1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/DeclCXX.h" 34 #include "clang/AST/DeclObjC.h" 35 #include "clang/AST/DeclTemplate.h" 36 #include "clang/AST/Mangle.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/AST/StmtVisitor.h" 39 #include "clang/Basic/Builtins.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/CodeGenOptions.h" 42 #include "clang/Basic/Diagnostic.h" 43 #include "clang/Basic/FileManager.h" 44 #include "clang/Basic/Module.h" 45 #include "clang/Basic/SourceManager.h" 46 #include "clang/Basic/TargetInfo.h" 47 #include "clang/Basic/Version.h" 48 #include "clang/CodeGen/BackendUtil.h" 49 #include "clang/CodeGen/ConstantInitBuilder.h" 50 #include "clang/Frontend/FrontendDiagnostic.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/StringExtras.h" 53 #include "llvm/ADT/StringSwitch.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/AttributeMask.h" 57 #include "llvm/IR/CallingConv.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/ProfileSummary.h" 63 #include "llvm/ProfileData/InstrProfReader.h" 64 #include "llvm/ProfileData/SampleProf.h" 65 #include "llvm/Support/CRC.h" 66 #include "llvm/Support/CodeGen.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/ConvertUTF.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/Support/xxhash.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/TargetParser/X86TargetParser.h" 74 #include <optional> 75 76 using namespace clang; 77 using namespace CodeGen; 78 79 static llvm::cl::opt<bool> LimitedCoverage( 80 "limited-coverage-experimental", llvm::cl::Hidden, 81 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 82 83 static const char AnnotationSection[] = "llvm.metadata"; 84 85 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 86 switch (CGM.getContext().getCXXABIKind()) { 87 case TargetCXXABI::AppleARM64: 88 case TargetCXXABI::Fuchsia: 89 case TargetCXXABI::GenericAArch64: 90 case TargetCXXABI::GenericARM: 91 case TargetCXXABI::iOS: 92 case TargetCXXABI::WatchOS: 93 case TargetCXXABI::GenericMIPS: 94 case TargetCXXABI::GenericItanium: 95 case TargetCXXABI::WebAssembly: 96 case TargetCXXABI::XL: 97 return CreateItaniumCXXABI(CGM); 98 case TargetCXXABI::Microsoft: 99 return CreateMicrosoftCXXABI(CGM); 100 } 101 102 llvm_unreachable("invalid C++ ABI kind"); 103 } 104 105 static std::unique_ptr<TargetCodeGenInfo> 106 createTargetCodeGenInfo(CodeGenModule &CGM) { 107 const TargetInfo &Target = CGM.getTarget(); 108 const llvm::Triple &Triple = Target.getTriple(); 109 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 110 111 switch (Triple.getArch()) { 112 default: 113 return createDefaultTargetCodeGenInfo(CGM); 114 115 case llvm::Triple::le32: 116 return createPNaClTargetCodeGenInfo(CGM); 117 case llvm::Triple::m68k: 118 return createM68kTargetCodeGenInfo(CGM); 119 case llvm::Triple::mips: 120 case llvm::Triple::mipsel: 121 if (Triple.getOS() == llvm::Triple::NaCl) 122 return createPNaClTargetCodeGenInfo(CGM); 123 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 124 125 case llvm::Triple::mips64: 126 case llvm::Triple::mips64el: 127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 128 129 case llvm::Triple::avr: { 130 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 131 // on avrtiny. For passing return value, R18~R25 are used on avr, and 132 // R22~R25 are used on avrtiny. 133 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 134 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 135 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 136 } 137 138 case llvm::Triple::aarch64: 139 case llvm::Triple::aarch64_32: 140 case llvm::Triple::aarch64_be: { 141 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 142 if (Target.getABI() == "darwinpcs") 143 Kind = AArch64ABIKind::DarwinPCS; 144 else if (Triple.isOSWindows()) 145 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 146 147 return createAArch64TargetCodeGenInfo(CGM, Kind); 148 } 149 150 case llvm::Triple::wasm32: 151 case llvm::Triple::wasm64: { 152 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 153 if (Target.getABI() == "experimental-mv") 154 Kind = WebAssemblyABIKind::ExperimentalMV; 155 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 156 } 157 158 case llvm::Triple::arm: 159 case llvm::Triple::armeb: 160 case llvm::Triple::thumb: 161 case llvm::Triple::thumbeb: { 162 if (Triple.getOS() == llvm::Triple::Win32) 163 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 164 165 ARMABIKind Kind = ARMABIKind::AAPCS; 166 StringRef ABIStr = Target.getABI(); 167 if (ABIStr == "apcs-gnu") 168 Kind = ARMABIKind::APCS; 169 else if (ABIStr == "aapcs16") 170 Kind = ARMABIKind::AAPCS16_VFP; 171 else if (CodeGenOpts.FloatABI == "hard" || 172 (CodeGenOpts.FloatABI != "soft" && 173 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 174 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 175 Triple.getEnvironment() == llvm::Triple::EABIHF))) 176 Kind = ARMABIKind::AAPCS_VFP; 177 178 return createARMTargetCodeGenInfo(CGM, Kind); 179 } 180 181 case llvm::Triple::ppc: { 182 if (Triple.isOSAIX()) 183 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 184 185 bool IsSoftFloat = 186 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 187 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 188 } 189 case llvm::Triple::ppcle: { 190 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 191 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 192 } 193 case llvm::Triple::ppc64: 194 if (Triple.isOSAIX()) 195 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 196 197 if (Triple.isOSBinFormatELF()) { 198 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 199 if (Target.getABI() == "elfv2") 200 Kind = PPC64_SVR4_ABIKind::ELFv2; 201 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 202 203 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 204 } 205 return createPPC64TargetCodeGenInfo(CGM); 206 case llvm::Triple::ppc64le: { 207 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 208 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 209 if (Target.getABI() == "elfv1") 210 Kind = PPC64_SVR4_ABIKind::ELFv1; 211 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 212 213 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 214 } 215 216 case llvm::Triple::nvptx: 217 case llvm::Triple::nvptx64: 218 return createNVPTXTargetCodeGenInfo(CGM); 219 220 case llvm::Triple::msp430: 221 return createMSP430TargetCodeGenInfo(CGM); 222 223 case llvm::Triple::riscv32: 224 case llvm::Triple::riscv64: { 225 StringRef ABIStr = Target.getABI(); 226 unsigned XLen = Target.getPointerWidth(LangAS::Default); 227 unsigned ABIFLen = 0; 228 if (ABIStr.ends_with("f")) 229 ABIFLen = 32; 230 else if (ABIStr.ends_with("d")) 231 ABIFLen = 64; 232 bool EABI = ABIStr.ends_with("e"); 233 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 234 } 235 236 case llvm::Triple::systemz: { 237 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 238 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 239 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 240 } 241 242 case llvm::Triple::tce: 243 case llvm::Triple::tcele: 244 return createTCETargetCodeGenInfo(CGM); 245 246 case llvm::Triple::x86: { 247 bool IsDarwinVectorABI = Triple.isOSDarwin(); 248 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 249 250 if (Triple.getOS() == llvm::Triple::Win32) { 251 return createWinX86_32TargetCodeGenInfo( 252 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 253 CodeGenOpts.NumRegisterParameters); 254 } 255 return createX86_32TargetCodeGenInfo( 256 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 257 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 258 } 259 260 case llvm::Triple::x86_64: { 261 StringRef ABI = Target.getABI(); 262 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 263 : ABI == "avx" ? X86AVXABILevel::AVX 264 : X86AVXABILevel::None); 265 266 switch (Triple.getOS()) { 267 case llvm::Triple::Win32: 268 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 default: 270 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 271 } 272 } 273 case llvm::Triple::hexagon: 274 return createHexagonTargetCodeGenInfo(CGM); 275 case llvm::Triple::lanai: 276 return createLanaiTargetCodeGenInfo(CGM); 277 case llvm::Triple::r600: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::amdgcn: 280 return createAMDGPUTargetCodeGenInfo(CGM); 281 case llvm::Triple::sparc: 282 return createSparcV8TargetCodeGenInfo(CGM); 283 case llvm::Triple::sparcv9: 284 return createSparcV9TargetCodeGenInfo(CGM); 285 case llvm::Triple::xcore: 286 return createXCoreTargetCodeGenInfo(CGM); 287 case llvm::Triple::arc: 288 return createARCTargetCodeGenInfo(CGM); 289 case llvm::Triple::spir: 290 case llvm::Triple::spir64: 291 return createCommonSPIRTargetCodeGenInfo(CGM); 292 case llvm::Triple::spirv32: 293 case llvm::Triple::spirv64: 294 return createSPIRVTargetCodeGenInfo(CGM); 295 case llvm::Triple::ve: 296 return createVETargetCodeGenInfo(CGM); 297 case llvm::Triple::csky: { 298 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 299 bool hasFP64 = 300 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 301 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 302 : hasFP64 ? 64 303 : 32); 304 } 305 case llvm::Triple::bpfeb: 306 case llvm::Triple::bpfel: 307 return createBPFTargetCodeGenInfo(CGM); 308 case llvm::Triple::loongarch32: 309 case llvm::Triple::loongarch64: { 310 StringRef ABIStr = Target.getABI(); 311 unsigned ABIFRLen = 0; 312 if (ABIStr.ends_with("f")) 313 ABIFRLen = 32; 314 else if (ABIStr.ends_with("d")) 315 ABIFRLen = 64; 316 return createLoongArchTargetCodeGenInfo( 317 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 318 } 319 } 320 } 321 322 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 323 if (!TheTargetCodeGenInfo) 324 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 325 return *TheTargetCodeGenInfo; 326 } 327 328 CodeGenModule::CodeGenModule(ASTContext &C, 329 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 330 const HeaderSearchOptions &HSO, 331 const PreprocessorOptions &PPO, 332 const CodeGenOptions &CGO, llvm::Module &M, 333 DiagnosticsEngine &diags, 334 CoverageSourceInfo *CoverageInfo) 335 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 336 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 337 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 338 VMContext(M.getContext()), Types(*this), VTables(*this), 339 SanitizerMD(new SanitizerMetadata(*this)) { 340 341 // Initialize the type cache. 342 llvm::LLVMContext &LLVMContext = M.getContext(); 343 VoidTy = llvm::Type::getVoidTy(LLVMContext); 344 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 345 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 346 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 347 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 348 HalfTy = llvm::Type::getHalfTy(LLVMContext); 349 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 350 FloatTy = llvm::Type::getFloatTy(LLVMContext); 351 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 352 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 353 PointerAlignInBytes = 354 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 355 .getQuantity(); 356 SizeSizeInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 358 IntAlignInBytes = 359 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 360 CharTy = 361 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 362 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 363 IntPtrTy = llvm::IntegerType::get(LLVMContext, 364 C.getTargetInfo().getMaxPointerWidth()); 365 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 366 const llvm::DataLayout &DL = M.getDataLayout(); 367 AllocaInt8PtrTy = 368 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 369 GlobalsInt8PtrTy = 370 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 371 ConstGlobalsPtrTy = llvm::PointerType::get( 372 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 373 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 374 375 // Build C++20 Module initializers. 376 // TODO: Add Microsoft here once we know the mangling required for the 377 // initializers. 378 CXX20ModuleInits = 379 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 380 ItaniumMangleContext::MK_Itanium; 381 382 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 383 384 if (LangOpts.ObjC) 385 createObjCRuntime(); 386 if (LangOpts.OpenCL) 387 createOpenCLRuntime(); 388 if (LangOpts.OpenMP) 389 createOpenMPRuntime(); 390 if (LangOpts.CUDA) 391 createCUDARuntime(); 392 if (LangOpts.HLSL) 393 createHLSLRuntime(); 394 395 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 396 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 397 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 398 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 399 getCXXABI().getMangleContext())); 400 401 // If debug info or coverage generation is enabled, create the CGDebugInfo 402 // object. 403 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 404 CodeGenOpts.CoverageNotesFile.size() || 405 CodeGenOpts.CoverageDataFile.size()) 406 DebugInfo.reset(new CGDebugInfo(*this)); 407 408 Block.GlobalUniqueCount = 0; 409 410 if (C.getLangOpts().ObjC) 411 ObjCData.reset(new ObjCEntrypoints()); 412 413 if (CodeGenOpts.hasProfileClangUse()) { 414 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 415 CodeGenOpts.ProfileInstrumentUsePath, *FS, 416 CodeGenOpts.ProfileRemappingFile); 417 // We're checking for profile read errors in CompilerInvocation, so if 418 // there was an error it should've already been caught. If it hasn't been 419 // somehow, trip an assertion. 420 assert(ReaderOrErr); 421 PGOReader = std::move(ReaderOrErr.get()); 422 } 423 424 // If coverage mapping generation is enabled, create the 425 // CoverageMappingModuleGen object. 426 if (CodeGenOpts.CoverageMapping) 427 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 428 429 // Generate the module name hash here if needed. 430 if (CodeGenOpts.UniqueInternalLinkageNames && 431 !getModule().getSourceFileName().empty()) { 432 std::string Path = getModule().getSourceFileName(); 433 // Check if a path substitution is needed from the MacroPrefixMap. 