xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 3b162f73d8027dcd8261666a40e9bdfb40f4dacc)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CodeGenOptions.h"
42 #include "clang/Basic/Diagnostic.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/BinaryFormat/ELF.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/RISCVISAInfo.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/TargetParser/X86TargetParser.h"
74 #include "llvm/Transforms/Utils/BuildLibCalls.h"
75 #include <optional>
76 
77 using namespace clang;
78 using namespace CodeGen;
79 
80 static llvm::cl::opt<bool> LimitedCoverage(
81     "limited-coverage-experimental", llvm::cl::Hidden,
82     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
83 
84 static const char AnnotationSection[] = "llvm.metadata";
85 
86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
87   switch (CGM.getContext().getCXXABIKind()) {
88   case TargetCXXABI::AppleARM64:
89   case TargetCXXABI::Fuchsia:
90   case TargetCXXABI::GenericAArch64:
91   case TargetCXXABI::GenericARM:
92   case TargetCXXABI::iOS:
93   case TargetCXXABI::WatchOS:
94   case TargetCXXABI::GenericMIPS:
95   case TargetCXXABI::GenericItanium:
96   case TargetCXXABI::WebAssembly:
97   case TargetCXXABI::XL:
98     return CreateItaniumCXXABI(CGM);
99   case TargetCXXABI::Microsoft:
100     return CreateMicrosoftCXXABI(CGM);
101   }
102 
103   llvm_unreachable("invalid C++ ABI kind");
104 }
105 
106 static std::unique_ptr<TargetCodeGenInfo>
107 createTargetCodeGenInfo(CodeGenModule &CGM) {
108   const TargetInfo &Target = CGM.getTarget();
109   const llvm::Triple &Triple = Target.getTriple();
110   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
111 
112   switch (Triple.getArch()) {
113   default:
114     return createDefaultTargetCodeGenInfo(CGM);
115 
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145     else if (Target.getABI() == "aapcs-soft")
146       Kind = AArch64ABIKind::AAPCSSoft;
147     else if (Target.getABI() == "pauthtest")
148       Kind = AArch64ABIKind::PAuthTest;
149 
150     return createAArch64TargetCodeGenInfo(CGM, Kind);
151   }
152 
153   case llvm::Triple::wasm32:
154   case llvm::Triple::wasm64: {
155     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
156     if (Target.getABI() == "experimental-mv")
157       Kind = WebAssemblyABIKind::ExperimentalMV;
158     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
159   }
160 
161   case llvm::Triple::arm:
162   case llvm::Triple::armeb:
163   case llvm::Triple::thumb:
164   case llvm::Triple::thumbeb: {
165     if (Triple.getOS() == llvm::Triple::Win32)
166       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
167 
168     ARMABIKind Kind = ARMABIKind::AAPCS;
169     StringRef ABIStr = Target.getABI();
170     if (ABIStr == "apcs-gnu")
171       Kind = ARMABIKind::APCS;
172     else if (ABIStr == "aapcs16")
173       Kind = ARMABIKind::AAPCS16_VFP;
174     else if (CodeGenOpts.FloatABI == "hard" ||
175              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
176       Kind = ARMABIKind::AAPCS_VFP;
177 
178     return createARMTargetCodeGenInfo(CGM, Kind);
179   }
180 
181   case llvm::Triple::ppc: {
182     if (Triple.isOSAIX())
183       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
184 
185     bool IsSoftFloat =
186         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
187     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
188   }
189   case llvm::Triple::ppcle: {
190     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppc64:
194     if (Triple.isOSAIX())
195       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
196 
197     if (Triple.isOSBinFormatELF()) {
198       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
199       if (Target.getABI() == "elfv2")
200         Kind = PPC64_SVR4_ABIKind::ELFv2;
201       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
202 
203       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
204     }
205     return createPPC64TargetCodeGenInfo(CGM);
206   case llvm::Triple::ppc64le: {
207     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
208     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
209     if (Target.getABI() == "elfv1")
210       Kind = PPC64_SVR4_ABIKind::ELFv1;
211     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
212 
213     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
214   }
215 
216   case llvm::Triple::nvptx:
217   case llvm::Triple::nvptx64:
218     return createNVPTXTargetCodeGenInfo(CGM);
219 
220   case llvm::Triple::msp430:
221     return createMSP430TargetCodeGenInfo(CGM);
222 
223   case llvm::Triple::riscv32:
224   case llvm::Triple::riscv64: {
225     StringRef ABIStr = Target.getABI();
226     unsigned XLen = Target.getPointerWidth(LangAS::Default);
227     unsigned ABIFLen = 0;
228     if (ABIStr.ends_with("f"))
229       ABIFLen = 32;
230     else if (ABIStr.ends_with("d"))
231       ABIFLen = 64;
232     bool EABI = ABIStr.ends_with("e");
233     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
234   }
235 
236   case llvm::Triple::systemz: {
237     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
238     bool HasVector = !SoftFloat && Target.getABI() == "vector";
239     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
240   }
241 
242   case llvm::Triple::tce:
243   case llvm::Triple::tcele:
244     return createTCETargetCodeGenInfo(CGM);
245 
246   case llvm::Triple::x86: {
247     bool IsDarwinVectorABI = Triple.isOSDarwin();
248     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
249 
250     if (Triple.getOS() == llvm::Triple::Win32) {
251       return createWinX86_32TargetCodeGenInfo(
252           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
253           CodeGenOpts.NumRegisterParameters);
254     }
255     return createX86_32TargetCodeGenInfo(
256         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
258   }
259 
260   case llvm::Triple::x86_64: {
261     StringRef ABI = Target.getABI();
262     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
263                                : ABI == "avx"  ? X86AVXABILevel::AVX
264                                                : X86AVXABILevel::None);
265 
266     switch (Triple.getOS()) {
267     case llvm::Triple::Win32:
268       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     default:
270       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
271     }
272   }
273   case llvm::Triple::hexagon:
274     return createHexagonTargetCodeGenInfo(CGM);
275   case llvm::Triple::lanai:
276     return createLanaiTargetCodeGenInfo(CGM);
277   case llvm::Triple::r600:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::amdgcn:
280     return createAMDGPUTargetCodeGenInfo(CGM);
281   case llvm::Triple::sparc:
282     return createSparcV8TargetCodeGenInfo(CGM);
283   case llvm::Triple::sparcv9:
284     return createSparcV9TargetCodeGenInfo(CGM);
285   case llvm::Triple::xcore:
286     return createXCoreTargetCodeGenInfo(CGM);
287   case llvm::Triple::arc:
288     return createARCTargetCodeGenInfo(CGM);
289   case llvm::Triple::spir:
290   case llvm::Triple::spir64:
291     return createCommonSPIRTargetCodeGenInfo(CGM);
292   case llvm::Triple::spirv32:
293   case llvm::Triple::spirv64:
294   case llvm::Triple::spirv:
295     return createSPIRVTargetCodeGenInfo(CGM);
296   case llvm::Triple::dxil:
297     return createDirectXTargetCodeGenInfo(CGM);
298   case llvm::Triple::ve:
299     return createVETargetCodeGenInfo(CGM);
300   case llvm::Triple::csky: {
301     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
302     bool hasFP64 =
303         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
304     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
305                                             : hasFP64   ? 64
306                                                         : 32);
307   }
308   case llvm::Triple::bpfeb:
309   case llvm::Triple::bpfel:
310     return createBPFTargetCodeGenInfo(CGM);
311   case llvm::Triple::loongarch32:
312   case llvm::Triple::loongarch64: {
313     StringRef ABIStr = Target.getABI();
314     unsigned ABIFRLen = 0;
315     if (ABIStr.ends_with("f"))
316       ABIFRLen = 32;
317     else if (ABIStr.ends_with("d"))
318       ABIFRLen = 64;
319     return createLoongArchTargetCodeGenInfo(
320         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
321   }
322   }
323 }
324 
325 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
326   if (!TheTargetCodeGenInfo)
327     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
328   return *TheTargetCodeGenInfo;
329 }
330 
331 CodeGenModule::CodeGenModule(ASTContext &C,
332                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
333                              const HeaderSearchOptions &HSO,
334                              const PreprocessorOptions &PPO,
335                              const CodeGenOptions &CGO, llvm::Module &M,
336                              DiagnosticsEngine &diags,
337                              CoverageSourceInfo *CoverageInfo)
338     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
339       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
340       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
341       VMContext(M.getContext()), VTables(*this), StackHandler(diags),
342       SanitizerMD(new SanitizerMetadata(*this)) {
343 
344   // Initialize the type cache.
345   Types.reset(new CodeGenTypes(*this));
346   llvm::LLVMContext &LLVMContext = M.getContext();
347   VoidTy = llvm::Type::getVoidTy(LLVMContext);
348   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
349   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
350   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
351   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
352   HalfTy = llvm::Type::getHalfTy(LLVMContext);
353   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
354   FloatTy = llvm::Type::getFloatTy(LLVMContext);
355   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
356   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
357   PointerAlignInBytes =
358       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
359           .getQuantity();
360   SizeSizeInBytes =
361     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
362   IntAlignInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
364   CharTy =
365     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
366   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
367   IntPtrTy = llvm::IntegerType::get(LLVMContext,
368     C.getTargetInfo().getMaxPointerWidth());
369   Int8PtrTy = llvm::PointerType::get(LLVMContext,
370                                      C.getTargetAddressSpace(LangAS::Default));
371   const llvm::DataLayout &DL = M.getDataLayout();
372   AllocaInt8PtrTy =
373       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
374   GlobalsInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
376   ConstGlobalsPtrTy = llvm::PointerType::get(
377       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
378   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
379 
380   // Build C++20 Module initializers.
381   // TODO: Add Microsoft here once we know the mangling required for the
382   // initializers.
383   CXX20ModuleInits =
384       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
385                                        ItaniumMangleContext::MK_Itanium;
386 
387   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
388 
389   if (LangOpts.ObjC)
390     createObjCRuntime();
391   if (LangOpts.OpenCL)
392     createOpenCLRuntime();
393   if (LangOpts.OpenMP)
394     createOpenMPRuntime();
395   if (LangOpts.CUDA)
396     createCUDARuntime();
397   if (LangOpts.HLSL)
398     createHLSLRuntime();
399 
400   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
401   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
402       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
403     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
404                                getLangOpts()));
405 
406   // If debug info or coverage generation is enabled, create the CGDebugInfo
407   // object.
408   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
409       CodeGenOpts.CoverageNotesFile.size() ||
410       CodeGenOpts.CoverageDataFile.size())
411     DebugInfo.reset(new CGDebugInfo(*this));
412 
413   Block.GlobalUniqueCount = 0;
414 
415   if (C.getLangOpts().ObjC)
416     ObjCData.reset(new ObjCEntrypoints());
417 
418   if (CodeGenOpts.hasProfileClangUse()) {
419     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
420         CodeGenOpts.ProfileInstrumentUsePath, *FS,
421         CodeGenOpts.ProfileRemappingFile);
422     // We're checking for profile read errors in CompilerInvocation, so if
423     // there was an error it should've already been caught. If it hasn't been
424     // somehow, trip an assertion.
425     assert(ReaderOrErr);
426     PGOReader = std::move(ReaderOrErr.get());
427   }
428 
429   // If coverage mapping generation is enabled, create the
430   // CoverageMappingModuleGen object.
431   if (CodeGenOpts.CoverageMapping)
432     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
433 
434   // Generate the module name hash here if needed.
435   if (CodeGenOpts.UniqueInternalLinkageNames &&
436       !getModule().getSourceFileName().empty()) {
437     std::string Path = getModule().getSourceFileName();
438     // Check if a path substitution is needed from the MacroPrefixMap.
439     for (const auto &Entry : LangOpts.MacroPrefixMap)
440       if (Path.rfind(Entry.first, 0) != std::string::npos) {
441         Path = Entry.second + Path.substr(Entry.first.size());
442         break;
443       }
444     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
445   }
446 
447   // Record mregparm value now so it is visible through all of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 }
452 
453 CodeGenModule::~CodeGenModule() {}
454 
455 void CodeGenModule::createObjCRuntime() {
456   // This is just isGNUFamily(), but we want to force implementors of
457   // new ABIs to decide how best to do this.
458   switch (LangOpts.ObjCRuntime.getKind()) {
459   case ObjCRuntime::GNUstep:
460   case ObjCRuntime::GCC:
461   case ObjCRuntime::ObjFW:
462     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
463     return;
464 
465   case ObjCRuntime::FragileMacOSX:
466   case ObjCRuntime::MacOSX:
467   case ObjCRuntime::iOS:
468   case ObjCRuntime::WatchOS:
469     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
470     return;
471   }
472   llvm_unreachable("bad runtime kind");
473 }
474 
475 void CodeGenModule::createOpenCLRuntime() {
476   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
477 }
478 
479 void CodeGenModule::createOpenMPRuntime() {
480   // Select a specialized code generation class based on the target, if any.
481   // If it does not exist use the default implementation.
482   switch (getTriple().getArch()) {
483   case llvm::Triple::nvptx:
484   case llvm::Triple::nvptx64:
485   case llvm::Triple::amdgcn:
486     assert(getLangOpts().OpenMPIsTargetDevice &&
487            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
488     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
489     break;
490   default:
491     if (LangOpts.OpenMPSimd)
492       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
493     else
494       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
495     break;
496   }
497 }
498 
499 void CodeGenModule::createCUDARuntime() {
500   CUDARuntime.reset(CreateNVCUDARuntime(*this));
501 }
502 
503 void CodeGenModule::createHLSLRuntime() {
504   HLSLRuntime.reset(new CGHLSLRuntime(*this));
505 }
506 
507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
508   Replacements[Name] = C;
509 }
510 
511 void CodeGenModule::applyReplacements() {
512   for (auto &I : Replacements) {
513     StringRef MangledName = I.first;
514     llvm::Constant *Replacement = I.second;
515     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
516     if (!Entry)
517       continue;
518     auto *OldF = cast<llvm::Function>(Entry);
519     auto *NewF = dyn_cast<llvm::Function>(Replacement);
520     if (!NewF) {
521       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
522         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
523       } else {
524         auto *CE = cast<llvm::ConstantExpr>(Replacement);
525         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
526                CE->getOpcode() == llvm::Instruction::GetElementPtr);
527         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
528       }
529     }
530 
531     // Replace old with new, but keep the old order.
532     OldF->replaceAllUsesWith(Replacement);
533     if (NewF) {
534       NewF->removeFromParent();
535       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
536                                                        NewF);
537     }
538     OldF->eraseFromParent();
539   }
540 }
541 
542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
543   GlobalValReplacements.push_back(std::make_pair(GV, C));
544 }
545 
546 void CodeGenModule::applyGlobalValReplacements() {
547   for (auto &I : GlobalValReplacements) {
548     llvm::GlobalValue *GV = I.first;
549     llvm::Constant *C = I.second;
550 
551     GV->replaceAllUsesWith(C);
552     GV->eraseFromParent();
553   }
554 }
555 
556 // This is only used in aliases that we created and we know they have a
557 // linear structure.
558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
559   const llvm::Constant *C;
560   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
561     C = GA->getAliasee();
562   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
563     C = GI->getResolver();
564   else
565     return GV;
566 
567   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
568   if (!AliaseeGV)
569     return nullptr;
570 
571   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
572   if (FinalGV == GV)
573     return nullptr;
574 
575   return FinalGV;
576 }
577 
578 static bool checkAliasedGlobal(
579     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
580     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
581     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
582     SourceRange AliasRange) {
583   GV = getAliasedGlobal(Alias);
584   if (!GV) {
585     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
586     return false;
587   }
588 
589   if (GV->hasCommonLinkage()) {
590     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
591     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
592       Diags.Report(Location, diag::err_alias_to_common);
593       return false;
594     }
595   }
596 
597   if (GV->isDeclaration()) {
598     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
599     Diags.Report(Location, diag::note_alias_requires_mangled_name)
600         << IsIFunc << IsIFunc;
601     // Provide a note if the given function is not found and exists as a
602     // mangled name.
603     for (const auto &[Decl, Name] : MangledDeclNames) {
604       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
605         if (ND->getName() == GV->getName()) {
606           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
607               << Name
608               << FixItHint::CreateReplacement(
609                      AliasRange,
610                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
611                          .str());
612         }
613       }
614     }
615     return false;
616   }
617 
618   if (IsIFunc) {
619     // Check resolver function type.
620     const auto *F = dyn_cast<llvm::Function>(GV);
621     if (!F) {
622       Diags.Report(Location, diag::err_alias_to_undefined)
623           << IsIFunc << IsIFunc;
624       return false;
625     }
626 
627     llvm::FunctionType *FTy = F->getFunctionType();
628     if (!FTy->getReturnType()->isPointerTy()) {
629       Diags.Report(Location, diag::err_ifunc_resolver_return);
630       return false;
631     }
632   }
633 
634   return true;
635 }
636 
637 // Emit a warning if toc-data attribute is requested for global variables that
638 // have aliases and remove the toc-data attribute.
639 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
640                                  const CodeGenOptions &CodeGenOpts,
641                                  DiagnosticsEngine &Diags,
642                                  SourceLocation Location) {
643   if (GVar->hasAttribute("toc-data")) {
644     auto GVId = GVar->getName();
645     // Is this a global variable specified by the user as local?
646     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
647       Diags.Report(Location, diag::warn_toc_unsupported_type)
648           << GVId << "the variable has an alias";
649     }
650     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
651     llvm::AttributeSet NewAttributes =
652         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
653     GVar->setAttributes(NewAttributes);
654   }
655 }
656 
657 void CodeGenModule::checkAliases() {
658   // Check if the constructed aliases are well formed. It is really unfortunate
659   // that we have to do this in CodeGen, but we only construct mangled names
660   // and aliases during codegen.
661   bool Error = false;
662   DiagnosticsEngine &Diags = getDiags();
663   for (const GlobalDecl &GD : Aliases) {
664     const auto *D = cast<ValueDecl>(GD.getDecl());
665     SourceLocation Location;
666     SourceRange Range;
667     bool IsIFunc = D->hasAttr<IFuncAttr>();
668     if (const Attr *A = D->getDefiningAttr()) {
669       Location = A->getLocation();
670       Range = A->getRange();
671     } else
672       llvm_unreachable("Not an alias or ifunc?");
673 
674     StringRef MangledName = getMangledName(GD);
675     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
676     const llvm::GlobalValue *GV = nullptr;
677     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
678                             MangledDeclNames, Range)) {
679       Error = true;
680       continue;
681     }
682 
683     if (getContext().getTargetInfo().getTriple().isOSAIX())
684       if (const llvm::GlobalVariable *GVar =
685               dyn_cast<const llvm::GlobalVariable>(GV))
686         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
687                              getCodeGenOpts(), Diags, Location);
688 
689     llvm::Constant *Aliasee =
690         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
691                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
692 
693     llvm::GlobalValue *AliaseeGV;
694     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
695       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
696     else
697       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
698 
699     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
700       StringRef AliasSection = SA->getName();
701       if (AliasSection != AliaseeGV->getSection())
702         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
703             << AliasSection << IsIFunc << IsIFunc;
704     }
705 
706     // We have to handle alias to weak aliases in here. LLVM itself disallows
707     // this since the object semantics would not match the IL one. For
708     // compatibility with gcc we implement it by just pointing the alias
709     // to its aliasee's aliasee. We also warn, since the user is probably
710     // expecting the link to be weak.
711     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
712       if (GA->isInterposable()) {
713         Diags.Report(Location, diag::warn_alias_to_weak_alias)
714             << GV->getName() << GA->getName() << IsIFunc;
715         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
716             GA->getAliasee(), Alias->getType());
717 
718         if (IsIFunc)
719           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
720         else
721           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
722       }
723     }
724     // ifunc resolvers are usually implemented to run before sanitizer
725     // initialization. Disable instrumentation to prevent the ordering issue.
726     if (IsIFunc)
727       cast<llvm::Function>(Aliasee)->addFnAttr(
728           llvm::Attribute::DisableSanitizerInstrumentation);
729   }
730   if (!Error)
731     return;
732 
733   for (const GlobalDecl &GD : Aliases) {
734     StringRef MangledName = getMangledName(GD);
735     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
736     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
737     Alias->eraseFromParent();
738   }
739 }
740 
741 void CodeGenModule::clear() {
742   DeferredDeclsToEmit.clear();
743   EmittedDeferredDecls.clear();
744   DeferredAnnotations.clear();
745   if (OpenMPRuntime)
746     OpenMPRuntime->clear();
747 }
748 
749 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
750                                        StringRef MainFile) {
751   if (!hasDiagnostics())
752     return;
753   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
754     if (MainFile.empty())
755       MainFile = "<stdin>";
756     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
757   } else {
758     if (Mismatched > 0)
759       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
760 
761     if (Missing > 0)
762       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
763   }
764 }
765 
766 static std::optional<llvm::GlobalValue::VisibilityTypes>
767 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
768   // Map to LLVM visibility.
769   switch (K) {
770   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
771     return std::nullopt;
772   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
773     return llvm::GlobalValue::DefaultVisibility;
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
775     return llvm::GlobalValue::HiddenVisibility;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
777     return llvm::GlobalValue::ProtectedVisibility;
778   }
779   llvm_unreachable("unknown option value!");
780 }
781 
782 static void
783 setLLVMVisibility(llvm::GlobalValue &GV,
784                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
785   if (!V)
786     return;
787 
788   // Reset DSO locality before setting the visibility. This removes
789   // any effects that visibility options and annotations may have
790   // had on the DSO locality. Setting the visibility will implicitly set
791   // appropriate globals to DSO Local; however, this will be pessimistic
792   // w.r.t. to the normal compiler IRGen.
793   GV.setDSOLocal(false);
794   GV.setVisibility(*V);
795 }
796 
797 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
798                                              llvm::Module &M) {
799   if (!LO.VisibilityFromDLLStorageClass)
800     return;
801 
802   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
803       getLLVMVisibility(LO.getDLLExportVisibility());
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes>
806       NoDLLStorageClassVisibility =
807           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       ExternDeclDLLImportVisibility =
811           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
812 
813   std::optional<llvm::GlobalValue::VisibilityTypes>
814       ExternDeclNoDLLStorageClassVisibility =
815           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
816 
817   for (llvm::GlobalValue &GV : M.global_values()) {
818     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
819       continue;
820 
821     if (GV.isDeclarationForLinker())
822       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
823                                     llvm::GlobalValue::DLLImportStorageClass
824                                 ? ExternDeclDLLImportVisibility
825                                 : ExternDeclNoDLLStorageClassVisibility);
826     else
827       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
828                                     llvm::GlobalValue::DLLExportStorageClass
829                                 ? DLLExportVisibility
830                                 : NoDLLStorageClassVisibility);
831 
832     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
833   }
834 }
835 
836 static bool isStackProtectorOn(const LangOptions &LangOpts,
837                                const llvm::Triple &Triple,
838                                clang::LangOptions::StackProtectorMode Mode) {
839   if (Triple.isAMDGPU() || Triple.isNVPTX())
840     return false;
841   return LangOpts.getStackProtector() == Mode;
842 }
843 
844 void CodeGenModule::Release() {
845   Module *Primary = getContext().getCurrentNamedModule();
846   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
847     EmitModuleInitializers(Primary);
848   EmitDeferred();
849   DeferredDecls.insert(EmittedDeferredDecls.begin(),
850                        EmittedDeferredDecls.end());
851   EmittedDeferredDecls.clear();
852   EmitVTablesOpportunistically();
853   applyGlobalValReplacements();
854   applyReplacements();
855   emitMultiVersionFunctions();
856 
857   if (Context.getLangOpts().IncrementalExtensions &&
858       GlobalTopLevelStmtBlockInFlight.first) {
859     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
860     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
861     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
862   }
863 
864   // Module implementations are initialized the same way as a regular TU that
865   // imports one or more modules.
866   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
867     EmitCXXModuleInitFunc(Primary);
868   else
869     EmitCXXGlobalInitFunc();
870   EmitCXXGlobalCleanUpFunc();
871   registerGlobalDtorsWithAtExit();
872   EmitCXXThreadLocalInitFunc();
873   if (ObjCRuntime)
874     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
875       AddGlobalCtor(ObjCInitFunction);
876   if (Context.getLangOpts().CUDA && CUDARuntime) {
877     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
878       AddGlobalCtor(CudaCtorFunction);
879   }
880   if (OpenMPRuntime) {
881     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
882     OpenMPRuntime->clear();
883   }
884   if (PGOReader) {
885     getModule().setProfileSummary(
886         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
887         llvm::ProfileSummary::PSK_Instr);
888     if (PGOStats.hasDiagnostics())
889       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
890   }
891   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
892     return L.LexOrder < R.LexOrder;
893   });
894   EmitCtorList(GlobalCtors, "llvm.global_ctors");
895   EmitCtorList(GlobalDtors, "llvm.global_dtors");
896   EmitGlobalAnnotations();
897   EmitStaticExternCAliases();
898   checkAliases();
899   EmitDeferredUnusedCoverageMappings();
900   CodeGenPGO(*this).setValueProfilingFlag(getModule());
901   CodeGenPGO(*this).setProfileVersion(getModule());
902   if (CoverageMapping)
903     CoverageMapping->emit();
904   if (CodeGenOpts.SanitizeCfiCrossDso) {
905     CodeGenFunction(*this).EmitCfiCheckFail();
906     CodeGenFunction(*this).EmitCfiCheckStub();
907   }
908   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
909     finalizeKCFITypes();
910   emitAtAvailableLinkGuard();
911   if (Context.getTargetInfo().getTriple().isWasm())
912     EmitMainVoidAlias();
913 
914   if (getTriple().isAMDGPU() ||
915       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
916     // Emit amdhsa_code_object_version module flag, which is code object version
917     // times 100.
918     if (getTarget().getTargetOpts().CodeObjectVersion !=
919         llvm::CodeObjectVersionKind::COV_None) {
920       getModule().addModuleFlag(llvm::Module::Error,
921                                 "amdhsa_code_object_version",
922                                 getTarget().getTargetOpts().CodeObjectVersion);
923     }
924 
925     // Currently, "-mprintf-kind" option is only supported for HIP
926     if (LangOpts.HIP) {
927       auto *MDStr = llvm::MDString::get(
928           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
929                              TargetOptions::AMDGPUPrintfKind::Hostcall)
930                                 ? "hostcall"
931                                 : "buffered");
932       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
933                                 MDStr);
934     }
935   }
936 
937   // Emit a global array containing all external kernels or device variables
938   // used by host functions and mark it as used for CUDA/HIP. This is necessary
939   // to get kernels or device variables in archives linked in even if these
940   // kernels or device variables are only used in host functions.
941   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
942     SmallVector<llvm::Constant *, 8> UsedArray;
943     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
944       GlobalDecl GD;
945       if (auto *FD = dyn_cast<FunctionDecl>(D))
946         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
947       else
948         GD = GlobalDecl(D);
949       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
950           GetAddrOfGlobal(GD), Int8PtrTy));
951     }
952 
953     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
954 
955     auto *GV = new llvm::GlobalVariable(
956         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
957         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
958     addCompilerUsedGlobal(GV);
959   }
960   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
961     // Emit a unique ID so that host and device binaries from the same
962     // compilation unit can be associated.
963     auto *GV = new llvm::GlobalVariable(
964         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
965         llvm::Constant::getNullValue(Int8Ty),
966         "__hip_cuid_" + getContext().getCUIDHash());
967     addCompilerUsedGlobal(GV);
968   }
969   emitLLVMUsed();
970   if (SanStats)
971     SanStats->finish();
972 
973   if (CodeGenOpts.Autolink &&
974       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
975     EmitModuleLinkOptions();
976   }
977 
978   // On ELF we pass the dependent library specifiers directly to the linker
979   // without manipulating them. This is in contrast to other platforms where
980   // they are mapped to a specific linker option by the compiler. This
981   // difference is a result of the greater variety of ELF linkers and the fact
982   // that ELF linkers tend to handle libraries in a more complicated fashion
983   // than on other platforms. This forces us to defer handling the dependent
984   // libs to the linker.
985   //
986   // CUDA/HIP device and host libraries are different. Currently there is no
987   // way to differentiate dependent libraries for host or device. Existing
988   // usage of #pragma comment(lib, *) is intended for host libraries on
989   // Windows. Therefore emit llvm.dependent-libraries only for host.
990   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
991     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
992     for (auto *MD : ELFDependentLibraries)
993       NMD->addOperand(MD);
994   }
995 
996   if (CodeGenOpts.DwarfVersion) {
997     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
998                               CodeGenOpts.DwarfVersion);
999   }
1000 
1001   if (CodeGenOpts.Dwarf64)
1002     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1003 
1004   if (Context.getLangOpts().SemanticInterposition)
1005     // Require various optimization to respect semantic interposition.
1006     getModule().setSemanticInterposition(true);
1007 
1008   if (CodeGenOpts.EmitCodeView) {
1009     // Indicate that we want CodeView in the metadata.
1010     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1011   }
1012   if (CodeGenOpts.CodeViewGHash) {
1013     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1014   }
1015   if (CodeGenOpts.ControlFlowGuard) {
1016     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1017     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1018   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1019     // Function ID tables for Control Flow Guard (cfguard=1).
1020     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1021   }
1022   if (CodeGenOpts.EHContGuard) {
1023     // Function ID tables for EH Continuation Guard.
1024     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1025   }
1026   if (Context.getLangOpts().Kernel) {
1027     // Note if we are compiling with /kernel.
1028     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1029   }
1030   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1031     // We don't support LTO with 2 with different StrictVTablePointers
1032     // FIXME: we could support it by stripping all the information introduced
1033     // by StrictVTablePointers.
1034 
1035     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1036 
1037     llvm::Metadata *Ops[2] = {
1038               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1039               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1040                   llvm::Type::getInt32Ty(VMContext), 1))};
1041 
1042     getModule().addModuleFlag(llvm::Module::Require,
1043                               "StrictVTablePointersRequirement",
1044                               llvm::MDNode::get(VMContext, Ops));
1045   }
1046   if (getModuleDebugInfo())
1047     // We support a single version in the linked module. The LLVM
1048     // parser will drop debug info with a different version number
1049     // (and warn about it, too).
1050     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1051                               llvm::DEBUG_METADATA_VERSION);
1052 
1053   // We need to record the widths of enums and wchar_t, so that we can generate
1054   // the correct build attributes in the ARM backend. wchar_size is also used by
1055   // TargetLibraryInfo.
1056   uint64_t WCharWidth =
1057       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1058   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1059 
1060   if (getTriple().isOSzOS()) {
1061     getModule().addModuleFlag(llvm::Module::Warning,
1062                               "zos_product_major_version",
1063                               uint32_t(CLANG_VERSION_MAJOR));
1064     getModule().addModuleFlag(llvm::Module::Warning,
1065                               "zos_product_minor_version",
1066                               uint32_t(CLANG_VERSION_MINOR));
1067     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1068                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1069     std::string ProductId = getClangVendor() + "clang";
1070     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1071                               llvm::MDString::get(VMContext, ProductId));
1072 
1073     // Record the language because we need it for the PPA2.
