1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CodeGenOptions.h" 42 #include "clang/Basic/Diagnostic.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/BinaryFormat/ELF.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/RISCVISAInfo.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/TargetParser/X86TargetParser.h" 74 #include "llvm/Transforms/Utils/BuildLibCalls.h" 75 #include <optional> 76 77 using namespace clang; 78 using namespace CodeGen; 79 80 static llvm::cl::opt<bool> LimitedCoverage( 81 "limited-coverage-experimental", llvm::cl::Hidden, 82 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 83 84 static const char AnnotationSection[] = "llvm.metadata"; 85 86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 87 switch (CGM.getContext().getCXXABIKind()) { 88 case TargetCXXABI::AppleARM64: 89 case TargetCXXABI::Fuchsia: 90 case TargetCXXABI::GenericAArch64: 91 case TargetCXXABI::GenericARM: 92 case TargetCXXABI::iOS: 93 case TargetCXXABI::WatchOS: 94 case TargetCXXABI::GenericMIPS: 95 case TargetCXXABI::GenericItanium: 96 case TargetCXXABI::WebAssembly: 97 case TargetCXXABI::XL: 98 return CreateItaniumCXXABI(CGM); 99 case TargetCXXABI::Microsoft: 100 return CreateMicrosoftCXXABI(CGM); 101 } 102 103 llvm_unreachable("invalid C++ ABI kind"); 104 } 105 106 static std::unique_ptr<TargetCodeGenInfo> 107 createTargetCodeGenInfo(CodeGenModule &CGM) { 108 const TargetInfo &Target = CGM.getTarget(); 109 const llvm::Triple &Triple = Target.getTriple(); 110 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 111 112 switch (Triple.getArch()) { 113 default: 114 return createDefaultTargetCodeGenInfo(CGM); 115 116 case llvm::Triple::m68k: 117 return createM68kTargetCodeGenInfo(CGM); 118 case llvm::Triple::mips: 119 case llvm::Triple::mipsel: 120 if (Triple.getOS() == llvm::Triple::NaCl) 121 return createPNaClTargetCodeGenInfo(CGM); 122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 123 124 case llvm::Triple::mips64: 125 case llvm::Triple::mips64el: 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 127 128 case llvm::Triple::avr: { 129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 130 // on avrtiny. For passing return value, R18~R25 are used on avr, and 131 // R22~R25 are used on avrtiny. 132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 135 } 136 137 case llvm::Triple::aarch64: 138 case llvm::Triple::aarch64_32: 139 case llvm::Triple::aarch64_be: { 140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 141 if (Target.getABI() == "darwinpcs") 142 Kind = AArch64ABIKind::DarwinPCS; 143 else if (Triple.isOSWindows()) 144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 145 else if (Target.getABI() == "aapcs-soft") 146 Kind = AArch64ABIKind::AAPCSSoft; 147 else if (Target.getABI() == "pauthtest") 148 Kind = AArch64ABIKind::PAuthTest; 149 150 return createAArch64TargetCodeGenInfo(CGM, Kind); 151 } 152 153 case llvm::Triple::wasm32: 154 case llvm::Triple::wasm64: { 155 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 156 if (Target.getABI() == "experimental-mv") 157 Kind = WebAssemblyABIKind::ExperimentalMV; 158 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 159 } 160 161 case llvm::Triple::arm: 162 case llvm::Triple::armeb: 163 case llvm::Triple::thumb: 164 case llvm::Triple::thumbeb: { 165 if (Triple.getOS() == llvm::Triple::Win32) 166 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 167 168 ARMABIKind Kind = ARMABIKind::AAPCS; 169 StringRef ABIStr = Target.getABI(); 170 if (ABIStr == "apcs-gnu") 171 Kind = ARMABIKind::APCS; 172 else if (ABIStr == "aapcs16") 173 Kind = ARMABIKind::AAPCS16_VFP; 174 else if (CodeGenOpts.FloatABI == "hard" || 175 (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI())) 176 Kind = ARMABIKind::AAPCS_VFP; 177 178 return createARMTargetCodeGenInfo(CGM, Kind); 179 } 180 181 case llvm::Triple::ppc: { 182 if (Triple.isOSAIX()) 183 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 184 185 bool IsSoftFloat = 186 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 187 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 188 } 189 case llvm::Triple::ppcle: { 190 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 191 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 192 } 193 case llvm::Triple::ppc64: 194 if (Triple.isOSAIX()) 195 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 196 197 if (Triple.isOSBinFormatELF()) { 198 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 199 if (Target.getABI() == "elfv2") 200 Kind = PPC64_SVR4_ABIKind::ELFv2; 201 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 202 203 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 204 } 205 return createPPC64TargetCodeGenInfo(CGM); 206 case llvm::Triple::ppc64le: { 207 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 208 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 209 if (Target.getABI() == "elfv1") 210 Kind = PPC64_SVR4_ABIKind::ELFv1; 211 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 212 213 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 214 } 215 216 case llvm::Triple::nvptx: 217 case llvm::Triple::nvptx64: 218 return createNVPTXTargetCodeGenInfo(CGM); 219 220 case llvm::Triple::msp430: 221 return createMSP430TargetCodeGenInfo(CGM); 222 223 case llvm::Triple::riscv32: 224 case llvm::Triple::riscv64: { 225 StringRef ABIStr = Target.getABI(); 226 unsigned XLen = Target.getPointerWidth(LangAS::Default); 227 unsigned ABIFLen = 0; 228 if (ABIStr.ends_with("f")) 229 ABIFLen = 32; 230 else if (ABIStr.ends_with("d")) 231 ABIFLen = 64; 232 bool EABI = ABIStr.ends_with("e"); 233 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 234 } 235 236 case llvm::Triple::systemz: { 237 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 238 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 239 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 240 } 241 242 case llvm::Triple::tce: 243 case llvm::Triple::tcele: 244 return createTCETargetCodeGenInfo(CGM); 245 246 case llvm::Triple::x86: { 247 bool IsDarwinVectorABI = Triple.isOSDarwin(); 248 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 249 250 if (Triple.getOS() == llvm::Triple::Win32) { 251 return createWinX86_32TargetCodeGenInfo( 252 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 253 CodeGenOpts.NumRegisterParameters); 254 } 255 return createX86_32TargetCodeGenInfo( 256 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 257 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 258 } 259 260 case llvm::Triple::x86_64: { 261 StringRef ABI = Target.getABI(); 262 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 263 : ABI == "avx" ? X86AVXABILevel::AVX 264 : X86AVXABILevel::None); 265 266 switch (Triple.getOS()) { 267 case llvm::Triple::Win32: 268 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 default: 270 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 271 } 272 } 273 case llvm::Triple::hexagon: 274 return createHexagonTargetCodeGenInfo(CGM); 275 case llvm::Triple::lanai: 276 return createLanaiTargetCodeGenInfo(CGM); 277 case llvm::Triple::r600: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::amdgcn: 280 return createAMDGPUTargetCodeGenInfo(CGM); 281 case llvm::Triple::sparc: 282 return createSparcV8TargetCodeGenInfo(CGM); 283 case llvm::Triple::sparcv9: 284 return createSparcV9TargetCodeGenInfo(CGM); 285 case llvm::Triple::xcore: 286 return createXCoreTargetCodeGenInfo(CGM); 287 case llvm::Triple::arc: 288 return createARCTargetCodeGenInfo(CGM); 289 case llvm::Triple::spir: 290 case llvm::Triple::spir64: 291 return createCommonSPIRTargetCodeGenInfo(CGM); 292 case llvm::Triple::spirv32: 293 case llvm::Triple::spirv64: 294 case llvm::Triple::spirv: 295 return createSPIRVTargetCodeGenInfo(CGM); 296 case llvm::Triple::dxil: 297 return createDirectXTargetCodeGenInfo(CGM); 298 case llvm::Triple::ve: 299 return createVETargetCodeGenInfo(CGM); 300 case llvm::Triple::csky: { 301 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 302 bool hasFP64 = 303 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 304 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 305 : hasFP64 ? 64 306 : 32); 307 } 308 case llvm::Triple::bpfeb: 309 case llvm::Triple::bpfel: 310 return createBPFTargetCodeGenInfo(CGM); 311 case llvm::Triple::loongarch32: 312 case llvm::Triple::loongarch64: { 313 StringRef ABIStr = Target.getABI(); 314 unsigned ABIFRLen = 0; 315 if (ABIStr.ends_with("f")) 316 ABIFRLen = 32; 317 else if (ABIStr.ends_with("d")) 318 ABIFRLen = 64; 319 return createLoongArchTargetCodeGenInfo( 320 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 321 } 322 } 323 } 324 325 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 326 if (!TheTargetCodeGenInfo) 327 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 328 return *TheTargetCodeGenInfo; 329 } 330 331 CodeGenModule::CodeGenModule(ASTContext &C, 332 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 333 const HeaderSearchOptions &HSO, 334 const PreprocessorOptions &PPO, 335 const CodeGenOptions &CGO, llvm::Module &M, 336 DiagnosticsEngine &diags, 337 CoverageSourceInfo *CoverageInfo) 338 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 339 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 340 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 341 VMContext(M.getContext()), VTables(*this), StackHandler(diags), 342 SanitizerMD(new SanitizerMetadata(*this)) { 343 344 // Initialize the type cache. 345 Types.reset(new CodeGenTypes(*this)); 346 llvm::LLVMContext &LLVMContext = M.getContext(); 347 VoidTy = llvm::Type::getVoidTy(LLVMContext); 348 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 349 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 350 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 351 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 352 HalfTy = llvm::Type::getHalfTy(LLVMContext); 353 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 354 FloatTy = llvm::Type::getFloatTy(LLVMContext); 355 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 356 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 357 PointerAlignInBytes = 358 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 359 .getQuantity(); 360 SizeSizeInBytes = 361 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 362 IntAlignInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 364 CharTy = 365 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 366 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 367 IntPtrTy = llvm::IntegerType::get(LLVMContext, 368 C.getTargetInfo().getMaxPointerWidth()); 369 Int8PtrTy = llvm::PointerType::get(LLVMContext, 370 C.getTargetAddressSpace(LangAS::Default)); 371 const llvm::DataLayout &DL = M.getDataLayout(); 372 AllocaInt8PtrTy = 373 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 374 GlobalsInt8PtrTy = 375 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 376 ConstGlobalsPtrTy = llvm::PointerType::get( 377 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 378 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 379 380 // Build C++20 Module initializers. 381 // TODO: Add Microsoft here once we know the mangling required for the 382 // initializers. 383 CXX20ModuleInits = 384 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 385 ItaniumMangleContext::MK_Itanium; 386 387 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 388 389 if (LangOpts.ObjC) 390 createObjCRuntime(); 391 if (LangOpts.OpenCL) 392 createOpenCLRuntime(); 393 if (LangOpts.OpenMP) 394 createOpenMPRuntime(); 395 if (LangOpts.CUDA) 396 createCUDARuntime(); 397 if (LangOpts.HLSL) 398 createHLSLRuntime(); 399 400 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 401 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 402 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 403 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 404 getLangOpts())); 405 406 // If debug info or coverage generation is enabled, create the CGDebugInfo 407 // object. 408 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 409 CodeGenOpts.CoverageNotesFile.size() || 410 CodeGenOpts.CoverageDataFile.size()) 411 DebugInfo.reset(new CGDebugInfo(*this)); 412 413 Block.GlobalUniqueCount = 0; 414 415 if (C.getLangOpts().ObjC) 416 ObjCData.reset(new ObjCEntrypoints()); 417 418 if (CodeGenOpts.hasProfileClangUse()) { 419 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 420 CodeGenOpts.ProfileInstrumentUsePath, *FS, 421 CodeGenOpts.ProfileRemappingFile); 422 // We're checking for profile read errors in CompilerInvocation, so if 423 // there was an error it should've already been caught. If it hasn't been 424 // somehow, trip an assertion. 425 assert(ReaderOrErr); 426 PGOReader = std::move(ReaderOrErr.get()); 427 } 428 429 // If coverage mapping generation is enabled, create the 430 // CoverageMappingModuleGen object. 431 if (CodeGenOpts.CoverageMapping) 432 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 433 434 // Generate the module name hash here if needed. 435 if (CodeGenOpts.UniqueInternalLinkageNames && 436 !getModule().getSourceFileName().empty()) { 437 std::string Path = getModule().getSourceFileName(); 438 // Check if a path substitution is needed from the MacroPrefixMap. 439 for (const auto &Entry : LangOpts.MacroPrefixMap) 440 if (Path.rfind(Entry.first, 0) != std::string::npos) { 441 Path = Entry.second + Path.substr(Entry.first.size()); 442 break; 443 } 444 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 445 } 446 447 // Record mregparm value now so it is visible through all of codegen. 448 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 449 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 450 CodeGenOpts.NumRegisterParameters); 451 } 452 453 CodeGenModule::~CodeGenModule() {} 454 455 void CodeGenModule::createObjCRuntime() { 456 // This is just isGNUFamily(), but we want to force implementors of 457 // new ABIs to decide how best to do this. 458 switch (LangOpts.ObjCRuntime.getKind()) { 459 case ObjCRuntime::GNUstep: 460 case ObjCRuntime::GCC: 461 case ObjCRuntime::ObjFW: 462 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 463 return; 464 465 case ObjCRuntime::FragileMacOSX: 466 case ObjCRuntime::MacOSX: 467 case ObjCRuntime::iOS: 468 case ObjCRuntime::WatchOS: 469 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 470 return; 471 } 472 llvm_unreachable("bad runtime kind"); 473 } 474 475 void CodeGenModule::createOpenCLRuntime() { 476 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 477 } 478 479 void CodeGenModule::createOpenMPRuntime() { 480 // Select a specialized code generation class based on the target, if any. 481 // If it does not exist use the default implementation. 482 switch (getTriple().getArch()) { 483 case llvm::Triple::nvptx: 484 case llvm::Triple::nvptx64: 485 case llvm::Triple::amdgcn: 486 assert(getLangOpts().OpenMPIsTargetDevice && 487 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 488 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 489 break; 490 default: 491 if (LangOpts.OpenMPSimd) 492 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 493 else 494 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 495 break; 496 } 497 } 498 499 void CodeGenModule::createCUDARuntime() { 500 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 501 } 502 503 void CodeGenModule::createHLSLRuntime() { 504 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 505 } 506 507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 508 Replacements[Name] = C; 509 } 510 511 void CodeGenModule::applyReplacements() { 512 for (auto &I : Replacements) { 513 StringRef MangledName = I.first; 514 llvm::Constant *Replacement = I.second; 515 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 516 if (!Entry) 517 continue; 518 auto *OldF = cast<llvm::Function>(Entry); 519 auto *NewF = dyn_cast<llvm::Function>(Replacement); 520 if (!NewF) { 521 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 522 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 523 } else { 524 auto *CE = cast<llvm::ConstantExpr>(Replacement); 525 assert(CE->getOpcode() == llvm::Instruction::BitCast || 526 CE->getOpcode() == llvm::Instruction::GetElementPtr); 527 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 528 } 529 } 530 531 // Replace old with new, but keep the old order. 532 OldF->replaceAllUsesWith(Replacement); 533 if (NewF) { 534 NewF->removeFromParent(); 535 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 536 NewF); 537 } 538 OldF->eraseFromParent(); 539 } 540 } 541 542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 543 GlobalValReplacements.push_back(std::make_pair(GV, C)); 544 } 545 546 void CodeGenModule::applyGlobalValReplacements() { 547 for (auto &I : GlobalValReplacements) { 548 llvm::GlobalValue *GV = I.first; 549 llvm::Constant *C = I.second; 550 551 GV->replaceAllUsesWith(C); 552 GV->eraseFromParent(); 553 } 554 } 555 556 // This is only used in aliases that we created and we know they have a 557 // linear structure. 558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 559 const llvm::Constant *C; 560 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 561 C = GA->getAliasee(); 562 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 563 C = GI->getResolver(); 564 else 565 return GV; 566 567 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 568 if (!AliaseeGV) 569 return nullptr; 570 571 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 572 if (FinalGV == GV) 573 return nullptr; 574 575 return FinalGV; 576 } 577 578 static bool checkAliasedGlobal( 579 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 580 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 581 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 582 SourceRange AliasRange) { 583 GV = getAliasedGlobal(Alias); 584 if (!GV) { 585 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 586 return false; 587 } 588 589 if (GV->hasCommonLinkage()) { 590 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 591 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 592 Diags.Report(Location, diag::err_alias_to_common); 593 return false; 594 } 595 } 596 597 if (GV->isDeclaration()) { 598 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 599 Diags.Report(Location, diag::note_alias_requires_mangled_name) 600 << IsIFunc << IsIFunc; 601 // Provide a note if the given function is not found and exists as a 602 // mangled name. 603 for (const auto &[Decl, Name] : MangledDeclNames) { 604 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 605 if (ND->getName() == GV->getName()) { 606 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 607 << Name 608 << FixItHint::CreateReplacement( 609 AliasRange, 610 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 611 .str()); 612 } 613 } 614 } 615 return false; 616 } 617 618 if (IsIFunc) { 619 // Check resolver function type. 620 const auto *F = dyn_cast<llvm::Function>(GV); 621 if (!F) { 622 Diags.Report(Location, diag::err_alias_to_undefined) 623 << IsIFunc << IsIFunc; 624 return false; 625 } 626 627 llvm::FunctionType *FTy = F->getFunctionType(); 628 if (!FTy->getReturnType()->isPointerTy()) { 629 Diags.Report(Location, diag::err_ifunc_resolver_return); 630 return false; 631 } 632 } 633 634 return true; 635 } 636 637 // Emit a warning if toc-data attribute is requested for global variables that 638 // have aliases and remove the toc-data attribute. 639 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 640 const CodeGenOptions &CodeGenOpts, 641 DiagnosticsEngine &Diags, 642 SourceLocation Location) { 643 if (GVar->hasAttribute("toc-data")) { 644 auto GVId = GVar->getName(); 645 // Is this a global variable specified by the user as local? 646 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 647 Diags.Report(Location, diag::warn_toc_unsupported_type) 648 << GVId << "the variable has an alias"; 649 } 650 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 651 llvm::AttributeSet NewAttributes = 652 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 653 GVar->setAttributes(NewAttributes); 654 } 655 } 656 657 void CodeGenModule::checkAliases() { 658 // Check if the constructed aliases are well formed. It is really unfortunate 659 // that we have to do this in CodeGen, but we only construct mangled names 660 // and aliases during codegen. 661 bool Error = false; 662 DiagnosticsEngine &Diags = getDiags(); 663 for (const GlobalDecl &GD : Aliases) { 664 const auto *D = cast<ValueDecl>(GD.getDecl()); 665 SourceLocation Location; 666 SourceRange Range; 667 bool IsIFunc = D->hasAttr<IFuncAttr>(); 668 if (const Attr *A = D->getDefiningAttr()) { 669 Location = A->getLocation(); 670 Range = A->getRange(); 671 } else 672 llvm_unreachable("Not an alias or ifunc?"); 673 674 StringRef MangledName = getMangledName(GD); 675 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 676 const llvm::GlobalValue *GV = nullptr; 677 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 678 MangledDeclNames, Range)) { 679 Error = true; 680 continue; 681 } 682 683 if (getContext().getTargetInfo().getTriple().isOSAIX()) 684 if (const llvm::GlobalVariable *GVar = 685 dyn_cast<const llvm::GlobalVariable>(GV)) 686 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 687 getCodeGenOpts(), Diags, Location); 688 689 llvm::Constant *Aliasee = 690 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 691 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 692 693 llvm::GlobalValue *AliaseeGV; 694 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 695 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 696 else 697 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 698 699 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 700 StringRef AliasSection = SA->getName(); 701 if (AliasSection != AliaseeGV->getSection()) 702 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 703 << AliasSection << IsIFunc << IsIFunc; 704 } 705 706 // We have to handle alias to weak aliases in here. LLVM itself disallows 707 // this since the object semantics would not match the IL one. For 708 // compatibility with gcc we implement it by just pointing the alias 709 // to its aliasee's aliasee. We also warn, since the user is probably 710 // expecting the link to be weak. 711 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 712 if (GA->isInterposable()) { 713 Diags.Report(Location, diag::warn_alias_to_weak_alias) 714 << GV->getName() << GA->getName() << IsIFunc; 715 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 716 GA->getAliasee(), Alias->getType()); 717 718 if (IsIFunc) 719 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 720 else 721 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 722 } 723 } 724 // ifunc resolvers are usually implemented to run before sanitizer 725 // initialization. Disable instrumentation to prevent the ordering issue. 726 if (IsIFunc) 727 cast<llvm::Function>(Aliasee)->addFnAttr( 728 llvm::Attribute::DisableSanitizerInstrumentation); 729 } 730 if (!Error) 731 return; 732 733 for (const GlobalDecl &GD : Aliases) { 734 StringRef MangledName = getMangledName(GD); 735 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 736 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 737 Alias->eraseFromParent(); 738 } 739 } 740 741 void CodeGenModule::clear() { 742 DeferredDeclsToEmit.clear(); 743 EmittedDeferredDecls.clear(); 744 DeferredAnnotations.clear(); 745 if (OpenMPRuntime) 746 OpenMPRuntime->clear(); 747 } 748 749 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 750 StringRef MainFile) { 751 if (!hasDiagnostics()) 752 return; 753 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 754 if (MainFile.empty()) 755 MainFile = "<stdin>"; 756 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 757 } else { 758 if (Mismatched > 0) 759 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 760 761 if (Missing > 0) 762 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 763 } 764 } 765 766 static std::optional<llvm::GlobalValue::VisibilityTypes> 767 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 768 // Map to LLVM visibility. 769 switch (K) { 770 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 771 return std::nullopt; 772 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 773 return llvm::GlobalValue::DefaultVisibility; 774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 775 return llvm::GlobalValue::HiddenVisibility; 776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 777 return llvm::GlobalValue::ProtectedVisibility; 778 } 779 llvm_unreachable("unknown option value!"); 780 } 781 782 static void 783 setLLVMVisibility(llvm::GlobalValue &GV, 784 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 785 if (!V) 786 return; 787 788 // Reset DSO locality before setting the visibility. This removes 789 // any effects that visibility options and annotations may have 790 // had on the DSO locality. Setting the visibility will implicitly set 791 // appropriate globals to DSO Local; however, this will be pessimistic 792 // w.r.t. to the normal compiler IRGen. 793 GV.setDSOLocal(false); 794 GV.setVisibility(*V); 795 } 796 797 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 798 llvm::Module &M) { 799 if (!LO.VisibilityFromDLLStorageClass) 800 return; 801 802 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 803 getLLVMVisibility(LO.getDLLExportVisibility()); 804 805 std::optional<llvm::GlobalValue::VisibilityTypes> 806 NoDLLStorageClassVisibility = 807 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 808 809 std::optional<llvm::GlobalValue::VisibilityTypes> 810 ExternDeclDLLImportVisibility = 811 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 812 813 std::optional<llvm::GlobalValue::VisibilityTypes> 814 ExternDeclNoDLLStorageClassVisibility = 815 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 816 817 for (llvm::GlobalValue &GV : M.global_values()) { 818 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 819 continue; 820 821 if (GV.isDeclarationForLinker()) 822 setLLVMVisibility(GV, GV.getDLLStorageClass() == 823 llvm::GlobalValue::DLLImportStorageClass 824 ? ExternDeclDLLImportVisibility 825 : ExternDeclNoDLLStorageClassVisibility); 826 else 827 setLLVMVisibility(GV, GV.getDLLStorageClass() == 828 llvm::GlobalValue::DLLExportStorageClass 829 ? DLLExportVisibility 830 : NoDLLStorageClassVisibility); 831 832 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 833 } 834 } 835 836 static bool isStackProtectorOn(const LangOptions &LangOpts, 837 const llvm::Triple &Triple, 838 clang::LangOptions::StackProtectorMode Mode) { 839 if (Triple.isAMDGPU() || Triple.isNVPTX()) 840 return false; 841 return LangOpts.getStackProtector() == Mode; 842 } 843 844 void CodeGenModule::Release() { 845 Module *Primary = getContext().getCurrentNamedModule(); 846 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 847 EmitModuleInitializers(Primary); 848 EmitDeferred(); 849 DeferredDecls.insert(EmittedDeferredDecls.begin(), 850 EmittedDeferredDecls.end()); 851 EmittedDeferredDecls.clear(); 852 EmitVTablesOpportunistically(); 853 applyGlobalValReplacements(); 854 applyReplacements(); 855 emitMultiVersionFunctions(); 856 857 if (Context.getLangOpts().IncrementalExtensions && 858 GlobalTopLevelStmtBlockInFlight.first) { 859 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 860 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 861 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 862 } 863 864 // Module implementations are initialized the same way as a regular TU that 865 // imports one or more modules. 866 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 867 EmitCXXModuleInitFunc(Primary); 868 else 869 EmitCXXGlobalInitFunc(); 870 EmitCXXGlobalCleanUpFunc(); 871 registerGlobalDtorsWithAtExit(); 872 EmitCXXThreadLocalInitFunc(); 873 if (ObjCRuntime) 874 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 875 AddGlobalCtor(ObjCInitFunction); 876 if (Context.getLangOpts().CUDA && CUDARuntime) { 877 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 878 AddGlobalCtor(CudaCtorFunction); 879 } 880 if (OpenMPRuntime) { 881 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 882 OpenMPRuntime->clear(); 883 } 884 if (PGOReader) { 885 getModule().setProfileSummary( 886 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 887 llvm::ProfileSummary::PSK_Instr); 888 if (PGOStats.hasDiagnostics()) 889 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 890 } 891 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 892 return L.LexOrder < R.LexOrder; 893 }); 894 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 895 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 896 EmitGlobalAnnotations(); 897 EmitStaticExternCAliases(); 898 checkAliases(); 899 EmitDeferredUnusedCoverageMappings(); 900 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 901 CodeGenPGO(*this).setProfileVersion(getModule()); 902 if (CoverageMapping) 903 CoverageMapping->emit(); 904 if (CodeGenOpts.SanitizeCfiCrossDso) { 905 CodeGenFunction(*this).EmitCfiCheckFail(); 906 CodeGenFunction(*this).EmitCfiCheckStub(); 907 } 908 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 909 finalizeKCFITypes(); 910 emitAtAvailableLinkGuard(); 911 if (Context.getTargetInfo().getTriple().isWasm()) 912 EmitMainVoidAlias(); 913 914 if (getTriple().isAMDGPU() || 915 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 916 // Emit amdhsa_code_object_version module flag, which is code object version 917 // times 100. 918 if (getTarget().getTargetOpts().CodeObjectVersion != 919 llvm::CodeObjectVersionKind::COV_None) { 920 getModule().addModuleFlag(llvm::Module::Error, 921 "amdhsa_code_object_version", 922 getTarget().getTargetOpts().CodeObjectVersion); 923 } 924 925 // Currently, "-mprintf-kind" option is only supported for HIP 926 if (LangOpts.HIP) { 927 auto *MDStr = llvm::MDString::get( 928 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 929 TargetOptions::AMDGPUPrintfKind::Hostcall) 930 ? "hostcall" 931 : "buffered"); 932 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 933 MDStr); 934 } 935 } 936 937 // Emit a global array containing all external kernels or device variables 938 // used by host functions and mark it as used for CUDA/HIP. This is necessary 939 // to get kernels or device variables in archives linked in even if these 940 // kernels or device variables are only used in host functions. 941 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 942 SmallVector<llvm::Constant *, 8> UsedArray; 943 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 944 GlobalDecl GD; 945 if (auto *FD = dyn_cast<FunctionDecl>(D)) 946 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 947 else 948 GD = GlobalDecl(D); 949 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 950 GetAddrOfGlobal(GD), Int8PtrTy)); 951 } 952 953 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 954 955 auto *GV = new llvm::GlobalVariable( 956 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 957 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 958 addCompilerUsedGlobal(GV); 959 } 960 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 961 // Emit a unique ID so that host and device binaries from the same 962 // compilation unit can be associated. 963 auto *GV = new llvm::GlobalVariable( 964 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 965 llvm::Constant::getNullValue(Int8Ty), 966 "__hip_cuid_" + getContext().getCUIDHash()); 967 addCompilerUsedGlobal(GV); 968 } 969 emitLLVMUsed(); 970 if (SanStats) 971 SanStats->finish(); 972 973 if (CodeGenOpts.Autolink && 974 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 975 EmitModuleLinkOptions(); 976 } 977 978 // On ELF we pass the dependent library specifiers directly to the linker 979 // without manipulating them. This is in contrast to other platforms where 980 // they are mapped to a specific linker option by the compiler. This 981 // difference is a result of the greater variety of ELF linkers and the fact 982 // that ELF linkers tend to handle libraries in a more complicated fashion 983 // than on other platforms. This forces us to defer handling the dependent 984 // libs to the linker. 985 // 986 // CUDA/HIP device and host libraries are different. Currently there is no 987 // way to differentiate dependent libraries for host or device. Existing 988 // usage of #pragma comment(lib, *) is intended for host libraries on 989 // Windows. Therefore emit llvm.dependent-libraries only for host. 990 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 991 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 992 for (auto *MD : ELFDependentLibraries) 993 NMD->addOperand(MD); 994 } 995 996 if (CodeGenOpts.DwarfVersion) { 997 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 998 CodeGenOpts.DwarfVersion); 999 } 1000 1001 if (CodeGenOpts.Dwarf64) 1002 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1003 1004 if (Context.getLangOpts().SemanticInterposition) 1005 // Require various optimization to respect semantic interposition. 1006 getModule().setSemanticInterposition(true); 1007 1008 if (CodeGenOpts.EmitCodeView) { 1009 // Indicate that we want CodeView in the metadata. 1010 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1011 } 1012 if (CodeGenOpts.CodeViewGHash) { 1013 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1014 } 1015 if (CodeGenOpts.ControlFlowGuard) { 1016 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1017 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1018 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1019 // Function ID tables for Control Flow Guard (cfguard=1). 1020 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1021 } 1022 if (CodeGenOpts.EHContGuard) { 1023 // Function ID tables for EH Continuation Guard. 1024 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1025 } 1026 if (Context.getLangOpts().Kernel) { 1027 // Note if we are compiling with /kernel. 1028 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1029 } 1030 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1031 // We don't support LTO with 2 with different StrictVTablePointers 1032 // FIXME: we could support it by stripping all the information introduced 1033 // by StrictVTablePointers. 1034 1035 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1036 1037 llvm::Metadata *Ops[2] = { 1038 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1039 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1040 llvm::Type::getInt32Ty(VMContext), 1))}; 1041 1042 getModule().addModuleFlag(llvm::Module::Require, 1043 "StrictVTablePointersRequirement", 1044 llvm::MDNode::get(VMContext, Ops)); 1045 } 1046 if (getModuleDebugInfo()) 1047 // We support a single version in the linked module. The LLVM 1048 // parser will drop debug info with a different version number 1049 // (and warn about it, too). 1050 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1051 llvm::DEBUG_METADATA_VERSION); 1052 1053 // We need to record the widths of enums and wchar_t, so that we can generate 1054 // the correct build attributes in the ARM backend. wchar_size is also used by 1055 // TargetLibraryInfo. 1056 uint64_t WCharWidth = 1057 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1058 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1059 1060 if (getTriple().isOSzOS()) { 1061 getModule().addModuleFlag(llvm::Module::Warning, 1062 "zos_product_major_version", 1063 uint32_t(CLANG_VERSION_MAJOR)); 1064 getModule().addModuleFlag(llvm::Module::Warning, 1065 "zos_product_minor_version", 1066 uint32_t(CLANG_VERSION_MINOR)); 1067 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1068 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1069 std::string ProductId = getClangVendor() + "clang"; 1070 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1071 llvm::MDString::get(VMContext, ProductId)); 1072 1073 // Record the language because we need it for the PPA2. 