1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MD5.h" 57 58 using namespace clang; 59 using namespace CodeGen; 60 61 static const char AnnotationSection[] = "llvm.metadata"; 62 63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 64 switch (CGM.getTarget().getCXXABI().getKind()) { 65 case TargetCXXABI::GenericAArch64: 66 case TargetCXXABI::GenericARM: 67 case TargetCXXABI::iOS: 68 case TargetCXXABI::iOS64: 69 case TargetCXXABI::WatchOS: 70 case TargetCXXABI::GenericMIPS: 71 case TargetCXXABI::GenericItanium: 72 case TargetCXXABI::WebAssembly: 73 return CreateItaniumCXXABI(CGM); 74 case TargetCXXABI::Microsoft: 75 return CreateMicrosoftCXXABI(CGM); 76 } 77 78 llvm_unreachable("invalid C++ ABI kind"); 79 } 80 81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 82 const PreprocessorOptions &PPO, 83 const CodeGenOptions &CGO, llvm::Module &M, 84 DiagnosticsEngine &diags, 85 CoverageSourceInfo *CoverageInfo) 86 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 87 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 88 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 89 VMContext(M.getContext()), Types(*this), VTables(*this), 90 SanitizerMD(new SanitizerMetadata(*this)) { 91 92 // Initialize the type cache. 93 llvm::LLVMContext &LLVMContext = M.getContext(); 94 VoidTy = llvm::Type::getVoidTy(LLVMContext); 95 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 96 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 FloatTy = llvm::Type::getFloatTy(LLVMContext); 100 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 SizeSizeInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 106 IntAlignInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 108 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 109 IntPtrTy = llvm::IntegerType::get(LLVMContext, 110 C.getTargetInfo().getMaxPointerWidth()); 111 Int8PtrTy = Int8Ty->getPointerTo(0); 112 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 113 114 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 115 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 116 117 if (LangOpts.ObjC1) 118 createObjCRuntime(); 119 if (LangOpts.OpenCL) 120 createOpenCLRuntime(); 121 if (LangOpts.OpenMP) 122 createOpenMPRuntime(); 123 if (LangOpts.CUDA) 124 createCUDARuntime(); 125 126 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 127 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 128 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 129 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 130 getCXXABI().getMangleContext())); 131 132 // If debug info or coverage generation is enabled, create the CGDebugInfo 133 // object. 134 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 135 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 136 DebugInfo.reset(new CGDebugInfo(*this)); 137 138 Block.GlobalUniqueCount = 0; 139 140 if (C.getLangOpts().ObjC1) 141 ObjCData.reset(new ObjCEntrypoints()); 142 143 if (CodeGenOpts.hasProfileClangUse()) { 144 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 145 CodeGenOpts.ProfileInstrumentUsePath); 146 if (auto E = ReaderOrErr.takeError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile %0: %1"); 149 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 150 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 151 << EI.message(); 152 }); 153 } else 154 PGOReader = std::move(ReaderOrErr.get()); 155 } 156 157 // If coverage mapping generation is enabled, create the 158 // CoverageMappingModuleGen object. 159 if (CodeGenOpts.CoverageMapping) 160 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 161 } 162 163 CodeGenModule::~CodeGenModule() {} 164 165 void CodeGenModule::createObjCRuntime() { 166 // This is just isGNUFamily(), but we want to force implementors of 167 // new ABIs to decide how best to do this. 168 switch (LangOpts.ObjCRuntime.getKind()) { 169 case ObjCRuntime::GNUstep: 170 case ObjCRuntime::GCC: 171 case ObjCRuntime::ObjFW: 172 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 173 return; 174 175 case ObjCRuntime::FragileMacOSX: 176 case ObjCRuntime::MacOSX: 177 case ObjCRuntime::iOS: 178 case ObjCRuntime::WatchOS: 179 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 180 return; 181 } 182 llvm_unreachable("bad runtime kind"); 183 } 184 185 void CodeGenModule::createOpenCLRuntime() { 186 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 187 } 188 189 void CodeGenModule::createOpenMPRuntime() { 190 // Select a specialized code generation class based on the target, if any. 191 // If it does not exist use the default implementation. 192 switch (getTriple().getArch()) { 193 case llvm::Triple::nvptx: 194 case llvm::Triple::nvptx64: 195 assert(getLangOpts().OpenMPIsDevice && 196 "OpenMP NVPTX is only prepared to deal with device code."); 197 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 198 break; 199 default: 200 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 201 break; 202 } 203 } 204 205 void CodeGenModule::createCUDARuntime() { 206 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 207 } 208 209 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 210 Replacements[Name] = C; 211 } 212 213 void CodeGenModule::applyReplacements() { 214 for (auto &I : Replacements) { 215 StringRef MangledName = I.first(); 216 llvm::Constant *Replacement = I.second; 217 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 218 if (!Entry) 219 continue; 220 auto *OldF = cast<llvm::Function>(Entry); 221 auto *NewF = dyn_cast<llvm::Function>(Replacement); 222 if (!NewF) { 223 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 224 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 225 } else { 226 auto *CE = cast<llvm::ConstantExpr>(Replacement); 227 assert(CE->getOpcode() == llvm::Instruction::BitCast || 228 CE->getOpcode() == llvm::Instruction::GetElementPtr); 229 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 230 } 231 } 232 233 // Replace old with new, but keep the old order. 234 OldF->replaceAllUsesWith(Replacement); 235 if (NewF) { 236 NewF->removeFromParent(); 237 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 238 NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal( 261 const llvm::GlobalIndirectSymbol &GIS) { 262 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 263 const llvm::Constant *C = &GIS; 264 for (;;) { 265 C = C->stripPointerCasts(); 266 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 267 return GO; 268 // stripPointerCasts will not walk over weak aliases. 269 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 270 if (!GIS2) 271 return nullptr; 272 if (!Visited.insert(GIS2).second) 273 return nullptr; 274 C = GIS2->getIndirectSymbol(); 275 } 276 } 277 278 void CodeGenModule::checkAliases() { 279 // Check if the constructed aliases are well formed. It is really unfortunate 280 // that we have to do this in CodeGen, but we only construct mangled names 281 // and aliases during codegen. 282 bool Error = false; 283 DiagnosticsEngine &Diags = getDiags(); 284 for (const GlobalDecl &GD : Aliases) { 285 const auto *D = cast<ValueDecl>(GD.getDecl()); 286 SourceLocation Location; 287 bool IsIFunc = D->hasAttr<IFuncAttr>(); 288 if (const Attr *A = D->getDefiningAttr()) 289 Location = A->getLocation(); 290 else 291 llvm_unreachable("Not an alias or ifunc?"); 292 StringRef MangledName = getMangledName(GD); 293 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 294 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 295 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 296 if (!GV) { 297 Error = true; 298 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 299 } else if (GV->isDeclaration()) { 300 Error = true; 301 Diags.Report(Location, diag::err_alias_to_undefined) 302 << IsIFunc << IsIFunc; 303 } else if (IsIFunc) { 304 // Check resolver function type. 305 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 306 GV->getType()->getPointerElementType()); 307 assert(FTy); 308 if (!FTy->getReturnType()->isPointerTy()) 309 Diags.Report(Location, diag::err_ifunc_resolver_return); 310 if (FTy->getNumParams()) 311 Diags.Report(Location, diag::err_ifunc_resolver_params); 312 } 313 314 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 315 llvm::GlobalValue *AliaseeGV; 316 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 317 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 318 else 319 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 320 321 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 322 StringRef AliasSection = SA->getName(); 323 if (AliasSection != AliaseeGV->getSection()) 324 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 325 << AliasSection << IsIFunc << IsIFunc; 326 } 327 328 // We have to handle alias to weak aliases in here. LLVM itself disallows 329 // this since the object semantics would not match the IL one. For 330 // compatibility with gcc we implement it by just pointing the alias 331 // to its aliasee's aliasee. We also warn, since the user is probably 332 // expecting the link to be weak. 333 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 334 if (GA->isInterposable()) { 335 Diags.Report(Location, diag::warn_alias_to_weak_alias) 336 << GV->getName() << GA->getName() << IsIFunc; 337 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 338 GA->getIndirectSymbol(), Alias->getType()); 339 Alias->setIndirectSymbol(Aliasee); 340 } 341 } 342 } 343 if (!Error) 344 return; 345 346 for (const GlobalDecl &GD : Aliases) { 347 StringRef MangledName = getMangledName(GD); 348 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 349 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 350 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 351 Alias->eraseFromParent(); 352 } 353 } 354 355 void CodeGenModule::clear() { 356 DeferredDeclsToEmit.clear(); 357 if (OpenMPRuntime) 358 OpenMPRuntime->clear(); 359 } 360 361 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 362 StringRef MainFile) { 363 if (!hasDiagnostics()) 364 return; 365 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 366 if (MainFile.empty()) 367 MainFile = "<stdin>"; 368 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 369 } else 370 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 371 << Mismatched; 372 } 373 374 void CodeGenModule::Release() { 375 EmitDeferred(); 376 applyGlobalValReplacements(); 377 applyReplacements(); 378 checkAliases(); 379 EmitCXXGlobalInitFunc(); 380 EmitCXXGlobalDtorFunc(); 381 EmitCXXThreadLocalInitFunc(); 382 if (ObjCRuntime) 383 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 384 AddGlobalCtor(ObjCInitFunction); 385 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 386 CUDARuntime) { 387 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 388 AddGlobalCtor(CudaCtorFunction); 389 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 390 AddGlobalDtor(CudaDtorFunction); 391 } 392 if (OpenMPRuntime) 393 if (llvm::Function *OpenMPRegistrationFunction = 394 OpenMPRuntime->emitRegistrationFunction()) 395 AddGlobalCtor(OpenMPRegistrationFunction, 0); 396 if (PGOReader) { 397 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 398 if (PGOStats.hasDiagnostics()) 399 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 400 } 401 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 402 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 403 EmitGlobalAnnotations(); 404 EmitStaticExternCAliases(); 405 EmitDeferredUnusedCoverageMappings(); 406 if (CoverageMapping) 407 CoverageMapping->emit(); 408 if (CodeGenOpts.SanitizeCfiCrossDso) 409 CodeGenFunction(*this).EmitCfiCheckFail(); 410 emitLLVMUsed(); 411 if (SanStats) 412 SanStats->finish(); 413 414 if (CodeGenOpts.Autolink && 415 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 416 EmitModuleLinkOptions(); 417 } 418 if (CodeGenOpts.DwarfVersion) { 419 // We actually want the latest version when there are conflicts. 420 // We can change from Warning to Latest if such mode is supported. 421 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 422 CodeGenOpts.DwarfVersion); 423 } 424 if (CodeGenOpts.EmitCodeView) { 425 // Indicate that we want CodeView in the metadata. 426 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 427 } 428 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 429 // We don't support LTO with 2 with different StrictVTablePointers 430 // FIXME: we could support it by stripping all the information introduced 431 // by StrictVTablePointers. 432 433 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 434 435 llvm::Metadata *Ops[2] = { 436 llvm::MDString::get(VMContext, "StrictVTablePointers"), 437 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 438 llvm::Type::getInt32Ty(VMContext), 1))}; 439 440 getModule().addModuleFlag(llvm::Module::Require, 441 "StrictVTablePointersRequirement", 442 llvm::MDNode::get(VMContext, Ops)); 443 } 444 if (DebugInfo) 445 // We support a single version in the linked module. The LLVM 446 // parser will drop debug info with a different version number 447 // (and warn about it, too). 448 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 449 llvm::DEBUG_METADATA_VERSION); 450 451 // We need to record the widths of enums and wchar_t, so that we can generate 452 // the correct build attributes in the ARM backend. 453 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 454 if ( Arch == llvm::Triple::arm 455 || Arch == llvm::Triple::armeb 456 || Arch == llvm::Triple::thumb 457 || Arch == llvm::Triple::thumbeb) { 458 // Width of wchar_t in bytes 459 uint64_t WCharWidth = 460 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 461 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 462 463 // The minimum width of an enum in bytes 464 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 465 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 466 } 467 468 if (CodeGenOpts.SanitizeCfiCrossDso) { 469 // Indicate that we want cross-DSO control flow integrity checks. 470 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 471 } 472 473 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 474 // Indicate whether __nvvm_reflect should be configured to flush denormal 475 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 476 // property.) 477 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 478 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 479 } 480 481 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 482 assert(PLevel < 3 && "Invalid PIC Level"); 483 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 484 if (Context.getLangOpts().PIE) 485 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 486 } 487 488 SimplifyPersonality(); 489 490 if (getCodeGenOpts().EmitDeclMetadata) 491 EmitDeclMetadata(); 492 493 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 494 EmitCoverageFile(); 495 496 if (DebugInfo) 497 DebugInfo->finalize(); 498 499 EmitVersionIdentMetadata(); 500 501 EmitTargetMetadata(); 502 } 503 504 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 505 // Make sure that this type is translated. 506 Types.UpdateCompletedType(TD); 507 } 508 509 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 510 // Make sure that this type is translated. 511 Types.RefreshTypeCacheForClass(RD); 512 } 513 514 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 515 if (!TBAA) 516 return nullptr; 517 return TBAA->getTBAAInfo(QTy); 518 } 519 520 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 521 if (!TBAA) 522 return nullptr; 523 return TBAA->getTBAAInfoForVTablePtr(); 524 } 525 526 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 527 if (!TBAA) 528 return nullptr; 529 return TBAA->getTBAAStructInfo(QTy); 530 } 531 532 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 533 llvm::MDNode *AccessN, 534 uint64_t O) { 535 if (!TBAA) 536 return nullptr; 537 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 538 } 539 540 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 541 /// and struct-path aware TBAA, the tag has the same format: 542 /// base type, access type and offset. 543 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 544 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 545 llvm::MDNode *TBAAInfo, 546 bool ConvertTypeToTag) { 547 if (ConvertTypeToTag && TBAA) 548 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 549 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 550 else 551 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 552 } 553 554 void CodeGenModule::DecorateInstructionWithInvariantGroup( 555 llvm::Instruction *I, const CXXRecordDecl *RD) { 556 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 557 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 558 // Check if we have to wrap MDString in MDNode. 559 if (!MetaDataNode) 560 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 561 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 562 } 563 564 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 565 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 566 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 567 } 568 569 /// ErrorUnsupported - Print out an error that codegen doesn't support the 570 /// specified stmt yet. 571 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 572 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 573 "cannot compile this %0 yet"); 574 std::string Msg = Type; 575 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 576 << Msg << S->getSourceRange(); 577 } 578 579 /// ErrorUnsupported - Print out an error that codegen doesn't support the 580 /// specified decl yet. 581 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 582 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 583 "cannot compile this %0 yet"); 584 std::string Msg = Type; 585 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 586 } 587 588 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 589 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 590 } 591 592 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 593 const NamedDecl *D) const { 594 // Internal definitions always have default visibility. 595 if (GV->hasLocalLinkage()) { 596 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 597 return; 598 } 599 600 // Set visibility for definitions. 601 LinkageInfo LV = D->getLinkageAndVisibility(); 602 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 603 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 604 } 605 606 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 607 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 608 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 609 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 610 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 611 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 612 } 613 614 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 615 CodeGenOptions::TLSModel M) { 616 switch (M) { 617 case CodeGenOptions::GeneralDynamicTLSModel: 618 return llvm::GlobalVariable::GeneralDynamicTLSModel; 619 case CodeGenOptions::LocalDynamicTLSModel: 620 return llvm::GlobalVariable::LocalDynamicTLSModel; 621 case CodeGenOptions::InitialExecTLSModel: 622 return llvm::GlobalVariable::InitialExecTLSModel; 623 case CodeGenOptions::LocalExecTLSModel: 624 return llvm::GlobalVariable::LocalExecTLSModel; 625 } 626 llvm_unreachable("Invalid TLS model!"); 627 } 628 629 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 630 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 631 632 llvm::GlobalValue::ThreadLocalMode TLM; 633 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 634 635 // Override the TLS model if it is explicitly specified. 