1074     StringRef lang_str = languageToString(
1075         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1076     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1077                               llvm::MDString::get(VMContext, lang_str));
1078 
1079     time_t TT = PreprocessorOpts.SourceDateEpoch
1080                     ? *PreprocessorOpts.SourceDateEpoch
1081                     : std::time(nullptr);
1082     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1083                               static_cast<uint64_t>(TT));
1084 
1085     // Multiple modes will be supported here.
1086     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1087                               llvm::MDString::get(VMContext, "ascii"));
1088   }
1089 
1090   llvm::Triple T = Context.getTargetInfo().getTriple();
1091   if (T.isARM() || T.isThumb()) {
1092     // The minimum width of an enum in bytes
1093     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1094     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1095   }
1096 
1097   if (T.isRISCV()) {
1098     StringRef ABIStr = Target.getABI();
1099     llvm::LLVMContext &Ctx = TheModule.getContext();
1100     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1101                               llvm::MDString::get(Ctx, ABIStr));
1102 
1103     // Add the canonical ISA string as metadata so the backend can set the ELF
1104     // attributes correctly. We use AppendUnique so LTO will keep all of the
1105     // unique ISA strings that were linked together.
1106     const std::vector<std::string> &Features =
1107         getTarget().getTargetOpts().Features;
1108     auto ParseResult =
1109         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1110     if (!errorToBool(ParseResult.takeError()))
1111       getModule().addModuleFlag(
1112           llvm::Module::AppendUnique, "riscv-isa",
1113           llvm::MDNode::get(
1114               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1115   }
1116 
1117   if (CodeGenOpts.SanitizeCfiCrossDso) {
1118     // Indicate that we want cross-DSO control flow integrity checks.
1119     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1120   }
1121 
1122   if (CodeGenOpts.WholeProgramVTables) {
1123     // Indicate whether VFE was enabled for this module, so that the
1124     // vcall_visibility metadata added under whole program vtables is handled
1125     // appropriately in the optimizer.
1126     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1127                               CodeGenOpts.VirtualFunctionElimination);
1128   }
1129 
1130   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1131     getModule().addModuleFlag(llvm::Module::Override,
1132                               "CFI Canonical Jump Tables",
1133                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1134   }
1135 
1136   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1137     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1138                               1);
1139   }
1140 
1141   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1142     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1143     // KCFI assumes patchable-function-prefix is the same for all indirectly
1144     // called functions. Store the expected offset for code generation.
1145     if (CodeGenOpts.PatchableFunctionEntryOffset)
1146       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1147                                 CodeGenOpts.PatchableFunctionEntryOffset);
1148   }
1149 
1150   if (CodeGenOpts.CFProtectionReturn &&
1151       Target.checkCFProtectionReturnSupported(getDiags())) {
1152     // Indicate that we want to instrument return control flow protection.
1153     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1154                               1);
1155   }
1156 
1157   if (CodeGenOpts.CFProtectionBranch &&
1158       Target.checkCFProtectionBranchSupported(getDiags())) {
1159     // Indicate that we want to instrument branch control flow protection.
1160     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1161                               1);
1162 
1163     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1164     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1165       if (Scheme == CFBranchLabelSchemeKind::Default)
1166         Scheme = Target.getDefaultCFBranchLabelScheme();
1167       getModule().addModuleFlag(
1168           llvm::Module::Error, "cf-branch-label-scheme",
1169           llvm::MDString::get(getLLVMContext(),
1170                               getCFBranchLabelSchemeFlagVal(Scheme)));
1171     }
1172   }
1173 
1174   if (CodeGenOpts.FunctionReturnThunks)
1175     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1176 
1177   if (CodeGenOpts.IndirectBranchCSPrefix)
1178     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1179 
1180   // Add module metadata for return address signing (ignoring
1181   // non-leaf/all) and stack tagging. These are actually turned on by function
1182   // attributes, but we use module metadata to emit build attributes. This is
1183   // needed for LTO, where the function attributes are inside bitcode
1184   // serialised into a global variable by the time build attributes are
1185   // emitted, so we can't access them. LTO objects could be compiled with
1186   // different flags therefore module flags are set to "Min" behavior to achieve
1187   // the same end result of the normal build where e.g BTI is off if any object
1188   // doesn't support it.
1189   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1190       LangOpts.getSignReturnAddressScope() !=
1191           LangOptions::SignReturnAddressScopeKind::None)
1192     getModule().addModuleFlag(llvm::Module::Override,
1193                               "sign-return-address-buildattr", 1);
1194   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1195     getModule().addModuleFlag(llvm::Module::Override,
1196                               "tag-stack-memory-buildattr", 1);
1197 
1198   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1199     if (LangOpts.BranchTargetEnforcement)
1200       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1201                                 1);
1202     if (LangOpts.BranchProtectionPAuthLR)
1203       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1204                                 1);
1205     if (LangOpts.GuardedControlStack)
1206       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1207     if (LangOpts.hasSignReturnAddress())
1208       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1209     if (LangOpts.isSignReturnAddressScopeAll())
1210       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1211                                 1);
1212     if (!LangOpts.isSignReturnAddressWithAKey())
1213       getModule().addModuleFlag(llvm::Module::Min,
1214                                 "sign-return-address-with-bkey", 1);
1215 
1216     if (LangOpts.PointerAuthELFGOT)
1217       getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1);
1218 
1219     if (getTriple().isOSLinux()) {
1220       assert(getTriple().isOSBinFormatELF());
1221       using namespace llvm::ELF;
1222       uint64_t PAuthABIVersion =
1223           (LangOpts.PointerAuthIntrinsics
1224            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1225           (LangOpts.PointerAuthCalls
1226            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1227           (LangOpts.PointerAuthReturns
1228            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1229           (LangOpts.PointerAuthAuthTraps
1230            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1231           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1232            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1233           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1234            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1235           (LangOpts.PointerAuthInitFini
1236            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1237           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1238            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1239           (LangOpts.PointerAuthELFGOT
1240            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1241           (LangOpts.PointerAuthIndirectGotos
1242            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1243           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1244            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1245           (LangOpts.PointerAuthFunctionTypeDiscrimination
1246            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1247       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1248                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1249                     "Update when new enum items are defined");
1250       if (PAuthABIVersion != 0) {
1251         getModule().addModuleFlag(llvm::Module::Error,
1252                                   "aarch64-elf-pauthabi-platform",
1253                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1254         getModule().addModuleFlag(llvm::Module::Error,
1255                                   "aarch64-elf-pauthabi-version",
1256                                   PAuthABIVersion);
1257       }
1258     }
1259   }
1260 
1261   if (CodeGenOpts.StackClashProtector)
1262     getModule().addModuleFlag(
1263         llvm::Module::Override, "probe-stack",
1264         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1265 
1266   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1267     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1268                               CodeGenOpts.StackProbeSize);
1269 
1270   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1271     llvm::LLVMContext &Ctx = TheModule.getContext();
1272     getModule().addModuleFlag(
1273         llvm::Module::Error, "MemProfProfileFilename",
1274         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1275   }
1276 
1277   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1278     // Indicate whether __nvvm_reflect should be configured to flush denormal
1279     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1280     // property.)
1281     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1282                               CodeGenOpts.FP32DenormalMode.Output !=
1283                                   llvm::DenormalMode::IEEE);
1284   }
1285 
1286   if (LangOpts.EHAsynch)
1287     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1288 
1289   // Indicate whether this Module was compiled with -fopenmp
1290   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1291     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1292   if (getLangOpts().OpenMPIsTargetDevice)
1293     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1294                               LangOpts.OpenMP);
1295 
1296   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1297   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1298     EmitOpenCLMetadata();
1299     // Emit SPIR version.
1300     if (getTriple().isSPIR()) {
1301       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1302       // opencl.spir.version named metadata.
1303       // C++ for OpenCL has a distinct mapping for version compatibility with
1304       // OpenCL.
1305       auto Version = LangOpts.getOpenCLCompatibleVersion();
1306       llvm::Metadata *SPIRVerElts[] = {
1307           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1308               Int32Ty, Version / 100)),
1309           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1310               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1311       llvm::NamedMDNode *SPIRVerMD =
1312           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1313       llvm::LLVMContext &Ctx = TheModule.getContext();
1314       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1315     }
1316   }
1317 
1318   // HLSL related end of code gen work items.
1319   if (LangOpts.HLSL)
1320     getHLSLRuntime().finishCodeGen();
1321 
1322   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1323     assert(PLevel < 3 && "Invalid PIC Level");
1324     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1325     if (Context.getLangOpts().PIE)
1326       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1327   }
1328 
1329   if (getCodeGenOpts().CodeModel.size() > 0) {
1330     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1331                   .Case("tiny", llvm::CodeModel::Tiny)
1332                   .Case("small", llvm::CodeModel::Small)
1333                   .Case("kernel", llvm::CodeModel::Kernel)
1334                   .Case("medium", llvm::CodeModel::Medium)
1335                   .Case("large", llvm::CodeModel::Large)
1336                   .Default(~0u);
1337     if (CM != ~0u) {
1338       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1339       getModule().setCodeModel(codeModel);
1340 
1341       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1342           Context.getTargetInfo().getTriple().getArch() ==
1343               llvm::Triple::x86_64) {
1344         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1345       }
1346     }
1347   }
1348 
1349   if (CodeGenOpts.NoPLT)
1350     getModule().setRtLibUseGOT();
1351   if (getTriple().isOSBinFormatELF() &&
1352       CodeGenOpts.DirectAccessExternalData !=
1353           getModule().getDirectAccessExternalData()) {
1354     getModule().setDirectAccessExternalData(
1355         CodeGenOpts.DirectAccessExternalData);
1356   }
1357   if (CodeGenOpts.UnwindTables)
1358     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1359 
1360   switch (CodeGenOpts.getFramePointer()) {
1361   case CodeGenOptions::FramePointerKind::None:
1362     // 0 ("none") is the default.
1363     break;
1364   case CodeGenOptions::FramePointerKind::Reserved:
1365     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1366     break;
1367   case CodeGenOptions::FramePointerKind::NonLeaf:
1368     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1369     break;
1370   case CodeGenOptions::FramePointerKind::All:
1371     getModule().setFramePointer(llvm::FramePointerKind::All);
1372     break;
1373   }
1374 
1375   SimplifyPersonality();
1376 
1377   if (getCodeGenOpts().EmitDeclMetadata)
1378     EmitDeclMetadata();
1379 
1380   if (getCodeGenOpts().CoverageNotesFile.size() ||
1381       getCodeGenOpts().CoverageDataFile.size())
1382     EmitCoverageFile();
1383 
1384   if (CGDebugInfo *DI = getModuleDebugInfo())
1385     DI->finalize();
1386 
1387   if (getCodeGenOpts().EmitVersionIdentMetadata)
1388     EmitVersionIdentMetadata();
1389 
1390   if (!getCodeGenOpts().RecordCommandLine.empty())
1391     EmitCommandLineMetadata();
1392 
1393   if (!getCodeGenOpts().StackProtectorGuard.empty())
1394     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1395   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1396     getModule().setStackProtectorGuardReg(
1397         getCodeGenOpts().StackProtectorGuardReg);
1398   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1399     getModule().setStackProtectorGuardSymbol(
1400         getCodeGenOpts().StackProtectorGuardSymbol);
1401   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1402     getModule().setStackProtectorGuardOffset(
1403         getCodeGenOpts().StackProtectorGuardOffset);
1404   if (getCodeGenOpts().StackAlignment)
1405     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1406   if (getCodeGenOpts().SkipRaxSetup)
1407     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1408   if (getLangOpts().RegCall4)
1409     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1410 
1411   if (getContext().getTargetInfo().getMaxTLSAlign())
1412     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1413                               getContext().getTargetInfo().getMaxTLSAlign());
1414 
1415   getTargetCodeGenInfo().emitTargetGlobals(*this);
1416 
1417   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1418 
1419   EmitBackendOptionsMetadata(getCodeGenOpts());
1420 
1421   // If there is device offloading code embed it in the host now.
1422   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1423 
1424   // Set visibility from DLL storage class
1425   // We do this at the end of LLVM IR generation; after any operation
1426   // that might affect the DLL storage class or the visibility, and
1427   // before anything that might act on these.
1428   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1429 
1430   // Check the tail call symbols are truly undefined.
1431   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1432     for (auto &I : MustTailCallUndefinedGlobals) {
1433       if (!I.first->isDefined())
1434         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1435       else {
1436         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1437         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1438         if (!Entry || Entry->isWeakForLinker() ||
1439             Entry->isDeclarationForLinker())
1440           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1441       }
1442     }
1443   }
1444 }
1445 
1446 void CodeGenModule::EmitOpenCLMetadata() {
1447   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1448   // opencl.ocl.version named metadata node.
1449   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1450   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1451 
1452   auto EmitVersion = [this](StringRef MDName, int Version) {
1453     llvm::Metadata *OCLVerElts[] = {
1454         llvm::ConstantAsMetadata::get(
1455             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1456         llvm::ConstantAsMetadata::get(
1457             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1458     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1459     llvm::LLVMContext &Ctx = TheModule.getContext();
1460     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1461   };
1462 
1463   EmitVersion("opencl.ocl.version", CLVersion);
1464   if (LangOpts.OpenCLCPlusPlus) {
1465     // In addition to the OpenCL compatible version, emit the C++ version.
1466     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1467   }
1468 }
1469 
1470 void CodeGenModule::EmitBackendOptionsMetadata(
1471     const CodeGenOptions &CodeGenOpts) {
1472   if (getTriple().isRISCV()) {
1473     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1474                               CodeGenOpts.SmallDataLimit);
1475   }
1476 }
1477 
1478 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1479   // Make sure that this type is translated.
1480   getTypes().UpdateCompletedType(TD);
1481 }
1482 
1483 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1484   // Make sure that this type is translated.
1485   getTypes().RefreshTypeCacheForClass(RD);
1486 }
1487 
1488 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1489   if (!TBAA)
1490     return nullptr;
1491   return TBAA->getTypeInfo(QTy);
1492 }
1493 
1494 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1495   if (!TBAA)
1496     return TBAAAccessInfo();
1497   if (getLangOpts().CUDAIsDevice) {
1498     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1499     // access info.
1500     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1501       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1502           nullptr)
1503         return TBAAAccessInfo();
1504     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1505       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1506           nullptr)
1507         return TBAAAccessInfo();
1508     }
1509   }
1510   return TBAA->getAccessInfo(AccessType);
1511 }
1512 
1513 TBAAAccessInfo
1514 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1515   if (!TBAA)
1516     return TBAAAccessInfo();
1517   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1518 }
1519 
1520 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1521   if (!TBAA)
1522     return nullptr;
1523   return TBAA->getTBAAStructInfo(QTy);
1524 }
1525 
1526 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1527   if (!TBAA)
1528     return nullptr;
1529   return TBAA->getBaseTypeInfo(QTy);
1530 }
1531 
1532 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1533   if (!TBAA)
1534     return nullptr;
1535   return TBAA->getAccessTagInfo(Info);
1536 }
1537 
1538 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1539                                                    TBAAAccessInfo TargetInfo) {
1540   if (!TBAA)
1541     return TBAAAccessInfo();
1542   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1543 }
1544 
1545 TBAAAccessInfo
1546 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1547                                                    TBAAAccessInfo InfoB) {
1548   if (!TBAA)
1549     return TBAAAccessInfo();
1550   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1551 }
1552 
1553 TBAAAccessInfo
1554 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1555                                               TBAAAccessInfo SrcInfo) {
1556   if (!TBAA)
1557     return TBAAAccessInfo();
1558   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1559 }
1560 
1561 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1562                                                 TBAAAccessInfo TBAAInfo) {
1563   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1564     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1565 }
1566 
1567 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1568     llvm::Instruction *I, const CXXRecordDecl *RD) {
1569   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1570                  llvm::MDNode::get(getLLVMContext(), {}));
1571 }
1572 
1573 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1574   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1575   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1576 }
1577 
1578 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1579 /// specified stmt yet.
1580 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1581   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1582                                                "cannot compile this %0 yet");
1583   std::string Msg = Type;
1584   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1585       << Msg << S->getSourceRange();
1586 }
1587 
1588 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1589 /// specified decl yet.
1590 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1591   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1592                                                "cannot compile this %0 yet");
1593   std::string Msg = Type;
1594   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1595 }
1596 
1597 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1598                                                 llvm::function_ref<void()> Fn) {
1599   StackHandler.runWithSufficientStackSpace(Loc, Fn);
1600 }
1601 
1602 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1603   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1604 }
1605 
1606 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1607                                         const NamedDecl *D) const {
1608   // Internal definitions always have default visibility.
1609   if (GV->hasLocalLinkage()) {
1610     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1611     return;
1612   }
1613   if (!D)
1614     return;
1615 
1616   // Set visibility for definitions, and for declarations if requested globally
1617   // or set explicitly.
1618   LinkageInfo LV = D->getLinkageAndVisibility();
1619 
1620   // OpenMP declare target variables must be visible to the host so they can
1621   // be registered. We require protected visibility unless the variable has
1622   // the DT_nohost modifier and does not need to be registered.
1623   if (Context.getLangOpts().OpenMP &&
1624       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1625       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1626       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1627           OMPDeclareTargetDeclAttr::DT_NoHost &&
1628       LV.getVisibility() == HiddenVisibility) {
1629     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1630     return;
1631   }
1632 
1633   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1634     // Reject incompatible dlllstorage and visibility annotations.
1635     if (!LV.isVisibilityExplicit())
1636       return;
1637     if (GV->hasDLLExportStorageClass()) {
1638       if (LV.getVisibility() == HiddenVisibility)
1639         getDiags().Report(D->getLocation(),
1640                           diag::err_hidden_visibility_dllexport);
1641     } else if (LV.getVisibility() != DefaultVisibility) {
1642       getDiags().Report(D->getLocation(),
1643                         diag::err_non_default_visibility_dllimport);
1644     }
1645     return;
1646   }
1647 
1648   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1649       !GV->isDeclarationForLinker())
1650     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1651 }
1652 
1653 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1654                                  llvm::GlobalValue *GV) {
1655   if (GV->hasLocalLinkage())
1656     return true;
1657 
1658   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1659     return true;
1660 
1661   // DLLImport explicitly marks the GV as external.
1662   if (GV->hasDLLImportStorageClass())
1663     return false;
1664 
1665   const llvm::Triple &TT = CGM.getTriple();
1666   const auto &CGOpts = CGM.getCodeGenOpts();
1667   if (TT.isWindowsGNUEnvironment()) {
1668     // In MinGW, variables without DLLImport can still be automatically
1669     // imported from a DLL by the linker; don't mark variables that
1670     // potentially could come from another DLL as DSO local.
1671 
1672     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1673     // (and this actually happens in the public interface of libstdc++), so
1674     // such variables can't be marked as DSO local. (Native TLS variables
1675     // can't be dllimported at all, though.)
1676     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1677         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1678         CGOpts.AutoImport)
1679       return false;
1680   }
1681 
1682   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1683   // remain unresolved in the link, they can be resolved to zero, which is
1684   // outside the current DSO.
1685   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1686     return false;
1687 
1688   // Every other GV is local on COFF.
1689   // Make an exception for windows OS in the triple: Some firmware builds use
1690   // *-win32-macho triples. This (accidentally?) produced windows relocations
1691   // without GOT tables in older clang versions; Keep this behaviour.
1692   // FIXME: even thread local variables?
1693   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1694     return true;
1695 
1696   // Only handle COFF and ELF for now.
1697   if (!TT.isOSBinFormatELF())
1698     return false;
1699 
1700   // If this is not an executable, don't assume anything is local.
1701   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1702   const auto &LOpts = CGM.getLangOpts();
1703   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1704     // On ELF, if -fno-semantic-interposition is specified and the target
1705     // supports local aliases, there will be neither CC1
1706     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1707     // dso_local on the function if using a local alias is preferable (can avoid
1708     // PLT indirection).
1709     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1710       return false;
1711     return !(CGM.getLangOpts().SemanticInterposition ||
1712              CGM.getLangOpts().HalfNoSemanticInterposition);
1713   }
1714 
1715   // A definition cannot be preempted from an executable.
1716   if (!GV->isDeclarationForLinker())
1717     return true;
1718 
1719   // Most PIC code sequences that assume that a symbol is local cannot produce a
1720   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1721   // depended, it seems worth it to handle it here.
1722   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1723     return false;
1724 
1725   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1726   if (TT.isPPC64())
1727     return false;
1728 
1729   if (CGOpts.DirectAccessExternalData) {
1730     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1731     // for non-thread-local variables. If the symbol is not defined in the
1732     // executable, a copy relocation will be needed at link time. dso_local is
1733     // excluded for thread-local variables because they generally don't support
1734     // copy relocations.
1735     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1736       if (!Var->isThreadLocal())
1737         return true;
1738 
1739     // -fno-pic sets dso_local on a function declaration to allow direct
1740     // accesses when taking its address (similar to a data symbol). If the
1741     // function is not defined in the executable, a canonical PLT entry will be
1742     // needed at link time. -fno-direct-access-external-data can avoid the
1743     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1744     // it could just cause trouble without providing perceptible benefits.
1745     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1746       return true;
1747   }
1748 
1749   // If we can use copy relocations we can assume it is local.
1750 
1751   // Otherwise don't assume it is local.
1752   return false;
1753 }
1754 
1755 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1756   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1757 }
1758 
1759 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1760                                           GlobalDecl GD) const {
1761   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1762   // C++ destructors have a few C++ ABI specific special cases.
1763   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1764     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1765     return;
1766   }
1767   setDLLImportDLLExport(GV, D);
1768 }
1769 
1770 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1771                                           const NamedDecl *D) const {
1772   if (D && D->isExternallyVisible()) {
1773     if (D->hasAttr<DLLImportAttr>())
1774       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1775     else if ((D->hasAttr<DLLExportAttr>() ||
1776               shouldMapVisibilityToDLLExport(D)) &&
1777              !GV->isDeclarationForLinker())
1778       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1779   }
1780 }
1781 
1782 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1783                                     GlobalDecl GD) const {
1784   setDLLImportDLLExport(GV, GD);
1785   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1786 }
1787 
1788 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1789                                     const NamedDecl *D) const {
1790   setDLLImportDLLExport(GV, D);
1791   setGVPropertiesAux(GV, D);
1792 }
1793 
1794 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1795                                        const NamedDecl *D) const {
1796   setGlobalVisibility(GV, D);
1797   setDSOLocal(GV);
1798   GV->setPartition(CodeGenOpts.SymbolPartition);
1799 }
1800 
1801 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1802   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1803       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1804       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1805       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1806       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1807 }
1808 
1809 llvm::GlobalVariable::ThreadLocalMode
1810 CodeGenModule::GetDefaultLLVMTLSModel() const {
1811   switch (CodeGenOpts.getDefaultTLSModel()) {
1812   case CodeGenOptions::GeneralDynamicTLSModel:
1813     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1814   case CodeGenOptions::LocalDynamicTLSModel:
1815     return llvm::GlobalVariable::LocalDynamicTLSModel;
1816   case CodeGenOptions::InitialExecTLSModel:
1817     return llvm::GlobalVariable::InitialExecTLSModel;
1818   case CodeGenOptions::LocalExecTLSModel:
1819     return llvm::GlobalVariable::LocalExecTLSModel;
1820   }
1821   llvm_unreachable("Invalid TLS model!");
1822 }
1823 
1824 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1825   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1826 
1827   llvm::GlobalValue::ThreadLocalMode TLM;
1828   TLM = GetDefaultLLVMTLSModel();
1829 
1830   // Override the TLS model if it is explicitly specified.
1831   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1832     TLM = GetLLVMTLSModel(Attr->getModel());
1833   }
1834 
1835   GV->setThreadLocalMode(TLM);
1836 }
1837 
1838 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1839                                           StringRef Name) {
1840   const TargetInfo &Target = CGM.getTarget();
1841   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1842 }
1843 
1844 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1845                                                  const CPUSpecificAttr *Attr,
1846                                                  unsigned CPUIndex,
1847                                                  raw_ostream &Out) {
1848   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1849   // supported.
1850   if (Attr)
1851     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1852   else if (CGM.getTarget().supportsIFunc())
1853     Out << ".resolver";
1854 }
1855 
1856 // Returns true if GD is a function decl with internal linkage and
1857 // needs a unique suffix after the mangled name.
1858 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1859                                         CodeGenModule &CGM) {
1860   const Decl *D = GD.getDecl();
1861   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1862          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1863 }
1864 
1865 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1866                                       const NamedDecl *ND,
1867                                       bool OmitMultiVersionMangling = false) {
1868   SmallString<256> Buffer;
1869   llvm::raw_svector_ostream Out(Buffer);
1870   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1871   if (!CGM.getModuleNameHash().empty())
1872     MC.needsUniqueInternalLinkageNames();
1873   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1874   if (ShouldMangle)
1875     MC.mangleName(GD.getWithDecl(ND), Out);
1876   else {
1877     IdentifierInfo *II = ND->getIdentifier();
1878     assert(II && "Attempt to mangle unnamed decl.");
1879     const auto *FD = dyn_cast<FunctionDecl>(ND);
1880 
1881     if (FD &&
1882         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1883       if (CGM.getLangOpts().RegCall4)
1884         Out << "__regcall4__" << II->getName();
1885       else
1886         Out << "__regcall3__" << II->getName();
1887     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1888                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1889       Out << "__device_stub__" << II->getName();
1890     } else {
1891       Out << II->getName();
1892     }
1893   }
1894 
1895   // Check if the module name hash should be appended for internal linkage
1896   // symbols.   This should come before multi-version target suffixes are
1897   // appended. This is to keep the name and module hash suffix of the
1898   // internal linkage function together.  The unique suffix should only be
1899   // added when name mangling is done to make sure that the final name can
1900   // be properly demangled.  For example, for C functions without prototypes,
1901   // name mangling is not done and the unique suffix should not be appeneded
1902   // then.
1903   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1904     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1905            "Hash computed when not explicitly requested");
1906     Out << CGM.getModuleNameHash();
1907   }
1908 
1909   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1910     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1911       switch (FD->getMultiVersionKind()) {
1912       case MultiVersionKind::CPUDispatch:
1913       case MultiVersionKind::CPUSpecific:
1914         AppendCPUSpecificCPUDispatchMangling(CGM,
1915                                              FD->getAttr<CPUSpecificAttr>(),
1916                                              GD.getMultiVersionIndex(), Out);
1917         break;
1918       case MultiVersionKind::Target: {
1919         auto *Attr = FD->getAttr<TargetAttr>();
1920         assert(Attr && "Expected TargetAttr to be present "
1921                        "for attribute mangling");
1922         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1923         Info.appendAttributeMangling(Attr, Out);
1924         break;
1925       }
1926       case MultiVersionKind::TargetVersion: {
1927         auto *Attr = FD->getAttr<TargetVersionAttr>();
1928         assert(Attr && "Expected TargetVersionAttr to be present "
1929                        "for attribute mangling");
1930         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1931         Info.appendAttributeMangling(Attr, Out);
1932         break;
1933       }
1934       case MultiVersionKind::TargetClones: {
1935         auto *Attr = FD->getAttr<TargetClonesAttr>();
1936         assert(Attr && "Expected TargetClonesAttr to be present "
1937                        "for attribute mangling");
1938         unsigned Index = GD.getMultiVersionIndex();
1939         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1940         Info.appendAttributeMangling(Attr, Index, Out);
1941         break;
1942       }
1943       case MultiVersionKind::None:
1944         llvm_unreachable("None multiversion type isn't valid here");
1945       }
1946     }
1947 
1948   // Make unique name for device side static file-scope variable for HIP.
1949   if (CGM.getContext().shouldExternalize(ND) &&
1950       CGM.getLangOpts().GPURelocatableDeviceCode &&
1951       CGM.getLangOpts().CUDAIsDevice)
1952     CGM.printPostfixForExternalizedDecl(Out, ND);
1953 
1954   return std::string(Out.str());
1955 }
1956 
1957 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1958                                             const FunctionDecl *FD,
1959                                             StringRef &CurName) {
1960   if (!FD->isMultiVersion())
1961     return;
1962 
1963   // Get the name of what this would be without the 'target' attribute.  This
1964   // allows us to lookup the version that was emitted when this wasn't a
1965   // multiversion function.
1966   std::string NonTargetName =
1967       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1968   GlobalDecl OtherGD;
1969   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1970     assert(OtherGD.getCanonicalDecl()
1971                .getDecl()
1972                ->getAsFunction()
1973                ->isMultiVersion() &&
1974            "Other GD should now be a multiversioned function");
1975     // OtherFD is the version of this function that was mangled BEFORE
1976     // becoming a MultiVersion function.  It potentially needs to be updated.
1977     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1978                                       .getDecl()
1979                                       ->getAsFunction()
1980                                       ->getMostRecentDecl();
1981     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1982     // This is so that if the initial version was already the 'default'
1983     // version, we don't try to update it.
1984     if (OtherName != NonTargetName) {
1985       // Remove instead of erase, since others may have stored the StringRef
1986       // to this.
1987       const auto ExistingRecord = Manglings.find(NonTargetName);
1988       if (ExistingRecord != std::end(Manglings))
1989         Manglings.remove(&(*ExistingRecord));
1990       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1991       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1992           Result.first->first();
1993       // If this is the current decl is being created, make sure we update the name.
1994       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1995         CurName = OtherNameRef;
1996       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1997         Entry->setName(OtherName);
1998     }
1999   }
2000 }
2001 
2002 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2003   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2004 
2005   // Some ABIs don't have constructor variants.  Make sure that base and
2006   // complete constructors get mangled the same.
2007   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2008     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2009       CXXCtorType OrigCtorType = GD.getCtorType();
2010       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2011       if (OrigCtorType == Ctor_Base)
2012         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2013     }
2014   }
2015 
2016   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2017   // static device variable depends on whether the variable is referenced by
2018   // a host or device host function. Therefore the mangled name cannot be
2019   // cached.
2020   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2021     auto FoundName = MangledDeclNames.find(CanonicalGD);
2022     if (FoundName != MangledDeclNames.end())
2023       return FoundName->second;
2024   }
2025 
2026   // Keep the first result in the case of a mangling collision.