1074 StringRef lang_str = languageToString( 1075 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1076 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1077 llvm::MDString::get(VMContext, lang_str)); 1078 1079 time_t TT = PreprocessorOpts.SourceDateEpoch 1080 ? *PreprocessorOpts.SourceDateEpoch 1081 : std::time(nullptr); 1082 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1083 static_cast<uint64_t>(TT)); 1084 1085 // Multiple modes will be supported here. 1086 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1087 llvm::MDString::get(VMContext, "ascii")); 1088 } 1089 1090 llvm::Triple T = Context.getTargetInfo().getTriple(); 1091 if (T.isARM() || T.isThumb()) { 1092 // The minimum width of an enum in bytes 1093 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1094 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1095 } 1096 1097 if (T.isRISCV()) { 1098 StringRef ABIStr = Target.getABI(); 1099 llvm::LLVMContext &Ctx = TheModule.getContext(); 1100 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1101 llvm::MDString::get(Ctx, ABIStr)); 1102 1103 // Add the canonical ISA string as metadata so the backend can set the ELF 1104 // attributes correctly. We use AppendUnique so LTO will keep all of the 1105 // unique ISA strings that were linked together. 1106 const std::vector<std::string> &Features = 1107 getTarget().getTargetOpts().Features; 1108 auto ParseResult = 1109 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1110 if (!errorToBool(ParseResult.takeError())) 1111 getModule().addModuleFlag( 1112 llvm::Module::AppendUnique, "riscv-isa", 1113 llvm::MDNode::get( 1114 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1115 } 1116 1117 if (CodeGenOpts.SanitizeCfiCrossDso) { 1118 // Indicate that we want cross-DSO control flow integrity checks. 1119 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1120 } 1121 1122 if (CodeGenOpts.WholeProgramVTables) { 1123 // Indicate whether VFE was enabled for this module, so that the 1124 // vcall_visibility metadata added under whole program vtables is handled 1125 // appropriately in the optimizer. 1126 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1127 CodeGenOpts.VirtualFunctionElimination); 1128 } 1129 1130 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1131 getModule().addModuleFlag(llvm::Module::Override, 1132 "CFI Canonical Jump Tables", 1133 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1134 } 1135 1136 if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) { 1137 getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers", 1138 1); 1139 } 1140 1141 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1142 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1143 // KCFI assumes patchable-function-prefix is the same for all indirectly 1144 // called functions. Store the expected offset for code generation. 1145 if (CodeGenOpts.PatchableFunctionEntryOffset) 1146 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1147 CodeGenOpts.PatchableFunctionEntryOffset); 1148 } 1149 1150 if (CodeGenOpts.CFProtectionReturn && 1151 Target.checkCFProtectionReturnSupported(getDiags())) { 1152 // Indicate that we want to instrument return control flow protection. 1153 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1154 1); 1155 } 1156 1157 if (CodeGenOpts.CFProtectionBranch && 1158 Target.checkCFProtectionBranchSupported(getDiags())) { 1159 // Indicate that we want to instrument branch control flow protection. 1160 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1161 1); 1162 1163 auto Scheme = CodeGenOpts.getCFBranchLabelScheme(); 1164 if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) { 1165 if (Scheme == CFBranchLabelSchemeKind::Default) 1166 Scheme = Target.getDefaultCFBranchLabelScheme(); 1167 getModule().addModuleFlag( 1168 llvm::Module::Error, "cf-branch-label-scheme", 1169 llvm::MDString::get(getLLVMContext(), 1170 getCFBranchLabelSchemeFlagVal(Scheme))); 1171 } 1172 } 1173 1174 if (CodeGenOpts.FunctionReturnThunks) 1175 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1176 1177 if (CodeGenOpts.IndirectBranchCSPrefix) 1178 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1179 1180 // Add module metadata for return address signing (ignoring 1181 // non-leaf/all) and stack tagging. These are actually turned on by function 1182 // attributes, but we use module metadata to emit build attributes. This is 1183 // needed for LTO, where the function attributes are inside bitcode 1184 // serialised into a global variable by the time build attributes are 1185 // emitted, so we can't access them. LTO objects could be compiled with 1186 // different flags therefore module flags are set to "Min" behavior to achieve 1187 // the same end result of the normal build where e.g BTI is off if any object 1188 // doesn't support it. 1189 if (Context.getTargetInfo().hasFeature("ptrauth") && 1190 LangOpts.getSignReturnAddressScope() != 1191 LangOptions::SignReturnAddressScopeKind::None) 1192 getModule().addModuleFlag(llvm::Module::Override, 1193 "sign-return-address-buildattr", 1); 1194 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1195 getModule().addModuleFlag(llvm::Module::Override, 1196 "tag-stack-memory-buildattr", 1); 1197 1198 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1199 if (LangOpts.BranchTargetEnforcement) 1200 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1201 1); 1202 if (LangOpts.BranchProtectionPAuthLR) 1203 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1204 1); 1205 if (LangOpts.GuardedControlStack) 1206 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1207 if (LangOpts.hasSignReturnAddress()) 1208 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1209 if (LangOpts.isSignReturnAddressScopeAll()) 1210 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1211 1); 1212 if (!LangOpts.isSignReturnAddressWithAKey()) 1213 getModule().addModuleFlag(llvm::Module::Min, 1214 "sign-return-address-with-bkey", 1); 1215 1216 if (LangOpts.PointerAuthELFGOT) 1217 getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1); 1218 1219 if (getTriple().isOSLinux()) { 1220 assert(getTriple().isOSBinFormatELF()); 1221 using namespace llvm::ELF; 1222 uint64_t PAuthABIVersion = 1223 (LangOpts.PointerAuthIntrinsics 1224 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1225 (LangOpts.PointerAuthCalls 1226 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1227 (LangOpts.PointerAuthReturns 1228 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1229 (LangOpts.PointerAuthAuthTraps 1230 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1231 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1232 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1233 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1234 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1235 (LangOpts.PointerAuthInitFini 1236 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) | 1237 (LangOpts.PointerAuthInitFiniAddressDiscrimination 1238 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) | 1239 (LangOpts.PointerAuthELFGOT 1240 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) | 1241 (LangOpts.PointerAuthIndirectGotos 1242 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) | 1243 (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination 1244 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) | 1245 (LangOpts.PointerAuthFunctionTypeDiscrimination 1246 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR); 1247 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR == 1248 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1249 "Update when new enum items are defined"); 1250 if (PAuthABIVersion != 0) { 1251 getModule().addModuleFlag(llvm::Module::Error, 1252 "aarch64-elf-pauthabi-platform", 1253 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1254 getModule().addModuleFlag(llvm::Module::Error, 1255 "aarch64-elf-pauthabi-version", 1256 PAuthABIVersion); 1257 } 1258 } 1259 } 1260 1261 if (CodeGenOpts.StackClashProtector) 1262 getModule().addModuleFlag( 1263 llvm::Module::Override, "probe-stack", 1264 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1265 1266 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1267 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1268 CodeGenOpts.StackProbeSize); 1269 1270 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1271 llvm::LLVMContext &Ctx = TheModule.getContext(); 1272 getModule().addModuleFlag( 1273 llvm::Module::Error, "MemProfProfileFilename", 1274 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1275 } 1276 1277 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1278 // Indicate whether __nvvm_reflect should be configured to flush denormal 1279 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1280 // property.) 1281 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1282 CodeGenOpts.FP32DenormalMode.Output != 1283 llvm::DenormalMode::IEEE); 1284 } 1285 1286 if (LangOpts.EHAsynch) 1287 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1288 1289 // Indicate whether this Module was compiled with -fopenmp 1290 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1291 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1292 if (getLangOpts().OpenMPIsTargetDevice) 1293 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1294 LangOpts.OpenMP); 1295 1296 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1297 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1298 EmitOpenCLMetadata(); 1299 // Emit SPIR version. 1300 if (getTriple().isSPIR()) { 1301 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1302 // opencl.spir.version named metadata. 1303 // C++ for OpenCL has a distinct mapping for version compatibility with 1304 // OpenCL. 1305 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1306 llvm::Metadata *SPIRVerElts[] = { 1307 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1308 Int32Ty, Version / 100)), 1309 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1310 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1311 llvm::NamedMDNode *SPIRVerMD = 1312 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1313 llvm::LLVMContext &Ctx = TheModule.getContext(); 1314 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1315 } 1316 } 1317 1318 // HLSL related end of code gen work items. 1319 if (LangOpts.HLSL) 1320 getHLSLRuntime().finishCodeGen(); 1321 1322 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1323 assert(PLevel < 3 && "Invalid PIC Level"); 1324 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1325 if (Context.getLangOpts().PIE) 1326 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1327 } 1328 1329 if (getCodeGenOpts().CodeModel.size() > 0) { 1330 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1331 .Case("tiny", llvm::CodeModel::Tiny) 1332 .Case("small", llvm::CodeModel::Small) 1333 .Case("kernel", llvm::CodeModel::Kernel) 1334 .Case("medium", llvm::CodeModel::Medium) 1335 .Case("large", llvm::CodeModel::Large) 1336 .Default(~0u); 1337 if (CM != ~0u) { 1338 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1339 getModule().setCodeModel(codeModel); 1340 1341 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1342 Context.getTargetInfo().getTriple().getArch() == 1343 llvm::Triple::x86_64) { 1344 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1345 } 1346 } 1347 } 1348 1349 if (CodeGenOpts.NoPLT) 1350 getModule().setRtLibUseGOT(); 1351 if (getTriple().isOSBinFormatELF() && 1352 CodeGenOpts.DirectAccessExternalData != 1353 getModule().getDirectAccessExternalData()) { 1354 getModule().setDirectAccessExternalData( 1355 CodeGenOpts.DirectAccessExternalData); 1356 } 1357 if (CodeGenOpts.UnwindTables) 1358 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1359 1360 switch (CodeGenOpts.getFramePointer()) { 1361 case CodeGenOptions::FramePointerKind::None: 1362 // 0 ("none") is the default. 1363 break; 1364 case CodeGenOptions::FramePointerKind::Reserved: 1365 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1366 break; 1367 case CodeGenOptions::FramePointerKind::NonLeaf: 1368 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1369 break; 1370 case CodeGenOptions::FramePointerKind::All: 1371 getModule().setFramePointer(llvm::FramePointerKind::All); 1372 break; 1373 } 1374 1375 SimplifyPersonality(); 1376 1377 if (getCodeGenOpts().EmitDeclMetadata) 1378 EmitDeclMetadata(); 1379 1380 if (getCodeGenOpts().CoverageNotesFile.size() || 1381 getCodeGenOpts().CoverageDataFile.size()) 1382 EmitCoverageFile(); 1383 1384 if (CGDebugInfo *DI = getModuleDebugInfo()) 1385 DI->finalize(); 1386 1387 if (getCodeGenOpts().EmitVersionIdentMetadata) 1388 EmitVersionIdentMetadata(); 1389 1390 if (!getCodeGenOpts().RecordCommandLine.empty()) 1391 EmitCommandLineMetadata(); 1392 1393 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1394 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1395 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1396 getModule().setStackProtectorGuardReg( 1397 getCodeGenOpts().StackProtectorGuardReg); 1398 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1399 getModule().setStackProtectorGuardSymbol( 1400 getCodeGenOpts().StackProtectorGuardSymbol); 1401 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1402 getModule().setStackProtectorGuardOffset( 1403 getCodeGenOpts().StackProtectorGuardOffset); 1404 if (getCodeGenOpts().StackAlignment) 1405 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1406 if (getCodeGenOpts().SkipRaxSetup) 1407 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1408 if (getLangOpts().RegCall4) 1409 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1410 1411 if (getContext().getTargetInfo().getMaxTLSAlign()) 1412 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1413 getContext().getTargetInfo().getMaxTLSAlign()); 1414 1415 getTargetCodeGenInfo().emitTargetGlobals(*this); 1416 1417 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1418 1419 EmitBackendOptionsMetadata(getCodeGenOpts()); 1420 1421 // If there is device offloading code embed it in the host now. 1422 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1423 1424 // Set visibility from DLL storage class 1425 // We do this at the end of LLVM IR generation; after any operation 1426 // that might affect the DLL storage class or the visibility, and 1427 // before anything that might act on these. 1428 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1429 1430 // Check the tail call symbols are truly undefined. 1431 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1432 for (auto &I : MustTailCallUndefinedGlobals) { 1433 if (!I.first->isDefined()) 1434 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1435 else { 1436 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1437 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1438 if (!Entry || Entry->isWeakForLinker() || 1439 Entry->isDeclarationForLinker()) 1440 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1441 } 1442 } 1443 } 1444 } 1445 1446 void CodeGenModule::EmitOpenCLMetadata() { 1447 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1448 // opencl.ocl.version named metadata node. 1449 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1450 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1451 1452 auto EmitVersion = [this](StringRef MDName, int Version) { 1453 llvm::Metadata *OCLVerElts[] = { 1454 llvm::ConstantAsMetadata::get( 1455 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1456 llvm::ConstantAsMetadata::get( 1457 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1458 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1459 llvm::LLVMContext &Ctx = TheModule.getContext(); 1460 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1461 }; 1462 1463 EmitVersion("opencl.ocl.version", CLVersion); 1464 if (LangOpts.OpenCLCPlusPlus) { 1465 // In addition to the OpenCL compatible version, emit the C++ version. 1466 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1467 } 1468 } 1469 1470 void CodeGenModule::EmitBackendOptionsMetadata( 1471 const CodeGenOptions &CodeGenOpts) { 1472 if (getTriple().isRISCV()) { 1473 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1474 CodeGenOpts.SmallDataLimit); 1475 } 1476 } 1477 1478 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1479 // Make sure that this type is translated. 1480 getTypes().UpdateCompletedType(TD); 1481 } 1482 1483 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1484 // Make sure that this type is translated. 1485 getTypes().RefreshTypeCacheForClass(RD); 1486 } 1487 1488 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1489 if (!TBAA) 1490 return nullptr; 1491 return TBAA->getTypeInfo(QTy); 1492 } 1493 1494 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1495 if (!TBAA) 1496 return TBAAAccessInfo(); 1497 if (getLangOpts().CUDAIsDevice) { 1498 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1499 // access info. 1500 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1501 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1502 nullptr) 1503 return TBAAAccessInfo(); 1504 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1505 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1506 nullptr) 1507 return TBAAAccessInfo(); 1508 } 1509 } 1510 return TBAA->getAccessInfo(AccessType); 1511 } 1512 1513 TBAAAccessInfo 1514 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1515 if (!TBAA) 1516 return TBAAAccessInfo(); 1517 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1518 } 1519 1520 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1521 if (!TBAA) 1522 return nullptr; 1523 return TBAA->getTBAAStructInfo(QTy); 1524 } 1525 1526 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1527 if (!TBAA) 1528 return nullptr; 1529 return TBAA->getBaseTypeInfo(QTy); 1530 } 1531 1532 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1533 if (!TBAA) 1534 return nullptr; 1535 return TBAA->getAccessTagInfo(Info); 1536 } 1537 1538 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1539 TBAAAccessInfo TargetInfo) { 1540 if (!TBAA) 1541 return TBAAAccessInfo(); 1542 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1543 } 1544 1545 TBAAAccessInfo 1546 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1547 TBAAAccessInfo InfoB) { 1548 if (!TBAA) 1549 return TBAAAccessInfo(); 1550 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1551 } 1552 1553 TBAAAccessInfo 1554 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1555 TBAAAccessInfo SrcInfo) { 1556 if (!TBAA) 1557 return TBAAAccessInfo(); 1558 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1559 } 1560 1561 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1562 TBAAAccessInfo TBAAInfo) { 1563 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1564 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1565 } 1566 1567 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1568 llvm::Instruction *I, const CXXRecordDecl *RD) { 1569 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1570 llvm::MDNode::get(getLLVMContext(), {})); 1571 } 1572 1573 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1574 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1575 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1576 } 1577 1578 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1579 /// specified stmt yet. 1580 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1581 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1582 "cannot compile this %0 yet"); 1583 std::string Msg = Type; 1584 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1585 << Msg << S->getSourceRange(); 1586 } 1587 1588 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1589 /// specified decl yet. 1590 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1591 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1592 "cannot compile this %0 yet"); 1593 std::string Msg = Type; 1594 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1595 } 1596 1597 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc, 1598 llvm::function_ref<void()> Fn) { 1599 StackHandler.runWithSufficientStackSpace(Loc, Fn); 1600 } 1601 1602 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1603 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1604 } 1605 1606 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1607 const NamedDecl *D) const { 1608 // Internal definitions always have default visibility. 1609 if (GV->hasLocalLinkage()) { 1610 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1611 return; 1612 } 1613 if (!D) 1614 return; 1615 1616 // Set visibility for definitions, and for declarations if requested globally 1617 // or set explicitly. 1618 LinkageInfo LV = D->getLinkageAndVisibility(); 1619 1620 // OpenMP declare target variables must be visible to the host so they can 1621 // be registered. We require protected visibility unless the variable has 1622 // the DT_nohost modifier and does not need to be registered. 1623 if (Context.getLangOpts().OpenMP && 1624 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1625 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1626 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1627 OMPDeclareTargetDeclAttr::DT_NoHost && 1628 LV.getVisibility() == HiddenVisibility) { 1629 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1630 return; 1631 } 1632 1633 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1634 // Reject incompatible dlllstorage and visibility annotations. 1635 if (!LV.isVisibilityExplicit()) 1636 return; 1637 if (GV->hasDLLExportStorageClass()) { 1638 if (LV.getVisibility() == HiddenVisibility) 1639 getDiags().Report(D->getLocation(), 1640 diag::err_hidden_visibility_dllexport); 1641 } else if (LV.getVisibility() != DefaultVisibility) { 1642 getDiags().Report(D->getLocation(), 1643 diag::err_non_default_visibility_dllimport); 1644 } 1645 return; 1646 } 1647 1648 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1649 !GV->isDeclarationForLinker()) 1650 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1651 } 1652 1653 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1654 llvm::GlobalValue *GV) { 1655 if (GV->hasLocalLinkage()) 1656 return true; 1657 1658 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1659 return true; 1660 1661 // DLLImport explicitly marks the GV as external. 1662 if (GV->hasDLLImportStorageClass()) 1663 return false; 1664 1665 const llvm::Triple &TT = CGM.getTriple(); 1666 const auto &CGOpts = CGM.getCodeGenOpts(); 1667 if (TT.isWindowsGNUEnvironment()) { 1668 // In MinGW, variables without DLLImport can still be automatically 1669 // imported from a DLL by the linker; don't mark variables that 1670 // potentially could come from another DLL as DSO local. 1671 1672 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1673 // (and this actually happens in the public interface of libstdc++), so 1674 // such variables can't be marked as DSO local. (Native TLS variables 1675 // can't be dllimported at all, though.) 1676 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1677 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1678 CGOpts.AutoImport) 1679 return false; 1680 } 1681 1682 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1683 // remain unresolved in the link, they can be resolved to zero, which is 1684 // outside the current DSO. 1685 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1686 return false; 1687 1688 // Every other GV is local on COFF. 1689 // Make an exception for windows OS in the triple: Some firmware builds use 1690 // *-win32-macho triples. This (accidentally?) produced windows relocations 1691 // without GOT tables in older clang versions; Keep this behaviour. 1692 // FIXME: even thread local variables? 1693 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1694 return true; 1695 1696 // Only handle COFF and ELF for now. 1697 if (!TT.isOSBinFormatELF()) 1698 return false; 1699 1700 // If this is not an executable, don't assume anything is local. 1701 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1702 const auto &LOpts = CGM.getLangOpts(); 1703 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1704 // On ELF, if -fno-semantic-interposition is specified and the target 1705 // supports local aliases, there will be neither CC1 1706 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1707 // dso_local on the function if using a local alias is preferable (can avoid 1708 // PLT indirection). 1709 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1710 return false; 1711 return !(CGM.getLangOpts().SemanticInterposition || 1712 CGM.getLangOpts().HalfNoSemanticInterposition); 1713 } 1714 1715 // A definition cannot be preempted from an executable. 1716 if (!GV->isDeclarationForLinker()) 1717 return true; 1718 1719 // Most PIC code sequences that assume that a symbol is local cannot produce a 1720 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1721 // depended, it seems worth it to handle it here. 1722 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1723 return false; 1724 1725 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1726 if (TT.isPPC64()) 1727 return false; 1728 1729 if (CGOpts.DirectAccessExternalData) { 1730 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1731 // for non-thread-local variables. If the symbol is not defined in the 1732 // executable, a copy relocation will be needed at link time. dso_local is 1733 // excluded for thread-local variables because they generally don't support 1734 // copy relocations. 1735 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1736 if (!Var->isThreadLocal()) 1737 return true; 1738 1739 // -fno-pic sets dso_local on a function declaration to allow direct 1740 // accesses when taking its address (similar to a data symbol). If the 1741 // function is not defined in the executable, a canonical PLT entry will be 1742 // needed at link time. -fno-direct-access-external-data can avoid the 1743 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1744 // it could just cause trouble without providing perceptible benefits. 1745 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1746 return true; 1747 } 1748 1749 // If we can use copy relocations we can assume it is local. 1750 1751 // Otherwise don't assume it is local. 1752 return false; 1753 } 1754 1755 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1756 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1757 } 1758 1759 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1760 GlobalDecl GD) const { 1761 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1762 // C++ destructors have a few C++ ABI specific special cases. 1763 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1764 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1765 return; 1766 } 1767 setDLLImportDLLExport(GV, D); 1768 } 1769 1770 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1771 const NamedDecl *D) const { 1772 if (D && D->isExternallyVisible()) { 1773 if (D->hasAttr<DLLImportAttr>()) 1774 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1775 else if ((D->hasAttr<DLLExportAttr>() || 1776 shouldMapVisibilityToDLLExport(D)) && 1777 !GV->isDeclarationForLinker()) 1778 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1779 } 1780 } 1781 1782 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1783 GlobalDecl GD) const { 1784 setDLLImportDLLExport(GV, GD); 1785 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1786 } 1787 1788 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1789 const NamedDecl *D) const { 1790 setDLLImportDLLExport(GV, D); 1791 setGVPropertiesAux(GV, D); 1792 } 1793 1794 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1795 const NamedDecl *D) const { 1796 setGlobalVisibility(GV, D); 1797 setDSOLocal(GV); 1798 GV->setPartition(CodeGenOpts.SymbolPartition); 1799 } 1800 1801 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1802 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1803 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1804 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1805 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1806 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1807 } 1808 1809 llvm::GlobalVariable::ThreadLocalMode 1810 CodeGenModule::GetDefaultLLVMTLSModel() const { 1811 switch (CodeGenOpts.getDefaultTLSModel()) { 1812 case CodeGenOptions::GeneralDynamicTLSModel: 1813 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1814 case CodeGenOptions::LocalDynamicTLSModel: 1815 return llvm::GlobalVariable::LocalDynamicTLSModel; 1816 case CodeGenOptions::InitialExecTLSModel: 1817 return llvm::GlobalVariable::InitialExecTLSModel; 1818 case CodeGenOptions::LocalExecTLSModel: 1819 return llvm::GlobalVariable::LocalExecTLSModel; 1820 } 1821 llvm_unreachable("Invalid TLS model!"); 1822 } 1823 1824 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1825 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1826 1827 llvm::GlobalValue::ThreadLocalMode TLM; 1828 TLM = GetDefaultLLVMTLSModel(); 1829 1830 // Override the TLS model if it is explicitly specified. 1831 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1832 TLM = GetLLVMTLSModel(Attr->getModel()); 1833 } 1834 1835 GV->setThreadLocalMode(TLM); 1836 } 1837 1838 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1839 StringRef Name) { 1840 const TargetInfo &Target = CGM.getTarget(); 1841 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1842 } 1843 1844 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1845 const CPUSpecificAttr *Attr, 1846 unsigned CPUIndex, 1847 raw_ostream &Out) { 1848 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1849 // supported. 1850 if (Attr) 1851 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1852 else if (CGM.getTarget().supportsIFunc()) 1853 Out << ".resolver"; 1854 } 1855 1856 // Returns true if GD is a function decl with internal linkage and 1857 // needs a unique suffix after the mangled name. 1858 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1859 CodeGenModule &CGM) { 1860 const Decl *D = GD.getDecl(); 1861 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1862 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1863 } 1864 1865 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1866 const NamedDecl *ND, 1867 bool OmitMultiVersionMangling = false) { 1868 SmallString<256> Buffer; 1869 llvm::raw_svector_ostream Out(Buffer); 1870 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1871 if (!CGM.getModuleNameHash().empty()) 1872 MC.needsUniqueInternalLinkageNames(); 1873 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1874 if (ShouldMangle) 1875 MC.mangleName(GD.getWithDecl(ND), Out); 1876 else { 1877 IdentifierInfo *II = ND->getIdentifier(); 1878 assert(II && "Attempt to mangle unnamed decl."); 1879 const auto *FD = dyn_cast<FunctionDecl>(ND); 1880 1881 if (FD && 1882 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1883 if (CGM.getLangOpts().RegCall4) 1884 Out << "__regcall4__" << II->getName(); 1885 else 1886 Out << "__regcall3__" << II->getName(); 1887 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1888 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1889 Out << "__device_stub__" << II->getName(); 1890 } else { 1891 Out << II->getName(); 1892 } 1893 } 1894 1895 // Check if the module name hash should be appended for internal linkage 1896 // symbols. This should come before multi-version target suffixes are 1897 // appended. This is to keep the name and module hash suffix of the 1898 // internal linkage function together. The unique suffix should only be 1899 // added when name mangling is done to make sure that the final name can 1900 // be properly demangled. For example, for C functions without prototypes, 1901 // name mangling is not done and the unique suffix should not be appeneded 1902 // then. 1903 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1904 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1905 "Hash computed when not explicitly requested"); 1906 Out << CGM.getModuleNameHash(); 1907 } 1908 1909 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1910 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1911 switch (FD->getMultiVersionKind()) { 1912 case MultiVersionKind::CPUDispatch: 1913 case MultiVersionKind::CPUSpecific: 1914 AppendCPUSpecificCPUDispatchMangling(CGM, 1915 FD->getAttr<CPUSpecificAttr>(), 1916 GD.getMultiVersionIndex(), Out); 1917 break; 1918 case MultiVersionKind::Target: { 1919 auto *Attr = FD->getAttr<TargetAttr>(); 1920 assert(Attr && "Expected TargetAttr to be present " 1921 "for attribute mangling"); 1922 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1923 Info.appendAttributeMangling(Attr, Out); 1924 break; 1925 } 1926 case MultiVersionKind::TargetVersion: { 1927 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1928 assert(Attr && "Expected TargetVersionAttr to be present " 1929 "for attribute mangling"); 1930 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1931 Info.appendAttributeMangling(Attr, Out); 1932 break; 1933 } 1934 case MultiVersionKind::TargetClones: { 1935 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1936 assert(Attr && "Expected TargetClonesAttr to be present " 1937 "for attribute mangling"); 1938 unsigned Index = GD.getMultiVersionIndex(); 1939 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1940 Info.appendAttributeMangling(Attr, Index, Out); 1941 break; 1942 } 1943 case MultiVersionKind::None: 1944 llvm_unreachable("None multiversion type isn't valid here"); 1945 } 1946 } 1947 1948 // Make unique name for device side static file-scope variable for HIP. 1949 if (CGM.getContext().shouldExternalize(ND) && 1950 CGM.getLangOpts().GPURelocatableDeviceCode && 1951 CGM.getLangOpts().CUDAIsDevice) 1952 CGM.printPostfixForExternalizedDecl(Out, ND); 1953 1954 return std::string(Out.str()); 1955 } 1956 1957 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1958 const FunctionDecl *FD, 1959 StringRef &CurName) { 1960 if (!FD->isMultiVersion()) 1961 return; 1962 1963 // Get the name of what this would be without the 'target' attribute. This 1964 // allows us to lookup the version that was emitted when this wasn't a 1965 // multiversion function. 1966 std::string NonTargetName = 1967 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1968 GlobalDecl OtherGD; 1969 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1970 assert(OtherGD.getCanonicalDecl() 1971 .getDecl() 1972 ->getAsFunction() 1973 ->isMultiVersion() && 1974 "Other GD should now be a multiversioned function"); 1975 // OtherFD is the version of this function that was mangled BEFORE 1976 // becoming a MultiVersion function. It potentially needs to be updated. 1977 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1978 .getDecl() 1979 ->getAsFunction() 1980 ->getMostRecentDecl(); 1981 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1982 // This is so that if the initial version was already the 'default' 1983 // version, we don't try to update it. 1984 if (OtherName != NonTargetName) { 1985 // Remove instead of erase, since others may have stored the StringRef 1986 // to this. 1987 const auto ExistingRecord = Manglings.find(NonTargetName); 1988 if (ExistingRecord != std::end(Manglings)) 1989 Manglings.remove(&(*ExistingRecord)); 1990 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1991 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1992 Result.first->first(); 1993 // If this is the current decl is being created, make sure we update the name. 1994 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1995 CurName = OtherNameRef; 1996 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1997 Entry->setName(OtherName); 1998 } 1999 } 2000 } 2001 2002 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 2003 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 2004 2005 // Some ABIs don't have constructor variants. Make sure that base and 2006 // complete constructors get mangled the same. 2007 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 2008 if (!getTarget().getCXXABI().hasConstructorVariants()) { 2009 CXXCtorType OrigCtorType = GD.getCtorType(); 2010 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 2011 if (OrigCtorType == Ctor_Base) 2012 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 2013 } 2014 } 2015 2016 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 2017 // static device variable depends on whether the variable is referenced by 2018 // a host or device host function. Therefore the mangled name cannot be 2019 // cached. 2020 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 2021 auto FoundName = MangledDeclNames.find(CanonicalGD); 2022 if (FoundName != MangledDeclNames.end()) 2023 return FoundName->second; 2024 } 2025 2026 // Keep the first result in the case of a mangling collision. 