636 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 637 TLM = GetLLVMTLSModel(Attr->getModel()); 638 } 639 640 GV->setThreadLocalMode(TLM); 641 } 642 643 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 644 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 645 646 // Some ABIs don't have constructor variants. Make sure that base and 647 // complete constructors get mangled the same. 648 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 649 if (!getTarget().getCXXABI().hasConstructorVariants()) { 650 CXXCtorType OrigCtorType = GD.getCtorType(); 651 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 652 if (OrigCtorType == Ctor_Base) 653 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 654 } 655 } 656 657 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 658 if (!FoundStr.empty()) 659 return FoundStr; 660 661 const auto *ND = cast<NamedDecl>(GD.getDecl()); 662 SmallString<256> Buffer; 663 StringRef Str; 664 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 665 llvm::raw_svector_ostream Out(Buffer); 666 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 667 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 668 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 669 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 670 else 671 getCXXABI().getMangleContext().mangleName(ND, Out); 672 Str = Out.str(); 673 } else { 674 IdentifierInfo *II = ND->getIdentifier(); 675 assert(II && "Attempt to mangle unnamed decl."); 676 Str = II->getName(); 677 } 678 679 // Keep the first result in the case of a mangling collision. 680 auto Result = Manglings.insert(std::make_pair(Str, GD)); 681 return FoundStr = Result.first->first(); 682 } 683 684 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 685 const BlockDecl *BD) { 686 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 687 const Decl *D = GD.getDecl(); 688 689 SmallString<256> Buffer; 690 llvm::raw_svector_ostream Out(Buffer); 691 if (!D) 692 MangleCtx.mangleGlobalBlock(BD, 693 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 694 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 695 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 696 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 697 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 698 else 699 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 700 701 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 702 return Result.first->first(); 703 } 704 705 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 706 return getModule().getNamedValue(Name); 707 } 708 709 /// AddGlobalCtor - Add a function to the list that will be called before 710 /// main() runs. 711 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 712 llvm::Constant *AssociatedData) { 713 // FIXME: Type coercion of void()* types. 714 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 715 } 716 717 /// AddGlobalDtor - Add a function to the list that will be called 718 /// when the module is unloaded. 719 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 720 // FIXME: Type coercion of void()* types. 721 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 722 } 723 724 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 725 // Ctor function type is void()*. 726 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 727 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 728 729 // Get the type of a ctor entry, { i32, void ()*, i8* }. 730 llvm::StructType *CtorStructTy = llvm::StructType::get( 731 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 732 733 // Construct the constructor and destructor arrays. 734 SmallVector<llvm::Constant *, 8> Ctors; 735 for (const auto &I : Fns) { 736 llvm::Constant *S[] = { 737 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 738 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 739 (I.AssociatedData 740 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 741 : llvm::Constant::getNullValue(VoidPtrTy))}; 742 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 743 } 744 745 if (!Ctors.empty()) { 746 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 747 new llvm::GlobalVariable(TheModule, AT, false, 748 llvm::GlobalValue::AppendingLinkage, 749 llvm::ConstantArray::get(AT, Ctors), 750 GlobalName); 751 } 752 } 753 754 llvm::GlobalValue::LinkageTypes 755 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 756 const auto *D = cast<FunctionDecl>(GD.getDecl()); 757 758 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 759 760 if (isa<CXXDestructorDecl>(D) && 761 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 762 GD.getDtorType())) { 763 // Destructor variants in the Microsoft C++ ABI are always internal or 764 // linkonce_odr thunks emitted on an as-needed basis. 765 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 766 : llvm::GlobalValue::LinkOnceODRLinkage; 767 } 768 769 if (isa<CXXConstructorDecl>(D) && 770 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 771 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 772 // Our approach to inheriting constructors is fundamentally different from 773 // that used by the MS ABI, so keep our inheriting constructor thunks 774 // internal rather than trying to pick an unambiguous mangling for them. 775 return llvm::GlobalValue::InternalLinkage; 776 } 777 778 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 779 } 780 781 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 782 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 783 784 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 785 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 786 // Don't dllexport/import destructor thunks. 787 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 788 return; 789 } 790 } 791 792 if (FD->hasAttr<DLLImportAttr>()) 793 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 794 else if (FD->hasAttr<DLLExportAttr>()) 795 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 796 else 797 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 798 } 799 800 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 801 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 802 if (!MDS) return nullptr; 803 804 llvm::MD5 md5; 805 llvm::MD5::MD5Result result; 806 md5.update(MDS->getString()); 807 md5.final(result); 808 uint64_t id = 0; 809 for (int i = 0; i < 8; ++i) 810 id |= static_cast<uint64_t>(result[i]) << (i * 8); 811 return llvm::ConstantInt::get(Int64Ty, id); 812 } 813 814 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 815 llvm::Function *F) { 816 setNonAliasAttributes(D, F); 817 } 818 819 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 820 const CGFunctionInfo &Info, 821 llvm::Function *F) { 822 unsigned CallingConv; 823 AttributeListType AttributeList; 824 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 825 false); 826 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 827 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 828 } 829 830 /// Determines whether the language options require us to model 831 /// unwind exceptions. We treat -fexceptions as mandating this 832 /// except under the fragile ObjC ABI with only ObjC exceptions 833 /// enabled. This means, for example, that C with -fexceptions 834 /// enables this. 835 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 836 // If exceptions are completely disabled, obviously this is false. 837 if (!LangOpts.Exceptions) return false; 838 839 // If C++ exceptions are enabled, this is true. 840 if (LangOpts.CXXExceptions) return true; 841 842 // If ObjC exceptions are enabled, this depends on the ABI. 843 if (LangOpts.ObjCExceptions) { 844 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 845 } 846 847 return true; 848 } 849 850 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 851 llvm::Function *F) { 852 llvm::AttrBuilder B; 853 854 if (CodeGenOpts.UnwindTables) 855 B.addAttribute(llvm::Attribute::UWTable); 856 857 if (!hasUnwindExceptions(LangOpts)) 858 B.addAttribute(llvm::Attribute::NoUnwind); 859 860 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 861 B.addAttribute(llvm::Attribute::StackProtect); 862 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 863 B.addAttribute(llvm::Attribute::StackProtectStrong); 864 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 865 B.addAttribute(llvm::Attribute::StackProtectReq); 866 867 if (!D) { 868 F->addAttributes(llvm::AttributeSet::FunctionIndex, 869 llvm::AttributeSet::get( 870 F->getContext(), 871 llvm::AttributeSet::FunctionIndex, B)); 872 return; 873 } 874 875 if (D->hasAttr<NakedAttr>()) { 876 // Naked implies noinline: we should not be inlining such functions. 877 B.addAttribute(llvm::Attribute::Naked); 878 B.addAttribute(llvm::Attribute::NoInline); 879 } else if (D->hasAttr<NoDuplicateAttr>()) { 880 B.addAttribute(llvm::Attribute::NoDuplicate); 881 } else if (D->hasAttr<NoInlineAttr>()) { 882 B.addAttribute(llvm::Attribute::NoInline); 883 } else if (D->hasAttr<AlwaysInlineAttr>() && 884 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 885 llvm::Attribute::NoInline)) { 886 // (noinline wins over always_inline, and we can't specify both in IR) 887 B.addAttribute(llvm::Attribute::AlwaysInline); 888 } 889 890 if (D->hasAttr<ColdAttr>()) { 891 if (!D->hasAttr<OptimizeNoneAttr>()) 892 B.addAttribute(llvm::Attribute::OptimizeForSize); 893 B.addAttribute(llvm::Attribute::Cold); 894 } 895 896 if (D->hasAttr<MinSizeAttr>()) 897 B.addAttribute(llvm::Attribute::MinSize); 898 899 F->addAttributes(llvm::AttributeSet::FunctionIndex, 900 llvm::AttributeSet::get( 901 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 902 903 if (D->hasAttr<OptimizeNoneAttr>()) { 904 // OptimizeNone implies noinline; we should not be inlining such functions. 905 F->addFnAttr(llvm::Attribute::OptimizeNone); 906 F->addFnAttr(llvm::Attribute::NoInline); 907 908 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 909 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 910 F->removeFnAttr(llvm::Attribute::MinSize); 911 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 912 "OptimizeNone and AlwaysInline on same function!"); 913 914 // Attribute 'inlinehint' has no effect on 'optnone' functions. 915 // Explicitly remove it from the set of function attributes. 916 F->removeFnAttr(llvm::Attribute::InlineHint); 917 } 918 919 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 920 if (alignment) 921 F->setAlignment(alignment); 922 923 // Some C++ ABIs require 2-byte alignment for member functions, in order to 924 // reserve a bit for differentiating between virtual and non-virtual member 925 // functions. If the current target's C++ ABI requires this and this is a 926 // member function, set its alignment accordingly. 927 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 928 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 929 F->setAlignment(2); 930 } 931 } 932 933 void CodeGenModule::SetCommonAttributes(const Decl *D, 934 llvm::GlobalValue *GV) { 935 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 936 setGlobalVisibility(GV, ND); 937 else 938 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 939 940 if (D && D->hasAttr<UsedAttr>()) 941 addUsedGlobal(GV); 942 } 943 944 void CodeGenModule::setAliasAttributes(const Decl *D, 945 llvm::GlobalValue *GV) { 946 SetCommonAttributes(D, GV); 947 948 // Process the dllexport attribute based on whether the original definition 949 // (not necessarily the aliasee) was exported. 950 if (D->hasAttr<DLLExportAttr>()) 951 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 952 } 953 954 void CodeGenModule::setNonAliasAttributes(const Decl *D, 955 llvm::GlobalObject *GO) { 956 SetCommonAttributes(D, GO); 957 958 if (D) 959 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 960 GO->setSection(SA->getName()); 961 962 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 963 } 964 965 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 966 llvm::Function *F, 967 const CGFunctionInfo &FI) { 968 SetLLVMFunctionAttributes(D, FI, F); 969 SetLLVMFunctionAttributesForDefinition(D, F); 970 971 F->setLinkage(llvm::Function::InternalLinkage); 972 973 setNonAliasAttributes(D, F); 974 } 975 976 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 977 const NamedDecl *ND) { 978 // Set linkage and visibility in case we never see a definition. 979 LinkageInfo LV = ND->getLinkageAndVisibility(); 980 if (LV.getLinkage() != ExternalLinkage) { 981 // Don't set internal linkage on declarations. 982 } else { 983 if (ND->hasAttr<DLLImportAttr>()) { 984 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 985 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 986 } else if (ND->hasAttr<DLLExportAttr>()) { 987 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 988 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 989 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 990 // "extern_weak" is overloaded in LLVM; we probably should have 991 // separate linkage types for this. 992 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 993 } 994 995 // Set visibility on a declaration only if it's explicit. 996 if (LV.isVisibilityExplicit()) 997 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 998 } 999 } 1000 1001 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1002 llvm::Function *F) { 1003 // Only if we are checking indirect calls. 1004 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1005 return; 1006 1007 // Non-static class methods are handled via vtable pointer checks elsewhere. 1008 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1009 return; 1010 1011 // Additionally, if building with cross-DSO support... 1012 if (CodeGenOpts.SanitizeCfiCrossDso) { 1013 // Don't emit entries for function declarations. In cross-DSO mode these are 1014 // handled with better precision at run time. 1015 if (!FD->hasBody()) 1016 return; 1017 // Skip available_externally functions. They won't be codegen'ed in the 1018 // current module anyway. 1019 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1020 return; 1021 } 1022 1023 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1024 F->addTypeMetadata(0, MD); 1025 1026 // Emit a hash-based bit set entry for cross-DSO calls. 1027 if (CodeGenOpts.SanitizeCfiCrossDso) 1028 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1029 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1030 } 1031 1032 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1033 bool IsIncompleteFunction, 1034 bool IsThunk) { 1035 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1036 // If this is an intrinsic function, set the function's attributes 1037 // to the intrinsic's attributes. 1038 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1039 return; 1040 } 1041 1042 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1043 1044 if (!IsIncompleteFunction) 1045 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1046 1047 // Add the Returned attribute for "this", except for iOS 5 and earlier 1048 // where substantial code, including the libstdc++ dylib, was compiled with 1049 // GCC and does not actually return "this". 1050 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1051 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1052 assert(!F->arg_empty() && 1053 F->arg_begin()->getType() 1054 ->canLosslesslyBitCastTo(F->getReturnType()) && 1055 "unexpected this return"); 1056 F->addAttribute(1, llvm::Attribute::Returned); 1057 } 1058 1059 // Only a few attributes are set on declarations; these may later be 1060 // overridden by a definition. 1061 1062 setLinkageAndVisibilityForGV(F, FD); 1063 1064 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1065 F->setSection(SA->getName()); 1066 1067 if (FD->isReplaceableGlobalAllocationFunction()) { 1068 // A replaceable global allocation function does not act like a builtin by 1069 // default, only if it is invoked by a new-expression or delete-expression. 1070 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1071 llvm::Attribute::NoBuiltin); 1072 1073 // A sane operator new returns a non-aliasing pointer. 1074 // FIXME: Also add NonNull attribute to the return value 1075 // for the non-nothrow forms? 1076 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1077 if (getCodeGenOpts().AssumeSaneOperatorNew && 1078 (Kind == OO_New || Kind == OO_Array_New)) 1079 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1080 llvm::Attribute::NoAlias); 1081 } 1082 1083 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1084 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1085 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1086 if (MD->isVirtual()) 1087 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1088 1089 CreateFunctionTypeMetadata(FD, F); 1090 } 1091 1092 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1093 assert(!GV->isDeclaration() && 1094 "Only globals with definition can force usage."); 1095 LLVMUsed.emplace_back(GV); 1096 } 1097 1098 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1099 assert(!GV->isDeclaration() && 1100 "Only globals with definition can force usage."); 1101 LLVMCompilerUsed.emplace_back(GV); 1102 } 1103 1104 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1105 std::vector<llvm::WeakVH> &List) { 1106 // Don't create llvm.used if there is no need. 1107 if (List.empty()) 1108 return; 1109 1110 // Convert List to what ConstantArray needs. 1111 SmallVector<llvm::Constant*, 8> UsedArray; 1112 UsedArray.resize(List.size()); 1113 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1114 UsedArray[i] = 1115 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1116 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1117 } 1118 1119 if (UsedArray.empty()) 1120 return; 1121 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1122 1123 auto *GV = new llvm::GlobalVariable( 1124 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1125 llvm::ConstantArray::get(ATy, UsedArray), Name); 1126 1127 GV->setSection("llvm.metadata"); 1128 } 1129 1130 void CodeGenModule::emitLLVMUsed() { 1131 emitUsed(*this, "llvm.used", LLVMUsed); 1132 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1133 } 1134 1135 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1136 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1137 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1138 } 1139 1140 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1141 llvm::SmallString<32> Opt; 1142 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1143 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1144 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1145 } 1146 1147 void CodeGenModule::AddDependentLib(StringRef Lib) { 1148 llvm::SmallString<24> Opt; 1149 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1150 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1151 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1152 } 1153 1154 /// \brief Add link options implied by the given module, including modules 1155 /// it depends on, using a postorder walk. 1156 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1157 SmallVectorImpl<llvm::Metadata *> &Metadata, 1158 llvm::SmallPtrSet<Module *, 16> &Visited) { 1159 // Import this module's parent. 1160 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1161 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1162 } 1163 1164 // Import this module's dependencies. 1165 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1166 if (Visited.insert(Mod->Imports[I - 1]).second) 1167 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1168 } 1169 1170 // Add linker options to link against the libraries/frameworks 1171 // described by this module. 1172 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1173 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1174 // Link against a framework. Frameworks are currently Darwin only, so we 1175 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1176 if (Mod->LinkLibraries[I-1].IsFramework) { 1177 llvm::Metadata *Args[2] = { 1178 llvm::MDString::get(Context, "-framework"), 1179 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1180 1181 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1182 continue; 1183 } 1184 1185 // Link against a library. 