2027   const auto *ND = cast<NamedDecl>(GD.getDecl());
2028   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2029 
2030   // Ensure either we have different ABIs between host and device compilations,
2031   // says host compilation following MSVC ABI but device compilation follows
2032   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2033   // mangling should be the same after name stubbing. The later checking is
2034   // very important as the device kernel name being mangled in host-compilation
2035   // is used to resolve the device binaries to be executed. Inconsistent naming
2036   // result in undefined behavior. Even though we cannot check that naming
2037   // directly between host- and device-compilations, the host- and
2038   // device-mangling in host compilation could help catching certain ones.
2039   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2040          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2041          (getContext().getAuxTargetInfo() &&
2042           (getContext().getAuxTargetInfo()->getCXXABI() !=
2043            getContext().getTargetInfo().getCXXABI())) ||
2044          getCUDARuntime().getDeviceSideName(ND) ==
2045              getMangledNameImpl(
2046                  *this,
2047                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2048                  ND));
2049 
2050   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2051   return MangledDeclNames[CanonicalGD] = Result.first->first();
2052 }
2053 
2054 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2055                                              const BlockDecl *BD) {
2056   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2057   const Decl *D = GD.getDecl();
2058 
2059   SmallString<256> Buffer;
2060   llvm::raw_svector_ostream Out(Buffer);
2061   if (!D)
2062     MangleCtx.mangleGlobalBlock(BD,
2063       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2064   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2065     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2066   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2067     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2068   else
2069     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2070 
2071   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2072   return Result.first->first();
2073 }
2074 
2075 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2076   auto it = MangledDeclNames.begin();
2077   while (it != MangledDeclNames.end()) {
2078     if (it->second == Name)
2079       return it->first;
2080     it++;
2081   }
2082   return GlobalDecl();
2083 }
2084 
2085 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2086   return getModule().getNamedValue(Name);
2087 }
2088 
2089 /// AddGlobalCtor - Add a function to the list that will be called before
2090 /// main() runs.
2091 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2092                                   unsigned LexOrder,
2093                                   llvm::Constant *AssociatedData) {
2094   // FIXME: Type coercion of void()* types.
2095   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2096 }
2097 
2098 /// AddGlobalDtor - Add a function to the list that will be called
2099 /// when the module is unloaded.
2100 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2101                                   bool IsDtorAttrFunc) {
2102   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2103       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2104     DtorsUsingAtExit[Priority].push_back(Dtor);
2105     return;
2106   }
2107 
2108   // FIXME: Type coercion of void()* types.
2109   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2110 }
2111 
2112 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2113   if (Fns.empty()) return;
2114 
2115   const PointerAuthSchema &InitFiniAuthSchema =
2116       getCodeGenOpts().PointerAuth.InitFiniPointers;
2117 
2118   // Ctor function type is ptr.
2119   llvm::PointerType *PtrTy = llvm::PointerType::get(
2120       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2121 
2122   // Get the type of a ctor entry, { i32, ptr, ptr }.
2123   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2124 
2125   // Construct the constructor and destructor arrays.
2126   ConstantInitBuilder Builder(*this);
2127   auto Ctors = Builder.beginArray(CtorStructTy);
2128   for (const auto &I : Fns) {
2129     auto Ctor = Ctors.beginStruct(CtorStructTy);
2130     Ctor.addInt(Int32Ty, I.Priority);
2131     if (InitFiniAuthSchema) {
2132       llvm::Constant *StorageAddress =
2133           (InitFiniAuthSchema.isAddressDiscriminated()
2134                ? llvm::ConstantExpr::getIntToPtr(
2135                      llvm::ConstantInt::get(
2136                          IntPtrTy,
2137                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2138                      PtrTy)
2139                : nullptr);
2140       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2141           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2142           llvm::ConstantInt::get(
2143               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2144       Ctor.add(SignedCtorPtr);
2145     } else {
2146       Ctor.add(I.Initializer);
2147     }
2148     if (I.AssociatedData)
2149       Ctor.add(I.AssociatedData);
2150     else
2151       Ctor.addNullPointer(PtrTy);
2152     Ctor.finishAndAddTo(Ctors);
2153   }
2154 
2155   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2156                                           /*constant*/ false,
2157                                           llvm::GlobalValue::AppendingLinkage);
2158 
2159   // The LTO linker doesn't seem to like it when we set an alignment
2160   // on appending variables.  Take it off as a workaround.
2161   List->setAlignment(std::nullopt);
2162 
2163   Fns.clear();
2164 }
2165 
2166 llvm::GlobalValue::LinkageTypes
2167 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2168   const auto *D = cast<FunctionDecl>(GD.getDecl());
2169 
2170   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2171 
2172   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2173     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2174 
2175   return getLLVMLinkageForDeclarator(D, Linkage);
2176 }
2177 
2178 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2179   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2180   if (!MDS) return nullptr;
2181 
2182   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2183 }
2184 
2185 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2186   if (auto *FnType = T->getAs<FunctionProtoType>())
2187     T = getContext().getFunctionType(
2188         FnType->getReturnType(), FnType->getParamTypes(),
2189         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2190 
2191   std::string OutName;
2192   llvm::raw_string_ostream Out(OutName);
2193   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2194       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2195 
2196   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2197     Out << ".normalized";
2198 
2199   return llvm::ConstantInt::get(Int32Ty,
2200                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2201 }
2202 
2203 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2204                                               const CGFunctionInfo &Info,
2205                                               llvm::Function *F, bool IsThunk) {
2206   unsigned CallingConv;
2207   llvm::AttributeList PAL;
2208   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2209                          /*AttrOnCallSite=*/false, IsThunk);
2210   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2211       getTarget().getTriple().isWindowsArm64EC()) {
2212     SourceLocation Loc;
2213     if (const Decl *D = GD.getDecl())
2214       Loc = D->getLocation();
2215 
2216     Error(Loc, "__vectorcall calling convention is not currently supported");
2217   }
2218   F->setAttributes(PAL);
2219   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2220 }
2221 
2222 static void removeImageAccessQualifier(std::string& TyName) {
2223   std::string ReadOnlyQual("__read_only");
2224   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2225   if (ReadOnlyPos != std::string::npos)
2226     // "+ 1" for the space after access qualifier.
2227     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2228   else {
2229     std::string WriteOnlyQual("__write_only");
2230     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2231     if (WriteOnlyPos != std::string::npos)
2232       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2233     else {
2234       std::string ReadWriteQual("__read_write");
2235       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2236       if (ReadWritePos != std::string::npos)
2237         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2238     }
2239   }
2240 }
2241 
2242 // Returns the address space id that should be produced to the
2243 // kernel_arg_addr_space metadata. This is always fixed to the ids
2244 // as specified in the SPIR 2.0 specification in order to differentiate
2245 // for example in clGetKernelArgInfo() implementation between the address
2246 // spaces with targets without unique mapping to the OpenCL address spaces
2247 // (basically all single AS CPUs).
2248 static unsigned ArgInfoAddressSpace(LangAS AS) {
2249   switch (AS) {
2250   case LangAS::opencl_global:
2251     return 1;
2252   case LangAS::opencl_constant:
2253     return 2;
2254   case LangAS::opencl_local:
2255     return 3;
2256   case LangAS::opencl_generic:
2257     return 4; // Not in SPIR 2.0 specs.
2258   case LangAS::opencl_global_device:
2259     return 5;
2260   case LangAS::opencl_global_host:
2261     return 6;
2262   default:
2263     return 0; // Assume private.
2264   }
2265 }
2266 
2267 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2268                                          const FunctionDecl *FD,
2269                                          CodeGenFunction *CGF) {
2270   assert(((FD && CGF) || (!FD && !CGF)) &&
2271          "Incorrect use - FD and CGF should either be both null or not!");
2272   // Create MDNodes that represent the kernel arg metadata.
2273   // Each MDNode is a list in the form of "key", N number of values which is
2274   // the same number of values as their are kernel arguments.
2275 
2276   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2277 
2278   // MDNode for the kernel argument address space qualifiers.
2279   SmallVector<llvm::Metadata *, 8> addressQuals;
2280 
2281   // MDNode for the kernel argument access qualifiers (images only).
2282   SmallVector<llvm::Metadata *, 8> accessQuals;
2283 
2284   // MDNode for the kernel argument type names.
2285   SmallVector<llvm::Metadata *, 8> argTypeNames;
2286 
2287   // MDNode for the kernel argument base type names.
2288   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2289 
2290   // MDNode for the kernel argument type qualifiers.
2291   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2292 
2293   // MDNode for the kernel argument names.
2294   SmallVector<llvm::Metadata *, 8> argNames;
2295 
2296   if (FD && CGF)
2297     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2298       const ParmVarDecl *parm = FD->getParamDecl(i);
2299       // Get argument name.
2300       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2301 
2302       if (!getLangOpts().OpenCL)
2303         continue;
2304       QualType ty = parm->getType();
2305       std::string typeQuals;
2306 
2307       // Get image and pipe access qualifier:
2308       if (ty->isImageType() || ty->isPipeType()) {
2309         const Decl *PDecl = parm;
2310         if (const auto *TD = ty->getAs<TypedefType>())
2311           PDecl = TD->getDecl();
2312         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2313         if (A && A->isWriteOnly())
2314           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2315         else if (A && A->isReadWrite())
2316           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2317         else
2318           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2319       } else
2320         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2321 
2322       auto getTypeSpelling = [&](QualType Ty) {
2323         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2324 
2325         if (Ty.isCanonical()) {
2326           StringRef typeNameRef = typeName;
2327           // Turn "unsigned type" to "utype"
2328           if (typeNameRef.consume_front("unsigned "))
2329             return std::string("u") + typeNameRef.str();
2330           if (typeNameRef.consume_front("signed "))
2331             return typeNameRef.str();
2332         }
2333 
2334         return typeName;
2335       };
2336 
2337       if (ty->isPointerType()) {
2338         QualType pointeeTy = ty->getPointeeType();
2339 
2340         // Get address qualifier.
2341         addressQuals.push_back(
2342             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2343                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2344 
2345         // Get argument type name.
2346         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2347         std::string baseTypeName =
2348             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2349         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2350         argBaseTypeNames.push_back(
2351             llvm::MDString::get(VMContext, baseTypeName));
2352 
2353         // Get argument type qualifiers:
2354         if (ty.isRestrictQualified())
2355           typeQuals = "restrict";
2356         if (pointeeTy.isConstQualified() ||
2357             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2358           typeQuals += typeQuals.empty() ? "const" : " const";
2359         if (pointeeTy.isVolatileQualified())
2360           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2361       } else {
2362         uint32_t AddrSpc = 0;
2363         bool isPipe = ty->isPipeType();
2364         if (ty->isImageType() || isPipe)
2365           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2366 
2367         addressQuals.push_back(
2368             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2369 
2370         // Get argument type name.
2371         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2372         std::string typeName = getTypeSpelling(ty);
2373         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2374 
2375         // Remove access qualifiers on images
2376         // (as they are inseparable from type in clang implementation,
2377         // but OpenCL spec provides a special query to get access qualifier
2378         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2379         if (ty->isImageType()) {
2380           removeImageAccessQualifier(typeName);
2381           removeImageAccessQualifier(baseTypeName);
2382         }
2383 
2384         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2385         argBaseTypeNames.push_back(
2386             llvm::MDString::get(VMContext, baseTypeName));
2387 
2388         if (isPipe)
2389           typeQuals = "pipe";
2390       }
2391       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2392     }
2393 
2394   if (getLangOpts().OpenCL) {
2395     Fn->setMetadata("kernel_arg_addr_space",
2396                     llvm::MDNode::get(VMContext, addressQuals));
2397     Fn->setMetadata("kernel_arg_access_qual",
2398                     llvm::MDNode::get(VMContext, accessQuals));
2399     Fn->setMetadata("kernel_arg_type",
2400                     llvm::MDNode::get(VMContext, argTypeNames));
2401     Fn->setMetadata("kernel_arg_base_type",
2402                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2403     Fn->setMetadata("kernel_arg_type_qual",
2404                     llvm::MDNode::get(VMContext, argTypeQuals));
2405   }
2406   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2407       getCodeGenOpts().HIPSaveKernelArgName)
2408     Fn->setMetadata("kernel_arg_name",
2409                     llvm::MDNode::get(VMContext, argNames));
2410 }
2411 
2412 /// Determines whether the language options require us to model
2413 /// unwind exceptions.  We treat -fexceptions as mandating this
2414 /// except under the fragile ObjC ABI with only ObjC exceptions
2415 /// enabled.  This means, for example, that C with -fexceptions
2416 /// enables this.
2417 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2418   // If exceptions are completely disabled, obviously this is false.
2419   if (!LangOpts.Exceptions) return false;
2420 
2421   // If C++ exceptions are enabled, this is true.
2422   if (LangOpts.CXXExceptions) return true;
2423 
2424   // If ObjC exceptions are enabled, this depends on the ABI.
2425   if (LangOpts.ObjCExceptions) {
2426     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2427   }
2428 
2429   return true;
2430 }
2431 
2432 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2433                                                       const CXXMethodDecl *MD) {
2434   // Check that the type metadata can ever actually be used by a call.
2435   if (!CGM.getCodeGenOpts().LTOUnit ||
2436       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2437     return false;
2438 
2439   // Only functions whose address can be taken with a member function pointer
2440   // need this sort of type metadata.
2441   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2442          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2443 }
2444 
2445 SmallVector<const CXXRecordDecl *, 0>
2446 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2447   llvm::SetVector<const CXXRecordDecl *> MostBases;
2448 
2449   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2450   CollectMostBases = [&](const CXXRecordDecl *RD) {
2451     if (RD->getNumBases() == 0)
2452       MostBases.insert(RD);
2453     for (const CXXBaseSpecifier &B : RD->bases())
2454       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2455   };
2456   CollectMostBases(RD);
2457   return MostBases.takeVector();
2458 }
2459 
2460 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2461                                                            llvm::Function *F) {
2462   llvm::AttrBuilder B(F->getContext());
2463 
2464   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2465     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2466 
2467   if (CodeGenOpts.StackClashProtector)
2468     B.addAttribute("probe-stack", "inline-asm");
2469 
2470   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2471     B.addAttribute("stack-probe-size",
2472                    std::to_string(CodeGenOpts.StackProbeSize));
2473 
2474   if (!hasUnwindExceptions(LangOpts))
2475     B.addAttribute(llvm::Attribute::NoUnwind);
2476 
2477   if (D && D->hasAttr<NoStackProtectorAttr>())
2478     ; // Do nothing.
2479   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2480            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2481     B.addAttribute(llvm::Attribute::StackProtectStrong);
2482   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2483     B.addAttribute(llvm::Attribute::StackProtect);
2484   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2485     B.addAttribute(llvm::Attribute::StackProtectStrong);
2486   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2487     B.addAttribute(llvm::Attribute::StackProtectReq);
2488 
2489   if (!D) {
2490     // Non-entry HLSL functions must always be inlined.
2491     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2492       B.addAttribute(llvm::Attribute::AlwaysInline);
2493     // If we don't have a declaration to control inlining, the function isn't
2494     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2495     // disabled, mark the function as noinline.
2496     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2497              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2498       B.addAttribute(llvm::Attribute::NoInline);
2499 
2500     F->addFnAttrs(B);
2501     return;
2502   }
2503 
2504   // Handle SME attributes that apply to function definitions,
2505   // rather than to function prototypes.
2506   if (D->hasAttr<ArmLocallyStreamingAttr>())
2507     B.addAttribute("aarch64_pstate_sm_body");
2508 
2509   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2510     if (Attr->isNewZA())
2511       B.addAttribute("aarch64_new_za");
2512     if (Attr->isNewZT0())
2513       B.addAttribute("aarch64_new_zt0");
2514   }
2515 
2516   // Track whether we need to add the optnone LLVM attribute,
2517   // starting with the default for this optimization level.
2518   bool ShouldAddOptNone =
2519       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2520   // We can't add optnone in the following cases, it won't pass the verifier.
2521   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2522   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2523 
2524   // Non-entry HLSL functions must always be inlined.
2525   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2526       !D->hasAttr<NoInlineAttr>()) {
2527     B.addAttribute(llvm::Attribute::AlwaysInline);
2528   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2529              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2530     // Add optnone, but do so only if the function isn't always_inline.
2531     B.addAttribute(llvm::Attribute::OptimizeNone);
2532 
2533     // OptimizeNone implies noinline; we should not be inlining such functions.
2534     B.addAttribute(llvm::Attribute::NoInline);
2535 
2536     // We still need to handle naked functions even though optnone subsumes
2537     // much of their semantics.
2538     if (D->hasAttr<NakedAttr>())
2539       B.addAttribute(llvm::Attribute::Naked);
2540 
2541     // OptimizeNone wins over OptimizeForSize and MinSize.
2542     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2543     F->removeFnAttr(llvm::Attribute::MinSize);
2544   } else if (D->hasAttr<NakedAttr>()) {
2545     // Naked implies noinline: we should not be inlining such functions.
2546     B.addAttribute(llvm::Attribute::Naked);
2547     B.addAttribute(llvm::Attribute::NoInline);
2548   } else if (D->hasAttr<NoDuplicateAttr>()) {
2549     B.addAttribute(llvm::Attribute::NoDuplicate);
2550   } else if (D->hasAttr<NoInlineAttr>() &&
2551              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2552     // Add noinline if the function isn't always_inline.
2553     B.addAttribute(llvm::Attribute::NoInline);
2554   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2555              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2556     // (noinline wins over always_inline, and we can't specify both in IR)
2557     B.addAttribute(llvm::Attribute::AlwaysInline);
2558   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2559     // If we're not inlining, then force everything that isn't always_inline to
2560     // carry an explicit noinline attribute.
2561     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2562       B.addAttribute(llvm::Attribute::NoInline);
2563   } else {
2564     // Otherwise, propagate the inline hint attribute and potentially use its
2565     // absence to mark things as noinline.
2566     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2567       // Search function and template pattern redeclarations for inline.
2568       auto CheckForInline = [](const FunctionDecl *FD) {
2569         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2570           return Redecl->isInlineSpecified();
2571         };
2572         if (any_of(FD->redecls(), CheckRedeclForInline))
2573           return true;
2574         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2575         if (!Pattern)
2576           return false;
2577         return any_of(Pattern->redecls(), CheckRedeclForInline);
2578       };
2579       if (CheckForInline(FD)) {
2580         B.addAttribute(llvm::Attribute::InlineHint);
2581       } else if (CodeGenOpts.getInlining() ==
2582                      CodeGenOptions::OnlyHintInlining &&
2583                  !FD->isInlined() &&
2584                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2585         B.addAttribute(llvm::Attribute::NoInline);
2586       }
2587     }
2588   }
2589 
2590   // Add other optimization related attributes if we are optimizing this
2591   // function.
2592   if (!D->hasAttr<OptimizeNoneAttr>()) {
2593     if (D->hasAttr<ColdAttr>()) {
2594       if (!ShouldAddOptNone)
2595         B.addAttribute(llvm::Attribute::OptimizeForSize);
2596       B.addAttribute(llvm::Attribute::Cold);
2597     }
2598     if (D->hasAttr<HotAttr>())
2599       B.addAttribute(llvm::Attribute::Hot);
2600     if (D->hasAttr<MinSizeAttr>())
2601       B.addAttribute(llvm::Attribute::MinSize);
2602   }
2603 
2604   F->addFnAttrs(B);
2605 
2606   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2607   if (alignment)
2608     F->setAlignment(llvm::Align(alignment));
2609 
2610   if (!D->hasAttr<AlignedAttr>())
2611     if (LangOpts.FunctionAlignment)
2612       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2613 
2614   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2615   // reserve a bit for differentiating between virtual and non-virtual member
2616   // functions. If the current target's C++ ABI requires this and this is a
2617   // member function, set its alignment accordingly.
2618   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2619     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2620       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2621   }
2622 
2623   // In the cross-dso CFI mode with canonical jump tables, we want !type
2624   // attributes on definitions only.
2625   if (CodeGenOpts.SanitizeCfiCrossDso &&
2626       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2627     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2628       // Skip available_externally functions. They won't be codegen'ed in the
2629       // current module anyway.
2630       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2631         CreateFunctionTypeMetadataForIcall(FD, F);
2632     }
2633   }
2634 
2635   // Emit type metadata on member functions for member function pointer checks.
2636   // These are only ever necessary on definitions; we're guaranteed that the
2637   // definition will be present in the LTO unit as a result of LTO visibility.
2638   auto *MD = dyn_cast<CXXMethodDecl>(D);
2639   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2640     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2641       llvm::Metadata *Id =
2642           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2643               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2644       F->addTypeMetadata(0, Id);
2645     }
2646   }
2647 }
2648 
2649 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2650   const Decl *D = GD.getDecl();
2651   if (isa_and_nonnull<NamedDecl>(D))
2652     setGVProperties(GV, GD);
2653   else
2654     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2655 
2656   if (D && D->hasAttr<UsedAttr>())
2657     addUsedOrCompilerUsedGlobal(GV);
2658 
2659   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2660       VD &&
2661       ((CodeGenOpts.KeepPersistentStorageVariables &&
2662         (VD->getStorageDuration() == SD_Static ||
2663          VD->getStorageDuration() == SD_Thread)) ||
2664        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2665         VD->getType().isConstQualified())))
2666     addUsedOrCompilerUsedGlobal(GV);
2667 }
2668 
2669 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2670                                                 llvm::AttrBuilder &Attrs,
2671                                                 bool SetTargetFeatures) {
2672   // Add target-cpu and target-features attributes to functions. If
2673   // we have a decl for the function and it has a target attribute then
2674   // parse that and add it to the feature set.
2675   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2676   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2677   std::vector<std::string> Features;
2678   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2679   FD = FD ? FD->getMostRecentDecl() : FD;
2680   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2681   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2682   assert((!TD || !TV) && "both target_version and target specified");
2683   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2684   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2685   bool AddedAttr = false;
2686   if (TD || TV || SD || TC) {
2687     llvm::StringMap<bool> FeatureMap;
2688     getContext().getFunctionFeatureMap(FeatureMap, GD);
2689 
2690     // Produce the canonical string for this set of features.
2691     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2692       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2693 
2694     // Now add the target-cpu and target-features to the function.
2695     // While we populated the feature map above, we still need to
2696     // get and parse the target attribute so we can get the cpu for
2697     // the function.
2698     if (TD) {
2699       ParsedTargetAttr ParsedAttr =
2700           Target.parseTargetAttr(TD->getFeaturesStr());
2701       if (!ParsedAttr.CPU.empty() &&
2702           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2703         TargetCPU = ParsedAttr.CPU;
2704         TuneCPU = ""; // Clear the tune CPU.
2705       }
2706       if (!ParsedAttr.Tune.empty() &&
2707           getTarget().isValidCPUName(ParsedAttr.Tune))
2708         TuneCPU = ParsedAttr.Tune;
2709     }
2710 
2711     if (SD) {
2712       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2713       // favor this processor.
2714       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2715     }
2716   } else {
2717     // Otherwise just add the existing target cpu and target features to the
2718     // function.
2719     Features = getTarget().getTargetOpts().Features;
2720   }
2721 
2722   if (!TargetCPU.empty()) {
2723     Attrs.addAttribute("target-cpu", TargetCPU);
2724     AddedAttr = true;
2725   }
2726   if (!TuneCPU.empty()) {
2727     Attrs.addAttribute("tune-cpu", TuneCPU);
2728     AddedAttr = true;
2729   }
2730   if (!Features.empty() && SetTargetFeatures) {
2731     llvm::erase_if(Features, [&](const std::string& F) {
2732        return getTarget().isReadOnlyFeature(F.substr(1));
2733     });
2734     llvm::sort(Features);
2735     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2736     AddedAttr = true;
2737   }
2738 
2739   return AddedAttr;
2740 }
2741 
2742 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2743                                           llvm::GlobalObject *GO) {
2744   const Decl *D = GD.getDecl();
2745   SetCommonAttributes(GD, GO);
2746 
2747   if (D) {
2748     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2749       if (D->hasAttr<RetainAttr>())
2750         addUsedGlobal(GV);
2751       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2752         GV->addAttribute("bss-section", SA->getName());
2753       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2754         GV->addAttribute("data-section", SA->getName());
2755       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2756         GV->addAttribute("rodata-section", SA->getName());
2757       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2758         GV->addAttribute("relro-section", SA->getName());
2759     }
2760 
2761     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2762       if (D->hasAttr<RetainAttr>())
2763         addUsedGlobal(F);
2764       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2765         if (!D->getAttr<SectionAttr>())
2766           F->setSection(SA->getName());
2767 
2768       llvm::AttrBuilder Attrs(F->getContext());
2769       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2770         // We know that GetCPUAndFeaturesAttributes will always have the
2771         // newest set, since it has the newest possible FunctionDecl, so the
2772         // new ones should replace the old.
2773         llvm::AttributeMask RemoveAttrs;
2774         RemoveAttrs.addAttribute("target-cpu");
2775         RemoveAttrs.addAttribute("target-features");
2776         RemoveAttrs.addAttribute("tune-cpu");
2777         F->removeFnAttrs(RemoveAttrs);
2778         F->addFnAttrs(Attrs);
2779       }
2780     }
2781 
2782     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2783       GO->setSection(CSA->getName());
2784     else if (const auto *SA = D->getAttr<SectionAttr>())
2785       GO->setSection(SA->getName());
2786   }
2787 
2788   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2789 }
2790 
2791 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2792                                                   llvm::Function *F,
2793                                                   const CGFunctionInfo &FI) {
2794   const Decl *D = GD.getDecl();
2795   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2796   SetLLVMFunctionAttributesForDefinition(D, F);
2797 
2798   F->setLinkage(llvm::Function::InternalLinkage);
2799 
2800   setNonAliasAttributes(GD, F);
2801 }
2802 
2803 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2804   // Set linkage and visibility in case we never see a definition.
2805   LinkageInfo LV = ND->getLinkageAndVisibility();
2806   // Don't set internal linkage on declarations.
2807   // "extern_weak" is overloaded in LLVM; we probably should have
2808   // separate linkage types for this.
2809   if (isExternallyVisible(LV.getLinkage()) &&
2810       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2811     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2812 }
2813 
2814 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2815                                                        llvm::Function *F) {
2816   // Only if we are checking indirect calls.
2817   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2818     return;
2819 
2820   // Non-static class methods are handled via vtable or member function pointer
2821   // checks elsewhere.
2822   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2823     return;
2824 
2825   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2826   F->addTypeMetadata(0, MD);
2827   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2828 
2829   // Emit a hash-based bit set entry for cross-DSO calls.
2830   if (CodeGenOpts.SanitizeCfiCrossDso)
2831     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2832       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2833 }
2834 
2835 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2836   llvm::LLVMContext &Ctx = F->getContext();
2837   llvm::MDBuilder MDB(Ctx);
2838   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2839                  llvm::MDNode::get(
2840                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2841 }
2842 
2843 static bool allowKCFIIdentifier(StringRef Name) {
2844   // KCFI type identifier constants are only necessary for external assembly
2845   // functions, which means it's safe to skip unusual names. Subset of
2846   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2847   return llvm::all_of(Name, [](const char &C) {
2848     return llvm::isAlnum(C) || C == '_' || C == '.';
2849   });
2850 }
2851 
2852 void CodeGenModule::finalizeKCFITypes() {
2853   llvm::Module &M = getModule();
2854   for (auto &F : M.functions()) {
2855     // Remove KCFI type metadata from non-address-taken local functions.
2856     bool AddressTaken = F.hasAddressTaken();
2857     if (!AddressTaken && F.hasLocalLinkage())
2858       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2859 
2860     // Generate a constant with the expected KCFI type identifier for all
2861     // address-taken function declarations to support annotating indirectly
2862     // called assembly functions.
2863     if (!AddressTaken || !F.isDeclaration())
2864       continue;
2865 
2866     const llvm::ConstantInt *Type;
2867     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2868       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2869     else
2870       continue;
2871 
2872     StringRef Name = F.getName();
2873     if (!allowKCFIIdentifier(Name))
2874       continue;
2875 
2876     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2877                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2878                           .str();
2879     M.appendModuleInlineAsm(Asm);
2880   }
2881 }
2882 
2883 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2884                                           bool IsIncompleteFunction,
2885                                           bool IsThunk) {
2886 
2887   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2888     // If this is an intrinsic function, set the function's attributes
2889     // to the intrinsic's attributes.
2890     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2891     return;
2892   }
2893 
2894   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2895 
2896   if (!IsIncompleteFunction)
2897     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2898                               IsThunk);
2899 
2900   // Add the Returned attribute for "this", except for iOS 5 and earlier
2901   // where substantial code, including the libstdc++ dylib, was compiled with
2902   // GCC and does not actually return "this".
2903   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2904       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2905     assert(!F->arg_empty() &&
2906            F->arg_begin()->getType()
2907              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2908            "unexpected this return");
2909     F->addParamAttr(0, llvm::Attribute::Returned);
2910   }
2911 
2912   // Only a few attributes are set on declarations; these may later be
2913   // overridden by a definition.
2914 
2915   setLinkageForGV(F, FD);
2916   setGVProperties(F, FD);
2917 
2918   // Setup target-specific attributes.
2919   if (!IsIncompleteFunction && F->isDeclaration())
2920     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2921 
2922   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2923     F->setSection(CSA->getName());
2924   else if (const auto *SA = FD->getAttr<SectionAttr>())
2925      F->setSection(SA->getName());
2926 
2927   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2928     if (EA->isError())
2929       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2930     else if (EA->isWarning())
2931       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2932   }
2933 
2934   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2935   if (FD->isInlineBuiltinDeclaration()) {
2936     const FunctionDecl *FDBody;
2937     bool HasBody = FD->hasBody(FDBody);
2938     (void)HasBody;
2939     assert(HasBody && "Inline builtin declarations should always have an "
2940                       "available body!");
2941     if (shouldEmitFunction(FDBody))
2942       F->addFnAttr(llvm::Attribute::NoBuiltin);
2943   }
2944 
2945   if (FD->isReplaceableGlobalAllocationFunction()) {
2946     // A replaceable global allocation function does not act like a builtin by
2947     // default, only if it is invoked by a new-expression or delete-expression.
2948     F->addFnAttr(llvm::Attribute::NoBuiltin);
2949   }
2950 
2951   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2952     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2953   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2954     if (MD->isVirtual())
2955       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2956 
2957   // Don't emit entries for function declarations in the cross-DSO mode. This
2958   // is handled with better precision by the receiving DSO. But if jump tables
2959   // are non-canonical then we need type metadata in order to produce the local
2960   // jump table.
2961   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2962       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2963     CreateFunctionTypeMetadataForIcall(FD, F);
2964 
2965   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2966     setKCFIType(FD, F);
2967 
2968   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2969     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2970 
2971   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2972     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2973 
2974   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2975     // Annotate the callback behavior as metadata:
2976     //  - The callback callee (as argument number).
2977     //  - The callback payloads (as argument numbers).
