xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 3b1fd19357be50cec8a5be8660806e0e02e84aa1)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeGPU.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 #include "llvm/Support/X86TargetParser.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   const llvm::DataLayout &DL = M.getDataLayout();
134   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
135   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
136   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
137 
138   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
139 
140   if (LangOpts.ObjC)
141     createObjCRuntime();
142   if (LangOpts.OpenCL)
143     createOpenCLRuntime();
144   if (LangOpts.OpenMP)
145     createOpenMPRuntime();
146   if (LangOpts.CUDA)
147     createCUDARuntime();
148 
149   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
150   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
151       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
152     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
153                                getCXXABI().getMangleContext()));
154 
155   // If debug info or coverage generation is enabled, create the CGDebugInfo
156   // object.
157   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
158       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
159     DebugInfo.reset(new CGDebugInfo(*this));
160 
161   Block.GlobalUniqueCount = 0;
162 
163   if (C.getLangOpts().ObjC)
164     ObjCData.reset(new ObjCEntrypoints());
165 
166   if (CodeGenOpts.hasProfileClangUse()) {
167     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
168         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
169     if (auto E = ReaderOrErr.takeError()) {
170       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
171                                               "Could not read profile %0: %1");
172       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
173         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
174                                   << EI.message();
175       });
176     } else
177       PGOReader = std::move(ReaderOrErr.get());
178   }
179 
180   // If coverage mapping generation is enabled, create the
181   // CoverageMappingModuleGen object.
182   if (CodeGenOpts.CoverageMapping)
183     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
184 
185   // Generate the module name hash here if needed.
186   if (CodeGenOpts.UniqueInternalLinkageNames &&
187       !getModule().getSourceFileName().empty()) {
188     std::string Path = getModule().getSourceFileName();
189     // Check if a path substitution is needed from the MacroPrefixMap.
190     for (const auto &Entry : LangOpts.MacroPrefixMap)
191       if (Path.rfind(Entry.first, 0) != std::string::npos) {
192         Path = Entry.second + Path.substr(Entry.first.size());
193         break;
194       }
195     llvm::MD5 Md5;
196     Md5.update(Path);
197     llvm::MD5::MD5Result R;
198     Md5.final(R);
199     SmallString<32> Str;
200     llvm::MD5::stringifyResult(R, Str);
201     // Convert MD5hash to Decimal. Demangler suffixes can either contain
202     // numbers or characters but not both.
203     llvm::APInt IntHash(128, Str.str(), 16);
204     // Prepend "__uniq" before the hash for tools like profilers to understand
205     // that this symbol is of internal linkage type.  The "__uniq" is the
206     // pre-determined prefix that is used to tell tools that this symbol was
207     // created with -funique-internal-linakge-symbols and the tools can strip or
208     // keep the prefix as needed.
209     ModuleNameHash = (Twine(".__uniq.") +
210         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246   case llvm::Triple::amdgcn:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250     break;
251   default:
252     if (LangOpts.OpenMPSimd)
253       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254     else
255       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256     break;
257   }
258 }
259 
260 void CodeGenModule::createCUDARuntime() {
261   CUDARuntime.reset(CreateNVCUDARuntime(*this));
262 }
263 
264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
265   Replacements[Name] = C;
266 }
267 
268 void CodeGenModule::applyReplacements() {
269   for (auto &I : Replacements) {
270     StringRef MangledName = I.first();
271     llvm::Constant *Replacement = I.second;
272     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
273     if (!Entry)
274       continue;
275     auto *OldF = cast<llvm::Function>(Entry);
276     auto *NewF = dyn_cast<llvm::Function>(Replacement);
277     if (!NewF) {
278       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
279         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
280       } else {
281         auto *CE = cast<llvm::ConstantExpr>(Replacement);
282         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
283                CE->getOpcode() == llvm::Instruction::GetElementPtr);
284         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
285       }
286     }
287 
288     // Replace old with new, but keep the old order.
289     OldF->replaceAllUsesWith(Replacement);
290     if (NewF) {
291       NewF->removeFromParent();
292       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
293                                                        NewF);
294     }
295     OldF->eraseFromParent();
296   }
297 }
298 
299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
300   GlobalValReplacements.push_back(std::make_pair(GV, C));
301 }
302 
303 void CodeGenModule::applyGlobalValReplacements() {
304   for (auto &I : GlobalValReplacements) {
305     llvm::GlobalValue *GV = I.first;
306     llvm::Constant *C = I.second;
307 
308     GV->replaceAllUsesWith(C);
309     GV->eraseFromParent();
310   }
311 }
312 
313 // This is only used in aliases that we created and we know they have a
314 // linear structure.
315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
316   const llvm::Constant *C;
317   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
318     C = GA->getAliasee();
319   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
320     C = GI->getResolver();
321   else
322     return GV;
323 
324   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
325   if (!AliaseeGV)
326     return nullptr;
327 
328   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
329   if (FinalGV == GV)
330     return nullptr;
331 
332   return FinalGV;
333 }
334 
335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
336                                SourceLocation Location, bool IsIFunc,
337                                const llvm::GlobalValue *Alias,
338                                const llvm::GlobalValue *&GV) {
339   GV = getAliasedGlobal(Alias);
340   if (!GV) {
341     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
342     return false;
343   }
344 
345   if (GV->isDeclaration()) {
346     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
347     return false;
348   }
349 
350   if (IsIFunc) {
351     // Check resolver function type.
352     const auto *F = dyn_cast<llvm::Function>(GV);
353     if (!F) {
354       Diags.Report(Location, diag::err_alias_to_undefined)
355           << IsIFunc << IsIFunc;
356       return false;
357     }
358 
359     llvm::FunctionType *FTy = F->getFunctionType();
360     if (!FTy->getReturnType()->isPointerTy()) {
361       Diags.Report(Location, diag::err_ifunc_resolver_return);
362       return false;
363     }
364   }
365 
366   return true;
367 }
368 
369 void CodeGenModule::checkAliases() {
370   // Check if the constructed aliases are well formed. It is really unfortunate
371   // that we have to do this in CodeGen, but we only construct mangled names
372   // and aliases during codegen.
373   bool Error = false;
374   DiagnosticsEngine &Diags = getDiags();
375   for (const GlobalDecl &GD : Aliases) {
376     const auto *D = cast<ValueDecl>(GD.getDecl());
377     SourceLocation Location;
378     bool IsIFunc = D->hasAttr<IFuncAttr>();
379     if (const Attr *A = D->getDefiningAttr())
380       Location = A->getLocation();
381     else
382       llvm_unreachable("Not an alias or ifunc?");
383 
384     StringRef MangledName = getMangledName(GD);
385     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
386     const llvm::GlobalValue *GV = nullptr;
387     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
388       Error = true;
389       continue;
390     }
391 
392     llvm::Constant *Aliasee =
393         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
394                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
395 
396     llvm::GlobalValue *AliaseeGV;
397     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
398       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
399     else
400       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
401 
402     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
403       StringRef AliasSection = SA->getName();
404       if (AliasSection != AliaseeGV->getSection())
405         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
406             << AliasSection << IsIFunc << IsIFunc;
407     }
408 
409     // We have to handle alias to weak aliases in here. LLVM itself disallows
410     // this since the object semantics would not match the IL one. For
411     // compatibility with gcc we implement it by just pointing the alias
412     // to its aliasee's aliasee. We also warn, since the user is probably
413     // expecting the link to be weak.
414     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
415       if (GA->isInterposable()) {
416         Diags.Report(Location, diag::warn_alias_to_weak_alias)
417             << GV->getName() << GA->getName() << IsIFunc;
418         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
419             GA->getAliasee(), Alias->getType());
420 
421         if (IsIFunc)
422           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
423         else
424           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
425       }
426     }
427   }
428   if (!Error)
429     return;
430 
431   for (const GlobalDecl &GD : Aliases) {
432     StringRef MangledName = getMangledName(GD);
433     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
434     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
435     Alias->eraseFromParent();
436   }
437 }
438 
439 void CodeGenModule::clear() {
440   DeferredDeclsToEmit.clear();
441   if (OpenMPRuntime)
442     OpenMPRuntime->clear();
443 }
444 
445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
446                                        StringRef MainFile) {
447   if (!hasDiagnostics())
448     return;
449   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
450     if (MainFile.empty())
451       MainFile = "<stdin>";
452     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
453   } else {
454     if (Mismatched > 0)
455       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
456 
457     if (Missing > 0)
458       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
459   }
460 }
461 
462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
463                                              llvm::Module &M) {
464   if (!LO.VisibilityFromDLLStorageClass)
465     return;
466 
467   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
468       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
469   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
470       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
471   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
472       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
473   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
474       CodeGenModule::GetLLVMVisibility(
475           LO.getExternDeclNoDLLStorageClassVisibility());
476 
477   for (llvm::GlobalValue &GV : M.global_values()) {
478     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
479       continue;
480 
481     // Reset DSO locality before setting the visibility. This removes
482     // any effects that visibility options and annotations may have
483     // had on the DSO locality. Setting the visibility will implicitly set
484     // appropriate globals to DSO Local; however, this will be pessimistic
485     // w.r.t. to the normal compiler IRGen.
486     GV.setDSOLocal(false);
487 
488     if (GV.isDeclarationForLinker()) {
489       GV.setVisibility(GV.getDLLStorageClass() ==
490                                llvm::GlobalValue::DLLImportStorageClass
491                            ? ExternDeclDLLImportVisibility
492                            : ExternDeclNoDLLStorageClassVisibility);
493     } else {
494       GV.setVisibility(GV.getDLLStorageClass() ==
495                                llvm::GlobalValue::DLLExportStorageClass
496                            ? DLLExportVisibility
497                            : NoDLLStorageClassVisibility);
498     }
499 
500     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
501   }
502 }
503 
504 void CodeGenModule::Release() {
505   EmitDeferred();
506   EmitVTablesOpportunistically();
507   applyGlobalValReplacements();
508   applyReplacements();
509   checkAliases();
510   emitMultiVersionFunctions();
511   EmitCXXGlobalInitFunc();
512   EmitCXXGlobalCleanUpFunc();
513   registerGlobalDtorsWithAtExit();
514   EmitCXXThreadLocalInitFunc();
515   if (ObjCRuntime)
516     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
517       AddGlobalCtor(ObjCInitFunction);
518   if (Context.getLangOpts().CUDA && CUDARuntime) {
519     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
520       AddGlobalCtor(CudaCtorFunction);
521   }
522   if (OpenMPRuntime) {
523     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
524             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
525       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
526     }
527     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
528     OpenMPRuntime->clear();
529   }
530   if (PGOReader) {
531     getModule().setProfileSummary(
532         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
533         llvm::ProfileSummary::PSK_Instr);
534     if (PGOStats.hasDiagnostics())
535       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
536   }
537   EmitCtorList(GlobalCtors, "llvm.global_ctors");
538   EmitCtorList(GlobalDtors, "llvm.global_dtors");
539   EmitGlobalAnnotations();
540   EmitStaticExternCAliases();
541   EmitDeferredUnusedCoverageMappings();
542   CodeGenPGO(*this).setValueProfilingFlag(getModule());
543   if (CoverageMapping)
544     CoverageMapping->emit();
545   if (CodeGenOpts.SanitizeCfiCrossDso) {
546     CodeGenFunction(*this).EmitCfiCheckFail();
547     CodeGenFunction(*this).EmitCfiCheckStub();
548   }
549   emitAtAvailableLinkGuard();
550   if (Context.getTargetInfo().getTriple().isWasm() &&
551       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
552     EmitMainVoidAlias();
553   }
554 
555   // Emit reference of __amdgpu_device_library_preserve_asan_functions to
556   // preserve ASAN functions in bitcode libraries.
557   if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
558     auto *FT = llvm::FunctionType::get(VoidTy, {});
559     auto *F = llvm::Function::Create(
560         FT, llvm::GlobalValue::ExternalLinkage,
561         "__amdgpu_device_library_preserve_asan_functions", &getModule());
562     auto *Var = new llvm::GlobalVariable(
563         getModule(), FT->getPointerTo(),
564         /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
565         "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
566         llvm::GlobalVariable::NotThreadLocal);
567     addCompilerUsedGlobal(Var);
568   }
569 
570   emitLLVMUsed();
571   if (SanStats)
572     SanStats->finish();
573 
574   if (CodeGenOpts.Autolink &&
575       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
576     EmitModuleLinkOptions();
577   }
578 
579   // On ELF we pass the dependent library specifiers directly to the linker
580   // without manipulating them. This is in contrast to other platforms where
581   // they are mapped to a specific linker option by the compiler. This
582   // difference is a result of the greater variety of ELF linkers and the fact
583   // that ELF linkers tend to handle libraries in a more complicated fashion
584   // than on other platforms. This forces us to defer handling the dependent
585   // libs to the linker.
586   //
587   // CUDA/HIP device and host libraries are different. Currently there is no
588   // way to differentiate dependent libraries for host or device. Existing
589   // usage of #pragma comment(lib, *) is intended for host libraries on
590   // Windows. Therefore emit llvm.dependent-libraries only for host.
591   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
592     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
593     for (auto *MD : ELFDependentLibraries)
594       NMD->addOperand(MD);
595   }
596 
597   // Record mregparm value now so it is visible through rest of codegen.
598   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
599     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
600                               CodeGenOpts.NumRegisterParameters);
601 
602   if (CodeGenOpts.DwarfVersion) {
603     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
604                               CodeGenOpts.DwarfVersion);
605   }
606 
607   if (CodeGenOpts.Dwarf64)
608     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
609 
610   if (Context.getLangOpts().SemanticInterposition)
611     // Require various optimization to respect semantic interposition.
612     getModule().setSemanticInterposition(1);
613 
614   if (CodeGenOpts.EmitCodeView) {
615     // Indicate that we want CodeView in the metadata.
616     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
617   }
618   if (CodeGenOpts.CodeViewGHash) {
619     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
620   }
621   if (CodeGenOpts.ControlFlowGuard) {
622     // Function ID tables and checks for Control Flow Guard (cfguard=2).
623     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
624   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
625     // Function ID tables for Control Flow Guard (cfguard=1).
626     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
627   }
628   if (CodeGenOpts.EHContGuard) {
629     // Function ID tables for EH Continuation Guard.
630     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
631   }
632   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
633     // We don't support LTO with 2 with different StrictVTablePointers
634     // FIXME: we could support it by stripping all the information introduced
635     // by StrictVTablePointers.
636 
637     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
638 
639     llvm::Metadata *Ops[2] = {
640               llvm::MDString::get(VMContext, "StrictVTablePointers"),
641               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
642                   llvm::Type::getInt32Ty(VMContext), 1))};
643 
644     getModule().addModuleFlag(llvm::Module::Require,
645                               "StrictVTablePointersRequirement",
646                               llvm::MDNode::get(VMContext, Ops));
647   }
648   if (getModuleDebugInfo())
649     // We support a single version in the linked module. The LLVM
650     // parser will drop debug info with a different version number
651     // (and warn about it, too).
652     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
653                               llvm::DEBUG_METADATA_VERSION);
654 
655   // We need to record the widths of enums and wchar_t, so that we can generate
656   // the correct build attributes in the ARM backend. wchar_size is also used by
657   // TargetLibraryInfo.
658   uint64_t WCharWidth =
659       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
660   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
661 
662   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
663   if (   Arch == llvm::Triple::arm
664       || Arch == llvm::Triple::armeb
665       || Arch == llvm::Triple::thumb
666       || Arch == llvm::Triple::thumbeb) {
667     // The minimum width of an enum in bytes
668     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
669     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
670   }
671 
672   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
673     StringRef ABIStr = Target.getABI();
674     llvm::LLVMContext &Ctx = TheModule.getContext();
675     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
676                               llvm::MDString::get(Ctx, ABIStr));
677   }
678 
679   if (CodeGenOpts.SanitizeCfiCrossDso) {
680     // Indicate that we want cross-DSO control flow integrity checks.
681     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
682   }
683 
684   if (CodeGenOpts.WholeProgramVTables) {
685     // Indicate whether VFE was enabled for this module, so that the
686     // vcall_visibility metadata added under whole program vtables is handled
687     // appropriately in the optimizer.
688     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
689                               CodeGenOpts.VirtualFunctionElimination);
690   }
691 
692   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
693     getModule().addModuleFlag(llvm::Module::Override,
694                               "CFI Canonical Jump Tables",
695                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
696   }
697 
698   if (CodeGenOpts.CFProtectionReturn &&
699       Target.checkCFProtectionReturnSupported(getDiags())) {
700     // Indicate that we want to instrument return control flow protection.
701     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
702                               1);
703   }
704 
705   if (CodeGenOpts.CFProtectionBranch &&
706       Target.checkCFProtectionBranchSupported(getDiags())) {
707     // Indicate that we want to instrument branch control flow protection.
708     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
709                               1);
710   }
711 
712   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
713       Arch == llvm::Triple::aarch64_be) {
714     getModule().addModuleFlag(llvm::Module::Error,
715                               "branch-target-enforcement",
716                               LangOpts.BranchTargetEnforcement);
717 
718     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
719                               LangOpts.hasSignReturnAddress());
720 
721     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
722                               LangOpts.isSignReturnAddressScopeAll());
723 
724     getModule().addModuleFlag(llvm::Module::Error,
725                               "sign-return-address-with-bkey",
726                               !LangOpts.isSignReturnAddressWithAKey());
727   }
728 
729   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
730     llvm::LLVMContext &Ctx = TheModule.getContext();
731     getModule().addModuleFlag(
732         llvm::Module::Error, "MemProfProfileFilename",
733         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
734   }
735 
736   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
737     // Indicate whether __nvvm_reflect should be configured to flush denormal
738     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
739     // property.)
740     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
741                               CodeGenOpts.FP32DenormalMode.Output !=
742                                   llvm::DenormalMode::IEEE);
743   }
744 
745   if (LangOpts.EHAsynch)
746     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
747 
748   // Indicate whether this Module was compiled with -fopenmp
749   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
750     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
751   if (getLangOpts().OpenMPIsDevice)
752     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
753                               LangOpts.OpenMP);
754 
755   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
756   if (LangOpts.OpenCL) {
757     EmitOpenCLMetadata();
758     // Emit SPIR version.
759     if (getTriple().isSPIR()) {
760       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
761       // opencl.spir.version named metadata.
762       // C++ for OpenCL has a distinct mapping for version compatibility with
763       // OpenCL.
764       auto Version = LangOpts.getOpenCLCompatibleVersion();
765       llvm::Metadata *SPIRVerElts[] = {
766           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
767               Int32Ty, Version / 100)),
768           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
769               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
770       llvm::NamedMDNode *SPIRVerMD =
771           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
772       llvm::LLVMContext &Ctx = TheModule.getContext();
773       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
774     }
775   }
776 
777   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
778     assert(PLevel < 3 && "Invalid PIC Level");
779     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
780     if (Context.getLangOpts().PIE)
781       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
782   }
783 
784   if (getCodeGenOpts().CodeModel.size() > 0) {
785     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
786                   .Case("tiny", llvm::CodeModel::Tiny)
787                   .Case("small", llvm::CodeModel::Small)
788                   .Case("kernel", llvm::CodeModel::Kernel)
789                   .Case("medium", llvm::CodeModel::Medium)
790                   .Case("large", llvm::CodeModel::Large)
791                   .Default(~0u);
792     if (CM != ~0u) {
793       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
794       getModule().setCodeModel(codeModel);
795     }
796   }
797 
798   if (CodeGenOpts.NoPLT)
799     getModule().setRtLibUseGOT();
800   if (CodeGenOpts.UnwindTables)
801     getModule().setUwtable();
802 
803   switch (CodeGenOpts.getFramePointer()) {
804   case CodeGenOptions::FramePointerKind::None:
805     // 0 ("none") is the default.
806     break;
807   case CodeGenOptions::FramePointerKind::NonLeaf:
808     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
809     break;
810   case CodeGenOptions::FramePointerKind::All:
811     getModule().setFramePointer(llvm::FramePointerKind::All);
812     break;
813   }
814 
815   SimplifyPersonality();
816 
817   if (getCodeGenOpts().EmitDeclMetadata)
818     EmitDeclMetadata();
819 
820   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
821     EmitCoverageFile();
822 
823   if (CGDebugInfo *DI = getModuleDebugInfo())
824     DI->finalize();
825 
826   if (getCodeGenOpts().EmitVersionIdentMetadata)
827     EmitVersionIdentMetadata();
828 
829   if (!getCodeGenOpts().RecordCommandLine.empty())
830     EmitCommandLineMetadata();
831 
832   if (!getCodeGenOpts().StackProtectorGuard.empty())
833     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
834   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
835     getModule().setStackProtectorGuardReg(
836         getCodeGenOpts().StackProtectorGuardReg);
837   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
838     getModule().setStackProtectorGuardOffset(
839         getCodeGenOpts().StackProtectorGuardOffset);
840   if (getCodeGenOpts().StackAlignment)
841     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
842 
843   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
844 
845   EmitBackendOptionsMetadata(getCodeGenOpts());
846 
847   // Set visibility from DLL storage class
848   // We do this at the end of LLVM IR generation; after any operation
849   // that might affect the DLL storage class or the visibility, and
850   // before anything that might act on these.
851   setVisibilityFromDLLStorageClass(LangOpts, getModule());
852 }
853 
854 void CodeGenModule::EmitOpenCLMetadata() {
855   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
856   // opencl.ocl.version named metadata node.
857   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
858   auto Version = LangOpts.getOpenCLCompatibleVersion();
859   llvm::Metadata *OCLVerElts[] = {
860       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
861           Int32Ty, Version / 100)),
862       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
863           Int32Ty, (Version % 100) / 10))};
864   llvm::NamedMDNode *OCLVerMD =
865       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
866   llvm::LLVMContext &Ctx = TheModule.getContext();
867   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
868 }
869 
870 void CodeGenModule::EmitBackendOptionsMetadata(
871     const CodeGenOptions CodeGenOpts) {
872   switch (getTriple().getArch()) {
873   default:
874     break;
875   case llvm::Triple::riscv32:
876   case llvm::Triple::riscv64:
877     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
878                               CodeGenOpts.SmallDataLimit);
879     break;
880   }
881 }
882 
883 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
884   // Make sure that this type is translated.
885   Types.UpdateCompletedType(TD);
886 }
887 
888 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
889   // Make sure that this type is translated.
890   Types.RefreshTypeCacheForClass(RD);
891 }
892 
893 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
894   if (!TBAA)
895     return nullptr;
896   return TBAA->getTypeInfo(QTy);
897 }
898 
899 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
900   if (!TBAA)
901     return TBAAAccessInfo();
902   if (getLangOpts().CUDAIsDevice) {
903     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
904     // access info.
905     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
906       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
907           nullptr)
908         return TBAAAccessInfo();
909     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
910       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
911           nullptr)
912         return TBAAAccessInfo();
913     }
914   }
915   return TBAA->getAccessInfo(AccessType);
916 }
917 
918 TBAAAccessInfo
919 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
920   if (!TBAA)
921     return TBAAAccessInfo();
922   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
923 }
924 
925 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
926   if (!TBAA)
927     return nullptr;
928   return TBAA->getTBAAStructInfo(QTy);
929 }
930 
931 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
932   if (!TBAA)
933     return nullptr;
934   return TBAA->getBaseTypeInfo(QTy);
935 }
936 
937 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
938   if (!TBAA)
939     return nullptr;
940   return TBAA->getAccessTagInfo(Info);
941 }
942 
943 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
944                                                    TBAAAccessInfo TargetInfo) {
945   if (!TBAA)
946     return TBAAAccessInfo();
947   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
948 }
949 
950 TBAAAccessInfo
951 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
952                                                    TBAAAccessInfo InfoB) {
953   if (!TBAA)
954     return TBAAAccessInfo();
955   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
956 }
957 
958 TBAAAccessInfo
959 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
960                                               TBAAAccessInfo SrcInfo) {
961   if (!TBAA)
962     return TBAAAccessInfo();
963   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
964 }
965 
966 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
967                                                 TBAAAccessInfo TBAAInfo) {
968   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
969     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
970 }
971 
972 void CodeGenModule::DecorateInstructionWithInvariantGroup(
973     llvm::Instruction *I, const CXXRecordDecl *RD) {
974   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
975                  llvm::MDNode::get(getLLVMContext(), {}));
976 }
977 
978 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
979   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
980   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
981 }
982 
983 /// ErrorUnsupported - Print out an error that codegen doesn't support the
984 /// specified stmt yet.
985 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
986   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
987                                                "cannot compile this %0 yet");
988   std::string Msg = Type;
989   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
990       << Msg << S->getSourceRange();
991 }
992 
993 /// ErrorUnsupported - Print out an error that codegen doesn't support the
994 /// specified decl yet.