434 for (const auto &Entry : LangOpts.MacroPrefixMap) 435 if (Path.rfind(Entry.first, 0) != std::string::npos) { 436 Path = Entry.second + Path.substr(Entry.first.size()); 437 break; 438 } 439 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 440 } 441 } 442 443 CodeGenModule::~CodeGenModule() {} 444 445 void CodeGenModule::createObjCRuntime() { 446 // This is just isGNUFamily(), but we want to force implementors of 447 // new ABIs to decide how best to do this. 448 switch (LangOpts.ObjCRuntime.getKind()) { 449 case ObjCRuntime::GNUstep: 450 case ObjCRuntime::GCC: 451 case ObjCRuntime::ObjFW: 452 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 453 return; 454 455 case ObjCRuntime::FragileMacOSX: 456 case ObjCRuntime::MacOSX: 457 case ObjCRuntime::iOS: 458 case ObjCRuntime::WatchOS: 459 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 460 return; 461 } 462 llvm_unreachable("bad runtime kind"); 463 } 464 465 void CodeGenModule::createOpenCLRuntime() { 466 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 467 } 468 469 void CodeGenModule::createOpenMPRuntime() { 470 // Select a specialized code generation class based on the target, if any. 471 // If it does not exist use the default implementation. 472 switch (getTriple().getArch()) { 473 case llvm::Triple::nvptx: 474 case llvm::Triple::nvptx64: 475 case llvm::Triple::amdgcn: 476 assert(getLangOpts().OpenMPIsTargetDevice && 477 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 478 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 479 break; 480 default: 481 if (LangOpts.OpenMPSimd) 482 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 483 else 484 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 485 break; 486 } 487 } 488 489 void CodeGenModule::createCUDARuntime() { 490 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 491 } 492 493 void CodeGenModule::createHLSLRuntime() { 494 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 495 } 496 497 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 498 Replacements[Name] = C; 499 } 500 501 void CodeGenModule::applyReplacements() { 502 for (auto &I : Replacements) { 503 StringRef MangledName = I.first; 504 llvm::Constant *Replacement = I.second; 505 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 506 if (!Entry) 507 continue; 508 auto *OldF = cast<llvm::Function>(Entry); 509 auto *NewF = dyn_cast<llvm::Function>(Replacement); 510 if (!NewF) { 511 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 512 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 513 } else { 514 auto *CE = cast<llvm::ConstantExpr>(Replacement); 515 assert(CE->getOpcode() == llvm::Instruction::BitCast || 516 CE->getOpcode() == llvm::Instruction::GetElementPtr); 517 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 518 } 519 } 520 521 // Replace old with new, but keep the old order. 522 OldF->replaceAllUsesWith(Replacement); 523 if (NewF) { 524 NewF->removeFromParent(); 525 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 526 NewF); 527 } 528 OldF->eraseFromParent(); 529 } 530 } 531 532 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 533 GlobalValReplacements.push_back(std::make_pair(GV, C)); 534 } 535 536 void CodeGenModule::applyGlobalValReplacements() { 537 for (auto &I : GlobalValReplacements) { 538 llvm::GlobalValue *GV = I.first; 539 llvm::Constant *C = I.second; 540 541 GV->replaceAllUsesWith(C); 542 GV->eraseFromParent(); 543 } 544 } 545 546 // This is only used in aliases that we created and we know they have a 547 // linear structure. 548 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 549 const llvm::Constant *C; 550 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 551 C = GA->getAliasee(); 552 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 553 C = GI->getResolver(); 554 else 555 return GV; 556 557 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 558 if (!AliaseeGV) 559 return nullptr; 560 561 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 562 if (FinalGV == GV) 563 return nullptr; 564 565 return FinalGV; 566 } 567 568 static bool checkAliasedGlobal( 569 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 570 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 571 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 572 SourceRange AliasRange) { 573 GV = getAliasedGlobal(Alias); 574 if (!GV) { 575 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 576 return false; 577 } 578 579 if (GV->hasCommonLinkage()) { 580 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 581 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 582 Diags.Report(Location, diag::err_alias_to_common); 583 return false; 584 } 585 } 586 587 if (GV->isDeclaration()) { 588 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 589 Diags.Report(Location, diag::note_alias_requires_mangled_name) 590 << IsIFunc << IsIFunc; 591 // Provide a note if the given function is not found and exists as a 592 // mangled name. 593 for (const auto &[Decl, Name] : MangledDeclNames) { 594 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 595 if (ND->getName() == GV->getName()) { 596 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 597 << Name 598 << FixItHint::CreateReplacement( 599 AliasRange, 600 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 601 .str()); 602 } 603 } 604 } 605 return false; 606 } 607 608 if (IsIFunc) { 609 // Check resolver function type. 610 const auto *F = dyn_cast<llvm::Function>(GV); 611 if (!F) { 612 Diags.Report(Location, diag::err_alias_to_undefined) 613 << IsIFunc << IsIFunc; 614 return false; 615 } 616 617 llvm::FunctionType *FTy = F->getFunctionType(); 618 if (!FTy->getReturnType()->isPointerTy()) { 619 Diags.Report(Location, diag::err_ifunc_resolver_return); 620 return false; 621 } 622 } 623 624 return true; 625 } 626 627 void CodeGenModule::checkAliases() { 628 // Check if the constructed aliases are well formed. It is really unfortunate 629 // that we have to do this in CodeGen, but we only construct mangled names 630 // and aliases during codegen. 631 bool Error = false; 632 DiagnosticsEngine &Diags = getDiags(); 633 for (const GlobalDecl &GD : Aliases) { 634 const auto *D = cast<ValueDecl>(GD.getDecl()); 635 SourceLocation Location; 636 SourceRange Range; 637 bool IsIFunc = D->hasAttr<IFuncAttr>(); 638 if (const Attr *A = D->getDefiningAttr()) { 639 Location = A->getLocation(); 640 Range = A->getRange(); 641 } else 642 llvm_unreachable("Not an alias or ifunc?"); 643 644 StringRef MangledName = getMangledName(GD); 645 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 646 const llvm::GlobalValue *GV = nullptr; 647 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 648 MangledDeclNames, Range)) { 649 Error = true; 650 continue; 651 } 652 653 llvm::Constant *Aliasee = 654 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 655 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 656 657 llvm::GlobalValue *AliaseeGV; 658 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 659 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 660 else 661 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 662 663 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 664 StringRef AliasSection = SA->getName(); 665 if (AliasSection != AliaseeGV->getSection()) 666 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 667 << AliasSection << IsIFunc << IsIFunc; 668 } 669 670 // We have to handle alias to weak aliases in here. LLVM itself disallows 671 // this since the object semantics would not match the IL one. For 672 // compatibility with gcc we implement it by just pointing the alias 673 // to its aliasee's aliasee. We also warn, since the user is probably 674 // expecting the link to be weak. 675 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 676 if (GA->isInterposable()) { 677 Diags.Report(Location, diag::warn_alias_to_weak_alias) 678 << GV->getName() << GA->getName() << IsIFunc; 679 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 680 GA->getAliasee(), Alias->getType()); 681 682 if (IsIFunc) 683 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 684 else 685 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 686 } 687 } 688 } 689 if (!Error) 690 return; 691 692 for (const GlobalDecl &GD : Aliases) { 693 StringRef MangledName = getMangledName(GD); 694 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 695 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 696 Alias->eraseFromParent(); 697 } 698 } 699 700 void CodeGenModule::clear() { 701 DeferredDeclsToEmit.clear(); 702 EmittedDeferredDecls.clear(); 703 DeferredAnnotations.clear(); 704 if (OpenMPRuntime) 705 OpenMPRuntime->clear(); 706 } 707 708 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 709 StringRef MainFile) { 710 if (!hasDiagnostics()) 711 return; 712 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 713 if (MainFile.empty()) 714 MainFile = "<stdin>"; 715 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 716 } else { 717 if (Mismatched > 0) 718 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 719 720 if (Missing > 0) 721 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 722 } 723 } 724 725 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 726 llvm::Module &M) { 727 if (!LO.VisibilityFromDLLStorageClass) 728 return; 729 730 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 731 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 732 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 733 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 734 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 735 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 736 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 737 CodeGenModule::GetLLVMVisibility( 738 LO.getExternDeclNoDLLStorageClassVisibility()); 739 740 for (llvm::GlobalValue &GV : M.global_values()) { 741 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 742 continue; 743 744 // Reset DSO locality before setting the visibility. This removes 745 // any effects that visibility options and annotations may have 746 // had on the DSO locality. Setting the visibility will implicitly set 747 // appropriate globals to DSO Local; however, this will be pessimistic 748 // w.r.t. to the normal compiler IRGen. 749 GV.setDSOLocal(false); 750 751 if (GV.isDeclarationForLinker()) { 752 GV.setVisibility(GV.getDLLStorageClass() == 753 llvm::GlobalValue::DLLImportStorageClass 754 ? ExternDeclDLLImportVisibility 755 : ExternDeclNoDLLStorageClassVisibility); 756 } else { 757 GV.setVisibility(GV.getDLLStorageClass() == 758 llvm::GlobalValue::DLLExportStorageClass 759 ? DLLExportVisibility 760 : NoDLLStorageClassVisibility); 761 } 762 763 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 764 } 765 } 766 767 static bool isStackProtectorOn(const LangOptions &LangOpts, 768 const llvm::Triple &Triple, 769 clang::LangOptions::StackProtectorMode Mode) { 770 if (Triple.isAMDGPU() || Triple.isNVPTX()) 771 return false; 772 return LangOpts.getStackProtector() == Mode; 773 } 774 775 void CodeGenModule::Release() { 776 Module *Primary = getContext().getCurrentNamedModule(); 777 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 778 EmitModuleInitializers(Primary); 779 EmitDeferred(); 780 DeferredDecls.insert(EmittedDeferredDecls.begin(), 781 EmittedDeferredDecls.end()); 782 EmittedDeferredDecls.clear(); 783 EmitVTablesOpportunistically(); 784 applyGlobalValReplacements(); 785 applyReplacements(); 786 emitMultiVersionFunctions(); 787 788 if (Context.getLangOpts().IncrementalExtensions && 789 GlobalTopLevelStmtBlockInFlight.first) { 790 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 791 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 792 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 793 } 794 795 // Module implementations are initialized the same way as a regular TU that 796 // imports one or more modules. 797 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 798 EmitCXXModuleInitFunc(Primary); 799 else 800 EmitCXXGlobalInitFunc(); 801 EmitCXXGlobalCleanUpFunc(); 802 registerGlobalDtorsWithAtExit(); 803 EmitCXXThreadLocalInitFunc(); 804 if (ObjCRuntime) 805 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 806 AddGlobalCtor(ObjCInitFunction); 807 if (Context.getLangOpts().CUDA && CUDARuntime) { 808 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 809 AddGlobalCtor(CudaCtorFunction); 810 } 811 if (OpenMPRuntime) { 812 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 813 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 814 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 815 } 816 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 817 OpenMPRuntime->clear(); 818 } 819 if (PGOReader) { 820 getModule().setProfileSummary( 821 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 822 llvm::ProfileSummary::PSK_Instr); 823 if (PGOStats.hasDiagnostics()) 824 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 825 } 826 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 827 return L.LexOrder < R.LexOrder; 828 }); 829 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 830 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 831 EmitGlobalAnnotations(); 832 EmitStaticExternCAliases(); 833 checkAliases(); 834 EmitDeferredUnusedCoverageMappings(); 835 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 836 if (CoverageMapping) 837 CoverageMapping->emit(); 838 if (CodeGenOpts.SanitizeCfiCrossDso) { 839 CodeGenFunction(*this).EmitCfiCheckFail(); 840 CodeGenFunction(*this).EmitCfiCheckStub(); 841 } 842 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 843 finalizeKCFITypes(); 844 emitAtAvailableLinkGuard(); 845 if (Context.getTargetInfo().getTriple().isWasm()) 846 EmitMainVoidAlias(); 847 848 if (getTriple().isAMDGPU()) { 849 // Emit amdgpu_code_object_version module flag, which is code object version 850 // times 100. 851 if (getTarget().getTargetOpts().CodeObjectVersion != 852 llvm::CodeObjectVersionKind::COV_None) { 853 getModule().addModuleFlag(llvm::Module::Error, 854 "amdgpu_code_object_version", 855 getTarget().getTargetOpts().CodeObjectVersion); 856 } 857 858 // Currently, "-mprintf-kind" option is only supported for HIP 859 if (LangOpts.HIP) { 860 auto *MDStr = llvm::MDString::get( 861 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 862 TargetOptions::AMDGPUPrintfKind::Hostcall) 863 ? "hostcall" 864 : "buffered"); 865 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 866 MDStr); 867 } 868 } 869 870 // Emit a global array containing all external kernels or device variables 871 // used by host functions and mark it as used for CUDA/HIP. This is necessary 872 // to get kernels or device variables in archives linked in even if these 873 // kernels or device variables are only used in host functions. 