2978     llvm::LLVMContext &Ctx = F->getContext();
2979     llvm::MDBuilder MDB(Ctx);
2980 
2981     // The payload indices are all but the first one in the encoding. The first
2982     // identifies the callback callee.
2983     int CalleeIdx = *CB->encoding_begin();
2984     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2985     F->addMetadata(llvm::LLVMContext::MD_callback,
2986                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2987                                                CalleeIdx, PayloadIndices,
2988                                                /* VarArgsArePassed */ false)}));
2989   }
2990 }
2991 
2992 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2993   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2994          "Only globals with definition can force usage.");
2995   LLVMUsed.emplace_back(GV);
2996 }
2997 
2998 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2999   assert(!GV->isDeclaration() &&
3000          "Only globals with definition can force usage.");
3001   LLVMCompilerUsed.emplace_back(GV);
3002 }
3003 
3004 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3005   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3006          "Only globals with definition can force usage.");
3007   if (getTriple().isOSBinFormatELF())
3008     LLVMCompilerUsed.emplace_back(GV);
3009   else
3010     LLVMUsed.emplace_back(GV);
3011 }
3012 
3013 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3014                      std::vector<llvm::WeakTrackingVH> &List) {
3015   // Don't create llvm.used if there is no need.
3016   if (List.empty())
3017     return;
3018 
3019   // Convert List to what ConstantArray needs.
3020   SmallVector<llvm::Constant*, 8> UsedArray;
3021   UsedArray.resize(List.size());
3022   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3023     UsedArray[i] =
3024         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3025             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3026   }
3027 
3028   if (UsedArray.empty())
3029     return;
3030   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3031 
3032   auto *GV = new llvm::GlobalVariable(
3033       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3034       llvm::ConstantArray::get(ATy, UsedArray), Name);
3035 
3036   GV->setSection("llvm.metadata");
3037 }
3038 
3039 void CodeGenModule::emitLLVMUsed() {
3040   emitUsed(*this, "llvm.used", LLVMUsed);
3041   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3042 }
3043 
3044 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3045   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3046   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3047 }
3048 
3049 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3050   llvm::SmallString<32> Opt;
3051   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3052   if (Opt.empty())
3053     return;
3054   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3055   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3056 }
3057 
3058 void CodeGenModule::AddDependentLib(StringRef Lib) {
3059   auto &C = getLLVMContext();
3060   if (getTarget().getTriple().isOSBinFormatELF()) {
3061       ELFDependentLibraries.push_back(
3062         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3063     return;
3064   }
3065 
3066   llvm::SmallString<24> Opt;
3067   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3068   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3069   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3070 }
3071 
3072 /// Add link options implied by the given module, including modules
3073 /// it depends on, using a postorder walk.
3074 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3075                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3076                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3077   // Import this module's parent.
3078   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3079     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3080   }
3081 
3082   // Import this module's dependencies.
3083   for (Module *Import : llvm::reverse(Mod->Imports)) {
3084     if (Visited.insert(Import).second)
3085       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3086   }
3087 
3088   // Add linker options to link against the libraries/frameworks
3089   // described by this module.
3090   llvm::LLVMContext &Context = CGM.getLLVMContext();
3091   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3092 
3093   // For modules that use export_as for linking, use that module
3094   // name instead.
3095   if (Mod->UseExportAsModuleLinkName)
3096     return;
3097 
3098   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3099     // Link against a framework.  Frameworks are currently Darwin only, so we
3100     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3101     if (LL.IsFramework) {
3102       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3103                                  llvm::MDString::get(Context, LL.Library)};
3104 
3105       Metadata.push_back(llvm::MDNode::get(Context, Args));
3106       continue;
3107     }
3108 
3109     // Link against a library.
3110     if (IsELF) {
3111       llvm::Metadata *Args[2] = {
3112           llvm::MDString::get(Context, "lib"),
3113           llvm::MDString::get(Context, LL.Library),
3114       };
3115       Metadata.push_back(llvm::MDNode::get(Context, Args));
3116     } else {
3117       llvm::SmallString<24> Opt;
3118       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3119       auto *OptString = llvm::MDString::get(Context, Opt);
3120       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3121     }
3122   }
3123 }
3124 
3125 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3126   assert(Primary->isNamedModuleUnit() &&
3127          "We should only emit module initializers for named modules.");
3128 
3129   // Emit the initializers in the order that sub-modules appear in the
3130   // source, first Global Module Fragments, if present.
3131   if (auto GMF = Primary->getGlobalModuleFragment()) {
3132     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3133       if (isa<ImportDecl>(D))
3134         continue;
3135       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3136       EmitTopLevelDecl(D);
3137     }
3138   }
3139   // Second any associated with the module, itself.
3140   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3141     // Skip import decls, the inits for those are called explicitly.
3142     if (isa<ImportDecl>(D))
3143       continue;
3144     EmitTopLevelDecl(D);
3145   }
3146   // Third any associated with the Privat eMOdule Fragment, if present.
3147   if (auto PMF = Primary->getPrivateModuleFragment()) {
3148     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3149       // Skip import decls, the inits for those are called explicitly.
3150       if (isa<ImportDecl>(D))
3151         continue;
3152       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3153       EmitTopLevelDecl(D);
3154     }
3155   }
3156 }
3157 
3158 void CodeGenModule::EmitModuleLinkOptions() {
3159   // Collect the set of all of the modules we want to visit to emit link
3160   // options, which is essentially the imported modules and all of their
3161   // non-explicit child modules.
3162   llvm::SetVector<clang::Module *> LinkModules;
3163   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3164   SmallVector<clang::Module *, 16> Stack;
3165 
3166   // Seed the stack with imported modules.
3167   for (Module *M : ImportedModules) {
3168     // Do not add any link flags when an implementation TU of a module imports
3169     // a header of that same module.
3170     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3171         !getLangOpts().isCompilingModule())
3172       continue;
3173     if (Visited.insert(M).second)
3174       Stack.push_back(M);
3175   }
3176 
3177   // Find all of the modules to import, making a little effort to prune
3178   // non-leaf modules.
3179   while (!Stack.empty()) {
3180     clang::Module *Mod = Stack.pop_back_val();
3181 
3182     bool AnyChildren = false;
3183 
3184     // Visit the submodules of this module.
3185     for (const auto &SM : Mod->submodules()) {
3186       // Skip explicit children; they need to be explicitly imported to be
3187       // linked against.
3188       if (SM->IsExplicit)
3189         continue;
3190 
3191       if (Visited.insert(SM).second) {
3192         Stack.push_back(SM);
3193         AnyChildren = true;
3194       }
3195     }
3196 
3197     // We didn't find any children, so add this module to the list of
3198     // modules to link against.
3199     if (!AnyChildren) {
3200       LinkModules.insert(Mod);
3201     }
3202   }
3203 
3204   // Add link options for all of the imported modules in reverse topological
3205   // order.  We don't do anything to try to order import link flags with respect
3206   // to linker options inserted by things like #pragma comment().
3207   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3208   Visited.clear();
3209   for (Module *M : LinkModules)
3210     if (Visited.insert(M).second)
3211       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3212   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3213   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3214 
3215   // Add the linker options metadata flag.
3216   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3217   for (auto *MD : LinkerOptionsMetadata)
3218     NMD->addOperand(MD);
3219 }
3220 
3221 void CodeGenModule::EmitDeferred() {
3222   // Emit deferred declare target declarations.
3223   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3224     getOpenMPRuntime().emitDeferredTargetDecls();
3225 
3226   // Emit code for any potentially referenced deferred decls.  Since a
3227   // previously unused static decl may become used during the generation of code
3228   // for a static function, iterate until no changes are made.
3229 
3230   if (!DeferredVTables.empty()) {
3231     EmitDeferredVTables();
3232 
3233     // Emitting a vtable doesn't directly cause more vtables to
3234     // become deferred, although it can cause functions to be
3235     // emitted that then need those vtables.
3236     assert(DeferredVTables.empty());
3237   }
3238 
3239   // Emit CUDA/HIP static device variables referenced by host code only.
3240   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3241   // needed for further handling.
3242   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3243     llvm::append_range(DeferredDeclsToEmit,
3244                        getContext().CUDADeviceVarODRUsedByHost);
3245 
3246   // Stop if we're out of both deferred vtables and deferred declarations.
3247   if (DeferredDeclsToEmit.empty())
3248     return;
3249 
3250   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3251   // work, it will not interfere with this.
3252   std::vector<GlobalDecl> CurDeclsToEmit;
3253   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3254 
3255   for (GlobalDecl &D : CurDeclsToEmit) {
3256     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3257     // to get GlobalValue with exactly the type we need, not something that
3258     // might had been created for another decl with the same mangled name but
3259     // different type.
3260     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3261         GetAddrOfGlobal(D, ForDefinition));
3262 
3263     // In case of different address spaces, we may still get a cast, even with
3264     // IsForDefinition equal to true. Query mangled names table to get
3265     // GlobalValue.
3266     if (!GV)
3267       GV = GetGlobalValue(getMangledName(D));
3268 
3269     // Make sure GetGlobalValue returned non-null.
3270     assert(GV);
3271 
3272     // Check to see if we've already emitted this.  This is necessary
3273     // for a couple of reasons: first, decls can end up in the
3274     // deferred-decls queue multiple times, and second, decls can end
3275     // up with definitions in unusual ways (e.g. by an extern inline
3276     // function acquiring a strong function redefinition).  Just
3277     // ignore these cases.
3278     if (!GV->isDeclaration())
3279       continue;
3280 
3281     // If this is OpenMP, check if it is legal to emit this global normally.
3282     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3283       continue;
3284 
3285     // Otherwise, emit the definition and move on to the next one.
3286     EmitGlobalDefinition(D, GV);
3287 
3288     // If we found out that we need to emit more decls, do that recursively.
3289     // This has the advantage that the decls are emitted in a DFS and related
3290     // ones are close together, which is convenient for testing.
3291     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3292       EmitDeferred();
3293       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3294     }
3295   }
3296 }
3297 
3298 void CodeGenModule::EmitVTablesOpportunistically() {
3299   // Try to emit external vtables as available_externally if they have emitted
3300   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3301   // is not allowed to create new references to things that need to be emitted
3302   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3303 
3304   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3305          && "Only emit opportunistic vtables with optimizations");
3306 
3307   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3308     assert(getVTables().isVTableExternal(RD) &&
3309            "This queue should only contain external vtables");
3310     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3311       VTables.GenerateClassData(RD);
3312   }
3313   OpportunisticVTables.clear();
3314 }
3315 
3316 void CodeGenModule::EmitGlobalAnnotations() {
3317   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3318     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3319     if (GV)
3320       AddGlobalAnnotations(VD, GV);
3321   }
3322   DeferredAnnotations.clear();
3323 
3324   if (Annotations.empty())
3325     return;
3326 
3327   // Create a new global variable for the ConstantStruct in the Module.
3328   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3329     Annotations[0]->getType(), Annotations.size()), Annotations);
3330   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3331                                       llvm::GlobalValue::AppendingLinkage,
3332                                       Array, "llvm.global.annotations");
3333   gv->setSection(AnnotationSection);
3334 }
3335 
3336 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3337   llvm::Constant *&AStr = AnnotationStrings[Str];
3338   if (AStr)
3339     return AStr;
3340 
3341   // Not found yet, create a new global.
3342   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3343   auto *gv = new llvm::GlobalVariable(
3344       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3345       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3346       ConstGlobalsPtrTy->getAddressSpace());
3347   gv->setSection(AnnotationSection);
3348   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3349   AStr = gv;
3350   return gv;
3351 }
3352 
3353 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3354   SourceManager &SM = getContext().getSourceManager();
3355   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3356   if (PLoc.isValid())
3357     return EmitAnnotationString(PLoc.getFilename());
3358   return EmitAnnotationString(SM.getBufferName(Loc));
3359 }
3360 
3361 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3362   SourceManager &SM = getContext().getSourceManager();
3363   PresumedLoc PLoc = SM.getPresumedLoc(L);
3364   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3365     SM.getExpansionLineNumber(L);
3366   return llvm::ConstantInt::get(Int32Ty, LineNo);
3367 }
3368 
3369 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3370   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3371   if (Exprs.empty())
3372     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3373 
3374   llvm::FoldingSetNodeID ID;
3375   for (Expr *E : Exprs) {
3376     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3377   }
3378   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3379   if (Lookup)
3380     return Lookup;
3381 
3382   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3383   LLVMArgs.reserve(Exprs.size());
3384   ConstantEmitter ConstEmiter(*this);
3385   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3386     const auto *CE = cast<clang::ConstantExpr>(E);
3387     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3388                                     CE->getType());
3389   });
3390   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3391   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3392                                       llvm::GlobalValue::PrivateLinkage, Struct,
3393                                       ".args");
3394   GV->setSection(AnnotationSection);
3395   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3396 
3397   Lookup = GV;
3398   return GV;
3399 }
3400 
3401 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3402                                                 const AnnotateAttr *AA,
3403                                                 SourceLocation L) {
3404   // Get the globals for file name, annotation, and the line number.
3405   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3406                  *UnitGV = EmitAnnotationUnit(L),
3407                  *LineNoCst = EmitAnnotationLineNo(L),
3408                  *Args = EmitAnnotationArgs(AA);
3409 
3410   llvm::Constant *GVInGlobalsAS = GV;
3411   if (GV->getAddressSpace() !=
3412       getDataLayout().getDefaultGlobalsAddressSpace()) {
3413     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3414         GV,
3415         llvm::PointerType::get(
3416             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3417   }
3418 
3419   // Create the ConstantStruct for the global annotation.
3420   llvm::Constant *Fields[] = {
3421       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3422   };
3423   return llvm::ConstantStruct::getAnon(Fields);
3424 }
3425 
3426 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3427                                          llvm::GlobalValue *GV) {
3428   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3429   // Get the struct elements for these annotations.
3430   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3431     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3432 }
3433 
3434 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3435                                        SourceLocation Loc) const {
3436   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3437   // NoSanitize by function name.
3438   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3439     return true;
3440   // NoSanitize by location. Check "mainfile" prefix.
3441   auto &SM = Context.getSourceManager();
3442   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3443   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3444     return true;
3445 
3446   // Check "src" prefix.
3447   if (Loc.isValid())
3448     return NoSanitizeL.containsLocation(Kind, Loc);
3449   // If location is unknown, this may be a compiler-generated function. Assume
3450   // it's located in the main file.
3451   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3452 }
3453 
3454 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3455                                        llvm::GlobalVariable *GV,
3456                                        SourceLocation Loc, QualType Ty,
3457                                        StringRef Category) const {
3458   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3459   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3460     return true;
3461   auto &SM = Context.getSourceManager();
3462   if (NoSanitizeL.containsMainFile(
3463           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3464           Category))
3465     return true;
3466   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3467     return true;
3468 
3469   // Check global type.
3470   if (!Ty.isNull()) {
3471     // Drill down the array types: if global variable of a fixed type is
3472     // not sanitized, we also don't instrument arrays of them.
3473     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3474       Ty = AT->getElementType();
3475     Ty = Ty.getCanonicalType().getUnqualifiedType();
3476     // Only record types (classes, structs etc.) are ignored.
3477     if (Ty->isRecordType()) {
3478       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3479       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3480         return true;
3481     }
3482   }
3483   return false;
3484 }
3485 
3486 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3487                                    StringRef Category) const {
3488   const auto &XRayFilter = getContext().getXRayFilter();
3489   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3490   auto Attr = ImbueAttr::NONE;
3491   if (Loc.isValid())
3492     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3493   if (Attr == ImbueAttr::NONE)
3494     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3495   switch (Attr) {
3496   case ImbueAttr::NONE:
3497     return false;
3498   case ImbueAttr::ALWAYS:
3499     Fn->addFnAttr("function-instrument", "xray-always");
3500     break;
3501   case ImbueAttr::ALWAYS_ARG1:
3502     Fn->addFnAttr("function-instrument", "xray-always");
3503     Fn->addFnAttr("xray-log-args", "1");
3504     break;
3505   case ImbueAttr::NEVER:
3506     Fn->addFnAttr("function-instrument", "xray-never");
3507     break;
3508   }
3509   return true;
3510 }
3511 
3512 ProfileList::ExclusionType
3513 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3514                                               SourceLocation Loc) const {
3515   const auto &ProfileList = getContext().getProfileList();
3516   // If the profile list is empty, then instrument everything.
3517   if (ProfileList.isEmpty())
3518     return ProfileList::Allow;
3519   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3520   // First, check the function name.
3521   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3522     return *V;
3523   // Next, check the source location.
3524   if (Loc.isValid())
3525     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3526       return *V;
3527   // If location is unknown, this may be a compiler-generated function. Assume
3528   // it's located in the main file.
3529   auto &SM = Context.getSourceManager();
3530   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3531     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3532       return *V;
3533   return ProfileList.getDefault(Kind);
3534 }
3535 
3536 ProfileList::ExclusionType
3537 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3538                                                  SourceLocation Loc) const {
3539   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3540   if (V != ProfileList::Allow)
3541     return V;
3542 
3543   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3544   if (NumGroups > 1) {
3545     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3546     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3547       return ProfileList::Skip;
3548   }
3549   return ProfileList::Allow;
3550 }
3551 
3552 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3553   // Never defer when EmitAllDecls is specified.
3554   if (LangOpts.EmitAllDecls)
3555     return true;
3556 
3557   const auto *VD = dyn_cast<VarDecl>(Global);
3558   if (VD &&
3559       ((CodeGenOpts.KeepPersistentStorageVariables &&
3560         (VD->getStorageDuration() == SD_Static ||
3561          VD->getStorageDuration() == SD_Thread)) ||
3562        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3563         VD->getType().isConstQualified())))
3564     return true;
3565 
3566   return getContext().DeclMustBeEmitted(Global);
3567 }
3568 
3569 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3570   // In OpenMP 5.0 variables and function may be marked as
3571   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3572   // that they must be emitted on the host/device. To be sure we need to have
3573   // seen a declare target with an explicit mentioning of the function, we know
3574   // we have if the level of the declare target attribute is -1. Note that we
3575   // check somewhere else if we should emit this at all.
3576   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3577     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3578         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3579     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3580       return false;
3581   }
3582 
3583   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3584     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3585       // Implicit template instantiations may change linkage if they are later
3586       // explicitly instantiated, so they should not be emitted eagerly.
3587       return false;
3588     // Defer until all versions have been semantically checked.
3589     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3590       return false;
3591   }
3592   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3593     if (Context.getInlineVariableDefinitionKind(VD) ==
3594         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3595       // A definition of an inline constexpr static data member may change
3596       // linkage later if it's redeclared outside the class.
3597       return false;
3598     if (CXX20ModuleInits && VD->getOwningModule() &&
3599         !VD->getOwningModule()->isModuleMapModule()) {
3600       // For CXX20, module-owned initializers need to be deferred, since it is
3601       // not known at this point if they will be run for the current module or
3602       // as part of the initializer for an imported one.
3603       return false;
3604     }
3605   }
3606   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3607   // codegen for global variables, because they may be marked as threadprivate.
3608   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3609       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3610       !Global->getType().isConstantStorage(getContext(), false, false) &&
3611       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3612     return false;
3613 
3614   return true;
3615 }
3616 
3617 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3618   StringRef Name = getMangledName(GD);
3619 
3620   // The UUID descriptor should be pointer aligned.
3621   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3622 
3623   // Look for an existing global.
3624   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3625     return ConstantAddress(GV, GV->getValueType(), Alignment);
3626 
3627   ConstantEmitter Emitter(*this);
3628   llvm::Constant *Init;
3629 
3630   APValue &V = GD->getAsAPValue();
3631   if (!V.isAbsent()) {
3632     // If possible, emit the APValue version of the initializer. In particular,
3633     // this gets the type of the constant right.
3634     Init = Emitter.emitForInitializer(
3635         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3636   } else {
3637     // As a fallback, directly construct the constant.
3638     // FIXME: This may get padding wrong under esoteric struct layout rules.
3639     // MSVC appears to create a complete type 'struct __s_GUID' that it
3640     // presumably uses to represent these constants.
3641     MSGuidDecl::Parts Parts = GD->getParts();
3642     llvm::Constant *Fields[4] = {
3643         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3644         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3645         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3646         llvm::ConstantDataArray::getRaw(
3647             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3648             Int8Ty)};
3649     Init = llvm::ConstantStruct::getAnon(Fields);
3650   }
3651 
3652   auto *GV = new llvm::GlobalVariable(
3653       getModule(), Init->getType(),
3654       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3655   if (supportsCOMDAT())
3656     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3657   setDSOLocal(GV);
3658 
3659   if (!V.isAbsent()) {
3660     Emitter.finalize(GV);
3661     return ConstantAddress(GV, GV->getValueType(), Alignment);
3662   }
3663 
3664   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3665   return ConstantAddress(GV, Ty, Alignment);
3666 }
3667 
3668 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3669     const UnnamedGlobalConstantDecl *GCD) {
3670   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3671 
3672   llvm::GlobalVariable **Entry = nullptr;
3673   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3674   if (*Entry)
3675     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3676 
3677   ConstantEmitter Emitter(*this);
3678   llvm::Constant *Init;
3679 
3680   const APValue &V = GCD->getValue();
3681 
3682   assert(!V.isAbsent());
3683   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3684                                     GCD->getType());
3685 
3686   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3687                                       /*isConstant=*/true,
3688                                       llvm::GlobalValue::PrivateLinkage, Init,
3689                                       ".constant");
3690   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3691   GV->setAlignment(Alignment.getAsAlign());
3692 
3693   Emitter.finalize(GV);
3694 
3695   *Entry = GV;
3696   return ConstantAddress(GV, GV->getValueType(), Alignment);
3697 }
3698 
3699 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3700     const TemplateParamObjectDecl *TPO) {
3701   StringRef Name = getMangledName(TPO);
3702   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3703 
3704   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3705     return ConstantAddress(GV, GV->getValueType(), Alignment);
3706 
3707   ConstantEmitter Emitter(*this);
3708   llvm::Constant *Init = Emitter.emitForInitializer(
3709         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3710 
3711   if (!Init) {
3712     ErrorUnsupported(TPO, "template parameter object");
3713     return ConstantAddress::invalid();
3714   }
3715 
3716   llvm::GlobalValue::LinkageTypes Linkage =
3717       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3718           ? llvm::GlobalValue::LinkOnceODRLinkage
3719           : llvm::GlobalValue::InternalLinkage;
3720   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3721                                       /*isConstant=*/true, Linkage, Init, Name);
3722   setGVProperties(GV, TPO);
3723   if (supportsCOMDAT())
3724     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3725   Emitter.finalize(GV);
3726 
3727     return ConstantAddress(GV, GV->getValueType(), Alignment);
3728 }
3729 
3730 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3731   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3732   assert(AA && "No alias?");
3733 
3734   CharUnits Alignment = getContext().getDeclAlign(VD);
3735   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3736 
3737   // See if there is already something with the target's name in the module.
3738   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3739   if (Entry)
3740     return ConstantAddress(Entry, DeclTy, Alignment);
3741 
3742   llvm::Constant *Aliasee;
3743   if (isa<llvm::FunctionType>(DeclTy))
3744     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3745                                       GlobalDecl(cast<FunctionDecl>(VD)),
3746                                       /*ForVTable=*/false);
3747   else
3748     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3749                                     nullptr);
3750 
3751   auto *F = cast<llvm::GlobalValue>(Aliasee);
3752   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3753   WeakRefReferences.insert(F);
3754 
3755   return ConstantAddress(Aliasee, DeclTy, Alignment);
3756 }
3757 
3758 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3759   if (!D)
3760     return false;
3761   if (auto *A = D->getAttr<AttrT>())
3762     return A->isImplicit();
3763   return D->isImplicit();
3764 }
3765 
3766 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3767   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3768   // We need to emit host-side 'shadows' for all global
3769   // device-side variables because the CUDA runtime needs their
3770   // size and host-side address in order to provide access to
3771   // their device-side incarnations.
3772   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3773          Global->hasAttr<CUDAConstantAttr>() ||
3774          Global->hasAttr<CUDASharedAttr>() ||
3775          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3776          Global->getType()->isCUDADeviceBuiltinTextureType();
3777 }
3778 
3779 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3780   const auto *Global = cast<ValueDecl>(GD.getDecl());
3781 
3782   // Weak references don't produce any output by themselves.
3783   if (Global->hasAttr<WeakRefAttr>())
3784     return;
3785 
3786   // If this is an alias definition (which otherwise looks like a declaration)
3787   // emit it now.
3788   if (Global->hasAttr<AliasAttr>())
3789     return EmitAliasDefinition(GD);
3790 
3791   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3792   if (Global->hasAttr<IFuncAttr>())
3793     return emitIFuncDefinition(GD);
3794 
3795   // If this is a cpu_dispatch multiversion function, emit the resolver.
3796   if (Global->hasAttr<CPUDispatchAttr>())
3797     return emitCPUDispatchDefinition(GD);
3798 
3799   // If this is CUDA, be selective about which declarations we emit.
3800   // Non-constexpr non-lambda implicit host device functions are not emitted
3801   // unless they are used on device side.
3802   if (LangOpts.CUDA) {
3803     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3804            "Expected Variable or Function");
3805     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3806       if (!shouldEmitCUDAGlobalVar(VD))
3807         return;
3808     } else if (LangOpts.CUDAIsDevice) {
3809       const auto *FD = dyn_cast<FunctionDecl>(Global);
3810       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3811            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3812             hasImplicitAttr<CUDAHostAttr>(FD) &&
3813             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3814             !isLambdaCallOperator(FD) &&
3815             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3816           !Global->hasAttr<CUDAGlobalAttr>() &&
3817           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3818             !Global->hasAttr<CUDAHostAttr>()))
3819         return;
3820       // Device-only functions are the only things we skip.
3821     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3822                Global->hasAttr<CUDADeviceAttr>())
3823       return;
3824   }
3825 
3826   if (LangOpts.OpenMP) {
3827     // If this is OpenMP, check if it is legal to emit this global normally.
3828     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3829       return;
3830     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3831       if (MustBeEmitted(Global))
3832         EmitOMPDeclareReduction(DRD);
3833       return;
3834     }
3835     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3836       if (MustBeEmitted(Global))
3837         EmitOMPDeclareMapper(DMD);
3838       return;
3839     }
3840   }
3841 
3842   // Ignore declarations, they will be emitted on their first use.
3843   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3844     // Update deferred annotations with the latest declaration if the function
3845     // function was already used or defined.
3846     if (FD->hasAttr<AnnotateAttr>()) {
3847       StringRef MangledName = getMangledName(GD);
3848       if (GetGlobalValue(MangledName))
3849         DeferredAnnotations[MangledName] = FD;
3850     }
3851 
3852     // Forward declarations are emitted lazily on first use.
3853     if (!FD->doesThisDeclarationHaveABody()) {
3854       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3855           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3856         return;
3857 
3858       StringRef MangledName = getMangledName(GD);
3859 
3860       // Compute the function info and LLVM type.
3861       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3862       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3863 
3864       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3865                               /*DontDefer=*/false);
3866       return;
3867     }
3868   } else {
3869     const auto *VD = cast<VarDecl>(Global);
3870     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3871     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3872         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3873       if (LangOpts.OpenMP) {
3874         // Emit declaration of the must-be-emitted declare target variable.
3875         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3876                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3877 
3878           // If this variable has external storage and doesn't require special
3879           // link handling we defer to its canonical definition.
3880           if (VD->hasExternalStorage() &&
3881               Res != OMPDeclareTargetDeclAttr::MT_Link)
3882             return;
3883 
3884           bool UnifiedMemoryEnabled =
3885               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3886           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3887                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3888               !UnifiedMemoryEnabled) {
3889             (void)GetAddrOfGlobalVar(VD);
3890           } else {
3891             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3892                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3893                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3894                      UnifiedMemoryEnabled)) &&
3895                    "Link clause or to clause with unified memory expected.");
3896             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3897           }
3898 
3899           return;
3900         }
3901       }
3902       // If this declaration may have caused an inline variable definition to
3903       // change linkage, make sure that it's emitted.
3904       if (Context.getInlineVariableDefinitionKind(VD) ==
3905           ASTContext::InlineVariableDefinitionKind::Strong)
3906         GetAddrOfGlobalVar(VD);
3907       return;
3908     }
3909   }
3910 
3911   // Defer code generation to first use when possible, e.g. if this is an inline
3912   // function. If the global must always be emitted, do it eagerly if possible
3913   // to benefit from cache locality.
3914   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3915     // Emit the definition if it can't be deferred.
3916     EmitGlobalDefinition(GD);
3917     addEmittedDeferredDecl(GD);
3918     return;
3919   }
3920 
3921   // If we're deferring emission of a C++ variable with an
3922   // initializer, remember the order in which it appeared in the file.
3923   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3924       cast<VarDecl>(Global)->hasInit()) {
3925     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3926     CXXGlobalInits.push_back(nullptr);
3927   }
3928 
3929   StringRef MangledName = getMangledName(GD);
3930   if (GetGlobalValue(MangledName) != nullptr) {
3931     // The value has already been used and should therefore be emitted.
3932     addDeferredDeclToEmit(GD);
3933   } else if (MustBeEmitted(Global)) {
3934     // The value must be emitted, but cannot be emitted eagerly.
3935     assert(!MayBeEmittedEagerly(Global));
3936     addDeferredDeclToEmit(GD);
3937   } else {
3938     // Otherwise, remember that we saw a deferred decl with this name.  The
3939     // first use of the mangled name will cause it to move into
3940     // DeferredDeclsToEmit.
3941     DeferredDecls[MangledName] = GD;
3942   }
3943 }
3944 
3945 // Check if T is a class type with a destructor that's not dllimport.
3946 static bool HasNonDllImportDtor(QualType T) {
3947   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3948     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3949       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3950         return true;
3951 
3952   return false;
3953 }
3954 
3955 namespace {
3956   struct FunctionIsDirectlyRecursive
3957       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3958     const StringRef Name;
3959     const Builtin::Context &BI;
3960     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3961         : Name(N), BI(C) {}
3962 
3963     bool VisitCallExpr(const CallExpr *E) {
3964       const FunctionDecl *FD = E->getDirectCallee();
3965       if (!FD)
3966         return false;
3967       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3968       if (Attr && Name == Attr->getLabel())
3969         return true;
3970       unsigned BuiltinID = FD->getBuiltinID();
3971       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3972         return false;
3973       StringRef BuiltinName = BI.getName(BuiltinID);
3974       if (BuiltinName.starts_with("__builtin_") &&
3975           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3976         return true;
3977       }
3978       return false;
3979     }
3980 
3981     bool VisitStmt(const Stmt *S) {
3982       for (const Stmt *Child : S->children())
3983         if (Child && this->Visit(Child))
3984           return true;
3985       return false;
3986     }
3987   };
3988 
3989   // Make sure we're not referencing non-imported vars or functions.