995 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
996   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
997                                                "cannot compile this %0 yet");
998   std::string Msg = Type;
999   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1000 }
1001 
1002 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1003   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1004 }
1005 
1006 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1007                                         const NamedDecl *D) const {
1008   if (GV->hasDLLImportStorageClass())
1009     return;
1010   // Internal definitions always have default visibility.
1011   if (GV->hasLocalLinkage()) {
1012     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1013     return;
1014   }
1015   if (!D)
1016     return;
1017   // Set visibility for definitions, and for declarations if requested globally
1018   // or set explicitly.
1019   LinkageInfo LV = D->getLinkageAndVisibility();
1020   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1021       !GV->isDeclarationForLinker())
1022     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1023 }
1024 
1025 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1026                                  llvm::GlobalValue *GV) {
1027   if (GV->hasLocalLinkage())
1028     return true;
1029 
1030   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1031     return true;
1032 
1033   // DLLImport explicitly marks the GV as external.
1034   if (GV->hasDLLImportStorageClass())
1035     return false;
1036 
1037   const llvm::Triple &TT = CGM.getTriple();
1038   if (TT.isWindowsGNUEnvironment()) {
1039     // In MinGW, variables without DLLImport can still be automatically
1040     // imported from a DLL by the linker; don't mark variables that
1041     // potentially could come from another DLL as DSO local.
1042 
1043     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1044     // (and this actually happens in the public interface of libstdc++), so
1045     // such variables can't be marked as DSO local. (Native TLS variables
1046     // can't be dllimported at all, though.)
1047     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1048         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1049       return false;
1050   }
1051 
1052   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1053   // remain unresolved in the link, they can be resolved to zero, which is
1054   // outside the current DSO.
1055   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1056     return false;
1057 
1058   // Every other GV is local on COFF.
1059   // Make an exception for windows OS in the triple: Some firmware builds use
1060   // *-win32-macho triples. This (accidentally?) produced windows relocations
1061   // without GOT tables in older clang versions; Keep this behaviour.
1062   // FIXME: even thread local variables?
1063   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1064     return true;
1065 
1066   // Only handle COFF and ELF for now.
1067   if (!TT.isOSBinFormatELF())
1068     return false;
1069 
1070   // If this is not an executable, don't assume anything is local.
1071   const auto &CGOpts = CGM.getCodeGenOpts();
1072   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1073   const auto &LOpts = CGM.getLangOpts();
1074   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1075     // On ELF, if -fno-semantic-interposition is specified and the target
1076     // supports local aliases, there will be neither CC1
1077     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1078     // dso_local on the function if using a local alias is preferable (can avoid
1079     // PLT indirection).
1080     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1081       return false;
1082     return !(CGM.getLangOpts().SemanticInterposition ||
1083              CGM.getLangOpts().HalfNoSemanticInterposition);
1084   }
1085 
1086   // A definition cannot be preempted from an executable.
1087   if (!GV->isDeclarationForLinker())
1088     return true;
1089 
1090   // Most PIC code sequences that assume that a symbol is local cannot produce a
1091   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1092   // depended, it seems worth it to handle it here.
1093   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1094     return false;
1095 
1096   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1097   if (TT.isPPC64())
1098     return false;
1099 
1100   if (CGOpts.DirectAccessExternalData) {
1101     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1102     // for non-thread-local variables. If the symbol is not defined in the
1103     // executable, a copy relocation will be needed at link time. dso_local is
1104     // excluded for thread-local variables because they generally don't support
1105     // copy relocations.
1106     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1107       if (!Var->isThreadLocal())
1108         return true;
1109 
1110     // -fno-pic sets dso_local on a function declaration to allow direct
1111     // accesses when taking its address (similar to a data symbol). If the
1112     // function is not defined in the executable, a canonical PLT entry will be
1113     // needed at link time. -fno-direct-access-external-data can avoid the
1114     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1115     // it could just cause trouble without providing perceptible benefits.
1116     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1117       return true;
1118   }
1119 
1120   // If we can use copy relocations we can assume it is local.
1121 
1122   // Otherwise don't assume it is local.
1123   return false;
1124 }
1125 
1126 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1127   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1128 }
1129 
1130 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1131                                           GlobalDecl GD) const {
1132   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1133   // C++ destructors have a few C++ ABI specific special cases.
1134   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1135     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1136     return;
1137   }
1138   setDLLImportDLLExport(GV, D);
1139 }
1140 
1141 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1142                                           const NamedDecl *D) const {
1143   if (D && D->isExternallyVisible()) {
1144     if (D->hasAttr<DLLImportAttr>())
1145       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1146     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1147       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1148   }
1149 }
1150 
1151 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1152                                     GlobalDecl GD) const {
1153   setDLLImportDLLExport(GV, GD);
1154   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1155 }
1156 
1157 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1158                                     const NamedDecl *D) const {
1159   setDLLImportDLLExport(GV, D);
1160   setGVPropertiesAux(GV, D);
1161 }
1162 
1163 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1164                                        const NamedDecl *D) const {
1165   setGlobalVisibility(GV, D);
1166   setDSOLocal(GV);
1167   GV->setPartition(CodeGenOpts.SymbolPartition);
1168 }
1169 
1170 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1171   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1172       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1173       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1174       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1175       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1176 }
1177 
1178 llvm::GlobalVariable::ThreadLocalMode
1179 CodeGenModule::GetDefaultLLVMTLSModel() const {
1180   switch (CodeGenOpts.getDefaultTLSModel()) {
1181   case CodeGenOptions::GeneralDynamicTLSModel:
1182     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1183   case CodeGenOptions::LocalDynamicTLSModel:
1184     return llvm::GlobalVariable::LocalDynamicTLSModel;
1185   case CodeGenOptions::InitialExecTLSModel:
1186     return llvm::GlobalVariable::InitialExecTLSModel;
1187   case CodeGenOptions::LocalExecTLSModel:
1188     return llvm::GlobalVariable::LocalExecTLSModel;
1189   }
1190   llvm_unreachable("Invalid TLS model!");
1191 }
1192 
1193 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1194   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1195 
1196   llvm::GlobalValue::ThreadLocalMode TLM;
1197   TLM = GetDefaultLLVMTLSModel();
1198 
1199   // Override the TLS model if it is explicitly specified.
1200   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1201     TLM = GetLLVMTLSModel(Attr->getModel());
1202   }
1203 
1204   GV->setThreadLocalMode(TLM);
1205 }
1206 
1207 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1208                                           StringRef Name) {
1209   const TargetInfo &Target = CGM.getTarget();
1210   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1211 }
1212 
1213 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1214                                                  const CPUSpecificAttr *Attr,
1215                                                  unsigned CPUIndex,
1216                                                  raw_ostream &Out) {
1217   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1218   // supported.
1219   if (Attr)
1220     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1221   else if (CGM.getTarget().supportsIFunc())
1222     Out << ".resolver";
1223 }
1224 
1225 static void AppendTargetMangling(const CodeGenModule &CGM,
1226                                  const TargetAttr *Attr, raw_ostream &Out) {
1227   if (Attr->isDefaultVersion())
1228     return;
1229 
1230   Out << '.';
1231   const TargetInfo &Target = CGM.getTarget();
1232   ParsedTargetAttr Info =
1233       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1234         // Multiversioning doesn't allow "no-${feature}", so we can
1235         // only have "+" prefixes here.
1236         assert(LHS.startswith("+") && RHS.startswith("+") &&
1237                "Features should always have a prefix.");
1238         return Target.multiVersionSortPriority(LHS.substr(1)) >
1239                Target.multiVersionSortPriority(RHS.substr(1));
1240       });
1241 
1242   bool IsFirst = true;
1243 
1244   if (!Info.Architecture.empty()) {
1245     IsFirst = false;
1246     Out << "arch_" << Info.Architecture;
1247   }
1248 
1249   for (StringRef Feat : Info.Features) {
1250     if (!IsFirst)
1251       Out << '_';
1252     IsFirst = false;
1253     Out << Feat.substr(1);
1254   }
1255 }
1256 
1257 // Returns true if GD is a function decl with internal linkage and
1258 // needs a unique suffix after the mangled name.
1259 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1260                                         CodeGenModule &CGM) {
1261   const Decl *D = GD.getDecl();
1262   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1263          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1264 }
1265 
1266 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1267                                       const NamedDecl *ND,
1268                                       bool OmitMultiVersionMangling = false) {
1269   SmallString<256> Buffer;
1270   llvm::raw_svector_ostream Out(Buffer);
1271   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1272   if (!CGM.getModuleNameHash().empty())
1273     MC.needsUniqueInternalLinkageNames();
1274   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1275   if (ShouldMangle)
1276     MC.mangleName(GD.getWithDecl(ND), Out);
1277   else {
1278     IdentifierInfo *II = ND->getIdentifier();
1279     assert(II && "Attempt to mangle unnamed decl.");
1280     const auto *FD = dyn_cast<FunctionDecl>(ND);
1281 
1282     if (FD &&
1283         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1284       Out << "__regcall3__" << II->getName();
1285     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1286                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1287       Out << "__device_stub__" << II->getName();
1288     } else {
1289       Out << II->getName();
1290     }
1291   }
1292 
1293   // Check if the module name hash should be appended for internal linkage
1294   // symbols.   This should come before multi-version target suffixes are
1295   // appended. This is to keep the name and module hash suffix of the
1296   // internal linkage function together.  The unique suffix should only be
1297   // added when name mangling is done to make sure that the final name can
1298   // be properly demangled.  For example, for C functions without prototypes,
1299   // name mangling is not done and the unique suffix should not be appeneded
1300   // then.
1301   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1302     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1303            "Hash computed when not explicitly requested");
1304     Out << CGM.getModuleNameHash();
1305   }
1306 
1307   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1308     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1309       switch (FD->getMultiVersionKind()) {
1310       case MultiVersionKind::CPUDispatch:
1311       case MultiVersionKind::CPUSpecific:
1312         AppendCPUSpecificCPUDispatchMangling(CGM,
1313                                              FD->getAttr<CPUSpecificAttr>(),
1314                                              GD.getMultiVersionIndex(), Out);
1315         break;
1316       case MultiVersionKind::Target:
1317         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1318         break;
1319       case MultiVersionKind::None:
1320         llvm_unreachable("None multiversion type isn't valid here");
1321       }
1322     }
1323 
1324   // Make unique name for device side static file-scope variable for HIP.
1325   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1326       CGM.getLangOpts().GPURelocatableDeviceCode &&
1327       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1328     CGM.printPostfixForExternalizedStaticVar(Out);
1329   return std::string(Out.str());
1330 }
1331 
1332 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1333                                             const FunctionDecl *FD) {
1334   if (!FD->isMultiVersion())
1335     return;
1336 
1337   // Get the name of what this would be without the 'target' attribute.  This
1338   // allows us to lookup the version that was emitted when this wasn't a
1339   // multiversion function.
1340   std::string NonTargetName =
1341       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1342   GlobalDecl OtherGD;
1343   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1344     assert(OtherGD.getCanonicalDecl()
1345                .getDecl()
1346                ->getAsFunction()
1347                ->isMultiVersion() &&
1348            "Other GD should now be a multiversioned function");
1349     // OtherFD is the version of this function that was mangled BEFORE
1350     // becoming a MultiVersion function.  It potentially needs to be updated.
1351     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1352                                       .getDecl()
1353                                       ->getAsFunction()
1354                                       ->getMostRecentDecl();
1355     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1356     // This is so that if the initial version was already the 'default'
1357     // version, we don't try to update it.
1358     if (OtherName != NonTargetName) {
1359       // Remove instead of erase, since others may have stored the StringRef
1360       // to this.
1361       const auto ExistingRecord = Manglings.find(NonTargetName);
1362       if (ExistingRecord != std::end(Manglings))
1363         Manglings.remove(&(*ExistingRecord));
1364       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1365       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1366       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1367         Entry->setName(OtherName);
1368     }
1369   }
1370 }
1371 
1372 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1373   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1374 
1375   // Some ABIs don't have constructor variants.  Make sure that base and
1376   // complete constructors get mangled the same.
1377   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1378     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1379       CXXCtorType OrigCtorType = GD.getCtorType();
1380       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1381       if (OrigCtorType == Ctor_Base)
1382         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1383     }
1384   }
1385 
1386   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1387   // static device variable depends on whether the variable is referenced by
1388   // a host or device host function. Therefore the mangled name cannot be
1389   // cached.
1390   if (!LangOpts.CUDAIsDevice ||
1391       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1392     auto FoundName = MangledDeclNames.find(CanonicalGD);
1393     if (FoundName != MangledDeclNames.end())
1394       return FoundName->second;
1395   }
1396 
1397   // Keep the first result in the case of a mangling collision.
1398   const auto *ND = cast<NamedDecl>(GD.getDecl());
1399   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1400 
1401   // Ensure either we have different ABIs between host and device compilations,
1402   // says host compilation following MSVC ABI but device compilation follows
1403   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1404   // mangling should be the same after name stubbing. The later checking is
1405   // very important as the device kernel name being mangled in host-compilation
1406   // is used to resolve the device binaries to be executed. Inconsistent naming
1407   // result in undefined behavior. Even though we cannot check that naming
1408   // directly between host- and device-compilations, the host- and
1409   // device-mangling in host compilation could help catching certain ones.
1410   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1411          getLangOpts().CUDAIsDevice ||
1412          (getContext().getAuxTargetInfo() &&
1413           (getContext().getAuxTargetInfo()->getCXXABI() !=
1414            getContext().getTargetInfo().getCXXABI())) ||
1415          getCUDARuntime().getDeviceSideName(ND) ==
1416              getMangledNameImpl(
1417                  *this,
1418                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1419                  ND));
1420 
1421   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1422   return MangledDeclNames[CanonicalGD] = Result.first->first();
1423 }
1424 
1425 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1426                                              const BlockDecl *BD) {
1427   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1428   const Decl *D = GD.getDecl();
1429 
1430   SmallString<256> Buffer;
1431   llvm::raw_svector_ostream Out(Buffer);
1432   if (!D)
1433     MangleCtx.mangleGlobalBlock(BD,
1434       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1435   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1436     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1437   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1438     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1439   else
1440     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1441 
1442   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1443   return Result.first->first();
1444 }
1445 
1446 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1447   return getModule().getNamedValue(Name);
1448 }
1449 
1450 /// AddGlobalCtor - Add a function to the list that will be called before
1451 /// main() runs.
1452 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1453                                   llvm::Constant *AssociatedData) {
1454   // FIXME: Type coercion of void()* types.
1455   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1456 }
1457 
1458 /// AddGlobalDtor - Add a function to the list that will be called
1459 /// when the module is unloaded.
1460 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1461                                   bool IsDtorAttrFunc) {
1462   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1463       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1464     DtorsUsingAtExit[Priority].push_back(Dtor);
1465     return;
1466   }
1467 
1468   // FIXME: Type coercion of void()* types.
1469   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1470 }
1471 
1472 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1473   if (Fns.empty()) return;
1474 
1475   // Ctor function type is void()*.
1476   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1477   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1478       TheModule.getDataLayout().getProgramAddressSpace());
1479 
1480   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1481   llvm::StructType *CtorStructTy = llvm::StructType::get(
1482       Int32Ty, CtorPFTy, VoidPtrTy);
1483 
1484   // Construct the constructor and destructor arrays.
1485   ConstantInitBuilder builder(*this);
1486   auto ctors = builder.beginArray(CtorStructTy);
1487   for (const auto &I : Fns) {
1488     auto ctor = ctors.beginStruct(CtorStructTy);
1489     ctor.addInt(Int32Ty, I.Priority);
1490     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1491     if (I.AssociatedData)
1492       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1493     else
1494       ctor.addNullPointer(VoidPtrTy);
1495     ctor.finishAndAddTo(ctors);
1496   }
1497 
1498   auto list =
1499     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1500                                 /*constant*/ false,
1501                                 llvm::GlobalValue::AppendingLinkage);
1502 
1503   // The LTO linker doesn't seem to like it when we set an alignment
1504   // on appending variables.  Take it off as a workaround.
1505   list->setAlignment(llvm::None);
1506 
1507   Fns.clear();
1508 }
1509 
1510 llvm::GlobalValue::LinkageTypes
1511 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1512   const auto *D = cast<FunctionDecl>(GD.getDecl());
1513 
1514   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1515 
1516   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1517     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1518 
1519   if (isa<CXXConstructorDecl>(D) &&
1520       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1521       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1522     // Our approach to inheriting constructors is fundamentally different from
1523     // that used by the MS ABI, so keep our inheriting constructor thunks
1524     // internal rather than trying to pick an unambiguous mangling for them.
1525     return llvm::GlobalValue::InternalLinkage;
1526   }
1527 
1528   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1529 }
1530 
1531 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1532   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1533   if (!MDS) return nullptr;
1534 
1535   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1536 }
1537 
1538 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1539                                               const CGFunctionInfo &Info,
1540                                               llvm::Function *F, bool IsThunk) {
1541   unsigned CallingConv;
1542   llvm::AttributeList PAL;
1543   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1544                          /*AttrOnCallSite=*/false, IsThunk);
1545   F->setAttributes(PAL);
1546   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1547 }
1548 
1549 static void removeImageAccessQualifier(std::string& TyName) {
1550   std::string ReadOnlyQual("__read_only");
1551   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1552   if (ReadOnlyPos != std::string::npos)
1553     // "+ 1" for the space after access qualifier.
1554     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1555   else {
1556     std::string WriteOnlyQual("__write_only");
1557     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1558     if (WriteOnlyPos != std::string::npos)
1559       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1560     else {
1561       std::string ReadWriteQual("__read_write");
1562       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1563       if (ReadWritePos != std::string::npos)
1564         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1565     }
1566   }
1567 }
1568 
1569 // Returns the address space id that should be produced to the
1570 // kernel_arg_addr_space metadata. This is always fixed to the ids
1571 // as specified in the SPIR 2.0 specification in order to differentiate
1572 // for example in clGetKernelArgInfo() implementation between the address
1573 // spaces with targets without unique mapping to the OpenCL address spaces
1574 // (basically all single AS CPUs).
1575 static unsigned ArgInfoAddressSpace(LangAS AS) {
1576   switch (AS) {
1577   case LangAS::opencl_global:
1578     return 1;
1579   case LangAS::opencl_constant:
1580     return 2;
1581   case LangAS::opencl_local:
1582     return 3;
1583   case LangAS::opencl_generic:
1584     return 4; // Not in SPIR 2.0 specs.
1585   case LangAS::opencl_global_device:
1586     return 5;
1587   case LangAS::opencl_global_host:
1588     return 6;
1589   default:
1590     return 0; // Assume private.
1591   }
1592 }
1593 
1594 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1595                                          const FunctionDecl *FD,
1596                                          CodeGenFunction *CGF) {
1597   assert(((FD && CGF) || (!FD && !CGF)) &&
1598          "Incorrect use - FD and CGF should either be both null or not!");
1599   // Create MDNodes that represent the kernel arg metadata.
1600   // Each MDNode is a list in the form of "key", N number of values which is
1601   // the same number of values as their are kernel arguments.
1602 
1603   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1604 
1605   // MDNode for the kernel argument address space qualifiers.
1606   SmallVector<llvm::Metadata *, 8> addressQuals;
1607 
1608   // MDNode for the kernel argument access qualifiers (images only).
1609   SmallVector<llvm::Metadata *, 8> accessQuals;
1610 
1611   // MDNode for the kernel argument type names.
1612   SmallVector<llvm::Metadata *, 8> argTypeNames;
1613 
1614   // MDNode for the kernel argument base type names.
1615   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1616 
1617   // MDNode for the kernel argument type qualifiers.
1618   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1619 
1620   // MDNode for the kernel argument names.
1621   SmallVector<llvm::Metadata *, 8> argNames;
1622 
1623   if (FD && CGF)
1624     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1625       const ParmVarDecl *parm = FD->getParamDecl(i);
1626       QualType ty = parm->getType();
1627       std::string typeQuals;
1628 
1629       // Get image and pipe access qualifier:
1630       if (ty->isImageType() || ty->isPipeType()) {
1631         const Decl *PDecl = parm;
1632         if (auto *TD = dyn_cast<TypedefType>(ty))
1633           PDecl = TD->getDecl();
1634         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1635         if (A && A->isWriteOnly())
1636           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1637         else if (A && A->isReadWrite())
1638           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1639         else
1640           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1641       } else
1642         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1643 
1644       // Get argument name.
1645       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1646 
1647       auto getTypeSpelling = [&](QualType Ty) {
1648         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1649 
1650         if (Ty.isCanonical()) {
1651           StringRef typeNameRef = typeName;
1652           // Turn "unsigned type" to "utype"
1653           if (typeNameRef.consume_front("unsigned "))
1654             return std::string("u") + typeNameRef.str();
1655           if (typeNameRef.consume_front("signed "))
1656             return typeNameRef.str();
1657         }
1658 
1659         return typeName;
1660       };
1661 
1662       if (ty->isPointerType()) {
1663         QualType pointeeTy = ty->getPointeeType();
1664 
1665         // Get address qualifier.
1666         addressQuals.push_back(
1667             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1668                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1669 
1670         // Get argument type name.
1671         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1672         std::string baseTypeName =
1673             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1674         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1675         argBaseTypeNames.push_back(
1676             llvm::MDString::get(VMContext, baseTypeName));
1677 
1678         // Get argument type qualifiers:
1679         if (ty.isRestrictQualified())
1680           typeQuals = "restrict";
1681         if (pointeeTy.isConstQualified() ||
1682             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1683           typeQuals += typeQuals.empty() ? "const" : " const";
1684         if (pointeeTy.isVolatileQualified())
1685           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1686       } else {
1687         uint32_t AddrSpc = 0;
1688         bool isPipe = ty->isPipeType();
1689         if (ty->isImageType() || isPipe)
1690           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1691 
1692         addressQuals.push_back(
1693             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1694 
1695         // Get argument type name.
1696         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1697         std::string typeName = getTypeSpelling(ty);
1698         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1699 
1700         // Remove access qualifiers on images
1701         // (as they are inseparable from type in clang implementation,
1702         // but OpenCL spec provides a special query to get access qualifier
1703         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1704         if (ty->isImageType()) {
1705           removeImageAccessQualifier(typeName);
1706           removeImageAccessQualifier(baseTypeName);
1707         }
1708 
1709         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1710         argBaseTypeNames.push_back(
1711             llvm::MDString::get(VMContext, baseTypeName));
1712 
1713         if (isPipe)
1714           typeQuals = "pipe";
1715       }
1716       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1717     }
1718 
1719   Fn->setMetadata("kernel_arg_addr_space",
1720                   llvm::MDNode::get(VMContext, addressQuals));
1721   Fn->setMetadata("kernel_arg_access_qual",
1722                   llvm::MDNode::get(VMContext, accessQuals));
1723   Fn->setMetadata("kernel_arg_type",
1724                   llvm::MDNode::get(VMContext, argTypeNames));
1725   Fn->setMetadata("kernel_arg_base_type",
1726                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1727   Fn->setMetadata("kernel_arg_type_qual",
1728                   llvm::MDNode::get(VMContext, argTypeQuals));
1729   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1730     Fn->setMetadata("kernel_arg_name",
1731                     llvm::MDNode::get(VMContext, argNames));
1732 }
1733 
1734 /// Determines whether the language options require us to model
1735 /// unwind exceptions.  We treat -fexceptions as mandating this
1736 /// except under the fragile ObjC ABI with only ObjC exceptions
1737 /// enabled.  This means, for example, that C with -fexceptions
1738 /// enables this.
1739 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1740   // If exceptions are completely disabled, obviously this is false.
1741   if (!LangOpts.Exceptions) return false;
1742 
1743   // If C++ exceptions are enabled, this is true.
1744   if (LangOpts.CXXExceptions) return true;
1745 
1746   // If ObjC exceptions are enabled, this depends on the ABI.
1747   if (LangOpts.ObjCExceptions) {
1748     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1749   }
1750 
1751   return true;
1752 }
1753 
1754 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1755                                                       const CXXMethodDecl *MD) {
1756   // Check that the type metadata can ever actually be used by a call.
1757   if (!CGM.getCodeGenOpts().LTOUnit ||
1758       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1759     return false;
1760 
1761   // Only functions whose address can be taken with a member function pointer
1762   // need this sort of type metadata.