874 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 875 SmallVector<llvm::Constant *, 8> UsedArray; 876 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 877 GlobalDecl GD; 878 if (auto *FD = dyn_cast<FunctionDecl>(D)) 879 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 880 else 881 GD = GlobalDecl(D); 882 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 883 GetAddrOfGlobal(GD), Int8PtrTy)); 884 } 885 886 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 887 888 auto *GV = new llvm::GlobalVariable( 889 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 890 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 891 addCompilerUsedGlobal(GV); 892 } 893 894 emitLLVMUsed(); 895 if (SanStats) 896 SanStats->finish(); 897 898 if (CodeGenOpts.Autolink && 899 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 900 EmitModuleLinkOptions(); 901 } 902 903 // On ELF we pass the dependent library specifiers directly to the linker 904 // without manipulating them. This is in contrast to other platforms where 905 // they are mapped to a specific linker option by the compiler. This 906 // difference is a result of the greater variety of ELF linkers and the fact 907 // that ELF linkers tend to handle libraries in a more complicated fashion 908 // than on other platforms. This forces us to defer handling the dependent 909 // libs to the linker. 910 // 911 // CUDA/HIP device and host libraries are different. Currently there is no 912 // way to differentiate dependent libraries for host or device. Existing 913 // usage of #pragma comment(lib, *) is intended for host libraries on 914 // Windows. Therefore emit llvm.dependent-libraries only for host. 915 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 916 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 917 for (auto *MD : ELFDependentLibraries) 918 NMD->addOperand(MD); 919 } 920 921 // Record mregparm value now so it is visible through rest of codegen. 922 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 923 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 924 CodeGenOpts.NumRegisterParameters); 925 926 if (CodeGenOpts.DwarfVersion) { 927 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 928 CodeGenOpts.DwarfVersion); 929 } 930 931 if (CodeGenOpts.Dwarf64) 932 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 933 934 if (Context.getLangOpts().SemanticInterposition) 935 // Require various optimization to respect semantic interposition. 936 getModule().setSemanticInterposition(true); 937 938 if (CodeGenOpts.EmitCodeView) { 939 // Indicate that we want CodeView in the metadata. 940 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 941 } 942 if (CodeGenOpts.CodeViewGHash) { 943 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 944 } 945 if (CodeGenOpts.ControlFlowGuard) { 946 // Function ID tables and checks for Control Flow Guard (cfguard=2). 947 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 948 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 949 // Function ID tables for Control Flow Guard (cfguard=1). 950 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 951 } 952 if (CodeGenOpts.EHContGuard) { 953 // Function ID tables for EH Continuation Guard. 954 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 955 } 956 if (Context.getLangOpts().Kernel) { 957 // Note if we are compiling with /kernel. 958 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 959 } 960 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 961 // We don't support LTO with 2 with different StrictVTablePointers 962 // FIXME: we could support it by stripping all the information introduced 963 // by StrictVTablePointers. 964 965 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 966 967 llvm::Metadata *Ops[2] = { 968 llvm::MDString::get(VMContext, "StrictVTablePointers"), 969 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 970 llvm::Type::getInt32Ty(VMContext), 1))}; 971 972 getModule().addModuleFlag(llvm::Module::Require, 973 "StrictVTablePointersRequirement", 974 llvm::MDNode::get(VMContext, Ops)); 975 } 976 if (getModuleDebugInfo()) 977 // We support a single version in the linked module. The LLVM 978 // parser will drop debug info with a different version number 979 // (and warn about it, too). 980 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 981 llvm::DEBUG_METADATA_VERSION); 982 983 // We need to record the widths of enums and wchar_t, so that we can generate 984 // the correct build attributes in the ARM backend. wchar_size is also used by 985 // TargetLibraryInfo. 986 uint64_t WCharWidth = 987 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 988 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 989 990 if (getTriple().isOSzOS()) { 991 getModule().addModuleFlag(llvm::Module::Warning, 992 "zos_product_major_version", 993 uint32_t(CLANG_VERSION_MAJOR)); 994 getModule().addModuleFlag(llvm::Module::Warning, 995 "zos_product_minor_version", 996 uint32_t(CLANG_VERSION_MINOR)); 997 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 998 uint32_t(CLANG_VERSION_PATCHLEVEL)); 999 std::string ProductId = getClangVendor() + "clang"; 1000 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1001 llvm::MDString::get(VMContext, ProductId)); 1002 1003 // Record the language because we need it for the PPA2. 1004 StringRef lang_str = languageToString( 1005 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1006 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1007 llvm::MDString::get(VMContext, lang_str)); 1008 1009 time_t TT = PreprocessorOpts.SourceDateEpoch 1010 ? *PreprocessorOpts.SourceDateEpoch 1011 : std::time(nullptr); 1012 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1013 static_cast<uint64_t>(TT)); 1014 1015 // Multiple modes will be supported here. 1016 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1017 llvm::MDString::get(VMContext, "ascii")); 1018 } 1019 1020 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 1021 if ( Arch == llvm::Triple::arm 1022 || Arch == llvm::Triple::armeb 1023 || Arch == llvm::Triple::thumb 1024 || Arch == llvm::Triple::thumbeb) { 1025 // The minimum width of an enum in bytes 1026 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1027 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1028 } 1029 1030 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 1031 StringRef ABIStr = Target.getABI(); 1032 llvm::LLVMContext &Ctx = TheModule.getContext(); 1033 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1034 llvm::MDString::get(Ctx, ABIStr)); 1035 } 1036 1037 if (CodeGenOpts.SanitizeCfiCrossDso) { 1038 // Indicate that we want cross-DSO control flow integrity checks. 1039 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1040 } 1041 1042 if (CodeGenOpts.WholeProgramVTables) { 1043 // Indicate whether VFE was enabled for this module, so that the 1044 // vcall_visibility metadata added under whole program vtables is handled 1045 // appropriately in the optimizer. 1046 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1047 CodeGenOpts.VirtualFunctionElimination); 1048 } 1049 1050 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1051 getModule().addModuleFlag(llvm::Module::Override, 1052 "CFI Canonical Jump Tables", 1053 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1054 } 1055 1056 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1057 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1058 // KCFI assumes patchable-function-prefix is the same for all indirectly 1059 // called functions. Store the expected offset for code generation. 1060 if (CodeGenOpts.PatchableFunctionEntryOffset) 1061 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1062 CodeGenOpts.PatchableFunctionEntryOffset); 1063 } 1064 1065 if (CodeGenOpts.CFProtectionReturn && 1066 Target.checkCFProtectionReturnSupported(getDiags())) { 1067 // Indicate that we want to instrument return control flow protection. 1068 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1069 1); 1070 } 1071 1072 if (CodeGenOpts.CFProtectionBranch && 1073 Target.checkCFProtectionBranchSupported(getDiags())) { 1074 // Indicate that we want to instrument branch control flow protection. 1075 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1076 1); 1077 } 1078 1079 if (CodeGenOpts.FunctionReturnThunks) 1080 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1081 1082 if (CodeGenOpts.IndirectBranchCSPrefix) 1083 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1084 1085 // Add module metadata for return address signing (ignoring 1086 // non-leaf/all) and stack tagging. These are actually turned on by function 1087 // attributes, but we use module metadata to emit build attributes. This is 1088 // needed for LTO, where the function attributes are inside bitcode 1089 // serialised into a global variable by the time build attributes are 1090 // emitted, so we can't access them. LTO objects could be compiled with 1091 // different flags therefore module flags are set to "Min" behavior to achieve 1092 // the same end result of the normal build where e.g BTI is off if any object 1093 // doesn't support it. 1094 if (Context.getTargetInfo().hasFeature("ptrauth") && 1095 LangOpts.getSignReturnAddressScope() != 1096 LangOptions::SignReturnAddressScopeKind::None) 1097 getModule().addModuleFlag(llvm::Module::Override, 1098 "sign-return-address-buildattr", 1); 1099 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1100 getModule().addModuleFlag(llvm::Module::Override, 1101 "tag-stack-memory-buildattr", 1); 1102 1103 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1104 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1105 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1106 Arch == llvm::Triple::aarch64_be) { 1107 if (LangOpts.BranchTargetEnforcement) 1108 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1109 1); 1110 if (LangOpts.BranchProtectionPAuthLR) 1111 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1112 1); 1113 if (LangOpts.GuardedControlStack) 1114 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1115 if (LangOpts.hasSignReturnAddress()) 1116 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1117 if (LangOpts.isSignReturnAddressScopeAll()) 1118 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1119 1); 1120 if (!LangOpts.isSignReturnAddressWithAKey()) 1121 getModule().addModuleFlag(llvm::Module::Min, 1122 "sign-return-address-with-bkey", 1); 1123 } 1124 1125 if (CodeGenOpts.StackClashProtector) 1126 getModule().addModuleFlag( 1127 llvm::Module::Override, "probe-stack", 1128 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1129 1130 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1131 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1132 CodeGenOpts.StackProbeSize); 1133 1134 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1135 llvm::LLVMContext &Ctx = TheModule.getContext(); 1136 getModule().addModuleFlag( 1137 llvm::Module::Error, "MemProfProfileFilename", 1138 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1139 } 1140 1141 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1142 // Indicate whether __nvvm_reflect should be configured to flush denormal 1143 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1144 // property.) 1145 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1146 CodeGenOpts.FP32DenormalMode.Output != 1147 llvm::DenormalMode::IEEE); 1148 } 1149 1150 if (LangOpts.EHAsynch) 1151 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1152 1153 // Indicate whether this Module was compiled with -fopenmp 1154 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1155 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1156 if (getLangOpts().OpenMPIsTargetDevice) 1157 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1158 LangOpts.OpenMP); 1159 1160 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1161 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1162 EmitOpenCLMetadata(); 1163 // Emit SPIR version. 1164 if (getTriple().isSPIR()) { 1165 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1166 // opencl.spir.version named metadata. 1167 // C++ for OpenCL has a distinct mapping for version compatibility with 1168 // OpenCL. 1169 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1170 llvm::Metadata *SPIRVerElts[] = { 1171 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1172 Int32Ty, Version / 100)), 1173 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1174 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1175 llvm::NamedMDNode *SPIRVerMD = 1176 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1177 llvm::LLVMContext &Ctx = TheModule.getContext(); 1178 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1179 } 1180 } 1181 1182 // HLSL related end of code gen work items. 1183 if (LangOpts.HLSL) 1184 getHLSLRuntime().finishCodeGen(); 1185 1186 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1187 assert(PLevel < 3 && "Invalid PIC Level"); 1188 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1189 if (Context.getLangOpts().PIE) 1190 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1191 } 1192 1193 if (getCodeGenOpts().CodeModel.size() > 0) { 1194 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1195 .Case("tiny", llvm::CodeModel::Tiny) 1196 .Case("small", llvm::CodeModel::Small) 1197 .Case("kernel", llvm::CodeModel::Kernel) 1198 .Case("medium", llvm::CodeModel::Medium) 1199 .Case("large", llvm::CodeModel::Large) 1200 .Default(~0u); 1201 if (CM != ~0u) { 1202 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1203 getModule().setCodeModel(codeModel); 1204 1205 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1206 Context.getTargetInfo().getTriple().getArch() == 1207 llvm::Triple::x86_64) { 1208 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1209 } 1210 } 1211 } 1212 1213 if (CodeGenOpts.NoPLT) 1214 getModule().setRtLibUseGOT(); 1215 if (getTriple().isOSBinFormatELF() && 1216 CodeGenOpts.DirectAccessExternalData != 1217 getModule().getDirectAccessExternalData()) { 1218 getModule().setDirectAccessExternalData( 1219 CodeGenOpts.DirectAccessExternalData); 1220 } 1221 if (CodeGenOpts.UnwindTables) 1222 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1223 1224 switch (CodeGenOpts.getFramePointer()) { 1225 case CodeGenOptions::FramePointerKind::None: 1226 // 0 ("none") is the default. 