2027 const auto *ND = cast<NamedDecl>(GD.getDecl()); 2028 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2029 2030 // Ensure either we have different ABIs between host and device compilations, 2031 // says host compilation following MSVC ABI but device compilation follows 2032 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2033 // mangling should be the same after name stubbing. The later checking is 2034 // very important as the device kernel name being mangled in host-compilation 2035 // is used to resolve the device binaries to be executed. Inconsistent naming 2036 // result in undefined behavior. Even though we cannot check that naming 2037 // directly between host- and device-compilations, the host- and 2038 // device-mangling in host compilation could help catching certain ones. 2039 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2040 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2041 (getContext().getAuxTargetInfo() && 2042 (getContext().getAuxTargetInfo()->getCXXABI() != 2043 getContext().getTargetInfo().getCXXABI())) || 2044 getCUDARuntime().getDeviceSideName(ND) == 2045 getMangledNameImpl( 2046 *this, 2047 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2048 ND)); 2049 2050 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2051 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2052 } 2053 2054 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2055 const BlockDecl *BD) { 2056 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2057 const Decl *D = GD.getDecl(); 2058 2059 SmallString<256> Buffer; 2060 llvm::raw_svector_ostream Out(Buffer); 2061 if (!D) 2062 MangleCtx.mangleGlobalBlock(BD, 2063 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2064 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2065 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2066 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2067 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2068 else 2069 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2070 2071 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2072 return Result.first->first(); 2073 } 2074 2075 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2076 auto it = MangledDeclNames.begin(); 2077 while (it != MangledDeclNames.end()) { 2078 if (it->second == Name) 2079 return it->first; 2080 it++; 2081 } 2082 return GlobalDecl(); 2083 } 2084 2085 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2086 return getModule().getNamedValue(Name); 2087 } 2088 2089 /// AddGlobalCtor - Add a function to the list that will be called before 2090 /// main() runs. 2091 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2092 unsigned LexOrder, 2093 llvm::Constant *AssociatedData) { 2094 // FIXME: Type coercion of void()* types. 2095 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2096 } 2097 2098 /// AddGlobalDtor - Add a function to the list that will be called 2099 /// when the module is unloaded. 2100 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2101 bool IsDtorAttrFunc) { 2102 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2103 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2104 DtorsUsingAtExit[Priority].push_back(Dtor); 2105 return; 2106 } 2107 2108 // FIXME: Type coercion of void()* types. 2109 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2110 } 2111 2112 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2113 if (Fns.empty()) return; 2114 2115 const PointerAuthSchema &InitFiniAuthSchema = 2116 getCodeGenOpts().PointerAuth.InitFiniPointers; 2117 2118 // Ctor function type is ptr. 2119 llvm::PointerType *PtrTy = llvm::PointerType::get( 2120 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace()); 2121 2122 // Get the type of a ctor entry, { i32, ptr, ptr }. 2123 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy); 2124 2125 // Construct the constructor and destructor arrays. 2126 ConstantInitBuilder Builder(*this); 2127 auto Ctors = Builder.beginArray(CtorStructTy); 2128 for (const auto &I : Fns) { 2129 auto Ctor = Ctors.beginStruct(CtorStructTy); 2130 Ctor.addInt(Int32Ty, I.Priority); 2131 if (InitFiniAuthSchema) { 2132 llvm::Constant *StorageAddress = 2133 (InitFiniAuthSchema.isAddressDiscriminated() 2134 ? llvm::ConstantExpr::getIntToPtr( 2135 llvm::ConstantInt::get( 2136 IntPtrTy, 2137 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors), 2138 PtrTy) 2139 : nullptr); 2140 llvm::Constant *SignedCtorPtr = getConstantSignedPointer( 2141 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress, 2142 llvm::ConstantInt::get( 2143 SizeTy, InitFiniAuthSchema.getConstantDiscrimination())); 2144 Ctor.add(SignedCtorPtr); 2145 } else { 2146 Ctor.add(I.Initializer); 2147 } 2148 if (I.AssociatedData) 2149 Ctor.add(I.AssociatedData); 2150 else 2151 Ctor.addNullPointer(PtrTy); 2152 Ctor.finishAndAddTo(Ctors); 2153 } 2154 2155 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2156 /*constant*/ false, 2157 llvm::GlobalValue::AppendingLinkage); 2158 2159 // The LTO linker doesn't seem to like it when we set an alignment 2160 // on appending variables. Take it off as a workaround. 2161 List->setAlignment(std::nullopt); 2162 2163 Fns.clear(); 2164 } 2165 2166 llvm::GlobalValue::LinkageTypes 2167 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2168 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2169 2170 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2171 2172 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2173 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2174 2175 return getLLVMLinkageForDeclarator(D, Linkage); 2176 } 2177 2178 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2179 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2180 if (!MDS) return nullptr; 2181 2182 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2183 } 2184 2185 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2186 if (auto *FnType = T->getAs<FunctionProtoType>()) 2187 T = getContext().getFunctionType( 2188 FnType->getReturnType(), FnType->getParamTypes(), 2189 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2190 2191 std::string OutName; 2192 llvm::raw_string_ostream Out(OutName); 2193 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2194 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2195 2196 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2197 Out << ".normalized"; 2198 2199 return llvm::ConstantInt::get(Int32Ty, 2200 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2201 } 2202 2203 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2204 const CGFunctionInfo &Info, 2205 llvm::Function *F, bool IsThunk) { 2206 unsigned CallingConv; 2207 llvm::AttributeList PAL; 2208 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2209 /*AttrOnCallSite=*/false, IsThunk); 2210 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2211 getTarget().getTriple().isWindowsArm64EC()) { 2212 SourceLocation Loc; 2213 if (const Decl *D = GD.getDecl()) 2214 Loc = D->getLocation(); 2215 2216 Error(Loc, "__vectorcall calling convention is not currently supported"); 2217 } 2218 F->setAttributes(PAL); 2219 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2220 } 2221 2222 static void removeImageAccessQualifier(std::string& TyName) { 2223 std::string ReadOnlyQual("__read_only"); 2224 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2225 if (ReadOnlyPos != std::string::npos) 2226 // "+ 1" for the space after access qualifier. 2227 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2228 else { 2229 std::string WriteOnlyQual("__write_only"); 2230 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2231 if (WriteOnlyPos != std::string::npos) 2232 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2233 else { 2234 std::string ReadWriteQual("__read_write"); 2235 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2236 if (ReadWritePos != std::string::npos) 2237 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2238 } 2239 } 2240 } 2241 2242 // Returns the address space id that should be produced to the 2243 // kernel_arg_addr_space metadata. This is always fixed to the ids 2244 // as specified in the SPIR 2.0 specification in order to differentiate 2245 // for example in clGetKernelArgInfo() implementation between the address 2246 // spaces with targets without unique mapping to the OpenCL address spaces 2247 // (basically all single AS CPUs). 2248 static unsigned ArgInfoAddressSpace(LangAS AS) { 2249 switch (AS) { 2250 case LangAS::opencl_global: 2251 return 1; 2252 case LangAS::opencl_constant: 2253 return 2; 2254 case LangAS::opencl_local: 2255 return 3; 2256 case LangAS::opencl_generic: 2257 return 4; // Not in SPIR 2.0 specs. 2258 case LangAS::opencl_global_device: 2259 return 5; 2260 case LangAS::opencl_global_host: 2261 return 6; 2262 default: 2263 return 0; // Assume private. 2264 } 2265 } 2266 2267 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2268 const FunctionDecl *FD, 2269 CodeGenFunction *CGF) { 2270 assert(((FD && CGF) || (!FD && !CGF)) && 2271 "Incorrect use - FD and CGF should either be both null or not!"); 2272 // Create MDNodes that represent the kernel arg metadata. 2273 // Each MDNode is a list in the form of "key", N number of values which is 2274 // the same number of values as their are kernel arguments. 2275 2276 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2277 2278 // MDNode for the kernel argument address space qualifiers. 2279 SmallVector<llvm::Metadata *, 8> addressQuals; 2280 2281 // MDNode for the kernel argument access qualifiers (images only). 2282 SmallVector<llvm::Metadata *, 8> accessQuals; 2283 2284 // MDNode for the kernel argument type names. 2285 SmallVector<llvm::Metadata *, 8> argTypeNames; 2286 2287 // MDNode for the kernel argument base type names. 2288 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2289 2290 // MDNode for the kernel argument type qualifiers. 2291 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2292 2293 // MDNode for the kernel argument names. 2294 SmallVector<llvm::Metadata *, 8> argNames; 2295 2296 if (FD && CGF) 2297 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2298 const ParmVarDecl *parm = FD->getParamDecl(i); 2299 // Get argument name. 2300 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2301 2302 if (!getLangOpts().OpenCL) 2303 continue; 2304 QualType ty = parm->getType(); 2305 std::string typeQuals; 2306 2307 // Get image and pipe access qualifier: 2308 if (ty->isImageType() || ty->isPipeType()) { 2309 const Decl *PDecl = parm; 2310 if (const auto *TD = ty->getAs<TypedefType>()) 2311 PDecl = TD->getDecl(); 2312 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2313 if (A && A->isWriteOnly()) 2314 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2315 else if (A && A->isReadWrite()) 2316 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2317 else 2318 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2319 } else 2320 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2321 2322 auto getTypeSpelling = [&](QualType Ty) { 2323 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2324 2325 if (Ty.isCanonical()) { 2326 StringRef typeNameRef = typeName; 2327 // Turn "unsigned type" to "utype" 2328 if (typeNameRef.consume_front("unsigned ")) 2329 return std::string("u") + typeNameRef.str(); 2330 if (typeNameRef.consume_front("signed ")) 2331 return typeNameRef.str(); 2332 } 2333 2334 return typeName; 2335 }; 2336 2337 if (ty->isPointerType()) { 2338 QualType pointeeTy = ty->getPointeeType(); 2339 2340 // Get address qualifier. 2341 addressQuals.push_back( 2342 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2343 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2344 2345 // Get argument type name. 2346 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2347 std::string baseTypeName = 2348 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2349 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2350 argBaseTypeNames.push_back( 2351 llvm::MDString::get(VMContext, baseTypeName)); 2352 2353 // Get argument type qualifiers: 2354 if (ty.isRestrictQualified()) 2355 typeQuals = "restrict"; 2356 if (pointeeTy.isConstQualified() || 2357 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2358 typeQuals += typeQuals.empty() ? "const" : " const"; 2359 if (pointeeTy.isVolatileQualified()) 2360 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2361 } else { 2362 uint32_t AddrSpc = 0; 2363 bool isPipe = ty->isPipeType(); 2364 if (ty->isImageType() || isPipe) 2365 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2366 2367 addressQuals.push_back( 2368 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2369 2370 // Get argument type name. 2371 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2372 std::string typeName = getTypeSpelling(ty); 2373 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2374 2375 // Remove access qualifiers on images 2376 // (as they are inseparable from type in clang implementation, 2377 // but OpenCL spec provides a special query to get access qualifier 2378 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2379 if (ty->isImageType()) { 2380 removeImageAccessQualifier(typeName); 2381 removeImageAccessQualifier(baseTypeName); 2382 } 2383 2384 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2385 argBaseTypeNames.push_back( 2386 llvm::MDString::get(VMContext, baseTypeName)); 2387 2388 if (isPipe) 2389 typeQuals = "pipe"; 2390 } 2391 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2392 } 2393 2394 if (getLangOpts().OpenCL) { 2395 Fn->setMetadata("kernel_arg_addr_space", 2396 llvm::MDNode::get(VMContext, addressQuals)); 2397 Fn->setMetadata("kernel_arg_access_qual", 2398 llvm::MDNode::get(VMContext, accessQuals)); 2399 Fn->setMetadata("kernel_arg_type", 2400 llvm::MDNode::get(VMContext, argTypeNames)); 2401 Fn->setMetadata("kernel_arg_base_type", 2402 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2403 Fn->setMetadata("kernel_arg_type_qual", 2404 llvm::MDNode::get(VMContext, argTypeQuals)); 2405 } 2406 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2407 getCodeGenOpts().HIPSaveKernelArgName) 2408 Fn->setMetadata("kernel_arg_name", 2409 llvm::MDNode::get(VMContext, argNames)); 2410 } 2411 2412 /// Determines whether the language options require us to model 2413 /// unwind exceptions. We treat -fexceptions as mandating this 2414 /// except under the fragile ObjC ABI with only ObjC exceptions 2415 /// enabled. This means, for example, that C with -fexceptions 2416 /// enables this. 2417 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2418 // If exceptions are completely disabled, obviously this is false. 2419 if (!LangOpts.Exceptions) return false; 2420 2421 // If C++ exceptions are enabled, this is true. 2422 if (LangOpts.CXXExceptions) return true; 2423 2424 // If ObjC exceptions are enabled, this depends on the ABI. 2425 if (LangOpts.ObjCExceptions) { 2426 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2427 } 2428 2429 return true; 2430 } 2431 2432 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2433 const CXXMethodDecl *MD) { 2434 // Check that the type metadata can ever actually be used by a call. 2435 if (!CGM.getCodeGenOpts().LTOUnit || 2436 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2437 return false; 2438 2439 // Only functions whose address can be taken with a member function pointer 2440 // need this sort of type metadata. 2441 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2442 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2443 } 2444 2445 SmallVector<const CXXRecordDecl *, 0> 2446 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2447 llvm::SetVector<const CXXRecordDecl *> MostBases; 2448 2449 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2450 CollectMostBases = [&](const CXXRecordDecl *RD) { 2451 if (RD->getNumBases() == 0) 2452 MostBases.insert(RD); 2453 for (const CXXBaseSpecifier &B : RD->bases()) 2454 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2455 }; 2456 CollectMostBases(RD); 2457 return MostBases.takeVector(); 2458 } 2459 2460 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2461 llvm::Function *F) { 2462 llvm::AttrBuilder B(F->getContext()); 2463 2464 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2465 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2466 2467 if (CodeGenOpts.StackClashProtector) 2468 B.addAttribute("probe-stack", "inline-asm"); 2469 2470 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2471 B.addAttribute("stack-probe-size", 2472 std::to_string(CodeGenOpts.StackProbeSize)); 2473 2474 if (!hasUnwindExceptions(LangOpts)) 2475 B.addAttribute(llvm::Attribute::NoUnwind); 2476 2477 if (D && D->hasAttr<NoStackProtectorAttr>()) 2478 ; // Do nothing. 2479 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2480 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2481 B.addAttribute(llvm::Attribute::StackProtectStrong); 2482 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2483 B.addAttribute(llvm::Attribute::StackProtect); 2484 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2485 B.addAttribute(llvm::Attribute::StackProtectStrong); 2486 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2487 B.addAttribute(llvm::Attribute::StackProtectReq); 2488 2489 if (!D) { 2490 // Non-entry HLSL functions must always be inlined. 2491 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline)) 2492 B.addAttribute(llvm::Attribute::AlwaysInline); 2493 // If we don't have a declaration to control inlining, the function isn't 2494 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2495 // disabled, mark the function as noinline. 2496 else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2497 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2498 B.addAttribute(llvm::Attribute::NoInline); 2499 2500 F->addFnAttrs(B); 2501 return; 2502 } 2503 2504 // Handle SME attributes that apply to function definitions, 2505 // rather than to function prototypes. 2506 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2507 B.addAttribute("aarch64_pstate_sm_body"); 2508 2509 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2510 if (Attr->isNewZA()) 2511 B.addAttribute("aarch64_new_za"); 2512 if (Attr->isNewZT0()) 2513 B.addAttribute("aarch64_new_zt0"); 2514 } 2515 2516 // Track whether we need to add the optnone LLVM attribute, 2517 // starting with the default for this optimization level. 2518 bool ShouldAddOptNone = 2519 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2520 // We can't add optnone in the following cases, it won't pass the verifier. 2521 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2522 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2523 2524 // Non-entry HLSL functions must always be inlined. 2525 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) && 2526 !D->hasAttr<NoInlineAttr>()) { 2527 B.addAttribute(llvm::Attribute::AlwaysInline); 2528 } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2529 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2530 // Add optnone, but do so only if the function isn't always_inline. 2531 B.addAttribute(llvm::Attribute::OptimizeNone); 2532 2533 // OptimizeNone implies noinline; we should not be inlining such functions. 2534 B.addAttribute(llvm::Attribute::NoInline); 2535 2536 // We still need to handle naked functions even though optnone subsumes 2537 // much of their semantics. 2538 if (D->hasAttr<NakedAttr>()) 2539 B.addAttribute(llvm::Attribute::Naked); 2540 2541 // OptimizeNone wins over OptimizeForSize and MinSize. 2542 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2543 F->removeFnAttr(llvm::Attribute::MinSize); 2544 } else if (D->hasAttr<NakedAttr>()) { 2545 // Naked implies noinline: we should not be inlining such functions. 2546 B.addAttribute(llvm::Attribute::Naked); 2547 B.addAttribute(llvm::Attribute::NoInline); 2548 } else if (D->hasAttr<NoDuplicateAttr>()) { 2549 B.addAttribute(llvm::Attribute::NoDuplicate); 2550 } else if (D->hasAttr<NoInlineAttr>() && 2551 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2552 // Add noinline if the function isn't always_inline. 2553 B.addAttribute(llvm::Attribute::NoInline); 2554 } else if (D->hasAttr<AlwaysInlineAttr>() && 2555 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2556 // (noinline wins over always_inline, and we can't specify both in IR) 2557 B.addAttribute(llvm::Attribute::AlwaysInline); 2558 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2559 // If we're not inlining, then force everything that isn't always_inline to 2560 // carry an explicit noinline attribute. 2561 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2562 B.addAttribute(llvm::Attribute::NoInline); 2563 } else { 2564 // Otherwise, propagate the inline hint attribute and potentially use its 2565 // absence to mark things as noinline. 2566 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2567 // Search function and template pattern redeclarations for inline. 2568 auto CheckForInline = [](const FunctionDecl *FD) { 2569 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2570 return Redecl->isInlineSpecified(); 2571 }; 2572 if (any_of(FD->redecls(), CheckRedeclForInline)) 2573 return true; 2574 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2575 if (!Pattern) 2576 return false; 2577 return any_of(Pattern->redecls(), CheckRedeclForInline); 2578 }; 2579 if (CheckForInline(FD)) { 2580 B.addAttribute(llvm::Attribute::InlineHint); 2581 } else if (CodeGenOpts.getInlining() == 2582 CodeGenOptions::OnlyHintInlining && 2583 !FD->isInlined() && 2584 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2585 B.addAttribute(llvm::Attribute::NoInline); 2586 } 2587 } 2588 } 2589 2590 // Add other optimization related attributes if we are optimizing this 2591 // function. 2592 if (!D->hasAttr<OptimizeNoneAttr>()) { 2593 if (D->hasAttr<ColdAttr>()) { 2594 if (!ShouldAddOptNone) 2595 B.addAttribute(llvm::Attribute::OptimizeForSize); 2596 B.addAttribute(llvm::Attribute::Cold); 2597 } 2598 if (D->hasAttr<HotAttr>()) 2599 B.addAttribute(llvm::Attribute::Hot); 2600 if (D->hasAttr<MinSizeAttr>()) 2601 B.addAttribute(llvm::Attribute::MinSize); 2602 } 2603 2604 F->addFnAttrs(B); 2605 2606 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2607 if (alignment) 2608 F->setAlignment(llvm::Align(alignment)); 2609 2610 if (!D->hasAttr<AlignedAttr>()) 2611 if (LangOpts.FunctionAlignment) 2612 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2613 2614 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2615 // reserve a bit for differentiating between virtual and non-virtual member 2616 // functions. If the current target's C++ ABI requires this and this is a 2617 // member function, set its alignment accordingly. 2618 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2619 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2620 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2621 } 2622 2623 // In the cross-dso CFI mode with canonical jump tables, we want !type 2624 // attributes on definitions only. 2625 if (CodeGenOpts.SanitizeCfiCrossDso && 2626 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2627 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2628 // Skip available_externally functions. They won't be codegen'ed in the 2629 // current module anyway. 2630 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2631 CreateFunctionTypeMetadataForIcall(FD, F); 2632 } 2633 } 2634 2635 // Emit type metadata on member functions for member function pointer checks. 2636 // These are only ever necessary on definitions; we're guaranteed that the 2637 // definition will be present in the LTO unit as a result of LTO visibility. 2638 auto *MD = dyn_cast<CXXMethodDecl>(D); 2639 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2640 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2641 llvm::Metadata *Id = 2642 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2643 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2644 F->addTypeMetadata(0, Id); 2645 } 2646 } 2647 } 2648 2649 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2650 const Decl *D = GD.getDecl(); 2651 if (isa_and_nonnull<NamedDecl>(D)) 2652 setGVProperties(GV, GD); 2653 else 2654 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2655 2656 if (D && D->hasAttr<UsedAttr>()) 2657 addUsedOrCompilerUsedGlobal(GV); 2658 2659 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2660 VD && 2661 ((CodeGenOpts.KeepPersistentStorageVariables && 2662 (VD->getStorageDuration() == SD_Static || 2663 VD->getStorageDuration() == SD_Thread)) || 2664 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2665 VD->getType().isConstQualified()))) 2666 addUsedOrCompilerUsedGlobal(GV); 2667 } 2668 2669 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2670 llvm::AttrBuilder &Attrs, 2671 bool SetTargetFeatures) { 2672 // Add target-cpu and target-features attributes to functions. If 2673 // we have a decl for the function and it has a target attribute then 2674 // parse that and add it to the feature set. 2675 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2676 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2677 std::vector<std::string> Features; 2678 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2679 FD = FD ? FD->getMostRecentDecl() : FD; 2680 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2681 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2682 assert((!TD || !TV) && "both target_version and target specified"); 2683 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2684 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2685 bool AddedAttr = false; 2686 if (TD || TV || SD || TC) { 2687 llvm::StringMap<bool> FeatureMap; 2688 getContext().getFunctionFeatureMap(FeatureMap, GD); 2689 2690 // Produce the canonical string for this set of features. 2691 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2692 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2693 2694 // Now add the target-cpu and target-features to the function. 2695 // While we populated the feature map above, we still need to 2696 // get and parse the target attribute so we can get the cpu for 2697 // the function. 2698 if (TD) { 2699 ParsedTargetAttr ParsedAttr = 2700 Target.parseTargetAttr(TD->getFeaturesStr()); 2701 if (!ParsedAttr.CPU.empty() && 2702 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2703 TargetCPU = ParsedAttr.CPU; 2704 TuneCPU = ""; // Clear the tune CPU. 2705 } 2706 if (!ParsedAttr.Tune.empty() && 2707 getTarget().isValidCPUName(ParsedAttr.Tune)) 2708 TuneCPU = ParsedAttr.Tune; 2709 } 2710 2711 if (SD) { 2712 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2713 // favor this processor. 2714 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2715 } 2716 } else { 2717 // Otherwise just add the existing target cpu and target features to the 2718 // function. 2719 Features = getTarget().getTargetOpts().Features; 2720 } 2721 2722 if (!TargetCPU.empty()) { 2723 Attrs.addAttribute("target-cpu", TargetCPU); 2724 AddedAttr = true; 2725 } 2726 if (!TuneCPU.empty()) { 2727 Attrs.addAttribute("tune-cpu", TuneCPU); 2728 AddedAttr = true; 2729 } 2730 if (!Features.empty() && SetTargetFeatures) { 2731 llvm::erase_if(Features, [&](const std::string& F) { 2732 return getTarget().isReadOnlyFeature(F.substr(1)); 2733 }); 2734 llvm::sort(Features); 2735 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2736 AddedAttr = true; 2737 } 2738 2739 return AddedAttr; 2740 } 2741 2742 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2743 llvm::GlobalObject *GO) { 2744 const Decl *D = GD.getDecl(); 2745 SetCommonAttributes(GD, GO); 2746 2747 if (D) { 2748 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2749 if (D->hasAttr<RetainAttr>()) 2750 addUsedGlobal(GV); 2751 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2752 GV->addAttribute("bss-section", SA->getName()); 2753 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2754 GV->addAttribute("data-section", SA->getName()); 2755 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2756 GV->addAttribute("rodata-section", SA->getName()); 2757 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2758 GV->addAttribute("relro-section", SA->getName()); 2759 } 2760 2761 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2762 if (D->hasAttr<RetainAttr>()) 2763 addUsedGlobal(F); 2764 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2765 if (!D->getAttr<SectionAttr>()) 2766 F->setSection(SA->getName()); 2767 2768 llvm::AttrBuilder Attrs(F->getContext()); 2769 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2770 // We know that GetCPUAndFeaturesAttributes will always have the 2771 // newest set, since it has the newest possible FunctionDecl, so the 2772 // new ones should replace the old. 2773 llvm::AttributeMask RemoveAttrs; 2774 RemoveAttrs.addAttribute("target-cpu"); 2775 RemoveAttrs.addAttribute("target-features"); 2776 RemoveAttrs.addAttribute("tune-cpu"); 2777 F->removeFnAttrs(RemoveAttrs); 2778 F->addFnAttrs(Attrs); 2779 } 2780 } 2781 2782 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2783 GO->setSection(CSA->getName()); 2784 else if (const auto *SA = D->getAttr<SectionAttr>()) 2785 GO->setSection(SA->getName()); 2786 } 2787 2788 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2789 } 2790 2791 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2792 llvm::Function *F, 2793 const CGFunctionInfo &FI) { 2794 const Decl *D = GD.getDecl(); 2795 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2796 SetLLVMFunctionAttributesForDefinition(D, F); 2797 2798 F->setLinkage(llvm::Function::InternalLinkage); 2799 2800 setNonAliasAttributes(GD, F); 2801 } 2802 2803 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2804 // Set linkage and visibility in case we never see a definition. 2805 LinkageInfo LV = ND->getLinkageAndVisibility(); 2806 // Don't set internal linkage on declarations. 2807 // "extern_weak" is overloaded in LLVM; we probably should have 2808 // separate linkage types for this. 2809 if (isExternallyVisible(LV.getLinkage()) && 2810 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2811 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2812 } 2813 2814 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2815 llvm::Function *F) { 2816 // Only if we are checking indirect calls. 2817 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2818 return; 2819 2820 // Non-static class methods are handled via vtable or member function pointer 2821 // checks elsewhere. 2822 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2823 return; 2824 2825 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2826 F->addTypeMetadata(0, MD); 2827 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2828 2829 // Emit a hash-based bit set entry for cross-DSO calls. 2830 if (CodeGenOpts.SanitizeCfiCrossDso) 2831 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2832 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2833 } 2834 2835 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2836 llvm::LLVMContext &Ctx = F->getContext(); 2837 llvm::MDBuilder MDB(Ctx); 2838 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2839 llvm::MDNode::get( 2840 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2841 } 2842 2843 static bool allowKCFIIdentifier(StringRef Name) { 2844 // KCFI type identifier constants are only necessary for external assembly 2845 // functions, which means it's safe to skip unusual names. Subset of 2846 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2847 return llvm::all_of(Name, [](const char &C) { 2848 return llvm::isAlnum(C) || C == '_' || C == '.'; 2849 }); 2850 } 2851 2852 void CodeGenModule::finalizeKCFITypes() { 2853 llvm::Module &M = getModule(); 2854 for (auto &F : M.functions()) { 2855 // Remove KCFI type metadata from non-address-taken local functions. 2856 bool AddressTaken = F.hasAddressTaken(); 2857 if (!AddressTaken && F.hasLocalLinkage()) 2858 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2859 2860 // Generate a constant with the expected KCFI type identifier for all 2861 // address-taken function declarations to support annotating indirectly 2862 // called assembly functions. 2863 if (!AddressTaken || !F.isDeclaration()) 2864 continue; 2865 2866 const llvm::ConstantInt *Type; 2867 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2868 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2869 else 2870 continue; 2871 2872 StringRef Name = F.getName(); 2873 if (!allowKCFIIdentifier(Name)) 2874 continue; 2875 2876 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2877 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2878 .str(); 2879 M.appendModuleInlineAsm(Asm); 2880 } 2881 } 2882 2883 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2884 bool IsIncompleteFunction, 2885 bool IsThunk) { 2886 2887 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2888 // If this is an intrinsic function, set the function's attributes 2889 // to the intrinsic's attributes. 2890 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2891 return; 2892 } 2893 2894 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2895 2896 if (!IsIncompleteFunction) 2897 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2898 IsThunk); 2899 2900 // Add the Returned attribute for "this", except for iOS 5 and earlier 2901 // where substantial code, including the libstdc++ dylib, was compiled with 2902 // GCC and does not actually return "this". 2903 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2904 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2905 assert(!F->arg_empty() && 2906 F->arg_begin()->getType() 2907 ->canLosslesslyBitCastTo(F->getReturnType()) && 2908 "unexpected this return"); 2909 F->addParamAttr(0, llvm::Attribute::Returned); 2910 } 2911 2912 // Only a few attributes are set on declarations; these may later be 2913 // overridden by a definition. 2914 2915 setLinkageForGV(F, FD); 2916 setGVProperties(F, FD); 2917 2918 // Setup target-specific attributes. 2919 if (!IsIncompleteFunction && F->isDeclaration()) 2920 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2921 2922 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2923 F->setSection(CSA->getName()); 2924 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2925 F->setSection(SA->getName()); 2926 2927 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2928 if (EA->isError()) 2929 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2930 else if (EA->isWarning()) 2931 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2932 } 2933 2934 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2935 if (FD->isInlineBuiltinDeclaration()) { 2936 const FunctionDecl *FDBody; 2937 bool HasBody = FD->hasBody(FDBody); 2938 (void)HasBody; 2939 assert(HasBody && "Inline builtin declarations should always have an " 2940 "available body!"); 2941 if (shouldEmitFunction(FDBody)) 2942 F->addFnAttr(llvm::Attribute::NoBuiltin); 2943 } 2944 2945 if (FD->isReplaceableGlobalAllocationFunction()) { 2946 // A replaceable global allocation function does not act like a builtin by 2947 // default, only if it is invoked by a new-expression or delete-expression. 2948 F->addFnAttr(llvm::Attribute::NoBuiltin); 2949 } 2950 2951 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2952 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2953 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2954 if (MD->isVirtual()) 2955 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2956 2957 // Don't emit entries for function declarations in the cross-DSO mode. This 2958 // is handled with better precision by the receiving DSO. But if jump tables 2959 // are non-canonical then we need type metadata in order to produce the local 2960 // jump table. 2961 if (!CodeGenOpts.SanitizeCfiCrossDso || 2962 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2963 CreateFunctionTypeMetadataForIcall(FD, F); 2964 2965 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2966 setKCFIType(FD, F); 2967 2968 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2969 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2970 2971 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2972 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2973 2974 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2975 // Annotate the callback behavior as metadata: 2976 // - The callback callee (as argument number). 2977 // - The callback payloads (as argument numbers). 2978 llvm::LLVMContext &Ctx = F->getContext(); 2979 llvm::MDBuilder MDB(Ctx); 2980 2981 // The payload indices are all but the first one in the encoding. The first 2982 // identifies the callback callee. 