1763   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1764          !isa<CXXDestructorDecl>(MD);
1765 }
1766 
1767 std::vector<const CXXRecordDecl *>
1768 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1769   llvm::SetVector<const CXXRecordDecl *> MostBases;
1770 
1771   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1772   CollectMostBases = [&](const CXXRecordDecl *RD) {
1773     if (RD->getNumBases() == 0)
1774       MostBases.insert(RD);
1775     for (const CXXBaseSpecifier &B : RD->bases())
1776       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1777   };
1778   CollectMostBases(RD);
1779   return MostBases.takeVector();
1780 }
1781 
1782 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1783                                                            llvm::Function *F) {
1784   llvm::AttrBuilder B;
1785 
1786   if (CodeGenOpts.UnwindTables)
1787     B.addAttribute(llvm::Attribute::UWTable);
1788 
1789   if (CodeGenOpts.StackClashProtector)
1790     B.addAttribute("probe-stack", "inline-asm");
1791 
1792   if (!hasUnwindExceptions(LangOpts))
1793     B.addAttribute(llvm::Attribute::NoUnwind);
1794 
1795   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1796     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1797       B.addAttribute(llvm::Attribute::StackProtect);
1798     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1799       B.addAttribute(llvm::Attribute::StackProtectStrong);
1800     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1801       B.addAttribute(llvm::Attribute::StackProtectReq);
1802   }
1803 
1804   if (!D) {
1805     // If we don't have a declaration to control inlining, the function isn't
1806     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1807     // disabled, mark the function as noinline.
1808     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1809         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1810       B.addAttribute(llvm::Attribute::NoInline);
1811 
1812     F->addFnAttrs(B);
1813     return;
1814   }
1815 
1816   // Track whether we need to add the optnone LLVM attribute,
1817   // starting with the default for this optimization level.
1818   bool ShouldAddOptNone =
1819       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1820   // We can't add optnone in the following cases, it won't pass the verifier.
1821   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1822   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1823 
1824   // Add optnone, but do so only if the function isn't always_inline.
1825   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1826       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1827     B.addAttribute(llvm::Attribute::OptimizeNone);
1828 
1829     // OptimizeNone implies noinline; we should not be inlining such functions.
1830     B.addAttribute(llvm::Attribute::NoInline);
1831 
1832     // We still need to handle naked functions even though optnone subsumes
1833     // much of their semantics.
1834     if (D->hasAttr<NakedAttr>())
1835       B.addAttribute(llvm::Attribute::Naked);
1836 
1837     // OptimizeNone wins over OptimizeForSize and MinSize.
1838     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1839     F->removeFnAttr(llvm::Attribute::MinSize);
1840   } else if (D->hasAttr<NakedAttr>()) {
1841     // Naked implies noinline: we should not be inlining such functions.
1842     B.addAttribute(llvm::Attribute::Naked);
1843     B.addAttribute(llvm::Attribute::NoInline);
1844   } else if (D->hasAttr<NoDuplicateAttr>()) {
1845     B.addAttribute(llvm::Attribute::NoDuplicate);
1846   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1847     // Add noinline if the function isn't always_inline.
1848     B.addAttribute(llvm::Attribute::NoInline);
1849   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1850              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1851     // (noinline wins over always_inline, and we can't specify both in IR)
1852     B.addAttribute(llvm::Attribute::AlwaysInline);
1853   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1854     // If we're not inlining, then force everything that isn't always_inline to
1855     // carry an explicit noinline attribute.
1856     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1857       B.addAttribute(llvm::Attribute::NoInline);
1858   } else {
1859     // Otherwise, propagate the inline hint attribute and potentially use its
1860     // absence to mark things as noinline.
1861     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1862       // Search function and template pattern redeclarations for inline.
1863       auto CheckForInline = [](const FunctionDecl *FD) {
1864         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1865           return Redecl->isInlineSpecified();
1866         };
1867         if (any_of(FD->redecls(), CheckRedeclForInline))
1868           return true;
1869         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1870         if (!Pattern)
1871           return false;
1872         return any_of(Pattern->redecls(), CheckRedeclForInline);
1873       };
1874       if (CheckForInline(FD)) {
1875         B.addAttribute(llvm::Attribute::InlineHint);
1876       } else if (CodeGenOpts.getInlining() ==
1877                      CodeGenOptions::OnlyHintInlining &&
1878                  !FD->isInlined() &&
1879                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1880         B.addAttribute(llvm::Attribute::NoInline);
1881       }
1882     }
1883   }
1884 
1885   // Add other optimization related attributes if we are optimizing this
1886   // function.
1887   if (!D->hasAttr<OptimizeNoneAttr>()) {
1888     if (D->hasAttr<ColdAttr>()) {
1889       if (!ShouldAddOptNone)
1890         B.addAttribute(llvm::Attribute::OptimizeForSize);
1891       B.addAttribute(llvm::Attribute::Cold);
1892     }
1893     if (D->hasAttr<HotAttr>())
1894       B.addAttribute(llvm::Attribute::Hot);
1895     if (D->hasAttr<MinSizeAttr>())
1896       B.addAttribute(llvm::Attribute::MinSize);
1897   }
1898 
1899   F->addFnAttrs(B);
1900 
1901   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1902   if (alignment)
1903     F->setAlignment(llvm::Align(alignment));
1904 
1905   if (!D->hasAttr<AlignedAttr>())
1906     if (LangOpts.FunctionAlignment)
1907       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1908 
1909   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1910   // reserve a bit for differentiating between virtual and non-virtual member
1911   // functions. If the current target's C++ ABI requires this and this is a
1912   // member function, set its alignment accordingly.
1913   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1914     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1915       F->setAlignment(llvm::Align(2));
1916   }
1917 
1918   // In the cross-dso CFI mode with canonical jump tables, we want !type
1919   // attributes on definitions only.
1920   if (CodeGenOpts.SanitizeCfiCrossDso &&
1921       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1922     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1923       // Skip available_externally functions. They won't be codegen'ed in the
1924       // current module anyway.
1925       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1926         CreateFunctionTypeMetadataForIcall(FD, F);
1927     }
1928   }
1929 
1930   // Emit type metadata on member functions for member function pointer checks.
1931   // These are only ever necessary on definitions; we're guaranteed that the
1932   // definition will be present in the LTO unit as a result of LTO visibility.
1933   auto *MD = dyn_cast<CXXMethodDecl>(D);
1934   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1935     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1936       llvm::Metadata *Id =
1937           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1938               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1939       F->addTypeMetadata(0, Id);
1940     }
1941   }
1942 }
1943 
1944 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1945                                                   llvm::Function *F) {
1946   if (D->hasAttr<StrictFPAttr>()) {
1947     llvm::AttrBuilder FuncAttrs;
1948     FuncAttrs.addAttribute("strictfp");
1949     F->addFnAttrs(FuncAttrs);
1950   }
1951 }
1952 
1953 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1954   const Decl *D = GD.getDecl();
1955   if (dyn_cast_or_null<NamedDecl>(D))
1956     setGVProperties(GV, GD);
1957   else
1958     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1959 
1960   if (D && D->hasAttr<UsedAttr>())
1961     addUsedOrCompilerUsedGlobal(GV);
1962 
1963   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1964     const auto *VD = cast<VarDecl>(D);
1965     if (VD->getType().isConstQualified() &&
1966         VD->getStorageDuration() == SD_Static)
1967       addUsedOrCompilerUsedGlobal(GV);
1968   }
1969 }
1970 
1971 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1972                                                 llvm::AttrBuilder &Attrs) {
1973   // Add target-cpu and target-features attributes to functions. If
1974   // we have a decl for the function and it has a target attribute then
1975   // parse that and add it to the feature set.
1976   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1977   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1978   std::vector<std::string> Features;
1979   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1980   FD = FD ? FD->getMostRecentDecl() : FD;
1981   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1982   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1983   bool AddedAttr = false;
1984   if (TD || SD) {
1985     llvm::StringMap<bool> FeatureMap;
1986     getContext().getFunctionFeatureMap(FeatureMap, GD);
1987 
1988     // Produce the canonical string for this set of features.
1989     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1990       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1991 
1992     // Now add the target-cpu and target-features to the function.
1993     // While we populated the feature map above, we still need to
1994     // get and parse the target attribute so we can get the cpu for
1995     // the function.
1996     if (TD) {
1997       ParsedTargetAttr ParsedAttr = TD->parse();
1998       if (!ParsedAttr.Architecture.empty() &&
1999           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2000         TargetCPU = ParsedAttr.Architecture;
2001         TuneCPU = ""; // Clear the tune CPU.
2002       }
2003       if (!ParsedAttr.Tune.empty() &&
2004           getTarget().isValidCPUName(ParsedAttr.Tune))
2005         TuneCPU = ParsedAttr.Tune;
2006     }
2007   } else {
2008     // Otherwise just add the existing target cpu and target features to the
2009     // function.
2010     Features = getTarget().getTargetOpts().Features;
2011   }
2012 
2013   if (!TargetCPU.empty()) {
2014     Attrs.addAttribute("target-cpu", TargetCPU);
2015     AddedAttr = true;
2016   }
2017   if (!TuneCPU.empty()) {
2018     Attrs.addAttribute("tune-cpu", TuneCPU);
2019     AddedAttr = true;
2020   }
2021   if (!Features.empty()) {
2022     llvm::sort(Features);
2023     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2024     AddedAttr = true;
2025   }
2026 
2027   return AddedAttr;
2028 }
2029 
2030 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2031                                           llvm::GlobalObject *GO) {
2032   const Decl *D = GD.getDecl();
2033   SetCommonAttributes(GD, GO);
2034 
2035   if (D) {
2036     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2037       if (D->hasAttr<RetainAttr>())
2038         addUsedGlobal(GV);
2039       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2040         GV->addAttribute("bss-section", SA->getName());
2041       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2042         GV->addAttribute("data-section", SA->getName());
2043       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2044         GV->addAttribute("rodata-section", SA->getName());
2045       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2046         GV->addAttribute("relro-section", SA->getName());
2047     }
2048 
2049     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2050       if (D->hasAttr<RetainAttr>())
2051         addUsedGlobal(F);
2052       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2053         if (!D->getAttr<SectionAttr>())
2054           F->addFnAttr("implicit-section-name", SA->getName());
2055 
2056       llvm::AttrBuilder Attrs;
2057       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2058         // We know that GetCPUAndFeaturesAttributes will always have the
2059         // newest set, since it has the newest possible FunctionDecl, so the
2060         // new ones should replace the old.
2061         llvm::AttrBuilder RemoveAttrs;
2062         RemoveAttrs.addAttribute("target-cpu");
2063         RemoveAttrs.addAttribute("target-features");
2064         RemoveAttrs.addAttribute("tune-cpu");
2065         F->removeFnAttrs(RemoveAttrs);
2066         F->addFnAttrs(Attrs);
2067       }
2068     }
2069 
2070     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2071       GO->setSection(CSA->getName());
2072     else if (const auto *SA = D->getAttr<SectionAttr>())
2073       GO->setSection(SA->getName());
2074   }
2075 
2076   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2077 }
2078 
2079 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2080                                                   llvm::Function *F,
2081                                                   const CGFunctionInfo &FI) {
2082   const Decl *D = GD.getDecl();
2083   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2084   SetLLVMFunctionAttributesForDefinition(D, F);
2085 
2086   F->setLinkage(llvm::Function::InternalLinkage);
2087 
2088   setNonAliasAttributes(GD, F);
2089 }
2090 
2091 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2092   // Set linkage and visibility in case we never see a definition.
2093   LinkageInfo LV = ND->getLinkageAndVisibility();
2094   // Don't set internal linkage on declarations.
2095   // "extern_weak" is overloaded in LLVM; we probably should have
2096   // separate linkage types for this.
2097   if (isExternallyVisible(LV.getLinkage()) &&
2098       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2099     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2100 }
2101 
2102 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2103                                                        llvm::Function *F) {
2104   // Only if we are checking indirect calls.
2105   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2106     return;
2107 
2108   // Non-static class methods are handled via vtable or member function pointer
2109   // checks elsewhere.
2110   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2111     return;
2112 
2113   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2114   F->addTypeMetadata(0, MD);
2115   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2116 
2117   // Emit a hash-based bit set entry for cross-DSO calls.
2118   if (CodeGenOpts.SanitizeCfiCrossDso)
2119     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2120       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2121 }
2122 
2123 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2124                                           bool IsIncompleteFunction,
2125                                           bool IsThunk) {
2126 
2127   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2128     // If this is an intrinsic function, set the function's attributes
2129     // to the intrinsic's attributes.
2130     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2131     return;
2132   }
2133 
2134   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2135 
2136   if (!IsIncompleteFunction)
2137     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2138                               IsThunk);
2139 
2140   // Add the Returned attribute for "this", except for iOS 5 and earlier
2141   // where substantial code, including the libstdc++ dylib, was compiled with
2142   // GCC and does not actually return "this".
2143   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2144       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2145     assert(!F->arg_empty() &&
2146            F->arg_begin()->getType()
2147              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2148            "unexpected this return");
2149     F->addParamAttr(0, llvm::Attribute::Returned);
2150   }
2151 
2152   // Only a few attributes are set on declarations; these may later be
2153   // overridden by a definition.
2154 
2155   setLinkageForGV(F, FD);
2156   setGVProperties(F, FD);
2157 
2158   // Setup target-specific attributes.
2159   if (!IsIncompleteFunction && F->isDeclaration())
2160     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2161 
2162   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2163     F->setSection(CSA->getName());
2164   else if (const auto *SA = FD->getAttr<SectionAttr>())
2165      F->setSection(SA->getName());
2166 
2167   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2168     if (EA->isError())
2169       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2170     else if (EA->isWarning())
2171       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2172   }
2173 
2174   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2175   if (FD->isInlineBuiltinDeclaration()) {
2176     const FunctionDecl *FDBody;
2177     bool HasBody = FD->hasBody(FDBody);
2178     (void)HasBody;
2179     assert(HasBody && "Inline builtin declarations should always have an "
2180                       "available body!");
2181     if (shouldEmitFunction(FDBody))
2182       F->addFnAttr(llvm::Attribute::NoBuiltin);
2183   }
2184 
2185   if (FD->isReplaceableGlobalAllocationFunction()) {
2186     // A replaceable global allocation function does not act like a builtin by
2187     // default, only if it is invoked by a new-expression or delete-expression.
2188     F->addFnAttr(llvm::Attribute::NoBuiltin);
2189   }
2190 
2191   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2192     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2193   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2194     if (MD->isVirtual())
2195       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2196 
2197   // Don't emit entries for function declarations in the cross-DSO mode. This
2198   // is handled with better precision by the receiving DSO. But if jump tables
2199   // are non-canonical then we need type metadata in order to produce the local
2200   // jump table.
2201   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2202       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2203     CreateFunctionTypeMetadataForIcall(FD, F);
2204 
2205   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2206     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2207 
2208   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2209     // Annotate the callback behavior as metadata:
2210     //  - The callback callee (as argument number).
2211     //  - The callback payloads (as argument numbers).
2212     llvm::LLVMContext &Ctx = F->getContext();
2213     llvm::MDBuilder MDB(Ctx);
2214 
2215     // The payload indices are all but the first one in the encoding. The first
2216     // identifies the callback callee.
2217     int CalleeIdx = *CB->encoding_begin();
2218     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2219     F->addMetadata(llvm::LLVMContext::MD_callback,
2220                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2221                                                CalleeIdx, PayloadIndices,
2222                                                /* VarArgsArePassed */ false)}));
2223   }
2224 }
2225 
2226 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2227   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2228          "Only globals with definition can force usage.");
2229   LLVMUsed.emplace_back(GV);
2230 }
2231 
2232 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2233   assert(!GV->isDeclaration() &&
2234          "Only globals with definition can force usage.");
2235   LLVMCompilerUsed.emplace_back(GV);
2236 }
2237 
2238 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2239   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2240          "Only globals with definition can force usage.");
2241   if (getTriple().isOSBinFormatELF())
2242     LLVMCompilerUsed.emplace_back(GV);
2243   else
2244     LLVMUsed.emplace_back(GV);
2245 }
2246 
2247 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2248                      std::vector<llvm::WeakTrackingVH> &List) {
2249   // Don't create llvm.used if there is no need.
2250   if (List.empty())
2251     return;
2252 
2253   // Convert List to what ConstantArray needs.
2254   SmallVector<llvm::Constant*, 8> UsedArray;
2255   UsedArray.resize(List.size());
2256   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2257     UsedArray[i] =
2258         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2259             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2260   }
2261 
2262   if (UsedArray.empty())
2263     return;
2264   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2265 
2266   auto *GV = new llvm::GlobalVariable(
2267       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2268       llvm::ConstantArray::get(ATy, UsedArray), Name);
2269 
2270   GV->setSection("llvm.metadata");
2271 }
2272 
2273 void CodeGenModule::emitLLVMUsed() {
2274   emitUsed(*this, "llvm.used", LLVMUsed);
2275   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2276 }
2277 
2278 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2279   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2280   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2281 }
2282 
2283 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2284   llvm::SmallString<32> Opt;
2285   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2286   if (Opt.empty())
2287     return;
2288   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2289   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2290 }
2291 
2292 void CodeGenModule::AddDependentLib(StringRef Lib) {
2293   auto &C = getLLVMContext();
2294   if (getTarget().getTriple().isOSBinFormatELF()) {
2295       ELFDependentLibraries.push_back(
2296         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2297     return;
2298   }
2299 
2300   llvm::SmallString<24> Opt;
2301   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2302   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2303   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2304 }
2305 
2306 /// Add link options implied by the given module, including modules
2307 /// it depends on, using a postorder walk.
2308 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2309                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2310                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2311   // Import this module's parent.
2312   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2313     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2314   }
2315 
2316   // Import this module's dependencies.
2317   for (Module *Import : llvm::reverse(Mod->Imports)) {
2318     if (Visited.insert(Import).second)
2319       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2320   }
2321 
2322   // Add linker options to link against the libraries/frameworks
2323   // described by this module.
2324   llvm::LLVMContext &Context = CGM.getLLVMContext();
2325   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2326 
2327   // For modules that use export_as for linking, use that module
2328   // name instead.
2329   if (Mod->UseExportAsModuleLinkName)
2330     return;
2331 
2332   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2333     // Link against a framework.  Frameworks are currently Darwin only, so we
2334     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2335     if (LL.IsFramework) {
2336       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2337                                  llvm::MDString::get(Context, LL.Library)};
2338 
2339       Metadata.push_back(llvm::MDNode::get(Context, Args));
2340       continue;
2341     }
2342 
2343     // Link against a library.
2344     if (IsELF) {
2345       llvm::Metadata *Args[2] = {
2346           llvm::MDString::get(Context, "lib"),
2347           llvm::MDString::get(Context, LL.Library),
2348       };
2349       Metadata.push_back(llvm::MDNode::get(Context, Args));
2350     } else {
2351       llvm::SmallString<24> Opt;
2352       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2353       auto *OptString = llvm::MDString::get(Context, Opt);
2354       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2355     }
2356   }
2357 }
2358 
2359 void CodeGenModule::EmitModuleLinkOptions() {
2360   // Collect the set of all of the modules we want to visit to emit link
2361   // options, which is essentially the imported modules and all of their
2362   // non-explicit child modules.
2363   llvm::SetVector<clang::Module *> LinkModules;
2364   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2365   SmallVector<clang::Module *, 16> Stack;
2366 
2367   // Seed the stack with imported modules.
2368   for (Module *M : ImportedModules) {
2369     // Do not add any link flags when an implementation TU of a module imports
2370     // a header of that same module.
2371     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2372         !getLangOpts().isCompilingModule())
2373       continue;
2374     if (Visited.insert(M).second)
2375       Stack.push_back(M);
2376   }
2377 
2378   // Find all of the modules to import, making a little effort to prune
2379   // non-leaf modules.
2380   while (!Stack.empty()) {
2381     clang::Module *Mod = Stack.pop_back_val();
2382 
2383     bool AnyChildren = false;
2384 
2385     // Visit the submodules of this module.
2386     for (const auto &SM : Mod->submodules()) {
2387       // Skip explicit children; they need to be explicitly imported to be
2388       // linked against.
2389       if (SM->IsExplicit)
2390         continue;
2391 
2392       if (Visited.insert(SM).second) {
2393         Stack.push_back(SM);
2394         AnyChildren = true;
2395       }
2396     }
2397 
2398     // We didn't find any children, so add this module to the list of
2399     // modules to link against.
2400     if (!AnyChildren) {
2401       LinkModules.insert(Mod);
2402     }
2403   }
2404 
2405   // Add link options for all of the imported modules in reverse topological
2406   // order.  We don't do anything to try to order import link flags with respect
2407   // to linker options inserted by things like #pragma comment().
2408   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2409   Visited.clear();
2410   for (Module *M : LinkModules)
2411     if (Visited.insert(M).second)
2412       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2413   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2414   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2415 
2416   // Add the linker options metadata flag.
2417   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2418   for (auto *MD : LinkerOptionsMetadata)
2419     NMD->addOperand(MD);
2420 }
2421 
2422 void CodeGenModule::EmitDeferred() {
2423   // Emit deferred declare target declarations.
2424   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2425     getOpenMPRuntime().emitDeferredTargetDecls();
2426 
2427   // Emit code for any potentially referenced deferred decls.  Since a
2428   // previously unused static decl may become used during the generation of code
2429   // for a static function, iterate until no changes are made.
2430 
2431   if (!DeferredVTables.empty()) {
2432     EmitDeferredVTables();
2433 
2434     // Emitting a vtable doesn't directly cause more vtables to
2435     // become deferred, although it can cause functions to be
2436     // emitted that then need those vtables.
2437     assert(DeferredVTables.empty());
2438   }
2439 
2440   // Emit CUDA/HIP static device variables referenced by host code only.
2441   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2442   // needed for further handling.
2443   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2444     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2445       DeferredDeclsToEmit.push_back(V);
2446 
2447   // Stop if we're out of both deferred vtables and deferred declarations.
2448   if (DeferredDeclsToEmit.empty())
2449     return;
2450 
2451   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2452   // work, it will not interfere with this.
2453   std::vector<GlobalDecl> CurDeclsToEmit;
2454   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2455 
2456   for (GlobalDecl &D : CurDeclsToEmit) {
2457     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2458     // to get GlobalValue with exactly the type we need, not something that
2459     // might had been created for another decl with the same mangled name but
2460     // different type.
2461     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2462         GetAddrOfGlobal(D, ForDefinition));
2463 
2464     // In case of different address spaces, we may still get a cast, even with
2465     // IsForDefinition equal to true. Query mangled names table to get
2466     // GlobalValue.
2467     if (!GV)
2468       GV = GetGlobalValue(getMangledName(D));
2469 
2470     // Make sure GetGlobalValue returned non-null.
2471     assert(GV);
2472 
2473     // Check to see if we've already emitted this.  This is necessary
2474     // for a couple of reasons: first, decls can end up in the
2475     // deferred-decls queue multiple times, and second, decls can end
2476     // up with definitions in unusual ways (e.g. by an extern inline
2477     // function acquiring a strong function redefinition).  Just
2478     // ignore these cases.
2479     if (!GV->isDeclaration())
2480       continue;
2481 
2482     // If this is OpenMP, check if it is legal to emit this global normally.
2483     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2484       continue;
2485 
2486     // Otherwise, emit the definition and move on to the next one.
2487     EmitGlobalDefinition(D, GV);
2488 
2489     // If we found out that we need to emit more decls, do that recursively.
2490     // This has the advantage that the decls are emitted in a DFS and related
2491     // ones are close together, which is convenient for testing.
2492     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2493       EmitDeferred();
2494       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2495     }
2496   }
2497 }
2498 
2499 void CodeGenModule::EmitVTablesOpportunistically() {
2500   // Try to emit external vtables as available_externally if they have emitted
2501   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2502   // is not allowed to create new references to things that need to be emitted
2503   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2504 
2505   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2506          && "Only emit opportunistic vtables with optimizations");
2507 
2508   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2509     assert(getVTables().isVTableExternal(RD) &&
2510            "This queue should only contain external vtables");
2511     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2512       VTables.GenerateClassData(RD);
2513   }
2514   OpportunisticVTables.clear();
2515 }
2516 
2517 void CodeGenModule::EmitGlobalAnnotations() {
2518   if (Annotations.empty())
2519     return;
2520 
2521   // Create a new global variable for the ConstantStruct in the Module.
2522   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2523     Annotations[0]->getType(), Annotations.size()), Annotations);
2524   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2525                                       llvm::GlobalValue::AppendingLinkage,
2526                                       Array, "llvm.global.annotations");
2527   gv->setSection(AnnotationSection);
2528 }
2529 
2530 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2531   llvm::Constant *&AStr = AnnotationStrings[Str];
2532   if (AStr)
2533     return AStr;
2534 
2535   // Not found yet, create a new global.
