xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 3c23948481d8319f26f860dc0dad1f4d4d7f1037)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
168                                         const NamedDecl *D) const {
169   // Internal definitions always have default visibility.
170   if (GV->hasLocalLinkage()) {
171     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
172     return;
173   }
174 
175   // Set visibility for definitions.
176   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
177   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
178     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
179 }
180 
181 /// Set the symbol visibility of type information (vtable and RTTI)
182 /// associated with the given type.
183 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
184                                       const CXXRecordDecl *RD,
185                                       TypeVisibilityKind TVK) const {
186   setGlobalVisibility(GV, RD);
187 
188   if (!CodeGenOpts.HiddenWeakVTables)
189     return;
190 
191   // We never want to drop the visibility for RTTI names.
192   if (TVK == TVK_ForRTTIName)
193     return;
194 
195   // We want to drop the visibility to hidden for weak type symbols.
196   // This isn't possible if there might be unresolved references
197   // elsewhere that rely on this symbol being visible.
198 
199   // This should be kept roughly in sync with setThunkVisibility
200   // in CGVTables.cpp.
201 
202   // Preconditions.
203   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
204       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
205     return;
206 
207   // Don't override an explicit visibility attribute.
208   if (RD->hasAttr<VisibilityAttr>())
209     return;
210 
211   switch (RD->getTemplateSpecializationKind()) {
212   // We have to disable the optimization if this is an EI definition
213   // because there might be EI declarations in other shared objects.
214   case TSK_ExplicitInstantiationDefinition:
215   case TSK_ExplicitInstantiationDeclaration:
216     return;
217 
218   // Every use of a non-template class's type information has to emit it.
219   case TSK_Undeclared:
220     break;
221 
222   // In theory, implicit instantiations can ignore the possibility of
223   // an explicit instantiation declaration because there necessarily
224   // must be an EI definition somewhere with default visibility.  In
225   // practice, it's possible to have an explicit instantiation for
226   // an arbitrary template class, and linkers aren't necessarily able
227   // to deal with mixed-visibility symbols.
228   case TSK_ExplicitSpecialization:
229   case TSK_ImplicitInstantiation:
230     if (!CodeGenOpts.HiddenWeakTemplateVTables)
231       return;
232     break;
233   }
234 
235   // If there's a key function, there may be translation units
236   // that don't have the key function's definition.  But ignore
237   // this if we're emitting RTTI under -fno-rtti.
238   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
239     if (Context.getKeyFunction(RD))
240       return;
241   }
242 
243   // Otherwise, drop the visibility to hidden.
244   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
245   GV->setUnnamedAddr(true);
246 }
247 
248 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
249   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
250 
251   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
252   if (!Str.empty())
253     return Str;
254 
255   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
256     IdentifierInfo *II = ND->getIdentifier();
257     assert(II && "Attempt to mangle unnamed decl.");
258 
259     Str = II->getName();
260     return Str;
261   }
262 
263   llvm::SmallString<256> Buffer;
264   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
265     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
266   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
267     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
268   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
269     getCXXABI().getMangleContext().mangleBlock(BD, Buffer);
270   else
271     getCXXABI().getMangleContext().mangleName(ND, Buffer);
272 
273   // Allocate space for the mangled name.
274   size_t Length = Buffer.size();
275   char *Name = MangledNamesAllocator.Allocate<char>(Length);
276   std::copy(Buffer.begin(), Buffer.end(), Name);
277 
278   Str = llvm::StringRef(Name, Length);
279 
280   return Str;
281 }
282 
283 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
284                                         const BlockDecl *BD) {
285   MangleContext &MangleCtx = getCXXABI().getMangleContext();
286   const Decl *D = GD.getDecl();
287   if (D == 0)
288     MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer());
289   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
290     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer());
291   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
292     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer());
293   else
294     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer());
295 }
296 
297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
298   return getModule().getNamedValue(Name);
299 }
300 
301 /// AddGlobalCtor - Add a function to the list that will be called before
302 /// main() runs.
303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
304   // FIXME: Type coercion of void()* types.
305   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
306 }
307 
308 /// AddGlobalDtor - Add a function to the list that will be called
309 /// when the module is unloaded.
310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
311   // FIXME: Type coercion of void()* types.
312   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
313 }
314 
315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
316   // Ctor function type is void()*.
317   llvm::FunctionType* CtorFTy =
318     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
319   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
320 
321   // Get the type of a ctor entry, { i32, void ()* }.
322   llvm::StructType* CtorStructTy =
323     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
324                           llvm::PointerType::getUnqual(CtorFTy), NULL);
325 
326   // Construct the constructor and destructor arrays.
327   std::vector<llvm::Constant*> Ctors;
328   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
329     std::vector<llvm::Constant*> S;
330     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
331                 I->second, false));
332     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
333     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
334   }
335 
336   if (!Ctors.empty()) {
337     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
338     new llvm::GlobalVariable(TheModule, AT, false,
339                              llvm::GlobalValue::AppendingLinkage,
340                              llvm::ConstantArray::get(AT, Ctors),
341                              GlobalName);
342   }
343 }
344 
345 void CodeGenModule::EmitAnnotations() {
346   if (Annotations.empty())
347     return;
348 
349   // Create a new global variable for the ConstantStruct in the Module.
350   llvm::Constant *Array =
351   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
352                                                 Annotations.size()),
353                            Annotations);
354   llvm::GlobalValue *gv =
355   new llvm::GlobalVariable(TheModule, Array->getType(), false,
356                            llvm::GlobalValue::AppendingLinkage, Array,
357                            "llvm.global.annotations");
358   gv->setSection("llvm.metadata");
359 }
360 
361 llvm::GlobalValue::LinkageTypes
362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
363   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
364 
365   if (Linkage == GVA_Internal)
366     return llvm::Function::InternalLinkage;
367 
368   if (D->hasAttr<DLLExportAttr>())
369     return llvm::Function::DLLExportLinkage;
370 
371   if (D->hasAttr<WeakAttr>())
372     return llvm::Function::WeakAnyLinkage;
373 
374   // In C99 mode, 'inline' functions are guaranteed to have a strong
375   // definition somewhere else, so we can use available_externally linkage.
376   if (Linkage == GVA_C99Inline)
377     return llvm::Function::AvailableExternallyLinkage;
378 
379   // In C++, the compiler has to emit a definition in every translation unit
380   // that references the function.  We should use linkonce_odr because
381   // a) if all references in this translation unit are optimized away, we
382   // don't need to codegen it.  b) if the function persists, it needs to be
383   // merged with other definitions. c) C++ has the ODR, so we know the
384   // definition is dependable.
385   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
386     return !Context.getLangOptions().AppleKext
387              ? llvm::Function::LinkOnceODRLinkage
388              : llvm::Function::InternalLinkage;
389 
390   // An explicit instantiation of a template has weak linkage, since
391   // explicit instantiations can occur in multiple translation units
392   // and must all be equivalent. However, we are not allowed to
393   // throw away these explicit instantiations.
394   if (Linkage == GVA_ExplicitTemplateInstantiation)
395     return !Context.getLangOptions().AppleKext
396              ? llvm::Function::WeakODRLinkage
397              : llvm::Function::InternalLinkage;
398 
399   // Otherwise, we have strong external linkage.
400   assert(Linkage == GVA_StrongExternal);
401   return llvm::Function::ExternalLinkage;
402 }
403 
404 
405 /// SetFunctionDefinitionAttributes - Set attributes for a global.
406 ///
407 /// FIXME: This is currently only done for aliases and functions, but not for
408 /// variables (these details are set in EmitGlobalVarDefinition for variables).
409 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
410                                                     llvm::GlobalValue *GV) {
411   SetCommonAttributes(D, GV);
412 }
413 
414 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
415                                               const CGFunctionInfo &Info,
416                                               llvm::Function *F) {
417   unsigned CallingConv;
418   AttributeListType AttributeList;
419   ConstructAttributeList(Info, D, AttributeList, CallingConv);
420   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
421                                           AttributeList.size()));
422   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
423 }
424 
425 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
426                                                            llvm::Function *F) {
427   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
428     F->addFnAttr(llvm::Attribute::NoUnwind);
429 
430   if (D->hasAttr<AlwaysInlineAttr>())
431     F->addFnAttr(llvm::Attribute::AlwaysInline);
432 
433   if (D->hasAttr<NakedAttr>())
434     F->addFnAttr(llvm::Attribute::Naked);
435 
436   if (D->hasAttr<NoInlineAttr>())
437     F->addFnAttr(llvm::Attribute::NoInline);
438 
439   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
440     F->setUnnamedAddr(true);
441 
442   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
443     F->addFnAttr(llvm::Attribute::StackProtect);
444   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
445     F->addFnAttr(llvm::Attribute::StackProtectReq);
446 
447   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
448   if (alignment)
449     F->setAlignment(alignment);
450 
451   // C++ ABI requires 2-byte alignment for member functions.