2983 int CalleeIdx = *CB->encoding_begin(); 2984 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2985 F->addMetadata(llvm::LLVMContext::MD_callback, 2986 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2987 CalleeIdx, PayloadIndices, 2988 /* VarArgsArePassed */ false)})); 2989 } 2990 } 2991 2992 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2993 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2994 "Only globals with definition can force usage."); 2995 LLVMUsed.emplace_back(GV); 2996 } 2997 2998 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2999 assert(!GV->isDeclaration() && 3000 "Only globals with definition can force usage."); 3001 LLVMCompilerUsed.emplace_back(GV); 3002 } 3003 3004 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 3005 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 3006 "Only globals with definition can force usage."); 3007 if (getTriple().isOSBinFormatELF()) 3008 LLVMCompilerUsed.emplace_back(GV); 3009 else 3010 LLVMUsed.emplace_back(GV); 3011 } 3012 3013 static void emitUsed(CodeGenModule &CGM, StringRef Name, 3014 std::vector<llvm::WeakTrackingVH> &List) { 3015 // Don't create llvm.used if there is no need. 3016 if (List.empty()) 3017 return; 3018 3019 // Convert List to what ConstantArray needs. 3020 SmallVector<llvm::Constant*, 8> UsedArray; 3021 UsedArray.resize(List.size()); 3022 for (unsigned i = 0, e = List.size(); i != e; ++i) { 3023 UsedArray[i] = 3024 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 3025 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 3026 } 3027 3028 if (UsedArray.empty()) 3029 return; 3030 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 3031 3032 auto *GV = new llvm::GlobalVariable( 3033 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 3034 llvm::ConstantArray::get(ATy, UsedArray), Name); 3035 3036 GV->setSection("llvm.metadata"); 3037 } 3038 3039 void CodeGenModule::emitLLVMUsed() { 3040 emitUsed(*this, "llvm.used", LLVMUsed); 3041 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 3042 } 3043 3044 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 3045 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 3046 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3047 } 3048 3049 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 3050 llvm::SmallString<32> Opt; 3051 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 3052 if (Opt.empty()) 3053 return; 3054 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3055 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3056 } 3057 3058 void CodeGenModule::AddDependentLib(StringRef Lib) { 3059 auto &C = getLLVMContext(); 3060 if (getTarget().getTriple().isOSBinFormatELF()) { 3061 ELFDependentLibraries.push_back( 3062 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3063 return; 3064 } 3065 3066 llvm::SmallString<24> Opt; 3067 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3068 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3069 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3070 } 3071 3072 /// Add link options implied by the given module, including modules 3073 /// it depends on, using a postorder walk. 3074 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3075 SmallVectorImpl<llvm::MDNode *> &Metadata, 3076 llvm::SmallPtrSet<Module *, 16> &Visited) { 3077 // Import this module's parent. 3078 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3079 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3080 } 3081 3082 // Import this module's dependencies. 3083 for (Module *Import : llvm::reverse(Mod->Imports)) { 3084 if (Visited.insert(Import).second) 3085 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3086 } 3087 3088 // Add linker options to link against the libraries/frameworks 3089 // described by this module. 3090 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3091 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3092 3093 // For modules that use export_as for linking, use that module 3094 // name instead. 3095 if (Mod->UseExportAsModuleLinkName) 3096 return; 3097 3098 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3099 // Link against a framework. Frameworks are currently Darwin only, so we 3100 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3101 if (LL.IsFramework) { 3102 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3103 llvm::MDString::get(Context, LL.Library)}; 3104 3105 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3106 continue; 3107 } 3108 3109 // Link against a library. 3110 if (IsELF) { 3111 llvm::Metadata *Args[2] = { 3112 llvm::MDString::get(Context, "lib"), 3113 llvm::MDString::get(Context, LL.Library), 3114 }; 3115 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3116 } else { 3117 llvm::SmallString<24> Opt; 3118 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3119 auto *OptString = llvm::MDString::get(Context, Opt); 3120 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3121 } 3122 } 3123 } 3124 3125 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3126 assert(Primary->isNamedModuleUnit() && 3127 "We should only emit module initializers for named modules."); 3128 3129 // Emit the initializers in the order that sub-modules appear in the 3130 // source, first Global Module Fragments, if present. 3131 if (auto GMF = Primary->getGlobalModuleFragment()) { 3132 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3133 if (isa<ImportDecl>(D)) 3134 continue; 3135 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3136 EmitTopLevelDecl(D); 3137 } 3138 } 3139 // Second any associated with the module, itself. 3140 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3141 // Skip import decls, the inits for those are called explicitly. 3142 if (isa<ImportDecl>(D)) 3143 continue; 3144 EmitTopLevelDecl(D); 3145 } 3146 // Third any associated with the Privat eMOdule Fragment, if present. 3147 if (auto PMF = Primary->getPrivateModuleFragment()) { 3148 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3149 // Skip import decls, the inits for those are called explicitly. 3150 if (isa<ImportDecl>(D)) 3151 continue; 3152 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3153 EmitTopLevelDecl(D); 3154 } 3155 } 3156 } 3157 3158 void CodeGenModule::EmitModuleLinkOptions() { 3159 // Collect the set of all of the modules we want to visit to emit link 3160 // options, which is essentially the imported modules and all of their 3161 // non-explicit child modules. 3162 llvm::SetVector<clang::Module *> LinkModules; 3163 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3164 SmallVector<clang::Module *, 16> Stack; 3165 3166 // Seed the stack with imported modules. 3167 for (Module *M : ImportedModules) { 3168 // Do not add any link flags when an implementation TU of a module imports 3169 // a header of that same module. 3170 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3171 !getLangOpts().isCompilingModule()) 3172 continue; 3173 if (Visited.insert(M).second) 3174 Stack.push_back(M); 3175 } 3176 3177 // Find all of the modules to import, making a little effort to prune 3178 // non-leaf modules. 3179 while (!Stack.empty()) { 3180 clang::Module *Mod = Stack.pop_back_val(); 3181 3182 bool AnyChildren = false; 3183 3184 // Visit the submodules of this module. 3185 for (const auto &SM : Mod->submodules()) { 3186 // Skip explicit children; they need to be explicitly imported to be 3187 // linked against. 3188 if (SM->IsExplicit) 3189 continue; 3190 3191 if (Visited.insert(SM).second) { 3192 Stack.push_back(SM); 3193 AnyChildren = true; 3194 } 3195 } 3196 3197 // We didn't find any children, so add this module to the list of 3198 // modules to link against. 3199 if (!AnyChildren) { 3200 LinkModules.insert(Mod); 3201 } 3202 } 3203 3204 // Add link options for all of the imported modules in reverse topological 3205 // order. We don't do anything to try to order import link flags with respect 3206 // to linker options inserted by things like #pragma comment(). 3207 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3208 Visited.clear(); 3209 for (Module *M : LinkModules) 3210 if (Visited.insert(M).second) 3211 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3212 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3213 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3214 3215 // Add the linker options metadata flag. 3216 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3217 for (auto *MD : LinkerOptionsMetadata) 3218 NMD->addOperand(MD); 3219 } 3220 3221 void CodeGenModule::EmitDeferred() { 3222 // Emit deferred declare target declarations. 3223 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3224 getOpenMPRuntime().emitDeferredTargetDecls(); 3225 3226 // Emit code for any potentially referenced deferred decls. Since a 3227 // previously unused static decl may become used during the generation of code 3228 // for a static function, iterate until no changes are made. 3229 3230 if (!DeferredVTables.empty()) { 3231 EmitDeferredVTables(); 3232 3233 // Emitting a vtable doesn't directly cause more vtables to 3234 // become deferred, although it can cause functions to be 3235 // emitted that then need those vtables. 3236 assert(DeferredVTables.empty()); 3237 } 3238 3239 // Emit CUDA/HIP static device variables referenced by host code only. 3240 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3241 // needed for further handling. 3242 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3243 llvm::append_range(DeferredDeclsToEmit, 3244 getContext().CUDADeviceVarODRUsedByHost); 3245 3246 // Stop if we're out of both deferred vtables and deferred declarations. 3247 if (DeferredDeclsToEmit.empty()) 3248 return; 3249 3250 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3251 // work, it will not interfere with this. 3252 std::vector<GlobalDecl> CurDeclsToEmit; 3253 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3254 3255 for (GlobalDecl &D : CurDeclsToEmit) { 3256 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3257 // to get GlobalValue with exactly the type we need, not something that 3258 // might had been created for another decl with the same mangled name but 3259 // different type. 3260 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3261 GetAddrOfGlobal(D, ForDefinition)); 3262 3263 // In case of different address spaces, we may still get a cast, even with 3264 // IsForDefinition equal to true. Query mangled names table to get 3265 // GlobalValue. 3266 if (!GV) 3267 GV = GetGlobalValue(getMangledName(D)); 3268 3269 // Make sure GetGlobalValue returned non-null. 3270 assert(GV); 3271 3272 // Check to see if we've already emitted this. This is necessary 3273 // for a couple of reasons: first, decls can end up in the 3274 // deferred-decls queue multiple times, and second, decls can end 3275 // up with definitions in unusual ways (e.g. by an extern inline 3276 // function acquiring a strong function redefinition). Just 3277 // ignore these cases. 3278 if (!GV->isDeclaration()) 3279 continue; 3280 3281 // If this is OpenMP, check if it is legal to emit this global normally. 3282 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3283 continue; 3284 3285 // Otherwise, emit the definition and move on to the next one. 3286 EmitGlobalDefinition(D, GV); 3287 3288 // If we found out that we need to emit more decls, do that recursively. 3289 // This has the advantage that the decls are emitted in a DFS and related 3290 // ones are close together, which is convenient for testing. 3291 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3292 EmitDeferred(); 3293 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3294 } 3295 } 3296 } 3297 3298 void CodeGenModule::EmitVTablesOpportunistically() { 3299 // Try to emit external vtables as available_externally if they have emitted 3300 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3301 // is not allowed to create new references to things that need to be emitted 3302 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3303 3304 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3305 && "Only emit opportunistic vtables with optimizations"); 3306 3307 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3308 assert(getVTables().isVTableExternal(RD) && 3309 "This queue should only contain external vtables"); 3310 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3311 VTables.GenerateClassData(RD); 3312 } 3313 OpportunisticVTables.clear(); 3314 } 3315 3316 void CodeGenModule::EmitGlobalAnnotations() { 3317 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3318 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3319 if (GV) 3320 AddGlobalAnnotations(VD, GV); 3321 } 3322 DeferredAnnotations.clear(); 3323 3324 if (Annotations.empty()) 3325 return; 3326 3327 // Create a new global variable for the ConstantStruct in the Module. 3328 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3329 Annotations[0]->getType(), Annotations.size()), Annotations); 3330 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3331 llvm::GlobalValue::AppendingLinkage, 3332 Array, "llvm.global.annotations"); 3333 gv->setSection(AnnotationSection); 3334 } 3335 3336 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3337 llvm::Constant *&AStr = AnnotationStrings[Str]; 3338 if (AStr) 3339 return AStr; 3340 3341 // Not found yet, create a new global. 3342 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3343 auto *gv = new llvm::GlobalVariable( 3344 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3345 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3346 ConstGlobalsPtrTy->getAddressSpace()); 3347 gv->setSection(AnnotationSection); 3348 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3349 AStr = gv; 3350 return gv; 3351 } 3352 3353 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3354 SourceManager &SM = getContext().getSourceManager(); 3355 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3356 if (PLoc.isValid()) 3357 return EmitAnnotationString(PLoc.getFilename()); 3358 return EmitAnnotationString(SM.getBufferName(Loc)); 3359 } 3360 3361 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3362 SourceManager &SM = getContext().getSourceManager(); 3363 PresumedLoc PLoc = SM.getPresumedLoc(L); 3364 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3365 SM.getExpansionLineNumber(L); 3366 return llvm::ConstantInt::get(Int32Ty, LineNo); 3367 } 3368 3369 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3370 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3371 if (Exprs.empty()) 3372 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3373 3374 llvm::FoldingSetNodeID ID; 3375 for (Expr *E : Exprs) { 3376 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3377 } 3378 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3379 if (Lookup) 3380 return Lookup; 3381 3382 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3383 LLVMArgs.reserve(Exprs.size()); 3384 ConstantEmitter ConstEmiter(*this); 3385 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3386 const auto *CE = cast<clang::ConstantExpr>(E); 3387 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3388 CE->getType()); 3389 }); 3390 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3391 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3392 llvm::GlobalValue::PrivateLinkage, Struct, 3393 ".args"); 3394 GV->setSection(AnnotationSection); 3395 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3396 3397 Lookup = GV; 3398 return GV; 3399 } 3400 3401 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3402 const AnnotateAttr *AA, 3403 SourceLocation L) { 3404 // Get the globals for file name, annotation, and the line number. 3405 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3406 *UnitGV = EmitAnnotationUnit(L), 3407 *LineNoCst = EmitAnnotationLineNo(L), 3408 *Args = EmitAnnotationArgs(AA); 3409 3410 llvm::Constant *GVInGlobalsAS = GV; 3411 if (GV->getAddressSpace() != 3412 getDataLayout().getDefaultGlobalsAddressSpace()) { 3413 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3414 GV, 3415 llvm::PointerType::get( 3416 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3417 } 3418 3419 // Create the ConstantStruct for the global annotation. 3420 llvm::Constant *Fields[] = { 3421 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3422 }; 3423 return llvm::ConstantStruct::getAnon(Fields); 3424 } 3425 3426 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3427 llvm::GlobalValue *GV) { 3428 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3429 // Get the struct elements for these annotations. 3430 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3431 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3432 } 3433 3434 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3435 SourceLocation Loc) const { 3436 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3437 // NoSanitize by function name. 3438 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3439 return true; 3440 // NoSanitize by location. Check "mainfile" prefix. 3441 auto &SM = Context.getSourceManager(); 3442 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3443 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3444 return true; 3445 3446 // Check "src" prefix. 3447 if (Loc.isValid()) 3448 return NoSanitizeL.containsLocation(Kind, Loc); 3449 // If location is unknown, this may be a compiler-generated function. Assume 3450 // it's located in the main file. 3451 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3452 } 3453 3454 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3455 llvm::GlobalVariable *GV, 3456 SourceLocation Loc, QualType Ty, 3457 StringRef Category) const { 3458 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3459 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3460 return true; 3461 auto &SM = Context.getSourceManager(); 3462 if (NoSanitizeL.containsMainFile( 3463 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3464 Category)) 3465 return true; 3466 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3467 return true; 3468 3469 // Check global type. 3470 if (!Ty.isNull()) { 3471 // Drill down the array types: if global variable of a fixed type is 3472 // not sanitized, we also don't instrument arrays of them. 3473 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3474 Ty = AT->getElementType(); 3475 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3476 // Only record types (classes, structs etc.) are ignored. 3477 if (Ty->isRecordType()) { 3478 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3479 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3480 return true; 3481 } 3482 } 3483 return false; 3484 } 3485 3486 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3487 StringRef Category) const { 3488 const auto &XRayFilter = getContext().getXRayFilter(); 3489 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3490 auto Attr = ImbueAttr::NONE; 3491 if (Loc.isValid()) 3492 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3493 if (Attr == ImbueAttr::NONE) 3494 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3495 switch (Attr) { 3496 case ImbueAttr::NONE: 3497 return false; 3498 case ImbueAttr::ALWAYS: 3499 Fn->addFnAttr("function-instrument", "xray-always"); 3500 break; 3501 case ImbueAttr::ALWAYS_ARG1: 3502 Fn->addFnAttr("function-instrument", "xray-always"); 3503 Fn->addFnAttr("xray-log-args", "1"); 3504 break; 3505 case ImbueAttr::NEVER: 3506 Fn->addFnAttr("function-instrument", "xray-never"); 3507 break; 3508 } 3509 return true; 3510 } 3511 3512 ProfileList::ExclusionType 3513 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3514 SourceLocation Loc) const { 3515 const auto &ProfileList = getContext().getProfileList(); 3516 // If the profile list is empty, then instrument everything. 3517 if (ProfileList.isEmpty()) 3518 return ProfileList::Allow; 3519 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3520 // First, check the function name. 3521 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3522 return *V; 3523 // Next, check the source location. 3524 if (Loc.isValid()) 3525 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3526 return *V; 3527 // If location is unknown, this may be a compiler-generated function. Assume 3528 // it's located in the main file. 3529 auto &SM = Context.getSourceManager(); 3530 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3531 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3532 return *V; 3533 return ProfileList.getDefault(Kind); 3534 } 3535 3536 ProfileList::ExclusionType 3537 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3538 SourceLocation Loc) const { 3539 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3540 if (V != ProfileList::Allow) 3541 return V; 3542 3543 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3544 if (NumGroups > 1) { 3545 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3546 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3547 return ProfileList::Skip; 3548 } 3549 return ProfileList::Allow; 3550 } 3551 3552 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3553 // Never defer when EmitAllDecls is specified. 3554 if (LangOpts.EmitAllDecls) 3555 return true; 3556 3557 const auto *VD = dyn_cast<VarDecl>(Global); 3558 if (VD && 3559 ((CodeGenOpts.KeepPersistentStorageVariables && 3560 (VD->getStorageDuration() == SD_Static || 3561 VD->getStorageDuration() == SD_Thread)) || 3562 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3563 VD->getType().isConstQualified()))) 3564 return true; 3565 3566 return getContext().DeclMustBeEmitted(Global); 3567 } 3568 3569 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3570 // In OpenMP 5.0 variables and function may be marked as 3571 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3572 // that they must be emitted on the host/device. To be sure we need to have 3573 // seen a declare target with an explicit mentioning of the function, we know 3574 // we have if the level of the declare target attribute is -1. Note that we 3575 // check somewhere else if we should emit this at all. 3576 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3577 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3578 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3579 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3580 return false; 3581 } 3582 3583 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3584 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3585 // Implicit template instantiations may change linkage if they are later 3586 // explicitly instantiated, so they should not be emitted eagerly. 3587 return false; 3588 // Defer until all versions have been semantically checked. 3589 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3590 return false; 3591 } 3592 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3593 if (Context.getInlineVariableDefinitionKind(VD) == 3594 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3595 // A definition of an inline constexpr static data member may change 3596 // linkage later if it's redeclared outside the class. 3597 return false; 3598 if (CXX20ModuleInits && VD->getOwningModule() && 3599 !VD->getOwningModule()->isModuleMapModule()) { 3600 // For CXX20, module-owned initializers need to be deferred, since it is 3601 // not known at this point if they will be run for the current module or 3602 // as part of the initializer for an imported one. 3603 return false; 3604 } 3605 } 3606 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3607 // codegen for global variables, because they may be marked as threadprivate. 3608 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3609 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3610 !Global->getType().isConstantStorage(getContext(), false, false) && 3611 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3612 return false; 3613 3614 return true; 3615 } 3616 3617 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3618 StringRef Name = getMangledName(GD); 3619 3620 // The UUID descriptor should be pointer aligned. 3621 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3622 3623 // Look for an existing global. 3624 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3625 return ConstantAddress(GV, GV->getValueType(), Alignment); 3626 3627 ConstantEmitter Emitter(*this); 3628 llvm::Constant *Init; 3629 3630 APValue &V = GD->getAsAPValue(); 3631 if (!V.isAbsent()) { 3632 // If possible, emit the APValue version of the initializer. In particular, 3633 // this gets the type of the constant right. 3634 Init = Emitter.emitForInitializer( 3635 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3636 } else { 3637 // As a fallback, directly construct the constant. 3638 // FIXME: This may get padding wrong under esoteric struct layout rules. 3639 // MSVC appears to create a complete type 'struct __s_GUID' that it 3640 // presumably uses to represent these constants. 3641 MSGuidDecl::Parts Parts = GD->getParts(); 3642 llvm::Constant *Fields[4] = { 3643 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3644 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3645 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3646 llvm::ConstantDataArray::getRaw( 3647 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3648 Int8Ty)}; 3649 Init = llvm::ConstantStruct::getAnon(Fields); 3650 } 3651 3652 auto *GV = new llvm::GlobalVariable( 3653 getModule(), Init->getType(), 3654 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3655 if (supportsCOMDAT()) 3656 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3657 setDSOLocal(GV); 3658 3659 if (!V.isAbsent()) { 3660 Emitter.finalize(GV); 3661 return ConstantAddress(GV, GV->getValueType(), Alignment); 3662 } 3663 3664 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3665 return ConstantAddress(GV, Ty, Alignment); 3666 } 3667 3668 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3669 const UnnamedGlobalConstantDecl *GCD) { 3670 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3671 3672 llvm::GlobalVariable **Entry = nullptr; 3673 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3674 if (*Entry) 3675 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3676 3677 ConstantEmitter Emitter(*this); 3678 llvm::Constant *Init; 3679 3680 const APValue &V = GCD->getValue(); 3681 3682 assert(!V.isAbsent()); 3683 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3684 GCD->getType()); 3685 3686 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3687 /*isConstant=*/true, 3688 llvm::GlobalValue::PrivateLinkage, Init, 3689 ".constant"); 3690 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3691 GV->setAlignment(Alignment.getAsAlign()); 3692 3693 Emitter.finalize(GV); 3694 3695 *Entry = GV; 3696 return ConstantAddress(GV, GV->getValueType(), Alignment); 3697 } 3698 3699 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3700 const TemplateParamObjectDecl *TPO) { 3701 StringRef Name = getMangledName(TPO); 3702 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3703 3704 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3705 return ConstantAddress(GV, GV->getValueType(), Alignment); 3706 3707 ConstantEmitter Emitter(*this); 3708 llvm::Constant *Init = Emitter.emitForInitializer( 3709 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3710 3711 if (!Init) { 3712 ErrorUnsupported(TPO, "template parameter object"); 3713 return ConstantAddress::invalid(); 3714 } 3715 3716 llvm::GlobalValue::LinkageTypes Linkage = 3717 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3718 ? llvm::GlobalValue::LinkOnceODRLinkage 3719 : llvm::GlobalValue::InternalLinkage; 3720 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3721 /*isConstant=*/true, Linkage, Init, Name); 3722 setGVProperties(GV, TPO); 3723 if (supportsCOMDAT()) 3724 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3725 Emitter.finalize(GV); 3726 3727 return ConstantAddress(GV, GV->getValueType(), Alignment); 3728 } 3729 3730 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3731 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3732 assert(AA && "No alias?"); 3733 3734 CharUnits Alignment = getContext().getDeclAlign(VD); 3735 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3736 3737 // See if there is already something with the target's name in the module. 3738 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3739 if (Entry) 3740 return ConstantAddress(Entry, DeclTy, Alignment); 3741 3742 llvm::Constant *Aliasee; 3743 if (isa<llvm::FunctionType>(DeclTy)) 3744 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3745 GlobalDecl(cast<FunctionDecl>(VD)), 3746 /*ForVTable=*/false); 3747 else 3748 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3749 nullptr); 3750 3751 auto *F = cast<llvm::GlobalValue>(Aliasee); 3752 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3753 WeakRefReferences.insert(F); 3754 3755 return ConstantAddress(Aliasee, DeclTy, Alignment); 3756 } 3757 3758 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3759 if (!D) 3760 return false; 3761 if (auto *A = D->getAttr<AttrT>()) 3762 return A->isImplicit(); 3763 return D->isImplicit(); 3764 } 3765 3766 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3767 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3768 // We need to emit host-side 'shadows' for all global 3769 // device-side variables because the CUDA runtime needs their 3770 // size and host-side address in order to provide access to 3771 // their device-side incarnations. 3772 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3773 Global->hasAttr<CUDAConstantAttr>() || 3774 Global->hasAttr<CUDASharedAttr>() || 3775 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3776 Global->getType()->isCUDADeviceBuiltinTextureType(); 3777 } 3778 3779 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3780 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3781 3782 // Weak references don't produce any output by themselves. 3783 if (Global->hasAttr<WeakRefAttr>()) 3784 return; 3785 3786 // If this is an alias definition (which otherwise looks like a declaration) 3787 // emit it now. 3788 if (Global->hasAttr<AliasAttr>()) 3789 return EmitAliasDefinition(GD); 3790 3791 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3792 if (Global->hasAttr<IFuncAttr>()) 3793 return emitIFuncDefinition(GD); 3794 3795 // If this is a cpu_dispatch multiversion function, emit the resolver. 3796 if (Global->hasAttr<CPUDispatchAttr>()) 3797 return emitCPUDispatchDefinition(GD); 3798 3799 // If this is CUDA, be selective about which declarations we emit. 3800 // Non-constexpr non-lambda implicit host device functions are not emitted 3801 // unless they are used on device side. 3802 if (LangOpts.CUDA) { 3803 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3804 "Expected Variable or Function"); 3805 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3806 if (!shouldEmitCUDAGlobalVar(VD)) 3807 return; 3808 } else if (LangOpts.CUDAIsDevice) { 3809 const auto *FD = dyn_cast<FunctionDecl>(Global); 3810 if ((!Global->hasAttr<CUDADeviceAttr>() || 3811 (LangOpts.OffloadImplicitHostDeviceTemplates && 3812 hasImplicitAttr<CUDAHostAttr>(FD) && 3813 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3814 !isLambdaCallOperator(FD) && 3815 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3816 !Global->hasAttr<CUDAGlobalAttr>() && 3817 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3818 !Global->hasAttr<CUDAHostAttr>())) 3819 return; 3820 // Device-only functions are the only things we skip. 3821 } else if (!Global->hasAttr<CUDAHostAttr>() && 3822 Global->hasAttr<CUDADeviceAttr>()) 3823 return; 3824 } 3825 3826 if (LangOpts.OpenMP) { 3827 // If this is OpenMP, check if it is legal to emit this global normally. 3828 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3829 return; 3830 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3831 if (MustBeEmitted(Global)) 3832 EmitOMPDeclareReduction(DRD); 3833 return; 3834 } 3835 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3836 if (MustBeEmitted(Global)) 3837 EmitOMPDeclareMapper(DMD); 3838 return; 3839 } 3840 } 3841 3842 // Ignore declarations, they will be emitted on their first use. 3843 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3844 // Update deferred annotations with the latest declaration if the function 3845 // function was already used or defined. 3846 if (FD->hasAttr<AnnotateAttr>()) { 3847 StringRef MangledName = getMangledName(GD); 3848 if (GetGlobalValue(MangledName)) 3849 DeferredAnnotations[MangledName] = FD; 3850 } 3851 3852 // Forward declarations are emitted lazily on first use. 3853 if (!FD->doesThisDeclarationHaveABody()) { 3854 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3855 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3856 return; 3857 3858 StringRef MangledName = getMangledName(GD); 3859 3860 // Compute the function info and LLVM type. 3861 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3862 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3863 3864 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3865 /*DontDefer=*/false); 3866 return; 3867 } 3868 } else { 3869 const auto *VD = cast<VarDecl>(Global); 3870 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3871 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3872 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3873 if (LangOpts.OpenMP) { 3874 // Emit declaration of the must-be-emitted declare target variable. 3875 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3876 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3877 3878 // If this variable has external storage and doesn't require special 3879 // link handling we defer to its canonical definition. 3880 if (VD->hasExternalStorage() && 3881 Res != OMPDeclareTargetDeclAttr::MT_Link) 3882 return; 3883 3884 bool UnifiedMemoryEnabled = 3885 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3886 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3887 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3888 !UnifiedMemoryEnabled) { 3889 (void)GetAddrOfGlobalVar(VD); 3890 } else { 3891 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3892 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3893 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3894 UnifiedMemoryEnabled)) && 3895 "Link clause or to clause with unified memory expected."); 3896 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3897 } 3898 3899 return; 3900 } 3901 } 3902 // If this declaration may have caused an inline variable definition to 3903 // change linkage, make sure that it's emitted. 3904 if (Context.getInlineVariableDefinitionKind(VD) == 3905 ASTContext::InlineVariableDefinitionKind::Strong) 3906 GetAddrOfGlobalVar(VD); 3907 return; 3908 } 3909 } 3910 3911 // Defer code generation to first use when possible, e.g. if this is an inline 3912 // function. If the global must always be emitted, do it eagerly if possible 3913 // to benefit from cache locality. 3914 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3915 // Emit the definition if it can't be deferred. 3916 EmitGlobalDefinition(GD); 3917 addEmittedDeferredDecl(GD); 3918 return; 3919 } 3920 3921 // If we're deferring emission of a C++ variable with an 3922 // initializer, remember the order in which it appeared in the file. 3923 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3924 cast<VarDecl>(Global)->hasInit()) { 3925 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3926 CXXGlobalInits.push_back(nullptr); 3927 } 3928 3929 StringRef MangledName = getMangledName(GD); 3930 if (GetGlobalValue(MangledName) != nullptr) { 3931 // The value has already been used and should therefore be emitted. 3932 addDeferredDeclToEmit(GD); 3933 } else if (MustBeEmitted(Global)) { 3934 // The value must be emitted, but cannot be emitted eagerly. 3935 assert(!MayBeEmittedEagerly(Global)); 3936 addDeferredDeclToEmit(GD); 3937 } else { 3938 // Otherwise, remember that we saw a deferred decl with this name. The 3939 // first use of the mangled name will cause it to move into 3940 // DeferredDeclsToEmit. 3941 DeferredDecls[MangledName] = GD; 3942 } 3943 } 3944 3945 // Check if T is a class type with a destructor that's not dllimport. 