3990   struct DLLImportFunctionVisitor
3991       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3992     bool SafeToInline = true;
3993 
3994     bool shouldVisitImplicitCode() const { return true; }
3995 
3996     bool VisitVarDecl(VarDecl *VD) {
3997       if (VD->getTLSKind()) {
3998         // A thread-local variable cannot be imported.
3999         SafeToInline = false;
4000         return SafeToInline;
4001       }
4002 
4003       // A variable definition might imply a destructor call.
4004       if (VD->isThisDeclarationADefinition())
4005         SafeToInline = !HasNonDllImportDtor(VD->getType());
4006 
4007       return SafeToInline;
4008     }
4009 
4010     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4011       if (const auto *D = E->getTemporary()->getDestructor())
4012         SafeToInline = D->hasAttr<DLLImportAttr>();
4013       return SafeToInline;
4014     }
4015 
4016     bool VisitDeclRefExpr(DeclRefExpr *E) {
4017       ValueDecl *VD = E->getDecl();
4018       if (isa<FunctionDecl>(VD))
4019         SafeToInline = VD->hasAttr<DLLImportAttr>();
4020       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4021         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4022       return SafeToInline;
4023     }
4024 
4025     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4026       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4027       return SafeToInline;
4028     }
4029 
4030     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4031       CXXMethodDecl *M = E->getMethodDecl();
4032       if (!M) {
4033         // Call through a pointer to member function. This is safe to inline.
4034         SafeToInline = true;
4035       } else {
4036         SafeToInline = M->hasAttr<DLLImportAttr>();
4037       }
4038       return SafeToInline;
4039     }
4040 
4041     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4042       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4043       return SafeToInline;
4044     }
4045 
4046     bool VisitCXXNewExpr(CXXNewExpr *E) {
4047       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4048       return SafeToInline;
4049     }
4050   };
4051 }
4052 
4053 // isTriviallyRecursive - Check if this function calls another
4054 // decl that, because of the asm attribute or the other decl being a builtin,
4055 // ends up pointing to itself.
4056 bool
4057 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4058   StringRef Name;
4059   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4060     // asm labels are a special kind of mangling we have to support.
4061     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4062     if (!Attr)
4063       return false;
4064     Name = Attr->getLabel();
4065   } else {
4066     Name = FD->getName();
4067   }
4068 
4069   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4070   const Stmt *Body = FD->getBody();
4071   return Body ? Walker.Visit(Body) : false;
4072 }
4073 
4074 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4075   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4076     return true;
4077 
4078   const auto *F = cast<FunctionDecl>(GD.getDecl());
4079   // Inline builtins declaration must be emitted. They often are fortified
4080   // functions.
4081   if (F->isInlineBuiltinDeclaration())
4082     return true;
4083 
4084   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4085     return false;
4086 
4087   // We don't import function bodies from other named module units since that
4088   // behavior may break ABI compatibility of the current unit.
4089   if (const Module *M = F->getOwningModule();
4090       M && M->getTopLevelModule()->isNamedModule() &&
4091       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4092     // There are practices to mark template member function as always-inline
4093     // and mark the template as extern explicit instantiation but not give
4094     // the definition for member function. So we have to emit the function
4095     // from explicitly instantiation with always-inline.
4096     //
4097     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4098     //
4099     // TODO: Maybe it is better to give it a warning if we call a non-inline
4100     // function from other module units which is marked as always-inline.
4101     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4102       return false;
4103     }
4104   }
4105 
4106   if (F->hasAttr<NoInlineAttr>())
4107     return false;
4108 
4109   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4110     // Check whether it would be safe to inline this dllimport function.
4111     DLLImportFunctionVisitor Visitor;
4112     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4113     if (!Visitor.SafeToInline)
4114       return false;
4115 
4116     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4117       // Implicit destructor invocations aren't captured in the AST, so the
4118       // check above can't see them. Check for them manually here.
4119       for (const Decl *Member : Dtor->getParent()->decls())
4120         if (isa<FieldDecl>(Member))
4121           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4122             return false;
4123       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4124         if (HasNonDllImportDtor(B.getType()))
4125           return false;
4126     }
4127   }
4128 
4129   // PR9614. Avoid cases where the source code is lying to us. An available
4130   // externally function should have an equivalent function somewhere else,
4131   // but a function that calls itself through asm label/`__builtin_` trickery is
4132   // clearly not equivalent to the real implementation.
4133   // This happens in glibc's btowc and in some configure checks.
4134   return !isTriviallyRecursive(F);
4135 }
4136 
4137 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4138   return CodeGenOpts.OptimizationLevel > 0;
4139 }
4140 
4141 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4142                                                        llvm::GlobalValue *GV) {
4143   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4144 
4145   if (FD->isCPUSpecificMultiVersion()) {
4146     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4147     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4148       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4149   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4150     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4151       // AArch64 favors the default target version over the clone if any.
4152       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4153           TC->isFirstOfVersion(I))
4154         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4155     // Ensure that the resolver function is also emitted.
4156     GetOrCreateMultiVersionResolver(GD);
4157   } else
4158     EmitGlobalFunctionDefinition(GD, GV);
4159 
4160   // Defer the resolver emission until we can reason whether the TU
4161   // contains a default target version implementation.
4162   if (FD->isTargetVersionMultiVersion())
4163     AddDeferredMultiVersionResolverToEmit(GD);
4164 }
4165 
4166 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4167   const auto *D = cast<ValueDecl>(GD.getDecl());
4168 
4169   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4170                                  Context.getSourceManager(),
4171                                  "Generating code for declaration");
4172 
4173   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4174     // At -O0, don't generate IR for functions with available_externally
4175     // linkage.
4176     if (!shouldEmitFunction(GD))
4177       return;
4178 
4179     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4180       std::string Name;
4181       llvm::raw_string_ostream OS(Name);
4182       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4183                                /*Qualified=*/true);
4184       return Name;
4185     });
4186 
4187     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4188       // Make sure to emit the definition(s) before we emit the thunks.
4189       // This is necessary for the generation of certain thunks.
4190       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4191         ABI->emitCXXStructor(GD);
4192       else if (FD->isMultiVersion())
4193         EmitMultiVersionFunctionDefinition(GD, GV);
4194       else
4195         EmitGlobalFunctionDefinition(GD, GV);
4196 
4197       if (Method->isVirtual())
4198         getVTables().EmitThunks(GD);
4199 
4200       return;
4201     }
4202 
4203     if (FD->isMultiVersion())
4204       return EmitMultiVersionFunctionDefinition(GD, GV);
4205     return EmitGlobalFunctionDefinition(GD, GV);
4206   }
4207 
4208   if (const auto *VD = dyn_cast<VarDecl>(D))
4209     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4210 
4211   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4212 }
4213 
4214 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4215                                                       llvm::Function *NewFn);
4216 
4217 static unsigned
4218 TargetMVPriority(const TargetInfo &TI,
4219                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4220   unsigned Priority = 0;
4221   unsigned NumFeatures = 0;
4222   for (StringRef Feat : RO.Conditions.Features) {
4223     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4224     NumFeatures++;
4225   }
4226 
4227   if (!RO.Conditions.Architecture.empty())
4228     Priority = std::max(
4229         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4230 
4231   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4232 
4233   return Priority;
4234 }
4235 
4236 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4237 // TU can forward declare the function without causing problems.  Particularly
4238 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4239 // work with internal linkage functions, so that the same function name can be
4240 // used with internal linkage in multiple TUs.
4241 static llvm::GlobalValue::LinkageTypes
4242 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4243   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4244   if (FD->getFormalLinkage() == Linkage::Internal)
4245     return llvm::GlobalValue::InternalLinkage;
4246   return llvm::GlobalValue::WeakODRLinkage;
4247 }
4248 
4249 void CodeGenModule::emitMultiVersionFunctions() {
4250   std::vector<GlobalDecl> MVFuncsToEmit;
4251   MultiVersionFuncs.swap(MVFuncsToEmit);
4252   for (GlobalDecl GD : MVFuncsToEmit) {
4253     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4254     assert(FD && "Expected a FunctionDecl");
4255 
4256     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4257       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4258       StringRef MangledName = getMangledName(CurGD);
4259       llvm::Constant *Func = GetGlobalValue(MangledName);
4260       if (!Func) {
4261         if (Decl->isDefined()) {
4262           EmitGlobalFunctionDefinition(CurGD, nullptr);
4263           Func = GetGlobalValue(MangledName);
4264         } else {
4265           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4266           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4267           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4268                                    /*DontDefer=*/false, ForDefinition);
4269         }
4270         assert(Func && "This should have just been created");
4271       }
4272       return cast<llvm::Function>(Func);
4273     };
4274 
4275     // For AArch64, a resolver is only emitted if a function marked with
4276     // target_version("default")) or target_clones() is present and defined
4277     // in this TU. For other architectures it is always emitted.
4278     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4279     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4280 
4281     getContext().forEachMultiversionedFunctionVersion(
4282         FD, [&](const FunctionDecl *CurFD) {
4283           llvm::SmallVector<StringRef, 8> Feats;
4284           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4285 
4286           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4287             TA->getAddedFeatures(Feats);
4288             llvm::Function *Func = createFunction(CurFD);
4289             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4290           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4291             if (TVA->isDefaultVersion() && IsDefined)
4292               ShouldEmitResolver = true;
4293             llvm::Function *Func = createFunction(CurFD);
4294             if (getTarget().getTriple().isRISCV()) {
4295               Feats.push_back(TVA->getName());
4296             } else {
4297               assert(getTarget().getTriple().isAArch64());
4298               TVA->getFeatures(Feats);
4299             }
4300             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4301           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4302             if (IsDefined)
4303               ShouldEmitResolver = true;
4304             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4305               if (!TC->isFirstOfVersion(I))
4306                 continue;
4307 
4308               llvm::Function *Func = createFunction(CurFD, I);
4309               StringRef Architecture;
4310               Feats.clear();
4311               if (getTarget().getTriple().isAArch64())
4312                 TC->getFeatures(Feats, I);
4313               else if (getTarget().getTriple().isRISCV()) {
4314                 StringRef Version = TC->getFeatureStr(I);
4315                 Feats.push_back(Version);
4316               } else {
4317                 StringRef Version = TC->getFeatureStr(I);
4318                 if (Version.starts_with("arch="))
4319                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4320                 else if (Version != "default")
4321                   Feats.push_back(Version);
4322               }
4323               Options.emplace_back(Func, Architecture, Feats);
4324             }
4325           } else
4326             llvm_unreachable("unexpected MultiVersionKind");
4327         });
4328 
4329     if (!ShouldEmitResolver)
4330       continue;
4331 
4332     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4333     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4334       ResolverConstant = IFunc->getResolver();
4335       if (FD->isTargetClonesMultiVersion() &&
4336           !getTarget().getTriple().isAArch64()) {
4337         std::string MangledName = getMangledNameImpl(
4338             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4339         if (!GetGlobalValue(MangledName + ".ifunc")) {
4340           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4341           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4342           // In prior versions of Clang, the mangling for ifuncs incorrectly
4343           // included an .ifunc suffix. This alias is generated for backward
4344           // compatibility. It is deprecated, and may be removed in the future.
4345           auto *Alias = llvm::GlobalAlias::create(
4346               DeclTy, 0, getMultiversionLinkage(*this, GD),
4347               MangledName + ".ifunc", IFunc, &getModule());
4348           SetCommonAttributes(FD, Alias);
4349         }
4350       }
4351     }
4352     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4353 
4354     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4355 
4356     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4357       ResolverFunc->setComdat(
4358           getModule().getOrInsertComdat(ResolverFunc->getName()));
4359 
4360     const TargetInfo &TI = getTarget();
4361     llvm::stable_sort(
4362         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4363                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4364           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4365         });
4366     CodeGenFunction CGF(*this);
4367     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4368   }
4369 
4370   // Ensure that any additions to the deferred decls list caused by emitting a
4371   // variant are emitted.  This can happen when the variant itself is inline and
4372   // calls a function without linkage.
4373   if (!MVFuncsToEmit.empty())
4374     EmitDeferred();
4375 
4376   // Ensure that any additions to the multiversion funcs list from either the
4377   // deferred decls or the multiversion functions themselves are emitted.
4378   if (!MultiVersionFuncs.empty())
4379     emitMultiVersionFunctions();
4380 }
4381 
4382 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4383                                    llvm::Constant *New) {
4384   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4385   New->takeName(Old);
4386   Old->replaceAllUsesWith(New);
4387   Old->eraseFromParent();
4388 }
4389 
4390 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4391   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4392   assert(FD && "Not a FunctionDecl?");
4393   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4394   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4395   assert(DD && "Not a cpu_dispatch Function?");
4396 
4397   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4398   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4399 
4400   StringRef ResolverName = getMangledName(GD);
4401   UpdateMultiVersionNames(GD, FD, ResolverName);
4402 
4403   llvm::Type *ResolverType;
4404   GlobalDecl ResolverGD;
4405   if (getTarget().supportsIFunc()) {
4406     ResolverType = llvm::FunctionType::get(
4407         llvm::PointerType::get(DeclTy,
4408                                getTypes().getTargetAddressSpace(FD->getType())),
4409         false);
4410   }
4411   else {
4412     ResolverType = DeclTy;
4413     ResolverGD = GD;
4414   }
4415 
4416   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4417       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4418   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4419   if (supportsCOMDAT())
4420     ResolverFunc->setComdat(
4421         getModule().getOrInsertComdat(ResolverFunc->getName()));
4422 
4423   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4424   const TargetInfo &Target = getTarget();
4425   unsigned Index = 0;
4426   for (const IdentifierInfo *II : DD->cpus()) {
4427     // Get the name of the target function so we can look it up/create it.
4428     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4429                               getCPUSpecificMangling(*this, II->getName());
4430 
4431     llvm::Constant *Func = GetGlobalValue(MangledName);
4432 
4433     if (!Func) {
4434       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4435       if (ExistingDecl.getDecl() &&
4436           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4437         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4438         Func = GetGlobalValue(MangledName);
4439       } else {
4440         if (!ExistingDecl.getDecl())
4441           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4442 
4443       Func = GetOrCreateLLVMFunction(
4444           MangledName, DeclTy, ExistingDecl,
4445           /*ForVTable=*/false, /*DontDefer=*/true,
4446           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4447       }
4448     }
4449 
4450     llvm::SmallVector<StringRef, 32> Features;
4451     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4452     llvm::transform(Features, Features.begin(),
4453                     [](StringRef Str) { return Str.substr(1); });
4454     llvm::erase_if(Features, [&Target](StringRef Feat) {
4455       return !Target.validateCpuSupports(Feat);
4456     });
4457     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4458     ++Index;
4459   }
4460 
4461   llvm::stable_sort(
4462       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4463                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4464         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4465                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4466       });
4467 
4468   // If the list contains multiple 'default' versions, such as when it contains
4469   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4470   // always run on at least a 'pentium'). We do this by deleting the 'least
4471   // advanced' (read, lowest mangling letter).
4472   while (Options.size() > 1 &&
4473          llvm::all_of(llvm::X86::getCpuSupportsMask(
4474                           (Options.end() - 2)->Conditions.Features),
4475                       [](auto X) { return X == 0; })) {
4476     StringRef LHSName = (Options.end() - 2)->Function->getName();
4477     StringRef RHSName = (Options.end() - 1)->Function->getName();
4478     if (LHSName.compare(RHSName) < 0)
4479       Options.erase(Options.end() - 2);
4480     else
4481       Options.erase(Options.end() - 1);
4482   }
4483 
4484   CodeGenFunction CGF(*this);
4485   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4486 
4487   if (getTarget().supportsIFunc()) {
4488     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4489     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4490     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4491 
4492     // Fix up function declarations that were created for cpu_specific before
4493     // cpu_dispatch was known
4494     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4495       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4496                                            ResolverFunc, &getModule());
4497       replaceDeclarationWith(IFunc, GI);
4498       IFunc = GI;
4499     }
4500 
4501     std::string AliasName = getMangledNameImpl(
4502         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4503     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4504     if (!AliasFunc) {
4505       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4506                                            IFunc, &getModule());
4507       SetCommonAttributes(GD, GA);
4508     }
4509   }
4510 }
4511 
4512 /// Adds a declaration to the list of multi version functions if not present.
4513 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4514   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4515   assert(FD && "Not a FunctionDecl?");
4516 
4517   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4518     std::string MangledName =
4519         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4520     if (!DeferredResolversToEmit.insert(MangledName).second)
4521       return;
4522   }
4523   MultiVersionFuncs.push_back(GD);
4524 }
4525 
4526 /// If a dispatcher for the specified mangled name is not in the module, create
4527 /// and return it. The dispatcher is either an llvm Function with the specified
4528 /// type, or a global ifunc.
4529 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4530   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4531   assert(FD && "Not a FunctionDecl?");
4532 
4533   std::string MangledName =
4534       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4535 
4536   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4537   // a separate resolver).
4538   std::string ResolverName = MangledName;
4539   if (getTarget().supportsIFunc()) {
4540     switch (FD->getMultiVersionKind()) {
4541     case MultiVersionKind::None:
4542       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4543     case MultiVersionKind::Target:
4544     case MultiVersionKind::CPUSpecific:
4545     case MultiVersionKind::CPUDispatch:
4546       ResolverName += ".ifunc";
4547       break;
4548     case MultiVersionKind::TargetClones:
4549     case MultiVersionKind::TargetVersion:
4550       break;
4551     }
4552   } else if (FD->isTargetMultiVersion()) {
4553     ResolverName += ".resolver";
4554   }
4555 
4556   // If the resolver has already been created, just return it. This lookup may
4557   // yield a function declaration instead of a resolver on AArch64. That is
4558   // because we didn't know whether a resolver will be generated when we first
4559   // encountered a use of the symbol named after this resolver. Therefore,
4560   // targets which support ifuncs should not return here unless we actually
4561   // found an ifunc.
4562   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4563   if (ResolverGV &&
4564       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4565     return ResolverGV;
4566 
4567   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4568   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4569 
4570   // The resolver needs to be created. For target and target_clones, defer
4571   // creation until the end of the TU.
4572   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4573     AddDeferredMultiVersionResolverToEmit(GD);
4574 
4575   // For cpu_specific, don't create an ifunc yet because we don't know if the
4576   // cpu_dispatch will be emitted in this translation unit.
4577   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4578     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4579     llvm::Type *ResolverType =
4580         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4581     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4582         MangledName + ".resolver", ResolverType, GlobalDecl{},
4583         /*ForVTable=*/false);
4584     llvm::GlobalIFunc *GIF =
4585         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4586                                   "", Resolver, &getModule());
4587     GIF->setName(ResolverName);
4588     SetCommonAttributes(FD, GIF);
4589     if (ResolverGV)
4590       replaceDeclarationWith(ResolverGV, GIF);
4591     return GIF;
4592   }
4593 
4594   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4595       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4596   assert(isa<llvm::GlobalValue>(Resolver) &&
4597          "Resolver should be created for the first time");
4598   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4599   if (ResolverGV)
4600     replaceDeclarationWith(ResolverGV, Resolver);
4601   return Resolver;
4602 }
4603 
4604 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4605                                            const llvm::GlobalValue *GV) const {
4606   auto SC = GV->getDLLStorageClass();
4607   if (SC == llvm::GlobalValue::DefaultStorageClass)
4608     return false;
4609   const Decl *MRD = D->getMostRecentDecl();
4610   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4611             !MRD->hasAttr<DLLImportAttr>()) ||
4612            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4613             !MRD->hasAttr<DLLExportAttr>())) &&
4614           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4615 }
4616 
4617 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4618 /// module, create and return an llvm Function with the specified type. If there
4619 /// is something in the module with the specified name, return it potentially
4620 /// bitcasted to the right type.
4621 ///
4622 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4623 /// to set the attributes on the function when it is first created.
4624 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4625     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4626     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4627     ForDefinition_t IsForDefinition) {
4628   const Decl *D = GD.getDecl();
4629 
4630   std::string NameWithoutMultiVersionMangling;
4631   // Any attempts to use a MultiVersion function should result in retrieving
4632   // the iFunc instead. Name Mangling will handle the rest of the changes.
4633   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4634     // For the device mark the function as one that should be emitted.
4635     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4636         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4637         !DontDefer && !IsForDefinition) {
4638       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4639         GlobalDecl GDDef;
4640         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4641           GDDef = GlobalDecl(CD, GD.getCtorType());
4642         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4643           GDDef = GlobalDecl(DD, GD.getDtorType());
4644         else
4645           GDDef = GlobalDecl(FDDef);
4646         EmitGlobal(GDDef);
4647       }
4648     }
4649 
4650     if (FD->isMultiVersion()) {
4651       UpdateMultiVersionNames(GD, FD, MangledName);
4652       if (!IsForDefinition) {
4653         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4654         // function is used. Instead we defer the emission until we see a
4655         // default definition. In the meantime we just reference the symbol
4656         // without FMV mangling (it may or may not be replaced later).
4657         if (getTarget().getTriple().isAArch64()) {
4658           AddDeferredMultiVersionResolverToEmit(GD);
4659           NameWithoutMultiVersionMangling = getMangledNameImpl(
4660               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4661         } else
4662           return GetOrCreateMultiVersionResolver(GD);
4663       }
4664     }
4665   }
4666 
4667   if (!NameWithoutMultiVersionMangling.empty())
4668     MangledName = NameWithoutMultiVersionMangling;
4669 
4670   // Lookup the entry, lazily creating it if necessary.
4671   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4672   if (Entry) {
4673     if (WeakRefReferences.erase(Entry)) {
4674       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4675       if (FD && !FD->hasAttr<WeakAttr>())
4676         Entry->setLinkage(llvm::Function::ExternalLinkage);
4677     }
4678 
4679     // Handle dropped DLL attributes.
4680     if (D && shouldDropDLLAttribute(D, Entry)) {
4681       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4682       setDSOLocal(Entry);
4683     }
4684 
4685     // If there are two attempts to define the same mangled name, issue an
4686     // error.
4687     if (IsForDefinition && !Entry->isDeclaration()) {
4688       GlobalDecl OtherGD;
4689       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4690       // to make sure that we issue an error only once.
4691       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4692           (GD.getCanonicalDecl().getDecl() !=
4693            OtherGD.getCanonicalDecl().getDecl()) &&
4694           DiagnosedConflictingDefinitions.insert(GD).second) {
4695         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4696             << MangledName;
4697         getDiags().Report(OtherGD.getDecl()->getLocation(),
4698                           diag::note_previous_definition);
4699       }
4700     }
4701 
4702     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4703         (Entry->getValueType() == Ty)) {
4704       return Entry;
4705     }
4706 
4707     // Make sure the result is of the correct type.
4708     // (If function is requested for a definition, we always need to create a new
4709     // function, not just return a bitcast.)
4710     if (!IsForDefinition)
4711       return Entry;
4712   }
4713 
4714   // This function doesn't have a complete type (for example, the return
4715   // type is an incomplete struct). Use a fake type instead, and make
4716   // sure not to try to set attributes.
4717   bool IsIncompleteFunction = false;
4718 
4719   llvm::FunctionType *FTy;
4720   if (isa<llvm::FunctionType>(Ty)) {
4721     FTy = cast<llvm::FunctionType>(Ty);
4722   } else {
4723     FTy = llvm::FunctionType::get(VoidTy, false);
4724     IsIncompleteFunction = true;
4725   }
4726 
4727   llvm::Function *F =
4728       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4729                              Entry ? StringRef() : MangledName, &getModule());
4730 
4731   // Store the declaration associated with this function so it is potentially
4732   // updated by further declarations or definitions and emitted at the end.
4733   if (D && D->hasAttr<AnnotateAttr>())
4734     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4735 
4736   // If we already created a function with the same mangled name (but different
4737   // type) before, take its name and add it to the list of functions to be
4738   // replaced with F at the end of CodeGen.
4739   //
4740   // This happens if there is a prototype for a function (e.g. "int f()") and
4741   // then a definition of a different type (e.g. "int f(int x)").
4742   if (Entry) {
4743     F->takeName(Entry);
4744 
4745     // This might be an implementation of a function without a prototype, in
4746     // which case, try to do special replacement of calls which match the new
4747     // prototype.  The really key thing here is that we also potentially drop
4748     // arguments from the call site so as to make a direct call, which makes the
4749     // inliner happier and suppresses a number of optimizer warnings (!) about
4750     // dropping arguments.
4751     if (!Entry->use_empty()) {
4752       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4753       Entry->removeDeadConstantUsers();
4754     }
4755 
4756     addGlobalValReplacement(Entry, F);
4757   }
4758 
4759   assert(F->getName() == MangledName && "name was uniqued!");
4760   if (D)
4761     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4762   if (ExtraAttrs.hasFnAttrs()) {
4763     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4764     F->addFnAttrs(B);
4765   }
4766 
4767   if (!DontDefer) {
4768     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4769     // each other bottoming out with the base dtor.  Therefore we emit non-base
4770     // dtors on usage, even if there is no dtor definition in the TU.
4771     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4772         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4773                                            GD.getDtorType()))
4774       addDeferredDeclToEmit(GD);
4775 
4776     // This is the first use or definition of a mangled name.  If there is a
4777     // deferred decl with this name, remember that we need to emit it at the end
4778     // of the file.
4779     auto DDI = DeferredDecls.find(MangledName);
4780     if (DDI != DeferredDecls.end()) {
4781       // Move the potentially referenced deferred decl to the
4782       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4783       // don't need it anymore).
4784       addDeferredDeclToEmit(DDI->second);
4785       DeferredDecls.erase(DDI);
4786 
4787       // Otherwise, there are cases we have to worry about where we're
4788       // using a declaration for which we must emit a definition but where
4789       // we might not find a top-level definition:
4790       //   - member functions defined inline in their classes
4791       //   - friend functions defined inline in some class
4792       //   - special member functions with implicit definitions
4793       // If we ever change our AST traversal to walk into class methods,
4794       // this will be unnecessary.
4795       //
4796       // We also don't emit a definition for a function if it's going to be an
4797       // entry in a vtable, unless it's already marked as used.
4798     } else if (getLangOpts().CPlusPlus && D) {
4799       // Look for a declaration that's lexically in a record.
4800       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4801            FD = FD->getPreviousDecl()) {
4802         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4803           if (FD->doesThisDeclarationHaveABody()) {
4804             addDeferredDeclToEmit(GD.getWithDecl(FD));
4805             break;
4806           }
4807         }
4808       }
4809     }
4810   }
4811 
4812   // Make sure the result is of the requested type.
4813   if (!IsIncompleteFunction) {
4814     assert(F->getFunctionType() == Ty);
4815     return F;
4816   }
4817 
4818   return F;
4819 }
4820 
4821 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4822 /// non-null, then this function will use the specified type if it has to
4823 /// create it (this occurs when we see a definition of the function).
4824 llvm::Constant *
4825 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4826                                  bool DontDefer,
4827                                  ForDefinition_t IsForDefinition) {
4828   // If there was no specific requested type, just convert it now.
4829   if (!Ty) {
4830     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4831     Ty = getTypes().ConvertType(FD->getType());
4832   }
4833 
4834   // Devirtualized destructor calls may come through here instead of via
4835   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4836   // of the complete destructor when necessary.
4837   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4838     if (getTarget().getCXXABI().isMicrosoft() &&
4839         GD.getDtorType() == Dtor_Complete &&
4840         DD->getParent()->getNumVBases() == 0)
4841       GD = GlobalDecl(DD, Dtor_Base);
4842   }
4843 
4844   StringRef MangledName = getMangledName(GD);
4845   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4846                                     /*IsThunk=*/false, llvm::AttributeList(),
4847                                     IsForDefinition);
4848   // Returns kernel handle for HIP kernel stub function.
4849   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4850       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4851     auto *Handle = getCUDARuntime().getKernelHandle(
4852         cast<llvm::Function>(F->stripPointerCasts()), GD);
4853     if (IsForDefinition)
4854       return F;
4855     return Handle;
4856   }
4857   return F;
4858 }
4859 
4860 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4861   llvm::GlobalValue *F =
4862       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4863 
4864   return llvm::NoCFIValue::get(F);
4865 }
4866 
4867 static const FunctionDecl *
4868 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4869   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4870   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4871 
4872   IdentifierInfo &CII = C.Idents.get(Name);
4873   for (const auto *Result : DC->lookup(&CII))
4874     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4875       return FD;
4876 
4877   if (!C.getLangOpts().CPlusPlus)
4878     return nullptr;
4879 
4880   // Demangle the premangled name from getTerminateFn()
4881   IdentifierInfo &CXXII =
4882       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4883           ? C.Idents.get("terminate")
4884           : C.Idents.get(Name);
4885 
4886   for (const auto &N : {"__cxxabiv1", "std"}) {
4887     IdentifierInfo &NS = C.Idents.get(N);
4888     for (const auto *Result : DC->lookup(&NS)) {
4889       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4890       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4891         for (const auto *Result : LSD->lookup(&NS))
4892           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4893             break;
4894 
4895       if (ND)
4896         for (const auto *Result : ND->lookup(&CXXII))
4897           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4898             return FD;
4899     }
4900   }
4901 
4902   return nullptr;
4903 }
4904 
4905 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local,
4906                                        llvm::Function *F, StringRef Name) {
4907   // In Windows Itanium environments, try to mark runtime functions
4908   // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4909   // will link their standard library statically or dynamically. Marking
4910   // functions imported when they are not imported can cause linker errors
4911   // and warnings.
4912   if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() &&
4913       !CGM.getCodeGenOpts().LTOVisibilityPublicStd) {
4914     const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name);
4915     if (!FD || FD->hasAttr<DLLImportAttr>()) {
4916       F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4917       F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4918     }
4919   }
4920 }
4921 
4922 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction(
4923     QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name,
4924     llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) {
4925   if (AssumeConvergent) {
4926     ExtraAttrs =
4927         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4928   }
4929 
4930   QualType FTy = Context.getFunctionType(ReturnTy, ArgTys,
4931                                          FunctionProtoType::ExtProtoInfo());
4932   const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType(
4933       Context.getCanonicalType(FTy).castAs<FunctionProtoType>());
4934   auto *ConvTy = getTypes().GetFunctionType(Info);
4935   llvm::Constant *C = GetOrCreateLLVMFunction(
4936       Name, ConvTy, GlobalDecl(), /*ForVTable=*/false,
4937       /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
4938 
4939   if (auto *F = dyn_cast<llvm::Function>(C)) {
4940     if (F->empty()) {
4941       SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false);
4942       // FIXME: Set calling-conv properly in ExtProtoInfo
4943       F->setCallingConv(getRuntimeCC());
4944       setWindowsItaniumDLLImport(*this, Local, F, Name);
4945       setDSOLocal(F);
4946     }
4947   }
4948   return {ConvTy, C};
4949 }
4950 
4951 /// CreateRuntimeFunction - Create a new runtime function with the specified
4952 /// type and name.