2536   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2537   auto *gv =
2538       new llvm::GlobalVariable(getModule(), s->getType(), true,
2539                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2540   gv->setSection(AnnotationSection);
2541   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2542   AStr = gv;
2543   return gv;
2544 }
2545 
2546 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2547   SourceManager &SM = getContext().getSourceManager();
2548   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2549   if (PLoc.isValid())
2550     return EmitAnnotationString(PLoc.getFilename());
2551   return EmitAnnotationString(SM.getBufferName(Loc));
2552 }
2553 
2554 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2555   SourceManager &SM = getContext().getSourceManager();
2556   PresumedLoc PLoc = SM.getPresumedLoc(L);
2557   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2558     SM.getExpansionLineNumber(L);
2559   return llvm::ConstantInt::get(Int32Ty, LineNo);
2560 }
2561 
2562 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2563   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2564   if (Exprs.empty())
2565     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2566 
2567   llvm::FoldingSetNodeID ID;
2568   for (Expr *E : Exprs) {
2569     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2570   }
2571   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2572   if (Lookup)
2573     return Lookup;
2574 
2575   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2576   LLVMArgs.reserve(Exprs.size());
2577   ConstantEmitter ConstEmiter(*this);
2578   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2579     const auto *CE = cast<clang::ConstantExpr>(E);
2580     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2581                                     CE->getType());
2582   });
2583   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2584   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2585                                       llvm::GlobalValue::PrivateLinkage, Struct,
2586                                       ".args");
2587   GV->setSection(AnnotationSection);
2588   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2589   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2590 
2591   Lookup = Bitcasted;
2592   return Bitcasted;
2593 }
2594 
2595 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2596                                                 const AnnotateAttr *AA,
2597                                                 SourceLocation L) {
2598   // Get the globals for file name, annotation, and the line number.
2599   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2600                  *UnitGV = EmitAnnotationUnit(L),
2601                  *LineNoCst = EmitAnnotationLineNo(L),
2602                  *Args = EmitAnnotationArgs(AA);
2603 
2604   llvm::Constant *GVInGlobalsAS = GV;
2605   if (GV->getAddressSpace() !=
2606       getDataLayout().getDefaultGlobalsAddressSpace()) {
2607     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2608         GV, GV->getValueType()->getPointerTo(
2609                 getDataLayout().getDefaultGlobalsAddressSpace()));
2610   }
2611 
2612   // Create the ConstantStruct for the global annotation.
2613   llvm::Constant *Fields[] = {
2614       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2615       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2616       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2617       LineNoCst,
2618       Args,
2619   };
2620   return llvm::ConstantStruct::getAnon(Fields);
2621 }
2622 
2623 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2624                                          llvm::GlobalValue *GV) {
2625   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2626   // Get the struct elements for these annotations.
2627   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2628     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2629 }
2630 
2631 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2632                                        SourceLocation Loc) const {
2633   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2634   // NoSanitize by function name.
2635   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2636     return true;
2637   // NoSanitize by location.
2638   if (Loc.isValid())
2639     return NoSanitizeL.containsLocation(Kind, Loc);
2640   // If location is unknown, this may be a compiler-generated function. Assume
2641   // it's located in the main file.
2642   auto &SM = Context.getSourceManager();
2643   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2644     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2645   }
2646   return false;
2647 }
2648 
2649 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2650                                        SourceLocation Loc, QualType Ty,
2651                                        StringRef Category) const {
2652   // For now globals can be ignored only in ASan and KASan.
2653   const SanitizerMask EnabledAsanMask =
2654       LangOpts.Sanitize.Mask &
2655       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2656        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2657        SanitizerKind::MemTag);
2658   if (!EnabledAsanMask)
2659     return false;
2660   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2661   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2662     return true;
2663   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2664     return true;
2665   // Check global type.
2666   if (!Ty.isNull()) {
2667     // Drill down the array types: if global variable of a fixed type is
2668     // not sanitized, we also don't instrument arrays of them.
2669     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2670       Ty = AT->getElementType();
2671     Ty = Ty.getCanonicalType().getUnqualifiedType();
2672     // Only record types (classes, structs etc.) are ignored.
2673     if (Ty->isRecordType()) {
2674       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2675       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2676         return true;
2677     }
2678   }
2679   return false;
2680 }
2681 
2682 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2683                                    StringRef Category) const {
2684   const auto &XRayFilter = getContext().getXRayFilter();
2685   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2686   auto Attr = ImbueAttr::NONE;
2687   if (Loc.isValid())
2688     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2689   if (Attr == ImbueAttr::NONE)
2690     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2691   switch (Attr) {
2692   case ImbueAttr::NONE:
2693     return false;
2694   case ImbueAttr::ALWAYS:
2695     Fn->addFnAttr("function-instrument", "xray-always");
2696     break;
2697   case ImbueAttr::ALWAYS_ARG1:
2698     Fn->addFnAttr("function-instrument", "xray-always");
2699     Fn->addFnAttr("xray-log-args", "1");
2700     break;
2701   case ImbueAttr::NEVER:
2702     Fn->addFnAttr("function-instrument", "xray-never");
2703     break;
2704   }
2705   return true;
2706 }
2707 
2708 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2709                                            SourceLocation Loc) const {
2710   const auto &ProfileList = getContext().getProfileList();
2711   // If the profile list is empty, then instrument everything.
2712   if (ProfileList.isEmpty())
2713     return false;
2714   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2715   // First, check the function name.
2716   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2717   if (V.hasValue())
2718     return *V;
2719   // Next, check the source location.
2720   if (Loc.isValid()) {
2721     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2722     if (V.hasValue())
2723       return *V;
2724   }
2725   // If location is unknown, this may be a compiler-generated function. Assume
2726   // it's located in the main file.
2727   auto &SM = Context.getSourceManager();
2728   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2729     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2730     if (V.hasValue())
2731       return *V;
2732   }
2733   return ProfileList.getDefault();
2734 }
2735 
2736 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2737   // Never defer when EmitAllDecls is specified.
2738   if (LangOpts.EmitAllDecls)
2739     return true;
2740 
2741   if (CodeGenOpts.KeepStaticConsts) {
2742     const auto *VD = dyn_cast<VarDecl>(Global);
2743     if (VD && VD->getType().isConstQualified() &&
2744         VD->getStorageDuration() == SD_Static)
2745       return true;
2746   }
2747 
2748   return getContext().DeclMustBeEmitted(Global);
2749 }
2750 
2751 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2752   // In OpenMP 5.0 variables and function may be marked as
2753   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2754   // that they must be emitted on the host/device. To be sure we need to have
2755   // seen a declare target with an explicit mentioning of the function, we know
2756   // we have if the level of the declare target attribute is -1. Note that we
2757   // check somewhere else if we should emit this at all.
2758   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2759     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2760         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2761     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2762       return false;
2763   }
2764 
2765   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2766     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2767       // Implicit template instantiations may change linkage if they are later
2768       // explicitly instantiated, so they should not be emitted eagerly.
2769       return false;
2770   }
2771   if (const auto *VD = dyn_cast<VarDecl>(Global))
2772     if (Context.getInlineVariableDefinitionKind(VD) ==
2773         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2774       // A definition of an inline constexpr static data member may change
2775       // linkage later if it's redeclared outside the class.
2776       return false;
2777   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2778   // codegen for global variables, because they may be marked as threadprivate.
2779   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2780       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2781       !isTypeConstant(Global->getType(), false) &&
2782       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2783     return false;
2784 
2785   return true;
2786 }
2787 
2788 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2789   StringRef Name = getMangledName(GD);
2790 
2791   // The UUID descriptor should be pointer aligned.
2792   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2793 
2794   // Look for an existing global.
2795   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2796     return ConstantAddress(GV, Alignment);
2797 
2798   ConstantEmitter Emitter(*this);
2799   llvm::Constant *Init;
2800 
2801   APValue &V = GD->getAsAPValue();
2802   if (!V.isAbsent()) {
2803     // If possible, emit the APValue version of the initializer. In particular,
2804     // this gets the type of the constant right.
2805     Init = Emitter.emitForInitializer(
2806         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2807   } else {
2808     // As a fallback, directly construct the constant.
2809     // FIXME: This may get padding wrong under esoteric struct layout rules.
2810     // MSVC appears to create a complete type 'struct __s_GUID' that it
2811     // presumably uses to represent these constants.
2812     MSGuidDecl::Parts Parts = GD->getParts();
2813     llvm::Constant *Fields[4] = {
2814         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2815         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2816         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2817         llvm::ConstantDataArray::getRaw(
2818             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2819             Int8Ty)};
2820     Init = llvm::ConstantStruct::getAnon(Fields);
2821   }
2822 
2823   auto *GV = new llvm::GlobalVariable(
2824       getModule(), Init->getType(),
2825       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2826   if (supportsCOMDAT())
2827     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2828   setDSOLocal(GV);
2829 
2830   llvm::Constant *Addr = GV;
2831   if (!V.isAbsent()) {
2832     Emitter.finalize(GV);
2833   } else {
2834     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2835     Addr = llvm::ConstantExpr::getBitCast(
2836         GV, Ty->getPointerTo(GV->getAddressSpace()));
2837   }
2838   return ConstantAddress(Addr, Alignment);
2839 }
2840 
2841 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2842     const TemplateParamObjectDecl *TPO) {
2843   StringRef Name = getMangledName(TPO);
2844   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2845 
2846   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2847     return ConstantAddress(GV, Alignment);
2848 
2849   ConstantEmitter Emitter(*this);
2850   llvm::Constant *Init = Emitter.emitForInitializer(
2851         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2852 
2853   if (!Init) {
2854     ErrorUnsupported(TPO, "template parameter object");
2855     return ConstantAddress::invalid();
2856   }
2857 
2858   auto *GV = new llvm::GlobalVariable(
2859       getModule(), Init->getType(),
2860       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2861   if (supportsCOMDAT())
2862     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2863   Emitter.finalize(GV);
2864 
2865   return ConstantAddress(GV, Alignment);
2866 }
2867 
2868 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2869   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2870   assert(AA && "No alias?");
2871 
2872   CharUnits Alignment = getContext().getDeclAlign(VD);
2873   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2874 
2875   // See if there is already something with the target's name in the module.
2876   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2877   if (Entry) {
2878     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2879     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2880     return ConstantAddress(Ptr, Alignment);
2881   }
2882 
2883   llvm::Constant *Aliasee;
2884   if (isa<llvm::FunctionType>(DeclTy))
2885     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2886                                       GlobalDecl(cast<FunctionDecl>(VD)),
2887                                       /*ForVTable=*/false);
2888   else
2889     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2890                                     nullptr);
2891 
2892   auto *F = cast<llvm::GlobalValue>(Aliasee);
2893   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2894   WeakRefReferences.insert(F);
2895 
2896   return ConstantAddress(Aliasee, Alignment);
2897 }
2898 
2899 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2900   const auto *Global = cast<ValueDecl>(GD.getDecl());
2901 
2902   // Weak references don't produce any output by themselves.
2903   if (Global->hasAttr<WeakRefAttr>())
2904     return;
2905 
2906   // If this is an alias definition (which otherwise looks like a declaration)
2907   // emit it now.
2908   if (Global->hasAttr<AliasAttr>())
2909     return EmitAliasDefinition(GD);
2910 
2911   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2912   if (Global->hasAttr<IFuncAttr>())
2913     return emitIFuncDefinition(GD);
2914 
2915   // If this is a cpu_dispatch multiversion function, emit the resolver.
2916   if (Global->hasAttr<CPUDispatchAttr>())
2917     return emitCPUDispatchDefinition(GD);
2918 
2919   // If this is CUDA, be selective about which declarations we emit.
2920   if (LangOpts.CUDA) {
2921     if (LangOpts.CUDAIsDevice) {
2922       if (!Global->hasAttr<CUDADeviceAttr>() &&
2923           !Global->hasAttr<CUDAGlobalAttr>() &&
2924           !Global->hasAttr<CUDAConstantAttr>() &&
2925           !Global->hasAttr<CUDASharedAttr>() &&
2926           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2927           !Global->getType()->isCUDADeviceBuiltinTextureType())
2928         return;
2929     } else {
2930       // We need to emit host-side 'shadows' for all global
2931       // device-side variables because the CUDA runtime needs their
2932       // size and host-side address in order to provide access to
2933       // their device-side incarnations.
2934 
2935       // So device-only functions are the only things we skip.
2936       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2937           Global->hasAttr<CUDADeviceAttr>())
2938         return;
2939 
2940       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2941              "Expected Variable or Function");
2942     }
2943   }
2944 
2945   if (LangOpts.OpenMP) {
2946     // If this is OpenMP, check if it is legal to emit this global normally.
2947     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2948       return;
2949     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2950       if (MustBeEmitted(Global))
2951         EmitOMPDeclareReduction(DRD);
2952       return;
2953     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2954       if (MustBeEmitted(Global))
2955         EmitOMPDeclareMapper(DMD);
2956       return;
2957     }
2958   }
2959 
2960   // Ignore declarations, they will be emitted on their first use.
2961   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2962     // Forward declarations are emitted lazily on first use.
2963     if (!FD->doesThisDeclarationHaveABody()) {
2964       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2965         return;
2966 
2967       StringRef MangledName = getMangledName(GD);
2968 
2969       // Compute the function info and LLVM type.
2970       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2971       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2972 
2973       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2974                               /*DontDefer=*/false);
2975       return;
2976     }
2977   } else {
2978     const auto *VD = cast<VarDecl>(Global);
2979     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2980     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2981         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2982       if (LangOpts.OpenMP) {
2983         // Emit declaration of the must-be-emitted declare target variable.
2984         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2985                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2986           bool UnifiedMemoryEnabled =
2987               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2988           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2989               !UnifiedMemoryEnabled) {
2990             (void)GetAddrOfGlobalVar(VD);
2991           } else {
2992             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2993                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2994                      UnifiedMemoryEnabled)) &&
2995                    "Link clause or to clause with unified memory expected.");
2996             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2997           }
2998 
2999           return;
3000         }
3001       }
3002       // If this declaration may have caused an inline variable definition to
3003       // change linkage, make sure that it's emitted.
3004       if (Context.getInlineVariableDefinitionKind(VD) ==
3005           ASTContext::InlineVariableDefinitionKind::Strong)
3006         GetAddrOfGlobalVar(VD);
3007       return;
3008     }
3009   }
3010 
3011   // Defer code generation to first use when possible, e.g. if this is an inline
3012   // function. If the global must always be emitted, do it eagerly if possible
3013   // to benefit from cache locality.
3014   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3015     // Emit the definition if it can't be deferred.
3016     EmitGlobalDefinition(GD);
3017     return;
3018   }
3019 
3020   // If we're deferring emission of a C++ variable with an
3021   // initializer, remember the order in which it appeared in the file.
3022   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3023       cast<VarDecl>(Global)->hasInit()) {
3024     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3025     CXXGlobalInits.push_back(nullptr);
3026   }
3027 
3028   StringRef MangledName = getMangledName(GD);
3029   if (GetGlobalValue(MangledName) != nullptr) {
3030     // The value has already been used and should therefore be emitted.
3031     addDeferredDeclToEmit(GD);
3032   } else if (MustBeEmitted(Global)) {
3033     // The value must be emitted, but cannot be emitted eagerly.
3034     assert(!MayBeEmittedEagerly(Global));
3035     addDeferredDeclToEmit(GD);
3036   } else {
3037     // Otherwise, remember that we saw a deferred decl with this name.  The
3038     // first use of the mangled name will cause it to move into
3039     // DeferredDeclsToEmit.
3040     DeferredDecls[MangledName] = GD;
3041   }
3042 }
3043 
3044 // Check if T is a class type with a destructor that's not dllimport.
3045 static bool HasNonDllImportDtor(QualType T) {
3046   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3047     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3048       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3049         return true;
3050 
3051   return false;
3052 }
3053 
3054 namespace {
3055   struct FunctionIsDirectlyRecursive
3056       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3057     const StringRef Name;
3058     const Builtin::Context &BI;
3059     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3060         : Name(N), BI(C) {}
3061 
3062     bool VisitCallExpr(const CallExpr *E) {
3063       const FunctionDecl *FD = E->getDirectCallee();
3064       if (!FD)
3065         return false;
3066       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3067       if (Attr && Name == Attr->getLabel())
3068         return true;
3069       unsigned BuiltinID = FD->getBuiltinID();
3070       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3071         return false;
3072       StringRef BuiltinName = BI.getName(BuiltinID);
3073       if (BuiltinName.startswith("__builtin_") &&
3074           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3075         return true;
3076       }
3077       return false;
3078     }
3079 
3080     bool VisitStmt(const Stmt *S) {
3081       for (const Stmt *Child : S->children())
3082         if (Child && this->Visit(Child))
3083           return true;
3084       return false;
3085     }
3086   };
3087 
3088   // Make sure we're not referencing non-imported vars or functions.
3089   struct DLLImportFunctionVisitor
3090       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3091     bool SafeToInline = true;
3092 
3093     bool shouldVisitImplicitCode() const { return true; }
3094 
3095     bool VisitVarDecl(VarDecl *VD) {
3096       if (VD->getTLSKind()) {
3097         // A thread-local variable cannot be imported.
3098         SafeToInline = false;
3099         return SafeToInline;
3100       }
3101 
3102       // A variable definition might imply a destructor call.
3103       if (VD->isThisDeclarationADefinition())
3104         SafeToInline = !HasNonDllImportDtor(VD->getType());
3105 
3106       return SafeToInline;
3107     }
3108 
3109     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3110       if (const auto *D = E->getTemporary()->getDestructor())
3111         SafeToInline = D->hasAttr<DLLImportAttr>();
3112       return SafeToInline;
3113     }
3114 
3115     bool VisitDeclRefExpr(DeclRefExpr *E) {
3116       ValueDecl *VD = E->getDecl();
3117       if (isa<FunctionDecl>(VD))
3118         SafeToInline = VD->hasAttr<DLLImportAttr>();
3119       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3120         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3121       return SafeToInline;
3122     }
3123 
3124     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3125       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3126       return SafeToInline;
3127     }
3128 
3129     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3130       CXXMethodDecl *M = E->getMethodDecl();
3131       if (!M) {
3132         // Call through a pointer to member function. This is safe to inline.
3133         SafeToInline = true;
3134       } else {
3135         SafeToInline = M->hasAttr<DLLImportAttr>();
3136       }
3137       return SafeToInline;
3138     }
3139 
3140     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3141       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3142       return SafeToInline;
3143     }
3144 
3145     bool VisitCXXNewExpr(CXXNewExpr *E) {
3146       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3147       return SafeToInline;
3148     }
3149   };
3150 }
3151 
3152 // isTriviallyRecursive - Check if this function calls another
3153 // decl that, because of the asm attribute or the other decl being a builtin,
3154 // ends up pointing to itself.
3155 bool
3156 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3157   StringRef Name;
3158   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3159     // asm labels are a special kind of mangling we have to support.
3160     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3161     if (!Attr)
3162       return false;
3163     Name = Attr->getLabel();
3164   } else {
3165     Name = FD->getName();
3166   }
3167 
3168   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3169   const Stmt *Body = FD->getBody();
3170   return Body ? Walker.Visit(Body) : false;
3171 }
3172 
3173 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3174   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3175     return true;
3176   const auto *F = cast<FunctionDecl>(GD.getDecl());
3177   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3178     return false;
3179 
3180   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3181     // Check whether it would be safe to inline this dllimport function.
3182     DLLImportFunctionVisitor Visitor;
3183     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3184     if (!Visitor.SafeToInline)
3185       return false;
3186 
3187     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3188       // Implicit destructor invocations aren't captured in the AST, so the
3189       // check above can't see them. Check for them manually here.
3190       for (const Decl *Member : Dtor->getParent()->decls())
3191         if (isa<FieldDecl>(Member))
3192           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3193             return false;
3194       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3195         if (HasNonDllImportDtor(B.getType()))
3196           return false;
3197     }
3198   }
3199 
3200   // Inline builtins declaration must be emitted. They often are fortified
3201   // functions.
3202   if (F->isInlineBuiltinDeclaration())
3203     return true;
3204 
3205   // PR9614. Avoid cases where the source code is lying to us. An available
3206   // externally function should have an equivalent function somewhere else,
3207   // but a function that calls itself through asm label/`__builtin_` trickery is
3208   // clearly not equivalent to the real implementation.
3209   // This happens in glibc's btowc and in some configure checks.
3210   return !isTriviallyRecursive(F);
3211 }
3212 
3213 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3214   return CodeGenOpts.OptimizationLevel > 0;
3215 }
3216 
3217 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3218                                                        llvm::GlobalValue *GV) {
3219   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3220 
3221   if (FD->isCPUSpecificMultiVersion()) {
3222     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3223     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3224       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3225     // Requires multiple emits.
3226   } else
3227     EmitGlobalFunctionDefinition(GD, GV);
3228 }
3229 
3230 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3231   const auto *D = cast<ValueDecl>(GD.getDecl());
3232 
3233   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3234                                  Context.getSourceManager(),
3235                                  "Generating code for declaration");
3236 
3237   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3238     // At -O0, don't generate IR for functions with available_externally
3239     // linkage.
3240     if (!shouldEmitFunction(GD))
3241       return;
3242 
3243     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3244       std::string Name;
3245       llvm::raw_string_ostream OS(Name);
3246       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3247                                /*Qualified=*/true);
3248       return Name;
3249     });
3250 
3251     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3252       // Make sure to emit the definition(s) before we emit the thunks.
3253       // This is necessary for the generation of certain thunks.
3254       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3255         ABI->emitCXXStructor(GD);
3256       else if (FD->isMultiVersion())
3257         EmitMultiVersionFunctionDefinition(GD, GV);
3258       else
3259         EmitGlobalFunctionDefinition(GD, GV);
3260 
3261       if (Method->isVirtual())
3262         getVTables().EmitThunks(GD);
3263 
3264       return;
3265     }
3266 
3267     if (FD->isMultiVersion())
3268       return EmitMultiVersionFunctionDefinition(GD, GV);
3269     return EmitGlobalFunctionDefinition(GD, GV);
3270   }
3271 
3272   if (const auto *VD = dyn_cast<VarDecl>(D))
3273     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3274 
3275   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3276 }
3277 
3278 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3279                                                       llvm::Function *NewFn);
3280 
3281 static unsigned
3282 TargetMVPriority(const TargetInfo &TI,
3283                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3284   unsigned Priority = 0;
3285   for (StringRef Feat : RO.Conditions.Features)
3286     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3287 
3288   if (!RO.Conditions.Architecture.empty())
3289     Priority = std::max(
3290         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3291   return Priority;
3292 }
3293 
3294 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3295 // TU can forward declare the function without causing problems.  Particularly
3296 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3297 // work with internal linkage functions, so that the same function name can be
3298 // used with internal linkage in multiple TUs.
3299 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3300                                                        GlobalDecl GD) {
3301   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3302   if (FD->getFormalLinkage() == InternalLinkage)
3303     return llvm::GlobalValue::InternalLinkage;
3304   return llvm::GlobalValue::WeakODRLinkage;
3305 }
3306 
3307 void CodeGenModule::emitMultiVersionFunctions() {
3308   std::vector<GlobalDecl> MVFuncsToEmit;
3309   MultiVersionFuncs.swap(MVFuncsToEmit);
3310   for (GlobalDecl GD : MVFuncsToEmit) {
3311     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3312     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3313     getContext().forEachMultiversionedFunctionVersion(
3314         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3315           GlobalDecl CurGD{
3316               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3317           StringRef MangledName = getMangledName(CurGD);
3318           llvm::Constant *Func = GetGlobalValue(MangledName);
3319           if (!Func) {
3320             if (CurFD->isDefined()) {
3321               EmitGlobalFunctionDefinition(CurGD, nullptr);
3322               Func = GetGlobalValue(MangledName);
3323             } else {
3324               const CGFunctionInfo &FI =
3325                   getTypes().arrangeGlobalDeclaration(GD);
3326               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3327               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3328                                        /*DontDefer=*/false, ForDefinition);
3329             }
3330             assert(Func && "This should have just been created");
3331           }
3332 
3333           const auto *TA = CurFD->getAttr<TargetAttr>();
3334           llvm::SmallVector<StringRef, 8> Feats;
3335           TA->getAddedFeatures(Feats);
3336 
3337           Options.emplace_back(cast<llvm::Function>(Func),
3338                                TA->getArchitecture(), Feats);
3339         });
3340 
3341     llvm::Function *ResolverFunc;
3342     const TargetInfo &TI = getTarget();
3343 
3344     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3345       ResolverFunc = cast<llvm::Function>(
3346           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3347       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3348     } else {
3349       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3350     }
3351 
3352     if (supportsCOMDAT())
3353       ResolverFunc->setComdat(
3354           getModule().getOrInsertComdat(ResolverFunc->getName()));
3355 
3356     llvm::stable_sort(
3357         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3358                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3359           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3360         });
3361     CodeGenFunction CGF(*this);
3362     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3363   }
3364 
3365   // Ensure that any additions to the deferred decls list caused by emitting a
3366   // variant are emitted.  This can happen when the variant itself is inline and
3367   // calls a function without linkage.