1227 break; 1228 case CodeGenOptions::FramePointerKind::NonLeaf: 1229 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1230 break; 1231 case CodeGenOptions::FramePointerKind::All: 1232 getModule().setFramePointer(llvm::FramePointerKind::All); 1233 break; 1234 } 1235 1236 SimplifyPersonality(); 1237 1238 if (getCodeGenOpts().EmitDeclMetadata) 1239 EmitDeclMetadata(); 1240 1241 if (getCodeGenOpts().CoverageNotesFile.size() || 1242 getCodeGenOpts().CoverageDataFile.size()) 1243 EmitCoverageFile(); 1244 1245 if (CGDebugInfo *DI = getModuleDebugInfo()) 1246 DI->finalize(); 1247 1248 if (getCodeGenOpts().EmitVersionIdentMetadata) 1249 EmitVersionIdentMetadata(); 1250 1251 if (!getCodeGenOpts().RecordCommandLine.empty()) 1252 EmitCommandLineMetadata(); 1253 1254 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1255 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1256 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1257 getModule().setStackProtectorGuardReg( 1258 getCodeGenOpts().StackProtectorGuardReg); 1259 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1260 getModule().setStackProtectorGuardSymbol( 1261 getCodeGenOpts().StackProtectorGuardSymbol); 1262 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1263 getModule().setStackProtectorGuardOffset( 1264 getCodeGenOpts().StackProtectorGuardOffset); 1265 if (getCodeGenOpts().StackAlignment) 1266 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1267 if (getCodeGenOpts().SkipRaxSetup) 1268 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1269 if (getLangOpts().RegCall4) 1270 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1271 1272 if (getContext().getTargetInfo().getMaxTLSAlign()) 1273 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1274 getContext().getTargetInfo().getMaxTLSAlign()); 1275 1276 getTargetCodeGenInfo().emitTargetGlobals(*this); 1277 1278 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1279 1280 EmitBackendOptionsMetadata(getCodeGenOpts()); 1281 1282 // If there is device offloading code embed it in the host now. 1283 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1284 1285 // Set visibility from DLL storage class 1286 // We do this at the end of LLVM IR generation; after any operation 1287 // that might affect the DLL storage class or the visibility, and 1288 // before anything that might act on these. 1289 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1290 } 1291 1292 void CodeGenModule::EmitOpenCLMetadata() { 1293 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1294 // opencl.ocl.version named metadata node. 1295 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1296 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1297 llvm::Metadata *OCLVerElts[] = { 1298 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1299 Int32Ty, Version / 100)), 1300 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1301 Int32Ty, (Version % 100) / 10))}; 1302 llvm::NamedMDNode *OCLVerMD = 1303 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1304 llvm::LLVMContext &Ctx = TheModule.getContext(); 1305 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1306 } 1307 1308 void CodeGenModule::EmitBackendOptionsMetadata( 1309 const CodeGenOptions &CodeGenOpts) { 1310 if (getTriple().isRISCV()) { 1311 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1312 CodeGenOpts.SmallDataLimit); 1313 } 1314 } 1315 1316 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1317 // Make sure that this type is translated. 1318 Types.UpdateCompletedType(TD); 1319 } 1320 1321 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1322 // Make sure that this type is translated. 1323 Types.RefreshTypeCacheForClass(RD); 1324 } 1325 1326 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1327 if (!TBAA) 1328 return nullptr; 1329 return TBAA->getTypeInfo(QTy); 1330 } 1331 1332 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1333 if (!TBAA) 1334 return TBAAAccessInfo(); 1335 if (getLangOpts().CUDAIsDevice) { 1336 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1337 // access info. 1338 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1339 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1340 nullptr) 1341 return TBAAAccessInfo(); 1342 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1343 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1344 nullptr) 1345 return TBAAAccessInfo(); 1346 } 1347 } 1348 return TBAA->getAccessInfo(AccessType); 1349 } 1350 1351 TBAAAccessInfo 1352 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1353 if (!TBAA) 1354 return TBAAAccessInfo(); 1355 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1356 } 1357 1358 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1359 if (!TBAA) 1360 return nullptr; 1361 return TBAA->getTBAAStructInfo(QTy); 1362 } 1363 1364 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1365 if (!TBAA) 1366 return nullptr; 1367 return TBAA->getBaseTypeInfo(QTy); 1368 } 1369 1370 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1371 if (!TBAA) 1372 return nullptr; 1373 return TBAA->getAccessTagInfo(Info); 1374 } 1375 1376 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1377 TBAAAccessInfo TargetInfo) { 1378 if (!TBAA) 1379 return TBAAAccessInfo(); 1380 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1381 } 1382 1383 TBAAAccessInfo 1384 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1385 TBAAAccessInfo InfoB) { 1386 if (!TBAA) 1387 return TBAAAccessInfo(); 1388 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1389 } 1390 1391 TBAAAccessInfo 1392 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1393 TBAAAccessInfo SrcInfo) { 1394 if (!TBAA) 1395 return TBAAAccessInfo(); 1396 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1397 } 1398 1399 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1400 TBAAAccessInfo TBAAInfo) { 1401 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1402 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1403 } 1404 1405 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1406 llvm::Instruction *I, const CXXRecordDecl *RD) { 1407 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1408 llvm::MDNode::get(getLLVMContext(), {})); 1409 } 1410 1411 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1412 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1413 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1414 } 1415 1416 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1417 /// specified stmt yet. 1418 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1419 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1420 "cannot compile this %0 yet"); 1421 std::string Msg = Type; 1422 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1423 << Msg << S->getSourceRange(); 1424 } 1425 1426 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1427 /// specified decl yet. 1428 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1429 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1430 "cannot compile this %0 yet"); 1431 std::string Msg = Type; 1432 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1433 } 1434 1435 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1436 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1437 } 1438 1439 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1440 const NamedDecl *D) const { 1441 // Internal definitions always have default visibility. 1442 if (GV->hasLocalLinkage()) { 1443 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1444 return; 1445 } 1446 if (!D) 1447 return; 1448 1449 // Set visibility for definitions, and for declarations if requested globally 1450 // or set explicitly. 1451 LinkageInfo LV = D->getLinkageAndVisibility(); 1452 1453 // OpenMP declare target variables must be visible to the host so they can 1454 // be registered. We require protected visibility unless the variable has 1455 // the DT_nohost modifier and does not need to be registered. 1456 if (Context.getLangOpts().OpenMP && 1457 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1458 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1459 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1460 OMPDeclareTargetDeclAttr::DT_NoHost && 1461 LV.getVisibility() == HiddenVisibility) { 1462 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1463 return; 1464 } 1465 1466 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1467 // Reject incompatible dlllstorage and visibility annotations. 1468 if (!LV.isVisibilityExplicit()) 1469 return; 1470 if (GV->hasDLLExportStorageClass()) { 1471 if (LV.getVisibility() == HiddenVisibility) 1472 getDiags().Report(D->getLocation(), 1473 diag::err_hidden_visibility_dllexport); 1474 } else if (LV.getVisibility() != DefaultVisibility) { 1475 getDiags().Report(D->getLocation(), 1476 diag::err_non_default_visibility_dllimport); 1477 } 1478 return; 1479 } 1480 1481 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1482 !GV->isDeclarationForLinker()) 1483 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1484 } 1485 1486 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1487 llvm::GlobalValue *GV) { 1488 if (GV->hasLocalLinkage()) 1489 return true; 1490 1491 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1492 return true; 1493 1494 // DLLImport explicitly marks the GV as external. 1495 if (GV->hasDLLImportStorageClass()) 1496 return false; 1497 1498 const llvm::Triple &TT = CGM.getTriple(); 1499 const auto &CGOpts = CGM.getCodeGenOpts(); 1500 if (TT.isWindowsGNUEnvironment()) { 1501 // In MinGW, variables without DLLImport can still be automatically 1502 // imported from a DLL by the linker; don't mark variables that 1503 // potentially could come from another DLL as DSO local. 1504 1505 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1506 // (and this actually happens in the public interface of libstdc++), so 1507 // such variables can't be marked as DSO local. (Native TLS variables 1508 // can't be dllimported at all, though.) 1509 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1510 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1511 CGOpts.AutoImport) 1512 return false; 1513 } 1514 1515 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1516 // remain unresolved in the link, they can be resolved to zero, which is 1517 // outside the current DSO. 1518 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1519 return false; 1520 1521 // Every other GV is local on COFF. 1522 // Make an exception for windows OS in the triple: Some firmware builds use 1523 // *-win32-macho triples. This (accidentally?) produced windows relocations 1524 // without GOT tables in older clang versions; Keep this behaviour. 1525 // FIXME: even thread local variables? 1526 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1527 return true; 1528 1529 // Only handle COFF and ELF for now. 1530 if (!TT.isOSBinFormatELF()) 1531 return false; 1532 1533 // If this is not an executable, don't assume anything is local. 1534 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1535 const auto &LOpts = CGM.getLangOpts(); 1536 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1537 // On ELF, if -fno-semantic-interposition is specified and the target 1538 // supports local aliases, there will be neither CC1 1539 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1540 // dso_local on the function if using a local alias is preferable (can avoid 1541 // PLT indirection). 1542 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1543 return false; 1544 return !(CGM.getLangOpts().SemanticInterposition || 1545 CGM.getLangOpts().HalfNoSemanticInterposition); 1546 } 1547 1548 // A definition cannot be preempted from an executable. 1549 if (!GV->isDeclarationForLinker()) 1550 return true; 1551 1552 // Most PIC code sequences that assume that a symbol is local cannot produce a 1553 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1554 // depended, it seems worth it to handle it here. 1555 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1556 return false; 1557 1558 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1559 if (TT.isPPC64()) 1560 return false; 1561 1562 if (CGOpts.DirectAccessExternalData) { 1563 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1564 // for non-thread-local variables. If the symbol is not defined in the 1565 // executable, a copy relocation will be needed at link time. dso_local is 1566 // excluded for thread-local variables because they generally don't support 1567 // copy relocations. 1568 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1569 if (!Var->isThreadLocal()) 1570 return true; 1571 1572 // -fno-pic sets dso_local on a function declaration to allow direct 1573 // accesses when taking its address (similar to a data symbol). If the 1574 // function is not defined in the executable, a canonical PLT entry will be 1575 // needed at link time. -fno-direct-access-external-data can avoid the 1576 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1577 // it could just cause trouble without providing perceptible benefits. 1578 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1579 return true; 1580 } 1581 1582 // If we can use copy relocations we can assume it is local. 1583 1584 // Otherwise don't assume it is local. 1585 return false; 1586 } 1587 1588 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1589 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1590 } 1591 1592 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1593 GlobalDecl GD) const { 1594 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1595 // C++ destructors have a few C++ ABI specific special cases. 1596 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1597 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1598 return; 1599 } 1600 setDLLImportDLLExport(GV, D); 1601 } 1602 1603 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1604 const NamedDecl *D) const { 1605 if (D && D->isExternallyVisible()) { 1606 if (D->hasAttr<DLLImportAttr>()) 1607 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1608 else if ((D->hasAttr<DLLExportAttr>() || 1609 shouldMapVisibilityToDLLExport(D)) && 1610 !GV->isDeclarationForLinker()) 1611 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1612 } 1613 } 1614 1615 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1616 GlobalDecl GD) const { 1617 setDLLImportDLLExport(GV, GD); 1618 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1619 } 1620 1621 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1622 const NamedDecl *D) const { 1623 setDLLImportDLLExport(GV, D); 1624 setGVPropertiesAux(GV, D); 1625 } 1626 1627 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1628 const NamedDecl *D) const { 1629 setGlobalVisibility(GV, D); 1630 setDSOLocal(GV); 1631 GV->setPartition(CodeGenOpts.SymbolPartition); 1632 } 1633 1634 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1635 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1636 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1637 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1638 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1639 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1640 } 1641 1642 llvm::GlobalVariable::ThreadLocalMode 1643 CodeGenModule::GetDefaultLLVMTLSModel() const { 1644 switch (CodeGenOpts.getDefaultTLSModel()) { 1645 case CodeGenOptions::GeneralDynamicTLSModel: 1646 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1647 case CodeGenOptions::LocalDynamicTLSModel: 1648 return llvm::GlobalVariable::LocalDynamicTLSModel; 1649 case CodeGenOptions::InitialExecTLSModel: 1650 return llvm::GlobalVariable::InitialExecTLSModel; 1651 case CodeGenOptions::LocalExecTLSModel: 1652 return llvm::GlobalVariable::LocalExecTLSModel; 1653 } 1654 llvm_unreachable("Invalid TLS model!"); 1655 } 1656 1657 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1658 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1659 1660 llvm::GlobalValue::ThreadLocalMode TLM; 1661 TLM = GetDefaultLLVMTLSModel(); 1662 1663 // Override the TLS model if it is explicitly specified. 