1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 168 const NamedDecl *D) const { 169 // Internal definitions always have default visibility. 170 if (GV->hasLocalLinkage()) { 171 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 172 return; 173 } 174 175 // Set visibility for definitions. 176 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 177 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 178 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 179 } 180 181 /// Set the symbol visibility of type information (vtable and RTTI) 182 /// associated with the given type. 183 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 184 const CXXRecordDecl *RD, 185 TypeVisibilityKind TVK) const { 186 setGlobalVisibility(GV, RD); 187 188 if (!CodeGenOpts.HiddenWeakVTables) 189 return; 190 191 // We never want to drop the visibility for RTTI names. 192 if (TVK == TVK_ForRTTIName) 193 return; 194 195 // We want to drop the visibility to hidden for weak type symbols. 196 // This isn't possible if there might be unresolved references 197 // elsewhere that rely on this symbol being visible. 198 199 // This should be kept roughly in sync with setThunkVisibility 200 // in CGVTables.cpp. 201 202 // Preconditions. 203 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 204 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 205 return; 206 207 // Don't override an explicit visibility attribute. 208 if (RD->hasAttr<VisibilityAttr>()) 209 return; 210 211 switch (RD->getTemplateSpecializationKind()) { 212 // We have to disable the optimization if this is an EI definition 213 // because there might be EI declarations in other shared objects. 214 case TSK_ExplicitInstantiationDefinition: 215 case TSK_ExplicitInstantiationDeclaration: 216 return; 217 218 // Every use of a non-template class's type information has to emit it. 219 case TSK_Undeclared: 220 break; 221 222 // In theory, implicit instantiations can ignore the possibility of 223 // an explicit instantiation declaration because there necessarily 224 // must be an EI definition somewhere with default visibility. In 225 // practice, it's possible to have an explicit instantiation for 226 // an arbitrary template class, and linkers aren't necessarily able 227 // to deal with mixed-visibility symbols. 228 case TSK_ExplicitSpecialization: 229 case TSK_ImplicitInstantiation: 230 if (!CodeGenOpts.HiddenWeakTemplateVTables) 231 return; 232 break; 233 } 234 235 // If there's a key function, there may be translation units 236 // that don't have the key function's definition. But ignore 237 // this if we're emitting RTTI under -fno-rtti. 238 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 239 if (Context.getKeyFunction(RD)) 240 return; 241 } 242 243 // Otherwise, drop the visibility to hidden. 244 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 245 GV->setUnnamedAddr(true); 246 } 247 248 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 249 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 250 251 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 252 if (!Str.empty()) 253 return Str; 254 255 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 256 IdentifierInfo *II = ND->getIdentifier(); 257 assert(II && "Attempt to mangle unnamed decl."); 258 259 Str = II->getName(); 260 return Str; 261 } 262 263 llvm::SmallString<256> Buffer; 264 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 265 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 266 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 267 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 268 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 269 getCXXABI().getMangleContext().mangleBlock(BD, Buffer); 270 else 271 getCXXABI().getMangleContext().mangleName(ND, Buffer); 272 273 // Allocate space for the mangled name. 274 size_t Length = Buffer.size(); 275 char *Name = MangledNamesAllocator.Allocate<char>(Length); 276 std::copy(Buffer.begin(), Buffer.end(), Name); 277 278 Str = llvm::StringRef(Name, Length); 279 280 return Str; 281 } 282 283 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 284 const BlockDecl *BD) { 285 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 286 const Decl *D = GD.getDecl(); 287 if (D == 0) 288 MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer()); 289 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 290 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer()); 291 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 292 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer()); 293 else 294 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer()); 295 } 296 297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 298 return getModule().getNamedValue(Name); 299 } 300 301 /// AddGlobalCtor - Add a function to the list that will be called before 302 /// main() runs. 303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 304 // FIXME: Type coercion of void()* types. 305 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 306 } 307 308 /// AddGlobalDtor - Add a function to the list that will be called 309 /// when the module is unloaded. 310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 311 // FIXME: Type coercion of void()* types. 312 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 313 } 314 315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 316 // Ctor function type is void()*. 317 llvm::FunctionType* CtorFTy = 318 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 319 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 320 321 // Get the type of a ctor entry, { i32, void ()* }. 322 llvm::StructType* CtorStructTy = 323 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 324 llvm::PointerType::getUnqual(CtorFTy), NULL); 325 326 // Construct the constructor and destructor arrays. 327 std::vector<llvm::Constant*> Ctors; 328 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 329 std::vector<llvm::Constant*> S; 330 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 331 I->second, false)); 332 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 333 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 334 } 335 336 if (!Ctors.empty()) { 337 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 338 new llvm::GlobalVariable(TheModule, AT, false, 339 llvm::GlobalValue::AppendingLinkage, 340 llvm::ConstantArray::get(AT, Ctors), 341 GlobalName); 342 } 343 } 344 345 void CodeGenModule::EmitAnnotations() { 346 if (Annotations.empty()) 347 return; 348 349 // Create a new global variable for the ConstantStruct in the Module. 350 llvm::Constant *Array = 351 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 352 Annotations.size()), 353 Annotations); 354 llvm::GlobalValue *gv = 355 new llvm::GlobalVariable(TheModule, Array->getType(), false, 356 llvm::GlobalValue::AppendingLinkage, Array, 357 "llvm.global.annotations"); 358 gv->setSection("llvm.metadata"); 359 } 360 361 llvm::GlobalValue::LinkageTypes 362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 363 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 364 365 if (Linkage == GVA_Internal) 366 return llvm::Function::InternalLinkage; 367 368 if (D->hasAttr<DLLExportAttr>()) 369 return llvm::Function::DLLExportLinkage; 370 371 if (D->hasAttr<WeakAttr>()) 372 return llvm::Function::WeakAnyLinkage; 373 374 // In C99 mode, 'inline' functions are guaranteed to have a strong 375 // definition somewhere else, so we can use available_externally linkage. 376 if (Linkage == GVA_C99Inline) 377 return llvm::Function::AvailableExternallyLinkage; 378 379 // In C++, the compiler has to emit a definition in every translation unit 380 // that references the function. We should use linkonce_odr because 381 // a) if all references in this translation unit are optimized away, we 382 // don't need to codegen it. b) if the function persists, it needs to be 383 // merged with other definitions. c) C++ has the ODR, so we know the 384 // definition is dependable. 385 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 386 return !Context.getLangOptions().AppleKext 387 ? llvm::Function::LinkOnceODRLinkage 388 : llvm::Function::InternalLinkage; 389 390 // An explicit instantiation of a template has weak linkage, since 391 // explicit instantiations can occur in multiple translation units 392 // and must all be equivalent. However, we are not allowed to 393 // throw away these explicit instantiations. 394 if (Linkage == GVA_ExplicitTemplateInstantiation) 395 return !Context.getLangOptions().AppleKext 396 ? llvm::Function::WeakODRLinkage 397 : llvm::Function::InternalLinkage; 398 399 // Otherwise, we have strong external linkage. 400 assert(Linkage == GVA_StrongExternal); 401 return llvm::Function::ExternalLinkage; 402 } 403 404 405 /// SetFunctionDefinitionAttributes - Set attributes for a global. 406 /// 407 /// FIXME: This is currently only done for aliases and functions, but not for 408 /// variables (these details are set in EmitGlobalVarDefinition for variables). 