4953 llvm::FunctionCallee
4954 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4955                                      llvm::AttributeList ExtraAttrs, bool Local,
4956                                      bool AssumeConvergent) {
4957   if (AssumeConvergent) {
4958     ExtraAttrs =
4959         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4960   }
4961 
4962   llvm::Constant *C =
4963       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4964                               /*DontDefer=*/false, /*IsThunk=*/false,
4965                               ExtraAttrs);
4966 
4967   if (auto *F = dyn_cast<llvm::Function>(C)) {
4968     if (F->empty()) {
4969       F->setCallingConv(getRuntimeCC());
4970       setWindowsItaniumDLLImport(*this, Local, F, Name);
4971       setDSOLocal(F);
4972       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4973       // of trying to approximate the attributes using the LLVM function
4974       // signature.  The other overload of CreateRuntimeFunction does this; it
4975       // should be used for new code.
4976       markRegisterParameterAttributes(F);
4977     }
4978   }
4979 
4980   return {FTy, C};
4981 }
4982 
4983 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4984 /// create and return an llvm GlobalVariable with the specified type and address
4985 /// space. If there is something in the module with the specified name, return
4986 /// it potentially bitcasted to the right type.
4987 ///
4988 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4989 /// to set the attributes on the global when it is first created.
4990 ///
4991 /// If IsForDefinition is true, it is guaranteed that an actual global with
4992 /// type Ty will be returned, not conversion of a variable with the same
4993 /// mangled name but some other type.
4994 llvm::Constant *
4995 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4996                                      LangAS AddrSpace, const VarDecl *D,
4997                                      ForDefinition_t IsForDefinition) {
4998   // Lookup the entry, lazily creating it if necessary.
4999   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5000   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5001   if (Entry) {
5002     if (WeakRefReferences.erase(Entry)) {
5003       if (D && !D->hasAttr<WeakAttr>())
5004         Entry->setLinkage(llvm::Function::ExternalLinkage);
5005     }
5006 
5007     // Handle dropped DLL attributes.
5008     if (D && shouldDropDLLAttribute(D, Entry))
5009       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
5010 
5011     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
5012       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
5013 
5014     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
5015       return Entry;
5016 
5017     // If there are two attempts to define the same mangled name, issue an
5018     // error.
5019     if (IsForDefinition && !Entry->isDeclaration()) {
5020       GlobalDecl OtherGD;
5021       const VarDecl *OtherD;
5022 
5023       // Check that D is not yet in DiagnosedConflictingDefinitions is required
5024       // to make sure that we issue an error only once.
5025       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
5026           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
5027           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
5028           OtherD->hasInit() &&
5029           DiagnosedConflictingDefinitions.insert(D).second) {
5030         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
5031             << MangledName;
5032         getDiags().Report(OtherGD.getDecl()->getLocation(),
5033                           diag::note_previous_definition);
5034       }
5035     }
5036 
5037     // Make sure the result is of the correct type.
5038     if (Entry->getType()->getAddressSpace() != TargetAS)
5039       return llvm::ConstantExpr::getAddrSpaceCast(
5040           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5041 
5042     // (If global is requested for a definition, we always need to create a new
5043     // global, not just return a bitcast.)
5044     if (!IsForDefinition)
5045       return Entry;
5046   }
5047 
5048   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5049 
5050   auto *GV = new llvm::GlobalVariable(
5051       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5052       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5053       getContext().getTargetAddressSpace(DAddrSpace));
5054 
5055   // If we already created a global with the same mangled name (but different
5056   // type) before, take its name and remove it from its parent.
5057   if (Entry) {
5058     GV->takeName(Entry);
5059 
5060     if (!Entry->use_empty()) {
5061       Entry->replaceAllUsesWith(GV);
5062     }
5063 
5064     Entry->eraseFromParent();
5065   }
5066 
5067   // This is the first use or definition of a mangled name.  If there is a
5068   // deferred decl with this name, remember that we need to emit it at the end
5069   // of the file.
5070   auto DDI = DeferredDecls.find(MangledName);
5071   if (DDI != DeferredDecls.end()) {
5072     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5073     // list, and remove it from DeferredDecls (since we don't need it anymore).
5074     addDeferredDeclToEmit(DDI->second);
5075     DeferredDecls.erase(DDI);
5076   }
5077 
5078   // Handle things which are present even on external declarations.
5079   if (D) {
5080     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5081       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5082 
5083     // FIXME: This code is overly simple and should be merged with other global
5084     // handling.
5085     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5086 
5087     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5088 
5089     setLinkageForGV(GV, D);
5090 
5091     if (D->getTLSKind()) {
5092       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5093         CXXThreadLocals.push_back(D);
5094       setTLSMode(GV, *D);
5095     }
5096 
5097     setGVProperties(GV, D);
5098 
5099     // If required by the ABI, treat declarations of static data members with
5100     // inline initializers as definitions.
5101     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5102       EmitGlobalVarDefinition(D);
5103     }
5104 
5105     // Emit section information for extern variables.
5106     if (D->hasExternalStorage()) {
5107       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5108         GV->setSection(SA->getName());
5109     }
5110 
5111     // Handle XCore specific ABI requirements.
5112     if (getTriple().getArch() == llvm::Triple::xcore &&
5113         D->getLanguageLinkage() == CLanguageLinkage &&
5114         D->getType().isConstant(Context) &&
5115         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5116       GV->setSection(".cp.rodata");
5117 
5118     // Handle code model attribute
5119     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5120       GV->setCodeModel(CMA->getModel());
5121 
5122     // Check if we a have a const declaration with an initializer, we may be
5123     // able to emit it as available_externally to expose it's value to the
5124     // optimizer.
5125     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5126         D->getType().isConstQualified() && !GV->hasInitializer() &&
5127         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5128       const auto *Record =
5129           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5130       bool HasMutableFields = Record && Record->hasMutableFields();
5131       if (!HasMutableFields) {
5132         const VarDecl *InitDecl;
5133         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5134         if (InitExpr) {
5135           ConstantEmitter emitter(*this);
5136           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5137           if (Init) {
5138             auto *InitType = Init->getType();
5139             if (GV->getValueType() != InitType) {
5140               // The type of the initializer does not match the definition.
5141               // This happens when an initializer has a different type from
5142               // the type of the global (because of padding at the end of a
5143               // structure for instance).
5144               GV->setName(StringRef());
5145               // Make a new global with the correct type, this is now guaranteed
5146               // to work.
5147               auto *NewGV = cast<llvm::GlobalVariable>(
5148                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5149                       ->stripPointerCasts());
5150 
5151               // Erase the old global, since it is no longer used.
5152               GV->eraseFromParent();
5153               GV = NewGV;
5154             } else {
5155               GV->setInitializer(Init);
5156               GV->setConstant(true);
5157               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5158             }
5159             emitter.finalize(GV);
5160           }
5161         }
5162       }
5163     }
5164   }
5165 
5166   if (D &&
5167       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5168     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5169     // External HIP managed variables needed to be recorded for transformation
5170     // in both device and host compilations.
5171     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5172         D->hasExternalStorage())
5173       getCUDARuntime().handleVarRegistration(D, *GV);
5174   }
5175 
5176   if (D)
5177     SanitizerMD->reportGlobal(GV, *D);
5178 
5179   LangAS ExpectedAS =
5180       D ? D->getType().getAddressSpace()
5181         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5182   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5183   if (DAddrSpace != ExpectedAS) {
5184     return getTargetCodeGenInfo().performAddrSpaceCast(
5185         *this, GV, DAddrSpace, ExpectedAS,
5186         llvm::PointerType::get(getLLVMContext(), TargetAS));
5187   }
5188 
5189   return GV;
5190 }
5191 
5192 llvm::Constant *
5193 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5194   const Decl *D = GD.getDecl();
5195 
5196   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5197     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5198                                 /*DontDefer=*/false, IsForDefinition);
5199 
5200   if (isa<CXXMethodDecl>(D)) {
5201     auto FInfo =
5202         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5203     auto Ty = getTypes().GetFunctionType(*FInfo);
5204     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5205                              IsForDefinition);
5206   }
5207 
5208   if (isa<FunctionDecl>(D)) {
5209     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5210     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5211     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5212                              IsForDefinition);
5213   }
5214 
5215   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5216 }
5217 
5218 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5219     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5220     llvm::Align Alignment) {
5221   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5222   llvm::GlobalVariable *OldGV = nullptr;
5223 
5224   if (GV) {
5225     // Check if the variable has the right type.
5226     if (GV->getValueType() == Ty)
5227       return GV;
5228 
5229     // Because C++ name mangling, the only way we can end up with an already
5230     // existing global with the same name is if it has been declared extern "C".
5231     assert(GV->isDeclaration() && "Declaration has wrong type!");
5232     OldGV = GV;
5233   }
5234 
5235   // Create a new variable.
5236   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5237                                 Linkage, nullptr, Name);
5238 
5239   if (OldGV) {
5240     // Replace occurrences of the old variable if needed.
5241     GV->takeName(OldGV);
5242 
5243     if (!OldGV->use_empty()) {
5244       OldGV->replaceAllUsesWith(GV);
5245     }
5246 
5247     OldGV->eraseFromParent();
5248   }
5249 
5250   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5251       !GV->hasAvailableExternallyLinkage())
5252     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5253 
5254   GV->setAlignment(Alignment);
5255 
5256   return GV;
5257 }
5258 
5259 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5260 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5261 /// then it will be created with the specified type instead of whatever the
5262 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5263 /// that an actual global with type Ty will be returned, not conversion of a
5264 /// variable with the same mangled name but some other type.
5265 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5266                                                   llvm::Type *Ty,
5267                                            ForDefinition_t IsForDefinition) {
5268   assert(D->hasGlobalStorage() && "Not a global variable");
5269   QualType ASTTy = D->getType();
5270   if (!Ty)
5271     Ty = getTypes().ConvertTypeForMem(ASTTy);
5272 
5273   StringRef MangledName = getMangledName(D);
5274   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5275                                IsForDefinition);
5276 }
5277 
5278 /// CreateRuntimeVariable - Create a new runtime global variable with the
5279 /// specified type and name.
5280 llvm::Constant *
5281 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5282                                      StringRef Name) {
5283   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5284                                                        : LangAS::Default;
5285   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5286   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5287   return Ret;
5288 }
5289 
5290 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5291   assert(!D->getInit() && "Cannot emit definite definitions here!");
5292 
5293   StringRef MangledName = getMangledName(D);
5294   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5295 
5296   // We already have a definition, not declaration, with the same mangled name.
5297   // Emitting of declaration is not required (and actually overwrites emitted
5298   // definition).
5299   if (GV && !GV->isDeclaration())
5300     return;
5301 
5302   // If we have not seen a reference to this variable yet, place it into the
5303   // deferred declarations table to be emitted if needed later.
5304   if (!MustBeEmitted(D) && !GV) {
5305       DeferredDecls[MangledName] = D;
5306       return;
5307   }
5308 
5309   // The tentative definition is the only definition.
5310   EmitGlobalVarDefinition(D);
5311 }
5312 
5313 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5314   if (auto const *V = dyn_cast<const VarDecl>(D))
5315     EmitExternalVarDeclaration(V);
5316   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5317     EmitExternalFunctionDeclaration(FD);
5318 }
5319 
5320 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5321   return Context.toCharUnitsFromBits(
5322       getDataLayout().getTypeStoreSizeInBits(Ty));
5323 }
5324 
5325 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5326   if (LangOpts.OpenCL) {
5327     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5328     assert(AS == LangAS::opencl_global ||
5329            AS == LangAS::opencl_global_device ||
5330            AS == LangAS::opencl_global_host ||
5331            AS == LangAS::opencl_constant ||
5332            AS == LangAS::opencl_local ||
5333            AS >= LangAS::FirstTargetAddressSpace);
5334     return AS;
5335   }
5336 
5337   if (LangOpts.SYCLIsDevice &&
5338       (!D || D->getType().getAddressSpace() == LangAS::Default))
5339     return LangAS::sycl_global;
5340 
5341   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5342     if (D) {
5343       if (D->hasAttr<CUDAConstantAttr>())
5344         return LangAS::cuda_constant;
5345       if (D->hasAttr<CUDASharedAttr>())
5346         return LangAS::cuda_shared;
5347       if (D->hasAttr<CUDADeviceAttr>())
5348         return LangAS::cuda_device;
5349       if (D->getType().isConstQualified())
5350         return LangAS::cuda_constant;
5351     }
5352     return LangAS::cuda_device;
5353   }
5354 
5355   if (LangOpts.OpenMP) {
5356     LangAS AS;
5357     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5358       return AS;
5359   }
5360   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5361 }
5362 
5363 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5364   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5365   if (LangOpts.OpenCL)
5366     return LangAS::opencl_constant;
5367   if (LangOpts.SYCLIsDevice)
5368     return LangAS::sycl_global;
5369   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5370     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5371     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5372     // with OpVariable instructions with Generic storage class which is not
5373     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5374     // UniformConstant storage class is not viable as pointers to it may not be
5375     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5376     return LangAS::cuda_device;
5377   if (auto AS = getTarget().getConstantAddressSpace())
5378     return *AS;
5379   return LangAS::Default;
5380 }
5381 
5382 // In address space agnostic languages, string literals are in default address
5383 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5384 // emitted in constant address space in LLVM IR. To be consistent with other
5385 // parts of AST, string literal global variables in constant address space
5386 // need to be casted to default address space before being put into address
5387 // map and referenced by other part of CodeGen.
5388 // In OpenCL, string literals are in constant address space in AST, therefore
5389 // they should not be casted to default address space.
5390 static llvm::Constant *
5391 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5392                                        llvm::GlobalVariable *GV) {
5393   llvm::Constant *Cast = GV;
5394   if (!CGM.getLangOpts().OpenCL) {
5395     auto AS = CGM.GetGlobalConstantAddressSpace();
5396     if (AS != LangAS::Default)
5397       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5398           CGM, GV, AS, LangAS::Default,
5399           llvm::PointerType::get(
5400               CGM.getLLVMContext(),
5401               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5402   }
5403   return Cast;
5404 }
5405 
5406 template<typename SomeDecl>
5407 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5408                                                llvm::GlobalValue *GV) {
5409   if (!getLangOpts().CPlusPlus)
5410     return;
5411 
5412   // Must have 'used' attribute, or else inline assembly can't rely on
5413   // the name existing.
5414   if (!D->template hasAttr<UsedAttr>())
5415     return;
5416 
5417   // Must have internal linkage and an ordinary name.
5418   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5419     return;
5420 
5421   // Must be in an extern "C" context. Entities declared directly within
5422   // a record are not extern "C" even if the record is in such a context.
5423   const SomeDecl *First = D->getFirstDecl();
5424   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5425     return;
5426 
5427   // OK, this is an internal linkage entity inside an extern "C" linkage
5428   // specification. Make a note of that so we can give it the "expected"
5429   // mangled name if nothing else is using that name.
5430   std::pair<StaticExternCMap::iterator, bool> R =
5431       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5432 
5433   // If we have multiple internal linkage entities with the same name
5434   // in extern "C" regions, none of them gets that name.
5435   if (!R.second)
5436     R.first->second = nullptr;
5437 }
5438 
5439 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5440   if (!CGM.supportsCOMDAT())
5441     return false;
5442 
5443   if (D.hasAttr<SelectAnyAttr>())
5444     return true;
5445 
5446   GVALinkage Linkage;
5447   if (auto *VD = dyn_cast<VarDecl>(&D))
5448     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5449   else
5450     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5451 
5452   switch (Linkage) {
5453   case GVA_Internal:
5454   case GVA_AvailableExternally:
5455   case GVA_StrongExternal:
5456     return false;
5457   case GVA_DiscardableODR:
5458   case GVA_StrongODR:
5459     return true;
5460   }
5461   llvm_unreachable("No such linkage");
5462 }
5463 
5464 bool CodeGenModule::supportsCOMDAT() const {
5465   return getTriple().supportsCOMDAT();
5466 }
5467 
5468 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5469                                           llvm::GlobalObject &GO) {
5470   if (!shouldBeInCOMDAT(*this, D))
5471     return;
5472   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5473 }
5474 
5475 const ABIInfo &CodeGenModule::getABIInfo() {
5476   return getTargetCodeGenInfo().getABIInfo();
5477 }
5478 
5479 /// Pass IsTentative as true if you want to create a tentative definition.
5480 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5481                                             bool IsTentative) {
5482   // OpenCL global variables of sampler type are translated to function calls,
5483   // therefore no need to be translated.
5484   QualType ASTTy = D->getType();
5485   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5486     return;
5487 
5488   // If this is OpenMP device, check if it is legal to emit this global
5489   // normally.
5490   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5491       OpenMPRuntime->emitTargetGlobalVariable(D))
5492     return;
5493 
5494   llvm::TrackingVH<llvm::Constant> Init;
5495   bool NeedsGlobalCtor = false;
5496   // Whether the definition of the variable is available externally.
5497   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5498   // since this is the job for its original source.
5499   bool IsDefinitionAvailableExternally =
5500       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5501   bool NeedsGlobalDtor =
5502       !IsDefinitionAvailableExternally &&
5503       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5504 
5505   // It is helpless to emit the definition for an available_externally variable
5506   // which can't be marked as const.
5507   // We don't need to check if it needs global ctor or dtor. See the above
5508   // comment for ideas.
5509   if (IsDefinitionAvailableExternally &&
5510       (!D->hasConstantInitialization() ||
5511        // TODO: Update this when we have interface to check constexpr
5512        // destructor.
5513        D->needsDestruction(getContext()) ||
5514        !D->getType().isConstantStorage(getContext(), true, true)))
5515     return;
5516 
5517   const VarDecl *InitDecl;
5518   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5519 
5520   std::optional<ConstantEmitter> emitter;
5521 
5522   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5523   // as part of their declaration."  Sema has already checked for
5524   // error cases, so we just need to set Init to UndefValue.
5525   bool IsCUDASharedVar =
5526       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5527   // Shadows of initialized device-side global variables are also left
5528   // undefined.
5529   // Managed Variables should be initialized on both host side and device side.
5530   bool IsCUDAShadowVar =
5531       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5532       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5533        D->hasAttr<CUDASharedAttr>());
5534   bool IsCUDADeviceShadowVar =
5535       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5536       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5537        D->getType()->isCUDADeviceBuiltinTextureType());
5538   if (getLangOpts().CUDA &&
5539       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5540     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5541   else if (D->hasAttr<LoaderUninitializedAttr>())
5542     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5543   else if (!InitExpr) {
5544     // This is a tentative definition; tentative definitions are
5545     // implicitly initialized with { 0 }.
5546     //
5547     // Note that tentative definitions are only emitted at the end of
5548     // a translation unit, so they should never have incomplete
5549     // type. In addition, EmitTentativeDefinition makes sure that we
5550     // never attempt to emit a tentative definition if a real one
5551     // exists. A use may still exists, however, so we still may need
5552     // to do a RAUW.
5553     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5554     Init = EmitNullConstant(D->getType());
5555   } else {
5556     initializedGlobalDecl = GlobalDecl(D);
5557     emitter.emplace(*this);
5558     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5559     if (!Initializer) {
5560       QualType T = InitExpr->getType();
5561       if (D->getType()->isReferenceType())
5562         T = D->getType();
5563 
5564       if (getLangOpts().CPlusPlus) {
5565         Init = EmitNullConstant(T);
5566         if (!IsDefinitionAvailableExternally)
5567           NeedsGlobalCtor = true;
5568         if (InitDecl->hasFlexibleArrayInit(getContext())) {
5569           ErrorUnsupported(D, "flexible array initializer");
5570           // We cannot create ctor for flexible array initializer
5571           NeedsGlobalCtor = false;
5572         }
5573       } else {
5574         ErrorUnsupported(D, "static initializer");
5575         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5576       }
5577     } else {
5578       Init = Initializer;
5579       // We don't need an initializer, so remove the entry for the delayed
5580       // initializer position (just in case this entry was delayed) if we
5581       // also don't need to register a destructor.
5582       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5583         DelayedCXXInitPosition.erase(D);
5584 
5585 #ifndef NDEBUG
5586       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5587                           InitDecl->getFlexibleArrayInitChars(getContext());
5588       CharUnits CstSize = CharUnits::fromQuantity(
5589           getDataLayout().getTypeAllocSize(Init->getType()));
5590       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5591 #endif
5592     }
5593   }
5594 
5595   llvm::Type* InitType = Init->getType();
5596   llvm::Constant *Entry =
5597       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5598 
5599   // Strip off pointer casts if we got them.
5600   Entry = Entry->stripPointerCasts();
5601 
5602   // Entry is now either a Function or GlobalVariable.
5603   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5604 
5605   // We have a definition after a declaration with the wrong type.
5606   // We must make a new GlobalVariable* and update everything that used OldGV
5607   // (a declaration or tentative definition) with the new GlobalVariable*
5608   // (which will be a definition).
5609   //
5610   // This happens if there is a prototype for a global (e.g.
5611   // "extern int x[];") and then a definition of a different type (e.g.
5612   // "int x[10];"). This also happens when an initializer has a different type
5613   // from the type of the global (this happens with unions).
5614   if (!GV || GV->getValueType() != InitType ||
5615       GV->getType()->getAddressSpace() !=
5616           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5617 
5618     // Move the old entry aside so that we'll create a new one.
5619     Entry->setName(StringRef());
5620 
5621     // Make a new global with the correct type, this is now guaranteed to work.
5622     GV = cast<llvm::GlobalVariable>(
5623         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5624             ->stripPointerCasts());
5625 
5626     // Replace all uses of the old global with the new global
5627     llvm::Constant *NewPtrForOldDecl =
5628         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5629                                                              Entry->getType());
5630     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5631 
5632     // Erase the old global, since it is no longer used.
5633     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5634   }
5635 
5636   MaybeHandleStaticInExternC(D, GV);
5637 
5638   if (D->hasAttr<AnnotateAttr>())
5639     AddGlobalAnnotations(D, GV);
5640 
5641   // Set the llvm linkage type as appropriate.
5642   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5643 
5644   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5645   // the device. [...]"
5646   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5647   // __device__, declares a variable that: [...]
5648   // Is accessible from all the threads within the grid and from the host
5649   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5650   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5651   if (LangOpts.CUDA) {
5652     if (LangOpts.CUDAIsDevice) {
5653       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5654           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5655            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5656            D->getType()->isCUDADeviceBuiltinTextureType()))
5657         GV->setExternallyInitialized(true);
5658     } else {
5659       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5660     }
5661     getCUDARuntime().handleVarRegistration(D, *GV);
5662   }
5663 
5664   if (LangOpts.HLSL)
5665     getHLSLRuntime().handleGlobalVarDefinition(D, GV);
5666 
5667   GV->setInitializer(Init);
5668   if (emitter)
5669     emitter->finalize(GV);
5670 
5671   // If it is safe to mark the global 'constant', do so now.
5672   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5673                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5674                    D->getType().isConstantStorage(getContext(), true, true)));
5675 
5676   // If it is in a read-only section, mark it 'constant'.
5677   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5678     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5679     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5680       GV->setConstant(true);
5681   }
5682 
5683   CharUnits AlignVal = getContext().getDeclAlign(D);
5684   // Check for alignment specifed in an 'omp allocate' directive.
5685   if (std::optional<CharUnits> AlignValFromAllocate =
5686           getOMPAllocateAlignment(D))
5687     AlignVal = *AlignValFromAllocate;
5688   GV->setAlignment(AlignVal.getAsAlign());
5689 
5690   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5691   // function is only defined alongside the variable, not also alongside
5692   // callers. Normally, all accesses to a thread_local go through the
5693   // thread-wrapper in order to ensure initialization has occurred, underlying
5694   // variable will never be used other than the thread-wrapper, so it can be
5695   // converted to internal linkage.
5696   //
5697   // However, if the variable has the 'constinit' attribute, it _can_ be
5698   // referenced directly, without calling the thread-wrapper, so the linkage
5699   // must not be changed.
5700   //
5701   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5702   // weak or linkonce, the de-duplication semantics are important to preserve,
5703   // so we don't change the linkage.
5704   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5705       Linkage == llvm::GlobalValue::ExternalLinkage &&
5706       Context.getTargetInfo().getTriple().isOSDarwin() &&
5707       !D->hasAttr<ConstInitAttr>())
5708     Linkage = llvm::GlobalValue::InternalLinkage;
5709 
5710   GV->setLinkage(Linkage);
5711   if (D->hasAttr<DLLImportAttr>())
5712     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5713   else if (D->hasAttr<DLLExportAttr>())
5714     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5715   else
5716     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5717 
5718   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5719     // common vars aren't constant even if declared const.
5720     GV->setConstant(false);
5721     // Tentative definition of global variables may be initialized with
5722     // non-zero null pointers. In this case they should have weak linkage
5723     // since common linkage must have zero initializer and must not have
5724     // explicit section therefore cannot have non-zero initial value.
5725     if (!GV->getInitializer()->isNullValue())
5726       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5727   }
5728 
5729   setNonAliasAttributes(D, GV);
5730 
5731   if (D->getTLSKind() && !GV->isThreadLocal()) {
5732     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5733       CXXThreadLocals.push_back(D);
5734     setTLSMode(GV, *D);
5735   }
5736 
5737   maybeSetTrivialComdat(*D, *GV);
5738 
5739   // Emit the initializer function if necessary.
5740   if (NeedsGlobalCtor || NeedsGlobalDtor)
5741     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5742 
5743   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5744 
5745   // Emit global variable debug information.
5746   if (CGDebugInfo *DI = getModuleDebugInfo())
5747     if (getCodeGenOpts().hasReducedDebugInfo())
5748       DI->EmitGlobalVariable(GV, D);
5749 }
5750 
5751 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5752   if (CGDebugInfo *DI = getModuleDebugInfo())
5753     if (getCodeGenOpts().hasReducedDebugInfo()) {
5754       QualType ASTTy = D->getType();
5755       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5756       llvm::Constant *GV =
5757           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5758       DI->EmitExternalVariable(
5759           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5760     }
5761 }
5762 
5763 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5764   if (CGDebugInfo *DI = getModuleDebugInfo())
5765     if (getCodeGenOpts().hasReducedDebugInfo()) {
5766       auto *Ty = getTypes().ConvertType(FD->getType());
5767       StringRef MangledName = getMangledName(FD);
5768       auto *Fn = cast<llvm::Function>(
5769           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5770       if (!Fn->getSubprogram())
5771         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5772     }
5773 }
5774 
5775 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5776                                       CodeGenModule &CGM, const VarDecl *D,
5777                                       bool NoCommon) {
5778   // Don't give variables common linkage if -fno-common was specified unless it
5779   // was overridden by a NoCommon attribute.
5780   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5781     return true;
5782 
5783   // C11 6.9.2/2:
5784   //   A declaration of an identifier for an object that has file scope without
5785   //   an initializer, and without a storage-class specifier or with the
5786   //   storage-class specifier static, constitutes a tentative definition.
5787   if (D->getInit() || D->hasExternalStorage())
5788     return true;
5789 
5790   // A variable cannot be both common and exist in a section.
5791   if (D->hasAttr<SectionAttr>())
5792     return true;
5793 
5794   // A variable cannot be both common and exist in a section.
5795   // We don't try to determine which is the right section in the front-end.
5796   // If no specialized section name is applicable, it will resort to default.
5797   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5798       D->hasAttr<PragmaClangDataSectionAttr>() ||
5799       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5800       D->hasAttr<PragmaClangRodataSectionAttr>())
5801     return true;
5802 
5803   // Thread local vars aren't considered common linkage.
5804   if (D->getTLSKind())
5805     return true;
5806 
5807   // Tentative definitions marked with WeakImportAttr are true definitions.
5808   if (D->hasAttr<WeakImportAttr>())
5809     return true;
5810 
5811   // A variable cannot be both common and exist in a comdat.
5812   if (shouldBeInCOMDAT(CGM, *D))
5813     return true;
5814 
5815   // Declarations with a required alignment do not have common linkage in MSVC
5816   // mode.
5817   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5818     if (D->hasAttr<AlignedAttr>())
5819       return true;
5820     QualType VarType = D->getType();
5821     if (Context.isAlignmentRequired(VarType))
5822       return true;
5823 
5824     if (const auto *RT = VarType->getAs<RecordType>()) {
5825       const RecordDecl *RD = RT->getDecl();
5826       for (const FieldDecl *FD : RD->fields()) {
5827         if (FD->isBitField())
5828           continue;
5829         if (FD->hasAttr<AlignedAttr>())
5830           return true;
5831         if (Context.isAlignmentRequired(FD->getType()))
5832           return true;
5833       }
5834     }
5835   }
5836 
5837   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5838   // common symbols, so symbols with greater alignment requirements cannot be
5839   // common.
5840   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5841   // alignments for common symbols via the aligncomm directive, so this
5842   // restriction only applies to MSVC environments.
5843   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5844       Context.getTypeAlignIfKnown(D->getType()) >
5845           Context.toBits(CharUnits::fromQuantity(32)))
5846     return true;
5847 
5848   return false;
5849 }
5850 
5851 llvm::GlobalValue::LinkageTypes
5852 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5853                                            GVALinkage Linkage) {
5854   if (Linkage == GVA_Internal)
5855     return llvm::Function::InternalLinkage;
5856 
5857   if (D->hasAttr<WeakAttr>())
5858     return llvm::GlobalVariable::WeakAnyLinkage;
5859 
5860   if (const auto *FD = D->getAsFunction())
5861     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5862       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5863 
5864   // We are guaranteed to have a strong definition somewhere else,
5865   // so we can use available_externally linkage.
5866   if (Linkage == GVA_AvailableExternally)
5867     return llvm::GlobalValue::AvailableExternallyLinkage;
5868 
5869   // Note that Apple's kernel linker doesn't support symbol
5870   // coalescing, so we need to avoid linkonce and weak linkages there.
5871   // Normally, this means we just map to internal, but for explicit
5872   // instantiations we'll map to external.
5873 
5874   // In C++, the compiler has to emit a definition in every translation unit
5875   // that references the function.  We should use linkonce_odr because
5876   // a) if all references in this translation unit are optimized away, we
5877   // don't need to codegen it.  b) if the function persists, it needs to be
5878   // merged with other definitions. c) C++ has the ODR, so we know the
5879   // definition is dependable.
5880   if (Linkage == GVA_DiscardableODR)
5881     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5882                                             : llvm::Function::InternalLinkage;
5883 
5884   // An explicit instantiation of a template has weak linkage, since
5885   // explicit instantiations can occur in multiple translation units
5886   // and must all be equivalent. However, we are not allowed to
5887   // throw away these explicit instantiations.
5888   //
5889   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5890   // so say that CUDA templates are either external (for kernels) or internal.