3368   if (!MVFuncsToEmit.empty())
3369     EmitDeferred();
3370 
3371   // Ensure that any additions to the multiversion funcs list from either the
3372   // deferred decls or the multiversion functions themselves are emitted.
3373   if (!MultiVersionFuncs.empty())
3374     emitMultiVersionFunctions();
3375 }
3376 
3377 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3378   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3379   assert(FD && "Not a FunctionDecl?");
3380   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3381   assert(DD && "Not a cpu_dispatch Function?");
3382   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3383 
3384   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3385     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3386     DeclTy = getTypes().GetFunctionType(FInfo);
3387   }
3388 
3389   StringRef ResolverName = getMangledName(GD);
3390 
3391   llvm::Type *ResolverType;
3392   GlobalDecl ResolverGD;
3393   if (getTarget().supportsIFunc())
3394     ResolverType = llvm::FunctionType::get(
3395         llvm::PointerType::get(DeclTy,
3396                                Context.getTargetAddressSpace(FD->getType())),
3397         false);
3398   else {
3399     ResolverType = DeclTy;
3400     ResolverGD = GD;
3401   }
3402 
3403   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3404       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3405   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3406   if (supportsCOMDAT())
3407     ResolverFunc->setComdat(
3408         getModule().getOrInsertComdat(ResolverFunc->getName()));
3409 
3410   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3411   const TargetInfo &Target = getTarget();
3412   unsigned Index = 0;
3413   for (const IdentifierInfo *II : DD->cpus()) {
3414     // Get the name of the target function so we can look it up/create it.
3415     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3416                               getCPUSpecificMangling(*this, II->getName());
3417 
3418     llvm::Constant *Func = GetGlobalValue(MangledName);
3419 
3420     if (!Func) {
3421       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3422       if (ExistingDecl.getDecl() &&
3423           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3424         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3425         Func = GetGlobalValue(MangledName);
3426       } else {
3427         if (!ExistingDecl.getDecl())
3428           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3429 
3430       Func = GetOrCreateLLVMFunction(
3431           MangledName, DeclTy, ExistingDecl,
3432           /*ForVTable=*/false, /*DontDefer=*/true,
3433           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3434       }
3435     }
3436 
3437     llvm::SmallVector<StringRef, 32> Features;
3438     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3439     llvm::transform(Features, Features.begin(),
3440                     [](StringRef Str) { return Str.substr(1); });
3441     llvm::erase_if(Features, [&Target](StringRef Feat) {
3442       return !Target.validateCpuSupports(Feat);
3443     });
3444     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3445     ++Index;
3446   }
3447 
3448   llvm::stable_sort(
3449       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3450                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3451         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3452                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3453       });
3454 
3455   // If the list contains multiple 'default' versions, such as when it contains
3456   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3457   // always run on at least a 'pentium'). We do this by deleting the 'least
3458   // advanced' (read, lowest mangling letter).
3459   while (Options.size() > 1 &&
3460          llvm::X86::getCpuSupportsMask(
3461              (Options.end() - 2)->Conditions.Features) == 0) {
3462     StringRef LHSName = (Options.end() - 2)->Function->getName();
3463     StringRef RHSName = (Options.end() - 1)->Function->getName();
3464     if (LHSName.compare(RHSName) < 0)
3465       Options.erase(Options.end() - 2);
3466     else
3467       Options.erase(Options.end() - 1);
3468   }
3469 
3470   CodeGenFunction CGF(*this);
3471   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3472 
3473   if (getTarget().supportsIFunc()) {
3474     std::string AliasName = getMangledNameImpl(
3475         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3476     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3477     if (!AliasFunc) {
3478       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3479           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3480           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3481       auto *GA = llvm::GlobalAlias::create(DeclTy, 0,
3482                                            getMultiversionLinkage(*this, GD),
3483                                            AliasName, IFunc, &getModule());
3484       SetCommonAttributes(GD, GA);
3485     }
3486   }
3487 }
3488 
3489 /// If a dispatcher for the specified mangled name is not in the module, create
3490 /// and return an llvm Function with the specified type.
3491 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3492     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3493   std::string MangledName =
3494       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3495 
3496   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3497   // a separate resolver).
3498   std::string ResolverName = MangledName;
3499   if (getTarget().supportsIFunc())
3500     ResolverName += ".ifunc";
3501   else if (FD->isTargetMultiVersion())
3502     ResolverName += ".resolver";
3503 
3504   // If this already exists, just return that one.
3505   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3506     return ResolverGV;
3507 
3508   // Since this is the first time we've created this IFunc, make sure
3509   // that we put this multiversioned function into the list to be
3510   // replaced later if necessary (target multiversioning only).
3511   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3512     MultiVersionFuncs.push_back(GD);
3513 
3514   if (getTarget().supportsIFunc()) {
3515     llvm::Type *ResolverType = llvm::FunctionType::get(
3516         llvm::PointerType::get(
3517             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3518         false);
3519     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3520         MangledName + ".resolver", ResolverType, GlobalDecl{},
3521         /*ForVTable=*/false);
3522     llvm::GlobalIFunc *GIF =
3523         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3524                                   "", Resolver, &getModule());
3525     GIF->setName(ResolverName);
3526     SetCommonAttributes(FD, GIF);
3527 
3528     return GIF;
3529   }
3530 
3531   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3532       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3533   assert(isa<llvm::GlobalValue>(Resolver) &&
3534          "Resolver should be created for the first time");
3535   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3536   return Resolver;
3537 }
3538 
3539 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3540 /// module, create and return an llvm Function with the specified type. If there
3541 /// is something in the module with the specified name, return it potentially
3542 /// bitcasted to the right type.
3543 ///
3544 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3545 /// to set the attributes on the function when it is first created.
3546 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3547     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3548     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3549     ForDefinition_t IsForDefinition) {
3550   const Decl *D = GD.getDecl();
3551 
3552   // Any attempts to use a MultiVersion function should result in retrieving
3553   // the iFunc instead. Name Mangling will handle the rest of the changes.
3554   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3555     // For the device mark the function as one that should be emitted.
3556     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3557         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3558         !DontDefer && !IsForDefinition) {
3559       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3560         GlobalDecl GDDef;
3561         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3562           GDDef = GlobalDecl(CD, GD.getCtorType());
3563         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3564           GDDef = GlobalDecl(DD, GD.getDtorType());
3565         else
3566           GDDef = GlobalDecl(FDDef);
3567         EmitGlobal(GDDef);
3568       }
3569     }
3570 
3571     if (FD->isMultiVersion()) {
3572       if (FD->hasAttr<TargetAttr>())
3573         UpdateMultiVersionNames(GD, FD);
3574       if (!IsForDefinition)
3575         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3576     }
3577   }
3578 
3579   // Lookup the entry, lazily creating it if necessary.
3580   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3581   if (Entry) {
3582     if (WeakRefReferences.erase(Entry)) {
3583       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3584       if (FD && !FD->hasAttr<WeakAttr>())
3585         Entry->setLinkage(llvm::Function::ExternalLinkage);
3586     }
3587 
3588     // Handle dropped DLL attributes.
3589     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3590       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3591       setDSOLocal(Entry);
3592     }
3593 
3594     // If there are two attempts to define the same mangled name, issue an
3595     // error.
3596     if (IsForDefinition && !Entry->isDeclaration()) {
3597       GlobalDecl OtherGD;
3598       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3599       // to make sure that we issue an error only once.
3600       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3601           (GD.getCanonicalDecl().getDecl() !=
3602            OtherGD.getCanonicalDecl().getDecl()) &&
3603           DiagnosedConflictingDefinitions.insert(GD).second) {
3604         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3605             << MangledName;
3606         getDiags().Report(OtherGD.getDecl()->getLocation(),
3607                           diag::note_previous_definition);
3608       }
3609     }
3610 
3611     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3612         (Entry->getValueType() == Ty)) {
3613       return Entry;
3614     }
3615 
3616     // Make sure the result is of the correct type.
3617     // (If function is requested for a definition, we always need to create a new
3618     // function, not just return a bitcast.)
3619     if (!IsForDefinition)
3620       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3621   }
3622 
3623   // This function doesn't have a complete type (for example, the return
3624   // type is an incomplete struct). Use a fake type instead, and make
3625   // sure not to try to set attributes.
3626   bool IsIncompleteFunction = false;
3627 
3628   llvm::FunctionType *FTy;
3629   if (isa<llvm::FunctionType>(Ty)) {
3630     FTy = cast<llvm::FunctionType>(Ty);
3631   } else {
3632     FTy = llvm::FunctionType::get(VoidTy, false);
3633     IsIncompleteFunction = true;
3634   }
3635 
3636   llvm::Function *F =
3637       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3638                              Entry ? StringRef() : MangledName, &getModule());
3639 
3640   // If we already created a function with the same mangled name (but different
3641   // type) before, take its name and add it to the list of functions to be
3642   // replaced with F at the end of CodeGen.
3643   //
3644   // This happens if there is a prototype for a function (e.g. "int f()") and
3645   // then a definition of a different type (e.g. "int f(int x)").
3646   if (Entry) {
3647     F->takeName(Entry);
3648 
3649     // This might be an implementation of a function without a prototype, in
3650     // which case, try to do special replacement of calls which match the new
3651     // prototype.  The really key thing here is that we also potentially drop
3652     // arguments from the call site so as to make a direct call, which makes the
3653     // inliner happier and suppresses a number of optimizer warnings (!) about
3654     // dropping arguments.
3655     if (!Entry->use_empty()) {
3656       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3657       Entry->removeDeadConstantUsers();
3658     }
3659 
3660     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3661         F, Entry->getValueType()->getPointerTo());
3662     addGlobalValReplacement(Entry, BC);
3663   }
3664 
3665   assert(F->getName() == MangledName && "name was uniqued!");
3666   if (D)
3667     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3668   if (ExtraAttrs.hasFnAttrs()) {
3669     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3670     F->addFnAttrs(B);
3671   }
3672 
3673   if (!DontDefer) {
3674     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3675     // each other bottoming out with the base dtor.  Therefore we emit non-base
3676     // dtors on usage, even if there is no dtor definition in the TU.
3677     if (D && isa<CXXDestructorDecl>(D) &&
3678         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3679                                            GD.getDtorType()))
3680       addDeferredDeclToEmit(GD);
3681 
3682     // This is the first use or definition of a mangled name.  If there is a
3683     // deferred decl with this name, remember that we need to emit it at the end
3684     // of the file.
3685     auto DDI = DeferredDecls.find(MangledName);
3686     if (DDI != DeferredDecls.end()) {
3687       // Move the potentially referenced deferred decl to the
3688       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3689       // don't need it anymore).
3690       addDeferredDeclToEmit(DDI->second);
3691       DeferredDecls.erase(DDI);
3692 
3693       // Otherwise, there are cases we have to worry about where we're
3694       // using a declaration for which we must emit a definition but where
3695       // we might not find a top-level definition:
3696       //   - member functions defined inline in their classes
3697       //   - friend functions defined inline in some class
3698       //   - special member functions with implicit definitions
3699       // If we ever change our AST traversal to walk into class methods,
3700       // this will be unnecessary.
3701       //
3702       // We also don't emit a definition for a function if it's going to be an
3703       // entry in a vtable, unless it's already marked as used.
3704     } else if (getLangOpts().CPlusPlus && D) {
3705       // Look for a declaration that's lexically in a record.
3706       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3707            FD = FD->getPreviousDecl()) {
3708         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3709           if (FD->doesThisDeclarationHaveABody()) {
3710             addDeferredDeclToEmit(GD.getWithDecl(FD));
3711             break;
3712           }
3713         }
3714       }
3715     }
3716   }
3717 
3718   // Make sure the result is of the requested type.
3719   if (!IsIncompleteFunction) {
3720     assert(F->getFunctionType() == Ty);
3721     return F;
3722   }
3723 
3724   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3725   return llvm::ConstantExpr::getBitCast(F, PTy);
3726 }
3727 
3728 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3729 /// non-null, then this function will use the specified type if it has to
3730 /// create it (this occurs when we see a definition of the function).
3731 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3732                                                  llvm::Type *Ty,
3733                                                  bool ForVTable,
3734                                                  bool DontDefer,
3735                                               ForDefinition_t IsForDefinition) {
3736   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3737          "consteval function should never be emitted");
3738   // If there was no specific requested type, just convert it now.
3739   if (!Ty) {
3740     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3741     Ty = getTypes().ConvertType(FD->getType());
3742   }
3743 
3744   // Devirtualized destructor calls may come through here instead of via
3745   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3746   // of the complete destructor when necessary.
3747   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3748     if (getTarget().getCXXABI().isMicrosoft() &&
3749         GD.getDtorType() == Dtor_Complete &&
3750         DD->getParent()->getNumVBases() == 0)
3751       GD = GlobalDecl(DD, Dtor_Base);
3752   }
3753 
3754   StringRef MangledName = getMangledName(GD);
3755   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3756                                     /*IsThunk=*/false, llvm::AttributeList(),
3757                                     IsForDefinition);
3758   // Returns kernel handle for HIP kernel stub function.
3759   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3760       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3761     auto *Handle = getCUDARuntime().getKernelHandle(
3762         cast<llvm::Function>(F->stripPointerCasts()), GD);
3763     if (IsForDefinition)
3764       return F;
3765     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3766   }
3767   return F;
3768 }
3769 
3770 static const FunctionDecl *
3771 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3772   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3773   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3774 
3775   IdentifierInfo &CII = C.Idents.get(Name);
3776   for (const auto *Result : DC->lookup(&CII))
3777     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3778       return FD;
3779 
3780   if (!C.getLangOpts().CPlusPlus)
3781     return nullptr;
3782 
3783   // Demangle the premangled name from getTerminateFn()
3784   IdentifierInfo &CXXII =
3785       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3786           ? C.Idents.get("terminate")
3787           : C.Idents.get(Name);
3788 
3789   for (const auto &N : {"__cxxabiv1", "std"}) {
3790     IdentifierInfo &NS = C.Idents.get(N);
3791     for (const auto *Result : DC->lookup(&NS)) {
3792       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3793       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3794         for (const auto *Result : LSD->lookup(&NS))
3795           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3796             break;
3797 
3798       if (ND)
3799         for (const auto *Result : ND->lookup(&CXXII))
3800           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3801             return FD;
3802     }
3803   }
3804 
3805   return nullptr;
3806 }
3807 
3808 /// CreateRuntimeFunction - Create a new runtime function with the specified
3809 /// type and name.
3810 llvm::FunctionCallee
3811 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3812                                      llvm::AttributeList ExtraAttrs, bool Local,
3813                                      bool AssumeConvergent) {
3814   if (AssumeConvergent) {
3815     ExtraAttrs =
3816         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3817   }
3818 
3819   llvm::Constant *C =
3820       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3821                               /*DontDefer=*/false, /*IsThunk=*/false,
3822                               ExtraAttrs);
3823 
3824   if (auto *F = dyn_cast<llvm::Function>(C)) {
3825     if (F->empty()) {
3826       F->setCallingConv(getRuntimeCC());
3827 
3828       // In Windows Itanium environments, try to mark runtime functions
3829       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3830       // will link their standard library statically or dynamically. Marking
3831       // functions imported when they are not imported can cause linker errors
3832       // and warnings.
3833       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3834           !getCodeGenOpts().LTOVisibilityPublicStd) {
3835         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3836         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3837           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3838           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3839         }
3840       }
3841       setDSOLocal(F);
3842     }
3843   }
3844 
3845   return {FTy, C};
3846 }
3847 
3848 /// isTypeConstant - Determine whether an object of this type can be emitted
3849 /// as a constant.
3850 ///
3851 /// If ExcludeCtor is true, the duration when the object's constructor runs
3852 /// will not be considered. The caller will need to verify that the object is
3853 /// not written to during its construction.
3854 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3855   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3856     return false;
3857 
3858   if (Context.getLangOpts().CPlusPlus) {
3859     if (const CXXRecordDecl *Record
3860           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3861       return ExcludeCtor && !Record->hasMutableFields() &&
3862              Record->hasTrivialDestructor();
3863   }
3864 
3865   return true;
3866 }
3867 
3868 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3869 /// create and return an llvm GlobalVariable with the specified type and address
3870 /// space. If there is something in the module with the specified name, return
3871 /// it potentially bitcasted to the right type.
3872 ///
3873 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3874 /// to set the attributes on the global when it is first created.
3875 ///
3876 /// If IsForDefinition is true, it is guaranteed that an actual global with
3877 /// type Ty will be returned, not conversion of a variable with the same
3878 /// mangled name but some other type.
3879 llvm::Constant *
3880 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3881                                      LangAS AddrSpace, const VarDecl *D,
3882                                      ForDefinition_t IsForDefinition) {
3883   // Lookup the entry, lazily creating it if necessary.
3884   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3885   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3886   if (Entry) {
3887     if (WeakRefReferences.erase(Entry)) {
3888       if (D && !D->hasAttr<WeakAttr>())
3889         Entry->setLinkage(llvm::Function::ExternalLinkage);
3890     }
3891 
3892     // Handle dropped DLL attributes.
3893     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3894       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3895 
3896     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3897       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3898 
3899     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
3900       return Entry;
3901 
3902     // If there are two attempts to define the same mangled name, issue an
3903     // error.
3904     if (IsForDefinition && !Entry->isDeclaration()) {
3905       GlobalDecl OtherGD;
3906       const VarDecl *OtherD;
3907 
3908       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3909       // to make sure that we issue an error only once.
3910       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3911           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3912           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3913           OtherD->hasInit() &&
3914           DiagnosedConflictingDefinitions.insert(D).second) {
3915         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3916             << MangledName;
3917         getDiags().Report(OtherGD.getDecl()->getLocation(),
3918                           diag::note_previous_definition);
3919       }
3920     }
3921 
3922     // Make sure the result is of the correct type.
3923     if (Entry->getType()->getAddressSpace() != TargetAS) {
3924       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3925                                                   Ty->getPointerTo(TargetAS));
3926     }
3927 
3928     // (If global is requested for a definition, we always need to create a new
3929     // global, not just return a bitcast.)
3930     if (!IsForDefinition)
3931       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
3932   }
3933 
3934   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3935 
3936   auto *GV = new llvm::GlobalVariable(
3937       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3938       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3939       getContext().getTargetAddressSpace(DAddrSpace));
3940 
3941   // If we already created a global with the same mangled name (but different
3942   // type) before, take its name and remove it from its parent.
3943   if (Entry) {
3944     GV->takeName(Entry);
3945 
3946     if (!Entry->use_empty()) {
3947       llvm::Constant *NewPtrForOldDecl =
3948           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3949       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3950     }
3951 
3952     Entry->eraseFromParent();
3953   }
3954 
3955   // This is the first use or definition of a mangled name.  If there is a
3956   // deferred decl with this name, remember that we need to emit it at the end
3957   // of the file.
3958   auto DDI = DeferredDecls.find(MangledName);
3959   if (DDI != DeferredDecls.end()) {
3960     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3961     // list, and remove it from DeferredDecls (since we don't need it anymore).
3962     addDeferredDeclToEmit(DDI->second);
3963     DeferredDecls.erase(DDI);
3964   }
3965 
3966   // Handle things which are present even on external declarations.
3967   if (D) {
3968     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3969       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3970 
3971     // FIXME: This code is overly simple and should be merged with other global
3972     // handling.
3973     GV->setConstant(isTypeConstant(D->getType(), false));
3974 
3975     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3976 
3977     setLinkageForGV(GV, D);
3978 
3979     if (D->getTLSKind()) {
3980       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3981         CXXThreadLocals.push_back(D);
3982       setTLSMode(GV, *D);
3983     }
3984 
3985     setGVProperties(GV, D);
3986 
3987     // If required by the ABI, treat declarations of static data members with
3988     // inline initializers as definitions.
3989     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3990       EmitGlobalVarDefinition(D);
3991     }
3992 
3993     // Emit section information for extern variables.
3994     if (D->hasExternalStorage()) {
3995       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3996         GV->setSection(SA->getName());
3997     }
3998 
3999     // Handle XCore specific ABI requirements.
4000     if (getTriple().getArch() == llvm::Triple::xcore &&
4001         D->getLanguageLinkage() == CLanguageLinkage &&
4002         D->getType().isConstant(Context) &&
4003         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4004       GV->setSection(".cp.rodata");
4005 
4006     // Check if we a have a const declaration with an initializer, we may be
4007     // able to emit it as available_externally to expose it's value to the
4008     // optimizer.
4009     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4010         D->getType().isConstQualified() && !GV->hasInitializer() &&
4011         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4012       const auto *Record =
4013           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4014       bool HasMutableFields = Record && Record->hasMutableFields();
4015       if (!HasMutableFields) {
4016         const VarDecl *InitDecl;
4017         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4018         if (InitExpr) {
4019           ConstantEmitter emitter(*this);
4020           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4021           if (Init) {
4022             auto *InitType = Init->getType();
4023             if (GV->getValueType() != InitType) {
4024               // The type of the initializer does not match the definition.
4025               // This happens when an initializer has a different type from
4026               // the type of the global (because of padding at the end of a
4027               // structure for instance).
4028               GV->setName(StringRef());
4029               // Make a new global with the correct type, this is now guaranteed
4030               // to work.
4031               auto *NewGV = cast<llvm::GlobalVariable>(
4032                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4033                       ->stripPointerCasts());
4034 
4035               // Erase the old global, since it is no longer used.
4036               GV->eraseFromParent();
4037               GV = NewGV;
4038             } else {
4039               GV->setInitializer(Init);
4040               GV->setConstant(true);
4041               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4042             }
4043             emitter.finalize(GV);
4044           }
4045         }
4046       }
4047     }
4048   }
4049 
4050   if (GV->isDeclaration()) {
4051     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4052     // External HIP managed variables needed to be recorded for transformation
4053     // in both device and host compilations.
4054     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4055         D->hasExternalStorage())
4056       getCUDARuntime().handleVarRegistration(D, *GV);
4057   }
4058 
4059   LangAS ExpectedAS =
4060       D ? D->getType().getAddressSpace()
4061         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4062   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4063   if (DAddrSpace != ExpectedAS) {
4064     return getTargetCodeGenInfo().performAddrSpaceCast(
4065         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4066   }
4067 
4068   return GV;
4069 }
4070 
4071 llvm::Constant *
4072 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4073   const Decl *D = GD.getDecl();
4074 
4075   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4076     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4077                                 /*DontDefer=*/false, IsForDefinition);
4078 
4079   if (isa<CXXMethodDecl>(D)) {
4080     auto FInfo =
4081         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4082     auto Ty = getTypes().GetFunctionType(*FInfo);
4083     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4084                              IsForDefinition);
4085   }
4086 
4087   if (isa<FunctionDecl>(D)) {
4088     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4089     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4090     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4091                              IsForDefinition);
4092   }
4093 
4094   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4095 }
4096 
4097 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4098     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4099     unsigned Alignment) {
4100   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4101   llvm::GlobalVariable *OldGV = nullptr;
4102 
4103   if (GV) {
4104     // Check if the variable has the right type.
4105     if (GV->getValueType() == Ty)
4106       return GV;
4107 
4108     // Because C++ name mangling, the only way we can end up with an already
4109     // existing global with the same name is if it has been declared extern "C".
4110     assert(GV->isDeclaration() && "Declaration has wrong type!");
4111     OldGV = GV;
4112   }
4113 
4114   // Create a new variable.
4115   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4116                                 Linkage, nullptr, Name);
4117 
4118   if (OldGV) {
4119     // Replace occurrences of the old variable if needed.
4120     GV->takeName(OldGV);
4121 
4122     if (!OldGV->use_empty()) {
4123       llvm::Constant *NewPtrForOldDecl =
4124       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4125       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4126     }
4127 
4128     OldGV->eraseFromParent();
4129   }
4130 
4131   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4132       !GV->hasAvailableExternallyLinkage())
4133     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4134 
4135   GV->setAlignment(llvm::MaybeAlign(Alignment));
4136 
4137   return GV;
4138 }
4139 
4140 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4141 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4142 /// then it will be created with the specified type instead of whatever the
4143 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4144 /// that an actual global with type Ty will be returned, not conversion of a
4145 /// variable with the same mangled name but some other type.