3946 static bool HasNonDllImportDtor(QualType T) { 3947 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3948 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3949 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3950 return true; 3951 3952 return false; 3953 } 3954 3955 namespace { 3956 struct FunctionIsDirectlyRecursive 3957 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3958 const StringRef Name; 3959 const Builtin::Context &BI; 3960 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3961 : Name(N), BI(C) {} 3962 3963 bool VisitCallExpr(const CallExpr *E) { 3964 const FunctionDecl *FD = E->getDirectCallee(); 3965 if (!FD) 3966 return false; 3967 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3968 if (Attr && Name == Attr->getLabel()) 3969 return true; 3970 unsigned BuiltinID = FD->getBuiltinID(); 3971 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3972 return false; 3973 StringRef BuiltinName = BI.getName(BuiltinID); 3974 if (BuiltinName.starts_with("__builtin_") && 3975 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3976 return true; 3977 } 3978 return false; 3979 } 3980 3981 bool VisitStmt(const Stmt *S) { 3982 for (const Stmt *Child : S->children()) 3983 if (Child && this->Visit(Child)) 3984 return true; 3985 return false; 3986 } 3987 }; 3988 3989 // Make sure we're not referencing non-imported vars or functions. 3990 struct DLLImportFunctionVisitor 3991 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3992 bool SafeToInline = true; 3993 3994 bool shouldVisitImplicitCode() const { return true; } 3995 3996 bool VisitVarDecl(VarDecl *VD) { 3997 if (VD->getTLSKind()) { 3998 // A thread-local variable cannot be imported. 3999 SafeToInline = false; 4000 return SafeToInline; 4001 } 4002 4003 // A variable definition might imply a destructor call. 4004 if (VD->isThisDeclarationADefinition()) 4005 SafeToInline = !HasNonDllImportDtor(VD->getType()); 4006 4007 return SafeToInline; 4008 } 4009 4010 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 4011 if (const auto *D = E->getTemporary()->getDestructor()) 4012 SafeToInline = D->hasAttr<DLLImportAttr>(); 4013 return SafeToInline; 4014 } 4015 4016 bool VisitDeclRefExpr(DeclRefExpr *E) { 4017 ValueDecl *VD = E->getDecl(); 4018 if (isa<FunctionDecl>(VD)) 4019 SafeToInline = VD->hasAttr<DLLImportAttr>(); 4020 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 4021 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 4022 return SafeToInline; 4023 } 4024 4025 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 4026 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 4027 return SafeToInline; 4028 } 4029 4030 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 4031 CXXMethodDecl *M = E->getMethodDecl(); 4032 if (!M) { 4033 // Call through a pointer to member function. This is safe to inline. 4034 SafeToInline = true; 4035 } else { 4036 SafeToInline = M->hasAttr<DLLImportAttr>(); 4037 } 4038 return SafeToInline; 4039 } 4040 4041 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 4042 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 4043 return SafeToInline; 4044 } 4045 4046 bool VisitCXXNewExpr(CXXNewExpr *E) { 4047 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 4048 return SafeToInline; 4049 } 4050 }; 4051 } 4052 4053 // isTriviallyRecursive - Check if this function calls another 4054 // decl that, because of the asm attribute or the other decl being a builtin, 4055 // ends up pointing to itself. 4056 bool 4057 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4058 StringRef Name; 4059 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4060 // asm labels are a special kind of mangling we have to support. 4061 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4062 if (!Attr) 4063 return false; 4064 Name = Attr->getLabel(); 4065 } else { 4066 Name = FD->getName(); 4067 } 4068 4069 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4070 const Stmt *Body = FD->getBody(); 4071 return Body ? Walker.Visit(Body) : false; 4072 } 4073 4074 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4075 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4076 return true; 4077 4078 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4079 // Inline builtins declaration must be emitted. They often are fortified 4080 // functions. 4081 if (F->isInlineBuiltinDeclaration()) 4082 return true; 4083 4084 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4085 return false; 4086 4087 // We don't import function bodies from other named module units since that 4088 // behavior may break ABI compatibility of the current unit. 4089 if (const Module *M = F->getOwningModule(); 4090 M && M->getTopLevelModule()->isNamedModule() && 4091 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4092 // There are practices to mark template member function as always-inline 4093 // and mark the template as extern explicit instantiation but not give 4094 // the definition for member function. So we have to emit the function 4095 // from explicitly instantiation with always-inline. 4096 // 4097 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4098 // 4099 // TODO: Maybe it is better to give it a warning if we call a non-inline 4100 // function from other module units which is marked as always-inline. 4101 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4102 return false; 4103 } 4104 } 4105 4106 if (F->hasAttr<NoInlineAttr>()) 4107 return false; 4108 4109 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4110 // Check whether it would be safe to inline this dllimport function. 4111 DLLImportFunctionVisitor Visitor; 4112 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4113 if (!Visitor.SafeToInline) 4114 return false; 4115 4116 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4117 // Implicit destructor invocations aren't captured in the AST, so the 4118 // check above can't see them. Check for them manually here. 4119 for (const Decl *Member : Dtor->getParent()->decls()) 4120 if (isa<FieldDecl>(Member)) 4121 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4122 return false; 4123 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4124 if (HasNonDllImportDtor(B.getType())) 4125 return false; 4126 } 4127 } 4128 4129 // PR9614. Avoid cases where the source code is lying to us. An available 4130 // externally function should have an equivalent function somewhere else, 4131 // but a function that calls itself through asm label/`__builtin_` trickery is 4132 // clearly not equivalent to the real implementation. 4133 // This happens in glibc's btowc and in some configure checks. 4134 return !isTriviallyRecursive(F); 4135 } 4136 4137 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4138 return CodeGenOpts.OptimizationLevel > 0; 4139 } 4140 4141 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4142 llvm::GlobalValue *GV) { 4143 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4144 4145 if (FD->isCPUSpecificMultiVersion()) { 4146 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4147 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4148 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4149 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4150 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4151 // AArch64 favors the default target version over the clone if any. 4152 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4153 TC->isFirstOfVersion(I)) 4154 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4155 // Ensure that the resolver function is also emitted. 4156 GetOrCreateMultiVersionResolver(GD); 4157 } else 4158 EmitGlobalFunctionDefinition(GD, GV); 4159 4160 // Defer the resolver emission until we can reason whether the TU 4161 // contains a default target version implementation. 4162 if (FD->isTargetVersionMultiVersion()) 4163 AddDeferredMultiVersionResolverToEmit(GD); 4164 } 4165 4166 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4167 const auto *D = cast<ValueDecl>(GD.getDecl()); 4168 4169 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4170 Context.getSourceManager(), 4171 "Generating code for declaration"); 4172 4173 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4174 // At -O0, don't generate IR for functions with available_externally 4175 // linkage. 4176 if (!shouldEmitFunction(GD)) 4177 return; 4178 4179 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4180 std::string Name; 4181 llvm::raw_string_ostream OS(Name); 4182 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4183 /*Qualified=*/true); 4184 return Name; 4185 }); 4186 4187 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4188 // Make sure to emit the definition(s) before we emit the thunks. 4189 // This is necessary for the generation of certain thunks. 4190 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4191 ABI->emitCXXStructor(GD); 4192 else if (FD->isMultiVersion()) 4193 EmitMultiVersionFunctionDefinition(GD, GV); 4194 else 4195 EmitGlobalFunctionDefinition(GD, GV); 4196 4197 if (Method->isVirtual()) 4198 getVTables().EmitThunks(GD); 4199 4200 return; 4201 } 4202 4203 if (FD->isMultiVersion()) 4204 return EmitMultiVersionFunctionDefinition(GD, GV); 4205 return EmitGlobalFunctionDefinition(GD, GV); 4206 } 4207 4208 if (const auto *VD = dyn_cast<VarDecl>(D)) 4209 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4210 4211 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4212 } 4213 4214 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4215 llvm::Function *NewFn); 4216 4217 static unsigned 4218 TargetMVPriority(const TargetInfo &TI, 4219 const CodeGenFunction::MultiVersionResolverOption &RO) { 4220 unsigned Priority = 0; 4221 unsigned NumFeatures = 0; 4222 for (StringRef Feat : RO.Conditions.Features) { 4223 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4224 NumFeatures++; 4225 } 4226 4227 if (!RO.Conditions.Architecture.empty()) 4228 Priority = std::max( 4229 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4230 4231 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4232 4233 return Priority; 4234 } 4235 4236 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4237 // TU can forward declare the function without causing problems. Particularly 4238 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4239 // work with internal linkage functions, so that the same function name can be 4240 // used with internal linkage in multiple TUs. 4241 static llvm::GlobalValue::LinkageTypes 4242 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) { 4243 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4244 if (FD->getFormalLinkage() == Linkage::Internal) 4245 return llvm::GlobalValue::InternalLinkage; 4246 return llvm::GlobalValue::WeakODRLinkage; 4247 } 4248 4249 void CodeGenModule::emitMultiVersionFunctions() { 4250 std::vector<GlobalDecl> MVFuncsToEmit; 4251 MultiVersionFuncs.swap(MVFuncsToEmit); 4252 for (GlobalDecl GD : MVFuncsToEmit) { 4253 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4254 assert(FD && "Expected a FunctionDecl"); 4255 4256 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4257 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4258 StringRef MangledName = getMangledName(CurGD); 4259 llvm::Constant *Func = GetGlobalValue(MangledName); 4260 if (!Func) { 4261 if (Decl->isDefined()) { 4262 EmitGlobalFunctionDefinition(CurGD, nullptr); 4263 Func = GetGlobalValue(MangledName); 4264 } else { 4265 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4266 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4267 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4268 /*DontDefer=*/false, ForDefinition); 4269 } 4270 assert(Func && "This should have just been created"); 4271 } 4272 return cast<llvm::Function>(Func); 4273 }; 4274 4275 // For AArch64, a resolver is only emitted if a function marked with 4276 // target_version("default")) or target_clones() is present and defined 4277 // in this TU. For other architectures it is always emitted. 4278 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4279 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4280 4281 getContext().forEachMultiversionedFunctionVersion( 4282 FD, [&](const FunctionDecl *CurFD) { 4283 llvm::SmallVector<StringRef, 8> Feats; 4284 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4285 4286 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4287 TA->getAddedFeatures(Feats); 4288 llvm::Function *Func = createFunction(CurFD); 4289 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4290 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4291 if (TVA->isDefaultVersion() && IsDefined) 4292 ShouldEmitResolver = true; 4293 llvm::Function *Func = createFunction(CurFD); 4294 if (getTarget().getTriple().isRISCV()) { 4295 Feats.push_back(TVA->getName()); 4296 } else { 4297 assert(getTarget().getTriple().isAArch64()); 4298 TVA->getFeatures(Feats); 4299 } 4300 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4301 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4302 if (IsDefined) 4303 ShouldEmitResolver = true; 4304 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4305 if (!TC->isFirstOfVersion(I)) 4306 continue; 4307 4308 llvm::Function *Func = createFunction(CurFD, I); 4309 StringRef Architecture; 4310 Feats.clear(); 4311 if (getTarget().getTriple().isAArch64()) 4312 TC->getFeatures(Feats, I); 4313 else if (getTarget().getTriple().isRISCV()) { 4314 StringRef Version = TC->getFeatureStr(I); 4315 Feats.push_back(Version); 4316 } else { 4317 StringRef Version = TC->getFeatureStr(I); 4318 if (Version.starts_with("arch=")) 4319 Architecture = Version.drop_front(sizeof("arch=") - 1); 4320 else if (Version != "default") 4321 Feats.push_back(Version); 4322 } 4323 Options.emplace_back(Func, Architecture, Feats); 4324 } 4325 } else 4326 llvm_unreachable("unexpected MultiVersionKind"); 4327 }); 4328 4329 if (!ShouldEmitResolver) 4330 continue; 4331 4332 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4333 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4334 ResolverConstant = IFunc->getResolver(); 4335 if (FD->isTargetClonesMultiVersion() && 4336 !getTarget().getTriple().isAArch64()) { 4337 std::string MangledName = getMangledNameImpl( 4338 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4339 if (!GetGlobalValue(MangledName + ".ifunc")) { 4340 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4341 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4342 // In prior versions of Clang, the mangling for ifuncs incorrectly 4343 // included an .ifunc suffix. This alias is generated for backward 4344 // compatibility. It is deprecated, and may be removed in the future. 4345 auto *Alias = llvm::GlobalAlias::create( 4346 DeclTy, 0, getMultiversionLinkage(*this, GD), 4347 MangledName + ".ifunc", IFunc, &getModule()); 4348 SetCommonAttributes(FD, Alias); 4349 } 4350 } 4351 } 4352 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4353 4354 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4355 4356 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4357 ResolverFunc->setComdat( 4358 getModule().getOrInsertComdat(ResolverFunc->getName())); 4359 4360 const TargetInfo &TI = getTarget(); 4361 llvm::stable_sort( 4362 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4363 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4364 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4365 }); 4366 CodeGenFunction CGF(*this); 4367 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4368 } 4369 4370 // Ensure that any additions to the deferred decls list caused by emitting a 4371 // variant are emitted. This can happen when the variant itself is inline and 4372 // calls a function without linkage. 4373 if (!MVFuncsToEmit.empty()) 4374 EmitDeferred(); 4375 4376 // Ensure that any additions to the multiversion funcs list from either the 4377 // deferred decls or the multiversion functions themselves are emitted. 4378 if (!MultiVersionFuncs.empty()) 4379 emitMultiVersionFunctions(); 4380 } 4381 4382 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4383 llvm::Constant *New) { 4384 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4385 New->takeName(Old); 4386 Old->replaceAllUsesWith(New); 4387 Old->eraseFromParent(); 4388 } 4389 4390 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4391 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4392 assert(FD && "Not a FunctionDecl?"); 4393 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4394 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4395 assert(DD && "Not a cpu_dispatch Function?"); 4396 4397 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4398 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4399 4400 StringRef ResolverName = getMangledName(GD); 4401 UpdateMultiVersionNames(GD, FD, ResolverName); 4402 4403 llvm::Type *ResolverType; 4404 GlobalDecl ResolverGD; 4405 if (getTarget().supportsIFunc()) { 4406 ResolverType = llvm::FunctionType::get( 4407 llvm::PointerType::get(DeclTy, 4408 getTypes().getTargetAddressSpace(FD->getType())), 4409 false); 4410 } 4411 else { 4412 ResolverType = DeclTy; 4413 ResolverGD = GD; 4414 } 4415 4416 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4417 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4418 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4419 if (supportsCOMDAT()) 4420 ResolverFunc->setComdat( 4421 getModule().getOrInsertComdat(ResolverFunc->getName())); 4422 4423 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4424 const TargetInfo &Target = getTarget(); 4425 unsigned Index = 0; 4426 for (const IdentifierInfo *II : DD->cpus()) { 4427 // Get the name of the target function so we can look it up/create it. 4428 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4429 getCPUSpecificMangling(*this, II->getName()); 4430 4431 llvm::Constant *Func = GetGlobalValue(MangledName); 4432 4433 if (!Func) { 4434 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4435 if (ExistingDecl.getDecl() && 4436 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4437 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4438 Func = GetGlobalValue(MangledName); 4439 } else { 4440 if (!ExistingDecl.getDecl()) 4441 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4442 4443 Func = GetOrCreateLLVMFunction( 4444 MangledName, DeclTy, ExistingDecl, 4445 /*ForVTable=*/false, /*DontDefer=*/true, 4446 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4447 } 4448 } 4449 4450 llvm::SmallVector<StringRef, 32> Features; 4451 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4452 llvm::transform(Features, Features.begin(), 4453 [](StringRef Str) { return Str.substr(1); }); 4454 llvm::erase_if(Features, [&Target](StringRef Feat) { 4455 return !Target.validateCpuSupports(Feat); 4456 }); 4457 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4458 ++Index; 4459 } 4460 4461 llvm::stable_sort( 4462 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4463 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4464 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4465 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4466 }); 4467 4468 // If the list contains multiple 'default' versions, such as when it contains 4469 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4470 // always run on at least a 'pentium'). We do this by deleting the 'least 4471 // advanced' (read, lowest mangling letter). 4472 while (Options.size() > 1 && 4473 llvm::all_of(llvm::X86::getCpuSupportsMask( 4474 (Options.end() - 2)->Conditions.Features), 4475 [](auto X) { return X == 0; })) { 4476 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4477 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4478 if (LHSName.compare(RHSName) < 0) 4479 Options.erase(Options.end() - 2); 4480 else 4481 Options.erase(Options.end() - 1); 4482 } 4483 4484 CodeGenFunction CGF(*this); 4485 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4486 4487 if (getTarget().supportsIFunc()) { 4488 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4489 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4490 unsigned AS = IFunc->getType()->getPointerAddressSpace(); 4491 4492 // Fix up function declarations that were created for cpu_specific before 4493 // cpu_dispatch was known 4494 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4495 auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "", 4496 ResolverFunc, &getModule()); 4497 replaceDeclarationWith(IFunc, GI); 4498 IFunc = GI; 4499 } 4500 4501 std::string AliasName = getMangledNameImpl( 4502 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4503 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4504 if (!AliasFunc) { 4505 auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName, 4506 IFunc, &getModule()); 4507 SetCommonAttributes(GD, GA); 4508 } 4509 } 4510 } 4511 4512 /// Adds a declaration to the list of multi version functions if not present. 4513 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4514 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4515 assert(FD && "Not a FunctionDecl?"); 4516 4517 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4518 std::string MangledName = 4519 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4520 if (!DeferredResolversToEmit.insert(MangledName).second) 4521 return; 4522 } 4523 MultiVersionFuncs.push_back(GD); 4524 } 4525 4526 /// If a dispatcher for the specified mangled name is not in the module, create 4527 /// and return it. The dispatcher is either an llvm Function with the specified 4528 /// type, or a global ifunc. 4529 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4530 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4531 assert(FD && "Not a FunctionDecl?"); 4532 4533 std::string MangledName = 4534 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4535 4536 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4537 // a separate resolver). 4538 std::string ResolverName = MangledName; 4539 if (getTarget().supportsIFunc()) { 4540 switch (FD->getMultiVersionKind()) { 4541 case MultiVersionKind::None: 4542 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4543 case MultiVersionKind::Target: 4544 case MultiVersionKind::CPUSpecific: 4545 case MultiVersionKind::CPUDispatch: 4546 ResolverName += ".ifunc"; 4547 break; 4548 case MultiVersionKind::TargetClones: 4549 case MultiVersionKind::TargetVersion: 4550 break; 4551 } 4552 } else if (FD->isTargetMultiVersion()) { 4553 ResolverName += ".resolver"; 4554 } 4555 4556 // If the resolver has already been created, just return it. This lookup may 4557 // yield a function declaration instead of a resolver on AArch64. That is 4558 // because we didn't know whether a resolver will be generated when we first 4559 // encountered a use of the symbol named after this resolver. Therefore, 4560 // targets which support ifuncs should not return here unless we actually 4561 // found an ifunc. 4562 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4563 if (ResolverGV && 4564 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4565 return ResolverGV; 4566 4567 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4568 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4569 4570 // The resolver needs to be created. For target and target_clones, defer 4571 // creation until the end of the TU. 4572 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4573 AddDeferredMultiVersionResolverToEmit(GD); 4574 4575 // For cpu_specific, don't create an ifunc yet because we don't know if the 4576 // cpu_dispatch will be emitted in this translation unit. 4577 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4578 unsigned AS = getTypes().getTargetAddressSpace(FD->getType()); 4579 llvm::Type *ResolverType = 4580 llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false); 4581 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4582 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4583 /*ForVTable=*/false); 4584 llvm::GlobalIFunc *GIF = 4585 llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD), 4586 "", Resolver, &getModule()); 4587 GIF->setName(ResolverName); 4588 SetCommonAttributes(FD, GIF); 4589 if (ResolverGV) 4590 replaceDeclarationWith(ResolverGV, GIF); 4591 return GIF; 4592 } 4593 4594 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4595 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4596 assert(isa<llvm::GlobalValue>(Resolver) && 4597 "Resolver should be created for the first time"); 4598 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4599 if (ResolverGV) 4600 replaceDeclarationWith(ResolverGV, Resolver); 4601 return Resolver; 4602 } 4603 4604 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4605 const llvm::GlobalValue *GV) const { 4606 auto SC = GV->getDLLStorageClass(); 4607 if (SC == llvm::GlobalValue::DefaultStorageClass) 4608 return false; 4609 const Decl *MRD = D->getMostRecentDecl(); 4610 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4611 !MRD->hasAttr<DLLImportAttr>()) || 4612 (SC == llvm::GlobalValue::DLLExportStorageClass && 4613 !MRD->hasAttr<DLLExportAttr>())) && 4614 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4615 } 4616 4617 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4618 /// module, create and return an llvm Function with the specified type. If there 4619 /// is something in the module with the specified name, return it potentially 4620 /// bitcasted to the right type. 4621 /// 4622 /// If D is non-null, it specifies a decl that correspond to this. This is used 4623 /// to set the attributes on the function when it is first created. 4624 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4625 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4626 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4627 ForDefinition_t IsForDefinition) { 4628 const Decl *D = GD.getDecl(); 4629 4630 std::string NameWithoutMultiVersionMangling; 4631 // Any attempts to use a MultiVersion function should result in retrieving 4632 // the iFunc instead. Name Mangling will handle the rest of the changes. 4633 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4634 // For the device mark the function as one that should be emitted. 4635 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4636 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4637 !DontDefer && !IsForDefinition) { 4638 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4639 GlobalDecl GDDef; 4640 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4641 GDDef = GlobalDecl(CD, GD.getCtorType()); 4642 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4643 GDDef = GlobalDecl(DD, GD.getDtorType()); 4644 else 4645 GDDef = GlobalDecl(FDDef); 4646 EmitGlobal(GDDef); 4647 } 4648 } 4649 4650 if (FD->isMultiVersion()) { 4651 UpdateMultiVersionNames(GD, FD, MangledName); 4652 if (!IsForDefinition) { 4653 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4654 // function is used. Instead we defer the emission until we see a 4655 // default definition. In the meantime we just reference the symbol 4656 // without FMV mangling (it may or may not be replaced later). 4657 if (getTarget().getTriple().isAArch64()) { 4658 AddDeferredMultiVersionResolverToEmit(GD); 4659 NameWithoutMultiVersionMangling = getMangledNameImpl( 4660 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4661 } else 4662 return GetOrCreateMultiVersionResolver(GD); 4663 } 4664 } 4665 } 4666 4667 if (!NameWithoutMultiVersionMangling.empty()) 4668 MangledName = NameWithoutMultiVersionMangling; 4669 4670 // Lookup the entry, lazily creating it if necessary. 4671 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4672 if (Entry) { 4673 if (WeakRefReferences.erase(Entry)) { 4674 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4675 if (FD && !FD->hasAttr<WeakAttr>()) 4676 Entry->setLinkage(llvm::Function::ExternalLinkage); 4677 } 4678 4679 // Handle dropped DLL attributes. 4680 if (D && shouldDropDLLAttribute(D, Entry)) { 4681 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4682 setDSOLocal(Entry); 4683 } 4684 4685 // If there are two attempts to define the same mangled name, issue an 4686 // error. 4687 if (IsForDefinition && !Entry->isDeclaration()) { 4688 GlobalDecl OtherGD; 4689 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4690 // to make sure that we issue an error only once. 4691 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4692 (GD.getCanonicalDecl().getDecl() != 4693 OtherGD.getCanonicalDecl().getDecl()) && 4694 DiagnosedConflictingDefinitions.insert(GD).second) { 4695 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4696 << MangledName; 4697 getDiags().Report(OtherGD.getDecl()->getLocation(), 4698 diag::note_previous_definition); 4699 } 4700 } 4701 4702 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4703 (Entry->getValueType() == Ty)) { 4704 return Entry; 4705 } 4706 4707 // Make sure the result is of the correct type. 4708 // (If function is requested for a definition, we always need to create a new 4709 // function, not just return a bitcast.) 4710 if (!IsForDefinition) 4711 return Entry; 4712 } 4713 4714 // This function doesn't have a complete type (for example, the return 4715 // type is an incomplete struct). Use a fake type instead, and make 4716 // sure not to try to set attributes. 4717 bool IsIncompleteFunction = false; 4718 4719 llvm::FunctionType *FTy; 4720 if (isa<llvm::FunctionType>(Ty)) { 4721 FTy = cast<llvm::FunctionType>(Ty); 4722 } else { 4723 FTy = llvm::FunctionType::get(VoidTy, false); 4724 IsIncompleteFunction = true; 4725 } 4726 4727 llvm::Function *F = 4728 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4729 Entry ? StringRef() : MangledName, &getModule()); 4730 4731 // Store the declaration associated with this function so it is potentially 4732 // updated by further declarations or definitions and emitted at the end. 4733 if (D && D->hasAttr<AnnotateAttr>()) 4734 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4735 4736 // If we already created a function with the same mangled name (but different 4737 // type) before, take its name and add it to the list of functions to be 4738 // replaced with F at the end of CodeGen. 4739 // 4740 // This happens if there is a prototype for a function (e.g. "int f()") and 4741 // then a definition of a different type (e.g. "int f(int x)"). 4742 if (Entry) { 4743 F->takeName(Entry); 4744 4745 // This might be an implementation of a function without a prototype, in 4746 // which case, try to do special replacement of calls which match the new 4747 // prototype. The really key thing here is that we also potentially drop 4748 // arguments from the call site so as to make a direct call, which makes the 4749 // inliner happier and suppresses a number of optimizer warnings (!) about 4750 // dropping arguments. 4751 if (!Entry->use_empty()) { 4752 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4753 Entry->removeDeadConstantUsers(); 4754 } 4755 4756 addGlobalValReplacement(Entry, F); 4757 } 4758 4759 assert(F->getName() == MangledName && "name was uniqued!"); 4760 if (D) 4761 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4762 if (ExtraAttrs.hasFnAttrs()) { 4763 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4764 F->addFnAttrs(B); 4765 } 4766 4767 if (!DontDefer) { 4768 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4769 // each other bottoming out with the base dtor. Therefore we emit non-base 4770 // dtors on usage, even if there is no dtor definition in the TU. 4771 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4772 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4773 GD.getDtorType())) 4774 addDeferredDeclToEmit(GD); 4775 4776 // This is the first use or definition of a mangled name. If there is a 4777 // deferred decl with this name, remember that we need to emit it at the end 4778 // of the file. 4779 auto DDI = DeferredDecls.find(MangledName); 4780 if (DDI != DeferredDecls.end()) { 4781 // Move the potentially referenced deferred decl to the 4782 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4783 // don't need it anymore). 4784 addDeferredDeclToEmit(DDI->second); 4785 DeferredDecls.erase(DDI); 4786 4787 // Otherwise, there are cases we have to worry about where we're 4788 // using a declaration for which we must emit a definition but where 4789 // we might not find a top-level definition: 4790 // - member functions defined inline in their classes 4791 // - friend functions defined inline in some class 4792 // - special member functions with implicit definitions 4793 // If we ever change our AST traversal to walk into class methods, 4794 // this will be unnecessary. 4795 // 4796 // We also don't emit a definition for a function if it's going to be an 4797 // entry in a vtable, unless it's already marked as used. 4798 } else if (getLangOpts().CPlusPlus && D) { 4799 // Look for a declaration that's lexically in a record. 4800 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4801 FD = FD->getPreviousDecl()) { 4802 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4803 if (FD->doesThisDeclarationHaveABody()) { 4804 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4805 break; 4806 } 4807 } 4808 } 4809 } 4810 } 4811 4812 // Make sure the result is of the requested type. 4813 if (!IsIncompleteFunction) { 4814 assert(F->getFunctionType() == Ty); 4815 return F; 4816 } 4817 4818 return F; 4819 } 4820 4821 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4822 /// non-null, then this function will use the specified type if it has to 4823 /// create it (this occurs when we see a definition of the function). 4824 llvm::Constant * 4825 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4826 bool DontDefer, 4827 ForDefinition_t IsForDefinition) { 4828 // If there was no specific requested type, just convert it now. 4829 if (!Ty) { 4830 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4831 Ty = getTypes().ConvertType(FD->getType()); 4832 } 4833 4834 // Devirtualized destructor calls may come through here instead of via 4835 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4836 // of the complete destructor when necessary. 4837 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4838 if (getTarget().getCXXABI().isMicrosoft() && 4839 GD.getDtorType() == Dtor_Complete && 4840 DD->getParent()->getNumVBases() == 0) 4841 GD = GlobalDecl(DD, Dtor_Base); 4842 } 4843 4844 StringRef MangledName = getMangledName(GD); 4845 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4846 /*IsThunk=*/false, llvm::AttributeList(), 4847 IsForDefinition); 4848 // Returns kernel handle for HIP kernel stub function. 4849 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4850 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4851 auto *Handle = getCUDARuntime().getKernelHandle( 4852 cast<llvm::Function>(F->stripPointerCasts()), GD); 4853 if (IsForDefinition) 4854 return F; 4855 return Handle; 4856 } 4857 return F; 4858 } 4859 4860 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4861 llvm::GlobalValue *F = 4862 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4863 4864 return llvm::NoCFIValue::get(F); 4865 } 4866 4867 static const FunctionDecl * 4868 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4869 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4870 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4871 4872 IdentifierInfo &CII = C.Idents.get(Name); 4873 for (const auto *Result : DC->lookup(&CII)) 4874 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4875 return FD; 4876 4877 if (!C.getLangOpts().CPlusPlus) 4878 return nullptr; 4879 4880 // Demangle the premangled name from getTerminateFn() 4881 IdentifierInfo &CXXII = 4882 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4883 ? C.Idents.get("terminate") 4884 : C.Idents.get(Name); 4885 4886 for (const auto &N : {"__cxxabiv1", "std"}) { 4887 IdentifierInfo &NS = C.Idents.get(N); 4888 for (const auto *Result : DC->lookup(&NS)) { 4889 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4890 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4891 for (const auto *Result : LSD->lookup(&NS)) 4892 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4893 break; 4894 4895 if (ND) 4896 for (const auto *Result : ND->lookup(&CXXII)) 4897 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4898 return FD; 4899 } 4900 } 4901 4902 return nullptr; 4903 } 4904 4905 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local, 4906 llvm::Function *F, StringRef Name) { 4907 // In Windows Itanium environments, try to mark runtime functions 4908 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4909 // will link their standard library statically or dynamically. Marking 4910 // functions imported when they are not imported can cause linker errors 4911 // and warnings. 