5891   // This lets llvm perform aggressive inter-procedural optimizations. For
5892   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5893   // therefore we need to follow the normal linkage paradigm.
5894   if (Linkage == GVA_StrongODR) {
5895     if (getLangOpts().AppleKext)
5896       return llvm::Function::ExternalLinkage;
5897     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5898         !getLangOpts().GPURelocatableDeviceCode)
5899       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5900                                           : llvm::Function::InternalLinkage;
5901     return llvm::Function::WeakODRLinkage;
5902   }
5903 
5904   // C++ doesn't have tentative definitions and thus cannot have common
5905   // linkage.
5906   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5907       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5908                                  CodeGenOpts.NoCommon))
5909     return llvm::GlobalVariable::CommonLinkage;
5910 
5911   // selectany symbols are externally visible, so use weak instead of
5912   // linkonce.  MSVC optimizes away references to const selectany globals, so
5913   // all definitions should be the same and ODR linkage should be used.
5914   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5915   if (D->hasAttr<SelectAnyAttr>())
5916     return llvm::GlobalVariable::WeakODRLinkage;
5917 
5918   // Otherwise, we have strong external linkage.
5919   assert(Linkage == GVA_StrongExternal);
5920   return llvm::GlobalVariable::ExternalLinkage;
5921 }
5922 
5923 llvm::GlobalValue::LinkageTypes
5924 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5925   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5926   return getLLVMLinkageForDeclarator(VD, Linkage);
5927 }
5928 
5929 /// Replace the uses of a function that was declared with a non-proto type.
5930 /// We want to silently drop extra arguments from call sites
5931 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5932                                           llvm::Function *newFn) {
5933   // Fast path.
5934   if (old->use_empty())
5935     return;
5936 
5937   llvm::Type *newRetTy = newFn->getReturnType();
5938   SmallVector<llvm::Value *, 4> newArgs;
5939 
5940   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5941 
5942   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5943        ui != ue; ui++) {
5944     llvm::User *user = ui->getUser();
5945 
5946     // Recognize and replace uses of bitcasts.  Most calls to
5947     // unprototyped functions will use bitcasts.
5948     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5949       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5950         replaceUsesOfNonProtoConstant(bitcast, newFn);
5951       continue;
5952     }
5953 
5954     // Recognize calls to the function.
5955     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5956     if (!callSite)
5957       continue;
5958     if (!callSite->isCallee(&*ui))
5959       continue;
5960 
5961     // If the return types don't match exactly, then we can't
5962     // transform this call unless it's dead.
5963     if (callSite->getType() != newRetTy && !callSite->use_empty())
5964       continue;
5965 
5966     // Get the call site's attribute list.
5967     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5968     llvm::AttributeList oldAttrs = callSite->getAttributes();
5969 
5970     // If the function was passed too few arguments, don't transform.
5971     unsigned newNumArgs = newFn->arg_size();
5972     if (callSite->arg_size() < newNumArgs)
5973       continue;
5974 
5975     // If extra arguments were passed, we silently drop them.
5976     // If any of the types mismatch, we don't transform.
5977     unsigned argNo = 0;
5978     bool dontTransform = false;
5979     for (llvm::Argument &A : newFn->args()) {
5980       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5981         dontTransform = true;
5982         break;
5983       }
5984 
5985       // Add any parameter attributes.
5986       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5987       argNo++;
5988     }
5989     if (dontTransform)
5990       continue;
5991 
5992     // Okay, we can transform this.  Create the new call instruction and copy
5993     // over the required information.
5994     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5995 
5996     // Copy over any operand bundles.
5997     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5998     callSite->getOperandBundlesAsDefs(newBundles);
5999 
6000     llvm::CallBase *newCall;
6001     if (isa<llvm::CallInst>(callSite)) {
6002       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
6003                                        callSite->getIterator());
6004     } else {
6005       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
6006       newCall = llvm::InvokeInst::Create(
6007           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
6008           newArgs, newBundles, "", callSite->getIterator());
6009     }
6010     newArgs.clear(); // for the next iteration
6011 
6012     if (!newCall->getType()->isVoidTy())
6013       newCall->takeName(callSite);
6014     newCall->setAttributes(
6015         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
6016                                  oldAttrs.getRetAttrs(), newArgAttrs));
6017     newCall->setCallingConv(callSite->getCallingConv());
6018 
6019     // Finally, remove the old call, replacing any uses with the new one.
6020     if (!callSite->use_empty())
6021       callSite->replaceAllUsesWith(newCall);
6022 
6023     // Copy debug location attached to CI.
6024     if (callSite->getDebugLoc())
6025       newCall->setDebugLoc(callSite->getDebugLoc());
6026 
6027     callSitesToBeRemovedFromParent.push_back(callSite);
6028   }
6029 
6030   for (auto *callSite : callSitesToBeRemovedFromParent) {
6031     callSite->eraseFromParent();
6032   }
6033 }
6034 
6035 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6036 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
6037 /// existing call uses of the old function in the module, this adjusts them to
6038 /// call the new function directly.
6039 ///
6040 /// This is not just a cleanup: the always_inline pass requires direct calls to
6041 /// functions to be able to inline them.  If there is a bitcast in the way, it
6042 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
6043 /// run at -O0.
6044 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6045                                                       llvm::Function *NewFn) {
6046   // If we're redefining a global as a function, don't transform it.
6047   if (!isa<llvm::Function>(Old)) return;
6048 
6049   replaceUsesOfNonProtoConstant(Old, NewFn);
6050 }
6051 
6052 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6053   auto DK = VD->isThisDeclarationADefinition();
6054   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6055       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6056     return;
6057 
6058   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6059   // If we have a definition, this might be a deferred decl. If the
6060   // instantiation is explicit, make sure we emit it at the end.
6061   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6062     GetAddrOfGlobalVar(VD);
6063 
6064   EmitTopLevelDecl(VD);
6065 }
6066 
6067 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6068                                                  llvm::GlobalValue *GV) {
6069   const auto *D = cast<FunctionDecl>(GD.getDecl());
6070 
6071   // Compute the function info and LLVM type.
6072   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6073   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6074 
6075   // Get or create the prototype for the function.
6076   if (!GV || (GV->getValueType() != Ty))
6077     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6078                                                    /*DontDefer=*/true,
6079                                                    ForDefinition));
6080 
6081   // Already emitted.
6082   if (!GV->isDeclaration())
6083     return;
6084 
6085   // We need to set linkage and visibility on the function before
6086   // generating code for it because various parts of IR generation
6087   // want to propagate this information down (e.g. to local static
6088   // declarations).
6089   auto *Fn = cast<llvm::Function>(GV);
6090   setFunctionLinkage(GD, Fn);
6091 
6092   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6093   setGVProperties(Fn, GD);
6094 
6095   MaybeHandleStaticInExternC(D, Fn);
6096 
6097   maybeSetTrivialComdat(*D, *Fn);
6098 
6099   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6100 
6101   setNonAliasAttributes(GD, Fn);
6102   SetLLVMFunctionAttributesForDefinition(D, Fn);
6103 
6104   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6105     AddGlobalCtor(Fn, CA->getPriority());
6106   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6107     AddGlobalDtor(Fn, DA->getPriority(), true);
6108   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6109     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6110 }
6111 
6112 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6113   const auto *D = cast<ValueDecl>(GD.getDecl());
6114   const AliasAttr *AA = D->getAttr<AliasAttr>();
6115   assert(AA && "Not an alias?");
6116 
6117   StringRef MangledName = getMangledName(GD);
6118 
6119   if (AA->getAliasee() == MangledName) {
6120     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6121     return;
6122   }
6123 
6124   // If there is a definition in the module, then it wins over the alias.
6125   // This is dubious, but allow it to be safe.  Just ignore the alias.
6126   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6127   if (Entry && !Entry->isDeclaration())
6128     return;
6129 
6130   Aliases.push_back(GD);
6131 
6132   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6133 
6134   // Create a reference to the named value.  This ensures that it is emitted
6135   // if a deferred decl.
6136   llvm::Constant *Aliasee;
6137   llvm::GlobalValue::LinkageTypes LT;
6138   if (isa<llvm::FunctionType>(DeclTy)) {
6139     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6140                                       /*ForVTable=*/false);
6141     LT = getFunctionLinkage(GD);
6142   } else {
6143     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6144                                     /*D=*/nullptr);
6145     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6146       LT = getLLVMLinkageVarDefinition(VD);
6147     else
6148       LT = getFunctionLinkage(GD);
6149   }
6150 
6151   // Create the new alias itself, but don't set a name yet.
6152   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6153   auto *GA =
6154       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6155 
6156   if (Entry) {
6157     if (GA->getAliasee() == Entry) {
6158       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6159       return;
6160     }
6161 
6162     assert(Entry->isDeclaration());
6163 
6164     // If there is a declaration in the module, then we had an extern followed
6165     // by the alias, as in:
6166     //   extern int test6();
6167     //   ...
6168     //   int test6() __attribute__((alias("test7")));
6169     //
6170     // Remove it and replace uses of it with the alias.
6171     GA->takeName(Entry);
6172 
6173     Entry->replaceAllUsesWith(GA);
6174     Entry->eraseFromParent();
6175   } else {
6176     GA->setName(MangledName);
6177   }
6178 
6179   // Set attributes which are particular to an alias; this is a
6180   // specialization of the attributes which may be set on a global
6181   // variable/function.
6182   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6183       D->isWeakImported()) {
6184     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6185   }
6186 
6187   if (const auto *VD = dyn_cast<VarDecl>(D))
6188     if (VD->getTLSKind())
6189       setTLSMode(GA, *VD);
6190 
6191   SetCommonAttributes(GD, GA);
6192 
6193   // Emit global alias debug information.
6194   if (isa<VarDecl>(D))
6195     if (CGDebugInfo *DI = getModuleDebugInfo())
6196       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6197 }
6198 
6199 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6200   const auto *D = cast<ValueDecl>(GD.getDecl());
6201   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6202   assert(IFA && "Not an ifunc?");
6203 
6204   StringRef MangledName = getMangledName(GD);
6205 
6206   if (IFA->getResolver() == MangledName) {
6207     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6208     return;
6209   }
6210 
6211   // Report an error if some definition overrides ifunc.
6212   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6213   if (Entry && !Entry->isDeclaration()) {
6214     GlobalDecl OtherGD;
6215     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6216         DiagnosedConflictingDefinitions.insert(GD).second) {
6217       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6218           << MangledName;
6219       Diags.Report(OtherGD.getDecl()->getLocation(),
6220                    diag::note_previous_definition);
6221     }
6222     return;
6223   }
6224 
6225   Aliases.push_back(GD);
6226 
6227   // The resolver might not be visited yet. Specify a dummy non-function type to
6228   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6229   // was emitted) or the whole function will be replaced (if the resolver has
6230   // not been emitted).
6231   llvm::Constant *Resolver =
6232       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6233                               /*ForVTable=*/false);
6234   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6235   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6236   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6237       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6238   if (Entry) {
6239     if (GIF->getResolver() == Entry) {
6240       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6241       return;
6242     }
6243     assert(Entry->isDeclaration());
6244 
6245     // If there is a declaration in the module, then we had an extern followed
6246     // by the ifunc, as in:
6247     //   extern int test();
6248     //   ...
6249     //   int test() __attribute__((ifunc("resolver")));
6250     //
6251     // Remove it and replace uses of it with the ifunc.
6252     GIF->takeName(Entry);
6253 
6254     Entry->replaceAllUsesWith(GIF);
6255     Entry->eraseFromParent();
6256   } else
6257     GIF->setName(MangledName);
6258   SetCommonAttributes(GD, GIF);
6259 }
6260 
6261 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6262                                             ArrayRef<llvm::Type*> Tys) {
6263   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6264                                                  (llvm::Intrinsic::ID)IID, Tys);
6265 }
6266 
6267 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6268 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6269                          const StringLiteral *Literal, bool TargetIsLSB,
6270                          bool &IsUTF16, unsigned &StringLength) {
6271   StringRef String = Literal->getString();
6272   unsigned NumBytes = String.size();
6273 
6274   // Check for simple case.
6275   if (!Literal->containsNonAsciiOrNull()) {
6276     StringLength = NumBytes;
6277     return *Map.insert(std::make_pair(String, nullptr)).first;
6278   }
6279 
6280   // Otherwise, convert the UTF8 literals into a string of shorts.
6281   IsUTF16 = true;
6282 
6283   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6284   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6285   llvm::UTF16 *ToPtr = &ToBuf[0];
6286 
6287   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6288                                  ToPtr + NumBytes, llvm::strictConversion);
6289 
6290   // ConvertUTF8toUTF16 returns the length in ToPtr.
6291   StringLength = ToPtr - &ToBuf[0];
6292 
6293   // Add an explicit null.
6294   *ToPtr = 0;
6295   return *Map.insert(std::make_pair(
6296                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6297                                    (StringLength + 1) * 2),
6298                          nullptr)).first;
6299 }
6300 
6301 ConstantAddress
6302 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6303   unsigned StringLength = 0;
6304   bool isUTF16 = false;
6305   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6306       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6307                                getDataLayout().isLittleEndian(), isUTF16,
6308                                StringLength);
6309 
6310   if (auto *C = Entry.second)
6311     return ConstantAddress(
6312         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6313 
6314   const ASTContext &Context = getContext();
6315   const llvm::Triple &Triple = getTriple();
6316 
6317   const auto CFRuntime = getLangOpts().CFRuntime;
6318   const bool IsSwiftABI =
6319       static_cast<unsigned>(CFRuntime) >=
6320       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6321   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6322 
6323   // If we don't already have it, get __CFConstantStringClassReference.
6324   if (!CFConstantStringClassRef) {
6325     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6326     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6327     Ty = llvm::ArrayType::get(Ty, 0);
6328 
6329     switch (CFRuntime) {
6330     default: break;
6331     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6332     case LangOptions::CoreFoundationABI::Swift5_0:
6333       CFConstantStringClassName =
6334           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6335                               : "$s10Foundation19_NSCFConstantStringCN";
6336       Ty = IntPtrTy;
6337       break;
6338     case LangOptions::CoreFoundationABI::Swift4_2:
6339       CFConstantStringClassName =
6340           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6341                               : "$S10Foundation19_NSCFConstantStringCN";
6342       Ty = IntPtrTy;
6343       break;
6344     case LangOptions::CoreFoundationABI::Swift4_1:
6345       CFConstantStringClassName =
6346           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6347                               : "__T010Foundation19_NSCFConstantStringCN";
6348       Ty = IntPtrTy;
6349       break;
6350     }
6351 
6352     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6353 
6354     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6355       llvm::GlobalValue *GV = nullptr;
6356 
6357       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6358         IdentifierInfo &II = Context.Idents.get(GV->getName());
6359         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6360         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6361 
6362         const VarDecl *VD = nullptr;
6363         for (const auto *Result : DC->lookup(&II))
6364           if ((VD = dyn_cast<VarDecl>(Result)))
6365             break;
6366 
6367         if (Triple.isOSBinFormatELF()) {
6368           if (!VD)
6369             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6370         } else {
6371           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6372           if (!VD || !VD->hasAttr<DLLExportAttr>())
6373             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6374           else
6375             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6376         }
6377 
6378         setDSOLocal(GV);
6379       }
6380     }
6381 
6382     // Decay array -> ptr
6383     CFConstantStringClassRef =
6384         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6385   }
6386 
6387   QualType CFTy = Context.getCFConstantStringType();
6388 
6389   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6390 
6391   ConstantInitBuilder Builder(*this);
6392   auto Fields = Builder.beginStruct(STy);
6393 
6394   // Class pointer.
6395   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6396 
6397   // Flags.
6398   if (IsSwiftABI) {
6399     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6400     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6401   } else {
6402     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6403   }
6404 
6405   // String pointer.
6406   llvm::Constant *C = nullptr;
6407   if (isUTF16) {
6408     auto Arr = llvm::ArrayRef(
6409         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6410         Entry.first().size() / 2);
6411     C = llvm::ConstantDataArray::get(VMContext, Arr);
6412   } else {
6413     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6414   }
6415 
6416   // Note: -fwritable-strings doesn't make the backing store strings of
6417   // CFStrings writable.
6418   auto *GV =
6419       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6420                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6421   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6422   // Don't enforce the target's minimum global alignment, since the only use
6423   // of the string is via this class initializer.
6424   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6425                             : Context.getTypeAlignInChars(Context.CharTy);
6426   GV->setAlignment(Align.getAsAlign());
6427 
6428   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6429   // Without it LLVM can merge the string with a non unnamed_addr one during
6430   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6431   if (Triple.isOSBinFormatMachO())
6432     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6433                            : "__TEXT,__cstring,cstring_literals");
6434   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6435   // the static linker to adjust permissions to read-only later on.
6436   else if (Triple.isOSBinFormatELF())
6437     GV->setSection(".rodata");
6438 
6439   // String.
6440   Fields.add(GV);
6441 
6442   // String length.
6443   llvm::IntegerType *LengthTy =
6444       llvm::IntegerType::get(getModule().getContext(),
6445                              Context.getTargetInfo().getLongWidth());
6446   if (IsSwiftABI) {
6447     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6448         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6449       LengthTy = Int32Ty;
6450     else
6451       LengthTy = IntPtrTy;
6452   }
6453   Fields.addInt(LengthTy, StringLength);
6454 
6455   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6456   // properly aligned on 32-bit platforms.
6457   CharUnits Alignment =
6458       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6459 
6460   // The struct.
6461   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6462                                     /*isConstant=*/false,
6463                                     llvm::GlobalVariable::PrivateLinkage);
6464   GV->addAttribute("objc_arc_inert");
6465   switch (Triple.getObjectFormat()) {
6466   case llvm::Triple::UnknownObjectFormat:
6467     llvm_unreachable("unknown file format");
6468   case llvm::Triple::DXContainer:
6469   case llvm::Triple::GOFF:
6470   case llvm::Triple::SPIRV:
6471   case llvm::Triple::XCOFF:
6472     llvm_unreachable("unimplemented");
6473   case llvm::Triple::COFF:
6474   case llvm::Triple::ELF:
6475   case llvm::Triple::Wasm:
6476     GV->setSection("cfstring");
6477     break;
6478   case llvm::Triple::MachO:
6479     GV->setSection("__DATA,__cfstring");
6480     break;
6481   }
6482   Entry.second = GV;
6483 
6484   return ConstantAddress(GV, GV->getValueType(), Alignment);
6485 }
6486 
6487 bool CodeGenModule::getExpressionLocationsEnabled() const {
6488   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6489 }
6490 
6491 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6492   if (ObjCFastEnumerationStateType.isNull()) {
6493     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6494     D->startDefinition();
6495 
6496     QualType FieldTypes[] = {
6497         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6498         Context.getPointerType(Context.UnsignedLongTy),
6499         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6500                                      nullptr, ArraySizeModifier::Normal, 0)};
6501 
6502     for (size_t i = 0; i < 4; ++i) {
6503       FieldDecl *Field = FieldDecl::Create(Context,
6504                                            D,
6505                                            SourceLocation(),
6506                                            SourceLocation(), nullptr,
6507                                            FieldTypes[i], /*TInfo=*/nullptr,
6508                                            /*BitWidth=*/nullptr,
6509                                            /*Mutable=*/false,
6510                                            ICIS_NoInit);
6511       Field->setAccess(AS_public);
6512       D->addDecl(Field);
6513     }
6514 
6515     D->completeDefinition();
6516     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6517   }
6518 
6519   return ObjCFastEnumerationStateType;
6520 }
6521 
6522 llvm::Constant *
6523 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6524   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6525 
6526   // Don't emit it as the address of the string, emit the string data itself
6527   // as an inline array.
6528   if (E->getCharByteWidth() == 1) {
6529     SmallString<64> Str(E->getString());
6530 
6531     // Resize the string to the right size, which is indicated by its type.
6532     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6533     assert(CAT && "String literal not of constant array type!");
6534     Str.resize(CAT->getZExtSize());
6535     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6536   }
6537 
6538   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6539   llvm::Type *ElemTy = AType->getElementType();
6540   unsigned NumElements = AType->getNumElements();
6541 
6542   // Wide strings have either 2-byte or 4-byte elements.
6543   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6544     SmallVector<uint16_t, 32> Elements;
6545     Elements.reserve(NumElements);
6546 
6547     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6548       Elements.push_back(E->getCodeUnit(i));
6549     Elements.resize(NumElements);
6550     return llvm::ConstantDataArray::get(VMContext, Elements);
6551   }
6552 
6553   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6554   SmallVector<uint32_t, 32> Elements;
6555   Elements.reserve(NumElements);
6556 
6557   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6558     Elements.push_back(E->getCodeUnit(i));
6559   Elements.resize(NumElements);
6560   return llvm::ConstantDataArray::get(VMContext, Elements);
6561 }
6562 
6563 static llvm::GlobalVariable *
6564 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6565                       CodeGenModule &CGM, StringRef GlobalName,
6566                       CharUnits Alignment) {
6567   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6568       CGM.GetGlobalConstantAddressSpace());
6569 
6570   llvm::Module &M = CGM.getModule();
6571   // Create a global variable for this string
6572   auto *GV = new llvm::GlobalVariable(
6573       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6574       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6575   GV->setAlignment(Alignment.getAsAlign());
6576   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6577   if (GV->isWeakForLinker()) {
6578     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6579     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6580   }
6581   CGM.setDSOLocal(GV);
6582 
6583   return GV;
6584 }
6585 
6586 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6587 /// constant array for the given string literal.
6588 ConstantAddress
6589 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6590                                                   StringRef Name) {
6591   CharUnits Alignment =
6592       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6593 
6594   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6595   llvm::GlobalVariable **Entry = nullptr;
6596   if (!LangOpts.WritableStrings) {
6597     Entry = &ConstantStringMap[C];
6598     if (auto GV = *Entry) {
6599       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6600         GV->setAlignment(Alignment.getAsAlign());
6601       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6602                              GV->getValueType(), Alignment);
6603     }
6604   }
6605 
6606   SmallString<256> MangledNameBuffer;
6607   StringRef GlobalVariableName;
6608   llvm::GlobalValue::LinkageTypes LT;
6609 
6610   // Mangle the string literal if that's how the ABI merges duplicate strings.
6611   // Don't do it if they are writable, since we don't want writes in one TU to
6612   // affect strings in another.
6613   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6614       !LangOpts.WritableStrings) {
6615     llvm::raw_svector_ostream Out(MangledNameBuffer);
6616     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6617     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6618     GlobalVariableName = MangledNameBuffer;
6619   } else {
6620     LT = llvm::GlobalValue::PrivateLinkage;
6621     GlobalVariableName = Name;
6622   }
6623 
6624   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6625 
6626   CGDebugInfo *DI = getModuleDebugInfo();
6627   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6628     DI->AddStringLiteralDebugInfo(GV, S);
6629 
6630   if (Entry)
6631     *Entry = GV;
6632 
6633   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6634 
6635   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6636                          GV->getValueType(), Alignment);
6637 }
6638 
6639 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6640 /// array for the given ObjCEncodeExpr node.
6641 ConstantAddress
6642 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6643   std::string Str;
6644   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6645 
6646   return GetAddrOfConstantCString(Str);
6647 }
6648 
6649 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6650 /// the literal and a terminating '\0' character.
6651 /// The result has pointer to array type.
6652 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6653     const std::string &Str, const char *GlobalName) {
6654   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6655   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6656       getContext().CharTy, /*VD=*/nullptr);
6657 
6658   llvm::Constant *C =
6659       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6660 
6661   // Don't share any string literals if strings aren't constant.
6662   llvm::GlobalVariable **Entry = nullptr;
6663   if (!LangOpts.WritableStrings) {
6664     Entry = &ConstantStringMap[C];
6665     if (auto GV = *Entry) {
6666       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6667         GV->setAlignment(Alignment.getAsAlign());
6668       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6669                              GV->getValueType(), Alignment);
6670     }
6671   }
6672 
6673   // Get the default prefix if a name wasn't specified.
6674   if (!GlobalName)
6675     GlobalName = ".str";
6676   // Create a global variable for this.
6677   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6678                                   GlobalName, Alignment);
6679   if (Entry)
6680     *Entry = GV;
6681 
6682   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6683                          GV->getValueType(), Alignment);
6684 }
6685 
6686 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6687     const MaterializeTemporaryExpr *E, const Expr *Init) {
6688   assert((E->getStorageDuration() == SD_Static ||
6689           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6690   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6691 
6692   // If we're not materializing a subobject of the temporary, keep the
6693   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6694   QualType MaterializedType = Init->getType();
6695   if (Init == E->getSubExpr())
6696     MaterializedType = E->getType();
6697 
6698   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6699 
6700   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6701   if (!InsertResult.second) {
6702     // We've seen this before: either we already created it or we're in the
6703     // process of doing so.
6704     if (!InsertResult.first->second) {
6705       // We recursively re-entered this function, probably during emission of
6706       // the initializer. Create a placeholder. We'll clean this up in the
6707       // outer call, at the end of this function.
6708       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6709       InsertResult.first->second = new llvm::GlobalVariable(
6710           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6711           nullptr);
6712     }
6713     return ConstantAddress(InsertResult.first->second,
6714                            llvm::cast<llvm::GlobalVariable>(
6715                                InsertResult.first->second->stripPointerCasts())
6716                                ->getValueType(),
6717                            Align);
6718   }
6719 
6720   // FIXME: If an externally-visible declaration extends multiple temporaries,
6721   // we need to give each temporary the same name in every translation unit (and
6722   // we also need to make the temporaries externally-visible).
6723   SmallString<256> Name;
6724   llvm::raw_svector_ostream Out(Name);
6725   getCXXABI().getMangleContext().mangleReferenceTemporary(
6726       VD, E->getManglingNumber(), Out);
6727 
6728   APValue *Value = nullptr;
6729   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6730     // If the initializer of the extending declaration is a constant
6731     // initializer, we should have a cached constant initializer for this
6732     // temporary. Note that this might have a different value from the value
6733     // computed by evaluating the initializer if the surrounding constant
6734     // expression modifies the temporary.
6735     Value = E->getOrCreateValue(false);
6736   }
6737 
6738   // Try evaluating it now, it might have a constant initializer.
6739   Expr::EvalResult EvalResult;
6740   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6741       !EvalResult.hasSideEffects())
6742     Value = &EvalResult.Val;
6743 
6744   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6745 
6746   std::optional<ConstantEmitter> emitter;
6747   llvm::Constant *InitialValue = nullptr;
6748   bool Constant = false;
6749   llvm::Type *Type;
6750   if (Value) {
6751     // The temporary has a constant initializer, use it.
6752     emitter.emplace(*this);
6753     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6754                                                MaterializedType);
6755     Constant =
6756         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6757                                            /*ExcludeDtor*/ false);
6758     Type = InitialValue->getType();
6759   } else {
6760     // No initializer, the initialization will be provided when we
6761     // initialize the declaration which performed lifetime extension.
6762     Type = getTypes().ConvertTypeForMem(MaterializedType);
6763   }
6764 
6765   // Create a global variable for this lifetime-extended temporary.
6766   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6767   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6768     const VarDecl *InitVD;
6769     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6770         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6771       // Temporaries defined inside a class get linkonce_odr linkage because the
6772       // class can be defined in multiple translation units.
6773       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6774     } else {
6775       // There is no need for this temporary to have external linkage if the
6776       // VarDecl has external linkage.
6777       Linkage = llvm::GlobalVariable::InternalLinkage;
6778     }
6779   }
6780   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6781   auto *GV = new llvm::GlobalVariable(
6782       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6783       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6784   if (emitter) emitter->finalize(GV);
6785   // Don't assign dllimport or dllexport to local linkage globals.
6786   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6787     setGVProperties(GV, VD);
6788     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6789       // The reference temporary should never be dllexport.
6790       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6791   }
6792   GV->setAlignment(Align.getAsAlign());
6793   if (supportsCOMDAT() && GV->isWeakForLinker())
6794     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6795   if (VD->getTLSKind())
6796     setTLSMode(GV, *VD);
6797   llvm::Constant *CV = GV;
6798   if (AddrSpace != LangAS::Default)
6799     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6800         *this, GV, AddrSpace, LangAS::Default,
6801         llvm::PointerType::get(
6802             getLLVMContext(),
6803             getContext().getTargetAddressSpace(LangAS::Default)));
6804 
6805   // Update the map with the new temporary. If we created a placeholder above,
6806   // replace it with the new global now.
6807   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6808   if (Entry) {
6809     Entry->replaceAllUsesWith(CV);
6810     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6811   }
6812   Entry = CV;
6813 
6814   return ConstantAddress(CV, Type, Align);
6815 }
6816 
6817 /// EmitObjCPropertyImplementations - Emit information for synthesized
6818 /// properties for an implementation.
6819 void CodeGenModule::EmitObjCPropertyImplementations(const
6820                                                     ObjCImplementationDecl *D) {
6821   for (const auto *PID : D->property_impls()) {
6822     // Dynamic is just for type-checking.
6823     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6824       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6825 
6826       // Determine which methods need to be implemented, some may have
6827       // been overridden. Note that ::isPropertyAccessor is not the method
6828       // we want, that just indicates if the decl came from a
6829       // property. What we want to know is if the method is defined in
6830       // this implementation.
6831       auto *Getter = PID->getGetterMethodDecl();
6832       if (!Getter || Getter->isSynthesizedAccessorStub())
6833         CodeGenFunction(*this).GenerateObjCGetter(
6834             const_cast<ObjCImplementationDecl *>(D), PID);
6835       auto *Setter = PID->getSetterMethodDecl();
6836       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6837         CodeGenFunction(*this).GenerateObjCSetter(
6838                                  const_cast<ObjCImplementationDecl *>(D), PID);
6839     }
6840   }
6841 }
6842 
6843 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6844   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6845   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6846        ivar; ivar = ivar->getNextIvar())
6847     if (ivar->getType().isDestructedType())
6848       return true;
6849 
6850   return false;
6851 }
6852 
6853 static bool AllTrivialInitializers(CodeGenModule &CGM,
6854                                    ObjCImplementationDecl *D) {
6855   CodeGenFunction CGF(CGM);
6856   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6857        E = D->init_end(); B != E; ++B) {
6858     CXXCtorInitializer *CtorInitExp = *B;
6859     Expr *Init = CtorInitExp->getInit();
6860     if (!CGF.isTrivialInitializer(Init))
6861       return false;
6862   }
6863   return true;
6864 }
6865 
6866 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6867 /// for an implementation.
6868 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6869   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6870   if (needsDestructMethod(D)) {
6871     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6872     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6873     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6874         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6875         getContext().VoidTy, nullptr, D,
6876         /*isInstance=*/true, /*isVariadic=*/false,
6877         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6878         /*isImplicitlyDeclared=*/true,
6879         /*isDefined=*/false, ObjCImplementationControl::Required);
6880     D->addInstanceMethod(DTORMethod);
6881     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6882     D->setHasDestructors(true);
6883   }
6884 
6885   // If the implementation doesn't have any ivar initializers, we don't need
6886   // a .cxx_construct.