452   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
453     F->setAlignment(2);
454 }
455 
456 void CodeGenModule::SetCommonAttributes(const Decl *D,
457                                         llvm::GlobalValue *GV) {
458   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
459     setGlobalVisibility(GV, ND);
460   else
461     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
462 
463   if (D->hasAttr<UsedAttr>())
464     AddUsedGlobal(GV);
465 
466   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
467     GV->setSection(SA->getName());
468 
469   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
470 }
471 
472 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
473                                                   llvm::Function *F,
474                                                   const CGFunctionInfo &FI) {
475   SetLLVMFunctionAttributes(D, FI, F);
476   SetLLVMFunctionAttributesForDefinition(D, F);
477 
478   F->setLinkage(llvm::Function::InternalLinkage);
479 
480   SetCommonAttributes(D, F);
481 }
482 
483 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
484                                           llvm::Function *F,
485                                           bool IsIncompleteFunction) {
486   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
487 
488   if (!IsIncompleteFunction)
489     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
490 
491   // Only a few attributes are set on declarations; these may later be
492   // overridden by a definition.
493 
494   if (FD->hasAttr<DLLImportAttr>()) {
495     F->setLinkage(llvm::Function::DLLImportLinkage);
496   } else if (FD->hasAttr<WeakAttr>() ||
497              FD->hasAttr<WeakImportAttr>()) {
498     // "extern_weak" is overloaded in LLVM; we probably should have
499     // separate linkage types for this.
500     F->setLinkage(llvm::Function::ExternalWeakLinkage);
501   } else {
502     F->setLinkage(llvm::Function::ExternalLinkage);
503 
504     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
505     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
506       F->setVisibility(GetLLVMVisibility(LV.visibility()));
507     }
508   }
509 
510   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
511     F->setSection(SA->getName());
512 }
513 
514 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
515   assert(!GV->isDeclaration() &&
516          "Only globals with definition can force usage.");
517   LLVMUsed.push_back(GV);
518 }
519 
520 void CodeGenModule::EmitLLVMUsed() {
521   // Don't create llvm.used if there is no need.
522   if (LLVMUsed.empty())
523     return;
524 
525   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
526 
527   // Convert LLVMUsed to what ConstantArray needs.
528   std::vector<llvm::Constant*> UsedArray;
529   UsedArray.resize(LLVMUsed.size());
530   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
531     UsedArray[i] =
532      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
533                                       i8PTy);
534   }
535 
536   if (UsedArray.empty())
537     return;
538   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
539 
540   llvm::GlobalVariable *GV =
541     new llvm::GlobalVariable(getModule(), ATy, false,
542                              llvm::GlobalValue::AppendingLinkage,
543                              llvm::ConstantArray::get(ATy, UsedArray),
544                              "llvm.used");
545 
546   GV->setSection("llvm.metadata");
547 }
548 
549 void CodeGenModule::EmitDeferred() {
550   // Emit code for any potentially referenced deferred decls.  Since a
551   // previously unused static decl may become used during the generation of code
552   // for a static function, iterate until no  changes are made.
553 
554   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
555     if (!DeferredVTables.empty()) {
556       const CXXRecordDecl *RD = DeferredVTables.back();
557       DeferredVTables.pop_back();
558       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
559       continue;
560     }
561 
562     GlobalDecl D = DeferredDeclsToEmit.back();
563     DeferredDeclsToEmit.pop_back();
564 
565     // Check to see if we've already emitted this.  This is necessary
566     // for a couple of reasons: first, decls can end up in the
567     // deferred-decls queue multiple times, and second, decls can end
568     // up with definitions in unusual ways (e.g. by an extern inline
569     // function acquiring a strong function redefinition).  Just
570     // ignore these cases.
571     //
572     // TODO: That said, looking this up multiple times is very wasteful.
573     llvm::StringRef Name = getMangledName(D);
574     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
575     assert(CGRef && "Deferred decl wasn't referenced?");
576 
577     if (!CGRef->isDeclaration())
578       continue;
579 
580     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
581     // purposes an alias counts as a definition.
582     if (isa<llvm::GlobalAlias>(CGRef))
583       continue;
584 
585     // Otherwise, emit the definition and move on to the next one.
586     EmitGlobalDefinition(D);
587   }
588 }
589 
590 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
591 /// annotation information for a given GlobalValue.  The annotation struct is
592 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
593 /// GlobalValue being annotated.  The second field is the constant string
594 /// created from the AnnotateAttr's annotation.  The third field is a constant
595 /// string containing the name of the translation unit.  The fourth field is
596 /// the line number in the file of the annotated value declaration.
597 ///
598 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
599 ///        appears to.
600 ///
601 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
602                                                 const AnnotateAttr *AA,
603                                                 unsigned LineNo) {
604   llvm::Module *M = &getModule();
605 
606   // get [N x i8] constants for the annotation string, and the filename string
607   // which are the 2nd and 3rd elements of the global annotation structure.
608   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
609   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
610                                                   AA->getAnnotation(), true);
611   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
612                                                   M->getModuleIdentifier(),
613                                                   true);
614 
615   // Get the two global values corresponding to the ConstantArrays we just
616   // created to hold the bytes of the strings.
617   llvm::GlobalValue *annoGV =
618     new llvm::GlobalVariable(*M, anno->getType(), false,
619                              llvm::GlobalValue::PrivateLinkage, anno,
620                              GV->getName());
621   // translation unit name string, emitted into the llvm.metadata section.
622   llvm::GlobalValue *unitGV =
623     new llvm::GlobalVariable(*M, unit->getType(), false,
624                              llvm::GlobalValue::PrivateLinkage, unit,
625                              ".str");
626   unitGV->setUnnamedAddr(true);
627 
628   // Create the ConstantStruct for the global annotation.
629   llvm::Constant *Fields[4] = {
630     llvm::ConstantExpr::getBitCast(GV, SBP),
631     llvm::ConstantExpr::getBitCast(annoGV, SBP),
632     llvm::ConstantExpr::getBitCast(unitGV, SBP),
633     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
634   };
635   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
636 }
637 
638 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
639   // Never defer when EmitAllDecls is specified.
640   if (Features.EmitAllDecls)
641     return false;
642 
643   return !getContext().DeclMustBeEmitted(Global);
644 }
645 
646 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
647   const AliasAttr *AA = VD->getAttr<AliasAttr>();
648   assert(AA && "No alias?");
649 
650   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
651 
652   // See if there is already something with the target's name in the module.
653   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
654 
655   llvm::Constant *Aliasee;
656   if (isa<llvm::FunctionType>(DeclTy))
657     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
658                                       /*ForVTable=*/false);
659   else
660     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
661                                     llvm::PointerType::getUnqual(DeclTy), 0);
662   if (!Entry) {
663     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
664     F->setLinkage(llvm::Function::ExternalWeakLinkage);
665     WeakRefReferences.insert(F);
666   }
667 
668   return Aliasee;
669 }
670 
671 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
672   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
673 
674   // Weak references don't produce any output by themselves.
675   if (Global->hasAttr<WeakRefAttr>())
676     return;
677 
678   // If this is an alias definition (which otherwise looks like a declaration)
679   // emit it now.
680   if (Global->hasAttr<AliasAttr>())
681     return EmitAliasDefinition(GD);
682 
683   // Ignore declarations, they will be emitted on their first use.
684   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
685     if (FD->getIdentifier()) {
686       llvm::StringRef Name = FD->getName();
687       if (Name == "_Block_object_assign") {
688         BlockObjectAssignDecl = FD;
689       } else if (Name == "_Block_object_dispose") {
690         BlockObjectDisposeDecl = FD;
691       }
692     }
693 
694     // Forward declarations are emitted lazily on first use.