4912 if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() && 4913 !CGM.getCodeGenOpts().LTOVisibilityPublicStd) { 4914 const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name); 4915 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4916 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4917 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4918 } 4919 } 4920 } 4921 4922 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction( 4923 QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name, 4924 llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) { 4925 if (AssumeConvergent) { 4926 ExtraAttrs = 4927 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4928 } 4929 4930 QualType FTy = Context.getFunctionType(ReturnTy, ArgTys, 4931 FunctionProtoType::ExtProtoInfo()); 4932 const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType( 4933 Context.getCanonicalType(FTy).castAs<FunctionProtoType>()); 4934 auto *ConvTy = getTypes().GetFunctionType(Info); 4935 llvm::Constant *C = GetOrCreateLLVMFunction( 4936 Name, ConvTy, GlobalDecl(), /*ForVTable=*/false, 4937 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 4938 4939 if (auto *F = dyn_cast<llvm::Function>(C)) { 4940 if (F->empty()) { 4941 SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false); 4942 // FIXME: Set calling-conv properly in ExtProtoInfo 4943 F->setCallingConv(getRuntimeCC()); 4944 setWindowsItaniumDLLImport(*this, Local, F, Name); 4945 setDSOLocal(F); 4946 } 4947 } 4948 return {ConvTy, C}; 4949 } 4950 4951 /// CreateRuntimeFunction - Create a new runtime function with the specified 4952 /// type and name. 4953 llvm::FunctionCallee 4954 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4955 llvm::AttributeList ExtraAttrs, bool Local, 4956 bool AssumeConvergent) { 4957 if (AssumeConvergent) { 4958 ExtraAttrs = 4959 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4960 } 4961 4962 llvm::Constant *C = 4963 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4964 /*DontDefer=*/false, /*IsThunk=*/false, 4965 ExtraAttrs); 4966 4967 if (auto *F = dyn_cast<llvm::Function>(C)) { 4968 if (F->empty()) { 4969 F->setCallingConv(getRuntimeCC()); 4970 setWindowsItaniumDLLImport(*this, Local, F, Name); 4971 setDSOLocal(F); 4972 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4973 // of trying to approximate the attributes using the LLVM function 4974 // signature. The other overload of CreateRuntimeFunction does this; it 4975 // should be used for new code. 4976 markRegisterParameterAttributes(F); 4977 } 4978 } 4979 4980 return {FTy, C}; 4981 } 4982 4983 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4984 /// create and return an llvm GlobalVariable with the specified type and address 4985 /// space. If there is something in the module with the specified name, return 4986 /// it potentially bitcasted to the right type. 4987 /// 4988 /// If D is non-null, it specifies a decl that correspond to this. This is used 4989 /// to set the attributes on the global when it is first created. 4990 /// 4991 /// If IsForDefinition is true, it is guaranteed that an actual global with 4992 /// type Ty will be returned, not conversion of a variable with the same 4993 /// mangled name but some other type. 4994 llvm::Constant * 4995 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4996 LangAS AddrSpace, const VarDecl *D, 4997 ForDefinition_t IsForDefinition) { 4998 // Lookup the entry, lazily creating it if necessary. 4999 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5000 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5001 if (Entry) { 5002 if (WeakRefReferences.erase(Entry)) { 5003 if (D && !D->hasAttr<WeakAttr>()) 5004 Entry->setLinkage(llvm::Function::ExternalLinkage); 5005 } 5006 5007 // Handle dropped DLL attributes. 5008 if (D && shouldDropDLLAttribute(D, Entry)) 5009 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 5010 5011 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 5012 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 5013 5014 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 5015 return Entry; 5016 5017 // If there are two attempts to define the same mangled name, issue an 5018 // error. 5019 if (IsForDefinition && !Entry->isDeclaration()) { 5020 GlobalDecl OtherGD; 5021 const VarDecl *OtherD; 5022 5023 // Check that D is not yet in DiagnosedConflictingDefinitions is required 5024 // to make sure that we issue an error only once. 5025 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 5026 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 5027 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 5028 OtherD->hasInit() && 5029 DiagnosedConflictingDefinitions.insert(D).second) { 5030 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 5031 << MangledName; 5032 getDiags().Report(OtherGD.getDecl()->getLocation(), 5033 diag::note_previous_definition); 5034 } 5035 } 5036 5037 // Make sure the result is of the correct type. 5038 if (Entry->getType()->getAddressSpace() != TargetAS) 5039 return llvm::ConstantExpr::getAddrSpaceCast( 5040 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 5041 5042 // (If global is requested for a definition, we always need to create a new 5043 // global, not just return a bitcast.) 5044 if (!IsForDefinition) 5045 return Entry; 5046 } 5047 5048 auto DAddrSpace = GetGlobalVarAddressSpace(D); 5049 5050 auto *GV = new llvm::GlobalVariable( 5051 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 5052 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 5053 getContext().getTargetAddressSpace(DAddrSpace)); 5054 5055 // If we already created a global with the same mangled name (but different 5056 // type) before, take its name and remove it from its parent. 5057 if (Entry) { 5058 GV->takeName(Entry); 5059 5060 if (!Entry->use_empty()) { 5061 Entry->replaceAllUsesWith(GV); 5062 } 5063 5064 Entry->eraseFromParent(); 5065 } 5066 5067 // This is the first use or definition of a mangled name. If there is a 5068 // deferred decl with this name, remember that we need to emit it at the end 5069 // of the file. 5070 auto DDI = DeferredDecls.find(MangledName); 5071 if (DDI != DeferredDecls.end()) { 5072 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 5073 // list, and remove it from DeferredDecls (since we don't need it anymore). 5074 addDeferredDeclToEmit(DDI->second); 5075 DeferredDecls.erase(DDI); 5076 } 5077 5078 // Handle things which are present even on external declarations. 5079 if (D) { 5080 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 5081 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 5082 5083 // FIXME: This code is overly simple and should be merged with other global 5084 // handling. 5085 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 5086 5087 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 5088 5089 setLinkageForGV(GV, D); 5090 5091 if (D->getTLSKind()) { 5092 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5093 CXXThreadLocals.push_back(D); 5094 setTLSMode(GV, *D); 5095 } 5096 5097 setGVProperties(GV, D); 5098 5099 // If required by the ABI, treat declarations of static data members with 5100 // inline initializers as definitions. 5101 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5102 EmitGlobalVarDefinition(D); 5103 } 5104 5105 // Emit section information for extern variables. 5106 if (D->hasExternalStorage()) { 5107 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5108 GV->setSection(SA->getName()); 5109 } 5110 5111 // Handle XCore specific ABI requirements. 5112 if (getTriple().getArch() == llvm::Triple::xcore && 5113 D->getLanguageLinkage() == CLanguageLinkage && 5114 D->getType().isConstant(Context) && 5115 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5116 GV->setSection(".cp.rodata"); 5117 5118 // Handle code model attribute 5119 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5120 GV->setCodeModel(CMA->getModel()); 5121 5122 // Check if we a have a const declaration with an initializer, we may be 5123 // able to emit it as available_externally to expose it's value to the 5124 // optimizer. 5125 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5126 D->getType().isConstQualified() && !GV->hasInitializer() && 5127 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5128 const auto *Record = 5129 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5130 bool HasMutableFields = Record && Record->hasMutableFields(); 5131 if (!HasMutableFields) { 5132 const VarDecl *InitDecl; 5133 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5134 if (InitExpr) { 5135 ConstantEmitter emitter(*this); 5136 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5137 if (Init) { 5138 auto *InitType = Init->getType(); 5139 if (GV->getValueType() != InitType) { 5140 // The type of the initializer does not match the definition. 5141 // This happens when an initializer has a different type from 5142 // the type of the global (because of padding at the end of a 5143 // structure for instance). 5144 GV->setName(StringRef()); 5145 // Make a new global with the correct type, this is now guaranteed 5146 // to work. 5147 auto *NewGV = cast<llvm::GlobalVariable>( 5148 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5149 ->stripPointerCasts()); 5150 5151 // Erase the old global, since it is no longer used. 5152 GV->eraseFromParent(); 5153 GV = NewGV; 5154 } else { 5155 GV->setInitializer(Init); 5156 GV->setConstant(true); 5157 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5158 } 5159 emitter.finalize(GV); 5160 } 5161 } 5162 } 5163 } 5164 } 5165 5166 if (D && 5167 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5168 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5169 // External HIP managed variables needed to be recorded for transformation 5170 // in both device and host compilations. 5171 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5172 D->hasExternalStorage()) 5173 getCUDARuntime().handleVarRegistration(D, *GV); 5174 } 5175 5176 if (D) 5177 SanitizerMD->reportGlobal(GV, *D); 5178 5179 LangAS ExpectedAS = 5180 D ? D->getType().getAddressSpace() 5181 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5182 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5183 if (DAddrSpace != ExpectedAS) { 5184 return getTargetCodeGenInfo().performAddrSpaceCast( 5185 *this, GV, DAddrSpace, ExpectedAS, 5186 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5187 } 5188 5189 return GV; 5190 } 5191 5192 llvm::Constant * 5193 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5194 const Decl *D = GD.getDecl(); 5195 5196 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5197 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5198 /*DontDefer=*/false, IsForDefinition); 5199 5200 if (isa<CXXMethodDecl>(D)) { 5201 auto FInfo = 5202 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5203 auto Ty = getTypes().GetFunctionType(*FInfo); 5204 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5205 IsForDefinition); 5206 } 5207 5208 if (isa<FunctionDecl>(D)) { 5209 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5210 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5211 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5212 IsForDefinition); 5213 } 5214 5215 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5216 } 5217 5218 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5219 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5220 llvm::Align Alignment) { 5221 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5222 llvm::GlobalVariable *OldGV = nullptr; 5223 5224 if (GV) { 5225 // Check if the variable has the right type. 5226 if (GV->getValueType() == Ty) 5227 return GV; 5228 5229 // Because C++ name mangling, the only way we can end up with an already 5230 // existing global with the same name is if it has been declared extern "C". 5231 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5232 OldGV = GV; 5233 } 5234 5235 // Create a new variable. 5236 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5237 Linkage, nullptr, Name); 5238 5239 if (OldGV) { 5240 // Replace occurrences of the old variable if needed. 5241 GV->takeName(OldGV); 5242 5243 if (!OldGV->use_empty()) { 5244 OldGV->replaceAllUsesWith(GV); 5245 } 5246 5247 OldGV->eraseFromParent(); 5248 } 5249 5250 if (supportsCOMDAT() && GV->isWeakForLinker() && 5251 !GV->hasAvailableExternallyLinkage()) 5252 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5253 5254 GV->setAlignment(Alignment); 5255 5256 return GV; 5257 } 5258 5259 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5260 /// given global variable. If Ty is non-null and if the global doesn't exist, 5261 /// then it will be created with the specified type instead of whatever the 5262 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5263 /// that an actual global with type Ty will be returned, not conversion of a 5264 /// variable with the same mangled name but some other type. 5265 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5266 llvm::Type *Ty, 5267 ForDefinition_t IsForDefinition) { 5268 assert(D->hasGlobalStorage() && "Not a global variable"); 5269 QualType ASTTy = D->getType(); 5270 if (!Ty) 5271 Ty = getTypes().ConvertTypeForMem(ASTTy); 5272 5273 StringRef MangledName = getMangledName(D); 5274 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5275 IsForDefinition); 5276 } 5277 5278 /// CreateRuntimeVariable - Create a new runtime global variable with the 5279 /// specified type and name. 5280 llvm::Constant * 5281 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5282 StringRef Name) { 5283 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5284 : LangAS::Default; 5285 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5286 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5287 return Ret; 5288 } 5289 5290 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5291 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5292 5293 StringRef MangledName = getMangledName(D); 5294 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5295 5296 // We already have a definition, not declaration, with the same mangled name. 5297 // Emitting of declaration is not required (and actually overwrites emitted 5298 // definition). 5299 if (GV && !GV->isDeclaration()) 5300 return; 5301 5302 // If we have not seen a reference to this variable yet, place it into the 5303 // deferred declarations table to be emitted if needed later. 5304 if (!MustBeEmitted(D) && !GV) { 5305 DeferredDecls[MangledName] = D; 5306 return; 5307 } 5308 5309 // The tentative definition is the only definition. 5310 EmitGlobalVarDefinition(D); 5311 } 5312 5313 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5314 if (auto const *V = dyn_cast<const VarDecl>(D)) 5315 EmitExternalVarDeclaration(V); 5316 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5317 EmitExternalFunctionDeclaration(FD); 5318 } 5319 5320 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5321 return Context.toCharUnitsFromBits( 5322 getDataLayout().getTypeStoreSizeInBits(Ty)); 5323 } 5324 5325 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5326 if (LangOpts.OpenCL) { 5327 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5328 assert(AS == LangAS::opencl_global || 5329 AS == LangAS::opencl_global_device || 5330 AS == LangAS::opencl_global_host || 5331 AS == LangAS::opencl_constant || 5332 AS == LangAS::opencl_local || 5333 AS >= LangAS::FirstTargetAddressSpace); 5334 return AS; 5335 } 5336 5337 if (LangOpts.SYCLIsDevice && 5338 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5339 return LangAS::sycl_global; 5340 5341 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5342 if (D) { 5343 if (D->hasAttr<CUDAConstantAttr>()) 5344 return LangAS::cuda_constant; 5345 if (D->hasAttr<CUDASharedAttr>()) 5346 return LangAS::cuda_shared; 5347 if (D->hasAttr<CUDADeviceAttr>()) 5348 return LangAS::cuda_device; 5349 if (D->getType().isConstQualified()) 5350 return LangAS::cuda_constant; 5351 } 5352 return LangAS::cuda_device; 5353 } 5354 5355 if (LangOpts.OpenMP) { 5356 LangAS AS; 5357 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5358 return AS; 5359 } 5360 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5361 } 5362 5363 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5364 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5365 if (LangOpts.OpenCL) 5366 return LangAS::opencl_constant; 5367 if (LangOpts.SYCLIsDevice) 5368 return LangAS::sycl_global; 5369 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5370 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5371 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5372 // with OpVariable instructions with Generic storage class which is not 5373 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5374 // UniformConstant storage class is not viable as pointers to it may not be 5375 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5376 return LangAS::cuda_device; 5377 if (auto AS = getTarget().getConstantAddressSpace()) 5378 return *AS; 5379 return LangAS::Default; 5380 } 5381 5382 // In address space agnostic languages, string literals are in default address 5383 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5384 // emitted in constant address space in LLVM IR. To be consistent with other 5385 // parts of AST, string literal global variables in constant address space 5386 // need to be casted to default address space before being put into address 5387 // map and referenced by other part of CodeGen. 5388 // In OpenCL, string literals are in constant address space in AST, therefore 5389 // they should not be casted to default address space. 5390 static llvm::Constant * 5391 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5392 llvm::GlobalVariable *GV) { 5393 llvm::Constant *Cast = GV; 5394 if (!CGM.getLangOpts().OpenCL) { 5395 auto AS = CGM.GetGlobalConstantAddressSpace(); 5396 if (AS != LangAS::Default) 5397 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5398 CGM, GV, AS, LangAS::Default, 5399 llvm::PointerType::get( 5400 CGM.getLLVMContext(), 5401 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5402 } 5403 return Cast; 5404 } 5405 5406 template<typename SomeDecl> 5407 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5408 llvm::GlobalValue *GV) { 5409 if (!getLangOpts().CPlusPlus) 5410 return; 5411 5412 // Must have 'used' attribute, or else inline assembly can't rely on 5413 // the name existing. 5414 if (!D->template hasAttr<UsedAttr>()) 5415 return; 5416 5417 // Must have internal linkage and an ordinary name. 5418 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5419 return; 5420 5421 // Must be in an extern "C" context. Entities declared directly within 5422 // a record are not extern "C" even if the record is in such a context. 5423 const SomeDecl *First = D->getFirstDecl(); 5424 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5425 return; 5426 5427 // OK, this is an internal linkage entity inside an extern "C" linkage 5428 // specification. Make a note of that so we can give it the "expected" 5429 // mangled name if nothing else is using that name. 5430 std::pair<StaticExternCMap::iterator, bool> R = 5431 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5432 5433 // If we have multiple internal linkage entities with the same name 5434 // in extern "C" regions, none of them gets that name. 5435 if (!R.second) 5436 R.first->second = nullptr; 5437 } 5438 5439 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5440 if (!CGM.supportsCOMDAT()) 5441 return false; 5442 5443 if (D.hasAttr<SelectAnyAttr>()) 5444 return true; 5445 5446 GVALinkage Linkage; 5447 if (auto *VD = dyn_cast<VarDecl>(&D)) 5448 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5449 else 5450 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5451 5452 switch (Linkage) { 5453 case GVA_Internal: 5454 case GVA_AvailableExternally: 5455 case GVA_StrongExternal: 5456 return false; 5457 case GVA_DiscardableODR: 5458 case GVA_StrongODR: 5459 return true; 5460 } 5461 llvm_unreachable("No such linkage"); 5462 } 5463 5464 bool CodeGenModule::supportsCOMDAT() const { 5465 return getTriple().supportsCOMDAT(); 5466 } 5467 5468 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5469 llvm::GlobalObject &GO) { 5470 if (!shouldBeInCOMDAT(*this, D)) 5471 return; 5472 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5473 } 5474 5475 const ABIInfo &CodeGenModule::getABIInfo() { 5476 return getTargetCodeGenInfo().getABIInfo(); 5477 } 5478 5479 /// Pass IsTentative as true if you want to create a tentative definition. 5480 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5481 bool IsTentative) { 5482 // OpenCL global variables of sampler type are translated to function calls, 5483 // therefore no need to be translated. 5484 QualType ASTTy = D->getType(); 5485 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5486 return; 5487 5488 // If this is OpenMP device, check if it is legal to emit this global 5489 // normally. 5490 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5491 OpenMPRuntime->emitTargetGlobalVariable(D)) 5492 return; 5493 5494 llvm::TrackingVH<llvm::Constant> Init; 5495 bool NeedsGlobalCtor = false; 5496 // Whether the definition of the variable is available externally. 5497 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5498 // since this is the job for its original source. 5499 bool IsDefinitionAvailableExternally = 5500 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5501 bool NeedsGlobalDtor = 5502 !IsDefinitionAvailableExternally && 5503 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5504 5505 // It is helpless to emit the definition for an available_externally variable 5506 // which can't be marked as const. 5507 // We don't need to check if it needs global ctor or dtor. See the above 5508 // comment for ideas. 5509 if (IsDefinitionAvailableExternally && 5510 (!D->hasConstantInitialization() || 5511 // TODO: Update this when we have interface to check constexpr 5512 // destructor. 5513 D->needsDestruction(getContext()) || 5514 !D->getType().isConstantStorage(getContext(), true, true))) 5515 return; 5516 5517 const VarDecl *InitDecl; 5518 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5519 5520 std::optional<ConstantEmitter> emitter; 5521 5522 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5523 // as part of their declaration." Sema has already checked for 5524 // error cases, so we just need to set Init to UndefValue. 5525 bool IsCUDASharedVar = 5526 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5527 // Shadows of initialized device-side global variables are also left 5528 // undefined. 5529 // Managed Variables should be initialized on both host side and device side. 5530 bool IsCUDAShadowVar = 5531 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5532 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5533 D->hasAttr<CUDASharedAttr>()); 5534 bool IsCUDADeviceShadowVar = 5535 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5536 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5537 D->getType()->isCUDADeviceBuiltinTextureType()); 5538 if (getLangOpts().CUDA && 5539 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5540 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5541 else if (D->hasAttr<LoaderUninitializedAttr>()) 5542 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5543 else if (!InitExpr) { 5544 // This is a tentative definition; tentative definitions are 5545 // implicitly initialized with { 0 }. 5546 // 5547 // Note that tentative definitions are only emitted at the end of 5548 // a translation unit, so they should never have incomplete 5549 // type. In addition, EmitTentativeDefinition makes sure that we 5550 // never attempt to emit a tentative definition if a real one 5551 // exists. A use may still exists, however, so we still may need 5552 // to do a RAUW. 5553 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5554 Init = EmitNullConstant(D->getType()); 5555 } else { 5556 initializedGlobalDecl = GlobalDecl(D); 5557 emitter.emplace(*this); 5558 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5559 if (!Initializer) { 5560 QualType T = InitExpr->getType(); 5561 if (D->getType()->isReferenceType()) 5562 T = D->getType(); 5563 5564 if (getLangOpts().CPlusPlus) { 5565 Init = EmitNullConstant(T); 5566 if (!IsDefinitionAvailableExternally) 5567 NeedsGlobalCtor = true; 5568 if (InitDecl->hasFlexibleArrayInit(getContext())) { 5569 ErrorUnsupported(D, "flexible array initializer"); 5570 // We cannot create ctor for flexible array initializer 5571 NeedsGlobalCtor = false; 5572 } 5573 } else { 5574 ErrorUnsupported(D, "static initializer"); 5575 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5576 } 5577 } else { 5578 Init = Initializer; 5579 // We don't need an initializer, so remove the entry for the delayed 5580 // initializer position (just in case this entry was delayed) if we 5581 // also don't need to register a destructor. 5582 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5583 DelayedCXXInitPosition.erase(D); 5584 5585 #ifndef NDEBUG 5586 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5587 InitDecl->getFlexibleArrayInitChars(getContext()); 5588 CharUnits CstSize = CharUnits::fromQuantity( 5589 getDataLayout().getTypeAllocSize(Init->getType())); 5590 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5591 #endif 5592 } 5593 } 5594 5595 llvm::Type* InitType = Init->getType(); 5596 llvm::Constant *Entry = 5597 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5598 5599 // Strip off pointer casts if we got them. 5600 Entry = Entry->stripPointerCasts(); 5601 5602 // Entry is now either a Function or GlobalVariable. 5603 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5604 5605 // We have a definition after a declaration with the wrong type. 5606 // We must make a new GlobalVariable* and update everything that used OldGV 5607 // (a declaration or tentative definition) with the new GlobalVariable* 5608 // (which will be a definition). 5609 // 5610 // This happens if there is a prototype for a global (e.g. 5611 // "extern int x[];") and then a definition of a different type (e.g. 5612 // "int x[10];"). This also happens when an initializer has a different type 5613 // from the type of the global (this happens with unions). 5614 if (!GV || GV->getValueType() != InitType || 5615 GV->getType()->getAddressSpace() != 5616 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5617 5618 // Move the old entry aside so that we'll create a new one. 5619 Entry->setName(StringRef()); 5620 5621 // Make a new global with the correct type, this is now guaranteed to work. 5622 GV = cast<llvm::GlobalVariable>( 5623 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5624 ->stripPointerCasts()); 5625 5626 // Replace all uses of the old global with the new global 5627 llvm::Constant *NewPtrForOldDecl = 5628 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5629 Entry->getType()); 5630 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5631 5632 // Erase the old global, since it is no longer used. 5633 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5634 } 5635 5636 MaybeHandleStaticInExternC(D, GV); 5637 5638 if (D->hasAttr<AnnotateAttr>()) 5639 AddGlobalAnnotations(D, GV); 5640 5641 // Set the llvm linkage type as appropriate. 5642 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5643 5644 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5645 // the device. [...]" 5646 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5647 // __device__, declares a variable that: [...] 5648 // Is accessible from all the threads within the grid and from the host 5649 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5650 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5651 if (LangOpts.CUDA) { 5652 if (LangOpts.CUDAIsDevice) { 5653 if (Linkage != llvm::GlobalValue::InternalLinkage && 5654 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5655 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5656 D->getType()->isCUDADeviceBuiltinTextureType())) 5657 GV->setExternallyInitialized(true); 5658 } else { 5659 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5660 } 5661 getCUDARuntime().handleVarRegistration(D, *GV); 5662 } 5663 5664 if (LangOpts.HLSL) 5665 getHLSLRuntime().handleGlobalVarDefinition(D, GV); 5666 5667 GV->setInitializer(Init); 5668 if (emitter) 5669 emitter->finalize(GV); 5670 5671 // If it is safe to mark the global 'constant', do so now. 5672 GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) || 5673 (!NeedsGlobalCtor && !NeedsGlobalDtor && 5674 D->getType().isConstantStorage(getContext(), true, true))); 5675 5676 // If it is in a read-only section, mark it 'constant'. 5677 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5678 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5679 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5680 GV->setConstant(true); 5681 } 5682 5683 CharUnits AlignVal = getContext().getDeclAlign(D); 5684 // Check for alignment specifed in an 'omp allocate' directive. 5685 if (std::optional<CharUnits> AlignValFromAllocate = 5686 getOMPAllocateAlignment(D)) 5687 AlignVal = *AlignValFromAllocate; 5688 GV->setAlignment(AlignVal.getAsAlign()); 5689 5690 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5691 // function is only defined alongside the variable, not also alongside 5692 // callers. Normally, all accesses to a thread_local go through the 5693 // thread-wrapper in order to ensure initialization has occurred, underlying 5694 // variable will never be used other than the thread-wrapper, so it can be 5695 // converted to internal linkage. 5696 // 5697 // However, if the variable has the 'constinit' attribute, it _can_ be 5698 // referenced directly, without calling the thread-wrapper, so the linkage 5699 // must not be changed. 5700 // 5701 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5702 // weak or linkonce, the de-duplication semantics are important to preserve, 5703 // so we don't change the linkage. 5704 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5705 Linkage == llvm::GlobalValue::ExternalLinkage && 5706 Context.getTargetInfo().getTriple().isOSDarwin() && 5707 !D->hasAttr<ConstInitAttr>()) 5708 Linkage = llvm::GlobalValue::InternalLinkage; 5709 5710 GV->setLinkage(Linkage); 5711 if (D->hasAttr<DLLImportAttr>()) 5712 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5713 else if (D->hasAttr<DLLExportAttr>()) 5714 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5715 else 5716 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5717 5718 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5719 // common vars aren't constant even if declared const. 5720 GV->setConstant(false); 5721 // Tentative definition of global variables may be initialized with 5722 // non-zero null pointers. In this case they should have weak linkage 5723 // since common linkage must have zero initializer and must not have 5724 // explicit section therefore cannot have non-zero initial value. 5725 if (!GV->getInitializer()->isNullValue()) 5726 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5727 } 5728 5729 setNonAliasAttributes(D, GV); 5730 5731 if (D->getTLSKind() && !GV->isThreadLocal()) { 5732 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5733 CXXThreadLocals.push_back(D); 5734 setTLSMode(GV, *D); 5735 } 5736 5737 maybeSetTrivialComdat(*D, *GV); 5738 5739 // Emit the initializer function if necessary. 5740 if (NeedsGlobalCtor || NeedsGlobalDtor) 5741 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5742 5743 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5744 5745 // Emit global variable debug information. 5746 if (CGDebugInfo *DI = getModuleDebugInfo()) 5747 if (getCodeGenOpts().hasReducedDebugInfo()) 5748 DI->EmitGlobalVariable(GV, D); 5749 } 5750 5751 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5752 if (CGDebugInfo *DI = getModuleDebugInfo()) 5753 if (getCodeGenOpts().hasReducedDebugInfo()) { 5754 QualType ASTTy = D->getType(); 5755 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5756 llvm::Constant *GV = 5757 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5758 DI->EmitExternalVariable( 5759 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5760 } 5761 } 5762 5763 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5764 if (CGDebugInfo *DI = getModuleDebugInfo()) 5765 if (getCodeGenOpts().hasReducedDebugInfo()) { 5766 auto *Ty = getTypes().ConvertType(FD->getType()); 5767 StringRef MangledName = getMangledName(FD); 5768 auto *Fn = cast<llvm::Function>( 5769 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5770 if (!Fn->getSubprogram()) 5771 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5772 } 5773 } 5774 5775 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5776 CodeGenModule &CGM, const VarDecl *D, 5777 bool NoCommon) { 5778 // Don't give variables common linkage if -fno-common was specified unless it 5779 // was overridden by a NoCommon attribute. 5780 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5781 return true; 5782 5783 // C11 6.9.2/2: 5784 // A declaration of an identifier for an object that has file scope without 5785 // an initializer, and without a storage-class specifier or with the 5786 // storage-class specifier static, constitutes a tentative definition. 5787 if (D->getInit() || D->hasExternalStorage()) 5788 return true; 5789 5790 // A variable cannot be both common and exist in a section. 5791 if (D->hasAttr<SectionAttr>()) 5792 return true; 5793 5794 // A variable cannot be both common and exist in a section. 5795 // We don't try to determine which is the right section in the front-end. 5796 // If no specialized section name is applicable, it will resort to default. 5797 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5798 D->hasAttr<PragmaClangDataSectionAttr>() || 5799 D->hasAttr<PragmaClangRelroSectionAttr>() || 5800 D->hasAttr<PragmaClangRodataSectionAttr>()) 5801 return true; 5802 5803 // Thread local vars aren't considered common linkage. 5804 if (D->getTLSKind()) 5805 return true; 5806 5807 // Tentative definitions marked with WeakImportAttr are true definitions. 5808 if (D->hasAttr<WeakImportAttr>()) 5809 return true; 5810 5811 // A variable cannot be both common and exist in a comdat. 5812 if (shouldBeInCOMDAT(CGM, *D)) 5813 return true; 5814 5815 // Declarations with a required alignment do not have common linkage in MSVC 5816 // mode. 5817 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5818 if (D->hasAttr<AlignedAttr>()) 5819 return true; 5820 QualType VarType = D->getType(); 5821 if (Context.isAlignmentRequired(VarType)) 5822 return true; 5823 5824 if (const auto *RT = VarType->getAs<RecordType>()) { 5825 const RecordDecl *RD = RT->getDecl(); 5826 for (const FieldDecl *FD : RD->fields()) { 5827 if (FD->isBitField()) 5828 continue; 5829 if (FD->hasAttr<AlignedAttr>()) 5830 return true; 5831 if (Context.isAlignmentRequired(FD->getType())) 5832 return true; 5833 } 5834 } 5835 } 5836 5837 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5838 // common symbols, so symbols with greater alignment requirements cannot be 5839 // common. 5840 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5841 // alignments for common symbols via the aligncomm directive, so this 5842 // restriction only applies to MSVC environments. 5843 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5844 Context.getTypeAlignIfKnown(D->getType()) > 5845 Context.toBits(CharUnits::fromQuantity(32))) 5846 return true; 5847 5848 return false; 5849 } 5850 5851 llvm::GlobalValue::LinkageTypes 5852 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5853 GVALinkage Linkage) { 5854 if (Linkage == GVA_Internal) 5855 return llvm::Function::InternalLinkage; 5856 5857 if (D->hasAttr<WeakAttr>()) 5858 return llvm::GlobalVariable::WeakAnyLinkage; 5859 5860 if (const auto *FD = D->getAsFunction()) 5861 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5862 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5863 5864 // We are guaranteed to have a strong definition somewhere else, 5865 // so we can use available_externally linkage. 5866 if (Linkage == GVA_AvailableExternally) 5867 return llvm::GlobalValue::AvailableExternallyLinkage; 5868 5869 // Note that Apple's kernel linker doesn't support symbol 5870 // coalescing, so we need to avoid linkonce and weak linkages there. 5871 // Normally, this means we just map to internal, but for explicit 5872 // instantiations we'll map to external. 5873 5874 // In C++, the compiler has to emit a definition in every translation unit 5875 // that references the function. We should use linkonce_odr because 5876 // a) if all references in this translation unit are optimized away, we 5877 // don't need to codegen it. b) if the function persists, it needs to be 5878 // merged with other definitions. c) C++ has the ODR, so we know the 5879 // definition is dependable. 