1186 llvm::SmallString<24> Opt; 1187 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1188 Mod->LinkLibraries[I-1].Library, Opt); 1189 auto *OptString = llvm::MDString::get(Context, Opt); 1190 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1191 } 1192 } 1193 1194 void CodeGenModule::EmitModuleLinkOptions() { 1195 // Collect the set of all of the modules we want to visit to emit link 1196 // options, which is essentially the imported modules and all of their 1197 // non-explicit child modules. 1198 llvm::SetVector<clang::Module *> LinkModules; 1199 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1200 SmallVector<clang::Module *, 16> Stack; 1201 1202 // Seed the stack with imported modules. 1203 for (Module *M : ImportedModules) 1204 if (Visited.insert(M).second) 1205 Stack.push_back(M); 1206 1207 // Find all of the modules to import, making a little effort to prune 1208 // non-leaf modules. 1209 while (!Stack.empty()) { 1210 clang::Module *Mod = Stack.pop_back_val(); 1211 1212 bool AnyChildren = false; 1213 1214 // Visit the submodules of this module. 1215 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1216 SubEnd = Mod->submodule_end(); 1217 Sub != SubEnd; ++Sub) { 1218 // Skip explicit children; they need to be explicitly imported to be 1219 // linked against. 1220 if ((*Sub)->IsExplicit) 1221 continue; 1222 1223 if (Visited.insert(*Sub).second) { 1224 Stack.push_back(*Sub); 1225 AnyChildren = true; 1226 } 1227 } 1228 1229 // We didn't find any children, so add this module to the list of 1230 // modules to link against. 1231 if (!AnyChildren) { 1232 LinkModules.insert(Mod); 1233 } 1234 } 1235 1236 // Add link options for all of the imported modules in reverse topological 1237 // order. We don't do anything to try to order import link flags with respect 1238 // to linker options inserted by things like #pragma comment(). 1239 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1240 Visited.clear(); 1241 for (Module *M : LinkModules) 1242 if (Visited.insert(M).second) 1243 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1244 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1245 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1246 1247 // Add the linker options metadata flag. 1248 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1249 llvm::MDNode::get(getLLVMContext(), 1250 LinkerOptionsMetadata)); 1251 } 1252 1253 void CodeGenModule::EmitDeferred() { 1254 // Emit code for any potentially referenced deferred decls. Since a 1255 // previously unused static decl may become used during the generation of code 1256 // for a static function, iterate until no changes are made. 1257 1258 if (!DeferredVTables.empty()) { 1259 EmitDeferredVTables(); 1260 1261 // Emitting a vtable doesn't directly cause more vtables to 1262 // become deferred, although it can cause functions to be 1263 // emitted that then need those vtables. 1264 assert(DeferredVTables.empty()); 1265 } 1266 1267 // Stop if we're out of both deferred vtables and deferred declarations. 1268 if (DeferredDeclsToEmit.empty()) 1269 return; 1270 1271 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1272 // work, it will not interfere with this. 1273 std::vector<DeferredGlobal> CurDeclsToEmit; 1274 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1275 1276 for (DeferredGlobal &G : CurDeclsToEmit) { 1277 GlobalDecl D = G.GD; 1278 G.GV = nullptr; 1279 1280 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1281 // to get GlobalValue with exactly the type we need, not something that 1282 // might had been created for another decl with the same mangled name but 1283 // different type. 1284 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1285 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1286 1287 // In case of different address spaces, we may still get a cast, even with 1288 // IsForDefinition equal to true. Query mangled names table to get 1289 // GlobalValue. 1290 if (!GV) 1291 GV = GetGlobalValue(getMangledName(D)); 1292 1293 // Make sure GetGlobalValue returned non-null. 1294 assert(GV); 1295 1296 // Check to see if we've already emitted this. This is necessary 1297 // for a couple of reasons: first, decls can end up in the 1298 // deferred-decls queue multiple times, and second, decls can end 1299 // up with definitions in unusual ways (e.g. by an extern inline 1300 // function acquiring a strong function redefinition). Just 1301 // ignore these cases. 1302 if (!GV->isDeclaration()) 1303 continue; 1304 1305 // Otherwise, emit the definition and move on to the next one. 1306 EmitGlobalDefinition(D, GV); 1307 1308 // If we found out that we need to emit more decls, do that recursively. 1309 // This has the advantage that the decls are emitted in a DFS and related 1310 // ones are close together, which is convenient for testing. 1311 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1312 EmitDeferred(); 1313 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1314 } 1315 } 1316 } 1317 1318 void CodeGenModule::EmitGlobalAnnotations() { 1319 if (Annotations.empty()) 1320 return; 1321 1322 // Create a new global variable for the ConstantStruct in the Module. 1323 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1324 Annotations[0]->getType(), Annotations.size()), Annotations); 1325 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1326 llvm::GlobalValue::AppendingLinkage, 1327 Array, "llvm.global.annotations"); 1328 gv->setSection(AnnotationSection); 1329 } 1330 1331 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1332 llvm::Constant *&AStr = AnnotationStrings[Str]; 1333 if (AStr) 1334 return AStr; 1335 1336 // Not found yet, create a new global. 1337 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1338 auto *gv = 1339 new llvm::GlobalVariable(getModule(), s->getType(), true, 1340 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1341 gv->setSection(AnnotationSection); 1342 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1343 AStr = gv; 1344 return gv; 1345 } 1346 1347 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1348 SourceManager &SM = getContext().getSourceManager(); 1349 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1350 if (PLoc.isValid()) 1351 return EmitAnnotationString(PLoc.getFilename()); 1352 return EmitAnnotationString(SM.getBufferName(Loc)); 1353 } 1354 1355 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1356 SourceManager &SM = getContext().getSourceManager(); 1357 PresumedLoc PLoc = SM.getPresumedLoc(L); 1358 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1359 SM.getExpansionLineNumber(L); 1360 return llvm::ConstantInt::get(Int32Ty, LineNo); 1361 } 1362 1363 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1364 const AnnotateAttr *AA, 1365 SourceLocation L) { 1366 // Get the globals for file name, annotation, and the line number. 1367 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1368 *UnitGV = EmitAnnotationUnit(L), 1369 *LineNoCst = EmitAnnotationLineNo(L); 1370 1371 // Create the ConstantStruct for the global annotation. 1372 llvm::Constant *Fields[4] = { 1373 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1374 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1375 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1376 LineNoCst 1377 }; 1378 return llvm::ConstantStruct::getAnon(Fields); 1379 } 1380 1381 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1382 llvm::GlobalValue *GV) { 1383 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1384 // Get the struct elements for these annotations. 1385 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1386 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1387 } 1388 1389 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1390 SourceLocation Loc) const { 1391 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1392 // Blacklist by function name. 1393 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1394 return true; 1395 // Blacklist by location. 1396 if (Loc.isValid()) 1397 return SanitizerBL.isBlacklistedLocation(Loc); 1398 // If location is unknown, this may be a compiler-generated function. Assume 1399 // it's located in the main file. 1400 auto &SM = Context.getSourceManager(); 1401 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1402 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1403 } 1404 return false; 1405 } 1406 1407 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1408 SourceLocation Loc, QualType Ty, 1409 StringRef Category) const { 1410 // For now globals can be blacklisted only in ASan and KASan. 1411 if (!LangOpts.Sanitize.hasOneOf( 1412 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1413 return false; 1414 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1415 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1416 return true; 1417 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1418 return true; 1419 // Check global type. 1420 if (!Ty.isNull()) { 1421 // Drill down the array types: if global variable of a fixed type is 1422 // blacklisted, we also don't instrument arrays of them. 1423 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1424 Ty = AT->getElementType(); 1425 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1426 // We allow to blacklist only record types (classes, structs etc.) 1427 if (Ty->isRecordType()) { 1428 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1429 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1430 return true; 1431 } 1432 } 1433 return false; 1434 } 1435 1436 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1437 // Never defer when EmitAllDecls is specified. 1438 if (LangOpts.EmitAllDecls) 1439 return true; 1440 1441 return getContext().DeclMustBeEmitted(Global); 1442 } 1443 1444 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1445 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1446 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1447 // Implicit template instantiations may change linkage if they are later 1448 // explicitly instantiated, so they should not be emitted eagerly. 1449 return false; 1450 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1451 if (Context.getInlineVariableDefinitionKind(VD) == 1452 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1453 // A definition of an inline constexpr static data member may change 1454 // linkage later if it's redeclared outside the class. 1455 return false; 1456 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1457 // codegen for global variables, because they may be marked as threadprivate. 1458 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1459 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1460 return false; 1461 1462 return true; 1463 } 1464 1465 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1466 const CXXUuidofExpr* E) { 1467 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1468 // well-formed. 1469 StringRef Uuid = E->getUuidStr(); 1470 std::string Name = "_GUID_" + Uuid.lower(); 1471 std::replace(Name.begin(), Name.end(), '-', '_'); 1472 1473 // The UUID descriptor should be pointer aligned. 1474 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1475 1476 // Look for an existing global. 1477 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1478 return ConstantAddress(GV, Alignment); 1479 1480 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1481 assert(Init && "failed to initialize as constant"); 1482 1483 auto *GV = new llvm::GlobalVariable( 1484 getModule(), Init->getType(), 1485 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1486 if (supportsCOMDAT()) 1487 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1488 return ConstantAddress(GV, Alignment); 1489 } 1490 1491 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1492 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1493 assert(AA && "No alias?"); 1494 1495 CharUnits Alignment = getContext().getDeclAlign(VD); 1496 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1497 1498 // See if there is already something with the target's name in the module. 1499 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1500 if (Entry) { 1501 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1502 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1503 return ConstantAddress(Ptr, Alignment); 1504 } 1505 1506 llvm::Constant *Aliasee; 1507 if (isa<llvm::FunctionType>(DeclTy)) 1508 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1509 GlobalDecl(cast<FunctionDecl>(VD)), 1510 /*ForVTable=*/false); 1511 else 1512 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1513 llvm::PointerType::getUnqual(DeclTy), 1514 nullptr); 1515 1516 auto *F = cast<llvm::GlobalValue>(Aliasee); 1517 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1518 WeakRefReferences.insert(F); 1519 1520 return ConstantAddress(Aliasee, Alignment); 1521 } 1522 1523 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1524 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1525 1526 // Weak references don't produce any output by themselves. 1527 if (Global->hasAttr<WeakRefAttr>()) 1528 return; 1529 1530 // If this is an alias definition (which otherwise looks like a declaration) 1531 // emit it now. 1532 if (Global->hasAttr<AliasAttr>()) 1533 return EmitAliasDefinition(GD); 1534 1535 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1536 if (Global->hasAttr<IFuncAttr>()) 1537 return emitIFuncDefinition(GD); 1538 1539 // If this is CUDA, be selective about which declarations we emit. 1540 if (LangOpts.CUDA) { 1541 if (LangOpts.CUDAIsDevice) { 1542 if (!Global->hasAttr<CUDADeviceAttr>() && 1543 !Global->hasAttr<CUDAGlobalAttr>() && 1544 !Global->hasAttr<CUDAConstantAttr>() && 1545 !Global->hasAttr<CUDASharedAttr>()) 1546 return; 1547 } else { 1548 // We need to emit host-side 'shadows' for all global 1549 // device-side variables because the CUDA runtime needs their 1550 // size and host-side address in order to provide access to 1551 // their device-side incarnations. 1552 1553 // So device-only functions are the only things we skip. 1554 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1555 Global->hasAttr<CUDADeviceAttr>()) 1556 return; 1557 1558 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1559 "Expected Variable or Function"); 1560 } 1561 } 1562 1563 if (LangOpts.OpenMP) { 1564 // If this is OpenMP device, check if it is legal to emit this global 1565 // normally. 1566 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1567 return; 1568 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1569 if (MustBeEmitted(Global)) 1570 EmitOMPDeclareReduction(DRD); 1571 return; 1572 } 1573 } 1574 1575 // Ignore declarations, they will be emitted on their first use. 1576 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1577 // Forward declarations are emitted lazily on first use. 1578 if (!FD->doesThisDeclarationHaveABody()) { 1579 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1580 return; 1581 1582 StringRef MangledName = getMangledName(GD); 1583 1584 // Compute the function info and LLVM type. 1585 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1586 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1587 1588 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1589 /*DontDefer=*/false); 1590 return; 1591 } 1592 } else { 1593 const auto *VD = cast<VarDecl>(Global); 1594 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1595 // We need to emit device-side global CUDA variables even if a 1596 // variable does not have a definition -- we still need to define 1597 // host-side shadow for it. 1598 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1599 !VD->hasDefinition() && 1600 (VD->hasAttr<CUDAConstantAttr>() || 1601 VD->hasAttr<CUDADeviceAttr>()); 1602 if (!MustEmitForCuda && 1603 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1604 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1605 // If this declaration may have caused an inline variable definition to 1606 // change linkage, make sure that it's emitted. 1607 if (Context.getInlineVariableDefinitionKind(VD) == 1608 ASTContext::InlineVariableDefinitionKind::Strong) 1609 GetAddrOfGlobalVar(VD); 1610 return; 1611 } 1612 } 1613 1614 // Defer code generation to first use when possible, e.g. if this is an inline 1615 // function. If the global must always be emitted, do it eagerly if possible 1616 // to benefit from cache locality. 1617 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1618 // Emit the definition if it can't be deferred. 1619 EmitGlobalDefinition(GD); 1620 return; 1621 } 1622 1623 // If we're deferring emission of a C++ variable with an 1624 // initializer, remember the order in which it appeared in the file. 1625 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1626 cast<VarDecl>(Global)->hasInit()) { 1627 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1628 CXXGlobalInits.push_back(nullptr); 1629 } 1630 1631 StringRef MangledName = getMangledName(GD); 1632 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1633 // The value has already been used and should therefore be emitted. 1634 addDeferredDeclToEmit(GV, GD); 1635 } else if (MustBeEmitted(Global)) { 1636 // The value must be emitted, but cannot be emitted eagerly. 1637 assert(!MayBeEmittedEagerly(Global)); 1638 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1639 } else { 1640 // Otherwise, remember that we saw a deferred decl with this name. The 1641 // first use of the mangled name will cause it to move into 1642 // DeferredDeclsToEmit. 1643 DeferredDecls[MangledName] = GD; 1644 } 1645 } 1646 1647 namespace { 1648 struct FunctionIsDirectlyRecursive : 1649 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1650 const StringRef Name; 1651 const Builtin::Context &BI; 1652 bool Result; 1653 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1654 Name(N), BI(C), Result(false) { 1655 } 1656 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1657 1658 bool TraverseCallExpr(CallExpr *E) { 1659 const FunctionDecl *FD = E->getDirectCallee(); 1660 if (!FD) 1661 return true; 1662 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1663 if (Attr && Name == Attr->getLabel()) { 1664 Result = true; 1665 return false; 1666 } 1667 unsigned BuiltinID = FD->getBuiltinID(); 1668 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1669 return true; 1670 StringRef BuiltinName = BI.getName(BuiltinID); 1671 if (BuiltinName.startswith("__builtin_") && 1672 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1673 Result = true; 1674 return false; 1675 } 1676 return true; 1677 } 1678 }; 1679 1680 struct DLLImportFunctionVisitor 1681 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1682 bool SafeToInline = true; 1683 1684 bool shouldVisitImplicitCode() const { return true; } 1685 1686 bool VisitVarDecl(VarDecl *VD) { 1687 // A thread-local variable cannot be imported. 1688 SafeToInline = !VD->getTLSKind(); 1689 return SafeToInline; 1690 } 1691 1692 // Make sure we're not referencing non-imported vars or functions. 1693 bool VisitDeclRefExpr(DeclRefExpr *E) { 1694 ValueDecl *VD = E->getDecl(); 1695 if (isa<FunctionDecl>(VD)) 1696 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1697 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1698 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1699 return SafeToInline; 1700 } 1701 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1702 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1703 return SafeToInline; 1704 } 1705 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1706 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1707 return SafeToInline; 1708 } 1709 bool VisitCXXNewExpr(CXXNewExpr *E) { 1710 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1711 return SafeToInline; 1712 } 1713 }; 1714 } 1715 1716 // isTriviallyRecursive - Check if this function calls another 1717 // decl that, because of the asm attribute or the other decl being a builtin, 1718 // ends up pointing to itself. 