695     if (!FD->isThisDeclarationADefinition())
696       return;
697   } else {
698     const VarDecl *VD = cast<VarDecl>(Global);
699     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
700 
701     if (VD->getIdentifier()) {
702       llvm::StringRef Name = VD->getName();
703       if (Name == "_NSConcreteGlobalBlock") {
704         NSConcreteGlobalBlockDecl = VD;
705       } else if (Name == "_NSConcreteStackBlock") {
706         NSConcreteStackBlockDecl = VD;
707       }
708     }
709 
710 
711     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
712       return;
713   }
714 
715   // Defer code generation when possible if this is a static definition, inline
716   // function etc.  These we only want to emit if they are used.
717   if (!MayDeferGeneration(Global)) {
718     // Emit the definition if it can't be deferred.
719     EmitGlobalDefinition(GD);
720     return;
721   }
722 
723   // If we're deferring emission of a C++ variable with an
724   // initializer, remember the order in which it appeared in the file.
725   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
726       cast<VarDecl>(Global)->hasInit()) {
727     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
728     CXXGlobalInits.push_back(0);
729   }
730 
731   // If the value has already been used, add it directly to the
732   // DeferredDeclsToEmit list.
733   llvm::StringRef MangledName = getMangledName(GD);
734   if (GetGlobalValue(MangledName))
735     DeferredDeclsToEmit.push_back(GD);
736   else {
737     // Otherwise, remember that we saw a deferred decl with this name.  The
738     // first use of the mangled name will cause it to move into
739     // DeferredDeclsToEmit.
740     DeferredDecls[MangledName] = GD;
741   }
742 }
743 
744 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
745   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
746 
747   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
748                                  Context.getSourceManager(),
749                                  "Generating code for declaration");
750 
751   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
752     // At -O0, don't generate IR for functions with available_externally
753     // linkage.
754     if (CodeGenOpts.OptimizationLevel == 0 &&
755         !Function->hasAttr<AlwaysInlineAttr>() &&
756         getFunctionLinkage(Function)
757                                   == llvm::Function::AvailableExternallyLinkage)
758       return;
759 
760     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
761       if (Method->isVirtual())
762         getVTables().EmitThunks(GD);
763 
764       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
765         return EmitCXXConstructor(CD, GD.getCtorType());
766 
767       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
768         return EmitCXXDestructor(DD, GD.getDtorType());
769     }
770 
771     return EmitGlobalFunctionDefinition(GD);
772   }
773 
774   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
775     return EmitGlobalVarDefinition(VD);
776 
777   assert(0 && "Invalid argument to EmitGlobalDefinition()");
778 }
779 
780 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
781 /// module, create and return an llvm Function with the specified type. If there
782 /// is something in the module with the specified name, return it potentially
783 /// bitcasted to the right type.
784 ///
785 /// If D is non-null, it specifies a decl that correspond to this.  This is used
786 /// to set the attributes on the function when it is first created.
787 llvm::Constant *
788 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
789                                        const llvm::Type *Ty,
790                                        GlobalDecl D, bool ForVTable) {
791   // Lookup the entry, lazily creating it if necessary.
792   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
793   if (Entry) {
794     if (WeakRefReferences.count(Entry)) {
795       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
796       if (FD && !FD->hasAttr<WeakAttr>())
797         Entry->setLinkage(llvm::Function::ExternalLinkage);
798 
799       WeakRefReferences.erase(Entry);
800     }
801 
802     if (Entry->getType()->getElementType() == Ty)
803       return Entry;
804 
805     // Make sure the result is of the correct type.
806     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
807     return llvm::ConstantExpr::getBitCast(Entry, PTy);
808   }
809 
810   // This function doesn't have a complete type (for example, the return
811   // type is an incomplete struct). Use a fake type instead, and make
812   // sure not to try to set attributes.
813   bool IsIncompleteFunction = false;
814 
815   const llvm::FunctionType *FTy;
816   if (isa<llvm::FunctionType>(Ty)) {
817     FTy = cast<llvm::FunctionType>(Ty);
818   } else {
819     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
820     IsIncompleteFunction = true;
821   }
822 
823   llvm::Function *F = llvm::Function::Create(FTy,
824                                              llvm::Function::ExternalLinkage,
825                                              MangledName, &getModule());
826   assert(F->getName() == MangledName && "name was uniqued!");
827   if (D.getDecl())
828     SetFunctionAttributes(D, F, IsIncompleteFunction);
829 
830   // This is the first use or definition of a mangled name.  If there is a
831   // deferred decl with this name, remember that we need to emit it at the end
832   // of the file.
833   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
834   if (DDI != DeferredDecls.end()) {
835     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
836     // list, and remove it from DeferredDecls (since we don't need it anymore).
837     DeferredDeclsToEmit.push_back(DDI->second);
838     DeferredDecls.erase(DDI);
839 
840   // Otherwise, there are cases we have to worry about where we're
841   // using a declaration for which we must emit a definition but where
842   // we might not find a top-level definition:
843   //   - member functions defined inline in their classes
844   //   - friend functions defined inline in some class
845   //   - special member functions with implicit definitions
846   // If we ever change our AST traversal to walk into class methods,
847   // this will be unnecessary.
848   //
849   // We also don't emit a definition for a function if it's going to be an entry
850   // in a vtable, unless it's already marked as used.
851   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
852     // Look for a declaration that's lexically in a record.
853     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
854     do {
855       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
856         if (FD->isImplicit() && !ForVTable) {
857           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
858           DeferredDeclsToEmit.push_back(D);
859           break;
860         } else if (FD->isThisDeclarationADefinition()) {
861           DeferredDeclsToEmit.push_back(D);
862           break;
863         }
864       }
865       FD = FD->getPreviousDeclaration();
866     } while (FD);
867   }
868 
869   // Make sure the result is of the requested type.
870   if (!IsIncompleteFunction) {
871     assert(F->getType()->getElementType() == Ty);
872     return F;
873   }
874 
875   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
876   return llvm::ConstantExpr::getBitCast(F, PTy);
877 }
878 
879 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
880 /// non-null, then this function will use the specified type if it has to
881 /// create it (this occurs when we see a definition of the function).
882 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
883                                                  const llvm::Type *Ty,
884                                                  bool ForVTable) {
885   // If there was no specific requested type, just convert it now.
886   if (!Ty)
887     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
888 
889   llvm::StringRef MangledName = getMangledName(GD);
890   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
891 }
892 
893 /// CreateRuntimeFunction - Create a new runtime function with the specified
894 /// type and name.
895 llvm::Constant *
896 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
897                                      llvm::StringRef Name) {
898   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
899 }
900 
901 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
902   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
903     return false;
904   if (Context.getLangOptions().CPlusPlus &&
905       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
906     // FIXME: We should do something fancier here!
907     return false;
908   }
909   return true;
910 }
911 
912 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
913 /// create and return an llvm GlobalVariable with the specified type.  If there
914 /// is something in the module with the specified name, return it potentially
915 /// bitcasted to the right type.
916 ///
917 /// If D is non-null, it specifies a decl that correspond to this.  This is used
918 /// to set the attributes on the global when it is first created.
919 llvm::Constant *
920 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
921                                      const llvm::PointerType *Ty,
922                                      const VarDecl *D,
923                                      bool UnnamedAddr) {
924   // Lookup the entry, lazily creating it if necessary.
925   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
926   if (Entry) {
927     if (WeakRefReferences.count(Entry)) {
928       if (D && !D->hasAttr<WeakAttr>())
929         Entry->setLinkage(llvm::Function::ExternalLinkage);
930 
931       WeakRefReferences.erase(Entry);
932     }
933 
934     if (UnnamedAddr)
935       Entry->setUnnamedAddr(true);
936 
937     if (Entry->getType() == Ty)
938       return Entry;
939 
940     // Make sure the result is of the correct type.
941     return llvm::ConstantExpr::getBitCast(Entry, Ty);
942   }
943 
944   // This is the first use or definition of a mangled name.  If there is a
945   // deferred decl with this name, remember that we need to emit it at the end
946   // of the file.
947   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
948   if (DDI != DeferredDecls.end()) {
949     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
950     // list, and remove it from DeferredDecls (since we don't need it anymore).