409 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 410 llvm::GlobalValue *GV) { 411 SetCommonAttributes(D, GV); 412 } 413 414 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 415 const CGFunctionInfo &Info, 416 llvm::Function *F) { 417 unsigned CallingConv; 418 AttributeListType AttributeList; 419 ConstructAttributeList(Info, D, AttributeList, CallingConv); 420 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 421 AttributeList.size())); 422 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 423 } 424 425 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 426 llvm::Function *F) { 427 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 428 F->addFnAttr(llvm::Attribute::NoUnwind); 429 430 if (D->hasAttr<AlwaysInlineAttr>()) 431 F->addFnAttr(llvm::Attribute::AlwaysInline); 432 433 if (D->hasAttr<NakedAttr>()) 434 F->addFnAttr(llvm::Attribute::Naked); 435 436 if (D->hasAttr<NoInlineAttr>()) 437 F->addFnAttr(llvm::Attribute::NoInline); 438 439 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 440 F->setUnnamedAddr(true); 441 442 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 443 F->addFnAttr(llvm::Attribute::StackProtect); 444 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 445 F->addFnAttr(llvm::Attribute::StackProtectReq); 446 447 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 448 if (alignment) 449 F->setAlignment(alignment); 450 451 // C++ ABI requires 2-byte alignment for member functions. 452 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 453 F->setAlignment(2); 454 } 455 456 void CodeGenModule::SetCommonAttributes(const Decl *D, 457 llvm::GlobalValue *GV) { 458 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 459 setGlobalVisibility(GV, ND); 460 else 461 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 462 463 if (D->hasAttr<UsedAttr>()) 464 AddUsedGlobal(GV); 465 466 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 467 GV->setSection(SA->getName()); 468 469 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 470 } 471 472 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 473 llvm::Function *F, 474 const CGFunctionInfo &FI) { 475 SetLLVMFunctionAttributes(D, FI, F); 476 SetLLVMFunctionAttributesForDefinition(D, F); 477 478 F->setLinkage(llvm::Function::InternalLinkage); 479 480 SetCommonAttributes(D, F); 481 } 482 483 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 484 llvm::Function *F, 485 bool IsIncompleteFunction) { 486 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 487 488 if (!IsIncompleteFunction) 489 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 490 491 // Only a few attributes are set on declarations; these may later be 492 // overridden by a definition. 493 494 if (FD->hasAttr<DLLImportAttr>()) { 495 F->setLinkage(llvm::Function::DLLImportLinkage); 496 } else if (FD->hasAttr<WeakAttr>() || 497 FD->hasAttr<WeakImportAttr>()) { 498 // "extern_weak" is overloaded in LLVM; we probably should have 499 // separate linkage types for this. 500 F->setLinkage(llvm::Function::ExternalWeakLinkage); 501 } else { 502 F->setLinkage(llvm::Function::ExternalLinkage); 503 504 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 505 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 506 F->setVisibility(GetLLVMVisibility(LV.visibility())); 507 } 508 } 509 510 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 511 F->setSection(SA->getName()); 512 } 513 514 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 515 assert(!GV->isDeclaration() && 516 "Only globals with definition can force usage."); 517 LLVMUsed.push_back(GV); 518 } 519 520 void CodeGenModule::EmitLLVMUsed() { 521 // Don't create llvm.used if there is no need. 522 if (LLVMUsed.empty()) 523 return; 524 525 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 526 527 // Convert LLVMUsed to what ConstantArray needs. 528 std::vector<llvm::Constant*> UsedArray; 529 UsedArray.resize(LLVMUsed.size()); 530 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 531 UsedArray[i] = 532 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 533 i8PTy); 534 } 535 536 if (UsedArray.empty()) 537 return; 538 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 539 540 llvm::GlobalVariable *GV = 541 new llvm::GlobalVariable(getModule(), ATy, false, 542 llvm::GlobalValue::AppendingLinkage, 543 llvm::ConstantArray::get(ATy, UsedArray), 544 "llvm.used"); 545 546 GV->setSection("llvm.metadata"); 547 } 548 549 void CodeGenModule::EmitDeferred() { 550 // Emit code for any potentially referenced deferred decls. Since a 551 // previously unused static decl may become used during the generation of code 552 // for a static function, iterate until no changes are made. 553 554 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 555 if (!DeferredVTables.empty()) { 556 const CXXRecordDecl *RD = DeferredVTables.back(); 557 DeferredVTables.pop_back(); 558 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 559 continue; 560 } 561 562 GlobalDecl D = DeferredDeclsToEmit.back(); 563 DeferredDeclsToEmit.pop_back(); 564 565 // Check to see if we've already emitted this. This is necessary 566 // for a couple of reasons: first, decls can end up in the 567 // deferred-decls queue multiple times, and second, decls can end 568 // up with definitions in unusual ways (e.g. by an extern inline 569 // function acquiring a strong function redefinition). Just 570 // ignore these cases. 571 // 572 // TODO: That said, looking this up multiple times is very wasteful. 573 llvm::StringRef Name = getMangledName(D); 574 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 575 assert(CGRef && "Deferred decl wasn't referenced?"); 576 577 if (!CGRef->isDeclaration()) 578 continue; 579 580 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 581 // purposes an alias counts as a definition. 582 if (isa<llvm::GlobalAlias>(CGRef)) 583 continue; 584 585 // Otherwise, emit the definition and move on to the next one. 586 EmitGlobalDefinition(D); 587 } 588 } 589 590 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 591 /// annotation information for a given GlobalValue. The annotation struct is 592 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 593 /// GlobalValue being annotated. The second field is the constant string 594 /// created from the AnnotateAttr's annotation. The third field is a constant 595 /// string containing the name of the translation unit. The fourth field is 596 /// the line number in the file of the annotated value declaration. 597 /// 598 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 599 /// appears to. 600 /// 601 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 602 const AnnotateAttr *AA, 603 unsigned LineNo) { 604 llvm::Module *M = &getModule(); 605 606 // get [N x i8] constants for the annotation string, and the filename string 607 // which are the 2nd and 3rd elements of the global annotation structure. 608 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 609 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 610 AA->getAnnotation(), true); 611 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 612 M->getModuleIdentifier(), 613 true); 614 615 // Get the two global values corresponding to the ConstantArrays we just 616 // created to hold the bytes of the strings. 617 llvm::GlobalValue *annoGV = 618 new llvm::GlobalVariable(*M, anno->getType(), false, 619 llvm::GlobalValue::PrivateLinkage, anno, 620 GV->getName()); 621 // translation unit name string, emitted into the llvm.metadata section. 622 llvm::GlobalValue *unitGV = 623 new llvm::GlobalVariable(*M, unit->getType(), false, 624 llvm::GlobalValue::PrivateLinkage, unit, 625 ".str"); 626 unitGV->setUnnamedAddr(true); 627 628 // Create the ConstantStruct for the global annotation. 629 llvm::Constant *Fields[4] = { 630 llvm::ConstantExpr::getBitCast(GV, SBP), 631 llvm::ConstantExpr::getBitCast(annoGV, SBP), 632 llvm::ConstantExpr::getBitCast(unitGV, SBP), 633 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 634 }; 635 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 636 } 637 638 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 639 // Never defer when EmitAllDecls is specified. 640 if (Features.EmitAllDecls) 641 return false; 642 643 return !getContext().DeclMustBeEmitted(Global); 644 } 645 646 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 647 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 648 assert(AA && "No alias?"); 649 650 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 651 652 // See if there is already something with the target's name in the module. 653 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 654 655 llvm::Constant *Aliasee; 656 if (isa<llvm::FunctionType>(DeclTy)) 657 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 658 /*ForVTable=*/false); 659 else 660 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 661 llvm::PointerType::getUnqual(DeclTy), 0); 662 if (!Entry) { 663 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 664 F->setLinkage(llvm::Function::ExternalWeakLinkage); 665 WeakRefReferences.insert(F); 666 } 667 668 return Aliasee; 669 } 670 671 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 672 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 673 674 // Weak references don't produce any output by themselves. 