5880 if (Linkage == GVA_DiscardableODR) 5881 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5882 : llvm::Function::InternalLinkage; 5883 5884 // An explicit instantiation of a template has weak linkage, since 5885 // explicit instantiations can occur in multiple translation units 5886 // and must all be equivalent. However, we are not allowed to 5887 // throw away these explicit instantiations. 5888 // 5889 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5890 // so say that CUDA templates are either external (for kernels) or internal. 5891 // This lets llvm perform aggressive inter-procedural optimizations. For 5892 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5893 // therefore we need to follow the normal linkage paradigm. 5894 if (Linkage == GVA_StrongODR) { 5895 if (getLangOpts().AppleKext) 5896 return llvm::Function::ExternalLinkage; 5897 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5898 !getLangOpts().GPURelocatableDeviceCode) 5899 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5900 : llvm::Function::InternalLinkage; 5901 return llvm::Function::WeakODRLinkage; 5902 } 5903 5904 // C++ doesn't have tentative definitions and thus cannot have common 5905 // linkage. 5906 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5907 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5908 CodeGenOpts.NoCommon)) 5909 return llvm::GlobalVariable::CommonLinkage; 5910 5911 // selectany symbols are externally visible, so use weak instead of 5912 // linkonce. MSVC optimizes away references to const selectany globals, so 5913 // all definitions should be the same and ODR linkage should be used. 5914 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5915 if (D->hasAttr<SelectAnyAttr>()) 5916 return llvm::GlobalVariable::WeakODRLinkage; 5917 5918 // Otherwise, we have strong external linkage. 5919 assert(Linkage == GVA_StrongExternal); 5920 return llvm::GlobalVariable::ExternalLinkage; 5921 } 5922 5923 llvm::GlobalValue::LinkageTypes 5924 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5925 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5926 return getLLVMLinkageForDeclarator(VD, Linkage); 5927 } 5928 5929 /// Replace the uses of a function that was declared with a non-proto type. 5930 /// We want to silently drop extra arguments from call sites 5931 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5932 llvm::Function *newFn) { 5933 // Fast path. 5934 if (old->use_empty()) 5935 return; 5936 5937 llvm::Type *newRetTy = newFn->getReturnType(); 5938 SmallVector<llvm::Value *, 4> newArgs; 5939 5940 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5941 5942 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5943 ui != ue; ui++) { 5944 llvm::User *user = ui->getUser(); 5945 5946 // Recognize and replace uses of bitcasts. Most calls to 5947 // unprototyped functions will use bitcasts. 5948 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5949 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5950 replaceUsesOfNonProtoConstant(bitcast, newFn); 5951 continue; 5952 } 5953 5954 // Recognize calls to the function. 5955 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5956 if (!callSite) 5957 continue; 5958 if (!callSite->isCallee(&*ui)) 5959 continue; 5960 5961 // If the return types don't match exactly, then we can't 5962 // transform this call unless it's dead. 5963 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5964 continue; 5965 5966 // Get the call site's attribute list. 5967 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5968 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5969 5970 // If the function was passed too few arguments, don't transform. 5971 unsigned newNumArgs = newFn->arg_size(); 5972 if (callSite->arg_size() < newNumArgs) 5973 continue; 5974 5975 // If extra arguments were passed, we silently drop them. 5976 // If any of the types mismatch, we don't transform. 5977 unsigned argNo = 0; 5978 bool dontTransform = false; 5979 for (llvm::Argument &A : newFn->args()) { 5980 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5981 dontTransform = true; 5982 break; 5983 } 5984 5985 // Add any parameter attributes. 5986 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5987 argNo++; 5988 } 5989 if (dontTransform) 5990 continue; 5991 5992 // Okay, we can transform this. Create the new call instruction and copy 5993 // over the required information. 5994 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5995 5996 // Copy over any operand bundles. 5997 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5998 callSite->getOperandBundlesAsDefs(newBundles); 5999 6000 llvm::CallBase *newCall; 6001 if (isa<llvm::CallInst>(callSite)) { 6002 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 6003 callSite->getIterator()); 6004 } else { 6005 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 6006 newCall = llvm::InvokeInst::Create( 6007 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), 6008 newArgs, newBundles, "", callSite->getIterator()); 6009 } 6010 newArgs.clear(); // for the next iteration 6011 6012 if (!newCall->getType()->isVoidTy()) 6013 newCall->takeName(callSite); 6014 newCall->setAttributes( 6015 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 6016 oldAttrs.getRetAttrs(), newArgAttrs)); 6017 newCall->setCallingConv(callSite->getCallingConv()); 6018 6019 // Finally, remove the old call, replacing any uses with the new one. 6020 if (!callSite->use_empty()) 6021 callSite->replaceAllUsesWith(newCall); 6022 6023 // Copy debug location attached to CI. 6024 if (callSite->getDebugLoc()) 6025 newCall->setDebugLoc(callSite->getDebugLoc()); 6026 6027 callSitesToBeRemovedFromParent.push_back(callSite); 6028 } 6029 6030 for (auto *callSite : callSitesToBeRemovedFromParent) { 6031 callSite->eraseFromParent(); 6032 } 6033 } 6034 6035 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 6036 /// implement a function with no prototype, e.g. "int foo() {}". If there are 6037 /// existing call uses of the old function in the module, this adjusts them to 6038 /// call the new function directly. 6039 /// 6040 /// This is not just a cleanup: the always_inline pass requires direct calls to 6041 /// functions to be able to inline them. If there is a bitcast in the way, it 6042 /// won't inline them. Instcombine normally deletes these calls, but it isn't 6043 /// run at -O0. 6044 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 6045 llvm::Function *NewFn) { 6046 // If we're redefining a global as a function, don't transform it. 6047 if (!isa<llvm::Function>(Old)) return; 6048 6049 replaceUsesOfNonProtoConstant(Old, NewFn); 6050 } 6051 6052 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 6053 auto DK = VD->isThisDeclarationADefinition(); 6054 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 6055 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 6056 return; 6057 6058 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 6059 // If we have a definition, this might be a deferred decl. If the 6060 // instantiation is explicit, make sure we emit it at the end. 6061 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 6062 GetAddrOfGlobalVar(VD); 6063 6064 EmitTopLevelDecl(VD); 6065 } 6066 6067 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 6068 llvm::GlobalValue *GV) { 6069 const auto *D = cast<FunctionDecl>(GD.getDecl()); 6070 6071 // Compute the function info and LLVM type. 6072 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 6073 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 6074 6075 // Get or create the prototype for the function. 6076 if (!GV || (GV->getValueType() != Ty)) 6077 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 6078 /*DontDefer=*/true, 6079 ForDefinition)); 6080 6081 // Already emitted. 6082 if (!GV->isDeclaration()) 6083 return; 6084 6085 // We need to set linkage and visibility on the function before 6086 // generating code for it because various parts of IR generation 6087 // want to propagate this information down (e.g. to local static 6088 // declarations). 6089 auto *Fn = cast<llvm::Function>(GV); 6090 setFunctionLinkage(GD, Fn); 6091 6092 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 6093 setGVProperties(Fn, GD); 6094 6095 MaybeHandleStaticInExternC(D, Fn); 6096 6097 maybeSetTrivialComdat(*D, *Fn); 6098 6099 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 6100 6101 setNonAliasAttributes(GD, Fn); 6102 SetLLVMFunctionAttributesForDefinition(D, Fn); 6103 6104 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6105 AddGlobalCtor(Fn, CA->getPriority()); 6106 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6107 AddGlobalDtor(Fn, DA->getPriority(), true); 6108 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6109 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6110 } 6111 6112 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6113 const auto *D = cast<ValueDecl>(GD.getDecl()); 6114 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6115 assert(AA && "Not an alias?"); 6116 6117 StringRef MangledName = getMangledName(GD); 6118 6119 if (AA->getAliasee() == MangledName) { 6120 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6121 return; 6122 } 6123 6124 // If there is a definition in the module, then it wins over the alias. 6125 // This is dubious, but allow it to be safe. Just ignore the alias. 6126 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6127 if (Entry && !Entry->isDeclaration()) 6128 return; 6129 6130 Aliases.push_back(GD); 6131 6132 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6133 6134 // Create a reference to the named value. This ensures that it is emitted 6135 // if a deferred decl. 6136 llvm::Constant *Aliasee; 6137 llvm::GlobalValue::LinkageTypes LT; 6138 if (isa<llvm::FunctionType>(DeclTy)) { 6139 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6140 /*ForVTable=*/false); 6141 LT = getFunctionLinkage(GD); 6142 } else { 6143 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6144 /*D=*/nullptr); 6145 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6146 LT = getLLVMLinkageVarDefinition(VD); 6147 else 6148 LT = getFunctionLinkage(GD); 6149 } 6150 6151 // Create the new alias itself, but don't set a name yet. 6152 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6153 auto *GA = 6154 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6155 6156 if (Entry) { 6157 if (GA->getAliasee() == Entry) { 6158 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6159 return; 6160 } 6161 6162 assert(Entry->isDeclaration()); 6163 6164 // If there is a declaration in the module, then we had an extern followed 6165 // by the alias, as in: 6166 // extern int test6(); 6167 // ... 6168 // int test6() __attribute__((alias("test7"))); 6169 // 6170 // Remove it and replace uses of it with the alias. 6171 GA->takeName(Entry); 6172 6173 Entry->replaceAllUsesWith(GA); 6174 Entry->eraseFromParent(); 6175 } else { 6176 GA->setName(MangledName); 6177 } 6178 6179 // Set attributes which are particular to an alias; this is a 6180 // specialization of the attributes which may be set on a global 6181 // variable/function. 6182 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6183 D->isWeakImported()) { 6184 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6185 } 6186 6187 if (const auto *VD = dyn_cast<VarDecl>(D)) 6188 if (VD->getTLSKind()) 6189 setTLSMode(GA, *VD); 6190 6191 SetCommonAttributes(GD, GA); 6192 6193 // Emit global alias debug information. 6194 if (isa<VarDecl>(D)) 6195 if (CGDebugInfo *DI = getModuleDebugInfo()) 6196 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6197 } 6198 6199 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6200 const auto *D = cast<ValueDecl>(GD.getDecl()); 6201 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6202 assert(IFA && "Not an ifunc?"); 6203 6204 StringRef MangledName = getMangledName(GD); 6205 6206 if (IFA->getResolver() == MangledName) { 6207 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6208 return; 6209 } 6210 6211 // Report an error if some definition overrides ifunc. 6212 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6213 if (Entry && !Entry->isDeclaration()) { 6214 GlobalDecl OtherGD; 6215 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6216 DiagnosedConflictingDefinitions.insert(GD).second) { 6217 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6218 << MangledName; 6219 Diags.Report(OtherGD.getDecl()->getLocation(), 6220 diag::note_previous_definition); 6221 } 6222 return; 6223 } 6224 6225 Aliases.push_back(GD); 6226 6227 // The resolver might not be visited yet. Specify a dummy non-function type to 6228 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6229 // was emitted) or the whole function will be replaced (if the resolver has 6230 // not been emitted). 6231 llvm::Constant *Resolver = 6232 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6233 /*ForVTable=*/false); 6234 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6235 unsigned AS = getTypes().getTargetAddressSpace(D->getType()); 6236 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 6237 DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 6238 if (Entry) { 6239 if (GIF->getResolver() == Entry) { 6240 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6241 return; 6242 } 6243 assert(Entry->isDeclaration()); 6244 6245 // If there is a declaration in the module, then we had an extern followed 6246 // by the ifunc, as in: 6247 // extern int test(); 6248 // ... 6249 // int test() __attribute__((ifunc("resolver"))); 6250 // 6251 // Remove it and replace uses of it with the ifunc. 6252 GIF->takeName(Entry); 6253 6254 Entry->replaceAllUsesWith(GIF); 6255 Entry->eraseFromParent(); 6256 } else 6257 GIF->setName(MangledName); 6258 SetCommonAttributes(GD, GIF); 6259 } 6260 6261 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6262 ArrayRef<llvm::Type*> Tys) { 6263 return llvm::Intrinsic::getOrInsertDeclaration(&getModule(), 6264 (llvm::Intrinsic::ID)IID, Tys); 6265 } 6266 6267 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6268 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6269 const StringLiteral *Literal, bool TargetIsLSB, 6270 bool &IsUTF16, unsigned &StringLength) { 6271 StringRef String = Literal->getString(); 6272 unsigned NumBytes = String.size(); 6273 6274 // Check for simple case. 6275 if (!Literal->containsNonAsciiOrNull()) { 6276 StringLength = NumBytes; 6277 return *Map.insert(std::make_pair(String, nullptr)).first; 6278 } 6279 6280 // Otherwise, convert the UTF8 literals into a string of shorts. 6281 IsUTF16 = true; 6282 6283 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6284 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6285 llvm::UTF16 *ToPtr = &ToBuf[0]; 6286 6287 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6288 ToPtr + NumBytes, llvm::strictConversion); 6289 6290 // ConvertUTF8toUTF16 returns the length in ToPtr. 6291 StringLength = ToPtr - &ToBuf[0]; 6292 6293 // Add an explicit null. 6294 *ToPtr = 0; 6295 return *Map.insert(std::make_pair( 6296 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6297 (StringLength + 1) * 2), 6298 nullptr)).first; 6299 } 6300 6301 ConstantAddress 6302 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6303 unsigned StringLength = 0; 6304 bool isUTF16 = false; 6305 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6306 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6307 getDataLayout().isLittleEndian(), isUTF16, 6308 StringLength); 6309 6310 if (auto *C = Entry.second) 6311 return ConstantAddress( 6312 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6313 6314 const ASTContext &Context = getContext(); 6315 const llvm::Triple &Triple = getTriple(); 6316 6317 const auto CFRuntime = getLangOpts().CFRuntime; 6318 const bool IsSwiftABI = 6319 static_cast<unsigned>(CFRuntime) >= 6320 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6321 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6322 6323 // If we don't already have it, get __CFConstantStringClassReference. 6324 if (!CFConstantStringClassRef) { 6325 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6326 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6327 Ty = llvm::ArrayType::get(Ty, 0); 6328 6329 switch (CFRuntime) { 6330 default: break; 6331 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6332 case LangOptions::CoreFoundationABI::Swift5_0: 6333 CFConstantStringClassName = 6334 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6335 : "$s10Foundation19_NSCFConstantStringCN"; 6336 Ty = IntPtrTy; 6337 break; 6338 case LangOptions::CoreFoundationABI::Swift4_2: 6339 CFConstantStringClassName = 6340 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6341 : "$S10Foundation19_NSCFConstantStringCN"; 6342 Ty = IntPtrTy; 6343 break; 6344 case LangOptions::CoreFoundationABI::Swift4_1: 6345 CFConstantStringClassName = 6346 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6347 : "__T010Foundation19_NSCFConstantStringCN"; 6348 Ty = IntPtrTy; 6349 break; 6350 } 6351 6352 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6353 6354 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6355 llvm::GlobalValue *GV = nullptr; 6356 6357 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6358 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6359 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6360 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6361 6362 const VarDecl *VD = nullptr; 6363 for (const auto *Result : DC->lookup(&II)) 6364 if ((VD = dyn_cast<VarDecl>(Result))) 6365 break; 6366 6367 if (Triple.isOSBinFormatELF()) { 6368 if (!VD) 6369 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6370 } else { 6371 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6372 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6373 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6374 else 6375 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6376 } 6377 6378 setDSOLocal(GV); 6379 } 6380 } 6381 6382 // Decay array -> ptr 6383 CFConstantStringClassRef = 6384 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6385 } 6386 6387 QualType CFTy = Context.getCFConstantStringType(); 6388 6389 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6390 6391 ConstantInitBuilder Builder(*this); 6392 auto Fields = Builder.beginStruct(STy); 6393 6394 // Class pointer. 6395 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6396 6397 // Flags. 6398 if (IsSwiftABI) { 6399 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6400 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6401 } else { 6402 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6403 } 6404 6405 // String pointer. 6406 llvm::Constant *C = nullptr; 6407 if (isUTF16) { 6408 auto Arr = llvm::ArrayRef( 6409 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6410 Entry.first().size() / 2); 6411 C = llvm::ConstantDataArray::get(VMContext, Arr); 6412 } else { 6413 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6414 } 6415 6416 // Note: -fwritable-strings doesn't make the backing store strings of 6417 // CFStrings writable. 6418 auto *GV = 6419 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6420 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6421 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6422 // Don't enforce the target's minimum global alignment, since the only use 6423 // of the string is via this class initializer. 6424 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6425 : Context.getTypeAlignInChars(Context.CharTy); 6426 GV->setAlignment(Align.getAsAlign()); 6427 6428 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6429 // Without it LLVM can merge the string with a non unnamed_addr one during 6430 // LTO. Doing that changes the section it ends in, which surprises ld64. 6431 if (Triple.isOSBinFormatMachO()) 6432 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6433 : "__TEXT,__cstring,cstring_literals"); 6434 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6435 // the static linker to adjust permissions to read-only later on. 6436 else if (Triple.isOSBinFormatELF()) 6437 GV->setSection(".rodata"); 6438 6439 // String. 6440 Fields.add(GV); 6441 6442 // String length. 6443 llvm::IntegerType *LengthTy = 6444 llvm::IntegerType::get(getModule().getContext(), 6445 Context.getTargetInfo().getLongWidth()); 6446 if (IsSwiftABI) { 6447 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6448 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6449 LengthTy = Int32Ty; 6450 else 6451 LengthTy = IntPtrTy; 6452 } 6453 Fields.addInt(LengthTy, StringLength); 6454 6455 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6456 // properly aligned on 32-bit platforms. 6457 CharUnits Alignment = 6458 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6459 6460 // The struct. 6461 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6462 /*isConstant=*/false, 6463 llvm::GlobalVariable::PrivateLinkage); 6464 GV->addAttribute("objc_arc_inert"); 6465 switch (Triple.getObjectFormat()) { 6466 case llvm::Triple::UnknownObjectFormat: 6467 llvm_unreachable("unknown file format"); 6468 case llvm::Triple::DXContainer: 6469 case llvm::Triple::GOFF: 6470 case llvm::Triple::SPIRV: 6471 case llvm::Triple::XCOFF: 6472 llvm_unreachable("unimplemented"); 6473 case llvm::Triple::COFF: 6474 case llvm::Triple::ELF: 6475 case llvm::Triple::Wasm: 6476 GV->setSection("cfstring"); 6477 break; 6478 case llvm::Triple::MachO: 6479 GV->setSection("__DATA,__cfstring"); 6480 break; 6481 } 6482 Entry.second = GV; 6483 6484 return ConstantAddress(GV, GV->getValueType(), Alignment); 6485 } 6486 6487 bool CodeGenModule::getExpressionLocationsEnabled() const { 6488 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6489 } 6490 6491 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6492 if (ObjCFastEnumerationStateType.isNull()) { 6493 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6494 D->startDefinition(); 6495 6496 QualType FieldTypes[] = { 6497 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6498 Context.getPointerType(Context.UnsignedLongTy), 6499 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6500 nullptr, ArraySizeModifier::Normal, 0)}; 6501 6502 for (size_t i = 0; i < 4; ++i) { 6503 FieldDecl *Field = FieldDecl::Create(Context, 6504 D, 6505 SourceLocation(), 6506 SourceLocation(), nullptr, 6507 FieldTypes[i], /*TInfo=*/nullptr, 6508 /*BitWidth=*/nullptr, 6509 /*Mutable=*/false, 6510 ICIS_NoInit); 6511 Field->setAccess(AS_public); 6512 D->addDecl(Field); 6513 } 6514 6515 D->completeDefinition(); 6516 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6517 } 6518 6519 return ObjCFastEnumerationStateType; 6520 } 6521 6522 llvm::Constant * 6523 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6524 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6525 6526 // Don't emit it as the address of the string, emit the string data itself 6527 // as an inline array. 6528 if (E->getCharByteWidth() == 1) { 6529 SmallString<64> Str(E->getString()); 6530 6531 // Resize the string to the right size, which is indicated by its type. 6532 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6533 assert(CAT && "String literal not of constant array type!"); 6534 Str.resize(CAT->getZExtSize()); 6535 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6536 } 6537 6538 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6539 llvm::Type *ElemTy = AType->getElementType(); 6540 unsigned NumElements = AType->getNumElements(); 6541 6542 // Wide strings have either 2-byte or 4-byte elements. 6543 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6544 SmallVector<uint16_t, 32> Elements; 6545 Elements.reserve(NumElements); 6546 6547 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6548 Elements.push_back(E->getCodeUnit(i)); 6549 Elements.resize(NumElements); 6550 return llvm::ConstantDataArray::get(VMContext, Elements); 6551 } 6552 6553 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6554 SmallVector<uint32_t, 32> Elements; 6555 Elements.reserve(NumElements); 6556 6557 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6558 Elements.push_back(E->getCodeUnit(i)); 6559 Elements.resize(NumElements); 6560 return llvm::ConstantDataArray::get(VMContext, Elements); 6561 } 6562 6563 static llvm::GlobalVariable * 6564 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6565 CodeGenModule &CGM, StringRef GlobalName, 6566 CharUnits Alignment) { 6567 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6568 CGM.GetGlobalConstantAddressSpace()); 6569 6570 llvm::Module &M = CGM.getModule(); 6571 // Create a global variable for this string 6572 auto *GV = new llvm::GlobalVariable( 6573 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6574 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6575 GV->setAlignment(Alignment.getAsAlign()); 6576 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6577 if (GV->isWeakForLinker()) { 6578 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6579 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6580 } 6581 CGM.setDSOLocal(GV); 6582 6583 return GV; 6584 } 6585 6586 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6587 /// constant array for the given string literal. 6588 ConstantAddress 6589 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6590 StringRef Name) { 6591 CharUnits Alignment = 6592 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6593 6594 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6595 llvm::GlobalVariable **Entry = nullptr; 6596 if (!LangOpts.WritableStrings) { 6597 Entry = &ConstantStringMap[C]; 6598 if (auto GV = *Entry) { 6599 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6600 GV->setAlignment(Alignment.getAsAlign()); 6601 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6602 GV->getValueType(), Alignment); 6603 } 6604 } 6605 6606 SmallString<256> MangledNameBuffer; 6607 StringRef GlobalVariableName; 6608 llvm::GlobalValue::LinkageTypes LT; 6609 6610 // Mangle the string literal if that's how the ABI merges duplicate strings. 6611 // Don't do it if they are writable, since we don't want writes in one TU to 6612 // affect strings in another. 6613 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6614 !LangOpts.WritableStrings) { 6615 llvm::raw_svector_ostream Out(MangledNameBuffer); 6616 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6617 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6618 GlobalVariableName = MangledNameBuffer; 6619 } else { 6620 LT = llvm::GlobalValue::PrivateLinkage; 6621 GlobalVariableName = Name; 6622 } 6623 6624 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6625 6626 CGDebugInfo *DI = getModuleDebugInfo(); 6627 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6628 DI->AddStringLiteralDebugInfo(GV, S); 6629 6630 if (Entry) 6631 *Entry = GV; 6632 6633 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6634 6635 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6636 GV->getValueType(), Alignment); 6637 } 6638 6639 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6640 /// array for the given ObjCEncodeExpr node. 6641 ConstantAddress 6642 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6643 std::string Str; 6644 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6645 6646 return GetAddrOfConstantCString(Str); 6647 } 6648 6649 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6650 /// the literal and a terminating '\0' character. 6651 /// The result has pointer to array type. 6652 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6653 const std::string &Str, const char *GlobalName) { 6654 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6655 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6656 getContext().CharTy, /*VD=*/nullptr); 6657 6658 llvm::Constant *C = 6659 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6660 6661 // Don't share any string literals if strings aren't constant. 6662 llvm::GlobalVariable **Entry = nullptr; 6663 if (!LangOpts.WritableStrings) { 6664 Entry = &ConstantStringMap[C]; 6665 if (auto GV = *Entry) { 6666 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6667 GV->setAlignment(Alignment.getAsAlign()); 6668 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6669 GV->getValueType(), Alignment); 6670 } 6671 } 6672 6673 // Get the default prefix if a name wasn't specified. 6674 if (!GlobalName) 6675 GlobalName = ".str"; 6676 // Create a global variable for this. 6677 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6678 GlobalName, Alignment); 6679 if (Entry) 6680 *Entry = GV; 6681 6682 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6683 GV->getValueType(), Alignment); 6684 } 6685 6686 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6687 const MaterializeTemporaryExpr *E, const Expr *Init) { 6688 assert((E->getStorageDuration() == SD_Static || 6689 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6690 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6691 6692 // If we're not materializing a subobject of the temporary, keep the 6693 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6694 QualType MaterializedType = Init->getType(); 6695 if (Init == E->getSubExpr()) 6696 MaterializedType = E->getType(); 6697 6698 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6699 6700 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6701 if (!InsertResult.second) { 6702 // We've seen this before: either we already created it or we're in the 6703 // process of doing so. 6704 if (!InsertResult.first->second) { 6705 // We recursively re-entered this function, probably during emission of 6706 // the initializer. Create a placeholder. We'll clean this up in the 6707 // outer call, at the end of this function. 6708 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6709 InsertResult.first->second = new llvm::GlobalVariable( 6710 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6711 nullptr); 6712 } 6713 return ConstantAddress(InsertResult.first->second, 6714 llvm::cast<llvm::GlobalVariable>( 6715 InsertResult.first->second->stripPointerCasts()) 6716 ->getValueType(), 6717 Align); 6718 } 6719 6720 // FIXME: If an externally-visible declaration extends multiple temporaries, 6721 // we need to give each temporary the same name in every translation unit (and 6722 // we also need to make the temporaries externally-visible). 6723 SmallString<256> Name; 6724 llvm::raw_svector_ostream Out(Name); 6725 getCXXABI().getMangleContext().mangleReferenceTemporary( 6726 VD, E->getManglingNumber(), Out); 6727 6728 APValue *Value = nullptr; 6729 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6730 // If the initializer of the extending declaration is a constant 6731 // initializer, we should have a cached constant initializer for this 6732 // temporary. Note that this might have a different value from the value 6733 // computed by evaluating the initializer if the surrounding constant 6734 // expression modifies the temporary. 6735 Value = E->getOrCreateValue(false); 6736 } 6737 6738 // Try evaluating it now, it might have a constant initializer. 6739 Expr::EvalResult EvalResult; 6740 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6741 !EvalResult.hasSideEffects()) 6742 Value = &EvalResult.Val; 6743 6744 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6745 6746 std::optional<ConstantEmitter> emitter; 6747 llvm::Constant *InitialValue = nullptr; 6748 bool Constant = false; 6749 llvm::Type *Type; 6750 if (Value) { 6751 // The temporary has a constant initializer, use it. 6752 emitter.emplace(*this); 6753 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6754 MaterializedType); 6755 Constant = 6756 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6757 /*ExcludeDtor*/ false); 6758 Type = InitialValue->getType(); 6759 } else { 6760 // No initializer, the initialization will be provided when we 6761 // initialize the declaration which performed lifetime extension. 6762 Type = getTypes().ConvertTypeForMem(MaterializedType); 6763 } 6764 6765 // Create a global variable for this lifetime-extended temporary. 6766 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6767 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6768 const VarDecl *InitVD; 6769 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6770 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6771 // Temporaries defined inside a class get linkonce_odr linkage because the 6772 // class can be defined in multiple translation units. 6773 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6774 } else { 6775 // There is no need for this temporary to have external linkage if the 6776 // VarDecl has external linkage. 6777 Linkage = llvm::GlobalVariable::InternalLinkage; 6778 } 6779 } 6780 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6781 auto *GV = new llvm::GlobalVariable( 6782 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6783 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6784 if (emitter) emitter->finalize(GV); 6785 // Don't assign dllimport or dllexport to local linkage globals. 6786 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6787 setGVProperties(GV, VD); 6788 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6789 // The reference temporary should never be dllexport. 6790 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6791 } 6792 GV->setAlignment(Align.getAsAlign()); 6793 if (supportsCOMDAT() && GV->isWeakForLinker()) 6794 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6795 if (VD->getTLSKind()) 6796 setTLSMode(GV, *VD); 6797 llvm::Constant *CV = GV; 6798 if (AddrSpace != LangAS::Default) 6799 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6800 *this, GV, AddrSpace, LangAS::Default, 6801 llvm::PointerType::get( 6802 getLLVMContext(), 6803 getContext().getTargetAddressSpace(LangAS::Default))); 6804 6805 // Update the map with the new temporary. If we created a placeholder above, 6806 // replace it with the new global now. 6807 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6808 if (Entry) { 6809 Entry->replaceAllUsesWith(CV); 6810 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6811 } 6812 Entry = CV; 6813 6814 return ConstantAddress(CV, Type, Align); 6815 } 6816 6817 /// EmitObjCPropertyImplementations - Emit information for synthesized 6818 /// properties for an implementation. 6819 void CodeGenModule::EmitObjCPropertyImplementations(const 6820 ObjCImplementationDecl *D) { 6821 for (const auto *PID : D->property_impls()) { 6822 // Dynamic is just for type-checking. 6823 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6824 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6825 6826 // Determine which methods need to be implemented, some may have 6827 // been overridden. Note that ::isPropertyAccessor is not the method 6828 // we want, that just indicates if the decl came from a 6829 // property. What we want to know is if the method is defined in 6830 // this implementation. 6831 auto *Getter = PID->getGetterMethodDecl(); 6832 if (!Getter || Getter->isSynthesizedAccessorStub()) 6833 CodeGenFunction(*this).GenerateObjCGetter( 6834 const_cast<ObjCImplementationDecl *>(D), PID); 6835 auto *Setter = PID->getSetterMethodDecl(); 6836 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6837 CodeGenFunction(*this).GenerateObjCSetter( 6838 const_cast<ObjCImplementationDecl *>(D), PID); 6839 } 6840 } 6841 } 6842 6843 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6844 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6845 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6846 ivar; ivar = ivar->getNextIvar()) 6847 if (ivar->getType().isDestructedType()) 6848 return true; 6849 6850 return false; 6851 } 6852 6853 static bool AllTrivialInitializers(CodeGenModule &CGM, 6854 ObjCImplementationDecl *D) { 6855 CodeGenFunction CGF(CGM); 6856 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6857 E = D->init_end(); B != E; ++B) { 6858 CXXCtorInitializer *CtorInitExp = *B; 6859 Expr *Init = CtorInitExp->getInit(); 6860 if (!CGF.isTrivialInitializer(Init)) 6861 return false; 6862 } 6863 return true; 6864 } 6865 6866 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6867 /// for an implementation. 