1719 bool 1720 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1721 StringRef Name; 1722 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1723 // asm labels are a special kind of mangling we have to support. 1724 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1725 if (!Attr) 1726 return false; 1727 Name = Attr->getLabel(); 1728 } else { 1729 Name = FD->getName(); 1730 } 1731 1732 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1733 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1734 return Walker.Result; 1735 } 1736 1737 // Check if T is a class type with a destructor that's not dllimport. 1738 static bool HasNonDllImportDtor(QualType T) { 1739 if (const RecordType *RT = dyn_cast<RecordType>(T)) 1740 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1741 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1742 return true; 1743 1744 return false; 1745 } 1746 1747 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1748 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1749 return true; 1750 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1751 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1752 return false; 1753 1754 if (F->hasAttr<DLLImportAttr>()) { 1755 // Check whether it would be safe to inline this dllimport function. 1756 DLLImportFunctionVisitor Visitor; 1757 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1758 if (!Visitor.SafeToInline) 1759 return false; 1760 1761 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1762 // Implicit destructor invocations aren't captured in the AST, so the 1763 // check above can't see them. Check for them manually here. 1764 for (const Decl *Member : Dtor->getParent()->decls()) 1765 if (isa<FieldDecl>(Member)) 1766 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1767 return false; 1768 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1769 if (HasNonDllImportDtor(B.getType())) 1770 return false; 1771 } 1772 } 1773 1774 // PR9614. Avoid cases where the source code is lying to us. An available 1775 // externally function should have an equivalent function somewhere else, 1776 // but a function that calls itself is clearly not equivalent to the real 1777 // implementation. 1778 // This happens in glibc's btowc and in some configure checks. 1779 return !isTriviallyRecursive(F); 1780 } 1781 1782 /// If the type for the method's class was generated by 1783 /// CGDebugInfo::createContextChain(), the cache contains only a 1784 /// limited DIType without any declarations. Since EmitFunctionStart() 1785 /// needs to find the canonical declaration for each method, we need 1786 /// to construct the complete type prior to emitting the method. 1787 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1788 if (!D->isInstance()) 1789 return; 1790 1791 if (CGDebugInfo *DI = getModuleDebugInfo()) 1792 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1793 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1794 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1795 } 1796 } 1797 1798 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1799 const auto *D = cast<ValueDecl>(GD.getDecl()); 1800 1801 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1802 Context.getSourceManager(), 1803 "Generating code for declaration"); 1804 1805 if (isa<FunctionDecl>(D)) { 1806 // At -O0, don't generate IR for functions with available_externally 1807 // linkage. 1808 if (!shouldEmitFunction(GD)) 1809 return; 1810 1811 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1812 CompleteDIClassType(Method); 1813 // Make sure to emit the definition(s) before we emit the thunks. 1814 // This is necessary for the generation of certain thunks. 1815 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1816 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1817 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1818 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1819 else 1820 EmitGlobalFunctionDefinition(GD, GV); 1821 1822 if (Method->isVirtual()) 1823 getVTables().EmitThunks(GD); 1824 1825 return; 1826 } 1827 1828 return EmitGlobalFunctionDefinition(GD, GV); 1829 } 1830 1831 if (const auto *VD = dyn_cast<VarDecl>(D)) 1832 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1833 1834 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1835 } 1836 1837 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1838 llvm::Function *NewFn); 1839 1840 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1841 /// module, create and return an llvm Function with the specified type. If there 1842 /// is something in the module with the specified name, return it potentially 1843 /// bitcasted to the right type. 1844 /// 1845 /// If D is non-null, it specifies a decl that correspond to this. This is used 1846 /// to set the attributes on the function when it is first created. 1847 llvm::Constant * 1848 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1849 llvm::Type *Ty, 1850 GlobalDecl GD, bool ForVTable, 1851 bool DontDefer, bool IsThunk, 1852 llvm::AttributeSet ExtraAttrs, 1853 bool IsForDefinition) { 1854 const Decl *D = GD.getDecl(); 1855 1856 // Lookup the entry, lazily creating it if necessary. 1857 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1858 if (Entry) { 1859 if (WeakRefReferences.erase(Entry)) { 1860 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1861 if (FD && !FD->hasAttr<WeakAttr>()) 1862 Entry->setLinkage(llvm::Function::ExternalLinkage); 1863 } 1864 1865 // Handle dropped DLL attributes. 1866 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1867 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1868 1869 // If there are two attempts to define the same mangled name, issue an 1870 // error. 1871 if (IsForDefinition && !Entry->isDeclaration()) { 1872 GlobalDecl OtherGD; 1873 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1874 // to make sure that we issue an error only once. 1875 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1876 (GD.getCanonicalDecl().getDecl() != 1877 OtherGD.getCanonicalDecl().getDecl()) && 1878 DiagnosedConflictingDefinitions.insert(GD).second) { 1879 getDiags().Report(D->getLocation(), 1880 diag::err_duplicate_mangled_name); 1881 getDiags().Report(OtherGD.getDecl()->getLocation(), 1882 diag::note_previous_definition); 1883 } 1884 } 1885 1886 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1887 (Entry->getType()->getElementType() == Ty)) { 1888 return Entry; 1889 } 1890 1891 // Make sure the result is of the correct type. 1892 // (If function is requested for a definition, we always need to create a new 1893 // function, not just return a bitcast.) 1894 if (!IsForDefinition) 1895 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1896 } 1897 1898 // This function doesn't have a complete type (for example, the return 1899 // type is an incomplete struct). Use a fake type instead, and make 1900 // sure not to try to set attributes. 1901 bool IsIncompleteFunction = false; 1902 1903 llvm::FunctionType *FTy; 1904 if (isa<llvm::FunctionType>(Ty)) { 1905 FTy = cast<llvm::FunctionType>(Ty); 1906 } else { 1907 FTy = llvm::FunctionType::get(VoidTy, false); 1908 IsIncompleteFunction = true; 1909 } 1910 1911 llvm::Function *F = 1912 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1913 Entry ? StringRef() : MangledName, &getModule()); 1914 1915 // If we already created a function with the same mangled name (but different 1916 // type) before, take its name and add it to the list of functions to be 1917 // replaced with F at the end of CodeGen. 1918 // 1919 // This happens if there is a prototype for a function (e.g. "int f()") and 1920 // then a definition of a different type (e.g. "int f(int x)"). 1921 if (Entry) { 1922 F->takeName(Entry); 1923 1924 // This might be an implementation of a function without a prototype, in 1925 // which case, try to do special replacement of calls which match the new 1926 // prototype. The really key thing here is that we also potentially drop 1927 // arguments from the call site so as to make a direct call, which makes the 1928 // inliner happier and suppresses a number of optimizer warnings (!) about 1929 // dropping arguments. 1930 if (!Entry->use_empty()) { 1931 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1932 Entry->removeDeadConstantUsers(); 1933 } 1934 1935 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1936 F, Entry->getType()->getElementType()->getPointerTo()); 1937 addGlobalValReplacement(Entry, BC); 1938 } 1939 1940 assert(F->getName() == MangledName && "name was uniqued!"); 1941 if (D) 1942 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1943 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1944 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1945 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1946 llvm::AttributeSet::get(VMContext, 1947 llvm::AttributeSet::FunctionIndex, 1948 B)); 1949 } 1950 1951 if (!DontDefer) { 1952 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1953 // each other bottoming out with the base dtor. Therefore we emit non-base 1954 // dtors on usage, even if there is no dtor definition in the TU. 1955 if (D && isa<CXXDestructorDecl>(D) && 1956 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1957 GD.getDtorType())) 1958 addDeferredDeclToEmit(F, GD); 1959 1960 // This is the first use or definition of a mangled name. If there is a 1961 // deferred decl with this name, remember that we need to emit it at the end 1962 // of the file. 1963 auto DDI = DeferredDecls.find(MangledName); 1964 if (DDI != DeferredDecls.end()) { 1965 // Move the potentially referenced deferred decl to the 1966 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1967 // don't need it anymore). 1968 addDeferredDeclToEmit(F, DDI->second); 1969 DeferredDecls.erase(DDI); 1970 1971 // Otherwise, there are cases we have to worry about where we're 1972 // using a declaration for which we must emit a definition but where 1973 // we might not find a top-level definition: 1974 // - member functions defined inline in their classes 1975 // - friend functions defined inline in some class 1976 // - special member functions with implicit definitions 1977 // If we ever change our AST traversal to walk into class methods, 1978 // this will be unnecessary. 1979 // 1980 // We also don't emit a definition for a function if it's going to be an 1981 // entry in a vtable, unless it's already marked as used. 1982 } else if (getLangOpts().CPlusPlus && D) { 1983 // Look for a declaration that's lexically in a record. 1984 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1985 FD = FD->getPreviousDecl()) { 1986 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1987 if (FD->doesThisDeclarationHaveABody()) { 1988 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1989 break; 1990 } 1991 } 1992 } 1993 } 1994 } 1995 1996 // Make sure the result is of the requested type. 1997 if (!IsIncompleteFunction) { 1998 assert(F->getType()->getElementType() == Ty); 1999 return F; 2000 } 2001 2002 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2003 return llvm::ConstantExpr::getBitCast(F, PTy); 2004 } 2005 2006 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2007 /// non-null, then this function will use the specified type if it has to 2008 /// create it (this occurs when we see a definition of the function). 2009 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2010 llvm::Type *Ty, 2011 bool ForVTable, 2012 bool DontDefer, 2013 bool IsForDefinition) { 2014 // If there was no specific requested type, just convert it now. 2015 if (!Ty) { 2016 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2017 auto CanonTy = Context.getCanonicalType(FD->getType()); 2018 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2019 } 2020 2021 StringRef MangledName = getMangledName(GD); 2022 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2023 /*IsThunk=*/false, llvm::AttributeSet(), 2024 IsForDefinition); 2025 } 2026 2027 /// CreateRuntimeFunction - Create a new runtime function with the specified 2028 /// type and name. 2029 llvm::Constant * 2030 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2031 StringRef Name, 2032 llvm::AttributeSet ExtraAttrs) { 2033 llvm::Constant *C = 2034 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2035 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2036 if (auto *F = dyn_cast<llvm::Function>(C)) 2037 if (F->empty()) 2038 F->setCallingConv(getRuntimeCC()); 2039 return C; 2040 } 2041 2042 /// CreateBuiltinFunction - Create a new builtin function with the specified 2043 /// type and name. 2044 llvm::Constant * 2045 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2046 StringRef Name, 2047 llvm::AttributeSet ExtraAttrs) { 2048 llvm::Constant *C = 2049 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2050 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2051 if (auto *F = dyn_cast<llvm::Function>(C)) 2052 if (F->empty()) 2053 F->setCallingConv(getBuiltinCC()); 2054 return C; 2055 } 2056 2057 /// isTypeConstant - Determine whether an object of this type can be emitted 2058 /// as a constant. 2059 /// 2060 /// If ExcludeCtor is true, the duration when the object's constructor runs 2061 /// will not be considered. The caller will need to verify that the object is 2062 /// not written to during its construction. 2063 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2064 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2065 return false; 2066 2067 if (Context.getLangOpts().CPlusPlus) { 2068 if (const CXXRecordDecl *Record 2069 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2070 return ExcludeCtor && !Record->hasMutableFields() && 2071 Record->hasTrivialDestructor(); 2072 } 2073 2074 return true; 2075 } 2076 2077 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2078 /// create and return an llvm GlobalVariable with the specified type. If there 2079 /// is something in the module with the specified name, return it potentially 2080 /// bitcasted to the right type. 2081 /// 2082 /// If D is non-null, it specifies a decl that correspond to this. This is used 2083 /// to set the attributes on the global when it is first created. 2084 /// 2085 /// If IsForDefinition is true, it is guranteed that an actual global with 2086 /// type Ty will be returned, not conversion of a variable with the same 2087 /// mangled name but some other type. 2088 llvm::Constant * 2089 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2090 llvm::PointerType *Ty, 2091 const VarDecl *D, 2092 bool IsForDefinition) { 2093 // Lookup the entry, lazily creating it if necessary. 2094 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2095 if (Entry) { 2096 if (WeakRefReferences.erase(Entry)) { 2097 if (D && !D->hasAttr<WeakAttr>()) 2098 Entry->setLinkage(llvm::Function::ExternalLinkage); 2099 } 2100 2101 // Handle dropped DLL attributes. 2102 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2103 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2104 2105 if (Entry->getType() == Ty) 2106 return Entry; 2107 2108 // If there are two attempts to define the same mangled name, issue an 2109 // error. 2110 if (IsForDefinition && !Entry->isDeclaration()) { 2111 GlobalDecl OtherGD; 2112 const VarDecl *OtherD; 2113 2114 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2115 // to make sure that we issue an error only once. 2116 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2117 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2118 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2119 OtherD->hasInit() && 2120 DiagnosedConflictingDefinitions.insert(D).second) { 2121 getDiags().Report(D->getLocation(), 2122 diag::err_duplicate_mangled_name); 2123 getDiags().Report(OtherGD.getDecl()->getLocation(), 2124 diag::note_previous_definition); 2125 } 2126 } 2127 2128 // Make sure the result is of the correct type. 2129 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2130 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2131 2132 // (If global is requested for a definition, we always need to create a new 2133 // global, not just return a bitcast.) 2134 if (!IsForDefinition) 2135 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2136 } 2137 2138 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2139 auto *GV = new llvm::GlobalVariable( 2140 getModule(), Ty->getElementType(), false, 2141 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2142 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2143 2144 // If we already created a global with the same mangled name (but different 2145 // type) before, take its name and remove it from its parent. 2146 if (Entry) { 2147 GV->takeName(Entry); 2148 2149 if (!Entry->use_empty()) { 2150 llvm::Constant *NewPtrForOldDecl = 2151 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2152 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2153 } 2154 2155 Entry->eraseFromParent(); 2156 } 2157 2158 // This is the first use or definition of a mangled name. If there is a 2159 // deferred decl with this name, remember that we need to emit it at the end 2160 // of the file. 2161 auto DDI = DeferredDecls.find(MangledName); 2162 if (DDI != DeferredDecls.end()) { 2163 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2164 // list, and remove it from DeferredDecls (since we don't need it anymore). 2165 addDeferredDeclToEmit(GV, DDI->second); 2166 DeferredDecls.erase(DDI); 2167 } 2168 2169 // Handle things which are present even on external declarations. 2170 if (D) { 2171 // FIXME: This code is overly simple and should be merged with other global 2172 // handling. 2173 GV->setConstant(isTypeConstant(D->getType(), false)); 2174 2175 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2176 2177 setLinkageAndVisibilityForGV(GV, D); 2178 2179 if (D->getTLSKind()) { 2180 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2181 CXXThreadLocals.push_back(D); 2182 setTLSMode(GV, *D); 2183 } 2184 2185 // If required by the ABI, treat declarations of static data members with 2186 // inline initializers as definitions. 2187 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2188 EmitGlobalVarDefinition(D); 2189 } 2190 2191 // Handle XCore specific ABI requirements. 2192 if (getTriple().getArch() == llvm::Triple::xcore && 2193 D->getLanguageLinkage() == CLanguageLinkage && 2194 D->getType().isConstant(Context) && 2195 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2196 GV->setSection(".cp.rodata"); 2197 } 2198 2199 if (AddrSpace != Ty->getAddressSpace()) 2200 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2201 2202 return GV; 2203 } 2204 2205 llvm::Constant * 2206 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2207 bool IsForDefinition) { 2208 if (isa<CXXConstructorDecl>(GD.getDecl())) 2209 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2210 getFromCtorType(GD.getCtorType()), 2211 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2212 /*DontDefer=*/false, IsForDefinition); 2213 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2214 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2215 getFromDtorType(GD.getDtorType()), 2216 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2217 /*DontDefer=*/false, IsForDefinition); 2218 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2219 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2220 cast<CXXMethodDecl>(GD.getDecl())); 2221 auto Ty = getTypes().GetFunctionType(*FInfo); 2222 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2223 IsForDefinition); 2224 } else if (isa<FunctionDecl>(GD.getDecl())) { 2225 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2226 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2227 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2228 IsForDefinition); 2229 } else 2230 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2231 IsForDefinition); 2232 } 2233 2234 llvm::GlobalVariable * 2235 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2236 llvm::Type *Ty, 2237 llvm::GlobalValue::LinkageTypes Linkage) { 2238 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2239 llvm::GlobalVariable *OldGV = nullptr; 2240 2241 if (GV) { 2242 // Check if the variable has the right type. 2243 if (GV->getType()->getElementType() == Ty) 2244 return GV; 2245 2246 // Because C++ name mangling, the only way we can end up with an already 2247 // existing global with the same name is if it has been declared extern "C". 