675 if (Global->hasAttr<WeakRefAttr>()) 676 return; 677 678 // If this is an alias definition (which otherwise looks like a declaration) 679 // emit it now. 680 if (Global->hasAttr<AliasAttr>()) 681 return EmitAliasDefinition(GD); 682 683 // Ignore declarations, they will be emitted on their first use. 684 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 685 if (FD->getIdentifier()) { 686 llvm::StringRef Name = FD->getName(); 687 if (Name == "_Block_object_assign") { 688 BlockObjectAssignDecl = FD; 689 } else if (Name == "_Block_object_dispose") { 690 BlockObjectDisposeDecl = FD; 691 } 692 } 693 694 // Forward declarations are emitted lazily on first use. 695 if (!FD->isThisDeclarationADefinition()) 696 return; 697 } else { 698 const VarDecl *VD = cast<VarDecl>(Global); 699 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 700 701 if (VD->getIdentifier()) { 702 llvm::StringRef Name = VD->getName(); 703 if (Name == "_NSConcreteGlobalBlock") { 704 NSConcreteGlobalBlockDecl = VD; 705 } else if (Name == "_NSConcreteStackBlock") { 706 NSConcreteStackBlockDecl = VD; 707 } 708 } 709 710 711 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 712 return; 713 } 714 715 // Defer code generation when possible if this is a static definition, inline 716 // function etc. These we only want to emit if they are used. 717 if (!MayDeferGeneration(Global)) { 718 // Emit the definition if it can't be deferred. 719 EmitGlobalDefinition(GD); 720 return; 721 } 722 723 // If we're deferring emission of a C++ variable with an 724 // initializer, remember the order in which it appeared in the file. 725 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 726 cast<VarDecl>(Global)->hasInit()) { 727 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 728 CXXGlobalInits.push_back(0); 729 } 730 731 // If the value has already been used, add it directly to the 732 // DeferredDeclsToEmit list. 733 llvm::StringRef MangledName = getMangledName(GD); 734 if (GetGlobalValue(MangledName)) 735 DeferredDeclsToEmit.push_back(GD); 736 else { 737 // Otherwise, remember that we saw a deferred decl with this name. The 738 // first use of the mangled name will cause it to move into 739 // DeferredDeclsToEmit. 740 DeferredDecls[MangledName] = GD; 741 } 742 } 743 744 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 745 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 746 747 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 748 Context.getSourceManager(), 749 "Generating code for declaration"); 750 751 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 752 // At -O0, don't generate IR for functions with available_externally 753 // linkage. 754 if (CodeGenOpts.OptimizationLevel == 0 && 755 !Function->hasAttr<AlwaysInlineAttr>() && 756 getFunctionLinkage(Function) 757 == llvm::Function::AvailableExternallyLinkage) 758 return; 759 760 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 761 if (Method->isVirtual()) 762 getVTables().EmitThunks(GD); 763 764 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 765 return EmitCXXConstructor(CD, GD.getCtorType()); 766 767 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 768 return EmitCXXDestructor(DD, GD.getDtorType()); 769 } 770 771 return EmitGlobalFunctionDefinition(GD); 772 } 773 774 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 775 return EmitGlobalVarDefinition(VD); 776 777 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 778 } 779 780 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 781 /// module, create and return an llvm Function with the specified type. If there 782 /// is something in the module with the specified name, return it potentially 783 /// bitcasted to the right type. 784 /// 785 /// If D is non-null, it specifies a decl that correspond to this. This is used 786 /// to set the attributes on the function when it is first created. 787 llvm::Constant * 788 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 789 const llvm::Type *Ty, 790 GlobalDecl D, bool ForVTable) { 791 // Lookup the entry, lazily creating it if necessary. 792 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 793 if (Entry) { 794 if (WeakRefReferences.count(Entry)) { 795 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 796 if (FD && !FD->hasAttr<WeakAttr>()) 797 Entry->setLinkage(llvm::Function::ExternalLinkage); 798 799 WeakRefReferences.erase(Entry); 800 } 801 802 if (Entry->getType()->getElementType() == Ty) 803 return Entry; 804 805 // Make sure the result is of the correct type. 806 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 807 return llvm::ConstantExpr::getBitCast(Entry, PTy); 808 } 809 810 // This function doesn't have a complete type (for example, the return 811 // type is an incomplete struct). Use a fake type instead, and make 812 // sure not to try to set attributes. 813 bool IsIncompleteFunction = false; 814 815 const llvm::FunctionType *FTy; 816 if (isa<llvm::FunctionType>(Ty)) { 817 FTy = cast<llvm::FunctionType>(Ty); 818 } else { 819 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 820 IsIncompleteFunction = true; 821 } 822 823 llvm::Function *F = llvm::Function::Create(FTy, 824 llvm::Function::ExternalLinkage, 825 MangledName, &getModule()); 826 assert(F->getName() == MangledName && "name was uniqued!"); 827 if (D.getDecl()) 828 SetFunctionAttributes(D, F, IsIncompleteFunction); 829 830 // This is the first use or definition of a mangled name. If there is a 831 // deferred decl with this name, remember that we need to emit it at the end 832 // of the file. 833 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 834 if (DDI != DeferredDecls.end()) { 835 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 836 // list, and remove it from DeferredDecls (since we don't need it anymore). 837 DeferredDeclsToEmit.push_back(DDI->second); 838 DeferredDecls.erase(DDI); 839 840 // Otherwise, there are cases we have to worry about where we're 841 // using a declaration for which we must emit a definition but where 842 // we might not find a top-level definition: 843 // - member functions defined inline in their classes 844 // - friend functions defined inline in some class 845 // - special member functions with implicit definitions 846 // If we ever change our AST traversal to walk into class methods, 847 // this will be unnecessary. 848 // 849 // We also don't emit a definition for a function if it's going to be an entry 850 // in a vtable, unless it's already marked as used. 851 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 852 // Look for a declaration that's lexically in a record. 853 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 854 do { 855 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 856 if (FD->isImplicit() && !ForVTable) { 857 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 858 DeferredDeclsToEmit.push_back(D); 859 break; 860 } else if (FD->isThisDeclarationADefinition()) { 861 DeferredDeclsToEmit.push_back(D); 862 break; 863 } 864 } 865 FD = FD->getPreviousDeclaration(); 866 } while (FD); 867 } 868 869 // Make sure the result is of the requested type. 870 if (!IsIncompleteFunction) { 871 assert(F->getType()->getElementType() == Ty); 872 return F; 873 } 874 875 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 876 return llvm::ConstantExpr::getBitCast(F, PTy); 877 } 878 879 /// GetAddrOfFunction - Return the address of the given function. If Ty is 880 /// non-null, then this function will use the specified type if it has to 881 /// create it (this occurs when we see a definition of the function). 882 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 883 const llvm::Type *Ty, 884 bool ForVTable) { 885 // If there was no specific requested type, just convert it now. 886 if (!Ty) 887 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 888 889 llvm::StringRef MangledName = getMangledName(GD); 890 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 891 } 892 893 /// CreateRuntimeFunction - Create a new runtime function with the specified 894 /// type and name. 895 llvm::Constant * 896 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 897 llvm::StringRef Name) { 898 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); 899 } 900 901 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 902 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 903 return false; 904 if (Context.getLangOptions().CPlusPlus && 905 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 906 // FIXME: We should do something fancier here! 907 return false; 908 } 909 return true; 910 } 911 912 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 913 /// create and return an llvm GlobalVariable with the specified type. If there 914 /// is something in the module with the specified name, return it potentially 915 /// bitcasted to the right type. 916 /// 917 /// If D is non-null, it specifies a decl that correspond to this. This is used 918 /// to set the attributes on the global when it is first created. 919 llvm::Constant * 920 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 921 const llvm::PointerType *Ty, 922 const VarDecl *D, 923 bool UnnamedAddr) { 924 // Lookup the entry, lazily creating it if necessary. 