951     DeferredDeclsToEmit.push_back(DDI->second);
952     DeferredDecls.erase(DDI);
953   }
954 
955   llvm::GlobalVariable *GV =
956     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
957                              llvm::GlobalValue::ExternalLinkage,
958                              0, MangledName, 0,
959                              false, Ty->getAddressSpace());
960 
961   // Handle things which are present even on external declarations.
962   if (D) {
963     // FIXME: This code is overly simple and should be merged with other global
964     // handling.
965     GV->setConstant(DeclIsConstantGlobal(Context, D));
966 
967     // Set linkage and visibility in case we never see a definition.
968     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
969     if (LV.linkage() != ExternalLinkage) {
970       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
971     } else {
972       if (D->hasAttr<DLLImportAttr>())
973         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
974       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
975         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
976 
977       // Set visibility on a declaration only if it's explicit.
978       if (LV.visibilityExplicit())
979         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
980     }
981 
982     GV->setThreadLocal(D->isThreadSpecified());
983   }
984 
985   return GV;
986 }
987 
988 
989 llvm::GlobalVariable *
990 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
991                                       const llvm::Type *Ty,
992                                       llvm::GlobalValue::LinkageTypes Linkage) {
993   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
994   llvm::GlobalVariable *OldGV = 0;
995 
996 
997   if (GV) {
998     // Check if the variable has the right type.
999     if (GV->getType()->getElementType() == Ty)
1000       return GV;
1001 
1002     // Because C++ name mangling, the only way we can end up with an already
1003     // existing global with the same name is if it has been declared extern "C".
1004       assert(GV->isDeclaration() && "Declaration has wrong type!");
1005     OldGV = GV;
1006   }
1007 
1008   // Create a new variable.
1009   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1010                                 Linkage, 0, Name);
1011 
1012   if (OldGV) {
1013     // Replace occurrences of the old variable if needed.
1014     GV->takeName(OldGV);
1015 
1016     if (!OldGV->use_empty()) {
1017       llvm::Constant *NewPtrForOldDecl =
1018       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1019       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1020     }
1021 
1022     OldGV->eraseFromParent();
1023   }
1024 
1025   return GV;
1026 }
1027 
1028 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1029 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1030 /// then it will be greated with the specified type instead of whatever the
1031 /// normal requested type would be.
1032 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1033                                                   const llvm::Type *Ty) {
1034   assert(D->hasGlobalStorage() && "Not a global variable");
1035   QualType ASTTy = D->getType();
1036   if (Ty == 0)
1037     Ty = getTypes().ConvertTypeForMem(ASTTy);
1038 
1039   const llvm::PointerType *PTy =
1040     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1041 
1042   llvm::StringRef MangledName = getMangledName(D);
1043   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1044 }
1045 
1046 /// CreateRuntimeVariable - Create a new runtime global variable with the
1047 /// specified type and name.
1048 llvm::Constant *
1049 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1050                                      llvm::StringRef Name) {
1051   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1052                                true);
1053 }
1054 
1055 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1056   assert(!D->getInit() && "Cannot emit definite definitions here!");
1057 
1058   if (MayDeferGeneration(D)) {
1059     // If we have not seen a reference to this variable yet, place it
1060     // into the deferred declarations table to be emitted if needed
1061     // later.
1062     llvm::StringRef MangledName = getMangledName(D);
1063     if (!GetGlobalValue(MangledName)) {
1064       DeferredDecls[MangledName] = D;
1065       return;
1066     }
1067   }
1068 
1069   // The tentative definition is the only definition.
1070   EmitGlobalVarDefinition(D);
1071 }
1072 
1073 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1074   if (DefinitionRequired)
1075     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1076 }
1077 
1078 llvm::GlobalVariable::LinkageTypes
1079 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1080   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1081     return llvm::GlobalVariable::InternalLinkage;
1082 
1083   if (const CXXMethodDecl *KeyFunction
1084                                     = RD->getASTContext().getKeyFunction(RD)) {
1085     // If this class has a key function, use that to determine the linkage of
1086     // the vtable.
1087     const FunctionDecl *Def = 0;
1088     if (KeyFunction->hasBody(Def))
1089       KeyFunction = cast<CXXMethodDecl>(Def);
1090 
1091     switch (KeyFunction->getTemplateSpecializationKind()) {
1092       case TSK_Undeclared:
1093       case TSK_ExplicitSpecialization:
1094         // When compiling with optimizations turned on, we emit all vtables,
1095         // even if the key function is not defined in the current translation
1096         // unit. If this is the case, use available_externally linkage.
1097         if (!Def && CodeGenOpts.OptimizationLevel)
1098           return llvm::GlobalVariable::AvailableExternallyLinkage;
1099 
1100         if (KeyFunction->isInlined())
1101           return !Context.getLangOptions().AppleKext ?
1102                    llvm::GlobalVariable::LinkOnceODRLinkage :
1103                    llvm::Function::InternalLinkage;
1104 
1105         return llvm::GlobalVariable::ExternalLinkage;
1106 
1107       case TSK_ImplicitInstantiation:
1108         return !Context.getLangOptions().AppleKext ?
1109                  llvm::GlobalVariable::LinkOnceODRLinkage :
1110                  llvm::Function::InternalLinkage;
1111 
1112       case TSK_ExplicitInstantiationDefinition:
1113         return !Context.getLangOptions().AppleKext ?
1114                  llvm::GlobalVariable::WeakODRLinkage :
1115                  llvm::Function::InternalLinkage;
1116 
1117       case TSK_ExplicitInstantiationDeclaration:
1118         // FIXME: Use available_externally linkage. However, this currently
1119         // breaks LLVM's build due to undefined symbols.
1120         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1121         return !Context.getLangOptions().AppleKext ?
1122                  llvm::GlobalVariable::LinkOnceODRLinkage :
1123                  llvm::Function::InternalLinkage;
1124     }
1125   }
1126 
1127   if (Context.getLangOptions().AppleKext)
1128     return llvm::Function::InternalLinkage;
1129 
1130   switch (RD->getTemplateSpecializationKind()) {
1131   case TSK_Undeclared:
1132   case TSK_ExplicitSpecialization:
1133   case TSK_ImplicitInstantiation:
1134     // FIXME: Use available_externally linkage. However, this currently
1135     // breaks LLVM's build due to undefined symbols.
1136     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1137   case TSK_ExplicitInstantiationDeclaration:
1138     return llvm::GlobalVariable::LinkOnceODRLinkage;
1139 
1140   case TSK_ExplicitInstantiationDefinition:
1141       return llvm::GlobalVariable::WeakODRLinkage;
1142   }
1143 
1144   // Silence GCC warning.
1145   return llvm::GlobalVariable::LinkOnceODRLinkage;
1146 }
1147 
1148 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1149     return Context.toCharUnitsFromBits(
1150       TheTargetData.getTypeStoreSizeInBits(Ty));
1151 }
1152 
1153 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1154   llvm::Constant *Init = 0;
1155   QualType ASTTy = D->getType();
1156   bool NonConstInit = false;
1157 
1158   const Expr *InitExpr = D->getAnyInitializer();
1159 
1160   if (!InitExpr) {
1161     // This is a tentative definition; tentative definitions are
1162     // implicitly initialized with { 0 }.
1163     //
1164     // Note that tentative definitions are only emitted at the end of
1165     // a translation unit, so they should never have incomplete
1166     // type. In addition, EmitTentativeDefinition makes sure that we
1167     // never attempt to emit a tentative definition if a real one
1168     // exists. A use may still exists, however, so we still may need
1169     // to do a RAUW.
1170     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1171     Init = EmitNullConstant(D->getType());
1172   } else {
1173     Init = EmitConstantExpr(InitExpr, D->getType());
1174     if (!Init) {
1175       QualType T = InitExpr->getType();
1176       if (D->getType()->isReferenceType())
1177         T = D->getType();
1178 
1179       if (getLangOptions().CPlusPlus) {
1180         Init = EmitNullConstant(T);
1181         NonConstInit = true;
1182       } else {
1183         ErrorUnsupported(D, "static initializer");
1184         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1185       }
1186     } else {
1187       // We don't need an initializer, so remove the entry for the delayed
1188       // initializer position (just in case this entry was delayed).