2248 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2249 OldGV = GV; 2250 } 2251 2252 // Create a new variable. 2253 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2254 Linkage, nullptr, Name); 2255 2256 if (OldGV) { 2257 // Replace occurrences of the old variable if needed. 2258 GV->takeName(OldGV); 2259 2260 if (!OldGV->use_empty()) { 2261 llvm::Constant *NewPtrForOldDecl = 2262 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2263 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2264 } 2265 2266 OldGV->eraseFromParent(); 2267 } 2268 2269 if (supportsCOMDAT() && GV->isWeakForLinker() && 2270 !GV->hasAvailableExternallyLinkage()) 2271 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2272 2273 return GV; 2274 } 2275 2276 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2277 /// given global variable. If Ty is non-null and if the global doesn't exist, 2278 /// then it will be created with the specified type instead of whatever the 2279 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2280 /// that an actual global with type Ty will be returned, not conversion of a 2281 /// variable with the same mangled name but some other type. 2282 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2283 llvm::Type *Ty, 2284 bool IsForDefinition) { 2285 assert(D->hasGlobalStorage() && "Not a global variable"); 2286 QualType ASTTy = D->getType(); 2287 if (!Ty) 2288 Ty = getTypes().ConvertTypeForMem(ASTTy); 2289 2290 llvm::PointerType *PTy = 2291 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2292 2293 StringRef MangledName = getMangledName(D); 2294 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2295 } 2296 2297 /// CreateRuntimeVariable - Create a new runtime global variable with the 2298 /// specified type and name. 2299 llvm::Constant * 2300 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2301 StringRef Name) { 2302 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2303 } 2304 2305 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2306 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2307 2308 StringRef MangledName = getMangledName(D); 2309 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2310 2311 // We already have a definition, not declaration, with the same mangled name. 2312 // Emitting of declaration is not required (and actually overwrites emitted 2313 // definition). 2314 if (GV && !GV->isDeclaration()) 2315 return; 2316 2317 // If we have not seen a reference to this variable yet, place it into the 2318 // deferred declarations table to be emitted if needed later. 2319 if (!MustBeEmitted(D) && !GV) { 2320 DeferredDecls[MangledName] = D; 2321 return; 2322 } 2323 2324 // The tentative definition is the only definition. 2325 EmitGlobalVarDefinition(D); 2326 } 2327 2328 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2329 return Context.toCharUnitsFromBits( 2330 getDataLayout().getTypeStoreSizeInBits(Ty)); 2331 } 2332 2333 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2334 unsigned AddrSpace) { 2335 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2336 if (D->hasAttr<CUDAConstantAttr>()) 2337 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2338 else if (D->hasAttr<CUDASharedAttr>()) 2339 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2340 else 2341 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2342 } 2343 2344 return AddrSpace; 2345 } 2346 2347 template<typename SomeDecl> 2348 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2349 llvm::GlobalValue *GV) { 2350 if (!getLangOpts().CPlusPlus) 2351 return; 2352 2353 // Must have 'used' attribute, or else inline assembly can't rely on 2354 // the name existing. 2355 if (!D->template hasAttr<UsedAttr>()) 2356 return; 2357 2358 // Must have internal linkage and an ordinary name. 2359 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2360 return; 2361 2362 // Must be in an extern "C" context. Entities declared directly within 2363 // a record are not extern "C" even if the record is in such a context. 2364 const SomeDecl *First = D->getFirstDecl(); 2365 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2366 return; 2367 2368 // OK, this is an internal linkage entity inside an extern "C" linkage 2369 // specification. Make a note of that so we can give it the "expected" 2370 // mangled name if nothing else is using that name. 2371 std::pair<StaticExternCMap::iterator, bool> R = 2372 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2373 2374 // If we have multiple internal linkage entities with the same name 2375 // in extern "C" regions, none of them gets that name. 2376 if (!R.second) 2377 R.first->second = nullptr; 2378 } 2379 2380 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2381 if (!CGM.supportsCOMDAT()) 2382 return false; 2383 2384 if (D.hasAttr<SelectAnyAttr>()) 2385 return true; 2386 2387 GVALinkage Linkage; 2388 if (auto *VD = dyn_cast<VarDecl>(&D)) 2389 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2390 else 2391 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2392 2393 switch (Linkage) { 2394 case GVA_Internal: 2395 case GVA_AvailableExternally: 2396 case GVA_StrongExternal: 2397 return false; 2398 case GVA_DiscardableODR: 2399 case GVA_StrongODR: 2400 return true; 2401 } 2402 llvm_unreachable("No such linkage"); 2403 } 2404 2405 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2406 llvm::GlobalObject &GO) { 2407 if (!shouldBeInCOMDAT(*this, D)) 2408 return; 2409 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2410 } 2411 2412 /// Pass IsTentative as true if you want to create a tentative definition. 2413 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2414 bool IsTentative) { 2415 // OpenCL global variables of sampler type are translated to function calls, 2416 // therefore no need to be translated. 2417 QualType ASTTy = D->getType(); 2418 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2419 return; 2420 2421 llvm::Constant *Init = nullptr; 2422 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2423 bool NeedsGlobalCtor = false; 2424 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2425 2426 const VarDecl *InitDecl; 2427 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2428 2429 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2430 // as part of their declaration." Sema has already checked for 2431 // error cases, so we just need to set Init to UndefValue. 2432 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2433 D->hasAttr<CUDASharedAttr>()) 2434 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2435 else if (!InitExpr) { 2436 // This is a tentative definition; tentative definitions are 2437 // implicitly initialized with { 0 }. 2438 // 2439 // Note that tentative definitions are only emitted at the end of 2440 // a translation unit, so they should never have incomplete 2441 // type. In addition, EmitTentativeDefinition makes sure that we 2442 // never attempt to emit a tentative definition if a real one 2443 // exists. A use may still exists, however, so we still may need 2444 // to do a RAUW. 2445 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2446 Init = EmitNullConstant(D->getType()); 2447 } else { 2448 initializedGlobalDecl = GlobalDecl(D); 2449 Init = EmitConstantInit(*InitDecl); 2450 2451 if (!Init) { 2452 QualType T = InitExpr->getType(); 2453 if (D->getType()->isReferenceType()) 2454 T = D->getType(); 2455 2456 if (getLangOpts().CPlusPlus) { 2457 Init = EmitNullConstant(T); 2458 NeedsGlobalCtor = true; 2459 } else { 2460 ErrorUnsupported(D, "static initializer"); 2461 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2462 } 2463 } else { 2464 // We don't need an initializer, so remove the entry for the delayed 2465 // initializer position (just in case this entry was delayed) if we 2466 // also don't need to register a destructor. 2467 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2468 DelayedCXXInitPosition.erase(D); 2469 } 2470 } 2471 2472 llvm::Type* InitType = Init->getType(); 2473 llvm::Constant *Entry = 2474 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2475 2476 // Strip off a bitcast if we got one back. 2477 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2478 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2479 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2480 // All zero index gep. 2481 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2482 Entry = CE->getOperand(0); 2483 } 2484 2485 // Entry is now either a Function or GlobalVariable. 2486 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2487 2488 // We have a definition after a declaration with the wrong type. 2489 // We must make a new GlobalVariable* and update everything that used OldGV 2490 // (a declaration or tentative definition) with the new GlobalVariable* 2491 // (which will be a definition). 2492 // 2493 // This happens if there is a prototype for a global (e.g. 2494 // "extern int x[];") and then a definition of a different type (e.g. 2495 // "int x[10];"). This also happens when an initializer has a different type 2496 // from the type of the global (this happens with unions). 2497 if (!GV || 2498 GV->getType()->getElementType() != InitType || 2499 GV->getType()->getAddressSpace() != 2500 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2501 2502 // Move the old entry aside so that we'll create a new one. 2503 Entry->setName(StringRef()); 2504 2505 // Make a new global with the correct type, this is now guaranteed to work. 2506 GV = cast<llvm::GlobalVariable>( 2507 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2508 2509 // Replace all uses of the old global with the new global 2510 llvm::Constant *NewPtrForOldDecl = 2511 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2512 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2513 2514 // Erase the old global, since it is no longer used. 2515 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2516 } 2517 2518 MaybeHandleStaticInExternC(D, GV); 2519 2520 if (D->hasAttr<AnnotateAttr>()) 2521 AddGlobalAnnotations(D, GV); 2522 2523 // Set the llvm linkage type as appropriate. 2524 llvm::GlobalValue::LinkageTypes Linkage = 2525 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2526 2527 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2528 // the device. [...]" 2529 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2530 // __device__, declares a variable that: [...] 2531 // Is accessible from all the threads within the grid and from the host 2532 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2533 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2534 if (GV && LangOpts.CUDA) { 2535 if (LangOpts.CUDAIsDevice) { 2536 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2537 GV->setExternallyInitialized(true); 2538 } else { 2539 // Host-side shadows of external declarations of device-side 2540 // global variables become internal definitions. These have to 2541 // be internal in order to prevent name conflicts with global 2542 // host variables with the same name in a different TUs. 2543 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2544 Linkage = llvm::GlobalValue::InternalLinkage; 2545 2546 // Shadow variables and their properties must be registered 2547 // with CUDA runtime. 2548 unsigned Flags = 0; 2549 if (!D->hasDefinition()) 2550 Flags |= CGCUDARuntime::ExternDeviceVar; 2551 if (D->hasAttr<CUDAConstantAttr>()) 2552 Flags |= CGCUDARuntime::ConstantDeviceVar; 2553 getCUDARuntime().registerDeviceVar(*GV, Flags); 2554 } else if (D->hasAttr<CUDASharedAttr>()) 2555 // __shared__ variables are odd. Shadows do get created, but 2556 // they are not registered with the CUDA runtime, so they 2557 // can't really be used to access their device-side 2558 // counterparts. It's not clear yet whether it's nvcc's bug or 2559 // a feature, but we've got to do the same for compatibility. 2560 Linkage = llvm::GlobalValue::InternalLinkage; 2561 } 2562 } 2563 GV->setInitializer(Init); 2564 2565 // If it is safe to mark the global 'constant', do so now. 2566 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2567 isTypeConstant(D->getType(), true)); 2568 2569 // If it is in a read-only section, mark it 'constant'. 2570 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2571 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2572 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2573 GV->setConstant(true); 2574 } 2575 2576 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2577 2578 2579 // On Darwin, if the normal linkage of a C++ thread_local variable is 2580 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2581 // copies within a linkage unit; otherwise, the backing variable has 2582 // internal linkage and all accesses should just be calls to the 2583 // Itanium-specified entry point, which has the normal linkage of the 2584 // variable. This is to preserve the ability to change the implementation 2585 // behind the scenes. 2586 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2587 Context.getTargetInfo().getTriple().isOSDarwin() && 2588 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2589 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2590 Linkage = llvm::GlobalValue::InternalLinkage; 2591 2592 GV->setLinkage(Linkage); 2593 if (D->hasAttr<DLLImportAttr>()) 2594 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2595 else if (D->hasAttr<DLLExportAttr>()) 2596 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2597 else 2598 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2599 2600 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2601 // common vars aren't constant even if declared const. 2602 GV->setConstant(false); 2603 2604 setNonAliasAttributes(D, GV); 2605 2606 if (D->getTLSKind() && !GV->isThreadLocal()) { 2607 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2608 CXXThreadLocals.push_back(D); 2609 setTLSMode(GV, *D); 2610 } 2611 2612 maybeSetTrivialComdat(*D, *GV); 2613 2614 // Emit the initializer function if necessary. 2615 if (NeedsGlobalCtor || NeedsGlobalDtor) 2616 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2617 2618 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2619 2620 // Emit global variable debug information. 2621 if (CGDebugInfo *DI = getModuleDebugInfo()) 2622 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2623 DI->EmitGlobalVariable(GV, D); 2624 } 2625 2626 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2627 CodeGenModule &CGM, const VarDecl *D, 2628 bool NoCommon) { 2629 // Don't give variables common linkage if -fno-common was specified unless it 2630 // was overridden by a NoCommon attribute. 2631 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2632 return true; 2633 2634 // C11 6.9.2/2: 2635 // A declaration of an identifier for an object that has file scope without 2636 // an initializer, and without a storage-class specifier or with the 2637 // storage-class specifier static, constitutes a tentative definition. 2638 if (D->getInit() || D->hasExternalStorage()) 2639 return true; 2640 2641 // A variable cannot be both common and exist in a section. 2642 if (D->hasAttr<SectionAttr>()) 2643 return true; 2644 2645 // Thread local vars aren't considered common linkage. 2646 if (D->getTLSKind()) 2647 return true; 2648 2649 // Tentative definitions marked with WeakImportAttr are true definitions. 2650 if (D->hasAttr<WeakImportAttr>()) 2651 return true; 2652 2653 // A variable cannot be both common and exist in a comdat. 2654 if (shouldBeInCOMDAT(CGM, *D)) 2655 return true; 2656 2657 // Declarations with a required alignment do not have common linkage in MSVC 2658 // mode. 2659 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2660 if (D->hasAttr<AlignedAttr>()) 2661 return true; 2662 QualType VarType = D->getType(); 2663 if (Context.isAlignmentRequired(VarType)) 2664 return true; 2665 2666 if (const auto *RT = VarType->getAs<RecordType>()) { 2667 const RecordDecl *RD = RT->getDecl(); 2668 for (const FieldDecl *FD : RD->fields()) { 2669 if (FD->isBitField()) 2670 continue; 2671 if (FD->hasAttr<AlignedAttr>()) 2672 return true; 2673 if (Context.isAlignmentRequired(FD->getType())) 2674 return true; 2675 } 2676 } 2677 } 2678 2679 return false; 2680 } 2681 2682 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2683 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2684 if (Linkage == GVA_Internal) 2685 return llvm::Function::InternalLinkage; 2686 2687 if (D->hasAttr<WeakAttr>()) { 2688 if (IsConstantVariable) 2689 return llvm::GlobalVariable::WeakODRLinkage; 2690 else 2691 return llvm::GlobalVariable::WeakAnyLinkage; 2692 } 2693 2694 // We are guaranteed to have a strong definition somewhere else, 2695 // so we can use available_externally linkage. 2696 if (Linkage == GVA_AvailableExternally) 2697 return llvm::Function::AvailableExternallyLinkage; 2698 2699 // Note that Apple's kernel linker doesn't support symbol 2700 // coalescing, so we need to avoid linkonce and weak linkages there. 2701 // Normally, this means we just map to internal, but for explicit 2702 // instantiations we'll map to external. 2703 2704 // In C++, the compiler has to emit a definition in every translation unit 2705 // that references the function. We should use linkonce_odr because 2706 // a) if all references in this translation unit are optimized away, we 2707 // don't need to codegen it. b) if the function persists, it needs to be 2708 // merged with other definitions. c) C++ has the ODR, so we know the 2709 // definition is dependable. 2710 if (Linkage == GVA_DiscardableODR) 2711 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2712 : llvm::Function::InternalLinkage; 2713 2714 // An explicit instantiation of a template has weak linkage, since 2715 // explicit instantiations can occur in multiple translation units 2716 // and must all be equivalent. However, we are not allowed to 2717 // throw away these explicit instantiations. 2718 // 2719 // We don't currently support CUDA device code spread out across multiple TUs, 2720 // so say that CUDA templates are either external (for kernels) or internal. 2721 // This lets llvm perform aggressive inter-procedural optimizations. 2722 if (Linkage == GVA_StrongODR) { 2723 if (Context.getLangOpts().AppleKext) 2724 return llvm::Function::ExternalLinkage; 2725 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2726 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2727 : llvm::Function::InternalLinkage; 2728 return llvm::Function::WeakODRLinkage; 2729 } 2730 2731 // C++ doesn't have tentative definitions and thus cannot have common 2732 // linkage. 