925 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 926 if (Entry) { 927 if (WeakRefReferences.count(Entry)) { 928 if (D && !D->hasAttr<WeakAttr>()) 929 Entry->setLinkage(llvm::Function::ExternalLinkage); 930 931 WeakRefReferences.erase(Entry); 932 } 933 934 if (UnnamedAddr) 935 Entry->setUnnamedAddr(true); 936 937 if (Entry->getType() == Ty) 938 return Entry; 939 940 // Make sure the result is of the correct type. 941 return llvm::ConstantExpr::getBitCast(Entry, Ty); 942 } 943 944 // This is the first use or definition of a mangled name. If there is a 945 // deferred decl with this name, remember that we need to emit it at the end 946 // of the file. 947 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 948 if (DDI != DeferredDecls.end()) { 949 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 950 // list, and remove it from DeferredDecls (since we don't need it anymore). 951 DeferredDeclsToEmit.push_back(DDI->second); 952 DeferredDecls.erase(DDI); 953 } 954 955 llvm::GlobalVariable *GV = 956 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 957 llvm::GlobalValue::ExternalLinkage, 958 0, MangledName, 0, 959 false, Ty->getAddressSpace()); 960 961 // Handle things which are present even on external declarations. 962 if (D) { 963 // FIXME: This code is overly simple and should be merged with other global 964 // handling. 965 GV->setConstant(DeclIsConstantGlobal(Context, D)); 966 967 // Set linkage and visibility in case we never see a definition. 968 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 969 if (LV.linkage() != ExternalLinkage) { 970 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 971 } else { 972 if (D->hasAttr<DLLImportAttr>()) 973 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 974 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 975 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 976 977 // Set visibility on a declaration only if it's explicit. 978 if (LV.visibilityExplicit()) 979 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 980 } 981 982 GV->setThreadLocal(D->isThreadSpecified()); 983 } 984 985 return GV; 986 } 987 988 989 llvm::GlobalVariable * 990 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 991 const llvm::Type *Ty, 992 llvm::GlobalValue::LinkageTypes Linkage) { 993 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 994 llvm::GlobalVariable *OldGV = 0; 995 996 997 if (GV) { 998 // Check if the variable has the right type. 999 if (GV->getType()->getElementType() == Ty) 1000 return GV; 1001 1002 // Because C++ name mangling, the only way we can end up with an already 1003 // existing global with the same name is if it has been declared extern "C". 1004 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1005 OldGV = GV; 1006 } 1007 1008 // Create a new variable. 1009 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1010 Linkage, 0, Name); 1011 1012 if (OldGV) { 1013 // Replace occurrences of the old variable if needed. 1014 GV->takeName(OldGV); 1015 1016 if (!OldGV->use_empty()) { 1017 llvm::Constant *NewPtrForOldDecl = 1018 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1019 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1020 } 1021 1022 OldGV->eraseFromParent(); 1023 } 1024 1025 return GV; 1026 } 1027 1028 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1029 /// given global variable. If Ty is non-null and if the global doesn't exist, 1030 /// then it will be greated with the specified type instead of whatever the 1031 /// normal requested type would be. 1032 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1033 const llvm::Type *Ty) { 1034 assert(D->hasGlobalStorage() && "Not a global variable"); 1035 QualType ASTTy = D->getType(); 1036 if (Ty == 0) 1037 Ty = getTypes().ConvertTypeForMem(ASTTy); 1038 1039 const llvm::PointerType *PTy = 1040 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1041 1042 llvm::StringRef MangledName = getMangledName(D); 1043 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1044 } 1045 1046 /// CreateRuntimeVariable - Create a new runtime global variable with the 1047 /// specified type and name. 1048 llvm::Constant * 1049 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1050 llvm::StringRef Name) { 1051 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1052 true); 1053 } 1054 1055 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1056 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1057 1058 if (MayDeferGeneration(D)) { 1059 // If we have not seen a reference to this variable yet, place it 1060 // into the deferred declarations table to be emitted if needed 1061 // later. 1062 llvm::StringRef MangledName = getMangledName(D); 1063 if (!GetGlobalValue(MangledName)) { 1064 DeferredDecls[MangledName] = D; 1065 return; 1066 } 1067 } 1068 1069 // The tentative definition is the only definition. 1070 EmitGlobalVarDefinition(D); 1071 } 1072 1073 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1074 if (DefinitionRequired) 1075 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1076 } 1077 1078 llvm::GlobalVariable::LinkageTypes 1079 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1080 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1081 return llvm::GlobalVariable::InternalLinkage; 1082 1083 if (const CXXMethodDecl *KeyFunction 1084 = RD->getASTContext().getKeyFunction(RD)) { 1085 // If this class has a key function, use that to determine the linkage of 1086 // the vtable. 1087 const FunctionDecl *Def = 0; 1088 if (KeyFunction->hasBody(Def)) 1089 KeyFunction = cast<CXXMethodDecl>(Def); 1090 1091 switch (KeyFunction->getTemplateSpecializationKind()) { 1092 case TSK_Undeclared: 1093 case TSK_ExplicitSpecialization: 1094 // When compiling with optimizations turned on, we emit all vtables, 1095 // even if the key function is not defined in the current translation 1096 // unit. If this is the case, use available_externally linkage. 1097 if (!Def && CodeGenOpts.OptimizationLevel) 1098 return llvm::GlobalVariable::AvailableExternallyLinkage; 1099 1100 if (KeyFunction->isInlined()) 1101 return !Context.getLangOptions().AppleKext ? 1102 llvm::GlobalVariable::LinkOnceODRLinkage : 1103 llvm::Function::InternalLinkage; 1104 1105 return llvm::GlobalVariable::ExternalLinkage; 1106 1107 case TSK_ImplicitInstantiation: 1108 return !Context.getLangOptions().AppleKext ? 1109 llvm::GlobalVariable::LinkOnceODRLinkage : 1110 llvm::Function::InternalLinkage; 1111 1112 case TSK_ExplicitInstantiationDefinition: 1113 return !Context.getLangOptions().AppleKext ? 1114 llvm::GlobalVariable::WeakODRLinkage : 1115 llvm::Function::InternalLinkage; 1116 1117 case TSK_ExplicitInstantiationDeclaration: 1118 // FIXME: Use available_externally linkage. However, this currently 1119 // breaks LLVM's build due to undefined symbols. 1120 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1121 return !Context.getLangOptions().AppleKext ? 1122 llvm::GlobalVariable::LinkOnceODRLinkage : 1123 llvm::Function::InternalLinkage; 1124 } 1125 } 1126 1127 if (Context.getLangOptions().AppleKext) 1128 return llvm::Function::InternalLinkage; 1129 1130 switch (RD->getTemplateSpecializationKind()) { 1131 case TSK_Undeclared: 1132 case TSK_ExplicitSpecialization: 1133 case TSK_ImplicitInstantiation: 1134 // FIXME: Use available_externally linkage. However, this currently 1135 // breaks LLVM's build due to undefined symbols. 1136 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1137 case TSK_ExplicitInstantiationDeclaration: 1138 return llvm::GlobalVariable::LinkOnceODRLinkage; 1139 1140 case TSK_ExplicitInstantiationDefinition: 1141 return llvm::GlobalVariable::WeakODRLinkage; 1142 } 1143 1144 // Silence GCC warning. 1145 return llvm::GlobalVariable::LinkOnceODRLinkage; 1146 } 1147 1148 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1149 return Context.toCharUnitsFromBits( 1150 TheTargetData.getTypeStoreSizeInBits(Ty)); 1151 } 1152 1153 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1154 llvm::Constant *Init = 0; 1155 QualType ASTTy = D->getType(); 1156 bool NonConstInit = false; 1157 1158 const Expr *InitExpr = D->getAnyInitializer(); 1159 1160 if (!InitExpr) { 1161 // This is a tentative definition; tentative definitions are 1162 // implicitly initialized with { 0 }. 1163 // 1164 // Note that tentative definitions are only emitted at the end of 1165 // a translation unit, so they should never have incomplete 1166 // type. In addition, EmitTentativeDefinition makes sure that we 1167 // never attempt to emit a tentative definition if a real one 1168 // exists. A use may still exists, however, so we still may need 1169 // to do a RAUW. 1170 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1171 Init = EmitNullConstant(D->getType()); 1172 } else { 1173 Init = EmitConstantExpr(InitExpr, D->getType()); 1174 if (!Init) { 1175 QualType T = InitExpr->getType(); 1176 if (D->getType()->isReferenceType()) 1177 T = D->getType(); 1178 1179 if (getLangOptions().CPlusPlus) { 1180 Init = EmitNullConstant(T); 1181 NonConstInit = true; 1182 } else { 1183 ErrorUnsupported(D, "static initializer"); 1184 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1185 } 1186 } else { 1187 // We don't need an initializer, so remove the entry for the delayed 1188 // initializer position (just in case this entry was delayed). 