocStart() < RHS->getLocStart(); 3665 }); 3666 for (const auto *D : DeferredDecls) { 3667 switch (D->getKind()) { 3668 case Decl::CXXConversion: 3669 case Decl::CXXMethod: 3670 case Decl::Function: 3671 case Decl::ObjCMethod: { 3672 CodeGenPGO PGO(*this); 3673 GlobalDecl GD(cast<FunctionDecl>(D)); 3674 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3675 getFunctionLinkage(GD)); 3676 break; 3677 } 3678 case Decl::CXXConstructor: { 3679 CodeGenPGO PGO(*this); 3680 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3681 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3682 getFunctionLinkage(GD)); 3683 break; 3684 } 3685 case Decl::CXXDestructor: { 3686 CodeGenPGO PGO(*this); 3687 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3688 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3689 getFunctionLinkage(GD)); 3690 break; 3691 } 3692 default: 3693 break; 3694 }; 3695 } 3696 } 3697 3698 /// Turns the given pointer into a constant. 3699 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3700 const void *Ptr) { 3701 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3702 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3703 return llvm::ConstantInt::get(i64, PtrInt); 3704 } 3705 3706 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3707 llvm::NamedMDNode *&GlobalMetadata, 3708 GlobalDecl D, 3709 llvm::GlobalValue *Addr) { 3710 if (!GlobalMetadata) 3711 GlobalMetadata = 3712 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3713 3714 // TODO: should we report variant information for ctors/dtors? 3715 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3716 llvm::ConstantAsMetadata::get(GetPointerConstant( 3717 CGM.getLLVMContext(), D.getDecl()))}; 3718 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3719 } 3720 3721 /// For each function which is declared within an extern "C" region and marked 3722 /// as 'used', but has internal linkage, create an alias from the unmangled 3723 /// name to the mangled name if possible. People expect to be able to refer 3724 /// to such functions with an unmangled name from inline assembly within the 3725 /// same translation unit. 3726 void CodeGenModule::EmitStaticExternCAliases() { 3727 for (auto &I : StaticExternCValues) { 3728 IdentifierInfo *Name = I.first; 3729 llvm::GlobalValue *Val = I.second; 3730 if (Val && !getModule().getNamedValue(Name->getName())) 3731 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3732 } 3733 } 3734 3735 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3736 GlobalDecl &Result) const { 3737 auto Res = Manglings.find(MangledName); 3738 if (Res == Manglings.end()) 3739 return false; 3740 Result = Res->getValue(); 3741 return true; 3742 } 3743 3744 /// Emits metadata nodes associating all the global values in the 3745 /// current module with the Decls they came from. This is useful for 3746 /// projects using IR gen as a subroutine. 3747 /// 3748 /// Since there's currently no way to associate an MDNode directly 3749 /// with an llvm::GlobalValue, we create a global named metadata 3750 /// with the name 'clang.global.decl.ptrs'. 3751 void CodeGenModule::EmitDeclMetadata() { 3752 llvm::NamedMDNode *GlobalMetadata = nullptr; 3753 3754 for (auto &I : MangledDeclNames) { 3755 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3756 // Some mangled names don't necessarily have an associated GlobalValue 3757 // in this module, e.g. if we mangled it for DebugInfo. 3758 if (Addr) 3759 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3760 } 3761 } 3762 3763 /// Emits metadata nodes for all the local variables in the current 3764 /// function. 3765 void CodeGenFunction::EmitDeclMetadata() { 3766 if (LocalDeclMap.empty()) return; 3767 3768 llvm::LLVMContext &Context = getLLVMContext(); 3769 3770 // Find the unique metadata ID for this name. 3771 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3772 3773 llvm::NamedMDNode *GlobalMetadata = nullptr; 3774 3775 for (auto &I : LocalDeclMap) { 3776 const Decl *D = I.first; 3777 llvm::Value *Addr = I.second.getPointer(); 3778 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3779 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3780 Alloca->setMetadata( 3781 DeclPtrKind, llvm::MDNode::get( 3782 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3783 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3784 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3785 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3786 } 3787 } 3788 } 3789 3790 void CodeGenModule::EmitVersionIdentMetadata() { 3791 llvm::NamedMDNode *IdentMetadata = 3792 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3793 std::string Version = getClangFullVersion(); 3794 llvm::LLVMContext &Ctx = TheModule.getContext(); 3795 3796 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3797 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3798 } 3799 3800 void CodeGenModule::EmitTargetMetadata() { 3801 // Warning, new MangledDeclNames may be appended within this loop. 3802 // We rely on MapVector insertions adding new elements to the end 3803 // of the container. 3804 // FIXME: Move this loop into the one target that needs it, and only 3805 // loop over those declarations for which we couldn't emit the target 3806 // metadata when we emitted the declaration. 