1189       if (getLangOptions().CPlusPlus)
1190         DelayedCXXInitPosition.erase(D);
1191     }
1192   }
1193 
1194   const llvm::Type* InitType = Init->getType();
1195   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1196 
1197   // Strip off a bitcast if we got one back.
1198   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1199     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1200            // all zero index gep.
1201            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1202     Entry = CE->getOperand(0);
1203   }
1204 
1205   // Entry is now either a Function or GlobalVariable.
1206   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1207 
1208   // We have a definition after a declaration with the wrong type.
1209   // We must make a new GlobalVariable* and update everything that used OldGV
1210   // (a declaration or tentative definition) with the new GlobalVariable*
1211   // (which will be a definition).
1212   //
1213   // This happens if there is a prototype for a global (e.g.
1214   // "extern int x[];") and then a definition of a different type (e.g.
1215   // "int x[10];"). This also happens when an initializer has a different type
1216   // from the type of the global (this happens with unions).
1217   if (GV == 0 ||
1218       GV->getType()->getElementType() != InitType ||
1219       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1220 
1221     // Move the old entry aside so that we'll create a new one.
1222     Entry->setName(llvm::StringRef());
1223 
1224     // Make a new global with the correct type, this is now guaranteed to work.
1225     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1226 
1227     // Replace all uses of the old global with the new global
1228     llvm::Constant *NewPtrForOldDecl =
1229         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1230     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1231 
1232     // Erase the old global, since it is no longer used.
1233     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1234   }
1235 
1236   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1237     SourceManager &SM = Context.getSourceManager();
1238     AddAnnotation(EmitAnnotateAttr(GV, AA,
1239                               SM.getInstantiationLineNumber(D->getLocation())));
1240   }
1241 
1242   GV->setInitializer(Init);
1243 
1244   // If it is safe to mark the global 'constant', do so now.
1245   GV->setConstant(false);
1246   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1247     GV->setConstant(true);
1248 
1249   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1250 
1251   // Set the llvm linkage type as appropriate.
1252   llvm::GlobalValue::LinkageTypes Linkage =
1253     GetLLVMLinkageVarDefinition(D, GV);
1254   GV->setLinkage(Linkage);
1255   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1256     // common vars aren't constant even if declared const.
1257     GV->setConstant(false);
1258 
1259   SetCommonAttributes(D, GV);
1260 
1261   // Emit the initializer function if necessary.
1262   if (NonConstInit)
1263     EmitCXXGlobalVarDeclInitFunc(D, GV);
1264 
1265   // Emit global variable debug information.
1266   if (CGDebugInfo *DI = getDebugInfo()) {
1267     DI->setLocation(D->getLocation());
1268     DI->EmitGlobalVariable(GV, D);
1269   }
1270 }
1271 
1272 llvm::GlobalValue::LinkageTypes
1273 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1274                                            llvm::GlobalVariable *GV) {
1275   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1276   if (Linkage == GVA_Internal)
1277     return llvm::Function::InternalLinkage;
1278   else if (D->hasAttr<DLLImportAttr>())
1279     return llvm::Function::DLLImportLinkage;
1280   else if (D->hasAttr<DLLExportAttr>())
1281     return llvm::Function::DLLExportLinkage;
1282   else if (D->hasAttr<WeakAttr>()) {
1283     if (GV->isConstant())
1284       return llvm::GlobalVariable::WeakODRLinkage;
1285     else
1286       return llvm::GlobalVariable::WeakAnyLinkage;
1287   } else if (Linkage == GVA_TemplateInstantiation ||
1288              Linkage == GVA_ExplicitTemplateInstantiation)
1289     // FIXME: It seems like we can provide more specific linkage here
1290     // (LinkOnceODR, WeakODR).
1291     return llvm::GlobalVariable::WeakAnyLinkage;
1292   else if (!getLangOptions().CPlusPlus &&
1293            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1294              D->getAttr<CommonAttr>()) &&
1295            !D->hasExternalStorage() && !D->getInit() &&
1296            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1297     // Thread local vars aren't considered common linkage.
1298     return llvm::GlobalVariable::CommonLinkage;
1299   }
1300   return llvm::GlobalVariable::ExternalLinkage;
1301 }
1302 
1303 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1304 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1305 /// existing call uses of the old function in the module, this adjusts them to
1306 /// call the new function directly.
1307 ///
1308 /// This is not just a cleanup: the always_inline pass requires direct calls to
1309 /// functions to be able to inline them.  If there is a bitcast in the way, it
1310 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1311 /// run at -O0.
1312 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1313                                                       llvm::Function *NewFn) {
1314   // If we're redefining a global as a function, don't transform it.
1315   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1316   if (OldFn == 0) return;
1317 
1318   const llvm::Type *NewRetTy = NewFn->getReturnType();
1319   llvm::SmallVector<llvm::Value*, 4> ArgList;
1320 
1321   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1322        UI != E; ) {
1323     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1324     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1325     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1326     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1327     llvm::CallSite CS(CI);
1328     if (!CI || !CS.isCallee(I)) continue;
1329 
1330     // If the return types don't match exactly, and if the call isn't dead, then
1331     // we can't transform this call.
1332     if (CI->getType() != NewRetTy && !CI->use_empty())
1333       continue;
1334 
1335     // If the function was passed too few arguments, don't transform.  If extra
1336     // arguments were passed, we silently drop them.  If any of the types
1337     // mismatch, we don't transform.
1338     unsigned ArgNo = 0;
1339     bool DontTransform = false;
1340     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1341          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1342       if (CS.arg_size() == ArgNo ||
1343           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1344         DontTransform = true;
1345         break;
1346       }
1347     }
1348     if (DontTransform)
1349       continue;
1350 
1351     // Okay, we can transform this.  Create the new call instruction and copy
1352     // over the required information.
1353     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1354     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1355                                                      ArgList.end(), "", CI);
1356     ArgList.clear();
1357     if (!NewCall->getType()->isVoidTy())
1358       NewCall->takeName(CI);
1359     NewCall->setAttributes(CI->getAttributes());
1360     NewCall->setCallingConv(CI->getCallingConv());
1361 
1362     // Finally, remove the old call, replacing any uses with the new one.
1363     if (!CI->use_empty())
1364       CI->replaceAllUsesWith(NewCall);
1365 
1366     // Copy debug location attached to CI.
1367     if (!CI->getDebugLoc().isUnknown())
1368       NewCall->setDebugLoc(CI->getDebugLoc());
1369     CI->eraseFromParent();
1370   }
1371 }
1372 
1373 
1374 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1375   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1376   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1377   // Get or create the prototype for the function.
1378   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1379 
1380   // Strip off a bitcast if we got one back.
1381   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1382     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1383     Entry = CE->getOperand(0);
1384   }
1385 
1386 
1387   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1388     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1389 
1390     // If the types mismatch then we have to rewrite the definition.
1391     assert(OldFn->isDeclaration() &&
1392            "Shouldn't replace non-declaration");
1393 
1394     // F is the Function* for the one with the wrong type, we must make a new
1395     // Function* and update everything that used F (a declaration) with the new
1396     // Function* (which will be a definition).
1397     //
1398     // This happens if there is a prototype for a function
1399     // (e.g. "int f()") and then a definition of a different type
1400     // (e.g. "int f(int x)").  Move the old function aside so that it
1401     // doesn't interfere with GetAddrOfFunction.
1402     OldFn->setName(llvm::StringRef());
1403     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1404 
1405     // If this is an implementation of a function without a prototype, try to
1406     // replace any existing uses of the function (which may be calls) with uses
1407     // of the new function
1408     if (D->getType()->isFunctionNoProtoType()) {
1409       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1410       OldFn->removeDeadConstantUsers();
1411     }
1412 
1413     // Replace uses of F with the Function we will endow with a body.
1414     if (!Entry->use_empty()) {
1415       llvm::Constant *NewPtrForOldDecl =
1416         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1417       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1418     }
1419 
1420     // Ok, delete the old function now, which is dead.
1421     OldFn->eraseFromParent();
1422 
1423     Entry = NewFn;
1424   }
1425 
1426   // We need to set linkage and visibility on the function before
1427   // generating code for it because various parts of IR generation
1428   // want to propagate this information down (e.g. to local static
1429   // declarations).