1189 if (getLangOptions().CPlusPlus) 1190 DelayedCXXInitPosition.erase(D); 1191 } 1192 } 1193 1194 const llvm::Type* InitType = Init->getType(); 1195 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1196 1197 // Strip off a bitcast if we got one back. 1198 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1199 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1200 // all zero index gep. 1201 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1202 Entry = CE->getOperand(0); 1203 } 1204 1205 // Entry is now either a Function or GlobalVariable. 1206 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1207 1208 // We have a definition after a declaration with the wrong type. 1209 // We must make a new GlobalVariable* and update everything that used OldGV 1210 // (a declaration or tentative definition) with the new GlobalVariable* 1211 // (which will be a definition). 1212 // 1213 // This happens if there is a prototype for a global (e.g. 1214 // "extern int x[];") and then a definition of a different type (e.g. 1215 // "int x[10];"). This also happens when an initializer has a different type 1216 // from the type of the global (this happens with unions). 1217 if (GV == 0 || 1218 GV->getType()->getElementType() != InitType || 1219 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1220 1221 // Move the old entry aside so that we'll create a new one. 1222 Entry->setName(llvm::StringRef()); 1223 1224 // Make a new global with the correct type, this is now guaranteed to work. 1225 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1226 1227 // Replace all uses of the old global with the new global 1228 llvm::Constant *NewPtrForOldDecl = 1229 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1230 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1231 1232 // Erase the old global, since it is no longer used. 1233 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1234 } 1235 1236 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1237 SourceManager &SM = Context.getSourceManager(); 1238 AddAnnotation(EmitAnnotateAttr(GV, AA, 1239 SM.getInstantiationLineNumber(D->getLocation()))); 1240 } 1241 1242 GV->setInitializer(Init); 1243 1244 // If it is safe to mark the global 'constant', do so now. 1245 GV->setConstant(false); 1246 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1247 GV->setConstant(true); 1248 1249 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1250 1251 // Set the llvm linkage type as appropriate. 1252 llvm::GlobalValue::LinkageTypes Linkage = 1253 GetLLVMLinkageVarDefinition(D, GV); 1254 GV->setLinkage(Linkage); 1255 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1256 // common vars aren't constant even if declared const. 1257 GV->setConstant(false); 1258 1259 SetCommonAttributes(D, GV); 1260 1261 // Emit the initializer function if necessary. 1262 if (NonConstInit) 1263 EmitCXXGlobalVarDeclInitFunc(D, GV); 1264 1265 // Emit global variable debug information. 1266 if (CGDebugInfo *DI = getDebugInfo()) { 1267 DI->setLocation(D->getLocation()); 1268 DI->EmitGlobalVariable(GV, D); 1269 } 1270 } 1271 1272 llvm::GlobalValue::LinkageTypes 1273 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1274 llvm::GlobalVariable *GV) { 1275 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1276 if (Linkage == GVA_Internal) 1277 return llvm::Function::InternalLinkage; 1278 else if (D->hasAttr<DLLImportAttr>()) 1279 return llvm::Function::DLLImportLinkage; 1280 else if (D->hasAttr<DLLExportAttr>()) 1281 return llvm::Function::DLLExportLinkage; 1282 else if (D->hasAttr<WeakAttr>()) { 1283 if (GV->isConstant()) 1284 return llvm::GlobalVariable::WeakODRLinkage; 1285 else 1286 return llvm::GlobalVariable::WeakAnyLinkage; 1287 } else if (Linkage == GVA_TemplateInstantiation || 1288 Linkage == GVA_ExplicitTemplateInstantiation) 1289 // FIXME: It seems like we can provide more specific linkage here 1290 // (LinkOnceODR, WeakODR). 1291 return llvm::GlobalVariable::WeakAnyLinkage; 1292 else if (!getLangOptions().CPlusPlus && 1293 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1294 D->getAttr<CommonAttr>()) && 1295 !D->hasExternalStorage() && !D->getInit() && 1296 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1297 // Thread local vars aren't considered common linkage. 1298 return llvm::GlobalVariable::CommonLinkage; 1299 } 1300 return llvm::GlobalVariable::ExternalLinkage; 1301 } 1302 1303 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1304 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1305 /// existing call uses of the old function in the module, this adjusts them to 1306 /// call the new function directly. 1307 /// 1308 /// This is not just a cleanup: the always_inline pass requires direct calls to 1309 /// functions to be able to inline them. If there is a bitcast in the way, it 1310 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1311 /// run at -O0. 1312 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1313 llvm::Function *NewFn) { 1314 // If we're redefining a global as a function, don't transform it. 1315 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1316 if (OldFn == 0) return; 1317 1318 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1319 llvm::SmallVector<llvm::Value*, 4> ArgList; 1320 1321 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1322 UI != E; ) { 1323 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1324 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1325 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1326 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1327 llvm::CallSite CS(CI); 1328 if (!CI || !CS.isCallee(I)) continue; 1329 1330 // If the return types don't match exactly, and if the call isn't dead, then 1331 // we can't transform this call. 1332 if (CI->getType() != NewRetTy && !CI->use_empty()) 1333 continue; 1334 1335 // If the function was passed too few arguments, don't transform. If extra 1336 // arguments were passed, we silently drop them. If any of the types 1337 // mismatch, we don't transform. 1338 unsigned ArgNo = 0; 1339 bool DontTransform = false; 1340 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1341 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1342 if (CS.arg_size() == ArgNo || 1343 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1344 DontTransform = true; 1345 break; 1346 } 1347 } 1348 if (DontTransform) 1349 continue; 1350 1351 // Okay, we can transform this. Create the new call instruction and copy 1352 // over the required information. 1353 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1354 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1355 ArgList.end(), "", CI); 1356 ArgList.clear(); 1357 if (!NewCall->getType()->isVoidTy()) 1358 NewCall->takeName(CI); 1359 NewCall->setAttributes(CI->getAttributes()); 1360 NewCall->setCallingConv(CI->getCallingConv()); 1361 1362 // Finally, remove the old call, replacing any uses with the new one. 1363 if (!CI->use_empty()) 1364 CI->replaceAllUsesWith(NewCall); 1365 1366 // Copy debug location attached to CI. 1367 if (!CI->getDebugLoc().isUnknown()) 1368 NewCall->setDebugLoc(CI->getDebugLoc()); 1369 CI->eraseFromParent(); 1370 } 1371 } 1372 1373 1374 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1375 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1376 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1377 // Get or create the prototype for the function. 1378 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1379 1380 // Strip off a bitcast if we got one back. 1381 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1382 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1383 Entry = CE->getOperand(0); 1384 } 1385 1386 1387 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1388 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1389 1390 // If the types mismatch then we have to rewrite the definition. 1391 assert(OldFn->isDeclaration() && 1392 "Shouldn't replace non-declaration"); 1393 1394 // F is the Function* for the one with the wrong type, we must make a new 1395 // Function* and update everything that used F (a declaration) with the new 1396 // Function* (which will be a definition). 1397 // 1398 // This happens if there is a prototype for a function 1399 // (e.g. "int f()") and then a definition of a different type 1400 // (e.g. "int f(int x)"). Move the old function aside so that it 1401 // doesn't interfere with GetAddrOfFunction. 1402 OldFn->setName(llvm::StringRef()); 1403 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1404 1405 // If this is an implementation of a function without a prototype, try to 1406 // replace any existing uses of the function (which may be calls) with uses 1407 // of the new function 1408 if (D->getType()->isFunctionNoProtoType()) { 1409 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1410 OldFn->removeDeadConstantUsers(); 1411 } 1412 1413 // Replace uses of F with the Function we will endow with a body. 1414 if (!Entry->use_empty()) { 1415 llvm::Constant *NewPtrForOldDecl = 1416 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1417 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1418 } 1419 1420 // Ok, delete the old function now, which is dead. 1421 OldFn->eraseFromParent(); 1422 1423 Entry = NewFn; 1424 } 1425 1426 // We need to set linkage and visibility on the function before 1427 // generating code for it because various parts of IR generation 1428 // want to propagate this information down (e.g. to local static 1429 // declarations). 