4146 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4147                                                   llvm::Type *Ty,
4148                                            ForDefinition_t IsForDefinition) {
4149   assert(D->hasGlobalStorage() && "Not a global variable");
4150   QualType ASTTy = D->getType();
4151   if (!Ty)
4152     Ty = getTypes().ConvertTypeForMem(ASTTy);
4153 
4154   StringRef MangledName = getMangledName(D);
4155   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4156                                IsForDefinition);
4157 }
4158 
4159 /// CreateRuntimeVariable - Create a new runtime global variable with the
4160 /// specified type and name.
4161 llvm::Constant *
4162 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4163                                      StringRef Name) {
4164   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4165                                                        : LangAS::Default;
4166   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4167   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4168   return Ret;
4169 }
4170 
4171 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4172   assert(!D->getInit() && "Cannot emit definite definitions here!");
4173 
4174   StringRef MangledName = getMangledName(D);
4175   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4176 
4177   // We already have a definition, not declaration, with the same mangled name.
4178   // Emitting of declaration is not required (and actually overwrites emitted
4179   // definition).
4180   if (GV && !GV->isDeclaration())
4181     return;
4182 
4183   // If we have not seen a reference to this variable yet, place it into the
4184   // deferred declarations table to be emitted if needed later.
4185   if (!MustBeEmitted(D) && !GV) {
4186       DeferredDecls[MangledName] = D;
4187       return;
4188   }
4189 
4190   // The tentative definition is the only definition.
4191   EmitGlobalVarDefinition(D);
4192 }
4193 
4194 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4195   EmitExternalVarDeclaration(D);
4196 }
4197 
4198 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4199   return Context.toCharUnitsFromBits(
4200       getDataLayout().getTypeStoreSizeInBits(Ty));
4201 }
4202 
4203 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4204   if (LangOpts.OpenCL) {
4205     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4206     assert(AS == LangAS::opencl_global ||
4207            AS == LangAS::opencl_global_device ||
4208            AS == LangAS::opencl_global_host ||
4209            AS == LangAS::opencl_constant ||
4210            AS == LangAS::opencl_local ||
4211            AS >= LangAS::FirstTargetAddressSpace);
4212     return AS;
4213   }
4214 
4215   if (LangOpts.SYCLIsDevice &&
4216       (!D || D->getType().getAddressSpace() == LangAS::Default))
4217     return LangAS::sycl_global;
4218 
4219   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4220     if (D && D->hasAttr<CUDAConstantAttr>())
4221       return LangAS::cuda_constant;
4222     else if (D && D->hasAttr<CUDASharedAttr>())
4223       return LangAS::cuda_shared;
4224     else if (D && D->hasAttr<CUDADeviceAttr>())
4225       return LangAS::cuda_device;
4226     else if (D && D->getType().isConstQualified())
4227       return LangAS::cuda_constant;
4228     else
4229       return LangAS::cuda_device;
4230   }
4231 
4232   if (LangOpts.OpenMP) {
4233     LangAS AS;
4234     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4235       return AS;
4236   }
4237   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4238 }
4239 
4240 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4241   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4242   if (LangOpts.OpenCL)
4243     return LangAS::opencl_constant;
4244   if (LangOpts.SYCLIsDevice)
4245     return LangAS::sycl_global;
4246   if (auto AS = getTarget().getConstantAddressSpace())
4247     return AS.getValue();
4248   return LangAS::Default;
4249 }
4250 
4251 // In address space agnostic languages, string literals are in default address
4252 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4253 // emitted in constant address space in LLVM IR. To be consistent with other
4254 // parts of AST, string literal global variables in constant address space
4255 // need to be casted to default address space before being put into address
4256 // map and referenced by other part of CodeGen.
4257 // In OpenCL, string literals are in constant address space in AST, therefore
4258 // they should not be casted to default address space.
4259 static llvm::Constant *
4260 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4261                                        llvm::GlobalVariable *GV) {
4262   llvm::Constant *Cast = GV;
4263   if (!CGM.getLangOpts().OpenCL) {
4264     auto AS = CGM.GetGlobalConstantAddressSpace();
4265     if (AS != LangAS::Default)
4266       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4267           CGM, GV, AS, LangAS::Default,
4268           GV->getValueType()->getPointerTo(
4269               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4270   }
4271   return Cast;
4272 }
4273 
4274 template<typename SomeDecl>
4275 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4276                                                llvm::GlobalValue *GV) {
4277   if (!getLangOpts().CPlusPlus)
4278     return;
4279 
4280   // Must have 'used' attribute, or else inline assembly can't rely on
4281   // the name existing.
4282   if (!D->template hasAttr<UsedAttr>())
4283     return;
4284 
4285   // Must have internal linkage and an ordinary name.
4286   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4287     return;
4288 
4289   // Must be in an extern "C" context. Entities declared directly within
4290   // a record are not extern "C" even if the record is in such a context.
4291   const SomeDecl *First = D->getFirstDecl();
4292   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4293     return;
4294 
4295   // OK, this is an internal linkage entity inside an extern "C" linkage
4296   // specification. Make a note of that so we can give it the "expected"
4297   // mangled name if nothing else is using that name.
4298   std::pair<StaticExternCMap::iterator, bool> R =
4299       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4300 
4301   // If we have multiple internal linkage entities with the same name
4302   // in extern "C" regions, none of them gets that name.
4303   if (!R.second)
4304     R.first->second = nullptr;
4305 }
4306 
4307 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4308   if (!CGM.supportsCOMDAT())
4309     return false;
4310 
4311   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4312   // them being "merged" by the COMDAT Folding linker optimization.
4313   if (D.hasAttr<CUDAGlobalAttr>())
4314     return false;
4315 
4316   if (D.hasAttr<SelectAnyAttr>())
4317     return true;
4318 
4319   GVALinkage Linkage;
4320   if (auto *VD = dyn_cast<VarDecl>(&D))
4321     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4322   else
4323     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4324 
4325   switch (Linkage) {
4326   case GVA_Internal:
4327   case GVA_AvailableExternally:
4328   case GVA_StrongExternal:
4329     return false;
4330   case GVA_DiscardableODR:
4331   case GVA_StrongODR:
4332     return true;
4333   }
4334   llvm_unreachable("No such linkage");
4335 }
4336 
4337 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4338                                           llvm::GlobalObject &GO) {
4339   if (!shouldBeInCOMDAT(*this, D))
4340     return;
4341   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4342 }
4343 
4344 /// Pass IsTentative as true if you want to create a tentative definition.
4345 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4346                                             bool IsTentative) {
4347   // OpenCL global variables of sampler type are translated to function calls,
4348   // therefore no need to be translated.
4349   QualType ASTTy = D->getType();
4350   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4351     return;
4352 
4353   // If this is OpenMP device, check if it is legal to emit this global
4354   // normally.
4355   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4356       OpenMPRuntime->emitTargetGlobalVariable(D))
4357     return;
4358 
4359   llvm::TrackingVH<llvm::Constant> Init;
4360   bool NeedsGlobalCtor = false;
4361   bool NeedsGlobalDtor =
4362       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4363 
4364   const VarDecl *InitDecl;
4365   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4366 
4367   Optional<ConstantEmitter> emitter;
4368 
4369   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4370   // as part of their declaration."  Sema has already checked for
4371   // error cases, so we just need to set Init to UndefValue.
4372   bool IsCUDASharedVar =
4373       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4374   // Shadows of initialized device-side global variables are also left
4375   // undefined.
4376   // Managed Variables should be initialized on both host side and device side.
4377   bool IsCUDAShadowVar =
4378       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4379       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4380        D->hasAttr<CUDASharedAttr>());
4381   bool IsCUDADeviceShadowVar =
4382       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4383       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4384        D->getType()->isCUDADeviceBuiltinTextureType());
4385   if (getLangOpts().CUDA &&
4386       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4387     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4388   else if (D->hasAttr<LoaderUninitializedAttr>())
4389     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4390   else if (!InitExpr) {
4391     // This is a tentative definition; tentative definitions are
4392     // implicitly initialized with { 0 }.
4393     //
4394     // Note that tentative definitions are only emitted at the end of
4395     // a translation unit, so they should never have incomplete
4396     // type. In addition, EmitTentativeDefinition makes sure that we
4397     // never attempt to emit a tentative definition if a real one
4398     // exists. A use may still exists, however, so we still may need
4399     // to do a RAUW.
4400     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4401     Init = EmitNullConstant(D->getType());
4402   } else {
4403     initializedGlobalDecl = GlobalDecl(D);
4404     emitter.emplace(*this);
4405     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4406     if (!Initializer) {
4407       QualType T = InitExpr->getType();
4408       if (D->getType()->isReferenceType())
4409         T = D->getType();
4410 
4411       if (getLangOpts().CPlusPlus) {
4412         Init = EmitNullConstant(T);
4413         NeedsGlobalCtor = true;
4414       } else {
4415         ErrorUnsupported(D, "static initializer");
4416         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4417       }
4418     } else {
4419       Init = Initializer;
4420       // We don't need an initializer, so remove the entry for the delayed
4421       // initializer position (just in case this entry was delayed) if we
4422       // also don't need to register a destructor.
4423       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4424         DelayedCXXInitPosition.erase(D);
4425     }
4426   }
4427 
4428   llvm::Type* InitType = Init->getType();
4429   llvm::Constant *Entry =
4430       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4431 
4432   // Strip off pointer casts if we got them.
4433   Entry = Entry->stripPointerCasts();
4434 
4435   // Entry is now either a Function or GlobalVariable.
4436   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4437 
4438   // We have a definition after a declaration with the wrong type.
4439   // We must make a new GlobalVariable* and update everything that used OldGV
4440   // (a declaration or tentative definition) with the new GlobalVariable*
4441   // (which will be a definition).
4442   //
4443   // This happens if there is a prototype for a global (e.g.
4444   // "extern int x[];") and then a definition of a different type (e.g.
4445   // "int x[10];"). This also happens when an initializer has a different type
4446   // from the type of the global (this happens with unions).
4447   if (!GV || GV->getValueType() != InitType ||
4448       GV->getType()->getAddressSpace() !=
4449           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4450 
4451     // Move the old entry aside so that we'll create a new one.
4452     Entry->setName(StringRef());
4453 
4454     // Make a new global with the correct type, this is now guaranteed to work.
4455     GV = cast<llvm::GlobalVariable>(
4456         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4457             ->stripPointerCasts());
4458 
4459     // Replace all uses of the old global with the new global
4460     llvm::Constant *NewPtrForOldDecl =
4461         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4462                                                              Entry->getType());
4463     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4464 
4465     // Erase the old global, since it is no longer used.
4466     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4467   }
4468 
4469   MaybeHandleStaticInExternC(D, GV);
4470 
4471   if (D->hasAttr<AnnotateAttr>())
4472     AddGlobalAnnotations(D, GV);
4473 
4474   // Set the llvm linkage type as appropriate.
4475   llvm::GlobalValue::LinkageTypes Linkage =
4476       getLLVMLinkageVarDefinition(D, GV->isConstant());
4477 
4478   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4479   // the device. [...]"
4480   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4481   // __device__, declares a variable that: [...]
4482   // Is accessible from all the threads within the grid and from the host
4483   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4484   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4485   if (GV && LangOpts.CUDA) {
4486     if (LangOpts.CUDAIsDevice) {
4487       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4488           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4489            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4490            D->getType()->isCUDADeviceBuiltinTextureType()))
4491         GV->setExternallyInitialized(true);
4492     } else {
4493       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4494     }
4495     getCUDARuntime().handleVarRegistration(D, *GV);
4496   }
4497 
4498   GV->setInitializer(Init);
4499   if (emitter)
4500     emitter->finalize(GV);
4501 
4502   // If it is safe to mark the global 'constant', do so now.
4503   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4504                   isTypeConstant(D->getType(), true));
4505 
4506   // If it is in a read-only section, mark it 'constant'.
4507   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4508     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4509     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4510       GV->setConstant(true);
4511   }
4512 
4513   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4514 
4515   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4516   // function is only defined alongside the variable, not also alongside
4517   // callers. Normally, all accesses to a thread_local go through the
4518   // thread-wrapper in order to ensure initialization has occurred, underlying
4519   // variable will never be used other than the thread-wrapper, so it can be
4520   // converted to internal linkage.
4521   //
4522   // However, if the variable has the 'constinit' attribute, it _can_ be
4523   // referenced directly, without calling the thread-wrapper, so the linkage
4524   // must not be changed.
4525   //
4526   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4527   // weak or linkonce, the de-duplication semantics are important to preserve,
4528   // so we don't change the linkage.
4529   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4530       Linkage == llvm::GlobalValue::ExternalLinkage &&
4531       Context.getTargetInfo().getTriple().isOSDarwin() &&
4532       !D->hasAttr<ConstInitAttr>())
4533     Linkage = llvm::GlobalValue::InternalLinkage;
4534 
4535   GV->setLinkage(Linkage);
4536   if (D->hasAttr<DLLImportAttr>())
4537     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4538   else if (D->hasAttr<DLLExportAttr>())
4539     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4540   else
4541     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4542 
4543   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4544     // common vars aren't constant even if declared const.
4545     GV->setConstant(false);
4546     // Tentative definition of global variables may be initialized with
4547     // non-zero null pointers. In this case they should have weak linkage
4548     // since common linkage must have zero initializer and must not have
4549     // explicit section therefore cannot have non-zero initial value.
4550     if (!GV->getInitializer()->isNullValue())
4551       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4552   }
4553 
4554   setNonAliasAttributes(D, GV);
4555 
4556   if (D->getTLSKind() && !GV->isThreadLocal()) {
4557     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4558       CXXThreadLocals.push_back(D);
4559     setTLSMode(GV, *D);
4560   }
4561 
4562   maybeSetTrivialComdat(*D, *GV);
4563 
4564   // Emit the initializer function if necessary.
4565   if (NeedsGlobalCtor || NeedsGlobalDtor)
4566     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4567 
4568   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4569 
4570   // Emit global variable debug information.
4571   if (CGDebugInfo *DI = getModuleDebugInfo())
4572     if (getCodeGenOpts().hasReducedDebugInfo())
4573       DI->EmitGlobalVariable(GV, D);
4574 }
4575 
4576 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4577   if (CGDebugInfo *DI = getModuleDebugInfo())
4578     if (getCodeGenOpts().hasReducedDebugInfo()) {
4579       QualType ASTTy = D->getType();
4580       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4581       llvm::Constant *GV =
4582           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4583       DI->EmitExternalVariable(
4584           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4585     }
4586 }
4587 
4588 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4589                                       CodeGenModule &CGM, const VarDecl *D,
4590                                       bool NoCommon) {
4591   // Don't give variables common linkage if -fno-common was specified unless it
4592   // was overridden by a NoCommon attribute.
4593   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4594     return true;
4595 
4596   // C11 6.9.2/2:
4597   //   A declaration of an identifier for an object that has file scope without
4598   //   an initializer, and without a storage-class specifier or with the
4599   //   storage-class specifier static, constitutes a tentative definition.
4600   if (D->getInit() || D->hasExternalStorage())
4601     return true;
4602 
4603   // A variable cannot be both common and exist in a section.
4604   if (D->hasAttr<SectionAttr>())
4605     return true;
4606 
4607   // A variable cannot be both common and exist in a section.
4608   // We don't try to determine which is the right section in the front-end.
4609   // If no specialized section name is applicable, it will resort to default.
4610   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4611       D->hasAttr<PragmaClangDataSectionAttr>() ||
4612       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4613       D->hasAttr<PragmaClangRodataSectionAttr>())
4614     return true;
4615 
4616   // Thread local vars aren't considered common linkage.
4617   if (D->getTLSKind())
4618     return true;
4619 
4620   // Tentative definitions marked with WeakImportAttr are true definitions.
4621   if (D->hasAttr<WeakImportAttr>())
4622     return true;
4623 
4624   // A variable cannot be both common and exist in a comdat.
4625   if (shouldBeInCOMDAT(CGM, *D))
4626     return true;
4627 
4628   // Declarations with a required alignment do not have common linkage in MSVC
4629   // mode.
4630   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4631     if (D->hasAttr<AlignedAttr>())
4632       return true;
4633     QualType VarType = D->getType();
4634     if (Context.isAlignmentRequired(VarType))
4635       return true;
4636 
4637     if (const auto *RT = VarType->getAs<RecordType>()) {
4638       const RecordDecl *RD = RT->getDecl();
4639       for (const FieldDecl *FD : RD->fields()) {
4640         if (FD->isBitField())
4641           continue;
4642         if (FD->hasAttr<AlignedAttr>())
4643           return true;
4644         if (Context.isAlignmentRequired(FD->getType()))
4645           return true;
4646       }
4647     }
4648   }
4649 
4650   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4651   // common symbols, so symbols with greater alignment requirements cannot be
4652   // common.
4653   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4654   // alignments for common symbols via the aligncomm directive, so this
4655   // restriction only applies to MSVC environments.
4656   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4657       Context.getTypeAlignIfKnown(D->getType()) >
4658           Context.toBits(CharUnits::fromQuantity(32)))
4659     return true;
4660 
4661   return false;
4662 }
4663 
4664 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4665     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4666   if (Linkage == GVA_Internal)
4667     return llvm::Function::InternalLinkage;
4668 
4669   if (D->hasAttr<WeakAttr>()) {
4670     if (IsConstantVariable)
4671       return llvm::GlobalVariable::WeakODRLinkage;
4672     else
4673       return llvm::GlobalVariable::WeakAnyLinkage;
4674   }
4675 
4676   if (const auto *FD = D->getAsFunction())
4677     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4678       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4679 
4680   // We are guaranteed to have a strong definition somewhere else,
4681   // so we can use available_externally linkage.
4682   if (Linkage == GVA_AvailableExternally)
4683     return llvm::GlobalValue::AvailableExternallyLinkage;
4684 
4685   // Note that Apple's kernel linker doesn't support symbol
4686   // coalescing, so we need to avoid linkonce and weak linkages there.
4687   // Normally, this means we just map to internal, but for explicit
4688   // instantiations we'll map to external.
4689 
4690   // In C++, the compiler has to emit a definition in every translation unit
4691   // that references the function.  We should use linkonce_odr because
4692   // a) if all references in this translation unit are optimized away, we
4693   // don't need to codegen it.  b) if the function persists, it needs to be
4694   // merged with other definitions. c) C++ has the ODR, so we know the
4695   // definition is dependable.
4696   if (Linkage == GVA_DiscardableODR)
4697     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4698                                             : llvm::Function::InternalLinkage;
4699 
4700   // An explicit instantiation of a template has weak linkage, since
4701   // explicit instantiations can occur in multiple translation units
4702   // and must all be equivalent. However, we are not allowed to
4703   // throw away these explicit instantiations.
4704   //
4705   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4706   // so say that CUDA templates are either external (for kernels) or internal.
4707   // This lets llvm perform aggressive inter-procedural optimizations. For
4708   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4709   // therefore we need to follow the normal linkage paradigm.
4710   if (Linkage == GVA_StrongODR) {
4711     if (getLangOpts().AppleKext)
4712       return llvm::Function::ExternalLinkage;
4713     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4714         !getLangOpts().GPURelocatableDeviceCode)
4715       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4716                                           : llvm::Function::InternalLinkage;
4717     return llvm::Function::WeakODRLinkage;
4718   }
4719 
4720   // C++ doesn't have tentative definitions and thus cannot have common
4721   // linkage.
4722   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4723       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4724                                  CodeGenOpts.NoCommon))
4725     return llvm::GlobalVariable::CommonLinkage;
4726 
4727   // selectany symbols are externally visible, so use weak instead of
4728   // linkonce.  MSVC optimizes away references to const selectany globals, so
4729   // all definitions should be the same and ODR linkage should be used.
4730   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4731   if (D->hasAttr<SelectAnyAttr>())
4732     return llvm::GlobalVariable::WeakODRLinkage;
4733 
4734   // Otherwise, we have strong external linkage.
4735   assert(Linkage == GVA_StrongExternal);
4736   return llvm::GlobalVariable::ExternalLinkage;
4737 }
4738 
4739 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4740     const VarDecl *VD, bool IsConstant) {
4741   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4742   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4743 }
4744 
4745 /// Replace the uses of a function that was declared with a non-proto type.
4746 /// We want to silently drop extra arguments from call sites
4747 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4748                                           llvm::Function *newFn) {
4749   // Fast path.
4750   if (old->use_empty()) return;
4751 
4752   llvm::Type *newRetTy = newFn->getReturnType();
4753   SmallVector<llvm::Value*, 4> newArgs;
4754 
4755   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4756          ui != ue; ) {
4757     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4758     llvm::User *user = use->getUser();
4759 
4760     // Recognize and replace uses of bitcasts.  Most calls to
4761     // unprototyped functions will use bitcasts.
4762     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4763       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4764         replaceUsesOfNonProtoConstant(bitcast, newFn);
4765       continue;
4766     }
4767 
4768     // Recognize calls to the function.
4769     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4770     if (!callSite) continue;
4771     if (!callSite->isCallee(&*use))
4772       continue;
4773 
4774     // If the return types don't match exactly, then we can't
4775     // transform this call unless it's dead.
4776     if (callSite->getType() != newRetTy && !callSite->use_empty())
4777       continue;
4778 
4779     // Get the call site's attribute list.
4780     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4781     llvm::AttributeList oldAttrs = callSite->getAttributes();
4782 
4783     // If the function was passed too few arguments, don't transform.
4784     unsigned newNumArgs = newFn->arg_size();
4785     if (callSite->arg_size() < newNumArgs)
4786       continue;
4787 
4788     // If extra arguments were passed, we silently drop them.
4789     // If any of the types mismatch, we don't transform.
4790     unsigned argNo = 0;
4791     bool dontTransform = false;
4792     for (llvm::Argument &A : newFn->args()) {
4793       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4794         dontTransform = true;
4795         break;
4796       }
4797 
4798       // Add any parameter attributes.
4799       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4800       argNo++;
4801     }
4802     if (dontTransform)
4803       continue;
4804 
4805     // Okay, we can transform this.  Create the new call instruction and copy
4806     // over the required information.
4807     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4808 
4809     // Copy over any operand bundles.
4810     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4811     callSite->getOperandBundlesAsDefs(newBundles);
4812 
4813     llvm::CallBase *newCall;
4814     if (dyn_cast<llvm::CallInst>(callSite)) {
4815       newCall =
4816           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4817     } else {
4818       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4819       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4820                                          oldInvoke->getUnwindDest(), newArgs,
4821                                          newBundles, "", callSite);
4822     }
4823     newArgs.clear(); // for the next iteration
4824 
4825     if (!newCall->getType()->isVoidTy())
4826       newCall->takeName(callSite);
4827     newCall->setAttributes(
4828         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4829                                  oldAttrs.getRetAttrs(), newArgAttrs));
4830     newCall->setCallingConv(callSite->getCallingConv());
4831 
4832     // Finally, remove the old call, replacing any uses with the new one.
4833     if (!callSite->use_empty())
4834       callSite->replaceAllUsesWith(newCall);
4835 
4836     // Copy debug location attached to CI.
4837     if (callSite->getDebugLoc())
4838       newCall->setDebugLoc(callSite->getDebugLoc());
4839 
4840     callSite->eraseFromParent();
4841   }
4842 }
4843 
4844 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4845 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4846 /// existing call uses of the old function in the module, this adjusts them to
4847 /// call the new function directly.
4848 ///
4849 /// This is not just a cleanup: the always_inline pass requires direct calls to
4850 /// functions to be able to inline them.  If there is a bitcast in the way, it
4851 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4852 /// run at -O0.
4853 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4854                                                       llvm::Function *NewFn) {
4855   // If we're redefining a global as a function, don't transform it.
4856   if (!isa<llvm::Function>(Old)) return;
4857 
4858   replaceUsesOfNonProtoConstant(Old, NewFn);
4859 }
4860 
4861 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4862   auto DK = VD->isThisDeclarationADefinition();
4863   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4864     return;
4865 
4866   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4867   // If we have a definition, this might be a deferred decl. If the
4868   // instantiation is explicit, make sure we emit it at the end.
4869   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4870     GetAddrOfGlobalVar(VD);
4871 
4872   EmitTopLevelDecl(VD);
4873 }
4874 
4875 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4876                                                  llvm::GlobalValue *GV) {
4877   const auto *D = cast<FunctionDecl>(GD.getDecl());
4878 
4879   // Compute the function info and LLVM type.
4880   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4881   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4882 
4883   // Get or create the prototype for the function.