2733 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2734 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2735 CodeGenOpts.NoCommon)) 2736 return llvm::GlobalVariable::CommonLinkage; 2737 2738 // selectany symbols are externally visible, so use weak instead of 2739 // linkonce. MSVC optimizes away references to const selectany globals, so 2740 // all definitions should be the same and ODR linkage should be used. 2741 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2742 if (D->hasAttr<SelectAnyAttr>()) 2743 return llvm::GlobalVariable::WeakODRLinkage; 2744 2745 // Otherwise, we have strong external linkage. 2746 assert(Linkage == GVA_StrongExternal); 2747 return llvm::GlobalVariable::ExternalLinkage; 2748 } 2749 2750 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2751 const VarDecl *VD, bool IsConstant) { 2752 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2753 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2754 } 2755 2756 /// Replace the uses of a function that was declared with a non-proto type. 2757 /// We want to silently drop extra arguments from call sites 2758 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2759 llvm::Function *newFn) { 2760 // Fast path. 2761 if (old->use_empty()) return; 2762 2763 llvm::Type *newRetTy = newFn->getReturnType(); 2764 SmallVector<llvm::Value*, 4> newArgs; 2765 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2766 2767 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2768 ui != ue; ) { 2769 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2770 llvm::User *user = use->getUser(); 2771 2772 // Recognize and replace uses of bitcasts. Most calls to 2773 // unprototyped functions will use bitcasts. 2774 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2775 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2776 replaceUsesOfNonProtoConstant(bitcast, newFn); 2777 continue; 2778 } 2779 2780 // Recognize calls to the function. 2781 llvm::CallSite callSite(user); 2782 if (!callSite) continue; 2783 if (!callSite.isCallee(&*use)) continue; 2784 2785 // If the return types don't match exactly, then we can't 2786 // transform this call unless it's dead. 2787 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2788 continue; 2789 2790 // Get the call site's attribute list. 2791 SmallVector<llvm::AttributeSet, 8> newAttrs; 2792 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2793 2794 // Collect any return attributes from the call. 2795 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2796 newAttrs.push_back( 2797 llvm::AttributeSet::get(newFn->getContext(), 2798 oldAttrs.getRetAttributes())); 2799 2800 // If the function was passed too few arguments, don't transform. 2801 unsigned newNumArgs = newFn->arg_size(); 2802 if (callSite.arg_size() < newNumArgs) continue; 2803 2804 // If extra arguments were passed, we silently drop them. 2805 // If any of the types mismatch, we don't transform. 2806 unsigned argNo = 0; 2807 bool dontTransform = false; 2808 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2809 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2810 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2811 dontTransform = true; 2812 break; 2813 } 2814 2815 // Add any parameter attributes. 2816 if (oldAttrs.hasAttributes(argNo + 1)) 2817 newAttrs. 2818 push_back(llvm:: 2819 AttributeSet::get(newFn->getContext(), 2820 oldAttrs.getParamAttributes(argNo + 1))); 2821 } 2822 if (dontTransform) 2823 continue; 2824 2825 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2826 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2827 oldAttrs.getFnAttributes())); 2828 2829 // Okay, we can transform this. Create the new call instruction and copy 2830 // over the required information. 2831 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2832 2833 // Copy over any operand bundles. 2834 callSite.getOperandBundlesAsDefs(newBundles); 2835 2836 llvm::CallSite newCall; 2837 if (callSite.isCall()) { 2838 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2839 callSite.getInstruction()); 2840 } else { 2841 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2842 newCall = llvm::InvokeInst::Create(newFn, 2843 oldInvoke->getNormalDest(), 2844 oldInvoke->getUnwindDest(), 2845 newArgs, newBundles, "", 2846 callSite.getInstruction()); 2847 } 2848 newArgs.clear(); // for the next iteration 2849 2850 if (!newCall->getType()->isVoidTy()) 2851 newCall->takeName(callSite.getInstruction()); 2852 newCall.setAttributes( 2853 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2854 newCall.setCallingConv(callSite.getCallingConv()); 2855 2856 // Finally, remove the old call, replacing any uses with the new one. 2857 if (!callSite->use_empty()) 2858 callSite->replaceAllUsesWith(newCall.getInstruction()); 2859 2860 // Copy debug location attached to CI. 2861 if (callSite->getDebugLoc()) 2862 newCall->setDebugLoc(callSite->getDebugLoc()); 2863 2864 callSite->eraseFromParent(); 2865 } 2866 } 2867 2868 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2869 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2870 /// existing call uses of the old function in the module, this adjusts them to 2871 /// call the new function directly. 2872 /// 2873 /// This is not just a cleanup: the always_inline pass requires direct calls to 2874 /// functions to be able to inline them. If there is a bitcast in the way, it 2875 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2876 /// run at -O0. 2877 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2878 llvm::Function *NewFn) { 2879 // If we're redefining a global as a function, don't transform it. 2880 if (!isa<llvm::Function>(Old)) return; 2881 2882 replaceUsesOfNonProtoConstant(Old, NewFn); 2883 } 2884 2885 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2886 auto DK = VD->isThisDeclarationADefinition(); 2887 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2888 return; 2889 2890 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2891 // If we have a definition, this might be a deferred decl. If the 2892 // instantiation is explicit, make sure we emit it at the end. 2893 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2894 GetAddrOfGlobalVar(VD); 2895 2896 EmitTopLevelDecl(VD); 2897 } 2898 2899 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2900 llvm::GlobalValue *GV) { 2901 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2902 2903 // Compute the function info and LLVM type. 2904 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2905 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2906 2907 // Get or create the prototype for the function. 2908 if (!GV || (GV->getType()->getElementType() != Ty)) 2909 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2910 /*DontDefer=*/true, 2911 /*IsForDefinition=*/true)); 2912 2913 // Already emitted. 2914 if (!GV->isDeclaration()) 2915 return; 2916 2917 // We need to set linkage and visibility on the function before 2918 // generating code for it because various parts of IR generation 2919 // want to propagate this information down (e.g. to local static 2920 // declarations). 2921 auto *Fn = cast<llvm::Function>(GV); 2922 setFunctionLinkage(GD, Fn); 2923 setFunctionDLLStorageClass(GD, Fn); 2924 2925 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2926 setGlobalVisibility(Fn, D); 2927 2928 MaybeHandleStaticInExternC(D, Fn); 2929 2930 maybeSetTrivialComdat(*D, *Fn); 2931 2932 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2933 2934 setFunctionDefinitionAttributes(D, Fn); 2935 SetLLVMFunctionAttributesForDefinition(D, Fn); 2936 2937 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2938 AddGlobalCtor(Fn, CA->getPriority()); 2939 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2940 AddGlobalDtor(Fn, DA->getPriority()); 2941 if (D->hasAttr<AnnotateAttr>()) 2942 AddGlobalAnnotations(D, Fn); 2943 } 2944 2945 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2946 const auto *D = cast<ValueDecl>(GD.getDecl()); 2947 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2948 assert(AA && "Not an alias?"); 2949 2950 StringRef MangledName = getMangledName(GD); 2951 2952 if (AA->getAliasee() == MangledName) { 2953 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2954 return; 2955 } 2956 2957 // If there is a definition in the module, then it wins over the alias. 2958 // This is dubious, but allow it to be safe. Just ignore the alias. 2959 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2960 if (Entry && !Entry->isDeclaration()) 2961 return; 2962 2963 Aliases.push_back(GD); 2964 2965 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2966 2967 // Create a reference to the named value. This ensures that it is emitted 2968 // if a deferred decl. 2969 llvm::Constant *Aliasee; 2970 if (isa<llvm::FunctionType>(DeclTy)) 2971 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2972 /*ForVTable=*/false); 2973 else 2974 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2975 llvm::PointerType::getUnqual(DeclTy), 2976 /*D=*/nullptr); 2977 2978 // Create the new alias itself, but don't set a name yet. 2979 auto *GA = llvm::GlobalAlias::create( 2980 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2981 2982 if (Entry) { 2983 if (GA->getAliasee() == Entry) { 2984 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2985 return; 2986 } 2987 2988 assert(Entry->isDeclaration()); 2989 2990 // If there is a declaration in the module, then we had an extern followed 2991 // by the alias, as in: 2992 // extern int test6(); 2993 // ... 2994 // int test6() __attribute__((alias("test7"))); 2995 // 2996 // Remove it and replace uses of it with the alias. 2997 GA->takeName(Entry); 2998 2999 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3000 Entry->getType())); 3001 Entry->eraseFromParent(); 3002 } else { 3003 GA->setName(MangledName); 3004 } 3005 3006 // Set attributes which are particular to an alias; this is a 3007 // specialization of the attributes which may be set on a global 3008 // variable/function. 3009 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3010 D->isWeakImported()) { 3011 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3012 } 3013 3014 if (const auto *VD = dyn_cast<VarDecl>(D)) 3015 if (VD->getTLSKind()) 3016 setTLSMode(GA, *VD); 3017 3018 setAliasAttributes(D, GA); 3019 } 3020 3021 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3022 const auto *D = cast<ValueDecl>(GD.getDecl()); 3023 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3024 assert(IFA && "Not an ifunc?"); 3025 3026 StringRef MangledName = getMangledName(GD); 3027 3028 if (IFA->getResolver() == MangledName) { 3029 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3030 return; 3031 } 3032 3033 // Report an error if some definition overrides ifunc. 3034 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3035 if (Entry && !Entry->isDeclaration()) { 3036 GlobalDecl OtherGD; 3037 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3038 DiagnosedConflictingDefinitions.insert(GD).second) { 3039 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3040 Diags.Report(OtherGD.getDecl()->getLocation(), 3041 diag::note_previous_definition); 3042 } 3043 return; 3044 } 3045 3046 Aliases.push_back(GD); 3047 3048 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3049 llvm::Constant *Resolver = 3050 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3051 /*ForVTable=*/false); 3052 llvm::GlobalIFunc *GIF = 3053 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3054 "", Resolver, &getModule()); 3055 if (Entry) { 3056 if (GIF->getResolver() == Entry) { 3057 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3058 return; 3059 } 3060 assert(Entry->isDeclaration()); 3061 3062 // If there is a declaration in the module, then we had an extern followed 3063 // by the ifunc, as in: 3064 // extern int test(); 3065 // ... 3066 // int test() __attribute__((ifunc("resolver"))); 3067 // 3068 // Remove it and replace uses of it with the ifunc. 3069 GIF->takeName(Entry); 3070 3071 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3072 Entry->getType())); 3073 Entry->eraseFromParent(); 3074 } else 3075 GIF->setName(MangledName); 3076 3077 SetCommonAttributes(D, GIF); 3078 } 3079 3080 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3081 ArrayRef<llvm::Type*> Tys) { 3082 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3083 Tys); 3084 } 3085 3086 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3087 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3088 const StringLiteral *Literal, bool TargetIsLSB, 3089 bool &IsUTF16, unsigned &StringLength) { 3090 StringRef String = Literal->getString(); 3091 unsigned NumBytes = String.size(); 3092 3093 // Check for simple case. 3094 if (!Literal->containsNonAsciiOrNull()) { 3095 StringLength = NumBytes; 3096 return *Map.insert(std::make_pair(String, nullptr)).first; 3097 } 3098 3099 // Otherwise, convert the UTF8 literals into a string of shorts. 3100 IsUTF16 = true; 3101 3102 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3103 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3104 llvm::UTF16 *ToPtr = &ToBuf[0]; 3105 3106 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3107 ToPtr + NumBytes, llvm::strictConversion); 3108 3109 // ConvertUTF8toUTF16 returns the length in ToPtr. 3110 StringLength = ToPtr - &ToBuf[0]; 3111 3112 // Add an explicit null. 3113 *ToPtr = 0; 3114 return *Map.insert(std::make_pair( 3115 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3116 (StringLength + 1) * 2), 3117 nullptr)).first; 3118 } 3119 3120 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3121 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3122 const StringLiteral *Literal, unsigned &StringLength) { 3123 StringRef String = Literal->getString(); 3124 StringLength = String.size(); 3125 return *Map.insert(std::make_pair(String, nullptr)).first; 3126 } 3127 3128 ConstantAddress 3129 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3130 unsigned StringLength = 0; 3131 bool isUTF16 = false; 3132 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3133 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3134 getDataLayout().isLittleEndian(), isUTF16, 3135 StringLength); 3136 3137 if (auto *C = Entry.second) 3138 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3139 3140 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3141 llvm::Constant *Zeros[] = { Zero, Zero }; 3142 3143 // If we don't already have it, get __CFConstantStringClassReference. 3144 if (!CFConstantStringClassRef) { 3145 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3146 Ty = llvm::ArrayType::get(Ty, 0); 3147 llvm::Constant *GV = 3148 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3149 3150 if (getTriple().isOSBinFormatCOFF()) { 3151 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3152 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3153 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3154 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3155 3156 const VarDecl *VD = nullptr; 3157 for (const auto &Result : DC->lookup(&II)) 3158 if ((VD = dyn_cast<VarDecl>(Result))) 3159 break; 3160 3161 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3162 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3163 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3164 } else { 3165 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3166 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3167 } 3168 } 3169 3170 // Decay array -> ptr 3171 CFConstantStringClassRef = 3172 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3173 } 3174 3175 QualType CFTy = getContext().getCFConstantStringType(); 3176 3177 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3178 3179 llvm::Constant *Fields[4]; 3180 3181 // Class pointer. 3182 Fields[0] = cast<llvm::ConstantExpr>(CFConstantStringClassRef); 3183 3184 // Flags. 3185 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3186 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 3187 : llvm::ConstantInt::get(Ty, 0x07C8); 3188 3189 // String pointer. 3190 llvm::Constant *C = nullptr; 3191 if (isUTF16) { 3192 auto Arr = llvm::makeArrayRef( 3193 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3194 Entry.first().size() / 2); 3195 C = llvm::ConstantDataArray::get(VMContext, Arr); 3196 } else { 3197 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3198 } 3199 3200 // Note: -fwritable-strings doesn't make the backing store strings of 3201 // CFStrings writable. (See <rdar://problem/10657500>) 3202 auto *GV = 3203 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3204 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3205 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3206 // Don't enforce the target's minimum global alignment, since the only use 3207 // of the string is via this class initializer. 3208 CharUnits Align = isUTF16 3209 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3210 : getContext().getTypeAlignInChars(getContext().CharTy); 3211 GV->setAlignment(Align.getQuantity()); 3212 3213 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3214 // Without it LLVM can merge the string with a non unnamed_addr one during 3215 // LTO. Doing that changes the section it ends in, which surprises ld64. 3216 if (getTriple().isOSBinFormatMachO()) 3217 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3218 : "__TEXT,__cstring,cstring_literals"); 3219 3220 // String. 3221 Fields[2] = 3222 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3223 3224 if (isUTF16) 3225 // Cast the UTF16 string to the correct type. 3226 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3227 3228 // String length. 3229 Ty = getTypes().ConvertType(getContext().LongTy); 3230 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3231 3232 CharUnits Alignment = getPointerAlign(); 3233 3234 // The struct. 3235 C = llvm::ConstantStruct::get(STy, Fields); 3236 GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false, 3237 llvm::GlobalVariable::PrivateLinkage, C, 3238 "_unnamed_cfstring_"); 3239 GV->setAlignment(Alignment.getQuantity()); 3240 switch (getTriple().getObjectFormat()) { 3241 case llvm::Triple::UnknownObjectFormat: 3242 llvm_unreachable("unknown file format"); 3243 case llvm::Triple::COFF: 3244 case llvm::Triple::ELF: 3245 GV->setSection("cfstring"); 3246 break; 3247 case llvm::Triple::MachO: 3248 GV->setSection("__DATA,__cfstring"); 3249 break; 3250 } 3251 Entry.second = GV; 3252 3253 return ConstantAddress(GV, Alignment); 3254 } 3255 3256 ConstantAddress 3257 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3258 unsigned StringLength = 0; 3259 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3260 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3261 3262 if (auto *C = Entry.second) 3263 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3264 3265 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3266 llvm::Constant *Zeros[] = { Zero, Zero }; 3267 llvm::Value *V; 3268 // If we don't already have it, get _NSConstantStringClassReference. 3269 if (!ConstantStringClassRef) { 3270 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3271 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3272 llvm::Constant *GV; 3273 if (LangOpts.ObjCRuntime.isNonFragile()) { 3274 std::string str = 3275 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3276 : "OBJC_CLASS_$_" + StringClass; 3277 GV = getObjCRuntime().GetClassGlobal(str); 3278 // Make sure the result is of the correct type. 3279 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3280 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3281 ConstantStringClassRef = V; 3282 } else { 3283 std::string str = 3284 StringClass.empty() ? "_NSConstantStringClassReference" 3285 : "_" + StringClass + "ClassReference"; 3286 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3287 GV = CreateRuntimeVariable(PTy, str); 3288 // Decay array -> ptr 3289 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3290 ConstantStringClassRef = V; 3291 } 3292 } else 3293 V = ConstantStringClassRef; 3294 3295 if (!NSConstantStringType) { 3296 // Construct the type for a constant NSString. 