1664 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1665 TLM = GetLLVMTLSModel(Attr->getModel()); 1666 } 1667 1668 GV->setThreadLocalMode(TLM); 1669 } 1670 1671 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1672 StringRef Name) { 1673 const TargetInfo &Target = CGM.getTarget(); 1674 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1675 } 1676 1677 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1678 const CPUSpecificAttr *Attr, 1679 unsigned CPUIndex, 1680 raw_ostream &Out) { 1681 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1682 // supported. 1683 if (Attr) 1684 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1685 else if (CGM.getTarget().supportsIFunc()) 1686 Out << ".resolver"; 1687 } 1688 1689 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1690 const TargetVersionAttr *Attr, 1691 raw_ostream &Out) { 1692 if (Attr->isDefaultVersion()) 1693 return; 1694 Out << "._"; 1695 const TargetInfo &TI = CGM.getTarget(); 1696 llvm::SmallVector<StringRef, 8> Feats; 1697 Attr->getFeatures(Feats); 1698 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1699 return TI.multiVersionSortPriority(FeatL) < 1700 TI.multiVersionSortPriority(FeatR); 1701 }); 1702 for (const auto &Feat : Feats) { 1703 Out << 'M'; 1704 Out << Feat; 1705 } 1706 } 1707 1708 static void AppendTargetMangling(const CodeGenModule &CGM, 1709 const TargetAttr *Attr, raw_ostream &Out) { 1710 if (Attr->isDefaultVersion()) 1711 return; 1712 1713 Out << '.'; 1714 const TargetInfo &Target = CGM.getTarget(); 1715 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1716 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1717 // Multiversioning doesn't allow "no-${feature}", so we can 1718 // only have "+" prefixes here. 1719 assert(LHS.starts_with("+") && RHS.starts_with("+") && 1720 "Features should always have a prefix."); 1721 return Target.multiVersionSortPriority(LHS.substr(1)) > 1722 Target.multiVersionSortPriority(RHS.substr(1)); 1723 }); 1724 1725 bool IsFirst = true; 1726 1727 if (!Info.CPU.empty()) { 1728 IsFirst = false; 1729 Out << "arch_" << Info.CPU; 1730 } 1731 1732 for (StringRef Feat : Info.Features) { 1733 if (!IsFirst) 1734 Out << '_'; 1735 IsFirst = false; 1736 Out << Feat.substr(1); 1737 } 1738 } 1739 1740 // Returns true if GD is a function decl with internal linkage and 1741 // needs a unique suffix after the mangled name. 1742 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1743 CodeGenModule &CGM) { 1744 const Decl *D = GD.getDecl(); 1745 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1746 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1747 } 1748 1749 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1750 const TargetClonesAttr *Attr, 1751 unsigned VersionIndex, 1752 raw_ostream &Out) { 1753 const TargetInfo &TI = CGM.getTarget(); 1754 if (TI.getTriple().isAArch64()) { 1755 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1756 if (FeatureStr == "default") 1757 return; 1758 Out << "._"; 1759 SmallVector<StringRef, 8> Features; 1760 FeatureStr.split(Features, "+"); 1761 llvm::stable_sort(Features, 1762 [&TI](const StringRef FeatL, const StringRef FeatR) { 1763 return TI.multiVersionSortPriority(FeatL) < 1764 TI.multiVersionSortPriority(FeatR); 1765 }); 1766 for (auto &Feat : Features) { 1767 Out << 'M'; 1768 Out << Feat; 1769 } 1770 } else { 1771 Out << '.'; 1772 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1773 if (FeatureStr.starts_with("arch=")) 1774 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1775 else 1776 Out << FeatureStr; 1777 1778 Out << '.' << Attr->getMangledIndex(VersionIndex); 1779 } 1780 } 1781 1782 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1783 const NamedDecl *ND, 1784 bool OmitMultiVersionMangling = false) { 1785 SmallString<256> Buffer; 1786 llvm::raw_svector_ostream Out(Buffer); 1787 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1788 if (!CGM.getModuleNameHash().empty()) 1789 MC.needsUniqueInternalLinkageNames(); 1790 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1791 if (ShouldMangle) 1792 MC.mangleName(GD.getWithDecl(ND), Out); 1793 else { 1794 IdentifierInfo *II = ND->getIdentifier(); 1795 assert(II && "Attempt to mangle unnamed decl."); 1796 const auto *FD = dyn_cast<FunctionDecl>(ND); 1797 1798 if (FD && 1799 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1800 if (CGM.getLangOpts().RegCall4) 1801 Out << "__regcall4__" << II->getName(); 1802 else 1803 Out << "__regcall3__" << II->getName(); 1804 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1805 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1806 Out << "__device_stub__" << II->getName(); 1807 } else { 1808 Out << II->getName(); 1809 } 1810 } 1811 1812 // Check if the module name hash should be appended for internal linkage 1813 // symbols. This should come before multi-version target suffixes are 1814 // appended. This is to keep the name and module hash suffix of the 1815 // internal linkage function together. The unique suffix should only be 1816 // added when name mangling is done to make sure that the final name can 1817 // be properly demangled. For example, for C functions without prototypes, 1818 // name mangling is not done and the unique suffix should not be appeneded 1819 // then. 1820 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1821 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1822 "Hash computed when not explicitly requested"); 1823 Out << CGM.getModuleNameHash(); 1824 } 1825 1826 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1827 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1828 switch (FD->getMultiVersionKind()) { 1829 case MultiVersionKind::CPUDispatch: 1830 case MultiVersionKind::CPUSpecific: 1831 AppendCPUSpecificCPUDispatchMangling(CGM, 1832 FD->getAttr<CPUSpecificAttr>(), 1833 GD.getMultiVersionIndex(), Out); 1834 break; 1835 case MultiVersionKind::Target: 1836 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1837 break; 1838 case MultiVersionKind::TargetVersion: 1839 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1840 break; 1841 case MultiVersionKind::TargetClones: 1842 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1843 GD.getMultiVersionIndex(), Out); 1844 break; 1845 case MultiVersionKind::None: 1846 llvm_unreachable("None multiversion type isn't valid here"); 1847 } 1848 } 1849 1850 // Make unique name for device side static file-scope variable for HIP. 1851 if (CGM.getContext().shouldExternalize(ND) && 1852 CGM.getLangOpts().GPURelocatableDeviceCode && 1853 CGM.getLangOpts().CUDAIsDevice) 1854 CGM.printPostfixForExternalizedDecl(Out, ND); 1855 1856 return std::string(Out.str()); 1857 } 1858 1859 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1860 const FunctionDecl *FD, 1861 StringRef &CurName) { 1862 if (!FD->isMultiVersion()) 1863 return; 1864 1865 // Get the name of what this would be without the 'target' attribute. This 1866 // allows us to lookup the version that was emitted when this wasn't a 1867 // multiversion function. 1868 std::string NonTargetName = 1869 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1870 GlobalDecl OtherGD; 1871 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1872 assert(OtherGD.getCanonicalDecl() 1873 .getDecl() 1874 ->getAsFunction() 1875 ->isMultiVersion() && 1876 "Other GD should now be a multiversioned function"); 1877 // OtherFD is the version of this function that was mangled BEFORE 1878 // becoming a MultiVersion function. It potentially needs to be updated. 1879 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1880 .getDecl() 1881 ->getAsFunction() 1882 ->getMostRecentDecl(); 1883 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1884 // This is so that if the initial version was already the 'default' 1885 // version, we don't try to update it. 1886 if (OtherName != NonTargetName) { 1887 // Remove instead of erase, since others may have stored the StringRef 1888 // to this. 1889 const auto ExistingRecord = Manglings.find(NonTargetName); 1890 if (ExistingRecord != std::end(Manglings)) 1891 Manglings.remove(&(*ExistingRecord)); 1892 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1893 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1894 Result.first->first(); 1895 // If this is the current decl is being created, make sure we update the name. 1896 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1897 CurName = OtherNameRef; 1898 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1899 Entry->setName(OtherName); 1900 } 1901 } 1902 } 1903 1904 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1905 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1906 1907 // Some ABIs don't have constructor variants. Make sure that base and 1908 // complete constructors get mangled the same. 1909 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1910 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1911 CXXCtorType OrigCtorType = GD.getCtorType(); 1912 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1913 if (OrigCtorType == Ctor_Base) 1914 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1915 } 1916 } 1917 1918 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1919 // static device variable depends on whether the variable is referenced by 1920 // a host or device host function. Therefore the mangled name cannot be 1921 // cached. 1922 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1923 auto FoundName = MangledDeclNames.find(CanonicalGD); 1924 if (FoundName != MangledDeclNames.end()) 1925 return FoundName->second; 1926 } 1927 1928 // Keep the first result in the case of a mangling collision. 1929 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1930 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1931 1932 // Ensure either we have different ABIs between host and device compilations, 1933 // says host compilation following MSVC ABI but device compilation follows 1934 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1935 // mangling should be the same after name stubbing. The later checking is 1936 // very important as the device kernel name being mangled in host-compilation 1937 // is used to resolve the device binaries to be executed. Inconsistent naming 1938 // result in undefined behavior. Even though we cannot check that naming 1939 // directly between host- and device-compilations, the host- and 1940 // device-mangling in host compilation could help catching certain ones. 1941 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1942 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1943 (getContext().getAuxTargetInfo() && 1944 (getContext().getAuxTargetInfo()->getCXXABI() != 1945 getContext().getTargetInfo().getCXXABI())) || 1946 getCUDARuntime().getDeviceSideName(ND) == 1947 getMangledNameImpl( 1948 *this, 1949 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1950 ND)); 1951 1952 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1953 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1954 } 1955 1956 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1957 const BlockDecl *BD) { 1958 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1959 const Decl *D = GD.getDecl(); 1960 1961 SmallString<256> Buffer; 1962 llvm::raw_svector_ostream Out(Buffer); 1963 if (!D) 1964 MangleCtx.mangleGlobalBlock(BD, 1965 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1966 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1967 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1968 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1969 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1970 else 1971 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1972 1973 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1974 return Result.first->first(); 1975 } 1976 1977 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1978 auto it = MangledDeclNames.begin(); 1979 while (it != MangledDeclNames.end()) { 1980 if (it->second == Name) 1981 return it->first; 1982 it++; 1983 } 1984 return GlobalDecl(); 1985 } 1986 1987 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1988 return getModule().getNamedValue(Name); 1989 } 1990 1991 /// AddGlobalCtor - Add a function to the list that will be called before 1992 /// main() runs. 1993 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1994 unsigned LexOrder, 1995 llvm::Constant *AssociatedData) { 1996 // FIXME: Type coercion of void()* types. 1997 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1998 } 1999 2000 /// AddGlobalDtor - Add a function to the list that will be called 2001 /// when the module is unloaded. 2002 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2003 bool IsDtorAttrFunc) { 2004 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2005 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2006 DtorsUsingAtExit[Priority].push_back(Dtor); 2007 return; 2008 } 2009 2010 // FIXME: Type coercion of void()* types. 2011 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2012 } 2013 2014 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2015 if (Fns.empty()) return; 2016 2017 // Ctor function type is void()*. 2018 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2019 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2020 TheModule.getDataLayout().getProgramAddressSpace()); 2021 2022 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2023 llvm::StructType *CtorStructTy = llvm::StructType::get( 2024 Int32Ty, CtorPFTy, VoidPtrTy); 2025 2026 // Construct the constructor and destructor arrays. 2027 ConstantInitBuilder builder(*this); 2028 auto ctors = builder.beginArray(CtorStructTy); 2029 for (const auto &I : Fns) { 2030 auto ctor = ctors.beginStruct(CtorStructTy); 2031 ctor.addInt(Int32Ty, I.Priority); 2032 ctor.add(I.Initializer); 2033 if (I.AssociatedData) 2034 ctor.add(I.AssociatedData); 2035 else 2036 ctor.addNullPointer(VoidPtrTy); 2037 ctor.finishAndAddTo(ctors); 2038 } 2039 2040 auto list = 2041 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2042 /*constant*/ false, 2043 llvm::GlobalValue::AppendingLinkage); 2044 2045 // The LTO linker doesn't seem to like it when we set an alignment 2046 // on appending variables. Take it off as a workaround. 