1430 llvm::Function *Fn = cast<llvm::Function>(Entry); 1431 setFunctionLinkage(D, Fn); 1432 1433 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1434 setGlobalVisibility(Fn, D); 1435 1436 CodeGenFunction(*this).GenerateCode(D, Fn); 1437 1438 SetFunctionDefinitionAttributes(D, Fn); 1439 SetLLVMFunctionAttributesForDefinition(D, Fn); 1440 1441 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1442 AddGlobalCtor(Fn, CA->getPriority()); 1443 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1444 AddGlobalDtor(Fn, DA->getPriority()); 1445 } 1446 1447 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1448 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1449 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1450 assert(AA && "Not an alias?"); 1451 1452 llvm::StringRef MangledName = getMangledName(GD); 1453 1454 // If there is a definition in the module, then it wins over the alias. 1455 // This is dubious, but allow it to be safe. Just ignore the alias. 1456 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1457 if (Entry && !Entry->isDeclaration()) 1458 return; 1459 1460 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1461 1462 // Create a reference to the named value. This ensures that it is emitted 1463 // if a deferred decl. 1464 llvm::Constant *Aliasee; 1465 if (isa<llvm::FunctionType>(DeclTy)) 1466 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1467 /*ForVTable=*/false); 1468 else 1469 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1470 llvm::PointerType::getUnqual(DeclTy), 0); 1471 1472 // Create the new alias itself, but don't set a name yet. 1473 llvm::GlobalValue *GA = 1474 new llvm::GlobalAlias(Aliasee->getType(), 1475 llvm::Function::ExternalLinkage, 1476 "", Aliasee, &getModule()); 1477 1478 if (Entry) { 1479 assert(Entry->isDeclaration()); 1480 1481 // If there is a declaration in the module, then we had an extern followed 1482 // by the alias, as in: 1483 // extern int test6(); 1484 // ... 1485 // int test6() __attribute__((alias("test7"))); 1486 // 1487 // Remove it and replace uses of it with the alias. 1488 GA->takeName(Entry); 1489 1490 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1491 Entry->getType())); 1492 Entry->eraseFromParent(); 1493 } else { 1494 GA->setName(MangledName); 1495 } 1496 1497 // Set attributes which are particular to an alias; this is a 1498 // specialization of the attributes which may be set on a global 1499 // variable/function. 1500 if (D->hasAttr<DLLExportAttr>()) { 1501 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1502 // The dllexport attribute is ignored for undefined symbols. 1503 if (FD->hasBody()) 1504 GA->setLinkage(llvm::Function::DLLExportLinkage); 1505 } else { 1506 GA->setLinkage(llvm::Function::DLLExportLinkage); 1507 } 1508 } else if (D->hasAttr<WeakAttr>() || 1509 D->hasAttr<WeakRefAttr>() || 1510 D->hasAttr<WeakImportAttr>()) { 1511 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1512 } 1513 1514 SetCommonAttributes(D, GA); 1515 } 1516 1517 /// getBuiltinLibFunction - Given a builtin id for a function like 1518 /// "__builtin_fabsf", return a Function* for "fabsf". 1519 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1520 unsigned BuiltinID) { 1521 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1522 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1523 "isn't a lib fn"); 1524 1525 // Get the name, skip over the __builtin_ prefix (if necessary). 1526 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1527 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1528 Name += 10; 1529 1530 const llvm::FunctionType *Ty = 1531 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1532 1533 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); 1534 } 1535 1536 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1537 unsigned NumTys) { 1538 return llvm::Intrinsic::getDeclaration(&getModule(), 1539 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1540 } 1541 1542 static llvm::StringMapEntry<llvm::Constant*> & 1543 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1544 const StringLiteral *Literal, 1545 bool TargetIsLSB, 1546 bool &IsUTF16, 1547 unsigned &StringLength) { 1548 llvm::StringRef String = Literal->getString(); 1549 unsigned NumBytes = String.size(); 1550 1551 // Check for simple case. 1552 if (!Literal->containsNonAsciiOrNull()) { 1553 StringLength = NumBytes; 1554 return Map.GetOrCreateValue(String); 1555 } 1556 1557 // Otherwise, convert the UTF8 literals into a byte string. 1558 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1559 const UTF8 *FromPtr = (UTF8 *)String.data(); 1560 UTF16 *ToPtr = &ToBuf[0]; 1561 1562 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1563 &ToPtr, ToPtr + NumBytes, 1564 strictConversion); 1565 1566 // ConvertUTF8toUTF16 returns the length in ToPtr. 1567 StringLength = ToPtr - &ToBuf[0]; 1568 1569 // Render the UTF-16 string into a byte array and convert to the target byte 1570 // order. 1571 // 1572 // FIXME: This isn't something we should need to do here. 1573 llvm::SmallString<128> AsBytes; 1574 AsBytes.reserve(StringLength * 2); 1575 for (unsigned i = 0; i != StringLength; ++i) { 1576 unsigned short Val = ToBuf[i]; 1577 if (TargetIsLSB) { 1578 AsBytes.push_back(Val & 0xFF); 1579 AsBytes.push_back(Val >> 8); 1580 } else { 1581 AsBytes.push_back(Val >> 8); 1582 AsBytes.push_back(Val & 0xFF); 1583 } 1584 } 1585 // Append one extra null character, the second is automatically added by our 1586 // caller. 1587 AsBytes.push_back(0); 1588 1589 IsUTF16 = true; 1590 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1591 } 1592 1593 llvm::Constant * 1594 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1595 unsigned StringLength = 0; 1596 bool isUTF16 = false; 1597 llvm::StringMapEntry<llvm::Constant*> &Entry = 1598 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1599 getTargetData().isLittleEndian(), 1600 isUTF16, StringLength); 1601 1602 if (llvm::Constant *C = Entry.getValue()) 1603 return C; 1604 1605 llvm::Constant *Zero = 1606 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1607 llvm::Constant *Zeros[] = { Zero, Zero }; 1608 1609 // If we don't already have it, get __CFConstantStringClassReference. 1610 if (!CFConstantStringClassRef) { 1611 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1612 Ty = llvm::ArrayType::get(Ty, 0); 1613 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1614 "__CFConstantStringClassReference"); 1615 // Decay array -> ptr 1616 CFConstantStringClassRef = 1617 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1618 } 1619 1620 QualType CFTy = getContext().getCFConstantStringType(); 1621 1622 const llvm::StructType *STy = 1623 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1624 1625 std::vector<llvm::Constant*> Fields(4); 1626 1627 // Class pointer. 1628 Fields[0] = CFConstantStringClassRef; 1629 1630 // Flags. 1631 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1632 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1633 llvm::ConstantInt::get(Ty, 0x07C8); 1634 1635 // String pointer. 1636 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1637 1638 llvm::GlobalValue::LinkageTypes Linkage; 1639 bool isConstant; 1640 if (isUTF16) { 1641 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1642 Linkage = llvm::GlobalValue::InternalLinkage; 1643 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1644 // does make plain ascii ones writable. 1645 isConstant = true; 1646 } else { 1647 Linkage = llvm::GlobalValue::PrivateLinkage; 1648 isConstant = !Features.WritableStrings; 1649 } 1650 1651 llvm::GlobalVariable *GV = 1652 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1653 ".str"); 1654 GV->setUnnamedAddr(true); 1655 if (isUTF16) { 1656 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1657 GV->setAlignment(Align.getQuantity()); 1658 } 1659 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1660 1661 // String length. 1662 Ty = getTypes().ConvertType(getContext().LongTy); 1663 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1664 1665 // The struct. 1666 C = llvm::ConstantStruct::get(STy, Fields); 1667 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1668 llvm::GlobalVariable::PrivateLinkage, C, 1669 "_unnamed_cfstring_"); 1670 if (const char *Sect = getContext().Target.getCFStringSection()) 1671 GV->setSection(Sect); 1672 Entry.setValue(GV); 1673 1674 return GV; 1675 } 1676 1677 llvm::Constant * 1678 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1679 unsigned StringLength = 0; 1680 bool isUTF16 = false; 1681 llvm::StringMapEntry<llvm::Constant*> &Entry = 1682 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1683 getTargetData().isLittleEndian(), 1684 isUTF16, StringLength); 1685 1686 if (llvm::Constant *C = Entry.getValue()) 1687 return C; 1688 1689 llvm::Constant *Zero = 1690 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1691 llvm::Constant *Zeros[] = { Zero, Zero }; 1692 1693 // If we don't already have it, get _NSConstantStringClassReference. 