1430   llvm::Function *Fn = cast<llvm::Function>(Entry);
1431   setFunctionLinkage(D, Fn);
1432 
1433   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1434   setGlobalVisibility(Fn, D);
1435 
1436   CodeGenFunction(*this).GenerateCode(D, Fn);
1437 
1438   SetFunctionDefinitionAttributes(D, Fn);
1439   SetLLVMFunctionAttributesForDefinition(D, Fn);
1440 
1441   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1442     AddGlobalCtor(Fn, CA->getPriority());
1443   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1444     AddGlobalDtor(Fn, DA->getPriority());
1445 }
1446 
1447 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1448   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1449   const AliasAttr *AA = D->getAttr<AliasAttr>();
1450   assert(AA && "Not an alias?");
1451 
1452   llvm::StringRef MangledName = getMangledName(GD);
1453 
1454   // If there is a definition in the module, then it wins over the alias.
1455   // This is dubious, but allow it to be safe.  Just ignore the alias.
1456   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1457   if (Entry && !Entry->isDeclaration())
1458     return;
1459 
1460   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1461 
1462   // Create a reference to the named value.  This ensures that it is emitted
1463   // if a deferred decl.
1464   llvm::Constant *Aliasee;
1465   if (isa<llvm::FunctionType>(DeclTy))
1466     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1467                                       /*ForVTable=*/false);
1468   else
1469     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1470                                     llvm::PointerType::getUnqual(DeclTy), 0);
1471 
1472   // Create the new alias itself, but don't set a name yet.
1473   llvm::GlobalValue *GA =
1474     new llvm::GlobalAlias(Aliasee->getType(),
1475                           llvm::Function::ExternalLinkage,
1476                           "", Aliasee, &getModule());
1477 
1478   if (Entry) {
1479     assert(Entry->isDeclaration());
1480 
1481     // If there is a declaration in the module, then we had an extern followed
1482     // by the alias, as in:
1483     //   extern int test6();
1484     //   ...
1485     //   int test6() __attribute__((alias("test7")));
1486     //
1487     // Remove it and replace uses of it with the alias.
1488     GA->takeName(Entry);
1489 
1490     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1491                                                           Entry->getType()));
1492     Entry->eraseFromParent();
1493   } else {
1494     GA->setName(MangledName);
1495   }
1496 
1497   // Set attributes which are particular to an alias; this is a
1498   // specialization of the attributes which may be set on a global
1499   // variable/function.
1500   if (D->hasAttr<DLLExportAttr>()) {
1501     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1502       // The dllexport attribute is ignored for undefined symbols.
1503       if (FD->hasBody())
1504         GA->setLinkage(llvm::Function::DLLExportLinkage);
1505     } else {
1506       GA->setLinkage(llvm::Function::DLLExportLinkage);
1507     }
1508   } else if (D->hasAttr<WeakAttr>() ||
1509              D->hasAttr<WeakRefAttr>() ||
1510              D->hasAttr<WeakImportAttr>()) {
1511     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1512   }
1513 
1514   SetCommonAttributes(D, GA);
1515 }
1516 
1517 /// getBuiltinLibFunction - Given a builtin id for a function like
1518 /// "__builtin_fabsf", return a Function* for "fabsf".
1519 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1520                                                   unsigned BuiltinID) {
1521   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1522           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1523          "isn't a lib fn");
1524 
1525   // Get the name, skip over the __builtin_ prefix (if necessary).
1526   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1527   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1528     Name += 10;
1529 
1530   const llvm::FunctionType *Ty =
1531     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1532 
1533   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1534 }
1535 
1536 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1537                                             unsigned NumTys) {
1538   return llvm::Intrinsic::getDeclaration(&getModule(),
1539                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1540 }
1541 
1542 static llvm::StringMapEntry<llvm::Constant*> &
1543 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1544                          const StringLiteral *Literal,
1545                          bool TargetIsLSB,
1546                          bool &IsUTF16,
1547                          unsigned &StringLength) {
1548   llvm::StringRef String = Literal->getString();
1549   unsigned NumBytes = String.size();
1550 
1551   // Check for simple case.
1552   if (!Literal->containsNonAsciiOrNull()) {
1553     StringLength = NumBytes;
1554     return Map.GetOrCreateValue(String);
1555   }
1556 
1557   // Otherwise, convert the UTF8 literals into a byte string.
1558   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1559   const UTF8 *FromPtr = (UTF8 *)String.data();
1560   UTF16 *ToPtr = &ToBuf[0];
1561 
1562   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1563                            &ToPtr, ToPtr + NumBytes,
1564                            strictConversion);
1565 
1566   // ConvertUTF8toUTF16 returns the length in ToPtr.
1567   StringLength = ToPtr - &ToBuf[0];
1568 
1569   // Render the UTF-16 string into a byte array and convert to the target byte
1570   // order.
1571   //
1572   // FIXME: This isn't something we should need to do here.
1573   llvm::SmallString<128> AsBytes;
1574   AsBytes.reserve(StringLength * 2);
1575   for (unsigned i = 0; i != StringLength; ++i) {
1576     unsigned short Val = ToBuf[i];
1577     if (TargetIsLSB) {
1578       AsBytes.push_back(Val & 0xFF);
1579       AsBytes.push_back(Val >> 8);
1580     } else {
1581       AsBytes.push_back(Val >> 8);
1582       AsBytes.push_back(Val & 0xFF);
1583     }
1584   }
1585   // Append one extra null character, the second is automatically added by our
1586   // caller.
1587   AsBytes.push_back(0);
1588 
1589   IsUTF16 = true;
1590   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1591 }
1592 
1593 llvm::Constant *
1594 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1595   unsigned StringLength = 0;
1596   bool isUTF16 = false;
1597   llvm::StringMapEntry<llvm::Constant*> &Entry =
1598     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1599                              getTargetData().isLittleEndian(),
1600                              isUTF16, StringLength);
1601 
1602   if (llvm::Constant *C = Entry.getValue())
1603     return C;
1604 
1605   llvm::Constant *Zero =
1606       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1607   llvm::Constant *Zeros[] = { Zero, Zero };
1608 
1609   // If we don't already have it, get __CFConstantStringClassReference.
1610   if (!CFConstantStringClassRef) {
1611     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1612     Ty = llvm::ArrayType::get(Ty, 0);
1613     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1614                                            "__CFConstantStringClassReference");
1615     // Decay array -> ptr
1616     CFConstantStringClassRef =
1617       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1618   }
1619 
1620   QualType CFTy = getContext().getCFConstantStringType();
1621 
1622   const llvm::StructType *STy =
1623     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1624 
1625   std::vector<llvm::Constant*> Fields(4);
1626 
1627   // Class pointer.
1628   Fields[0] = CFConstantStringClassRef;
1629 
1630   // Flags.
1631   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1632   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1633     llvm::ConstantInt::get(Ty, 0x07C8);
1634 
1635   // String pointer.
1636   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1637 
1638   llvm::GlobalValue::LinkageTypes Linkage;
1639   bool isConstant;
1640   if (isUTF16) {
1641     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1642     Linkage = llvm::GlobalValue::InternalLinkage;
1643     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1644     // does make plain ascii ones writable.
1645     isConstant = true;
1646   } else {
1647     Linkage = llvm::GlobalValue::PrivateLinkage;
1648     isConstant = !Features.WritableStrings;
1649   }
1650 
1651   llvm::GlobalVariable *GV =
1652     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1653                              ".str");
1654   GV->setUnnamedAddr(true);
1655   if (isUTF16) {
1656     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1657     GV->setAlignment(Align.getQuantity());
1658   }
1659   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1660 
1661   // String length.
1662   Ty = getTypes().ConvertType(getContext().LongTy);
1663   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1664 
1665   // The struct.
1666   C = llvm::ConstantStruct::get(STy, Fields);
1667   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1668                                 llvm::GlobalVariable::PrivateLinkage, C,
1669                                 "_unnamed_cfstring_");
1670   if (const char *Sect = getContext().Target.getCFStringSection())
1671     GV->setSection(Sect);
1672   Entry.setValue(GV);
1673 
1674   return GV;
1675 }
1676 
1677 llvm::Constant *
1678 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1679   unsigned StringLength = 0;
1680   bool isUTF16 = false;
1681   llvm::StringMapEntry<llvm::Constant*> &Entry =
1682     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1683                              getTargetData().isLittleEndian(),
1684                              isUTF16, StringLength);
1685 
1686   if (llvm::Constant *C = Entry.getValue())
1687     return C;
1688 
1689   llvm::Constant *Zero =
1690   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1691   llvm::Constant *Zeros[] = { Zero, Zero };
1692 
1693   // If we don't already have it, get _NSConstantStringClassReference.