4884   if (!GV || (GV->getValueType() != Ty))
4885     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4886                                                    /*DontDefer=*/true,
4887                                                    ForDefinition));
4888 
4889   // Already emitted.
4890   if (!GV->isDeclaration())
4891     return;
4892 
4893   // We need to set linkage and visibility on the function before
4894   // generating code for it because various parts of IR generation
4895   // want to propagate this information down (e.g. to local static
4896   // declarations).
4897   auto *Fn = cast<llvm::Function>(GV);
4898   setFunctionLinkage(GD, Fn);
4899 
4900   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4901   setGVProperties(Fn, GD);
4902 
4903   MaybeHandleStaticInExternC(D, Fn);
4904 
4905   maybeSetTrivialComdat(*D, *Fn);
4906 
4907   // Set CodeGen attributes that represent floating point environment.
4908   setLLVMFunctionFEnvAttributes(D, Fn);
4909 
4910   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4911 
4912   setNonAliasAttributes(GD, Fn);
4913   SetLLVMFunctionAttributesForDefinition(D, Fn);
4914 
4915   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4916     AddGlobalCtor(Fn, CA->getPriority());
4917   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4918     AddGlobalDtor(Fn, DA->getPriority(), true);
4919   if (D->hasAttr<AnnotateAttr>())
4920     AddGlobalAnnotations(D, Fn);
4921 }
4922 
4923 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4924   const auto *D = cast<ValueDecl>(GD.getDecl());
4925   const AliasAttr *AA = D->getAttr<AliasAttr>();
4926   assert(AA && "Not an alias?");
4927 
4928   StringRef MangledName = getMangledName(GD);
4929 
4930   if (AA->getAliasee() == MangledName) {
4931     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4932     return;
4933   }
4934 
4935   // If there is a definition in the module, then it wins over the alias.
4936   // This is dubious, but allow it to be safe.  Just ignore the alias.
4937   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4938   if (Entry && !Entry->isDeclaration())
4939     return;
4940 
4941   Aliases.push_back(GD);
4942 
4943   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4944 
4945   // Create a reference to the named value.  This ensures that it is emitted
4946   // if a deferred decl.
4947   llvm::Constant *Aliasee;
4948   llvm::GlobalValue::LinkageTypes LT;
4949   if (isa<llvm::FunctionType>(DeclTy)) {
4950     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4951                                       /*ForVTable=*/false);
4952     LT = getFunctionLinkage(GD);
4953   } else {
4954     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
4955                                     /*D=*/nullptr);
4956     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4957       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4958     else
4959       LT = getFunctionLinkage(GD);
4960   }
4961 
4962   // Create the new alias itself, but don't set a name yet.
4963   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4964   auto *GA =
4965       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4966 
4967   if (Entry) {
4968     if (GA->getAliasee() == Entry) {
4969       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4970       return;
4971     }
4972 
4973     assert(Entry->isDeclaration());
4974 
4975     // If there is a declaration in the module, then we had an extern followed
4976     // by the alias, as in:
4977     //   extern int test6();
4978     //   ...
4979     //   int test6() __attribute__((alias("test7")));
4980     //
4981     // Remove it and replace uses of it with the alias.
4982     GA->takeName(Entry);
4983 
4984     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4985                                                           Entry->getType()));
4986     Entry->eraseFromParent();
4987   } else {
4988     GA->setName(MangledName);
4989   }
4990 
4991   // Set attributes which are particular to an alias; this is a
4992   // specialization of the attributes which may be set on a global
4993   // variable/function.
4994   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4995       D->isWeakImported()) {
4996     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4997   }
4998 
4999   if (const auto *VD = dyn_cast<VarDecl>(D))
5000     if (VD->getTLSKind())
5001       setTLSMode(GA, *VD);
5002 
5003   SetCommonAttributes(GD, GA);
5004 }
5005 
5006 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5007   const auto *D = cast<ValueDecl>(GD.getDecl());
5008   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5009   assert(IFA && "Not an ifunc?");
5010 
5011   StringRef MangledName = getMangledName(GD);
5012 
5013   if (IFA->getResolver() == MangledName) {
5014     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5015     return;
5016   }
5017 
5018   // Report an error if some definition overrides ifunc.
5019   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5020   if (Entry && !Entry->isDeclaration()) {
5021     GlobalDecl OtherGD;
5022     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5023         DiagnosedConflictingDefinitions.insert(GD).second) {
5024       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5025           << MangledName;
5026       Diags.Report(OtherGD.getDecl()->getLocation(),
5027                    diag::note_previous_definition);
5028     }
5029     return;
5030   }
5031 
5032   Aliases.push_back(GD);
5033 
5034   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5035   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5036   llvm::Constant *Resolver =
5037       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, GD,
5038                               /*ForVTable=*/false);
5039   llvm::GlobalIFunc *GIF =
5040       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5041                                 "", Resolver, &getModule());
5042   if (Entry) {
5043     if (GIF->getResolver() == Entry) {
5044       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5045       return;
5046     }
5047     assert(Entry->isDeclaration());
5048 
5049     // If there is a declaration in the module, then we had an extern followed
5050     // by the ifunc, as in:
5051     //   extern int test();
5052     //   ...
5053     //   int test() __attribute__((ifunc("resolver")));
5054     //
5055     // Remove it and replace uses of it with the ifunc.
5056     GIF->takeName(Entry);
5057 
5058     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5059                                                           Entry->getType()));
5060     Entry->eraseFromParent();
5061   } else
5062     GIF->setName(MangledName);
5063 
5064   SetCommonAttributes(GD, GIF);
5065 }
5066 
5067 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5068                                             ArrayRef<llvm::Type*> Tys) {
5069   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5070                                          Tys);
5071 }
5072 
5073 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5074 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5075                          const StringLiteral *Literal, bool TargetIsLSB,
5076                          bool &IsUTF16, unsigned &StringLength) {
5077   StringRef String = Literal->getString();
5078   unsigned NumBytes = String.size();
5079 
5080   // Check for simple case.
5081   if (!Literal->containsNonAsciiOrNull()) {
5082     StringLength = NumBytes;
5083     return *Map.insert(std::make_pair(String, nullptr)).first;
5084   }
5085 
5086   // Otherwise, convert the UTF8 literals into a string of shorts.
5087   IsUTF16 = true;
5088 
5089   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5090   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5091   llvm::UTF16 *ToPtr = &ToBuf[0];
5092 
5093   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5094                                  ToPtr + NumBytes, llvm::strictConversion);
5095 
5096   // ConvertUTF8toUTF16 returns the length in ToPtr.
5097   StringLength = ToPtr - &ToBuf[0];
5098 
5099   // Add an explicit null.
5100   *ToPtr = 0;
5101   return *Map.insert(std::make_pair(
5102                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5103                                    (StringLength + 1) * 2),
5104                          nullptr)).first;
5105 }
5106 
5107 ConstantAddress
5108 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5109   unsigned StringLength = 0;
5110   bool isUTF16 = false;
5111   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5112       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5113                                getDataLayout().isLittleEndian(), isUTF16,
5114                                StringLength);
5115 
5116   if (auto *C = Entry.second)
5117     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5118 
5119   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5120   llvm::Constant *Zeros[] = { Zero, Zero };
5121 
5122   const ASTContext &Context = getContext();
5123   const llvm::Triple &Triple = getTriple();
5124 
5125   const auto CFRuntime = getLangOpts().CFRuntime;
5126   const bool IsSwiftABI =
5127       static_cast<unsigned>(CFRuntime) >=
5128       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5129   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5130 
5131   // If we don't already have it, get __CFConstantStringClassReference.
5132   if (!CFConstantStringClassRef) {
5133     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5134     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5135     Ty = llvm::ArrayType::get(Ty, 0);
5136 
5137     switch (CFRuntime) {
5138     default: break;
5139     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5140     case LangOptions::CoreFoundationABI::Swift5_0:
5141       CFConstantStringClassName =
5142           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5143                               : "$s10Foundation19_NSCFConstantStringCN";
5144       Ty = IntPtrTy;
5145       break;
5146     case LangOptions::CoreFoundationABI::Swift4_2:
5147       CFConstantStringClassName =
5148           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5149                               : "$S10Foundation19_NSCFConstantStringCN";
5150       Ty = IntPtrTy;
5151       break;
5152     case LangOptions::CoreFoundationABI::Swift4_1:
5153       CFConstantStringClassName =
5154           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5155                               : "__T010Foundation19_NSCFConstantStringCN";
5156       Ty = IntPtrTy;
5157       break;
5158     }
5159 
5160     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5161 
5162     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5163       llvm::GlobalValue *GV = nullptr;
5164 
5165       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5166         IdentifierInfo &II = Context.Idents.get(GV->getName());
5167         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5168         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5169 
5170         const VarDecl *VD = nullptr;
5171         for (const auto *Result : DC->lookup(&II))
5172           if ((VD = dyn_cast<VarDecl>(Result)))
5173             break;
5174 
5175         if (Triple.isOSBinFormatELF()) {
5176           if (!VD)
5177             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5178         } else {
5179           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5180           if (!VD || !VD->hasAttr<DLLExportAttr>())
5181             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5182           else
5183             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5184         }
5185 
5186         setDSOLocal(GV);
5187       }
5188     }
5189 
5190     // Decay array -> ptr
5191     CFConstantStringClassRef =
5192         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5193                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5194   }
5195 
5196   QualType CFTy = Context.getCFConstantStringType();
5197 
5198   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5199 
5200   ConstantInitBuilder Builder(*this);
5201   auto Fields = Builder.beginStruct(STy);
5202 
5203   // Class pointer.
5204   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5205 
5206   // Flags.
5207   if (IsSwiftABI) {
5208     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5209     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5210   } else {
5211     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5212   }
5213 
5214   // String pointer.
5215   llvm::Constant *C = nullptr;
5216   if (isUTF16) {
5217     auto Arr = llvm::makeArrayRef(
5218         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5219         Entry.first().size() / 2);
5220     C = llvm::ConstantDataArray::get(VMContext, Arr);
5221   } else {
5222     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5223   }
5224 
5225   // Note: -fwritable-strings doesn't make the backing store strings of
5226   // CFStrings writable. (See <rdar://problem/10657500>)
5227   auto *GV =
5228       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5229                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5230   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5231   // Don't enforce the target's minimum global alignment, since the only use
5232   // of the string is via this class initializer.
5233   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5234                             : Context.getTypeAlignInChars(Context.CharTy);
5235   GV->setAlignment(Align.getAsAlign());
5236 
5237   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5238   // Without it LLVM can merge the string with a non unnamed_addr one during
5239   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5240   if (Triple.isOSBinFormatMachO())
5241     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5242                            : "__TEXT,__cstring,cstring_literals");
5243   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5244   // the static linker to adjust permissions to read-only later on.
5245   else if (Triple.isOSBinFormatELF())
5246     GV->setSection(".rodata");
5247 
5248   // String.
5249   llvm::Constant *Str =
5250       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5251 
5252   if (isUTF16)
5253     // Cast the UTF16 string to the correct type.
5254     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5255   Fields.add(Str);
5256 
5257   // String length.
5258   llvm::IntegerType *LengthTy =
5259       llvm::IntegerType::get(getModule().getContext(),
5260                              Context.getTargetInfo().getLongWidth());
5261   if (IsSwiftABI) {
5262     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5263         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5264       LengthTy = Int32Ty;
5265     else
5266       LengthTy = IntPtrTy;
5267   }
5268   Fields.addInt(LengthTy, StringLength);
5269 
5270   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5271   // properly aligned on 32-bit platforms.
5272   CharUnits Alignment =
5273       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5274 
5275   // The struct.
5276   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5277                                     /*isConstant=*/false,
5278                                     llvm::GlobalVariable::PrivateLinkage);
5279   GV->addAttribute("objc_arc_inert");
5280   switch (Triple.getObjectFormat()) {
5281   case llvm::Triple::UnknownObjectFormat:
5282     llvm_unreachable("unknown file format");
5283   case llvm::Triple::GOFF:
5284     llvm_unreachable("GOFF is not yet implemented");
5285   case llvm::Triple::XCOFF:
5286     llvm_unreachable("XCOFF is not yet implemented");
5287   case llvm::Triple::COFF:
5288   case llvm::Triple::ELF:
5289   case llvm::Triple::Wasm:
5290     GV->setSection("cfstring");
5291     break;
5292   case llvm::Triple::MachO:
5293     GV->setSection("__DATA,__cfstring");
5294     break;
5295   }
5296   Entry.second = GV;
5297 
5298   return ConstantAddress(GV, Alignment);
5299 }
5300 
5301 bool CodeGenModule::getExpressionLocationsEnabled() const {
5302   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5303 }
5304 
5305 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5306   if (ObjCFastEnumerationStateType.isNull()) {
5307     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5308     D->startDefinition();
5309 
5310     QualType FieldTypes[] = {
5311       Context.UnsignedLongTy,
5312       Context.getPointerType(Context.getObjCIdType()),
5313       Context.getPointerType(Context.UnsignedLongTy),
5314       Context.getConstantArrayType(Context.UnsignedLongTy,
5315                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5316     };
5317 
5318     for (size_t i = 0; i < 4; ++i) {
5319       FieldDecl *Field = FieldDecl::Create(Context,
5320                                            D,
5321                                            SourceLocation(),
5322                                            SourceLocation(), nullptr,
5323                                            FieldTypes[i], /*TInfo=*/nullptr,
5324                                            /*BitWidth=*/nullptr,
5325                                            /*Mutable=*/false,
5326                                            ICIS_NoInit);
5327       Field->setAccess(AS_public);
5328       D->addDecl(Field);
5329     }
5330 
5331     D->completeDefinition();
5332     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5333   }
5334 
5335   return ObjCFastEnumerationStateType;
5336 }
5337 
5338 llvm::Constant *
5339 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5340   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5341 
5342   // Don't emit it as the address of the string, emit the string data itself
5343   // as an inline array.
5344   if (E->getCharByteWidth() == 1) {
5345     SmallString<64> Str(E->getString());
5346 
5347     // Resize the string to the right size, which is indicated by its type.
5348     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5349     Str.resize(CAT->getSize().getZExtValue());
5350     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5351   }
5352 
5353   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5354   llvm::Type *ElemTy = AType->getElementType();
5355   unsigned NumElements = AType->getNumElements();
5356 
5357   // Wide strings have either 2-byte or 4-byte elements.
5358   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5359     SmallVector<uint16_t, 32> Elements;
5360     Elements.reserve(NumElements);
5361 
5362     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5363       Elements.push_back(E->getCodeUnit(i));
5364     Elements.resize(NumElements);
5365     return llvm::ConstantDataArray::get(VMContext, Elements);
5366   }
5367 
5368   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5369   SmallVector<uint32_t, 32> Elements;
5370   Elements.reserve(NumElements);
5371 
5372   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5373     Elements.push_back(E->getCodeUnit(i));
5374   Elements.resize(NumElements);
5375   return llvm::ConstantDataArray::get(VMContext, Elements);
5376 }
5377 
5378 static llvm::GlobalVariable *
5379 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5380                       CodeGenModule &CGM, StringRef GlobalName,
5381                       CharUnits Alignment) {
5382   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5383       CGM.GetGlobalConstantAddressSpace());
5384 
5385   llvm::Module &M = CGM.getModule();
5386   // Create a global variable for this string
5387   auto *GV = new llvm::GlobalVariable(
5388       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5389       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5390   GV->setAlignment(Alignment.getAsAlign());
5391   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5392   if (GV->isWeakForLinker()) {
5393     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5394     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5395   }
5396   CGM.setDSOLocal(GV);
5397 
5398   return GV;
5399 }
5400 
5401 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5402 /// constant array for the given string literal.
5403 ConstantAddress
5404 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5405                                                   StringRef Name) {
5406   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5407 
5408   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5409   llvm::GlobalVariable **Entry = nullptr;
5410   if (!LangOpts.WritableStrings) {
5411     Entry = &ConstantStringMap[C];
5412     if (auto GV = *Entry) {
5413       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5414         GV->setAlignment(Alignment.getAsAlign());
5415       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5416                              Alignment);
5417     }
5418   }
5419 
5420   SmallString<256> MangledNameBuffer;
5421   StringRef GlobalVariableName;
5422   llvm::GlobalValue::LinkageTypes LT;
5423 
5424   // Mangle the string literal if that's how the ABI merges duplicate strings.
5425   // Don't do it if they are writable, since we don't want writes in one TU to
5426   // affect strings in another.
5427   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5428       !LangOpts.WritableStrings) {
5429     llvm::raw_svector_ostream Out(MangledNameBuffer);
5430     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5431     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5432     GlobalVariableName = MangledNameBuffer;
5433   } else {
5434     LT = llvm::GlobalValue::PrivateLinkage;
5435     GlobalVariableName = Name;
5436   }
5437 
5438   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5439   if (Entry)
5440     *Entry = GV;
5441 
5442   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5443                                   QualType());
5444 
5445   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5446                          Alignment);
5447 }
5448 
5449 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5450 /// array for the given ObjCEncodeExpr node.
5451 ConstantAddress
5452 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5453   std::string Str;
5454   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5455 
5456   return GetAddrOfConstantCString(Str);
5457 }
5458 
5459 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5460 /// the literal and a terminating '\0' character.
5461 /// The result has pointer to array type.
5462 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5463     const std::string &Str, const char *GlobalName) {
5464   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5465   CharUnits Alignment =
5466     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5467 
5468   llvm::Constant *C =
5469       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5470 
5471   // Don't share any string literals if strings aren't constant.
5472   llvm::GlobalVariable **Entry = nullptr;
5473   if (!LangOpts.WritableStrings) {
5474     Entry = &ConstantStringMap[C];
5475     if (auto GV = *Entry) {
5476       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5477         GV->setAlignment(Alignment.getAsAlign());
5478       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5479                              Alignment);
5480     }
5481   }
5482 
5483   // Get the default prefix if a name wasn't specified.
5484   if (!GlobalName)
5485     GlobalName = ".str";
5486   // Create a global variable for this.
5487   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5488                                   GlobalName, Alignment);
5489   if (Entry)
5490     *Entry = GV;
5491 
5492   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5493                          Alignment);
5494 }
5495 
5496 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5497     const MaterializeTemporaryExpr *E, const Expr *Init) {
5498   assert((E->getStorageDuration() == SD_Static ||
5499           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5500   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5501 
5502   // If we're not materializing a subobject of the temporary, keep the
5503   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5504   QualType MaterializedType = Init->getType();
5505   if (Init == E->getSubExpr())
5506     MaterializedType = E->getType();
5507 
5508   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5509 
5510   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5511   if (!InsertResult.second) {
5512     // We've seen this before: either we already created it or we're in the
5513     // process of doing so.
5514     if (!InsertResult.first->second) {
5515       // We recursively re-entered this function, probably during emission of
5516       // the initializer. Create a placeholder. We'll clean this up in the
5517       // outer call, at the end of this function.
5518       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5519       InsertResult.first->second = new llvm::GlobalVariable(
5520           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5521           nullptr);
5522     }
5523     return ConstantAddress(InsertResult.first->second, Align);
5524   }
5525 
5526   // FIXME: If an externally-visible declaration extends multiple temporaries,
5527   // we need to give each temporary the same name in every translation unit (and
5528   // we also need to make the temporaries externally-visible).
5529   SmallString<256> Name;
5530   llvm::raw_svector_ostream Out(Name);
5531   getCXXABI().getMangleContext().mangleReferenceTemporary(
5532       VD, E->getManglingNumber(), Out);
5533 
5534   APValue *Value = nullptr;
5535   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5536     // If the initializer of the extending declaration is a constant
5537     // initializer, we should have a cached constant initializer for this
5538     // temporary. Note that this might have a different value from the value
5539     // computed by evaluating the initializer if the surrounding constant
5540     // expression modifies the temporary.
5541     Value = E->getOrCreateValue(false);
5542   }
5543 
5544   // Try evaluating it now, it might have a constant initializer.
5545   Expr::EvalResult EvalResult;
5546   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5547       !EvalResult.hasSideEffects())
5548     Value = &EvalResult.Val;
5549 
5550   LangAS AddrSpace =
5551       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5552 
5553   Optional<ConstantEmitter> emitter;
5554   llvm::Constant *InitialValue = nullptr;
5555   bool Constant = false;
5556   llvm::Type *Type;
5557   if (Value) {
5558     // The temporary has a constant initializer, use it.
5559     emitter.emplace(*this);
5560     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5561                                                MaterializedType);
5562     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5563     Type = InitialValue->getType();
5564   } else {
5565     // No initializer, the initialization will be provided when we
5566     // initialize the declaration which performed lifetime extension.
5567     Type = getTypes().ConvertTypeForMem(MaterializedType);
5568   }
5569 
5570   // Create a global variable for this lifetime-extended temporary.
5571   llvm::GlobalValue::LinkageTypes Linkage =
5572       getLLVMLinkageVarDefinition(VD, Constant);
5573   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5574     const VarDecl *InitVD;
5575     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5576         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5577       // Temporaries defined inside a class get linkonce_odr linkage because the
5578       // class can be defined in multiple translation units.
5579       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5580     } else {
5581       // There is no need for this temporary to have external linkage if the
5582       // VarDecl has external linkage.
5583       Linkage = llvm::GlobalVariable::InternalLinkage;
5584     }
5585   }
5586   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5587   auto *GV = new llvm::GlobalVariable(
5588       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5589       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5590   if (emitter) emitter->finalize(GV);
5591   setGVProperties(GV, VD);
5592   GV->setAlignment(Align.getAsAlign());
5593   if (supportsCOMDAT() && GV->isWeakForLinker())
5594     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5595   if (VD->getTLSKind())
5596     setTLSMode(GV, *VD);
5597   llvm::Constant *CV = GV;
5598   if (AddrSpace != LangAS::Default)
5599     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5600         *this, GV, AddrSpace, LangAS::Default,
5601         Type->getPointerTo(
5602             getContext().getTargetAddressSpace(LangAS::Default)));
5603 
5604   // Update the map with the new temporary. If we created a placeholder above,
5605   // replace it with the new global now.
5606   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5607   if (Entry) {
5608     Entry->replaceAllUsesWith(
5609         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5610     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5611   }
5612   Entry = CV;
5613 
5614   return ConstantAddress(CV, Align);
5615 }
5616 
5617 /// EmitObjCPropertyImplementations - Emit information for synthesized
5618 /// properties for an implementation.
5619 void CodeGenModule::EmitObjCPropertyImplementations(const
5620                                                     ObjCImplementationDecl *D) {
5621   for (const auto *PID : D->property_impls()) {
5622     // Dynamic is just for type-checking.
5623     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5624       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5625 
5626       // Determine which methods need to be implemented, some may have
5627       // been overridden. Note that ::isPropertyAccessor is not the method
5628       // we want, that just indicates if the decl came from a
5629       // property. What we want to know is if the method is defined in
5630       // this implementation.
5631       auto *Getter = PID->getGetterMethodDecl();
5632       if (!Getter || Getter->isSynthesizedAccessorStub())
5633         CodeGenFunction(*this).GenerateObjCGetter(
5634             const_cast<ObjCImplementationDecl *>(D), PID);
5635       auto *Setter = PID->getSetterMethodDecl();
5636       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5637         CodeGenFunction(*this).GenerateObjCSetter(
5638                                  const_cast<ObjCImplementationDecl *>(D), PID);
5639     }
5640   }
5641 }
5642 
5643 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5644   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5645   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5646        ivar; ivar = ivar->getNextIvar())
5647     if (ivar->getType().isDestructedType())
5648       return true;
5649 
5650   return false;
5651 }
5652 
5653 static bool AllTrivialInitializers(CodeGenModule &CGM,
5654                                    ObjCImplementationDecl *D) {
5655   CodeGenFunction CGF(CGM);
5656   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5657        E = D->init_end(); B != E; ++B) {
5658     CXXCtorInitializer *CtorInitExp = *B;
5659     Expr *Init = CtorInitExp->getInit();
5660     if (!CGF.isTrivialInitializer(Init))
5661       return false;
5662   }
5663   return true;
5664 }
5665 
5666 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5667 /// for an implementation.
5668 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5669   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5670   if (needsDestructMethod(D)) {
5671     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5672     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5673     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5674         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5675         getContext().VoidTy, nullptr, D,
5676         /*isInstance=*/true, /*isVariadic=*/false,
5677         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5678         /*isImplicitlyDeclared=*/true,
5679         /*isDefined=*/false, ObjCMethodDecl::Required);
5680     D->addInstanceMethod(DTORMethod);
5681     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5682     D->setHasDestructors(true);
5683   }
5684 
5685   // If the implementation doesn't have any ivar initializers, we don't need
5686   // a .cxx_construct.