1694 if (!ConstantStringClassRef) { 1695 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1696 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1697 Ty = llvm::ArrayType::get(Ty, 0); 1698 llvm::Constant *GV; 1699 if (StringClass.empty()) 1700 GV = CreateRuntimeVariable(Ty, 1701 Features.ObjCNonFragileABI ? 1702 "OBJC_CLASS_$_NSConstantString" : 1703 "_NSConstantStringClassReference"); 1704 else { 1705 std::string str; 1706 if (Features.ObjCNonFragileABI) 1707 str = "OBJC_CLASS_$_" + StringClass; 1708 else 1709 str = "_" + StringClass + "ClassReference"; 1710 GV = CreateRuntimeVariable(Ty, str); 1711 } 1712 // Decay array -> ptr 1713 ConstantStringClassRef = 1714 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1715 } 1716 1717 QualType NSTy = getContext().getNSConstantStringType(); 1718 1719 const llvm::StructType *STy = 1720 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1721 1722 std::vector<llvm::Constant*> Fields(3); 1723 1724 // Class pointer. 1725 Fields[0] = ConstantStringClassRef; 1726 1727 // String pointer. 1728 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1729 1730 llvm::GlobalValue::LinkageTypes Linkage; 1731 bool isConstant; 1732 if (isUTF16) { 1733 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1734 Linkage = llvm::GlobalValue::InternalLinkage; 1735 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1736 // does make plain ascii ones writable. 1737 isConstant = true; 1738 } else { 1739 Linkage = llvm::GlobalValue::PrivateLinkage; 1740 isConstant = !Features.WritableStrings; 1741 } 1742 1743 llvm::GlobalVariable *GV = 1744 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1745 ".str"); 1746 GV->setUnnamedAddr(true); 1747 if (isUTF16) { 1748 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1749 GV->setAlignment(Align.getQuantity()); 1750 } 1751 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1752 1753 // String length. 1754 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1755 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1756 1757 // The struct. 1758 C = llvm::ConstantStruct::get(STy, Fields); 1759 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1760 llvm::GlobalVariable::PrivateLinkage, C, 1761 "_unnamed_nsstring_"); 1762 // FIXME. Fix section. 1763 if (const char *Sect = 1764 Features.ObjCNonFragileABI 1765 ? getContext().Target.getNSStringNonFragileABISection() 1766 : getContext().Target.getNSStringSection()) 1767 GV->setSection(Sect); 1768 Entry.setValue(GV); 1769 1770 return GV; 1771 } 1772 1773 /// GetStringForStringLiteral - Return the appropriate bytes for a 1774 /// string literal, properly padded to match the literal type. 1775 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1776 const ASTContext &Context = getContext(); 1777 const ConstantArrayType *CAT = 1778 Context.getAsConstantArrayType(E->getType()); 1779 assert(CAT && "String isn't pointer or array!"); 1780 1781 // Resize the string to the right size. 1782 uint64_t RealLen = CAT->getSize().getZExtValue(); 1783 1784 if (E->isWide()) 1785 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1786 1787 std::string Str = E->getString().str(); 1788 Str.resize(RealLen, '\0'); 1789 1790 return Str; 1791 } 1792 1793 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1794 /// constant array for the given string literal. 1795 llvm::Constant * 1796 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1797 // FIXME: This can be more efficient. 1798 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1799 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1800 if (S->isWide()) { 1801 llvm::Type *DestTy = 1802 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1803 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1804 } 1805 return C; 1806 } 1807 1808 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1809 /// array for the given ObjCEncodeExpr node. 1810 llvm::Constant * 1811 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1812 std::string Str; 1813 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1814 1815 return GetAddrOfConstantCString(Str); 1816 } 1817 1818 1819 /// GenerateWritableString -- Creates storage for a string literal. 1820 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1821 bool constant, 1822 CodeGenModule &CGM, 1823 const char *GlobalName) { 1824 // Create Constant for this string literal. Don't add a '\0'. 1825 llvm::Constant *C = 1826 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1827 1828 // Create a global variable for this string 1829 llvm::GlobalVariable *GV = 1830 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1831 llvm::GlobalValue::PrivateLinkage, 1832 C, GlobalName); 1833 GV->setUnnamedAddr(true); 1834 return GV; 1835 } 1836 1837 /// GetAddrOfConstantString - Returns a pointer to a character array 1838 /// containing the literal. This contents are exactly that of the 1839 /// given string, i.e. it will not be null terminated automatically; 1840 /// see GetAddrOfConstantCString. Note that whether the result is 1841 /// actually a pointer to an LLVM constant depends on 1842 /// Feature.WriteableStrings. 1843 /// 1844 /// The result has pointer to array type. 1845 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1846 const char *GlobalName) { 1847 bool IsConstant = !Features.WritableStrings; 1848 1849 // Get the default prefix if a name wasn't specified. 1850 if (!GlobalName) 1851 GlobalName = ".str"; 1852 1853 // Don't share any string literals if strings aren't constant. 1854 if (!IsConstant) 1855 return GenerateStringLiteral(str, false, *this, GlobalName); 1856 1857 llvm::StringMapEntry<llvm::Constant *> &Entry = 1858 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1859 1860 if (Entry.getValue()) 1861 return Entry.getValue(); 1862 1863 // Create a global variable for this. 1864 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1865 Entry.setValue(C); 1866 return C; 1867 } 1868 1869 /// GetAddrOfConstantCString - Returns a pointer to a character 1870 /// array containing the literal and a terminating '\-' 1871 /// character. The result has pointer to array type. 1872 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1873 const char *GlobalName){ 1874 return GetAddrOfConstantString(str + '\0', GlobalName); 1875 } 1876 1877 /// EmitObjCPropertyImplementations - Emit information for synthesized 1878 /// properties for an implementation. 1879 void CodeGenModule::EmitObjCPropertyImplementations(const 1880 ObjCImplementationDecl *D) { 1881 for (ObjCImplementationDecl::propimpl_iterator 1882 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1883 ObjCPropertyImplDecl *PID = *i; 1884 1885 // Dynamic is just for type-checking. 1886 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1887 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1888 1889 // Determine which methods need to be implemented, some may have 1890 // been overridden. Note that ::isSynthesized is not the method 1891 // we want, that just indicates if the decl came from a 1892 // property. What we want to know is if the method is defined in 1893 // this implementation. 1894 if (!D->getInstanceMethod(PD->getGetterName())) 1895 CodeGenFunction(*this).GenerateObjCGetter( 1896 const_cast<ObjCImplementationDecl *>(D), PID); 1897 if (!PD->isReadOnly() && 1898 !D->getInstanceMethod(PD->getSetterName())) 1899 CodeGenFunction(*this).GenerateObjCSetter( 1900 const_cast<ObjCImplementationDecl *>(D), PID); 1901 } 1902 } 1903 } 1904 1905 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1906 /// for an implementation. 1907 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1908 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1909 return; 1910 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1911 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1912 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1913 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1914 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1915 D->getLocation(), 1916 D->getLocation(), cxxSelector, 1917 getContext().VoidTy, 0, 1918 DC, true, false, true, false, 1919 ObjCMethodDecl::Required); 1920 D->addInstanceMethod(DTORMethod); 1921 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1922 1923 II = &getContext().Idents.get(".cxx_construct"); 1924 cxxSelector = getContext().Selectors.getSelector(0, &II); 1925 // The constructor returns 'self'. 1926 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1927 D->getLocation(), 1928 D->getLocation(), cxxSelector, 1929 getContext().getObjCIdType(), 0, 1930 DC, true, false, true, false, 1931 ObjCMethodDecl::Required); 1932 D->addInstanceMethod(CTORMethod); 1933 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1934 1935 1936 } 1937 1938 /// EmitNamespace - Emit all declarations in a namespace. 1939 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1940 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1941 I != E; ++I) 1942 EmitTopLevelDecl(*I); 1943 } 1944 1945 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1946 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1947 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1948 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1949 ErrorUnsupported(LSD, "linkage spec"); 1950 return; 1951 } 1952 1953 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1954 I != E; ++I) 1955 EmitTopLevelDecl(*I); 1956 } 1957 1958 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1959 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1960 // If an error has occurred, stop code generation, but continue 1961 // parsing and semantic analysis (to ensure all warnings and errors 1962 // are emitted). 