2047 list->setAlignment(std::nullopt); 2048 2049 Fns.clear(); 2050 } 2051 2052 llvm::GlobalValue::LinkageTypes 2053 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2054 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2055 2056 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2057 2058 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2059 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2060 2061 return getLLVMLinkageForDeclarator(D, Linkage); 2062 } 2063 2064 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2065 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2066 if (!MDS) return nullptr; 2067 2068 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2069 } 2070 2071 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2072 if (auto *FnType = T->getAs<FunctionProtoType>()) 2073 T = getContext().getFunctionType( 2074 FnType->getReturnType(), FnType->getParamTypes(), 2075 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2076 2077 std::string OutName; 2078 llvm::raw_string_ostream Out(OutName); 2079 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2080 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2081 2082 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2083 Out << ".normalized"; 2084 2085 return llvm::ConstantInt::get(Int32Ty, 2086 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2087 } 2088 2089 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2090 const CGFunctionInfo &Info, 2091 llvm::Function *F, bool IsThunk) { 2092 unsigned CallingConv; 2093 llvm::AttributeList PAL; 2094 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2095 /*AttrOnCallSite=*/false, IsThunk); 2096 F->setAttributes(PAL); 2097 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2098 } 2099 2100 static void removeImageAccessQualifier(std::string& TyName) { 2101 std::string ReadOnlyQual("__read_only"); 2102 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2103 if (ReadOnlyPos != std::string::npos) 2104 // "+ 1" for the space after access qualifier. 2105 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2106 else { 2107 std::string WriteOnlyQual("__write_only"); 2108 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2109 if (WriteOnlyPos != std::string::npos) 2110 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2111 else { 2112 std::string ReadWriteQual("__read_write"); 2113 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2114 if (ReadWritePos != std::string::npos) 2115 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2116 } 2117 } 2118 } 2119 2120 // Returns the address space id that should be produced to the 2121 // kernel_arg_addr_space metadata. This is always fixed to the ids 2122 // as specified in the SPIR 2.0 specification in order to differentiate 2123 // for example in clGetKernelArgInfo() implementation between the address 2124 // spaces with targets without unique mapping to the OpenCL address spaces 2125 // (basically all single AS CPUs). 2126 static unsigned ArgInfoAddressSpace(LangAS AS) { 2127 switch (AS) { 2128 case LangAS::opencl_global: 2129 return 1; 2130 case LangAS::opencl_constant: 2131 return 2; 2132 case LangAS::opencl_local: 2133 return 3; 2134 case LangAS::opencl_generic: 2135 return 4; // Not in SPIR 2.0 specs. 2136 case LangAS::opencl_global_device: 2137 return 5; 2138 case LangAS::opencl_global_host: 2139 return 6; 2140 default: 2141 return 0; // Assume private. 2142 } 2143 } 2144 2145 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2146 const FunctionDecl *FD, 2147 CodeGenFunction *CGF) { 2148 assert(((FD && CGF) || (!FD && !CGF)) && 2149 "Incorrect use - FD and CGF should either be both null or not!"); 2150 // Create MDNodes that represent the kernel arg metadata. 2151 // Each MDNode is a list in the form of "key", N number of values which is 2152 // the same number of values as their are kernel arguments. 2153 2154 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2155 2156 // MDNode for the kernel argument address space qualifiers. 2157 SmallVector<llvm::Metadata *, 8> addressQuals; 2158 2159 // MDNode for the kernel argument access qualifiers (images only). 2160 SmallVector<llvm::Metadata *, 8> accessQuals; 2161 2162 // MDNode for the kernel argument type names. 2163 SmallVector<llvm::Metadata *, 8> argTypeNames; 2164 2165 // MDNode for the kernel argument base type names. 2166 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2167 2168 // MDNode for the kernel argument type qualifiers. 2169 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2170 2171 // MDNode for the kernel argument names. 2172 SmallVector<llvm::Metadata *, 8> argNames; 2173 2174 if (FD && CGF) 2175 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2176 const ParmVarDecl *parm = FD->getParamDecl(i); 2177 // Get argument name. 2178 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2179 2180 if (!getLangOpts().OpenCL) 2181 continue; 2182 QualType ty = parm->getType(); 2183 std::string typeQuals; 2184 2185 // Get image and pipe access qualifier: 2186 if (ty->isImageType() || ty->isPipeType()) { 2187 const Decl *PDecl = parm; 2188 if (const auto *TD = ty->getAs<TypedefType>()) 2189 PDecl = TD->getDecl(); 2190 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2191 if (A && A->isWriteOnly()) 2192 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2193 else if (A && A->isReadWrite()) 2194 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2195 else 2196 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2197 } else 2198 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2199 2200 auto getTypeSpelling = [&](QualType Ty) { 2201 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2202 2203 if (Ty.isCanonical()) { 2204 StringRef typeNameRef = typeName; 2205 // Turn "unsigned type" to "utype" 2206 if (typeNameRef.consume_front("unsigned ")) 2207 return std::string("u") + typeNameRef.str(); 2208 if (typeNameRef.consume_front("signed ")) 2209 return typeNameRef.str(); 2210 } 2211 2212 return typeName; 2213 }; 2214 2215 if (ty->isPointerType()) { 2216 QualType pointeeTy = ty->getPointeeType(); 2217 2218 // Get address qualifier. 2219 addressQuals.push_back( 2220 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2221 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2222 2223 // Get argument type name. 2224 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2225 std::string baseTypeName = 2226 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2227 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2228 argBaseTypeNames.push_back( 2229 llvm::MDString::get(VMContext, baseTypeName)); 2230 2231 // Get argument type qualifiers: 2232 if (ty.isRestrictQualified()) 2233 typeQuals = "restrict"; 2234 if (pointeeTy.isConstQualified() || 2235 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2236 typeQuals += typeQuals.empty() ? "const" : " const"; 2237 if (pointeeTy.isVolatileQualified()) 2238 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2239 } else { 2240 uint32_t AddrSpc = 0; 2241 bool isPipe = ty->isPipeType(); 2242 if (ty->isImageType() || isPipe) 2243 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2244 2245 addressQuals.push_back( 2246 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2247 2248 // Get argument type name. 2249 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2250 std::string typeName = getTypeSpelling(ty); 2251 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2252 2253 // Remove access qualifiers on images 2254 // (as they are inseparable from type in clang implementation, 2255 // but OpenCL spec provides a special query to get access qualifier 2256 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2257 if (ty->isImageType()) { 2258 removeImageAccessQualifier(typeName); 2259 removeImageAccessQualifier(baseTypeName); 2260 } 2261 2262 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2263 argBaseTypeNames.push_back( 2264 llvm::MDString::get(VMContext, baseTypeName)); 2265 2266 if (isPipe) 2267 typeQuals = "pipe"; 2268 } 2269 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2270 } 2271 2272 if (getLangOpts().OpenCL) { 2273 Fn->setMetadata("kernel_arg_addr_space", 2274 llvm::MDNode::get(VMContext, addressQuals)); 2275 Fn->setMetadata("kernel_arg_access_qual", 2276 llvm::MDNode::get(VMContext, accessQuals)); 2277 Fn->setMetadata("kernel_arg_type", 2278 llvm::MDNode::get(VMContext, argTypeNames)); 2279 Fn->setMetadata("kernel_arg_base_type", 2280 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2281 Fn->setMetadata("kernel_arg_type_qual", 2282 llvm::MDNode::get(VMContext, argTypeQuals)); 2283 } 2284 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2285 getCodeGenOpts().HIPSaveKernelArgName) 2286 Fn->setMetadata("kernel_arg_name", 2287 llvm::MDNode::get(VMContext, argNames)); 2288 } 2289 2290 /// Determines whether the language options require us to model 2291 /// unwind exceptions. We treat -fexceptions as mandating this 2292 /// except under the fragile ObjC ABI with only ObjC exceptions 2293 /// enabled. This means, for example, that C with -fexceptions 2294 /// enables this. 2295 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2296 // If exceptions are completely disabled, obviously this is false. 2297 if (!LangOpts.Exceptions) return false; 2298 2299 // If C++ exceptions are enabled, this is true. 2300 if (LangOpts.CXXExceptions) return true; 2301 2302 // If ObjC exceptions are enabled, this depends on the ABI. 2303 if (LangOpts.ObjCExceptions) { 2304 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2305 } 2306 2307 return true; 2308 } 2309 2310 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2311 const CXXMethodDecl *MD) { 2312 // Check that the type metadata can ever actually be used by a call. 2313 if (!CGM.getCodeGenOpts().LTOUnit || 2314 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2315 return false; 2316 2317 // Only functions whose address can be taken with a member function pointer 2318 // need this sort of type metadata. 2319 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2320 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2321 } 2322 2323 SmallVector<const CXXRecordDecl *, 0> 2324 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2325 llvm::SetVector<const CXXRecordDecl *> MostBases; 2326 2327 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2328 CollectMostBases = [&](const CXXRecordDecl *RD) { 2329 if (RD->getNumBases() == 0) 2330 MostBases.insert(RD); 2331 for (const CXXBaseSpecifier &B : RD->bases()) 2332 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2333 }; 2334 CollectMostBases(RD); 2335 return MostBases.takeVector(); 2336 } 2337 2338 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2339 llvm::Function *F) { 2340 llvm::AttrBuilder B(F->getContext()); 2341 2342 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2343 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2344 2345 if (CodeGenOpts.StackClashProtector) 2346 B.addAttribute("probe-stack", "inline-asm"); 2347 2348 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2349 B.addAttribute("stack-probe-size", 2350 std::to_string(CodeGenOpts.StackProbeSize)); 2351 2352 if (!hasUnwindExceptions(LangOpts)) 2353 B.addAttribute(llvm::Attribute::NoUnwind); 2354 2355 if (D && D->hasAttr<NoStackProtectorAttr>()) 2356 ; // Do nothing. 2357 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2358 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2359 B.addAttribute(llvm::Attribute::StackProtectStrong); 2360 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2361 B.addAttribute(llvm::Attribute::StackProtect); 2362 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2363 B.addAttribute(llvm::Attribute::StackProtectStrong); 2364 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2365 B.addAttribute(llvm::Attribute::StackProtectReq); 2366 2367 if (!D) { 2368 // If we don't have a declaration to control inlining, the function isn't 2369 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2370 // disabled, mark the function as noinline. 2371 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2372 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2373 B.addAttribute(llvm::Attribute::NoInline); 2374 2375 F->addFnAttrs(B); 2376 return; 2377 } 2378 2379 // Handle SME attributes that apply to function definitions, 2380 // rather than to function prototypes. 2381 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2382 B.addAttribute("aarch64_pstate_sm_body"); 2383 2384 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2385 if (Attr->isNewZA()) 2386 B.addAttribute("aarch64_pstate_za_new"); 2387 } 2388 2389 // Track whether we need to add the optnone LLVM attribute, 2390 // starting with the default for this optimization level. 2391 bool ShouldAddOptNone = 2392 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2393 // We can't add optnone in the following cases, it won't pass the verifier. 2394 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2395 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2396 2397 // Add optnone, but do so only if the function isn't always_inline. 2398 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2399 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2400 B.addAttribute(llvm::Attribute::OptimizeNone); 2401 2402 // OptimizeNone implies noinline; we should not be inlining such functions. 2403 B.addAttribute(llvm::Attribute::NoInline); 2404 2405 // We still need to handle naked functions even though optnone subsumes 2406 // much of their semantics. 2407 if (D->hasAttr<NakedAttr>()) 2408 B.addAttribute(llvm::Attribute::Naked); 2409 2410 // OptimizeNone wins over OptimizeForSize and MinSize. 2411 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2412 F->removeFnAttr(llvm::Attribute::MinSize); 2413 } else if (D->hasAttr<NakedAttr>()) { 2414 // Naked implies noinline: we should not be inlining such functions. 2415 B.addAttribute(llvm::Attribute::Naked); 2416 B.addAttribute(llvm::Attribute::NoInline); 2417 } else if (D->hasAttr<NoDuplicateAttr>()) { 2418 B.addAttribute(llvm::Attribute::NoDuplicate); 2419 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2420 // Add noinline if the function isn't always_inline. 2421 B.addAttribute(llvm::Attribute::NoInline); 2422 } else if (D->hasAttr<AlwaysInlineAttr>() && 2423 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2424 // (noinline wins over always_inline, and we can't specify both in IR) 2425 B.addAttribute(llvm::Attribute::AlwaysInline); 2426 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2427 // If we're not inlining, then force everything that isn't always_inline to 2428 // carry an explicit noinline attribute. 2429 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2430 B.addAttribute(llvm::Attribute::NoInline); 2431 } else { 2432 // Otherwise, propagate the inline hint attribute and potentially use its 2433 // absence to mark things as noinline. 2434 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2435 // Search function and template pattern redeclarations for inline. 