1694   if (!ConstantStringClassRef) {
1695     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1696     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1697     Ty = llvm::ArrayType::get(Ty, 0);
1698     llvm::Constant *GV;
1699     if (StringClass.empty())
1700       GV = CreateRuntimeVariable(Ty,
1701                                  Features.ObjCNonFragileABI ?
1702                                  "OBJC_CLASS_$_NSConstantString" :
1703                                  "_NSConstantStringClassReference");
1704     else {
1705       std::string str;
1706       if (Features.ObjCNonFragileABI)
1707         str = "OBJC_CLASS_$_" + StringClass;
1708       else
1709         str = "_" + StringClass + "ClassReference";
1710       GV = CreateRuntimeVariable(Ty, str);
1711     }
1712     // Decay array -> ptr
1713     ConstantStringClassRef =
1714     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1715   }
1716 
1717   QualType NSTy = getContext().getNSConstantStringType();
1718 
1719   const llvm::StructType *STy =
1720   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1721 
1722   std::vector<llvm::Constant*> Fields(3);
1723 
1724   // Class pointer.
1725   Fields[0] = ConstantStringClassRef;
1726 
1727   // String pointer.
1728   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1729 
1730   llvm::GlobalValue::LinkageTypes Linkage;
1731   bool isConstant;
1732   if (isUTF16) {
1733     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1734     Linkage = llvm::GlobalValue::InternalLinkage;
1735     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1736     // does make plain ascii ones writable.
1737     isConstant = true;
1738   } else {
1739     Linkage = llvm::GlobalValue::PrivateLinkage;
1740     isConstant = !Features.WritableStrings;
1741   }
1742 
1743   llvm::GlobalVariable *GV =
1744   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1745                            ".str");
1746   GV->setUnnamedAddr(true);
1747   if (isUTF16) {
1748     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1749     GV->setAlignment(Align.getQuantity());
1750   }
1751   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1752 
1753   // String length.
1754   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1755   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1756 
1757   // The struct.
1758   C = llvm::ConstantStruct::get(STy, Fields);
1759   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1760                                 llvm::GlobalVariable::PrivateLinkage, C,
1761                                 "_unnamed_nsstring_");
1762   // FIXME. Fix section.
1763   if (const char *Sect =
1764         Features.ObjCNonFragileABI
1765           ? getContext().Target.getNSStringNonFragileABISection()
1766           : getContext().Target.getNSStringSection())
1767     GV->setSection(Sect);
1768   Entry.setValue(GV);
1769 
1770   return GV;
1771 }
1772 
1773 /// GetStringForStringLiteral - Return the appropriate bytes for a
1774 /// string literal, properly padded to match the literal type.
1775 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1776   const ASTContext &Context = getContext();
1777   const ConstantArrayType *CAT =
1778     Context.getAsConstantArrayType(E->getType());
1779   assert(CAT && "String isn't pointer or array!");
1780 
1781   // Resize the string to the right size.
1782   uint64_t RealLen = CAT->getSize().getZExtValue();
1783 
1784   if (E->isWide())
1785     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1786 
1787   std::string Str = E->getString().str();
1788   Str.resize(RealLen, '\0');
1789 
1790   return Str;
1791 }
1792 
1793 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1794 /// constant array for the given string literal.
1795 llvm::Constant *
1796 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1797   // FIXME: This can be more efficient.
1798   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1799   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1800   if (S->isWide()) {
1801     llvm::Type *DestTy =
1802         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1803     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1804   }
1805   return C;
1806 }
1807 
1808 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1809 /// array for the given ObjCEncodeExpr node.
1810 llvm::Constant *
1811 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1812   std::string Str;
1813   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1814 
1815   return GetAddrOfConstantCString(Str);
1816 }
1817 
1818 
1819 /// GenerateWritableString -- Creates storage for a string literal.
1820 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1821                                              bool constant,
1822                                              CodeGenModule &CGM,
1823                                              const char *GlobalName) {
1824   // Create Constant for this string literal. Don't add a '\0'.
1825   llvm::Constant *C =
1826       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1827 
1828   // Create a global variable for this string
1829   llvm::GlobalVariable *GV =
1830     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1831                              llvm::GlobalValue::PrivateLinkage,
1832                              C, GlobalName);
1833   GV->setUnnamedAddr(true);
1834   return GV;
1835 }
1836 
1837 /// GetAddrOfConstantString - Returns a pointer to a character array
1838 /// containing the literal. This contents are exactly that of the
1839 /// given string, i.e. it will not be null terminated automatically;
1840 /// see GetAddrOfConstantCString. Note that whether the result is
1841 /// actually a pointer to an LLVM constant depends on
1842 /// Feature.WriteableStrings.
1843 ///
1844 /// The result has pointer to array type.
1845 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1846                                                        const char *GlobalName) {
1847   bool IsConstant = !Features.WritableStrings;
1848 
1849   // Get the default prefix if a name wasn't specified.
1850   if (!GlobalName)
1851     GlobalName = ".str";
1852 
1853   // Don't share any string literals if strings aren't constant.
1854   if (!IsConstant)
1855     return GenerateStringLiteral(str, false, *this, GlobalName);
1856 
1857   llvm::StringMapEntry<llvm::Constant *> &Entry =
1858     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1859 
1860   if (Entry.getValue())
1861     return Entry.getValue();
1862 
1863   // Create a global variable for this.
1864   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1865   Entry.setValue(C);
1866   return C;
1867 }
1868 
1869 /// GetAddrOfConstantCString - Returns a pointer to a character
1870 /// array containing the literal and a terminating '\-'
1871 /// character. The result has pointer to array type.
1872 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1873                                                         const char *GlobalName){
1874   return GetAddrOfConstantString(str + '\0', GlobalName);
1875 }
1876 
1877 /// EmitObjCPropertyImplementations - Emit information for synthesized
1878 /// properties for an implementation.
1879 void CodeGenModule::EmitObjCPropertyImplementations(const
1880                                                     ObjCImplementationDecl *D) {
1881   for (ObjCImplementationDecl::propimpl_iterator
1882          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1883     ObjCPropertyImplDecl *PID = *i;
1884 
1885     // Dynamic is just for type-checking.
1886     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1887       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1888 
1889       // Determine which methods need to be implemented, some may have
1890       // been overridden. Note that ::isSynthesized is not the method
1891       // we want, that just indicates if the decl came from a
1892       // property. What we want to know is if the method is defined in
1893       // this implementation.
1894       if (!D->getInstanceMethod(PD->getGetterName()))
1895         CodeGenFunction(*this).GenerateObjCGetter(
1896                                  const_cast<ObjCImplementationDecl *>(D), PID);
1897       if (!PD->isReadOnly() &&
1898           !D->getInstanceMethod(PD->getSetterName()))
1899         CodeGenFunction(*this).GenerateObjCSetter(
1900                                  const_cast<ObjCImplementationDecl *>(D), PID);
1901     }
1902   }
1903 }
1904 
1905 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1906 /// for an implementation.
1907 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1908   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1909     return;
1910   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1911   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1912   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1913   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1914   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1915                                                   D->getLocation(),
1916                                                   D->getLocation(), cxxSelector,
1917                                                   getContext().VoidTy, 0,
1918                                                   DC, true, false, true, false,
1919                                                   ObjCMethodDecl::Required);
1920   D->addInstanceMethod(DTORMethod);
1921   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1922 
1923   II = &getContext().Idents.get(".cxx_construct");
1924   cxxSelector = getContext().Selectors.getSelector(0, &II);
1925   // The constructor returns 'self'.
1926   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1927                                                 D->getLocation(),
1928                                                 D->getLocation(), cxxSelector,
1929                                                 getContext().getObjCIdType(), 0,
1930                                                 DC, true, false, true, false,
1931                                                 ObjCMethodDecl::Required);
1932   D->addInstanceMethod(CTORMethod);
1933   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1934 
1935 
1936 }
1937 
1938 /// EmitNamespace - Emit all declarations in a namespace.