3297 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3298 D->startDefinition(); 3299 3300 QualType FieldTypes[3]; 3301 3302 // const int *isa; 3303 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3304 // const char *str; 3305 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3306 // unsigned int length; 3307 FieldTypes[2] = Context.UnsignedIntTy; 3308 3309 // Create fields 3310 for (unsigned i = 0; i < 3; ++i) { 3311 FieldDecl *Field = FieldDecl::Create(Context, D, 3312 SourceLocation(), 3313 SourceLocation(), nullptr, 3314 FieldTypes[i], /*TInfo=*/nullptr, 3315 /*BitWidth=*/nullptr, 3316 /*Mutable=*/false, 3317 ICIS_NoInit); 3318 Field->setAccess(AS_public); 3319 D->addDecl(Field); 3320 } 3321 3322 D->completeDefinition(); 3323 QualType NSTy = Context.getTagDeclType(D); 3324 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3325 } 3326 3327 llvm::Constant *Fields[3]; 3328 3329 // Class pointer. 3330 Fields[0] = cast<llvm::ConstantExpr>(V); 3331 3332 // String pointer. 3333 llvm::Constant *C = 3334 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3335 3336 llvm::GlobalValue::LinkageTypes Linkage; 3337 bool isConstant; 3338 Linkage = llvm::GlobalValue::PrivateLinkage; 3339 isConstant = !LangOpts.WritableStrings; 3340 3341 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3342 Linkage, C, ".str"); 3343 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3344 // Don't enforce the target's minimum global alignment, since the only use 3345 // of the string is via this class initializer. 3346 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3347 GV->setAlignment(Align.getQuantity()); 3348 Fields[1] = 3349 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3350 3351 // String length. 3352 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3353 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3354 3355 // The struct. 3356 CharUnits Alignment = getPointerAlign(); 3357 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3358 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3359 llvm::GlobalVariable::PrivateLinkage, C, 3360 "_unnamed_nsstring_"); 3361 GV->setAlignment(Alignment.getQuantity()); 3362 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3363 const char *NSStringNonFragileABISection = 3364 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3365 // FIXME. Fix section. 3366 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3367 ? NSStringNonFragileABISection 3368 : NSStringSection); 3369 Entry.second = GV; 3370 3371 return ConstantAddress(GV, Alignment); 3372 } 3373 3374 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3375 if (ObjCFastEnumerationStateType.isNull()) { 3376 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3377 D->startDefinition(); 3378 3379 QualType FieldTypes[] = { 3380 Context.UnsignedLongTy, 3381 Context.getPointerType(Context.getObjCIdType()), 3382 Context.getPointerType(Context.UnsignedLongTy), 3383 Context.getConstantArrayType(Context.UnsignedLongTy, 3384 llvm::APInt(32, 5), ArrayType::Normal, 0) 3385 }; 3386 3387 for (size_t i = 0; i < 4; ++i) { 3388 FieldDecl *Field = FieldDecl::Create(Context, 3389 D, 3390 SourceLocation(), 3391 SourceLocation(), nullptr, 3392 FieldTypes[i], /*TInfo=*/nullptr, 3393 /*BitWidth=*/nullptr, 3394 /*Mutable=*/false, 3395 ICIS_NoInit); 3396 Field->setAccess(AS_public); 3397 D->addDecl(Field); 3398 } 3399 3400 D->completeDefinition(); 3401 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3402 } 3403 3404 return ObjCFastEnumerationStateType; 3405 } 3406 3407 llvm::Constant * 3408 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3409 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3410 3411 // Don't emit it as the address of the string, emit the string data itself 3412 // as an inline array. 3413 if (E->getCharByteWidth() == 1) { 3414 SmallString<64> Str(E->getString()); 3415 3416 // Resize the string to the right size, which is indicated by its type. 3417 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3418 Str.resize(CAT->getSize().getZExtValue()); 3419 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3420 } 3421 3422 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3423 llvm::Type *ElemTy = AType->getElementType(); 3424 unsigned NumElements = AType->getNumElements(); 3425 3426 // Wide strings have either 2-byte or 4-byte elements. 3427 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3428 SmallVector<uint16_t, 32> Elements; 3429 Elements.reserve(NumElements); 3430 3431 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3432 Elements.push_back(E->getCodeUnit(i)); 3433 Elements.resize(NumElements); 3434 return llvm::ConstantDataArray::get(VMContext, Elements); 3435 } 3436 3437 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3438 SmallVector<uint32_t, 32> Elements; 3439 Elements.reserve(NumElements); 3440 3441 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3442 Elements.push_back(E->getCodeUnit(i)); 3443 Elements.resize(NumElements); 3444 return llvm::ConstantDataArray::get(VMContext, Elements); 3445 } 3446 3447 static llvm::GlobalVariable * 3448 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3449 CodeGenModule &CGM, StringRef GlobalName, 3450 CharUnits Alignment) { 3451 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3452 unsigned AddrSpace = 0; 3453 if (CGM.getLangOpts().OpenCL) 3454 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3455 3456 llvm::Module &M = CGM.getModule(); 3457 // Create a global variable for this string 3458 auto *GV = new llvm::GlobalVariable( 3459 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3460 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3461 GV->setAlignment(Alignment.getQuantity()); 3462 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3463 if (GV->isWeakForLinker()) { 3464 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3465 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3466 } 3467 3468 return GV; 3469 } 3470 3471 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3472 /// constant array for the given string literal. 3473 ConstantAddress 3474 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3475 StringRef Name) { 3476 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3477 3478 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3479 llvm::GlobalVariable **Entry = nullptr; 3480 if (!LangOpts.WritableStrings) { 3481 Entry = &ConstantStringMap[C]; 3482 if (auto GV = *Entry) { 3483 if (Alignment.getQuantity() > GV->getAlignment()) 3484 GV->setAlignment(Alignment.getQuantity()); 3485 return ConstantAddress(GV, Alignment); 3486 } 3487 } 3488 3489 SmallString<256> MangledNameBuffer; 3490 StringRef GlobalVariableName; 3491 llvm::GlobalValue::LinkageTypes LT; 3492 3493 // Mangle the string literal if the ABI allows for it. However, we cannot 3494 // do this if we are compiling with ASan or -fwritable-strings because they 3495 // rely on strings having normal linkage. 3496 if (!LangOpts.WritableStrings && 3497 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3498 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3499 llvm::raw_svector_ostream Out(MangledNameBuffer); 3500 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3501 3502 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3503 GlobalVariableName = MangledNameBuffer; 3504 } else { 3505 LT = llvm::GlobalValue::PrivateLinkage; 3506 GlobalVariableName = Name; 3507 } 3508 3509 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3510 if (Entry) 3511 *Entry = GV; 3512 3513 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3514 QualType()); 3515 return ConstantAddress(GV, Alignment); 3516 } 3517 3518 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3519 /// array for the given ObjCEncodeExpr node. 3520 ConstantAddress 3521 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3522 std::string Str; 3523 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3524 3525 return GetAddrOfConstantCString(Str); 3526 } 3527 3528 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3529 /// the literal and a terminating '\0' character. 3530 /// The result has pointer to array type. 3531 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3532 const std::string &Str, const char *GlobalName) { 3533 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3534 CharUnits Alignment = 3535 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3536 3537 llvm::Constant *C = 3538 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3539 3540 // Don't share any string literals if strings aren't constant. 3541 llvm::GlobalVariable **Entry = nullptr; 3542 if (!LangOpts.WritableStrings) { 3543 Entry = &ConstantStringMap[C]; 3544 if (auto GV = *Entry) { 3545 if (Alignment.getQuantity() > GV->getAlignment()) 3546 GV->setAlignment(Alignment.getQuantity()); 3547 return ConstantAddress(GV, Alignment); 3548 } 3549 } 3550 3551 // Get the default prefix if a name wasn't specified. 3552 if (!GlobalName) 3553 GlobalName = ".str"; 3554 // Create a global variable for this. 3555 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3556 GlobalName, Alignment); 3557 if (Entry) 3558 *Entry = GV; 3559 return ConstantAddress(GV, Alignment); 3560 } 3561 3562 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3563 const MaterializeTemporaryExpr *E, const Expr *Init) { 3564 assert((E->getStorageDuration() == SD_Static || 3565 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3566 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3567 3568 // If we're not materializing a subobject of the temporary, keep the 3569 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3570 QualType MaterializedType = Init->getType(); 3571 if (Init == E->GetTemporaryExpr()) 3572 MaterializedType = E->getType(); 3573 3574 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3575 3576 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3577 return ConstantAddress(Slot, Align); 3578 3579 // FIXME: If an externally-visible declaration extends multiple temporaries, 3580 // we need to give each temporary the same name in every translation unit (and 3581 // we also need to make the temporaries externally-visible). 3582 SmallString<256> Name; 3583 llvm::raw_svector_ostream Out(Name); 3584 getCXXABI().getMangleContext().mangleReferenceTemporary( 3585 VD, E->getManglingNumber(), Out); 3586 3587 APValue *Value = nullptr; 3588 if (E->getStorageDuration() == SD_Static) { 3589 // We might have a cached constant initializer for this temporary. Note 3590 // that this might have a different value from the value computed by 3591 // evaluating the initializer if the surrounding constant expression 3592 // modifies the temporary. 3593 Value = getContext().getMaterializedTemporaryValue(E, false); 3594 if (Value && Value->isUninit()) 3595 Value = nullptr; 3596 } 3597 3598 // Try evaluating it now, it might have a constant initializer. 3599 Expr::EvalResult EvalResult; 3600 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3601 !EvalResult.hasSideEffects()) 3602 Value = &EvalResult.Val; 3603 3604 llvm::Constant *InitialValue = nullptr; 3605 bool Constant = false; 3606 llvm::Type *Type; 3607 if (Value) { 3608 // The temporary has a constant initializer, use it. 3609 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3610 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3611 Type = InitialValue->getType(); 3612 } else { 3613 // No initializer, the initialization will be provided when we 3614 // initialize the declaration which performed lifetime extension. 3615 Type = getTypes().ConvertTypeForMem(MaterializedType); 3616 } 3617 3618 // Create a global variable for this lifetime-extended temporary. 3619 llvm::GlobalValue::LinkageTypes Linkage = 3620 getLLVMLinkageVarDefinition(VD, Constant); 3621 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3622 const VarDecl *InitVD; 3623 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3624 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3625 // Temporaries defined inside a class get linkonce_odr linkage because the 3626 // class can be defined in multipe translation units. 3627 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3628 } else { 3629 // There is no need for this temporary to have external linkage if the 3630 // VarDecl has external linkage. 3631 Linkage = llvm::GlobalVariable::InternalLinkage; 3632 } 3633 } 3634 unsigned AddrSpace = GetGlobalVarAddressSpace( 3635 VD, getContext().getTargetAddressSpace(MaterializedType)); 3636 auto *GV = new llvm::GlobalVariable( 3637 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3638 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3639 AddrSpace); 3640 setGlobalVisibility(GV, VD); 3641 GV->setAlignment(Align.getQuantity()); 3642 if (supportsCOMDAT() && GV->isWeakForLinker()) 3643 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3644 if (VD->getTLSKind()) 3645 setTLSMode(GV, *VD); 3646 MaterializedGlobalTemporaryMap[E] = GV; 3647 return ConstantAddress(GV, Align); 3648 } 3649 3650 /// EmitObjCPropertyImplementations - Emit information for synthesized 3651 /// properties for an implementation. 3652 void CodeGenModule::EmitObjCPropertyImplementations(const 3653 ObjCImplementationDecl *D) { 3654 for (const auto *PID : D->property_impls()) { 3655 // Dynamic is just for type-checking. 3656 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3657 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3658 3659 // Determine which methods need to be implemented, some may have 3660 // been overridden. Note that ::isPropertyAccessor is not the method 3661 // we want, that just indicates if the decl came from a 3662 // property. What we want to know is if the method is defined in 3663 // this implementation. 3664 if (!D->getInstanceMethod(PD->getGetterName())) 3665 CodeGenFunction(*this).GenerateObjCGetter( 3666 const_cast<ObjCImplementationDecl *>(D), PID); 3667 if (!PD->isReadOnly() && 3668 !D->getInstanceMethod(PD->getSetterName())) 3669 CodeGenFunction(*this).GenerateObjCSetter( 3670 const_cast<ObjCImplementationDecl *>(D), PID); 3671 } 3672 } 3673 } 3674 3675 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3676 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3677 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3678 ivar; ivar = ivar->getNextIvar()) 3679 if (ivar->getType().isDestructedType()) 3680 return true; 3681 3682 return false; 3683 } 3684 3685 static bool AllTrivialInitializers(CodeGenModule &CGM, 3686 ObjCImplementationDecl *D) { 3687 CodeGenFunction CGF(CGM); 3688 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3689 E = D->init_end(); B != E; ++B) { 3690 CXXCtorInitializer *CtorInitExp = *B; 3691 Expr *Init = CtorInitExp->getInit(); 3692 if (!CGF.isTrivialInitializer(Init)) 3693 return false; 3694 } 3695 return true; 3696 } 3697 3698 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3699 /// for an implementation. 3700 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3701 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3702 if (needsDestructMethod(D)) { 3703 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3704 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3705 ObjCMethodDecl *DTORMethod = 3706 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3707 cxxSelector, getContext().VoidTy, nullptr, D, 3708 /*isInstance=*/true, /*isVariadic=*/false, 3709 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3710 /*isDefined=*/false, ObjCMethodDecl::Required); 3711 D->addInstanceMethod(DTORMethod); 3712 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3713 D->setHasDestructors(true); 3714 } 3715 3716 // If the implementation doesn't have any ivar initializers, we don't need 3717 // a .cxx_construct. 3718 if (D->getNumIvarInitializers() == 0 || 3719 AllTrivialInitializers(*this, D)) 3720 return; 3721 3722 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3723 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3724 // The constructor returns 'self'. 3725 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3726 D->getLocation(), 3727 D->getLocation(), 3728 cxxSelector, 3729 getContext().getObjCIdType(), 3730 nullptr, D, /*isInstance=*/true, 3731 /*isVariadic=*/false, 3732 /*isPropertyAccessor=*/true, 3733 /*isImplicitlyDeclared=*/true, 3734 /*isDefined=*/false, 3735 ObjCMethodDecl::Required); 3736 D->addInstanceMethod(CTORMethod); 3737 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3738 D->setHasNonZeroConstructors(true); 3739 } 3740 3741 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3742 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3743 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3744 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3745 ErrorUnsupported(LSD, "linkage spec"); 3746 return; 3747 } 3748 3749 EmitDeclContext(LSD); 3750 } 3751 3752 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3753 for (auto *I : DC->decls()) { 3754 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3755 // are themselves considered "top-level", so EmitTopLevelDecl on an 3756 // ObjCImplDecl does not recursively visit them. We need to do that in 3757 // case they're nested inside another construct (LinkageSpecDecl / 3758 // ExportDecl) that does stop them from being considered "top-level". 3759 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3760 for (auto *M : OID->methods()) 3761 EmitTopLevelDecl(M); 3762 } 3763 3764 EmitTopLevelDecl(I); 3765 } 3766 } 3767 3768 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3769 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3770 // Ignore dependent declarations. 3771 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3772 return; 3773 3774 switch (D->getKind()) { 3775 case Decl::CXXConversion: 3776 case Decl::CXXMethod: 3777 case Decl::Function: 3778 // Skip function templates 3779 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3780 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3781 return; 3782 3783 EmitGlobal(cast<FunctionDecl>(D)); 3784 // Always provide some coverage mapping 3785 // even for the functions that aren't emitted. 3786 AddDeferredUnusedCoverageMapping(D); 3787 break; 3788 3789 case Decl::Var: 3790 case Decl::Decomposition: 3791 // Skip variable templates 3792 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3793 return; 3794 case Decl::VarTemplateSpecialization: 3795 EmitGlobal(cast<VarDecl>(D)); 3796 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3797 for (auto *B : DD->bindings()) 3798 if (auto *HD = B->getHoldingVar()) 3799 EmitGlobal(HD); 3800 break; 3801 3802 // Indirect fields from global anonymous structs and unions can be 3803 // ignored; only the actual variable requires IR gen support. 3804 case Decl::IndirectField: 3805 break; 3806 3807 // C++ Decls 3808 case Decl::Namespace: 3809 EmitDeclContext(cast<NamespaceDecl>(D)); 3810 break; 3811 case Decl::CXXRecord: 3812 // Emit any static data members, they may be definitions. 3813 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3814 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3815 EmitTopLevelDecl(I); 3816 break; 3817 // No code generation needed. 