2436 auto CheckForInline = [](const FunctionDecl *FD) { 2437 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2438 return Redecl->isInlineSpecified(); 2439 }; 2440 if (any_of(FD->redecls(), CheckRedeclForInline)) 2441 return true; 2442 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2443 if (!Pattern) 2444 return false; 2445 return any_of(Pattern->redecls(), CheckRedeclForInline); 2446 }; 2447 if (CheckForInline(FD)) { 2448 B.addAttribute(llvm::Attribute::InlineHint); 2449 } else if (CodeGenOpts.getInlining() == 2450 CodeGenOptions::OnlyHintInlining && 2451 !FD->isInlined() && 2452 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2453 B.addAttribute(llvm::Attribute::NoInline); 2454 } 2455 } 2456 } 2457 2458 // Add other optimization related attributes if we are optimizing this 2459 // function. 2460 if (!D->hasAttr<OptimizeNoneAttr>()) { 2461 if (D->hasAttr<ColdAttr>()) { 2462 if (!ShouldAddOptNone) 2463 B.addAttribute(llvm::Attribute::OptimizeForSize); 2464 B.addAttribute(llvm::Attribute::Cold); 2465 } 2466 if (D->hasAttr<HotAttr>()) 2467 B.addAttribute(llvm::Attribute::Hot); 2468 if (D->hasAttr<MinSizeAttr>()) 2469 B.addAttribute(llvm::Attribute::MinSize); 2470 } 2471 2472 F->addFnAttrs(B); 2473 2474 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2475 if (alignment) 2476 F->setAlignment(llvm::Align(alignment)); 2477 2478 if (!D->hasAttr<AlignedAttr>()) 2479 if (LangOpts.FunctionAlignment) 2480 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2481 2482 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2483 // reserve a bit for differentiating between virtual and non-virtual member 2484 // functions. If the current target's C++ ABI requires this and this is a 2485 // member function, set its alignment accordingly. 2486 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2487 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2488 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2489 } 2490 2491 // In the cross-dso CFI mode with canonical jump tables, we want !type 2492 // attributes on definitions only. 2493 if (CodeGenOpts.SanitizeCfiCrossDso && 2494 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2495 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2496 // Skip available_externally functions. They won't be codegen'ed in the 2497 // current module anyway. 2498 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2499 CreateFunctionTypeMetadataForIcall(FD, F); 2500 } 2501 } 2502 2503 // Emit type metadata on member functions for member function pointer checks. 2504 // These are only ever necessary on definitions; we're guaranteed that the 2505 // definition will be present in the LTO unit as a result of LTO visibility. 2506 auto *MD = dyn_cast<CXXMethodDecl>(D); 2507 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2508 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2509 llvm::Metadata *Id = 2510 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2511 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2512 F->addTypeMetadata(0, Id); 2513 } 2514 } 2515 } 2516 2517 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2518 const Decl *D = GD.getDecl(); 2519 if (isa_and_nonnull<NamedDecl>(D)) 2520 setGVProperties(GV, GD); 2521 else 2522 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2523 2524 if (D && D->hasAttr<UsedAttr>()) 2525 addUsedOrCompilerUsedGlobal(GV); 2526 2527 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2528 VD && 2529 ((CodeGenOpts.KeepPersistentStorageVariables && 2530 (VD->getStorageDuration() == SD_Static || 2531 VD->getStorageDuration() == SD_Thread)) || 2532 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2533 VD->getType().isConstQualified()))) 2534 addUsedOrCompilerUsedGlobal(GV); 2535 } 2536 2537 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2538 llvm::AttrBuilder &Attrs, 2539 bool SetTargetFeatures) { 2540 // Add target-cpu and target-features attributes to functions. If 2541 // we have a decl for the function and it has a target attribute then 2542 // parse that and add it to the feature set. 2543 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2544 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2545 std::vector<std::string> Features; 2546 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2547 FD = FD ? FD->getMostRecentDecl() : FD; 2548 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2549 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2550 assert((!TD || !TV) && "both target_version and target specified"); 2551 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2552 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2553 bool AddedAttr = false; 2554 if (TD || TV || SD || TC) { 2555 llvm::StringMap<bool> FeatureMap; 2556 getContext().getFunctionFeatureMap(FeatureMap, GD); 2557 2558 // Produce the canonical string for this set of features. 2559 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2560 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2561 2562 // Now add the target-cpu and target-features to the function. 2563 // While we populated the feature map above, we still need to 2564 // get and parse the target attribute so we can get the cpu for 2565 // the function. 2566 if (TD) { 2567 ParsedTargetAttr ParsedAttr = 2568 Target.parseTargetAttr(TD->getFeaturesStr()); 2569 if (!ParsedAttr.CPU.empty() && 2570 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2571 TargetCPU = ParsedAttr.CPU; 2572 TuneCPU = ""; // Clear the tune CPU. 2573 } 2574 if (!ParsedAttr.Tune.empty() && 2575 getTarget().isValidCPUName(ParsedAttr.Tune)) 2576 TuneCPU = ParsedAttr.Tune; 2577 } 2578 2579 if (SD) { 2580 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2581 // favor this processor. 2582 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2583 } 2584 } else { 2585 // Otherwise just add the existing target cpu and target features to the 2586 // function. 2587 Features = getTarget().getTargetOpts().Features; 2588 } 2589 2590 if (!TargetCPU.empty()) { 2591 Attrs.addAttribute("target-cpu", TargetCPU); 2592 AddedAttr = true; 2593 } 2594 if (!TuneCPU.empty()) { 2595 Attrs.addAttribute("tune-cpu", TuneCPU); 2596 AddedAttr = true; 2597 } 2598 if (!Features.empty() && SetTargetFeatures) { 2599 llvm::erase_if(Features, [&](const std::string& F) { 2600 return getTarget().isReadOnlyFeature(F.substr(1)); 2601 }); 2602 llvm::sort(Features); 2603 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2604 AddedAttr = true; 2605 } 2606 2607 return AddedAttr; 2608 } 2609 2610 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2611 llvm::GlobalObject *GO) { 2612 const Decl *D = GD.getDecl(); 2613 SetCommonAttributes(GD, GO); 2614 2615 if (D) { 2616 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2617 if (D->hasAttr<RetainAttr>()) 2618 addUsedGlobal(GV); 2619 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2620 GV->addAttribute("bss-section", SA->getName()); 2621 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2622 GV->addAttribute("data-section", SA->getName()); 2623 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2624 GV->addAttribute("rodata-section", SA->getName()); 2625 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2626 GV->addAttribute("relro-section", SA->getName()); 2627 } 2628 2629 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2630 if (D->hasAttr<RetainAttr>()) 2631 addUsedGlobal(F); 2632 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2633 if (!D->getAttr<SectionAttr>()) 2634 F->addFnAttr("implicit-section-name", SA->getName()); 2635 2636 llvm::AttrBuilder Attrs(F->getContext()); 2637 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2638 // We know that GetCPUAndFeaturesAttributes will always have the 2639 // newest set, since it has the newest possible FunctionDecl, so the 2640 // new ones should replace the old. 2641 llvm::AttributeMask RemoveAttrs; 2642 RemoveAttrs.addAttribute("target-cpu"); 2643 RemoveAttrs.addAttribute("target-features"); 2644 RemoveAttrs.addAttribute("tune-cpu"); 2645 F->removeFnAttrs(RemoveAttrs); 2646 F->addFnAttrs(Attrs); 2647 } 2648 } 2649 2650 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2651 GO->setSection(CSA->getName()); 2652 else if (const auto *SA = D->getAttr<SectionAttr>()) 2653 GO->setSection(SA->getName()); 2654 } 2655 2656 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2657 } 2658 2659 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2660 llvm::Function *F, 2661 const CGFunctionInfo &FI) { 2662 const Decl *D = GD.getDecl(); 2663 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2664 SetLLVMFunctionAttributesForDefinition(D, F); 2665 2666 F->setLinkage(llvm::Function::InternalLinkage); 2667 2668 setNonAliasAttributes(GD, F); 2669 } 2670 2671 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2672 // Set linkage and visibility in case we never see a definition. 2673 LinkageInfo LV = ND->getLinkageAndVisibility(); 2674 // Don't set internal linkage on declarations. 2675 // "extern_weak" is overloaded in LLVM; we probably should have 2676 // separate linkage types for this. 2677 if (isExternallyVisible(LV.getLinkage()) && 2678 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2679 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2680 } 2681 2682 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2683 llvm::Function *F) { 2684 // Only if we are checking indirect calls. 2685 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2686 return; 2687 2688 // Non-static class methods are handled via vtable or member function pointer 2689 // checks elsewhere. 2690 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2691 return; 2692 2693 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2694 F->addTypeMetadata(0, MD); 2695 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2696 2697 // Emit a hash-based bit set entry for cross-DSO calls. 2698 if (CodeGenOpts.SanitizeCfiCrossDso) 2699 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2700 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2701 } 2702 2703 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2704 llvm::LLVMContext &Ctx = F->getContext(); 2705 llvm::MDBuilder MDB(Ctx); 2706 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2707 llvm::MDNode::get( 2708 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2709 } 2710 2711 static bool allowKCFIIdentifier(StringRef Name) { 2712 // KCFI type identifier constants are only necessary for external assembly 2713 // functions, which means it's safe to skip unusual names. Subset of 2714 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2715 return llvm::all_of(Name, [](const char &C) { 2716 return llvm::isAlnum(C) || C == '_' || C == '.'; 2717 }); 2718 } 2719 2720 void CodeGenModule::finalizeKCFITypes() { 2721 llvm::Module &M = getModule(); 2722 for (auto &F : M.functions()) { 2723 // Remove KCFI type metadata from non-address-taken local functions. 2724 bool AddressTaken = F.hasAddressTaken(); 2725 if (!AddressTaken && F.hasLocalLinkage()) 2726 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2727 2728 // Generate a constant with the expected KCFI type identifier for all 2729 // address-taken function declarations to support annotating indirectly 2730 // called assembly functions. 2731 if (!AddressTaken || !F.isDeclaration()) 2732 continue; 2733 2734 const llvm::ConstantInt *Type; 2735 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2736 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2737 else 2738 continue; 2739 2740 StringRef Name = F.getName(); 2741 if (!allowKCFIIdentifier(Name)) 2742 continue; 2743 2744 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2745 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2746 .str(); 2747 M.appendModuleInlineAsm(Asm); 2748 } 2749 } 2750 2751 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2752 bool IsIncompleteFunction, 2753 bool IsThunk) { 2754 2755 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2756 // If this is an intrinsic function, set the function's attributes 2757 // to the intrinsic's attributes. 2758 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2759 return; 2760 } 2761 2762 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2763 2764 if (!IsIncompleteFunction) 2765 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2766 IsThunk); 2767 2768 // Add the Returned attribute for "this", except for iOS 5 and earlier 2769 // where substantial code, including the libstdc++ dylib, was compiled with 2770 // GCC and does not actually return "this". 2771 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2772 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2773 assert(!F->arg_empty() && 2774 F->arg_begin()->getType() 2775 ->canLosslesslyBitCastTo(F->getReturnType()) && 2776 "unexpected this return"); 2777 F->addParamAttr(0, llvm::Attribute::Returned); 2778 } 2779 2780 // Only a few attributes are set on declarations; these may later be 2781 // overridden by a definition. 2782 2783 setLinkageForGV(F, FD); 2784 setGVProperties(F, FD); 2785 2786 // Setup target-specific attributes. 2787 if (!IsIncompleteFunction && F->isDeclaration()) 2788 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2789 2790 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2791 F->setSection(CSA->getName()); 2792 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2793 F->setSection(SA->getName()); 2794 2795 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2796 if (EA->isError()) 2797 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2798 else if (EA->isWarning()) 2799 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2800 } 2801 2802 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2803 if (FD->isInlineBuiltinDeclaration()) { 2804 const FunctionDecl *FDBody; 2805 bool HasBody = FD->hasBody(FDBody); 2806 (void)HasBody; 2807 assert(HasBody && "Inline builtin declarations should always have an " 2808 "available body!"); 2809 if (shouldEmitFunction(FDBody)) 2810 F->addFnAttr(llvm::Attribute::NoBuiltin); 2811 } 2812 2813 if (FD->isReplaceableGlobalAllocationFunction()) { 2814 // A replaceable global allocation function does not act like a builtin by 2815 // default, only if it is invoked by a new-expression or delete-expression. 2816 F->addFnAttr(llvm::Attribute::NoBuiltin); 2817 } 2818 2819 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2820 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2821 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2822 if (MD->isVirtual()) 2823 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2824 2825 // Don't emit entries for function declarations in the cross-DSO mode. This 2826 // is handled with better precision by the receiving DSO. But if jump tables 2827 // are non-canonical then we need type metadata in order to produce the local 2828 // jump table. 