1963 if (Diags.hasErrorOccurred()) 1964 return; 1965 1966 // Ignore dependent declarations. 1967 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1968 return; 1969 1970 switch (D->getKind()) { 1971 case Decl::CXXConversion: 1972 case Decl::CXXMethod: 1973 case Decl::Function: 1974 // Skip function templates 1975 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1976 return; 1977 1978 EmitGlobal(cast<FunctionDecl>(D)); 1979 break; 1980 1981 case Decl::Var: 1982 EmitGlobal(cast<VarDecl>(D)); 1983 break; 1984 1985 // C++ Decls 1986 case Decl::Namespace: 1987 EmitNamespace(cast<NamespaceDecl>(D)); 1988 break; 1989 // No code generation needed. 1990 case Decl::UsingShadow: 1991 case Decl::Using: 1992 case Decl::UsingDirective: 1993 case Decl::ClassTemplate: 1994 case Decl::FunctionTemplate: 1995 case Decl::NamespaceAlias: 1996 break; 1997 case Decl::CXXConstructor: 1998 // Skip function templates 1999 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2000 return; 2001 2002 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2003 break; 2004 case Decl::CXXDestructor: 2005 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2006 break; 2007 2008 case Decl::StaticAssert: 2009 // Nothing to do. 2010 break; 2011 2012 // Objective-C Decls 2013 2014 // Forward declarations, no (immediate) code generation. 2015 case Decl::ObjCClass: 2016 case Decl::ObjCForwardProtocol: 2017 case Decl::ObjCInterface: 2018 break; 2019 2020 case Decl::ObjCCategory: { 2021 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2022 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2023 Context.ResetObjCLayout(CD->getClassInterface()); 2024 break; 2025 } 2026 2027 2028 case Decl::ObjCProtocol: 2029 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2030 break; 2031 2032 case Decl::ObjCCategoryImpl: 2033 // Categories have properties but don't support synthesize so we 2034 // can ignore them here. 2035 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2036 break; 2037 2038 case Decl::ObjCImplementation: { 2039 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2040 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2041 Context.ResetObjCLayout(OMD->getClassInterface()); 2042 EmitObjCPropertyImplementations(OMD); 2043 EmitObjCIvarInitializations(OMD); 2044 Runtime->GenerateClass(OMD); 2045 break; 2046 } 2047 case Decl::ObjCMethod: { 2048 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2049 // If this is not a prototype, emit the body. 2050 if (OMD->getBody()) 2051 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2052 break; 2053 } 2054 case Decl::ObjCCompatibleAlias: 2055 // compatibility-alias is a directive and has no code gen. 2056 break; 2057 2058 case Decl::LinkageSpec: 2059 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2060 break; 2061 2062 case Decl::FileScopeAsm: { 2063 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2064 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2065 2066 const std::string &S = getModule().getModuleInlineAsm(); 2067 if (S.empty()) 2068 getModule().setModuleInlineAsm(AsmString); 2069 else 2070 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2071 break; 2072 } 2073 2074 default: 2075 // Make sure we handled everything we should, every other kind is a 2076 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2077 // function. Need to recode Decl::Kind to do that easily. 2078 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2079 } 2080 } 2081 2082 /// Turns the given pointer into a constant. 2083 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2084 const void *Ptr) { 2085 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2086 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2087 return llvm::ConstantInt::get(i64, PtrInt); 2088 } 2089 2090 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2091 llvm::NamedMDNode *&GlobalMetadata, 2092 GlobalDecl D, 2093 llvm::GlobalValue *Addr) { 2094 if (!GlobalMetadata) 2095 GlobalMetadata = 2096 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2097 2098 // TODO: should we report variant information for ctors/dtors? 2099 llvm::Value *Ops[] = { 2100 Addr, 2101 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2102 }; 2103 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2104 } 2105 2106 /// Emits metadata nodes associating all the global values in the 2107 /// current module with the Decls they came from. This is useful for 2108 /// projects using IR gen as a subroutine. 2109 /// 2110 /// Since there's currently no way to associate an MDNode directly 2111 /// with an llvm::GlobalValue, we create a global named metadata 2112 /// with the name 'clang.global.decl.ptrs'. 2113 void CodeGenModule::EmitDeclMetadata() { 2114 llvm::NamedMDNode *GlobalMetadata = 0; 2115 2116 // StaticLocalDeclMap 2117 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2118 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2119 I != E; ++I) { 2120 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2121 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2122 } 2123 } 2124 2125 /// Emits metadata nodes for all the local variables in the current 2126 /// function. 2127 void CodeGenFunction::EmitDeclMetadata() { 2128 if (LocalDeclMap.empty()) return; 2129 2130 llvm::LLVMContext &Context = getLLVMContext(); 2131 2132 // Find the unique metadata ID for this name. 2133 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2134 2135 llvm::NamedMDNode *GlobalMetadata = 0; 2136 2137 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2138 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2139 const Decl *D = I->first; 2140 llvm::Value *Addr = I->second; 2141 2142 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2143 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2144 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2145 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2146 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2147 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2148 } 2149 } 2150 } 2151 2152 ///@name Custom Runtime Function Interfaces 2153 ///@{ 2154 // 2155 // FIXME: These can be eliminated once we can have clients just get the required 2156 // AST nodes from the builtin tables. 2157 2158 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2159 if (BlockObjectDispose) 2160 return BlockObjectDispose; 2161 2162 // If we saw an explicit decl, use that. 2163 if (BlockObjectDisposeDecl) { 2164 return BlockObjectDispose = GetAddrOfFunction( 2165 BlockObjectDisposeDecl, 2166 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2167 } 2168 2169 // Otherwise construct the function by hand. 2170 const llvm::FunctionType *FTy; 2171 std::vector<const llvm::Type*> ArgTys; 2172 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2173 ArgTys.push_back(PtrToInt8Ty); 2174 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2175 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2176 return BlockObjectDispose = 2177 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2178 } 2179 2180 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2181 if (BlockObjectAssign) 2182 return BlockObjectAssign; 2183 2184 // If we saw an explicit decl, use that. 2185 if (BlockObjectAssignDecl) { 2186 return BlockObjectAssign = GetAddrOfFunction( 2187 BlockObjectAssignDecl, 2188 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2189 } 2190 2191 // Otherwise construct the function by hand. 2192 const llvm::FunctionType *FTy; 2193 std::vector<const llvm::Type*> ArgTys; 2194 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2195 ArgTys.push_back(PtrToInt8Ty); 2196 ArgTys.push_back(PtrToInt8Ty); 2197 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2198 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2199 return BlockObjectAssign = 2200 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2201 } 2202 2203 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2204 if (NSConcreteGlobalBlock) 2205 return NSConcreteGlobalBlock; 2206 2207 // If we saw an explicit decl, use that. 2208 if (NSConcreteGlobalBlockDecl) { 2209 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2210 NSConcreteGlobalBlockDecl, 2211 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2212 } 2213 2214 // Otherwise construct the variable by hand. 2215 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2216 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2217 } 2218 2219 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2220 if (NSConcreteStackBlock) 2221 return NSConcreteStackBlock; 2222 2223 // If we saw an explicit decl, use that. 2224 if (NSConcreteStackBlockDecl) { 2225 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2226 NSConcreteStackBlockDecl, 2227 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2228 } 2229 2230 // Otherwise construct the variable by hand. 2231 return NSConcreteStackBlock = CreateRuntimeVariable( 2232 PtrToInt8Ty, "_NSConcreteStackBlock"); 2233 } 2234 2235 ///@} 2236