3818 case Decl::UsingShadow: 3819 case Decl::ClassTemplate: 3820 case Decl::VarTemplate: 3821 case Decl::VarTemplatePartialSpecialization: 3822 case Decl::FunctionTemplate: 3823 case Decl::TypeAliasTemplate: 3824 case Decl::Block: 3825 case Decl::Empty: 3826 break; 3827 case Decl::Using: // using X; [C++] 3828 if (CGDebugInfo *DI = getModuleDebugInfo()) 3829 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3830 return; 3831 case Decl::NamespaceAlias: 3832 if (CGDebugInfo *DI = getModuleDebugInfo()) 3833 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3834 return; 3835 case Decl::UsingDirective: // using namespace X; [C++] 3836 if (CGDebugInfo *DI = getModuleDebugInfo()) 3837 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3838 return; 3839 case Decl::CXXConstructor: 3840 // Skip function templates 3841 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3842 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3843 return; 3844 3845 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3846 break; 3847 case Decl::CXXDestructor: 3848 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3849 return; 3850 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3851 break; 3852 3853 case Decl::StaticAssert: 3854 // Nothing to do. 3855 break; 3856 3857 // Objective-C Decls 3858 3859 // Forward declarations, no (immediate) code generation. 3860 case Decl::ObjCInterface: 3861 case Decl::ObjCCategory: 3862 break; 3863 3864 case Decl::ObjCProtocol: { 3865 auto *Proto = cast<ObjCProtocolDecl>(D); 3866 if (Proto->isThisDeclarationADefinition()) 3867 ObjCRuntime->GenerateProtocol(Proto); 3868 break; 3869 } 3870 3871 case Decl::ObjCCategoryImpl: 3872 // Categories have properties but don't support synthesize so we 3873 // can ignore them here. 3874 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3875 break; 3876 3877 case Decl::ObjCImplementation: { 3878 auto *OMD = cast<ObjCImplementationDecl>(D); 3879 EmitObjCPropertyImplementations(OMD); 3880 EmitObjCIvarInitializations(OMD); 3881 ObjCRuntime->GenerateClass(OMD); 3882 // Emit global variable debug information. 3883 if (CGDebugInfo *DI = getModuleDebugInfo()) 3884 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3885 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3886 OMD->getClassInterface()), OMD->getLocation()); 3887 break; 3888 } 3889 case Decl::ObjCMethod: { 3890 auto *OMD = cast<ObjCMethodDecl>(D); 3891 // If this is not a prototype, emit the body. 3892 if (OMD->getBody()) 3893 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3894 break; 3895 } 3896 case Decl::ObjCCompatibleAlias: 3897 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3898 break; 3899 3900 case Decl::PragmaComment: { 3901 const auto *PCD = cast<PragmaCommentDecl>(D); 3902 switch (PCD->getCommentKind()) { 3903 case PCK_Unknown: 3904 llvm_unreachable("unexpected pragma comment kind"); 3905 case PCK_Linker: 3906 AppendLinkerOptions(PCD->getArg()); 3907 break; 3908 case PCK_Lib: 3909 AddDependentLib(PCD->getArg()); 3910 break; 3911 case PCK_Compiler: 3912 case PCK_ExeStr: 3913 case PCK_User: 3914 break; // We ignore all of these. 3915 } 3916 break; 3917 } 3918 3919 case Decl::PragmaDetectMismatch: { 3920 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3921 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3922 break; 3923 } 3924 3925 case Decl::LinkageSpec: 3926 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3927 break; 3928 3929 case Decl::FileScopeAsm: { 3930 // File-scope asm is ignored during device-side CUDA compilation. 3931 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3932 break; 3933 // File-scope asm is ignored during device-side OpenMP compilation. 3934 if (LangOpts.OpenMPIsDevice) 3935 break; 3936 auto *AD = cast<FileScopeAsmDecl>(D); 3937 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3938 break; 3939 } 3940 3941 case Decl::Import: { 3942 auto *Import = cast<ImportDecl>(D); 3943 3944 // If we've already imported this module, we're done. 3945 if (!ImportedModules.insert(Import->getImportedModule())) 3946 break; 3947 3948 // Emit debug information for direct imports. 3949 if (!Import->getImportedOwningModule()) { 3950 if (CGDebugInfo *DI = getModuleDebugInfo()) 3951 DI->EmitImportDecl(*Import); 3952 } 3953 3954 // Find all of the submodules and emit the module initializers. 3955 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3956 SmallVector<clang::Module *, 16> Stack; 3957 Visited.insert(Import->getImportedModule()); 3958 Stack.push_back(Import->getImportedModule()); 3959 3960 while (!Stack.empty()) { 3961 clang::Module *Mod = Stack.pop_back_val(); 3962 if (!EmittedModuleInitializers.insert(Mod).second) 3963 continue; 3964 3965 for (auto *D : Context.getModuleInitializers(Mod)) 3966 EmitTopLevelDecl(D); 3967 3968 // Visit the submodules of this module. 3969 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3970 SubEnd = Mod->submodule_end(); 3971 Sub != SubEnd; ++Sub) { 3972 // Skip explicit children; they need to be explicitly imported to emit 3973 // the initializers. 3974 if ((*Sub)->IsExplicit) 3975 continue; 3976 3977 if (Visited.insert(*Sub).second) 3978 Stack.push_back(*Sub); 3979 } 3980 } 3981 break; 3982 } 3983 3984 case Decl::Export: 3985 EmitDeclContext(cast<ExportDecl>(D)); 3986 break; 3987 3988 case Decl::OMPThreadPrivate: 3989 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3990 break; 3991 3992 case Decl::ClassTemplateSpecialization: { 3993 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3994 if (DebugInfo && 3995 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3996 Spec->hasDefinition()) 3997 DebugInfo->completeTemplateDefinition(*Spec); 3998 break; 3999 } 4000 4001 case Decl::OMPDeclareReduction: 4002 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4003 break; 4004 4005 default: 4006 // Make sure we handled everything we should, every other kind is a 4007 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4008 // function. Need to recode Decl::Kind to do that easily. 4009 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4010 break; 4011 } 4012 } 4013 4014 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4015 // Do we need to generate coverage mapping? 4016 if (!CodeGenOpts.CoverageMapping) 4017 return; 4018 switch (D->getKind()) { 4019 case Decl::CXXConversion: 4020 case Decl::CXXMethod: 4021 case Decl::Function: 4022 case Decl::ObjCMethod: 4023 case Decl::CXXConstructor: 4024 case Decl::CXXDestructor: { 4025 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4026 return; 4027 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4028 if (I == DeferredEmptyCoverageMappingDecls.end()) 4029 DeferredEmptyCoverageMappingDecls[D] = true; 4030 break; 4031 } 4032 default: 4033 break; 4034 }; 4035 } 4036 4037 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4038 // Do we need to generate coverage mapping? 4039 if (!CodeGenOpts.CoverageMapping) 4040 return; 4041 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4042 if (Fn->isTemplateInstantiation()) 4043 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4044 } 4045 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4046 if (I == DeferredEmptyCoverageMappingDecls.end()) 4047 DeferredEmptyCoverageMappingDecls[D] = false; 4048 else 4049 I->second = false; 4050 } 4051 4052 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4053 std::vector<const Decl *> DeferredDecls; 4054 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4055 if (!I.second) 4056 continue; 4057 DeferredDecls.push_back(I.first); 4058 } 4059 // Sort the declarations by their location to make sure that the tests get a 4060 // predictable order for the coverage mapping for the unused declarations. 4061 if (CodeGenOpts.DumpCoverageMapping) 4062 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4063 [] (const Decl *LHS, const Decl *RHS) { 4064 return LHS->getLocStart() < RHS->getLocStart(); 4065 }); 4066 for (const auto *D : DeferredDecls) { 4067 switch (D->getKind()) { 4068 case Decl::CXXConversion: 4069 case Decl::CXXMethod: 4070 case Decl::Function: 4071 case Decl::ObjCMethod: { 4072 CodeGenPGO PGO(*this); 4073 GlobalDecl GD(cast<FunctionDecl>(D)); 4074 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4075 getFunctionLinkage(GD)); 4076 break; 4077 } 4078 case Decl::CXXConstructor: { 4079 CodeGenPGO PGO(*this); 4080 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4081 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4082 getFunctionLinkage(GD)); 4083 break; 4084 } 4085 case Decl::CXXDestructor: { 4086 CodeGenPGO PGO(*this); 4087 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4088 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4089 getFunctionLinkage(GD)); 4090 break; 4091 } 4092 default: 4093 break; 4094 }; 4095 } 4096 } 4097 4098 /// Turns the given pointer into a constant. 4099 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4100 const void *Ptr) { 4101 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4102 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4103 return llvm::ConstantInt::get(i64, PtrInt); 4104 } 4105 4106 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4107 llvm::NamedMDNode *&GlobalMetadata, 4108 GlobalDecl D, 4109 llvm::GlobalValue *Addr) { 4110 if (!GlobalMetadata) 4111 GlobalMetadata = 4112 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4113 4114 // TODO: should we report variant information for ctors/dtors? 4115 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4116 llvm::ConstantAsMetadata::get(GetPointerConstant( 4117 CGM.getLLVMContext(), D.getDecl()))}; 4118 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4119 } 4120 4121 /// For each function which is declared within an extern "C" region and marked 4122 /// as 'used', but has internal linkage, create an alias from the unmangled 4123 /// name to the mangled name if possible. People expect to be able to refer 4124 /// to such functions with an unmangled name from inline assembly within the 4125 /// same translation unit. 4126 void CodeGenModule::EmitStaticExternCAliases() { 4127 // Don't do anything if we're generating CUDA device code -- the NVPTX 4128 // assembly target doesn't support aliases. 4129 if (Context.getTargetInfo().getTriple().isNVPTX()) 4130 return; 4131 for (auto &I : StaticExternCValues) { 4132 IdentifierInfo *Name = I.first; 4133 llvm::GlobalValue *Val = I.second; 4134 if (Val && !getModule().getNamedValue(Name->getName())) 4135 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4136 } 4137 } 4138 4139 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4140 GlobalDecl &Result) const { 4141 auto Res = Manglings.find(MangledName); 4142 if (Res == Manglings.end()) 4143 return false; 4144 Result = Res->getValue(); 4145 return true; 4146 } 4147 4148 /// Emits metadata nodes associating all the global values in the 4149 /// current module with the Decls they came from. This is useful for 4150 /// projects using IR gen as a subroutine. 4151 /// 4152 /// Since there's currently no way to associate an MDNode directly 4153 /// with an llvm::GlobalValue, we create a global named metadata 4154 /// with the name 'clang.global.decl.ptrs'. 4155 void CodeGenModule::EmitDeclMetadata() { 4156 llvm::NamedMDNode *GlobalMetadata = nullptr; 4157 4158 for (auto &I : MangledDeclNames) { 4159 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4160 // Some mangled names don't necessarily have an associated GlobalValue 4161 // in this module, e.g. if we mangled it for DebugInfo. 4162 if (Addr) 4163 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4164 } 4165 } 4166 4167 /// Emits metadata nodes for all the local variables in the current 4168 /// function. 4169 void CodeGenFunction::EmitDeclMetadata() { 4170 if (LocalDeclMap.empty()) return; 4171 4172 llvm::LLVMContext &Context = getLLVMContext(); 4173 4174 // Find the unique metadata ID for this name. 4175 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4176 4177 llvm::NamedMDNode *GlobalMetadata = nullptr; 4178 4179 for (auto &I : LocalDeclMap) { 4180 const Decl *D = I.first; 4181 llvm::Value *Addr = I.second.getPointer(); 4182 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4183 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4184 Alloca->setMetadata( 4185 DeclPtrKind, llvm::MDNode::get( 4186 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4187 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4188 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4189 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4190 } 4191 } 4192 } 4193 4194 void CodeGenModule::EmitVersionIdentMetadata() { 4195 llvm::NamedMDNode *IdentMetadata = 4196 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4197 std::string Version = getClangFullVersion(); 4198 llvm::LLVMContext &Ctx = TheModule.getContext(); 4199 4200 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4201 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4202 } 4203 4204 void CodeGenModule::EmitTargetMetadata() { 4205 // Warning, new MangledDeclNames may be appended within this loop. 4206 // We rely on MapVector insertions adding new elements to the end 4207 // of the container. 4208 // FIXME: Move this loop into the one target that needs it, and only 4209 // loop over those declarations for which we couldn't emit the target 4210 // metadata when we emitted the declaration. 4211 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4212 auto Val = *(MangledDeclNames.begin() + I); 4213 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4214 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4215 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4216 } 4217 } 4218 4219 void CodeGenModule::EmitCoverageFile() { 4220 if (getCodeGenOpts().CoverageDataFile.empty() && 4221 getCodeGenOpts().CoverageNotesFile.empty()) 4222 return; 4223 4224 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4225 if (!CUNode) 4226 return; 4227 4228 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4229 llvm::LLVMContext &Ctx = TheModule.getContext(); 4230 auto *CoverageDataFile = 4231 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4232 auto *CoverageNotesFile = 4233 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4234 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4235 llvm::MDNode *CU = CUNode->getOperand(i); 4236 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4237 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4238 } 4239 } 4240 4241 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4242 // Sema has checked that all uuid strings are of the form 4243 // "12345678-1234-1234-1234-1234567890ab". 4244 assert(Uuid.size() == 36); 4245 for (unsigned i = 0; i < 36; ++i) { 4246 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4247 else assert(isHexDigit(Uuid[i])); 4248 } 4249 4250 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4251 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4252 4253 llvm::Constant *Field3[8]; 4254 for (unsigned Idx = 0; Idx < 8; ++Idx) 4255 Field3[Idx] = llvm::ConstantInt::get( 4256 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4257 4258 llvm::Constant *Fields[4] = { 4259 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4260 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4261 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4262 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4263 }; 4264 4265 return llvm::ConstantStruct::getAnon(Fields); 4266 } 4267 4268 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4269 bool ForEH) { 4270 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4271 // FIXME: should we even be calling this method if RTTI is disabled 4272 // and it's not for EH? 4273 if (!ForEH && !getLangOpts().RTTI) 4274 return llvm::Constant::getNullValue(Int8PtrTy); 4275 4276 if (ForEH && Ty->isObjCObjectPointerType() && 4277 LangOpts.ObjCRuntime.isGNUFamily()) 4278 return ObjCRuntime->GetEHType(Ty); 4279 4280 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4281 } 4282 4283 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4284 for (auto RefExpr : D->varlists()) { 4285 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4286 bool PerformInit = 4287 VD->getAnyInitializer() && 4288 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4289 /*ForRef=*/false); 4290 4291 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4292 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4293 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4294 CXXGlobalInits.push_back(InitFunction); 4295 } 4296 } 4297 4298 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4299 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4300 if (InternalId) 4301 return InternalId; 4302 4303 if (isExternallyVisible(T->getLinkage())) { 4304 std::string OutName; 4305 llvm::raw_string_ostream Out(OutName); 4306 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4307 4308 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4309 } else { 4310 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4311 llvm::ArrayRef<llvm::Metadata *>()); 4312 } 4313 4314 return InternalId; 4315 } 4316 4317 /// Returns whether this module needs the "all-vtables" type identifier. 4318 bool CodeGenModule::NeedAllVtablesTypeId() const { 4319 // Returns true if at least one of vtable-based CFI checkers is enabled and 4320 // is not in the trapping mode. 4321 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4322 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4323 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4324 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4325 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4326 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4327 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4328 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4329 } 4330 4331 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4332 CharUnits Offset, 4333 const CXXRecordDecl *RD) { 4334 llvm::Metadata *MD = 4335 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4336 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4337 4338 if (CodeGenOpts.SanitizeCfiCrossDso) 4339 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4340 VTable->addTypeMetadata(Offset.getQuantity(), 4341 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4342 4343 if (NeedAllVtablesTypeId()) { 4344 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4345 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4346 } 4347 } 4348 4349 // Fills in the supplied string map with the set of target features for the 4350 // passed in function. 4351 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4352 const FunctionDecl *FD) { 4353 StringRef TargetCPU = Target.getTargetOpts().CPU; 4354 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4355 // If we have a TargetAttr build up the feature map based on that. 4356 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4357 4358 // Make a copy of the features as passed on the command line into the 4359 // beginning of the additional features from the function to override. 4360 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4361 Target.getTargetOpts().FeaturesAsWritten.begin(), 4362 Target.getTargetOpts().FeaturesAsWritten.end()); 4363 4364 if (ParsedAttr.second != "") 4365 TargetCPU = ParsedAttr.second; 4366 4367 // Now populate the feature map, first with the TargetCPU which is either 4368 // the default or a new one from the target attribute string. Then we'll use 4369 // the passed in features (FeaturesAsWritten) along with the new ones from 4370 // the attribute. 4371 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4372 } else { 4373 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4374 Target.getTargetOpts().Features); 4375 } 4376 } 4377 4378 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4379 if (!SanStats) 4380 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4381 4382 return *SanStats; 4383 } 4384 llvm::Value * 4385 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4386 CodeGenFunction &CGF) { 4387 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4388 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4389 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4390 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4391 "__translate_sampler_initializer"), 4392 {C}); 4393 } 4394