3807 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3808 auto Val = *(MangledDeclNames.begin() + I); 3809 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3810 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3811 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3812 } 3813 } 3814 3815 void CodeGenModule::EmitCoverageFile() { 3816 if (!getCodeGenOpts().CoverageFile.empty()) { 3817 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3818 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3819 llvm::LLVMContext &Ctx = TheModule.getContext(); 3820 llvm::MDString *CoverageFile = 3821 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3822 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3823 llvm::MDNode *CU = CUNode->getOperand(i); 3824 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3825 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3826 } 3827 } 3828 } 3829 } 3830 3831 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3832 // Sema has checked that all uuid strings are of the form 3833 // "12345678-1234-1234-1234-1234567890ab". 3834 assert(Uuid.size() == 36); 3835 for (unsigned i = 0; i < 36; ++i) { 3836 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3837 else assert(isHexDigit(Uuid[i])); 3838 } 3839 3840 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3841 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3842 3843 llvm::Constant *Field3[8]; 3844 for (unsigned Idx = 0; Idx < 8; ++Idx) 3845 Field3[Idx] = llvm::ConstantInt::get( 3846 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3847 3848 llvm::Constant *Fields[4] = { 3849 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3850 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3851 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3852 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3853 }; 3854 3855 return llvm::ConstantStruct::getAnon(Fields); 3856 } 3857 3858 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3859 bool ForEH) { 3860 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3861 // FIXME: should we even be calling this method if RTTI is disabled 3862 // and it's not for EH? 3863 if (!ForEH && !getLangOpts().RTTI) 3864 return llvm::Constant::getNullValue(Int8PtrTy); 3865 3866 if (ForEH && Ty->isObjCObjectPointerType() && 3867 LangOpts.ObjCRuntime.isGNUFamily()) 3868 return ObjCRuntime->GetEHType(Ty); 3869 3870 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3871 } 3872 3873 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3874 for (auto RefExpr : D->varlists()) { 3875 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3876 bool PerformInit = 3877 VD->getAnyInitializer() && 3878 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3879 /*ForRef=*/false); 3880 3881 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3882 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3883 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3884 CXXGlobalInits.push_back(InitFunction); 3885 } 3886 } 3887 3888 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3889 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3890 if (InternalId) 3891 return InternalId; 3892 3893 if (isExternallyVisible(T->getLinkage())) { 3894 std::string OutName; 3895 llvm::raw_string_ostream Out(OutName); 3896 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3897 3898 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3899 } else { 3900 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3901 llvm::ArrayRef<llvm::Metadata *>()); 3902 } 3903 3904 return InternalId; 3905 } 3906 3907 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3908 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3909 llvm::Metadata *BitsetOps[] = { 3910 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3911 llvm::ConstantAsMetadata::get(VTable), 3912 llvm::ConstantAsMetadata::get( 3913 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3914 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3915 } 3916 3917 // Fills in the supplied string map with the set of target features for the 3918 // passed in function. 3919 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 3920 const FunctionDecl *FD) { 3921 StringRef TargetCPU = Target.getTargetOpts().CPU; 3922 if (const auto *TD = FD->getAttr<TargetAttr>()) { 3923 // If we have a TargetAttr build up the feature map based on that. 3924 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 3925 3926 // Make a copy of the features as passed on the command line into the 3927 // beginning of the additional features from the function to override. 3928 ParsedAttr.first.insert(ParsedAttr.first.begin(), 3929 Target.getTargetOpts().FeaturesAsWritten.begin(), 3930 Target.getTargetOpts().FeaturesAsWritten.end()); 3931 3932 if (ParsedAttr.second != "") 3933 TargetCPU = ParsedAttr.second; 3934 3935 // Now populate the feature map, first with the TargetCPU which is either 3936 // the default or a new one from the target attribute string. Then we'll use 3937 // the passed in features (FeaturesAsWritten) along with the new ones from 3938 // the attribute. 3939 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 3940 } else { 3941 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 3942 Target.getTargetOpts().Features); 3943 } 3944 } 3945