1939 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1940   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1941        I != E; ++I)
1942     EmitTopLevelDecl(*I);
1943 }
1944 
1945 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1946 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1947   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1948       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1949     ErrorUnsupported(LSD, "linkage spec");
1950     return;
1951   }
1952 
1953   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1954        I != E; ++I)
1955     EmitTopLevelDecl(*I);
1956 }
1957 
1958 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1959 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1960   // If an error has occurred, stop code generation, but continue
1961   // parsing and semantic analysis (to ensure all warnings and errors
1962   // are emitted).
1963   if (Diags.hasErrorOccurred())
1964     return;
1965 
1966   // Ignore dependent declarations.
1967   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1968     return;
1969 
1970   switch (D->getKind()) {
1971   case Decl::CXXConversion:
1972   case Decl::CXXMethod:
1973   case Decl::Function:
1974     // Skip function templates
1975     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1976       return;
1977 
1978     EmitGlobal(cast<FunctionDecl>(D));
1979     break;
1980 
1981   case Decl::Var:
1982     EmitGlobal(cast<VarDecl>(D));
1983     break;
1984 
1985   // C++ Decls
1986   case Decl::Namespace:
1987     EmitNamespace(cast<NamespaceDecl>(D));
1988     break;
1989     // No code generation needed.
1990   case Decl::UsingShadow:
1991   case Decl::Using:
1992   case Decl::UsingDirective:
1993   case Decl::ClassTemplate:
1994   case Decl::FunctionTemplate:
1995   case Decl::NamespaceAlias:
1996     break;
1997   case Decl::CXXConstructor:
1998     // Skip function templates
1999     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2000       return;
2001 
2002     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2003     break;
2004   case Decl::CXXDestructor:
2005     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2006     break;
2007 
2008   case Decl::StaticAssert:
2009     // Nothing to do.
2010     break;
2011 
2012   // Objective-C Decls
2013 
2014   // Forward declarations, no (immediate) code generation.
2015   case Decl::ObjCClass:
2016   case Decl::ObjCForwardProtocol:
2017   case Decl::ObjCInterface:
2018     break;
2019 
2020     case Decl::ObjCCategory: {
2021       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2022       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2023         Context.ResetObjCLayout(CD->getClassInterface());
2024       break;
2025     }
2026 
2027 
2028   case Decl::ObjCProtocol:
2029     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2030     break;
2031 
2032   case Decl::ObjCCategoryImpl:
2033     // Categories have properties but don't support synthesize so we
2034     // can ignore them here.
2035     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2036     break;
2037 
2038   case Decl::ObjCImplementation: {
2039     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2040     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2041       Context.ResetObjCLayout(OMD->getClassInterface());
2042     EmitObjCPropertyImplementations(OMD);
2043     EmitObjCIvarInitializations(OMD);
2044     Runtime->GenerateClass(OMD);
2045     break;
2046   }
2047   case Decl::ObjCMethod: {
2048     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2049     // If this is not a prototype, emit the body.
2050     if (OMD->getBody())
2051       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2052     break;
2053   }
2054   case Decl::ObjCCompatibleAlias:
2055     // compatibility-alias is a directive and has no code gen.
2056     break;
2057 
2058   case Decl::LinkageSpec:
2059     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2060     break;
2061 
2062   case Decl::FileScopeAsm: {
2063     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2064     llvm::StringRef AsmString = AD->getAsmString()->getString();
2065 
2066     const std::string &S = getModule().getModuleInlineAsm();
2067     if (S.empty())
2068       getModule().setModuleInlineAsm(AsmString);
2069     else
2070       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2071     break;
2072   }
2073 
2074   default:
2075     // Make sure we handled everything we should, every other kind is a
2076     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2077     // function. Need to recode Decl::Kind to do that easily.
2078     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2079   }
2080 }
2081 
2082 /// Turns the given pointer into a constant.
2083 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2084                                           const void *Ptr) {
2085   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2086   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2087   return llvm::ConstantInt::get(i64, PtrInt);
2088 }
2089 
2090 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2091                                    llvm::NamedMDNode *&GlobalMetadata,
2092                                    GlobalDecl D,
2093                                    llvm::GlobalValue *Addr) {
2094   if (!GlobalMetadata)
2095     GlobalMetadata =
2096       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2097 
2098   // TODO: should we report variant information for ctors/dtors?
2099   llvm::Value *Ops[] = {
2100     Addr,
2101     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2102   };
2103   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2104 }
2105 
2106 /// Emits metadata nodes associating all the global values in the
2107 /// current module with the Decls they came from.  This is useful for
2108 /// projects using IR gen as a subroutine.
2109 ///
2110 /// Since there's currently no way to associate an MDNode directly
2111 /// with an llvm::GlobalValue, we create a global named metadata
2112 /// with the name 'clang.global.decl.ptrs'.
2113 void CodeGenModule::EmitDeclMetadata() {
2114   llvm::NamedMDNode *GlobalMetadata = 0;
2115 
2116   // StaticLocalDeclMap
2117   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2118          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2119        I != E; ++I) {
2120     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2121     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2122   }
2123 }
2124 
2125 /// Emits metadata nodes for all the local variables in the current
2126 /// function.
2127 void CodeGenFunction::EmitDeclMetadata() {
2128   if (LocalDeclMap.empty()) return;
2129 
2130   llvm::LLVMContext &Context = getLLVMContext();
2131 
2132   // Find the unique metadata ID for this name.
2133   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2134 
2135   llvm::NamedMDNode *GlobalMetadata = 0;
2136 
2137   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2138          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2139     const Decl *D = I->first;
2140     llvm::Value *Addr = I->second;
2141 
2142     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2143       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2144       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2145     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2146       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2147       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2148     }
2149   }
2150 }
2151 
2152 ///@name Custom Runtime Function Interfaces
2153 ///@{
2154 //
2155 // FIXME: These can be eliminated once we can have clients just get the required
2156 // AST nodes from the builtin tables.
2157 
2158 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2159   if (BlockObjectDispose)
2160     return BlockObjectDispose;
2161 
2162   // If we saw an explicit decl, use that.
2163   if (BlockObjectDisposeDecl) {
2164     return BlockObjectDispose = GetAddrOfFunction(
2165       BlockObjectDisposeDecl,
2166       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2167   }
2168 
2169   // Otherwise construct the function by hand.
2170   const llvm::FunctionType *FTy;
2171   std::vector<const llvm::Type*> ArgTys;
2172   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2173   ArgTys.push_back(PtrToInt8Ty);
2174   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2175   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2176   return BlockObjectDispose =
2177     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2178 }
2179 
2180 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2181   if (BlockObjectAssign)
2182     return BlockObjectAssign;
2183 
2184   // If we saw an explicit decl, use that.
2185   if (BlockObjectAssignDecl) {
2186     return BlockObjectAssign = GetAddrOfFunction(
2187       BlockObjectAssignDecl,
2188       getTypes().GetFunctionType(BlockObjectAssignDecl));
2189   }
2190 
2191   // Otherwise construct the function by hand.
2192   const llvm::FunctionType *FTy;
2193   std::vector<const llvm::Type*> ArgTys;
2194   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2195   ArgTys.push_back(PtrToInt8Ty);
2196   ArgTys.push_back(PtrToInt8Ty);
2197   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2198   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2199   return BlockObjectAssign =
2200     CreateRuntimeFunction(FTy, "_Block_object_assign");
2201 }
2202 
2203 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2204   if (NSConcreteGlobalBlock)
2205     return NSConcreteGlobalBlock;
2206 
2207   // If we saw an explicit decl, use that.
2208   if (NSConcreteGlobalBlockDecl) {
2209     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2210       NSConcreteGlobalBlockDecl,
2211       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2212   }
2213 
2214   // Otherwise construct the variable by hand.
2215   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2216     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2217 }
2218 
2219 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2220   if (NSConcreteStackBlock)
2221     return NSConcreteStackBlock;
2222 
2223   // If we saw an explicit decl, use that.
2224   if (NSConcreteStackBlockDecl) {
2225     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2226       NSConcreteStackBlockDecl,
2227       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2228   }
2229 
2230   // Otherwise construct the variable by hand.
2231   return NSConcreteStackBlock = CreateRuntimeVariable(
2232     PtrToInt8Ty, "_NSConcreteStackBlock");
2233 }
2234 
2235 ///@}
2236