6868 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6869 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6870 if (needsDestructMethod(D)) { 6871 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6872 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6873 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6874 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6875 getContext().VoidTy, nullptr, D, 6876 /*isInstance=*/true, /*isVariadic=*/false, 6877 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6878 /*isImplicitlyDeclared=*/true, 6879 /*isDefined=*/false, ObjCImplementationControl::Required); 6880 D->addInstanceMethod(DTORMethod); 6881 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6882 D->setHasDestructors(true); 6883 } 6884 6885 // If the implementation doesn't have any ivar initializers, we don't need 6886 // a .cxx_construct. 6887 if (D->getNumIvarInitializers() == 0 || 6888 AllTrivialInitializers(*this, D)) 6889 return; 6890 6891 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6892 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6893 // The constructor returns 'self'. 6894 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6895 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6896 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6897 /*isVariadic=*/false, 6898 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6899 /*isImplicitlyDeclared=*/true, 6900 /*isDefined=*/false, ObjCImplementationControl::Required); 6901 D->addInstanceMethod(CTORMethod); 6902 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6903 D->setHasNonZeroConstructors(true); 6904 } 6905 6906 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6907 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6908 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6909 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6910 ErrorUnsupported(LSD, "linkage spec"); 6911 return; 6912 } 6913 6914 EmitDeclContext(LSD); 6915 } 6916 6917 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6918 // Device code should not be at top level. 6919 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6920 return; 6921 6922 std::unique_ptr<CodeGenFunction> &CurCGF = 6923 GlobalTopLevelStmtBlockInFlight.first; 6924 6925 // We emitted a top-level stmt but after it there is initialization. 6926 // Stop squashing the top-level stmts into a single function. 6927 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6928 CurCGF->FinishFunction(D->getEndLoc()); 6929 CurCGF = nullptr; 6930 } 6931 6932 if (!CurCGF) { 6933 // void __stmts__N(void) 6934 // FIXME: Ask the ABI name mangler to pick a name. 6935 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6936 FunctionArgList Args; 6937 QualType RetTy = getContext().VoidTy; 6938 const CGFunctionInfo &FnInfo = 6939 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6940 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6941 llvm::Function *Fn = llvm::Function::Create( 6942 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6943 6944 CurCGF.reset(new CodeGenFunction(*this)); 6945 GlobalTopLevelStmtBlockInFlight.second = D; 6946 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6947 D->getBeginLoc(), D->getBeginLoc()); 6948 CXXGlobalInits.push_back(Fn); 6949 } 6950 6951 CurCGF->EmitStmt(D->getStmt()); 6952 } 6953 6954 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6955 for (auto *I : DC->decls()) { 6956 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6957 // are themselves considered "top-level", so EmitTopLevelDecl on an 6958 // ObjCImplDecl does not recursively visit them. We need to do that in 6959 // case they're nested inside another construct (LinkageSpecDecl / 6960 // ExportDecl) that does stop them from being considered "top-level". 6961 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6962 for (auto *M : OID->methods()) 6963 EmitTopLevelDecl(M); 6964 } 6965 6966 EmitTopLevelDecl(I); 6967 } 6968 } 6969 6970 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6971 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6972 // Ignore dependent declarations. 6973 if (D->isTemplated()) 6974 return; 6975 6976 // Consteval function shouldn't be emitted. 6977 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6978 return; 6979 6980 switch (D->getKind()) { 6981 case Decl::CXXConversion: 6982 case Decl::CXXMethod: 6983 case Decl::Function: 6984 EmitGlobal(cast<FunctionDecl>(D)); 6985 // Always provide some coverage mapping 6986 // even for the functions that aren't emitted. 6987 AddDeferredUnusedCoverageMapping(D); 6988 break; 6989 6990 case Decl::CXXDeductionGuide: 6991 // Function-like, but does not result in code emission. 6992 break; 6993 6994 case Decl::Var: 6995 case Decl::Decomposition: 6996 case Decl::VarTemplateSpecialization: 6997 EmitGlobal(cast<VarDecl>(D)); 6998 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6999 for (auto *B : DD->bindings()) 7000 if (auto *HD = B->getHoldingVar()) 7001 EmitGlobal(HD); 7002 break; 7003 7004 // Indirect fields from global anonymous structs and unions can be 7005 // ignored; only the actual variable requires IR gen support. 7006 case Decl::IndirectField: 7007 break; 7008 7009 // C++ Decls 7010 case Decl::Namespace: 7011 EmitDeclContext(cast<NamespaceDecl>(D)); 7012 break; 7013 case Decl::ClassTemplateSpecialization: { 7014 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 7015 if (CGDebugInfo *DI = getModuleDebugInfo()) 7016 if (Spec->getSpecializationKind() == 7017 TSK_ExplicitInstantiationDefinition && 7018 Spec->hasDefinition()) 7019 DI->completeTemplateDefinition(*Spec); 7020 } [[fallthrough]]; 7021 case Decl::CXXRecord: { 7022 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 7023 if (CGDebugInfo *DI = getModuleDebugInfo()) { 7024 if (CRD->hasDefinition()) 7025 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7026 if (auto *ES = D->getASTContext().getExternalSource()) 7027 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 7028 DI->completeUnusedClass(*CRD); 7029 } 7030 // Emit any static data members, they may be definitions. 7031 for (auto *I : CRD->decls()) 7032 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 7033 EmitTopLevelDecl(I); 7034 break; 7035 } 7036 // No code generation needed. 7037 case Decl::UsingShadow: 7038 case Decl::ClassTemplate: 7039 case Decl::VarTemplate: 7040 case Decl::Concept: 7041 case Decl::VarTemplatePartialSpecialization: 7042 case Decl::FunctionTemplate: 7043 case Decl::TypeAliasTemplate: 7044 case Decl::Block: 7045 case Decl::Empty: 7046 case Decl::Binding: 7047 break; 7048 case Decl::Using: // using X; [C++] 7049 if (CGDebugInfo *DI = getModuleDebugInfo()) 7050 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 7051 break; 7052 case Decl::UsingEnum: // using enum X; [C++] 7053 if (CGDebugInfo *DI = getModuleDebugInfo()) 7054 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 7055 break; 7056 case Decl::NamespaceAlias: 7057 if (CGDebugInfo *DI = getModuleDebugInfo()) 7058 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 7059 break; 7060 case Decl::UsingDirective: // using namespace X; [C++] 7061 if (CGDebugInfo *DI = getModuleDebugInfo()) 7062 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 7063 break; 7064 case Decl::CXXConstructor: 7065 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 7066 break; 7067 case Decl::CXXDestructor: 7068 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 7069 break; 7070 7071 case Decl::StaticAssert: 7072 // Nothing to do. 7073 break; 7074 7075 // Objective-C Decls 7076 7077 // Forward declarations, no (immediate) code generation. 7078 case Decl::ObjCInterface: 7079 case Decl::ObjCCategory: 7080 break; 7081 7082 case Decl::ObjCProtocol: { 7083 auto *Proto = cast<ObjCProtocolDecl>(D); 7084 if (Proto->isThisDeclarationADefinition()) 7085 ObjCRuntime->GenerateProtocol(Proto); 7086 break; 7087 } 7088 7089 case Decl::ObjCCategoryImpl: 7090 // Categories have properties but don't support synthesize so we 7091 // can ignore them here. 7092 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 7093 break; 7094 7095 case Decl::ObjCImplementation: { 7096 auto *OMD = cast<ObjCImplementationDecl>(D); 7097 EmitObjCPropertyImplementations(OMD); 7098 EmitObjCIvarInitializations(OMD); 7099 ObjCRuntime->GenerateClass(OMD); 7100 // Emit global variable debug information. 7101 if (CGDebugInfo *DI = getModuleDebugInfo()) 7102 if (getCodeGenOpts().hasReducedDebugInfo()) 7103 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7104 OMD->getClassInterface()), OMD->getLocation()); 7105 break; 7106 } 7107 case Decl::ObjCMethod: { 7108 auto *OMD = cast<ObjCMethodDecl>(D); 7109 // If this is not a prototype, emit the body. 7110 if (OMD->getBody()) 7111 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7112 break; 7113 } 7114 case Decl::ObjCCompatibleAlias: 7115 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7116 break; 7117 7118 case Decl::PragmaComment: { 7119 const auto *PCD = cast<PragmaCommentDecl>(D); 7120 switch (PCD->getCommentKind()) { 7121 case PCK_Unknown: 7122 llvm_unreachable("unexpected pragma comment kind"); 7123 case PCK_Linker: 7124 AppendLinkerOptions(PCD->getArg()); 7125 break; 7126 case PCK_Lib: 7127 AddDependentLib(PCD->getArg()); 7128 break; 7129 case PCK_Compiler: 7130 case PCK_ExeStr: 7131 case PCK_User: 7132 break; // We ignore all of these. 7133 } 7134 break; 7135 } 7136 7137 case Decl::PragmaDetectMismatch: { 7138 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7139 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7140 break; 7141 } 7142 7143 case Decl::LinkageSpec: 7144 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7145 break; 7146 7147 case Decl::FileScopeAsm: { 7148 // File-scope asm is ignored during device-side CUDA compilation. 7149 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7150 break; 7151 // File-scope asm is ignored during device-side OpenMP compilation. 7152 if (LangOpts.OpenMPIsTargetDevice) 7153 break; 7154 // File-scope asm is ignored during device-side SYCL compilation. 7155 if (LangOpts.SYCLIsDevice) 7156 break; 7157 auto *AD = cast<FileScopeAsmDecl>(D); 7158 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7159 break; 7160 } 7161 7162 case Decl::TopLevelStmt: 7163 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7164 break; 7165 7166 case Decl::Import: { 7167 auto *Import = cast<ImportDecl>(D); 7168 7169 // If we've already imported this module, we're done. 7170 if (!ImportedModules.insert(Import->getImportedModule())) 7171 break; 7172 7173 // Emit debug information for direct imports. 7174 if (!Import->getImportedOwningModule()) { 7175 if (CGDebugInfo *DI = getModuleDebugInfo()) 7176 DI->EmitImportDecl(*Import); 7177 } 7178 7179 // For C++ standard modules we are done - we will call the module 7180 // initializer for imported modules, and that will likewise call those for 7181 // any imports it has. 7182 if (CXX20ModuleInits && Import->getImportedModule() && 7183 Import->getImportedModule()->isNamedModule()) 7184 break; 7185 7186 // For clang C++ module map modules the initializers for sub-modules are 7187 // emitted here. 7188 7189 // Find all of the submodules and emit the module initializers. 7190 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7191 SmallVector<clang::Module *, 16> Stack; 7192 Visited.insert(Import->getImportedModule()); 7193 Stack.push_back(Import->getImportedModule()); 7194 7195 while (!Stack.empty()) { 7196 clang::Module *Mod = Stack.pop_back_val(); 7197 if (!EmittedModuleInitializers.insert(Mod).second) 7198 continue; 7199 7200 for (auto *D : Context.getModuleInitializers(Mod)) 7201 EmitTopLevelDecl(D); 7202 7203 // Visit the submodules of this module. 7204 for (auto *Submodule : Mod->submodules()) { 7205 // Skip explicit children; they need to be explicitly imported to emit 7206 // the initializers. 7207 if (Submodule->IsExplicit) 7208 continue; 7209 7210 if (Visited.insert(Submodule).second) 7211 Stack.push_back(Submodule); 7212 } 7213 } 7214 break; 7215 } 7216 7217 case Decl::Export: 7218 EmitDeclContext(cast<ExportDecl>(D)); 7219 break; 7220 7221 case Decl::OMPThreadPrivate: 7222 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7223 break; 7224 7225 case Decl::OMPAllocate: 7226 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7227 break; 7228 7229 case Decl::OMPDeclareReduction: 7230 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7231 break; 7232 7233 case Decl::OMPDeclareMapper: 7234 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7235 break; 7236 7237 case Decl::OMPRequires: 7238 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7239 break; 7240 7241 case Decl::Typedef: 7242 case Decl::TypeAlias: // using foo = bar; [C++11] 7243 if (CGDebugInfo *DI = getModuleDebugInfo()) 7244 DI->EmitAndRetainType( 7245 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7246 break; 7247 7248 case Decl::Record: 7249 if (CGDebugInfo *DI = getModuleDebugInfo()) 7250 if (cast<RecordDecl>(D)->getDefinition()) 7251 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7252 break; 7253 7254 case Decl::Enum: 7255 if (CGDebugInfo *DI = getModuleDebugInfo()) 7256 if (cast<EnumDecl>(D)->getDefinition()) 7257 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7258 break; 7259 7260 case Decl::HLSLBuffer: 7261 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7262 break; 7263 7264 default: 7265 // Make sure we handled everything we should, every other kind is a 7266 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7267 // function. Need to recode Decl::Kind to do that easily. 7268 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7269 break; 7270 } 7271 } 7272 7273 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7274 // Do we need to generate coverage mapping? 7275 if (!CodeGenOpts.CoverageMapping) 7276 return; 7277 switch (D->getKind()) { 7278 case Decl::CXXConversion: 7279 case Decl::CXXMethod: 7280 case Decl::Function: 7281 case Decl::ObjCMethod: 7282 case Decl::CXXConstructor: 7283 case Decl::CXXDestructor: { 7284 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7285 break; 7286 SourceManager &SM = getContext().getSourceManager(); 7287 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7288 break; 7289 if (!llvm::coverage::SystemHeadersCoverage && 7290 SM.isInSystemHeader(D->getBeginLoc())) 7291 break; 7292 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7293 break; 7294 } 7295 default: 7296 break; 7297 }; 7298 } 7299 7300 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7301 // Do we need to generate coverage mapping? 7302 if (!CodeGenOpts.CoverageMapping) 7303 return; 7304 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7305 if (Fn->isTemplateInstantiation()) 7306 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7307 } 7308 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7309 } 7310 7311 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7312 // We call takeVector() here to avoid use-after-free. 7313 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7314 // we deserialize function bodies to emit coverage info for them, and that 7315 // deserializes more declarations. How should we handle that case? 7316 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7317 if (!Entry.second) 7318 continue; 7319 const Decl *D = Entry.first; 7320 switch (D->getKind()) { 7321 case Decl::CXXConversion: 7322 case Decl::CXXMethod: 7323 case Decl::Function: 7324 case Decl::ObjCMethod: { 7325 CodeGenPGO PGO(*this); 7326 GlobalDecl GD(cast<FunctionDecl>(D)); 7327 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7328 getFunctionLinkage(GD)); 7329 break; 7330 } 7331 case Decl::CXXConstructor: { 7332 CodeGenPGO PGO(*this); 7333 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7334 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7335 getFunctionLinkage(GD)); 7336 break; 7337 } 7338 case Decl::CXXDestructor: { 7339 CodeGenPGO PGO(*this); 7340 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7341 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7342 getFunctionLinkage(GD)); 7343 break; 7344 } 7345 default: 7346 break; 7347 }; 7348 } 7349 } 7350 7351 void CodeGenModule::EmitMainVoidAlias() { 7352 // In order to transition away from "__original_main" gracefully, emit an 7353 // alias for "main" in the no-argument case so that libc can detect when 7354 // new-style no-argument main is in used. 7355 if (llvm::Function *F = getModule().getFunction("main")) { 7356 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7357 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7358 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7359 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7360 } 7361 } 7362 } 7363 7364 /// Turns the given pointer into a constant. 7365 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7366 const void *Ptr) { 7367 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7368 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7369 return llvm::ConstantInt::get(i64, PtrInt); 7370 } 7371 7372 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7373 llvm::NamedMDNode *&GlobalMetadata, 7374 GlobalDecl D, 7375 llvm::GlobalValue *Addr) { 7376 if (!GlobalMetadata) 7377 GlobalMetadata = 7378 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7379 7380 // TODO: should we report variant information for ctors/dtors? 7381 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7382 llvm::ConstantAsMetadata::get(GetPointerConstant( 7383 CGM.getLLVMContext(), D.getDecl()))}; 7384 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7385 } 7386 7387 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7388 llvm::GlobalValue *CppFunc) { 7389 // Store the list of ifuncs we need to replace uses in. 7390 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7391 // List of ConstantExprs that we should be able to delete when we're done 7392 // here. 7393 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7394 7395 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7396 if (Elem == CppFunc) 7397 return false; 7398 7399 // First make sure that all users of this are ifuncs (or ifuncs via a 7400 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7401 // later. 7402 for (llvm::User *User : Elem->users()) { 7403 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7404 // ifunc directly. In any other case, just give up, as we don't know what we 7405 // could break by changing those. 7406 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7407 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7408 return false; 7409 7410 for (llvm::User *CEUser : ConstExpr->users()) { 7411 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7412 IFuncs.push_back(IFunc); 7413 } else { 7414 return false; 7415 } 7416 } 7417 CEs.push_back(ConstExpr); 7418 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7419 IFuncs.push_back(IFunc); 7420 } else { 7421 // This user is one we don't know how to handle, so fail redirection. This 7422 // will result in an ifunc retaining a resolver name that will ultimately 7423 // fail to be resolved to a defined function. 7424 return false; 7425 } 7426 } 7427 7428 // Now we know this is a valid case where we can do this alias replacement, we 7429 // need to remove all of the references to Elem (and the bitcasts!) so we can 7430 // delete it. 7431 for (llvm::GlobalIFunc *IFunc : IFuncs) 7432 IFunc->setResolver(nullptr); 7433 for (llvm::ConstantExpr *ConstExpr : CEs) 7434 ConstExpr->destroyConstant(); 7435 7436 // We should now be out of uses for the 'old' version of this function, so we 7437 // can erase it as well. 7438 Elem->eraseFromParent(); 7439 7440 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7441 // The type of the resolver is always just a function-type that returns the 7442 // type of the IFunc, so create that here. If the type of the actual 7443 // resolver doesn't match, it just gets bitcast to the right thing. 7444 auto *ResolverTy = 7445 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7446 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7447 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7448 IFunc->setResolver(Resolver); 7449 } 7450 return true; 7451 } 7452 7453 /// For each function which is declared within an extern "C" region and marked 7454 /// as 'used', but has internal linkage, create an alias from the unmangled 7455 /// name to the mangled name if possible. People expect to be able to refer 7456 /// to such functions with an unmangled name from inline assembly within the 7457 /// same translation unit. 7458 void CodeGenModule::EmitStaticExternCAliases() { 7459 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7460 return; 7461 for (auto &I : StaticExternCValues) { 7462 const IdentifierInfo *Name = I.first; 7463 llvm::GlobalValue *Val = I.second; 7464 7465 // If Val is null, that implies there were multiple declarations that each 7466 // had a claim to the unmangled name. In this case, generation of the alias 7467 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7468 if (!Val) 7469 break; 7470 7471 llvm::GlobalValue *ExistingElem = 7472 getModule().getNamedValue(Name->getName()); 7473 7474 // If there is either not something already by this name, or we were able to 7475 // replace all uses from IFuncs, create the alias. 7476 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7477 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7478 } 7479 } 7480 7481 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7482 GlobalDecl &Result) const { 7483 auto Res = Manglings.find(MangledName); 7484 if (Res == Manglings.end()) 7485 return false; 7486 Result = Res->getValue(); 7487 return true; 7488 } 7489 7490 /// Emits metadata nodes associating all the global values in the 7491 /// current module with the Decls they came from. This is useful for 7492 /// projects using IR gen as a subroutine. 7493 /// 7494 /// Since there's currently no way to associate an MDNode directly 7495 /// with an llvm::GlobalValue, we create a global named metadata 7496 /// with the name 'clang.global.decl.ptrs'. 7497 void CodeGenModule::EmitDeclMetadata() { 7498 llvm::NamedMDNode *GlobalMetadata = nullptr; 7499 7500 for (auto &I : MangledDeclNames) { 7501 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7502 // Some mangled names don't necessarily have an associated GlobalValue 7503 // in this module, e.g. if we mangled it for DebugInfo. 7504 if (Addr) 7505 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7506 } 7507 } 7508 7509 /// Emits metadata nodes for all the local variables in the current 7510 /// function. 7511 void CodeGenFunction::EmitDeclMetadata() { 7512 if (LocalDeclMap.empty()) return; 7513 7514 llvm::LLVMContext &Context = getLLVMContext(); 7515 7516 // Find the unique metadata ID for this name. 7517 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7518 7519 llvm::NamedMDNode *GlobalMetadata = nullptr; 7520 7521 for (auto &I : LocalDeclMap) { 7522 const Decl *D = I.first; 7523 llvm::Value *Addr = I.second.emitRawPointer(*this); 7524 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7525 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7526 Alloca->setMetadata( 7527 DeclPtrKind, llvm::MDNode::get( 7528 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7529 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7530 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7531 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7532 } 7533 } 7534 } 7535 7536 void CodeGenModule::EmitVersionIdentMetadata() { 7537 llvm::NamedMDNode *IdentMetadata = 7538 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7539 std::string Version = getClangFullVersion(); 7540 llvm::LLVMContext &Ctx = TheModule.getContext(); 7541 7542 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7543 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7544 } 7545 7546 void CodeGenModule::EmitCommandLineMetadata() { 7547 llvm::NamedMDNode *CommandLineMetadata = 7548 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7549 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7550 llvm::LLVMContext &Ctx = TheModule.getContext(); 7551 7552 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7553 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7554 } 7555 7556 void CodeGenModule::EmitCoverageFile() { 7557 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7558 if (!CUNode) 7559 return; 7560 7561 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7562 llvm::LLVMContext &Ctx = TheModule.getContext(); 7563 auto *CoverageDataFile = 7564 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7565 auto *CoverageNotesFile = 7566 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7567 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7568 llvm::MDNode *CU = CUNode->getOperand(i); 7569 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7570 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7571 } 7572 } 7573 7574 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7575 bool ForEH) { 7576 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7577 // FIXME: should we even be calling this method if RTTI is disabled 7578 // and it's not for EH? 7579 if (!shouldEmitRTTI(ForEH)) 7580 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7581 7582 if (ForEH && Ty->isObjCObjectPointerType() && 7583 LangOpts.ObjCRuntime.isGNUFamily()) 7584 return ObjCRuntime->GetEHType(Ty); 7585 7586 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7587 } 7588 7589 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7590 // Do not emit threadprivates in simd-only mode. 7591 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7592 return; 7593 for (auto RefExpr : D->varlist()) { 7594 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7595 bool PerformInit = 7596 VD->getAnyInitializer() && 7597 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7598 /*ForRef=*/false); 7599 7600 Address Addr(GetAddrOfGlobalVar(VD), 7601 getTypes().ConvertTypeForMem(VD->getType()), 7602 getContext().getDeclAlign(VD)); 7603 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7604 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7605 CXXGlobalInits.push_back(InitFunction); 7606 } 7607 } 7608 7609 llvm::Metadata * 7610 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7611 StringRef Suffix) { 7612 if (auto *FnType = T->getAs<FunctionProtoType>()) 7613 T = getContext().getFunctionType( 7614 FnType->getReturnType(), FnType->getParamTypes(), 7615 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7616 7617 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7618 if (InternalId) 7619 return InternalId; 7620 7621 if (isExternallyVisible(T->getLinkage())) { 7622 std::string OutName; 7623 llvm::raw_string_ostream Out(OutName); 7624 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7625 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7626 7627 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7628 Out << ".normalized"; 7629 7630 Out << Suffix; 7631 7632 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7633 } else { 7634 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7635 llvm::ArrayRef<llvm::Metadata *>()); 7636 } 7637 7638 return InternalId; 7639 } 7640 7641 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7642 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7643 } 7644 7645 llvm::Metadata * 7646 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7647 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7648 } 7649 7650 // Generalize pointer types to a void pointer with the qualifiers of the 7651 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7652 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7653 // 'void *'. 7654 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7655 if (!Ty->isPointerType()) 7656 return Ty; 7657 7658 return Ctx.getPointerType( 7659 QualType(Ctx.VoidTy).withCVRQualifiers( 7660 Ty->getPointeeType().getCVRQualifiers())); 7661 } 7662 7663 // Apply type generalization to a FunctionType's return and argument types 7664 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7665 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7666 SmallVector<QualType, 8> GeneralizedParams; 7667 for (auto &Param : FnType->param_types()) 7668 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7669 7670 return Ctx.getFunctionType( 7671 GeneralizeType(Ctx, FnType->getReturnType()), 7672 GeneralizedParams, FnType->getExtProtoInfo()); 7673 } 7674 7675 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7676 return Ctx.getFunctionNoProtoType( 7677 GeneralizeType(Ctx, FnType->getReturnType())); 7678 7679 llvm_unreachable("Encountered unknown FunctionType"); 7680 } 7681 7682 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7683 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7684 GeneralizedMetadataIdMap, ".generalized"); 7685 } 7686 7687 /// Returns whether this module needs the "all-vtables" type identifier. 7688 bool CodeGenModule::NeedAllVtablesTypeId() const { 7689 // Returns true if at least one of vtable-based CFI checkers is enabled and 7690 // is not in the trapping mode. 7691 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7692 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7693 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7694 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7695 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7696 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7697 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7698 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7699 } 7700 7701 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7702 CharUnits Offset, 7703 const CXXRecordDecl *RD) { 7704 llvm::Metadata *MD = 7705 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7706 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7707 7708 if (CodeGenOpts.SanitizeCfiCrossDso) 7709 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7710 VTable->addTypeMetadata(Offset.getQuantity(), 7711 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7712 7713 if (NeedAllVtablesTypeId()) { 7714 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7715 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7716 } 7717 } 7718 7719 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7720 if (!SanStats) 7721 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7722 7723 return *SanStats; 7724 } 7725 7726 llvm::Value * 7727 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7728 CodeGenFunction &CGF) { 7729 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7730 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7731 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7732 auto *Call = CGF.EmitRuntimeCall( 7733 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7734 return Call; 7735 } 7736 7737 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7738 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7739 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7740 /* forPointeeType= */ true); 7741 } 7742 7743 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7744 LValueBaseInfo *BaseInfo, 7745 TBAAAccessInfo *TBAAInfo, 7746 bool forPointeeType) { 7747 if (TBAAInfo) 7748 *TBAAInfo = getTBAAAccessInfo(T); 7749 7750 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7751 // that doesn't return the information we need to compute BaseInfo. 7752 7753 // Honor alignment typedef attributes even on incomplete types. 7754 // We also honor them straight for C++ class types, even as pointees; 7755 // there's an expressivity gap here. 7756 if (auto TT = T->getAs<TypedefType>()) { 7757 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7758 if (BaseInfo) 7759 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7760 return getContext().toCharUnitsFromBits(Align); 7761 } 7762 } 7763 7764 bool AlignForArray = T->isArrayType(); 7765 7766 // Analyze the base element type, so we don't get confused by incomplete 7767 // array types. 7768 T = getContext().getBaseElementType(T); 7769 7770 if (T->isIncompleteType()) { 7771 // We could try to replicate the logic from 7772 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7773 // type is incomplete, so it's impossible to test. We could try to reuse 7774 // getTypeAlignIfKnown, but that doesn't return the information we need 7775 // to set BaseInfo. So just ignore the possibility that the alignment is 7776 // greater than one. 7777 if (BaseInfo) 7778 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7779 return CharUnits::One(); 7780 } 7781 7782 if (BaseInfo) 7783 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7784 7785 CharUnits Alignment; 7786 const CXXRecordDecl *RD; 7787 if (T.getQualifiers().hasUnaligned()) { 7788 Alignment = CharUnits::One(); 7789 } else if (forPointeeType && !AlignForArray && 7790 (RD = T->getAsCXXRecordDecl())) { 7791 // For C++ class pointees, we don't know whether we're pointing at a 7792 // base or a complete object, so we generally need to use the 7793 // non-virtual alignment. 7794 Alignment = getClassPointerAlignment(RD); 7795 } else { 7796 Alignment = getContext().getTypeAlignInChars(T); 7797 } 7798 7799 // Cap to the global maximum type alignment unless the alignment 7800 // was somehow explicit on the type. 7801 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7802 if (Alignment.getQuantity() > MaxAlign && 7803 !getContext().isAlignmentRequired(T)) 7804 Alignment = CharUnits::fromQuantity(MaxAlign); 7805 } 7806 return Alignment; 7807 } 7808 7809 bool CodeGenModule::stopAutoInit() { 7810 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7811 if (StopAfter) { 7812 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7813 // used 7814 if (NumAutoVarInit >= StopAfter) { 7815 return true; 7816 } 7817 if (!NumAutoVarInit) { 7818 unsigned DiagID = getDiags().getCustomDiagID( 7819 DiagnosticsEngine::Warning, 7820 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7821 "number of times ftrivial-auto-var-init=%1 gets applied."); 7822 getDiags().Report(DiagID) 7823 << StopAfter 7824 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7825 LangOptions::TrivialAutoVarInitKind::Zero 7826 ? "zero" 7827 : "pattern"); 7828 } 7829 ++NumAutoVarInit; 7830 } 7831 return false; 7832 } 7833 7834 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7835 const Decl *D) const { 7836 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7837 // postfix beginning with '.' since the symbol name can be demangled. 7838 if (LangOpts.HIP) 7839 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7840 else 7841 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7842 7843 // If the CUID is not specified we try to generate a unique postfix. 7844 if (getLangOpts().CUID.empty()) { 7845 SourceManager &SM = getContext().getSourceManager(); 7846 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7847 assert(PLoc.isValid() && "Source location is expected to be valid."); 7848 7849 // Get the hash of the user defined macros. 7850 llvm::MD5 Hash; 7851 llvm::MD5::MD5Result Result; 7852 for (const auto &Arg : PreprocessorOpts.Macros) 7853 Hash.update(Arg.first); 7854 Hash.final(Result); 7855 7856 // Get the UniqueID for the file containing the decl. 7857 llvm::sys::fs::UniqueID ID; 7858 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7859 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7860 assert(PLoc.isValid() && "Source location is expected to be valid."); 7861 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7862 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7863 << PLoc.getFilename() << EC.message(); 7864 } 7865 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7866 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7867 } else { 7868 OS << getContext().getCUIDHash(); 7869 } 7870 } 7871 7872 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7873 assert(DeferredDeclsToEmit.empty() && 7874 "Should have emitted all decls deferred to emit."); 7875 assert(NewBuilder->DeferredDecls.empty() && 7876 "Newly created module should not have deferred decls"); 7877 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7878 assert(EmittedDeferredDecls.empty() && 7879 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7880 7881 assert(NewBuilder->DeferredVTables.empty() && 7882 "Newly created module should not have deferred vtables"); 7883 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7884 7885 assert(NewBuilder->MangledDeclNames.empty() && 7886 "Newly created module should not have mangled decl names"); 7887 assert(NewBuilder->Manglings.empty() && 7888 "Newly created module should not have manglings"); 7889 NewBuilder->Manglings = std::move(Manglings); 7890 7891 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7892 7893 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7894 } 7895