6887   if (D->getNumIvarInitializers() == 0 ||
6888       AllTrivialInitializers(*this, D))
6889     return;
6890 
6891   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6892   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6893   // The constructor returns 'self'.
6894   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6895       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6896       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6897       /*isVariadic=*/false,
6898       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6899       /*isImplicitlyDeclared=*/true,
6900       /*isDefined=*/false, ObjCImplementationControl::Required);
6901   D->addInstanceMethod(CTORMethod);
6902   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6903   D->setHasNonZeroConstructors(true);
6904 }
6905 
6906 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6907 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6908   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6909       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6910     ErrorUnsupported(LSD, "linkage spec");
6911     return;
6912   }
6913 
6914   EmitDeclContext(LSD);
6915 }
6916 
6917 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6918   // Device code should not be at top level.
6919   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6920     return;
6921 
6922   std::unique_ptr<CodeGenFunction> &CurCGF =
6923       GlobalTopLevelStmtBlockInFlight.first;
6924 
6925   // We emitted a top-level stmt but after it there is initialization.
6926   // Stop squashing the top-level stmts into a single function.
6927   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6928     CurCGF->FinishFunction(D->getEndLoc());
6929     CurCGF = nullptr;
6930   }
6931 
6932   if (!CurCGF) {
6933     // void __stmts__N(void)
6934     // FIXME: Ask the ABI name mangler to pick a name.
6935     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6936     FunctionArgList Args;
6937     QualType RetTy = getContext().VoidTy;
6938     const CGFunctionInfo &FnInfo =
6939         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6940     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6941     llvm::Function *Fn = llvm::Function::Create(
6942         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6943 
6944     CurCGF.reset(new CodeGenFunction(*this));
6945     GlobalTopLevelStmtBlockInFlight.second = D;
6946     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6947                           D->getBeginLoc(), D->getBeginLoc());
6948     CXXGlobalInits.push_back(Fn);
6949   }
6950 
6951   CurCGF->EmitStmt(D->getStmt());
6952 }
6953 
6954 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6955   for (auto *I : DC->decls()) {
6956     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6957     // are themselves considered "top-level", so EmitTopLevelDecl on an
6958     // ObjCImplDecl does not recursively visit them. We need to do that in
6959     // case they're nested inside another construct (LinkageSpecDecl /
6960     // ExportDecl) that does stop them from being considered "top-level".
6961     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6962       for (auto *M : OID->methods())
6963         EmitTopLevelDecl(M);
6964     }
6965 
6966     EmitTopLevelDecl(I);
6967   }
6968 }
6969 
6970 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6971 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6972   // Ignore dependent declarations.
6973   if (D->isTemplated())
6974     return;
6975 
6976   // Consteval function shouldn't be emitted.
6977   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6978     return;
6979 
6980   switch (D->getKind()) {
6981   case Decl::CXXConversion:
6982   case Decl::CXXMethod:
6983   case Decl::Function:
6984     EmitGlobal(cast<FunctionDecl>(D));
6985     // Always provide some coverage mapping
6986     // even for the functions that aren't emitted.
6987     AddDeferredUnusedCoverageMapping(D);
6988     break;
6989 
6990   case Decl::CXXDeductionGuide:
6991     // Function-like, but does not result in code emission.
6992     break;
6993 
6994   case Decl::Var:
6995   case Decl::Decomposition:
6996   case Decl::VarTemplateSpecialization:
6997     EmitGlobal(cast<VarDecl>(D));
6998     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6999       for (auto *B : DD->bindings())
7000         if (auto *HD = B->getHoldingVar())
7001           EmitGlobal(HD);
7002     break;
7003 
7004   // Indirect fields from global anonymous structs and unions can be
7005   // ignored; only the actual variable requires IR gen support.
7006   case Decl::IndirectField:
7007     break;
7008 
7009   // C++ Decls
7010   case Decl::Namespace:
7011     EmitDeclContext(cast<NamespaceDecl>(D));
7012     break;
7013   case Decl::ClassTemplateSpecialization: {
7014     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
7015     if (CGDebugInfo *DI = getModuleDebugInfo())
7016       if (Spec->getSpecializationKind() ==
7017               TSK_ExplicitInstantiationDefinition &&
7018           Spec->hasDefinition())
7019         DI->completeTemplateDefinition(*Spec);
7020   } [[fallthrough]];
7021   case Decl::CXXRecord: {
7022     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
7023     if (CGDebugInfo *DI = getModuleDebugInfo()) {
7024       if (CRD->hasDefinition())
7025         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7026       if (auto *ES = D->getASTContext().getExternalSource())
7027         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
7028           DI->completeUnusedClass(*CRD);
7029     }
7030     // Emit any static data members, they may be definitions.
7031     for (auto *I : CRD->decls())
7032       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
7033         EmitTopLevelDecl(I);
7034     break;
7035   }
7036     // No code generation needed.
7037   case Decl::UsingShadow:
7038   case Decl::ClassTemplate:
7039   case Decl::VarTemplate:
7040   case Decl::Concept:
7041   case Decl::VarTemplatePartialSpecialization:
7042   case Decl::FunctionTemplate:
7043   case Decl::TypeAliasTemplate:
7044   case Decl::Block:
7045   case Decl::Empty:
7046   case Decl::Binding:
7047     break;
7048   case Decl::Using:          // using X; [C++]
7049     if (CGDebugInfo *DI = getModuleDebugInfo())
7050         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7051     break;
7052   case Decl::UsingEnum: // using enum X; [C++]
7053     if (CGDebugInfo *DI = getModuleDebugInfo())
7054       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7055     break;
7056   case Decl::NamespaceAlias:
7057     if (CGDebugInfo *DI = getModuleDebugInfo())
7058         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7059     break;
7060   case Decl::UsingDirective: // using namespace X; [C++]
7061     if (CGDebugInfo *DI = getModuleDebugInfo())
7062       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7063     break;
7064   case Decl::CXXConstructor:
7065     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7066     break;
7067   case Decl::CXXDestructor:
7068     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7069     break;
7070 
7071   case Decl::StaticAssert:
7072     // Nothing to do.
7073     break;
7074 
7075   // Objective-C Decls
7076 
7077   // Forward declarations, no (immediate) code generation.
7078   case Decl::ObjCInterface:
7079   case Decl::ObjCCategory:
7080     break;
7081 
7082   case Decl::ObjCProtocol: {
7083     auto *Proto = cast<ObjCProtocolDecl>(D);
7084     if (Proto->isThisDeclarationADefinition())
7085       ObjCRuntime->GenerateProtocol(Proto);
7086     break;
7087   }
7088 
7089   case Decl::ObjCCategoryImpl:
7090     // Categories have properties but don't support synthesize so we
7091     // can ignore them here.
7092     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7093     break;
7094 
7095   case Decl::ObjCImplementation: {
7096     auto *OMD = cast<ObjCImplementationDecl>(D);
7097     EmitObjCPropertyImplementations(OMD);
7098     EmitObjCIvarInitializations(OMD);
7099     ObjCRuntime->GenerateClass(OMD);
7100     // Emit global variable debug information.
7101     if (CGDebugInfo *DI = getModuleDebugInfo())
7102       if (getCodeGenOpts().hasReducedDebugInfo())
7103         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7104             OMD->getClassInterface()), OMD->getLocation());
7105     break;
7106   }
7107   case Decl::ObjCMethod: {
7108     auto *OMD = cast<ObjCMethodDecl>(D);
7109     // If this is not a prototype, emit the body.
7110     if (OMD->getBody())
7111       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7112     break;
7113   }
7114   case Decl::ObjCCompatibleAlias:
7115     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7116     break;
7117 
7118   case Decl::PragmaComment: {
7119     const auto *PCD = cast<PragmaCommentDecl>(D);
7120     switch (PCD->getCommentKind()) {
7121     case PCK_Unknown:
7122       llvm_unreachable("unexpected pragma comment kind");
7123     case PCK_Linker:
7124       AppendLinkerOptions(PCD->getArg());
7125       break;
7126     case PCK_Lib:
7127         AddDependentLib(PCD->getArg());
7128       break;
7129     case PCK_Compiler:
7130     case PCK_ExeStr:
7131     case PCK_User:
7132       break; // We ignore all of these.
7133     }
7134     break;
7135   }
7136 
7137   case Decl::PragmaDetectMismatch: {
7138     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7139     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7140     break;
7141   }
7142 
7143   case Decl::LinkageSpec:
7144     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7145     break;
7146 
7147   case Decl::FileScopeAsm: {
7148     // File-scope asm is ignored during device-side CUDA compilation.
7149     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7150       break;
7151     // File-scope asm is ignored during device-side OpenMP compilation.
7152     if (LangOpts.OpenMPIsTargetDevice)
7153       break;
7154     // File-scope asm is ignored during device-side SYCL compilation.
7155     if (LangOpts.SYCLIsDevice)
7156       break;
7157     auto *AD = cast<FileScopeAsmDecl>(D);
7158     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7159     break;
7160   }
7161 
7162   case Decl::TopLevelStmt:
7163     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7164     break;
7165 
7166   case Decl::Import: {
7167     auto *Import = cast<ImportDecl>(D);
7168 
7169     // If we've already imported this module, we're done.
7170     if (!ImportedModules.insert(Import->getImportedModule()))
7171       break;
7172 
7173     // Emit debug information for direct imports.
7174     if (!Import->getImportedOwningModule()) {
7175       if (CGDebugInfo *DI = getModuleDebugInfo())
7176         DI->EmitImportDecl(*Import);
7177     }
7178 
7179     // For C++ standard modules we are done - we will call the module
7180     // initializer for imported modules, and that will likewise call those for
7181     // any imports it has.
7182     if (CXX20ModuleInits && Import->getImportedModule() &&
7183         Import->getImportedModule()->isNamedModule())
7184       break;
7185 
7186     // For clang C++ module map modules the initializers for sub-modules are
7187     // emitted here.
7188 
7189     // Find all of the submodules and emit the module initializers.
7190     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7191     SmallVector<clang::Module *, 16> Stack;
7192     Visited.insert(Import->getImportedModule());
7193     Stack.push_back(Import->getImportedModule());
7194 
7195     while (!Stack.empty()) {
7196       clang::Module *Mod = Stack.pop_back_val();
7197       if (!EmittedModuleInitializers.insert(Mod).second)
7198         continue;
7199 
7200       for (auto *D : Context.getModuleInitializers(Mod))
7201         EmitTopLevelDecl(D);
7202 
7203       // Visit the submodules of this module.
7204       for (auto *Submodule : Mod->submodules()) {
7205         // Skip explicit children; they need to be explicitly imported to emit
7206         // the initializers.
7207         if (Submodule->IsExplicit)
7208           continue;
7209 
7210         if (Visited.insert(Submodule).second)
7211           Stack.push_back(Submodule);
7212       }
7213     }
7214     break;
7215   }
7216 
7217   case Decl::Export:
7218     EmitDeclContext(cast<ExportDecl>(D));
7219     break;
7220 
7221   case Decl::OMPThreadPrivate:
7222     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7223     break;
7224 
7225   case Decl::OMPAllocate:
7226     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7227     break;
7228 
7229   case Decl::OMPDeclareReduction:
7230     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7231     break;
7232 
7233   case Decl::OMPDeclareMapper:
7234     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7235     break;
7236 
7237   case Decl::OMPRequires:
7238     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7239     break;
7240 
7241   case Decl::Typedef:
7242   case Decl::TypeAlias: // using foo = bar; [C++11]
7243     if (CGDebugInfo *DI = getModuleDebugInfo())
7244       DI->EmitAndRetainType(
7245           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7246     break;
7247 
7248   case Decl::Record:
7249     if (CGDebugInfo *DI = getModuleDebugInfo())
7250       if (cast<RecordDecl>(D)->getDefinition())
7251         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7252     break;
7253 
7254   case Decl::Enum:
7255     if (CGDebugInfo *DI = getModuleDebugInfo())
7256       if (cast<EnumDecl>(D)->getDefinition())
7257         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7258     break;
7259 
7260   case Decl::HLSLBuffer:
7261     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7262     break;
7263 
7264   default:
7265     // Make sure we handled everything we should, every other kind is a
7266     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7267     // function. Need to recode Decl::Kind to do that easily.
7268     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7269     break;
7270   }
7271 }
7272 
7273 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7274   // Do we need to generate coverage mapping?
7275   if (!CodeGenOpts.CoverageMapping)
7276     return;
7277   switch (D->getKind()) {
7278   case Decl::CXXConversion:
7279   case Decl::CXXMethod:
7280   case Decl::Function:
7281   case Decl::ObjCMethod:
7282   case Decl::CXXConstructor:
7283   case Decl::CXXDestructor: {
7284     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7285       break;
7286     SourceManager &SM = getContext().getSourceManager();
7287     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7288       break;
7289     if (!llvm::coverage::SystemHeadersCoverage &&
7290         SM.isInSystemHeader(D->getBeginLoc()))
7291       break;
7292     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7293     break;
7294   }
7295   default:
7296     break;
7297   };
7298 }
7299 
7300 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7301   // Do we need to generate coverage mapping?
7302   if (!CodeGenOpts.CoverageMapping)
7303     return;
7304   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7305     if (Fn->isTemplateInstantiation())
7306       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7307   }
7308   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7309 }
7310 
7311 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7312   // We call takeVector() here to avoid use-after-free.
7313   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7314   // we deserialize function bodies to emit coverage info for them, and that
7315   // deserializes more declarations. How should we handle that case?
7316   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7317     if (!Entry.second)
7318       continue;
7319     const Decl *D = Entry.first;
7320     switch (D->getKind()) {
7321     case Decl::CXXConversion:
7322     case Decl::CXXMethod:
7323     case Decl::Function:
7324     case Decl::ObjCMethod: {
7325       CodeGenPGO PGO(*this);
7326       GlobalDecl GD(cast<FunctionDecl>(D));
7327       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7328                                   getFunctionLinkage(GD));
7329       break;
7330     }
7331     case Decl::CXXConstructor: {
7332       CodeGenPGO PGO(*this);
7333       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7334       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7335                                   getFunctionLinkage(GD));
7336       break;
7337     }
7338     case Decl::CXXDestructor: {
7339       CodeGenPGO PGO(*this);
7340       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7341       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7342                                   getFunctionLinkage(GD));
7343       break;
7344     }
7345     default:
7346       break;
7347     };
7348   }
7349 }
7350 
7351 void CodeGenModule::EmitMainVoidAlias() {
7352   // In order to transition away from "__original_main" gracefully, emit an
7353   // alias for "main" in the no-argument case so that libc can detect when
7354   // new-style no-argument main is in used.
7355   if (llvm::Function *F = getModule().getFunction("main")) {
7356     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7357         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7358       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7359       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7360     }
7361   }
7362 }
7363 
7364 /// Turns the given pointer into a constant.
7365 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7366                                           const void *Ptr) {
7367   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7368   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7369   return llvm::ConstantInt::get(i64, PtrInt);
7370 }
7371 
7372 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7373                                    llvm::NamedMDNode *&GlobalMetadata,
7374                                    GlobalDecl D,
7375                                    llvm::GlobalValue *Addr) {
7376   if (!GlobalMetadata)
7377     GlobalMetadata =
7378       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7379 
7380   // TODO: should we report variant information for ctors/dtors?
7381   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7382                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7383                                CGM.getLLVMContext(), D.getDecl()))};
7384   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7385 }
7386 
7387 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7388                                                  llvm::GlobalValue *CppFunc) {
7389   // Store the list of ifuncs we need to replace uses in.
7390   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7391   // List of ConstantExprs that we should be able to delete when we're done
7392   // here.
7393   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7394 
7395   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7396   if (Elem == CppFunc)
7397     return false;
7398 
7399   // First make sure that all users of this are ifuncs (or ifuncs via a
7400   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7401   // later.
7402   for (llvm::User *User : Elem->users()) {
7403     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7404     // ifunc directly. In any other case, just give up, as we don't know what we
7405     // could break by changing those.
7406     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7407       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7408         return false;
7409 
7410       for (llvm::User *CEUser : ConstExpr->users()) {
7411         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7412           IFuncs.push_back(IFunc);
7413         } else {
7414           return false;
7415         }
7416       }
7417       CEs.push_back(ConstExpr);
7418     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7419       IFuncs.push_back(IFunc);
7420     } else {
7421       // This user is one we don't know how to handle, so fail redirection. This
7422       // will result in an ifunc retaining a resolver name that will ultimately
7423       // fail to be resolved to a defined function.
7424       return false;
7425     }
7426   }
7427 
7428   // Now we know this is a valid case where we can do this alias replacement, we
7429   // need to remove all of the references to Elem (and the bitcasts!) so we can
7430   // delete it.
7431   for (llvm::GlobalIFunc *IFunc : IFuncs)
7432     IFunc->setResolver(nullptr);
7433   for (llvm::ConstantExpr *ConstExpr : CEs)
7434     ConstExpr->destroyConstant();
7435 
7436   // We should now be out of uses for the 'old' version of this function, so we
7437   // can erase it as well.
7438   Elem->eraseFromParent();
7439 
7440   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7441     // The type of the resolver is always just a function-type that returns the
7442     // type of the IFunc, so create that here. If the type of the actual
7443     // resolver doesn't match, it just gets bitcast to the right thing.
7444     auto *ResolverTy =
7445         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7446     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7447         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7448     IFunc->setResolver(Resolver);
7449   }
7450   return true;
7451 }
7452 
7453 /// For each function which is declared within an extern "C" region and marked
7454 /// as 'used', but has internal linkage, create an alias from the unmangled
7455 /// name to the mangled name if possible. People expect to be able to refer
7456 /// to such functions with an unmangled name from inline assembly within the
7457 /// same translation unit.
7458 void CodeGenModule::EmitStaticExternCAliases() {
7459   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7460     return;
7461   for (auto &I : StaticExternCValues) {
7462     const IdentifierInfo *Name = I.first;
7463     llvm::GlobalValue *Val = I.second;
7464 
7465     // If Val is null, that implies there were multiple declarations that each
7466     // had a claim to the unmangled name. In this case, generation of the alias
7467     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7468     if (!Val)
7469       break;
7470 
7471     llvm::GlobalValue *ExistingElem =
7472         getModule().getNamedValue(Name->getName());
7473 
7474     // If there is either not something already by this name, or we were able to
7475     // replace all uses from IFuncs, create the alias.
7476     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7477       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7478   }
7479 }
7480 
7481 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7482                                              GlobalDecl &Result) const {
7483   auto Res = Manglings.find(MangledName);
7484   if (Res == Manglings.end())
7485     return false;
7486   Result = Res->getValue();
7487   return true;
7488 }
7489 
7490 /// Emits metadata nodes associating all the global values in the
7491 /// current module with the Decls they came from.  This is useful for
7492 /// projects using IR gen as a subroutine.
7493 ///
7494 /// Since there's currently no way to associate an MDNode directly
7495 /// with an llvm::GlobalValue, we create a global named metadata
7496 /// with the name 'clang.global.decl.ptrs'.
7497 void CodeGenModule::EmitDeclMetadata() {
7498   llvm::NamedMDNode *GlobalMetadata = nullptr;
7499 
7500   for (auto &I : MangledDeclNames) {
7501     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7502     // Some mangled names don't necessarily have an associated GlobalValue
7503     // in this module, e.g. if we mangled it for DebugInfo.
7504     if (Addr)
7505       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7506   }
7507 }
7508 
7509 /// Emits metadata nodes for all the local variables in the current
7510 /// function.
7511 void CodeGenFunction::EmitDeclMetadata() {
7512   if (LocalDeclMap.empty()) return;
7513 
7514   llvm::LLVMContext &Context = getLLVMContext();
7515 
7516   // Find the unique metadata ID for this name.
7517   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7518 
7519   llvm::NamedMDNode *GlobalMetadata = nullptr;
7520 
7521   for (auto &I : LocalDeclMap) {
7522     const Decl *D = I.first;
7523     llvm::Value *Addr = I.second.emitRawPointer(*this);
7524     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7525       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7526       Alloca->setMetadata(
7527           DeclPtrKind, llvm::MDNode::get(
7528                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7529     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7530       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7531       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7532     }
7533   }
7534 }
7535 
7536 void CodeGenModule::EmitVersionIdentMetadata() {
7537   llvm::NamedMDNode *IdentMetadata =
7538     TheModule.getOrInsertNamedMetadata("llvm.ident");
7539   std::string Version = getClangFullVersion();
7540   llvm::LLVMContext &Ctx = TheModule.getContext();
7541 
7542   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7543   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7544 }
7545 
7546 void CodeGenModule::EmitCommandLineMetadata() {
7547   llvm::NamedMDNode *CommandLineMetadata =
7548     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7549   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7550   llvm::LLVMContext &Ctx = TheModule.getContext();
7551 
7552   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7553   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7554 }
7555 
7556 void CodeGenModule::EmitCoverageFile() {
7557   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7558   if (!CUNode)
7559     return;
7560 
7561   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7562   llvm::LLVMContext &Ctx = TheModule.getContext();
7563   auto *CoverageDataFile =
7564       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7565   auto *CoverageNotesFile =
7566       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7567   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7568     llvm::MDNode *CU = CUNode->getOperand(i);
7569     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7570     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7571   }
7572 }
7573 
7574 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7575                                                        bool ForEH) {
7576   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7577   // FIXME: should we even be calling this method if RTTI is disabled
7578   // and it's not for EH?
7579   if (!shouldEmitRTTI(ForEH))
7580     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7581 
7582   if (ForEH && Ty->isObjCObjectPointerType() &&
7583       LangOpts.ObjCRuntime.isGNUFamily())
7584     return ObjCRuntime->GetEHType(Ty);
7585 
7586   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7587 }
7588 
7589 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7590   // Do not emit threadprivates in simd-only mode.
7591   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7592     return;
7593   for (auto RefExpr : D->varlist()) {
7594     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7595     bool PerformInit =
7596         VD->getAnyInitializer() &&
7597         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7598                                                         /*ForRef=*/false);
7599 
7600     Address Addr(GetAddrOfGlobalVar(VD),
7601                  getTypes().ConvertTypeForMem(VD->getType()),
7602                  getContext().getDeclAlign(VD));
7603     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7604             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7605       CXXGlobalInits.push_back(InitFunction);
7606   }
7607 }
7608 
7609 llvm::Metadata *
7610 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7611                                             StringRef Suffix) {
7612   if (auto *FnType = T->getAs<FunctionProtoType>())
7613     T = getContext().getFunctionType(
7614         FnType->getReturnType(), FnType->getParamTypes(),
7615         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7616 
7617   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7618   if (InternalId)
7619     return InternalId;
7620 
7621   if (isExternallyVisible(T->getLinkage())) {
7622     std::string OutName;
7623     llvm::raw_string_ostream Out(OutName);
7624     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7625         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7626 
7627     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7628       Out << ".normalized";
7629 
7630     Out << Suffix;
7631 
7632     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7633   } else {
7634     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7635                                            llvm::ArrayRef<llvm::Metadata *>());
7636   }
7637 
7638   return InternalId;
7639 }
7640 
7641 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7642   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7643 }
7644 
7645 llvm::Metadata *
7646 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7647   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7648 }
7649 
7650 // Generalize pointer types to a void pointer with the qualifiers of the
7651 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7652 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7653 // 'void *'.
7654 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7655   if (!Ty->isPointerType())
7656     return Ty;
7657 
7658   return Ctx.getPointerType(
7659       QualType(Ctx.VoidTy).withCVRQualifiers(
7660           Ty->getPointeeType().getCVRQualifiers()));
7661 }
7662 
7663 // Apply type generalization to a FunctionType's return and argument types
7664 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7665   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7666     SmallVector<QualType, 8> GeneralizedParams;
7667     for (auto &Param : FnType->param_types())
7668       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7669 
7670     return Ctx.getFunctionType(
7671         GeneralizeType(Ctx, FnType->getReturnType()),
7672         GeneralizedParams, FnType->getExtProtoInfo());
7673   }
7674 
7675   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7676     return Ctx.getFunctionNoProtoType(
7677         GeneralizeType(Ctx, FnType->getReturnType()));
7678 
7679   llvm_unreachable("Encountered unknown FunctionType");
7680 }
7681 
7682 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7683   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7684                                       GeneralizedMetadataIdMap, ".generalized");
7685 }
7686 
7687 /// Returns whether this module needs the "all-vtables" type identifier.
7688 bool CodeGenModule::NeedAllVtablesTypeId() const {
7689   // Returns true if at least one of vtable-based CFI checkers is enabled and
7690   // is not in the trapping mode.
7691   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7692            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7693           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7694            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7695           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7696            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7697           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7698            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7699 }
7700 
7701 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7702                                           CharUnits Offset,
7703                                           const CXXRecordDecl *RD) {
7704   llvm::Metadata *MD =
7705       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7706   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7707 
7708   if (CodeGenOpts.SanitizeCfiCrossDso)
7709     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7710       VTable->addTypeMetadata(Offset.getQuantity(),
7711                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7712 
7713   if (NeedAllVtablesTypeId()) {
7714     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7715     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7716   }
7717 }
7718 
7719 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7720   if (!SanStats)
7721     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7722 
7723   return *SanStats;
7724 }
7725 
7726 llvm::Value *
7727 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7728                                                   CodeGenFunction &CGF) {
7729   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7730   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7731   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7732   auto *Call = CGF.EmitRuntimeCall(
7733       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7734   return Call;
7735 }
7736 
7737 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7738     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7739   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7740                                  /* forPointeeType= */ true);
7741 }
7742 
7743 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7744                                                  LValueBaseInfo *BaseInfo,
7745                                                  TBAAAccessInfo *TBAAInfo,
7746                                                  bool forPointeeType) {
7747   if (TBAAInfo)
7748     *TBAAInfo = getTBAAAccessInfo(T);
7749 
7750   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7751   // that doesn't return the information we need to compute BaseInfo.
7752 
7753   // Honor alignment typedef attributes even on incomplete types.
7754   // We also honor them straight for C++ class types, even as pointees;
7755   // there's an expressivity gap here.
7756   if (auto TT = T->getAs<TypedefType>()) {
7757     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7758       if (BaseInfo)
7759         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7760       return getContext().toCharUnitsFromBits(Align);
7761     }
7762   }
7763 
7764   bool AlignForArray = T->isArrayType();
7765 
7766   // Analyze the base element type, so we don't get confused by incomplete
7767   // array types.
7768   T = getContext().getBaseElementType(T);
7769 
7770   if (T->isIncompleteType()) {
7771     // We could try to replicate the logic from
7772     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7773     // type is incomplete, so it's impossible to test. We could try to reuse
7774     // getTypeAlignIfKnown, but that doesn't return the information we need
7775     // to set BaseInfo.  So just ignore the possibility that the alignment is
7776     // greater than one.
7777     if (BaseInfo)
7778       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7779     return CharUnits::One();
7780   }
7781 
7782   if (BaseInfo)
7783     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7784 
7785   CharUnits Alignment;
7786   const CXXRecordDecl *RD;
7787   if (T.getQualifiers().hasUnaligned()) {
7788     Alignment = CharUnits::One();
7789   } else if (forPointeeType && !AlignForArray &&
7790              (RD = T->getAsCXXRecordDecl())) {
7791     // For C++ class pointees, we don't know whether we're pointing at a
7792     // base or a complete object, so we generally need to use the
7793     // non-virtual alignment.
7794     Alignment = getClassPointerAlignment(RD);
7795   } else {
7796     Alignment = getContext().getTypeAlignInChars(T);
7797   }
7798 
7799   // Cap to the global maximum type alignment unless the alignment
7800   // was somehow explicit on the type.
7801   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7802     if (Alignment.getQuantity() > MaxAlign &&
7803         !getContext().isAlignmentRequired(T))
7804       Alignment = CharUnits::fromQuantity(MaxAlign);
7805   }
7806   return Alignment;
7807 }
7808 
7809 bool CodeGenModule::stopAutoInit() {
7810   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7811   if (StopAfter) {
7812     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7813     // used
7814     if (NumAutoVarInit >= StopAfter) {
7815       return true;
7816     }
7817     if (!NumAutoVarInit) {
7818       unsigned DiagID = getDiags().getCustomDiagID(
7819           DiagnosticsEngine::Warning,
7820           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7821           "number of times ftrivial-auto-var-init=%1 gets applied.");
7822       getDiags().Report(DiagID)
7823           << StopAfter
7824           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7825                       LangOptions::TrivialAutoVarInitKind::Zero
7826                   ? "zero"
7827                   : "pattern");
7828     }
7829     ++NumAutoVarInit;
7830   }
7831   return false;
7832 }
7833 
7834 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7835                                                     const Decl *D) const {
7836   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7837   // postfix beginning with '.' since the symbol name can be demangled.
7838   if (LangOpts.HIP)
7839     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7840   else
7841     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7842 
7843   // If the CUID is not specified we try to generate a unique postfix.
7844   if (getLangOpts().CUID.empty()) {
7845     SourceManager &SM = getContext().getSourceManager();
7846     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7847     assert(PLoc.isValid() && "Source location is expected to be valid.");
7848 
7849     // Get the hash of the user defined macros.
7850     llvm::MD5 Hash;
7851     llvm::MD5::MD5Result Result;
7852     for (const auto &Arg : PreprocessorOpts.Macros)
7853       Hash.update(Arg.first);
7854     Hash.final(Result);
7855 
7856     // Get the UniqueID for the file containing the decl.
7857     llvm::sys::fs::UniqueID ID;
7858     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7859       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7860       assert(PLoc.isValid() && "Source location is expected to be valid.");
7861       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7862         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7863             << PLoc.getFilename() << EC.message();
7864     }
7865     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7866        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7867   } else {
7868     OS << getContext().getCUIDHash();
7869   }
7870 }
7871 
7872 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7873   assert(DeferredDeclsToEmit.empty() &&
7874          "Should have emitted all decls deferred to emit.");
7875   assert(NewBuilder->DeferredDecls.empty() &&
7876          "Newly created module should not have deferred decls");
7877   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7878   assert(EmittedDeferredDecls.empty() &&
7879          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7880 
7881   assert(NewBuilder->DeferredVTables.empty() &&
7882          "Newly created module should not have deferred vtables");
7883   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7884 
7885   assert(NewBuilder->MangledDeclNames.empty() &&
7886          "Newly created module should not have mangled decl names");
7887   assert(NewBuilder->Manglings.empty() &&
7888          "Newly created module should not have manglings");
7889   NewBuilder->Manglings = std::move(Manglings);
7890 
7891   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7892 
7893   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7894 }
7895