5687   if (D->getNumIvarInitializers() == 0 ||
5688       AllTrivialInitializers(*this, D))
5689     return;
5690 
5691   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5692   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5693   // The constructor returns 'self'.
5694   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5695       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5696       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5697       /*isVariadic=*/false,
5698       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5699       /*isImplicitlyDeclared=*/true,
5700       /*isDefined=*/false, ObjCMethodDecl::Required);
5701   D->addInstanceMethod(CTORMethod);
5702   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5703   D->setHasNonZeroConstructors(true);
5704 }
5705 
5706 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5707 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5708   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5709       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5710     ErrorUnsupported(LSD, "linkage spec");
5711     return;
5712   }
5713 
5714   EmitDeclContext(LSD);
5715 }
5716 
5717 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5718   for (auto *I : DC->decls()) {
5719     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5720     // are themselves considered "top-level", so EmitTopLevelDecl on an
5721     // ObjCImplDecl does not recursively visit them. We need to do that in
5722     // case they're nested inside another construct (LinkageSpecDecl /
5723     // ExportDecl) that does stop them from being considered "top-level".
5724     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5725       for (auto *M : OID->methods())
5726         EmitTopLevelDecl(M);
5727     }
5728 
5729     EmitTopLevelDecl(I);
5730   }
5731 }
5732 
5733 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5734 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5735   // Ignore dependent declarations.
5736   if (D->isTemplated())
5737     return;
5738 
5739   // Consteval function shouldn't be emitted.
5740   if (auto *FD = dyn_cast<FunctionDecl>(D))
5741     if (FD->isConsteval())
5742       return;
5743 
5744   switch (D->getKind()) {
5745   case Decl::CXXConversion:
5746   case Decl::CXXMethod:
5747   case Decl::Function:
5748     EmitGlobal(cast<FunctionDecl>(D));
5749     // Always provide some coverage mapping
5750     // even for the functions that aren't emitted.
5751     AddDeferredUnusedCoverageMapping(D);
5752     break;
5753 
5754   case Decl::CXXDeductionGuide:
5755     // Function-like, but does not result in code emission.
5756     break;
5757 
5758   case Decl::Var:
5759   case Decl::Decomposition:
5760   case Decl::VarTemplateSpecialization:
5761     EmitGlobal(cast<VarDecl>(D));
5762     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5763       for (auto *B : DD->bindings())
5764         if (auto *HD = B->getHoldingVar())
5765           EmitGlobal(HD);
5766     break;
5767 
5768   // Indirect fields from global anonymous structs and unions can be
5769   // ignored; only the actual variable requires IR gen support.
5770   case Decl::IndirectField:
5771     break;
5772 
5773   // C++ Decls
5774   case Decl::Namespace:
5775     EmitDeclContext(cast<NamespaceDecl>(D));
5776     break;
5777   case Decl::ClassTemplateSpecialization: {
5778     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5779     if (CGDebugInfo *DI = getModuleDebugInfo())
5780       if (Spec->getSpecializationKind() ==
5781               TSK_ExplicitInstantiationDefinition &&
5782           Spec->hasDefinition())
5783         DI->completeTemplateDefinition(*Spec);
5784   } LLVM_FALLTHROUGH;
5785   case Decl::CXXRecord: {
5786     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5787     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5788       if (CRD->hasDefinition())
5789         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5790       if (auto *ES = D->getASTContext().getExternalSource())
5791         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5792           DI->completeUnusedClass(*CRD);
5793     }
5794     // Emit any static data members, they may be definitions.
5795     for (auto *I : CRD->decls())
5796       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5797         EmitTopLevelDecl(I);
5798     break;
5799   }
5800     // No code generation needed.
5801   case Decl::UsingShadow:
5802   case Decl::ClassTemplate:
5803   case Decl::VarTemplate:
5804   case Decl::Concept:
5805   case Decl::VarTemplatePartialSpecialization:
5806   case Decl::FunctionTemplate:
5807   case Decl::TypeAliasTemplate:
5808   case Decl::Block:
5809   case Decl::Empty:
5810   case Decl::Binding:
5811     break;
5812   case Decl::Using:          // using X; [C++]
5813     if (CGDebugInfo *DI = getModuleDebugInfo())
5814         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5815     break;
5816   case Decl::UsingEnum: // using enum X; [C++]
5817     if (CGDebugInfo *DI = getModuleDebugInfo())
5818       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5819     break;
5820   case Decl::NamespaceAlias:
5821     if (CGDebugInfo *DI = getModuleDebugInfo())
5822         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5823     break;
5824   case Decl::UsingDirective: // using namespace X; [C++]
5825     if (CGDebugInfo *DI = getModuleDebugInfo())
5826       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5827     break;
5828   case Decl::CXXConstructor:
5829     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5830     break;
5831   case Decl::CXXDestructor:
5832     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5833     break;
5834 
5835   case Decl::StaticAssert:
5836     // Nothing to do.
5837     break;
5838 
5839   // Objective-C Decls
5840 
5841   // Forward declarations, no (immediate) code generation.
5842   case Decl::ObjCInterface:
5843   case Decl::ObjCCategory:
5844     break;
5845 
5846   case Decl::ObjCProtocol: {
5847     auto *Proto = cast<ObjCProtocolDecl>(D);
5848     if (Proto->isThisDeclarationADefinition())
5849       ObjCRuntime->GenerateProtocol(Proto);
5850     break;
5851   }
5852 
5853   case Decl::ObjCCategoryImpl:
5854     // Categories have properties but don't support synthesize so we
5855     // can ignore them here.
5856     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5857     break;
5858 
5859   case Decl::ObjCImplementation: {
5860     auto *OMD = cast<ObjCImplementationDecl>(D);
5861     EmitObjCPropertyImplementations(OMD);
5862     EmitObjCIvarInitializations(OMD);
5863     ObjCRuntime->GenerateClass(OMD);
5864     // Emit global variable debug information.
5865     if (CGDebugInfo *DI = getModuleDebugInfo())
5866       if (getCodeGenOpts().hasReducedDebugInfo())
5867         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5868             OMD->getClassInterface()), OMD->getLocation());
5869     break;
5870   }
5871   case Decl::ObjCMethod: {
5872     auto *OMD = cast<ObjCMethodDecl>(D);
5873     // If this is not a prototype, emit the body.
5874     if (OMD->getBody())
5875       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5876     break;
5877   }
5878   case Decl::ObjCCompatibleAlias:
5879     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5880     break;
5881 
5882   case Decl::PragmaComment: {
5883     const auto *PCD = cast<PragmaCommentDecl>(D);
5884     switch (PCD->getCommentKind()) {
5885     case PCK_Unknown:
5886       llvm_unreachable("unexpected pragma comment kind");
5887     case PCK_Linker:
5888       AppendLinkerOptions(PCD->getArg());
5889       break;
5890     case PCK_Lib:
5891         AddDependentLib(PCD->getArg());
5892       break;
5893     case PCK_Compiler:
5894     case PCK_ExeStr:
5895     case PCK_User:
5896       break; // We ignore all of these.
5897     }
5898     break;
5899   }
5900 
5901   case Decl::PragmaDetectMismatch: {
5902     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5903     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5904     break;
5905   }
5906 
5907   case Decl::LinkageSpec:
5908     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5909     break;
5910 
5911   case Decl::FileScopeAsm: {
5912     // File-scope asm is ignored during device-side CUDA compilation.
5913     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5914       break;
5915     // File-scope asm is ignored during device-side OpenMP compilation.
5916     if (LangOpts.OpenMPIsDevice)
5917       break;
5918     // File-scope asm is ignored during device-side SYCL compilation.
5919     if (LangOpts.SYCLIsDevice)
5920       break;
5921     auto *AD = cast<FileScopeAsmDecl>(D);
5922     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5923     break;
5924   }
5925 
5926   case Decl::Import: {
5927     auto *Import = cast<ImportDecl>(D);
5928 
5929     // If we've already imported this module, we're done.
5930     if (!ImportedModules.insert(Import->getImportedModule()))
5931       break;
5932 
5933     // Emit debug information for direct imports.
5934     if (!Import->getImportedOwningModule()) {
5935       if (CGDebugInfo *DI = getModuleDebugInfo())
5936         DI->EmitImportDecl(*Import);
5937     }
5938 
5939     // Find all of the submodules and emit the module initializers.
5940     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5941     SmallVector<clang::Module *, 16> Stack;
5942     Visited.insert(Import->getImportedModule());
5943     Stack.push_back(Import->getImportedModule());
5944 
5945     while (!Stack.empty()) {
5946       clang::Module *Mod = Stack.pop_back_val();
5947       if (!EmittedModuleInitializers.insert(Mod).second)
5948         continue;
5949 
5950       for (auto *D : Context.getModuleInitializers(Mod))
5951         EmitTopLevelDecl(D);
5952 
5953       // Visit the submodules of this module.
5954       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5955                                              SubEnd = Mod->submodule_end();
5956            Sub != SubEnd; ++Sub) {
5957         // Skip explicit children; they need to be explicitly imported to emit
5958         // the initializers.
5959         if ((*Sub)->IsExplicit)
5960           continue;
5961 
5962         if (Visited.insert(*Sub).second)
5963           Stack.push_back(*Sub);
5964       }
5965     }
5966     break;
5967   }
5968 
5969   case Decl::Export:
5970     EmitDeclContext(cast<ExportDecl>(D));
5971     break;
5972 
5973   case Decl::OMPThreadPrivate:
5974     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5975     break;
5976 
5977   case Decl::OMPAllocate:
5978     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5979     break;
5980 
5981   case Decl::OMPDeclareReduction:
5982     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5983     break;
5984 
5985   case Decl::OMPDeclareMapper:
5986     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5987     break;
5988 
5989   case Decl::OMPRequires:
5990     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5991     break;
5992 
5993   case Decl::Typedef:
5994   case Decl::TypeAlias: // using foo = bar; [C++11]
5995     if (CGDebugInfo *DI = getModuleDebugInfo())
5996       DI->EmitAndRetainType(
5997           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5998     break;
5999 
6000   case Decl::Record:
6001     if (CGDebugInfo *DI = getModuleDebugInfo())
6002       if (cast<RecordDecl>(D)->getDefinition())
6003         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6004     break;
6005 
6006   case Decl::Enum:
6007     if (CGDebugInfo *DI = getModuleDebugInfo())
6008       if (cast<EnumDecl>(D)->getDefinition())
6009         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6010     break;
6011 
6012   default:
6013     // Make sure we handled everything we should, every other kind is a
6014     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6015     // function. Need to recode Decl::Kind to do that easily.
6016     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6017     break;
6018   }
6019 }
6020 
6021 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6022   // Do we need to generate coverage mapping?
6023   if (!CodeGenOpts.CoverageMapping)
6024     return;
6025   switch (D->getKind()) {
6026   case Decl::CXXConversion:
6027   case Decl::CXXMethod:
6028   case Decl::Function:
6029   case Decl::ObjCMethod:
6030   case Decl::CXXConstructor:
6031   case Decl::CXXDestructor: {
6032     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6033       break;
6034     SourceManager &SM = getContext().getSourceManager();
6035     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6036       break;
6037     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6038     if (I == DeferredEmptyCoverageMappingDecls.end())
6039       DeferredEmptyCoverageMappingDecls[D] = true;
6040     break;
6041   }
6042   default:
6043     break;
6044   };
6045 }
6046 
6047 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6048   // Do we need to generate coverage mapping?
6049   if (!CodeGenOpts.CoverageMapping)
6050     return;
6051   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6052     if (Fn->isTemplateInstantiation())
6053       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6054   }
6055   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6056   if (I == DeferredEmptyCoverageMappingDecls.end())
6057     DeferredEmptyCoverageMappingDecls[D] = false;
6058   else
6059     I->second = false;
6060 }
6061 
6062 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6063   // We call takeVector() here to avoid use-after-free.
6064   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6065   // we deserialize function bodies to emit coverage info for them, and that
6066   // deserializes more declarations. How should we handle that case?
6067   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6068     if (!Entry.second)
6069       continue;
6070     const Decl *D = Entry.first;
6071     switch (D->getKind()) {
6072     case Decl::CXXConversion:
6073     case Decl::CXXMethod:
6074     case Decl::Function:
6075     case Decl::ObjCMethod: {
6076       CodeGenPGO PGO(*this);
6077       GlobalDecl GD(cast<FunctionDecl>(D));
6078       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6079                                   getFunctionLinkage(GD));
6080       break;
6081     }
6082     case Decl::CXXConstructor: {
6083       CodeGenPGO PGO(*this);
6084       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6085       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6086                                   getFunctionLinkage(GD));
6087       break;
6088     }
6089     case Decl::CXXDestructor: {
6090       CodeGenPGO PGO(*this);
6091       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6092       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6093                                   getFunctionLinkage(GD));
6094       break;
6095     }
6096     default:
6097       break;
6098     };
6099   }
6100 }
6101 
6102 void CodeGenModule::EmitMainVoidAlias() {
6103   // In order to transition away from "__original_main" gracefully, emit an
6104   // alias for "main" in the no-argument case so that libc can detect when
6105   // new-style no-argument main is in used.
6106   if (llvm::Function *F = getModule().getFunction("main")) {
6107     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6108         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6109       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6110   }
6111 }
6112 
6113 /// Turns the given pointer into a constant.
6114 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6115                                           const void *Ptr) {
6116   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6117   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6118   return llvm::ConstantInt::get(i64, PtrInt);
6119 }
6120 
6121 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6122                                    llvm::NamedMDNode *&GlobalMetadata,
6123                                    GlobalDecl D,
6124                                    llvm::GlobalValue *Addr) {
6125   if (!GlobalMetadata)
6126     GlobalMetadata =
6127       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6128 
6129   // TODO: should we report variant information for ctors/dtors?
6130   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6131                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6132                                CGM.getLLVMContext(), D.getDecl()))};
6133   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6134 }
6135 
6136 /// For each function which is declared within an extern "C" region and marked
6137 /// as 'used', but has internal linkage, create an alias from the unmangled
6138 /// name to the mangled name if possible. People expect to be able to refer
6139 /// to such functions with an unmangled name from inline assembly within the
6140 /// same translation unit.
6141 void CodeGenModule::EmitStaticExternCAliases() {
6142   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6143     return;
6144   for (auto &I : StaticExternCValues) {
6145     IdentifierInfo *Name = I.first;
6146     llvm::GlobalValue *Val = I.second;
6147     if (Val && !getModule().getNamedValue(Name->getName()))
6148       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6149   }
6150 }
6151 
6152 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6153                                              GlobalDecl &Result) const {
6154   auto Res = Manglings.find(MangledName);
6155   if (Res == Manglings.end())
6156     return false;
6157   Result = Res->getValue();
6158   return true;
6159 }
6160 
6161 /// Emits metadata nodes associating all the global values in the
6162 /// current module with the Decls they came from.  This is useful for
6163 /// projects using IR gen as a subroutine.
6164 ///
6165 /// Since there's currently no way to associate an MDNode directly
6166 /// with an llvm::GlobalValue, we create a global named metadata
6167 /// with the name 'clang.global.decl.ptrs'.
6168 void CodeGenModule::EmitDeclMetadata() {
6169   llvm::NamedMDNode *GlobalMetadata = nullptr;
6170 
6171   for (auto &I : MangledDeclNames) {
6172     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6173     // Some mangled names don't necessarily have an associated GlobalValue
6174     // in this module, e.g. if we mangled it for DebugInfo.
6175     if (Addr)
6176       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6177   }
6178 }
6179 
6180 /// Emits metadata nodes for all the local variables in the current
6181 /// function.
6182 void CodeGenFunction::EmitDeclMetadata() {
6183   if (LocalDeclMap.empty()) return;
6184 
6185   llvm::LLVMContext &Context = getLLVMContext();
6186 
6187   // Find the unique metadata ID for this name.
6188   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6189 
6190   llvm::NamedMDNode *GlobalMetadata = nullptr;
6191 
6192   for (auto &I : LocalDeclMap) {
6193     const Decl *D = I.first;
6194     llvm::Value *Addr = I.second.getPointer();
6195     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6196       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6197       Alloca->setMetadata(
6198           DeclPtrKind, llvm::MDNode::get(
6199                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6200     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6201       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6202       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6203     }
6204   }
6205 }
6206 
6207 void CodeGenModule::EmitVersionIdentMetadata() {
6208   llvm::NamedMDNode *IdentMetadata =
6209     TheModule.getOrInsertNamedMetadata("llvm.ident");
6210   std::string Version = getClangFullVersion();
6211   llvm::LLVMContext &Ctx = TheModule.getContext();
6212 
6213   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6214   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6215 }
6216 
6217 void CodeGenModule::EmitCommandLineMetadata() {
6218   llvm::NamedMDNode *CommandLineMetadata =
6219     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6220   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6221   llvm::LLVMContext &Ctx = TheModule.getContext();
6222 
6223   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6224   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6225 }
6226 
6227 void CodeGenModule::EmitCoverageFile() {
6228   if (getCodeGenOpts().CoverageDataFile.empty() &&
6229       getCodeGenOpts().CoverageNotesFile.empty())
6230     return;
6231 
6232   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6233   if (!CUNode)
6234     return;
6235 
6236   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6237   llvm::LLVMContext &Ctx = TheModule.getContext();
6238   auto *CoverageDataFile =
6239       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6240   auto *CoverageNotesFile =
6241       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6242   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6243     llvm::MDNode *CU = CUNode->getOperand(i);
6244     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6245     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6246   }
6247 }
6248 
6249 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6250                                                        bool ForEH) {
6251   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6252   // FIXME: should we even be calling this method if RTTI is disabled
6253   // and it's not for EH?
6254   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6255       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6256        getTriple().isNVPTX()))
6257     return llvm::Constant::getNullValue(Int8PtrTy);
6258 
6259   if (ForEH && Ty->isObjCObjectPointerType() &&
6260       LangOpts.ObjCRuntime.isGNUFamily())
6261     return ObjCRuntime->GetEHType(Ty);
6262 
6263   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6264 }
6265 
6266 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6267   // Do not emit threadprivates in simd-only mode.
6268   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6269     return;
6270   for (auto RefExpr : D->varlists()) {
6271     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6272     bool PerformInit =
6273         VD->getAnyInitializer() &&
6274         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6275                                                         /*ForRef=*/false);
6276 
6277     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6278     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6279             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6280       CXXGlobalInits.push_back(InitFunction);
6281   }
6282 }
6283 
6284 llvm::Metadata *
6285 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6286                                             StringRef Suffix) {
6287   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6288   if (InternalId)
6289     return InternalId;
6290 
6291   if (isExternallyVisible(T->getLinkage())) {
6292     std::string OutName;
6293     llvm::raw_string_ostream Out(OutName);
6294     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6295     Out << Suffix;
6296 
6297     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6298   } else {
6299     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6300                                            llvm::ArrayRef<llvm::Metadata *>());
6301   }
6302 
6303   return InternalId;
6304 }
6305 
6306 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6307   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6308 }
6309 
6310 llvm::Metadata *
6311 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6312   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6313 }
6314 
6315 // Generalize pointer types to a void pointer with the qualifiers of the
6316 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6317 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6318 // 'void *'.
6319 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6320   if (!Ty->isPointerType())
6321     return Ty;
6322 
6323   return Ctx.getPointerType(
6324       QualType(Ctx.VoidTy).withCVRQualifiers(
6325           Ty->getPointeeType().getCVRQualifiers()));
6326 }
6327 
6328 // Apply type generalization to a FunctionType's return and argument types
6329 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6330   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6331     SmallVector<QualType, 8> GeneralizedParams;
6332     for (auto &Param : FnType->param_types())
6333       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6334 
6335     return Ctx.getFunctionType(
6336         GeneralizeType(Ctx, FnType->getReturnType()),
6337         GeneralizedParams, FnType->getExtProtoInfo());
6338   }
6339 
6340   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6341     return Ctx.getFunctionNoProtoType(
6342         GeneralizeType(Ctx, FnType->getReturnType()));
6343 
6344   llvm_unreachable("Encountered unknown FunctionType");
6345 }
6346 
6347 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6348   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6349                                       GeneralizedMetadataIdMap, ".generalized");
6350 }
6351 
6352 /// Returns whether this module needs the "all-vtables" type identifier.
6353 bool CodeGenModule::NeedAllVtablesTypeId() const {
6354   // Returns true if at least one of vtable-based CFI checkers is enabled and
6355   // is not in the trapping mode.
6356   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6357            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6358           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6359            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6360           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6361            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6362           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6363            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6364 }
6365 
6366 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6367                                           CharUnits Offset,
6368                                           const CXXRecordDecl *RD) {
6369   llvm::Metadata *MD =
6370       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6371   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6372 
6373   if (CodeGenOpts.SanitizeCfiCrossDso)
6374     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6375       VTable->addTypeMetadata(Offset.getQuantity(),
6376                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6377 
6378   if (NeedAllVtablesTypeId()) {
6379     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6380     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6381   }
6382 }
6383 
6384 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6385   if (!SanStats)
6386     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6387 
6388   return *SanStats;
6389 }
6390 
6391 llvm::Value *
6392 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6393                                                   CodeGenFunction &CGF) {
6394   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6395   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6396   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6397   auto *Call = CGF.EmitRuntimeCall(
6398       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6399   return Call;
6400 }
6401 
6402 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6403     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6404   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6405                                  /* forPointeeType= */ true);
6406 }
6407 
6408 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6409                                                  LValueBaseInfo *BaseInfo,
6410                                                  TBAAAccessInfo *TBAAInfo,
6411                                                  bool forPointeeType) {
6412   if (TBAAInfo)
6413     *TBAAInfo = getTBAAAccessInfo(T);
6414 
6415   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6416   // that doesn't return the information we need to compute BaseInfo.
6417 
6418   // Honor alignment typedef attributes even on incomplete types.
6419   // We also honor them straight for C++ class types, even as pointees;
6420   // there's an expressivity gap here.
6421   if (auto TT = T->getAs<TypedefType>()) {
6422     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6423       if (BaseInfo)
6424         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6425       return getContext().toCharUnitsFromBits(Align);
6426     }
6427   }
6428 
6429   bool AlignForArray = T->isArrayType();
6430 
6431   // Analyze the base element type, so we don't get confused by incomplete
6432   // array types.
6433   T = getContext().getBaseElementType(T);
6434 
6435   if (T->isIncompleteType()) {
6436     // We could try to replicate the logic from
6437     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6438     // type is incomplete, so it's impossible to test. We could try to reuse
6439     // getTypeAlignIfKnown, but that doesn't return the information we need
6440     // to set BaseInfo.  So just ignore the possibility that the alignment is
6441     // greater than one.
6442     if (BaseInfo)
6443       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6444     return CharUnits::One();
6445   }
6446 
6447   if (BaseInfo)
6448     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6449 
6450   CharUnits Alignment;
6451   const CXXRecordDecl *RD;
6452   if (T.getQualifiers().hasUnaligned()) {
6453     Alignment = CharUnits::One();
6454   } else if (forPointeeType && !AlignForArray &&
6455              (RD = T->getAsCXXRecordDecl())) {
6456     // For C++ class pointees, we don't know whether we're pointing at a
6457     // base or a complete object, so we generally need to use the
6458     // non-virtual alignment.
6459     Alignment = getClassPointerAlignment(RD);
6460   } else {
6461     Alignment = getContext().getTypeAlignInChars(T);
6462   }
6463 
6464   // Cap to the global maximum type alignment unless the alignment
6465   // was somehow explicit on the type.
6466   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6467     if (Alignment.getQuantity() > MaxAlign &&
6468         !getContext().isAlignmentRequired(T))
6469       Alignment = CharUnits::fromQuantity(MaxAlign);
6470   }
6471   return Alignment;
6472 }
6473 
6474 bool CodeGenModule::stopAutoInit() {
6475   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6476   if (StopAfter) {
6477     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6478     // used
6479     if (NumAutoVarInit >= StopAfter) {
6480       return true;
6481     }
6482     if (!NumAutoVarInit) {
6483       unsigned DiagID = getDiags().getCustomDiagID(
6484           DiagnosticsEngine::Warning,
6485           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6486           "number of times ftrivial-auto-var-init=%1 gets applied.");
6487       getDiags().Report(DiagID)
6488           << StopAfter
6489           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6490                       LangOptions::TrivialAutoVarInitKind::Zero
6491                   ? "zero"
6492                   : "pattern");
6493     }
6494     ++NumAutoVarInit;
6495   }
6496   return false;
6497 }
6498 
6499 void CodeGenModule::printPostfixForExternalizedStaticVar(
6500     llvm::raw_ostream &OS) const {
6501   OS << "__static__" << getContext().getCUIDHash();
6502 }
6503