2829 if (!CodeGenOpts.SanitizeCfiCrossDso || 2830 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2831 CreateFunctionTypeMetadataForIcall(FD, F); 2832 2833 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2834 setKCFIType(FD, F); 2835 2836 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2837 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2838 2839 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2840 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2841 2842 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2843 // Annotate the callback behavior as metadata: 2844 // - The callback callee (as argument number). 2845 // - The callback payloads (as argument numbers). 2846 llvm::LLVMContext &Ctx = F->getContext(); 2847 llvm::MDBuilder MDB(Ctx); 2848 2849 // The payload indices are all but the first one in the encoding. The first 2850 // identifies the callback callee. 2851 int CalleeIdx = *CB->encoding_begin(); 2852 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2853 F->addMetadata(llvm::LLVMContext::MD_callback, 2854 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2855 CalleeIdx, PayloadIndices, 2856 /* VarArgsArePassed */ false)})); 2857 } 2858 } 2859 2860 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2861 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2862 "Only globals with definition can force usage."); 2863 LLVMUsed.emplace_back(GV); 2864 } 2865 2866 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2867 assert(!GV->isDeclaration() && 2868 "Only globals with definition can force usage."); 2869 LLVMCompilerUsed.emplace_back(GV); 2870 } 2871 2872 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2873 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2874 "Only globals with definition can force usage."); 2875 if (getTriple().isOSBinFormatELF()) 2876 LLVMCompilerUsed.emplace_back(GV); 2877 else 2878 LLVMUsed.emplace_back(GV); 2879 } 2880 2881 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2882 std::vector<llvm::WeakTrackingVH> &List) { 2883 // Don't create llvm.used if there is no need. 2884 if (List.empty()) 2885 return; 2886 2887 // Convert List to what ConstantArray needs. 2888 SmallVector<llvm::Constant*, 8> UsedArray; 2889 UsedArray.resize(List.size()); 2890 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2891 UsedArray[i] = 2892 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2893 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2894 } 2895 2896 if (UsedArray.empty()) 2897 return; 2898 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2899 2900 auto *GV = new llvm::GlobalVariable( 2901 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2902 llvm::ConstantArray::get(ATy, UsedArray), Name); 2903 2904 GV->setSection("llvm.metadata"); 2905 } 2906 2907 void CodeGenModule::emitLLVMUsed() { 2908 emitUsed(*this, "llvm.used", LLVMUsed); 2909 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2910 } 2911 2912 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2913 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2914 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2915 } 2916 2917 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2918 llvm::SmallString<32> Opt; 2919 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2920 if (Opt.empty()) 2921 return; 2922 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2923 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2924 } 2925 2926 void CodeGenModule::AddDependentLib(StringRef Lib) { 2927 auto &C = getLLVMContext(); 2928 if (getTarget().getTriple().isOSBinFormatELF()) { 2929 ELFDependentLibraries.push_back( 2930 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2931 return; 2932 } 2933 2934 llvm::SmallString<24> Opt; 2935 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2936 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2937 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2938 } 2939 2940 /// Add link options implied by the given module, including modules 2941 /// it depends on, using a postorder walk. 2942 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2943 SmallVectorImpl<llvm::MDNode *> &Metadata, 2944 llvm::SmallPtrSet<Module *, 16> &Visited) { 2945 // Import this module's parent. 2946 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2947 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2948 } 2949 2950 // Import this module's dependencies. 2951 for (Module *Import : llvm::reverse(Mod->Imports)) { 2952 if (Visited.insert(Import).second) 2953 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2954 } 2955 2956 // Add linker options to link against the libraries/frameworks 2957 // described by this module. 2958 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2959 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2960 2961 // For modules that use export_as for linking, use that module 2962 // name instead. 2963 if (Mod->UseExportAsModuleLinkName) 2964 return; 2965 2966 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2967 // Link against a framework. Frameworks are currently Darwin only, so we 2968 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2969 if (LL.IsFramework) { 2970 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2971 llvm::MDString::get(Context, LL.Library)}; 2972 2973 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2974 continue; 2975 } 2976 2977 // Link against a library. 2978 if (IsELF) { 2979 llvm::Metadata *Args[2] = { 2980 llvm::MDString::get(Context, "lib"), 2981 llvm::MDString::get(Context, LL.Library), 2982 }; 2983 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2984 } else { 2985 llvm::SmallString<24> Opt; 2986 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2987 auto *OptString = llvm::MDString::get(Context, Opt); 2988 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2989 } 2990 } 2991 } 2992 2993 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2994 assert(Primary->isNamedModuleUnit() && 2995 "We should only emit module initializers for named modules."); 2996 2997 // Emit the initializers in the order that sub-modules appear in the 2998 // source, first Global Module Fragments, if present. 2999 if (auto GMF = Primary->getGlobalModuleFragment()) { 3000 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3001 if (isa<ImportDecl>(D)) 3002 continue; 3003 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3004 EmitTopLevelDecl(D); 3005 } 3006 } 3007 // Second any associated with the module, itself. 3008 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3009 // Skip import decls, the inits for those are called explicitly. 3010 if (isa<ImportDecl>(D)) 3011 continue; 3012 EmitTopLevelDecl(D); 3013 } 3014 // Third any associated with the Privat eMOdule Fragment, if present. 3015 if (auto PMF = Primary->getPrivateModuleFragment()) { 3016 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3017 // Skip import decls, the inits for those are called explicitly. 3018 if (isa<ImportDecl>(D)) 3019 continue; 3020 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3021 EmitTopLevelDecl(D); 3022 } 3023 } 3024 } 3025 3026 void CodeGenModule::EmitModuleLinkOptions() { 3027 // Collect the set of all of the modules we want to visit to emit link 3028 // options, which is essentially the imported modules and all of their 3029 // non-explicit child modules. 3030 llvm::SetVector<clang::Module *> LinkModules; 3031 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3032 SmallVector<clang::Module *, 16> Stack; 3033 3034 // Seed the stack with imported modules. 3035 for (Module *M : ImportedModules) { 3036 // Do not add any link flags when an implementation TU of a module imports 3037 // a header of that same module. 3038 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3039 !getLangOpts().isCompilingModule()) 3040 continue; 3041 if (Visited.insert(M).second) 3042 Stack.push_back(M); 3043 } 3044 3045 // Find all of the modules to import, making a little effort to prune 3046 // non-leaf modules. 3047 while (!Stack.empty()) { 3048 clang::Module *Mod = Stack.pop_back_val(); 3049 3050 bool AnyChildren = false; 3051 3052 // Visit the submodules of this module. 3053 for (const auto &SM : Mod->submodules()) { 3054 // Skip explicit children; they need to be explicitly imported to be 3055 // linked against. 3056 if (SM->IsExplicit) 3057 continue; 3058 3059 if (Visited.insert(SM).second) { 3060 Stack.push_back(SM); 3061 AnyChildren = true; 3062 } 3063 } 3064 3065 // We didn't find any children, so add this module to the list of 3066 // modules to link against. 3067 if (!AnyChildren) { 3068 LinkModules.insert(Mod); 3069 } 3070 } 3071 3072 // Add link options for all of the imported modules in reverse topological 3073 // order. We don't do anything to try to order import link flags with respect 3074 // to linker options inserted by things like #pragma comment(). 3075 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3076 Visited.clear(); 3077 for (Module *M : LinkModules) 3078 if (Visited.insert(M).second) 3079 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3080 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3081 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3082 3083 // Add the linker options metadata flag. 3084 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3085 for (auto *MD : LinkerOptionsMetadata) 3086 NMD->addOperand(MD); 3087 } 3088 3089 void CodeGenModule::EmitDeferred() { 3090 // Emit deferred declare target declarations. 3091 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3092 getOpenMPRuntime().emitDeferredTargetDecls(); 3093 3094 // Emit code for any potentially referenced deferred decls. Since a 3095 // previously unused static decl may become used during the generation of code 3096 // for a static function, iterate until no changes are made. 3097 3098 if (!DeferredVTables.empty()) { 3099 EmitDeferredVTables(); 3100 3101 // Emitting a vtable doesn't directly cause more vtables to 3102 // become deferred, although it can cause functions to be 3103 // emitted that then need those vtables. 3104 assert(DeferredVTables.empty()); 3105 } 3106 3107 // Emit CUDA/HIP static device variables referenced by host code only. 3108 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3109 // needed for further handling. 3110 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3111 llvm::append_range(DeferredDeclsToEmit, 3112 getContext().CUDADeviceVarODRUsedByHost); 3113 3114 // Stop if we're out of both deferred vtables and deferred declarations. 3115 if (DeferredDeclsToEmit.empty()) 3116 return; 3117 3118 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3119 // work, it will not interfere with this. 3120 std::vector<GlobalDecl> CurDeclsToEmit; 3121 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3122 3123 for (GlobalDecl &D : CurDeclsToEmit) { 3124 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3125 // to get GlobalValue with exactly the type we need, not something that 3126 // might had been created for another decl with the same mangled name but 3127 // different type. 3128 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3129 GetAddrOfGlobal(D, ForDefinition)); 3130 3131 // In case of different address spaces, we may still get a cast, even with 3132 // IsForDefinition equal to true. Query mangled names table to get 3133 // GlobalValue. 3134 if (!GV) 3135 GV = GetGlobalValue(getMangledName(D)); 3136 3137 // Make sure GetGlobalValue returned non-null. 3138 assert(GV); 3139 3140 // Check to see if we've already emitted this. This is necessary 3141 // for a couple of reasons: first, decls can end up in the 3142 // deferred-decls queue multiple times, and second, decls can end 3143 // up with definitions in unusual ways (e.g. by an extern inline 3144 // function acquiring a strong function redefinition). Just 3145 // ignore these cases. 3146 if (!GV->isDeclaration()) 3147 continue; 3148 3149 // If this is OpenMP, check if it is legal to emit this global normally. 3150 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3151 continue; 3152 3153 // Otherwise, emit the definition and move on to the next one. 3154 EmitGlobalDefinition(D, GV); 3155 3156 // If we found out that we need to emit more decls, do that recursively. 3157 // This has the advantage that the decls are emitted in a DFS and related 3158 // ones are close together, which is convenient for testing. 3159 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3160 EmitDeferred(); 3161 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3162 } 3163 } 3164 } 3165 3166 void CodeGenModule::EmitVTablesOpportunistically() { 3167 // Try to emit external vtables as available_externally if they have emitted 3168 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3169 // is not allowed to create new references to things that need to be emitted 3170 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3171 3172 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3173 && "Only emit opportunistic vtables with optimizations"); 3174 3175 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3176 assert(getVTables().isVTableExternal(RD) && 3177 "This queue should only contain external vtables"); 3178 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3179 VTables.GenerateClassData(RD); 3180 } 3181 OpportunisticVTables.clear(); 3182 } 3183 3184 void CodeGenModule::EmitGlobalAnnotations() { 3185 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3186 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3187 if (GV) 3188 AddGlobalAnnotations(VD, GV); 3189 } 3190 DeferredAnnotations.clear(); 3191 3192 if (Annotations.empty()) 3193 return; 3194 3195 // Create a new global variable for the ConstantStruct in the Module. 3196 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3197 Annotations[0]->getType(), Annotations.size()), Annotations); 3198 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3199 llvm::GlobalValue::AppendingLinkage, 3200 Array, "llvm.global.annotations"); 3201 gv->setSection(AnnotationSection); 3202 } 3203 3204 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3205 llvm::Constant *&AStr = AnnotationStrings[Str]; 3206 if (AStr) 3207 return AStr; 3208 3209 // Not found yet, create a new global. 3210 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3211 auto *gv = new llvm::GlobalVariable( 3212 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3213 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3214 ConstGlobalsPtrTy->getAddressSpace()); 3215 gv->setSection(AnnotationSection); 3216 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3217 AStr = gv; 3218 return gv; 3219 } 3220 3221 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3222 SourceManager &SM = getContext().getSourceManager(); 3223 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3224 if (PLoc.isValid()) 3225 return EmitAnnotationString(PLoc.getFilename()); 3226 return EmitAnnotationString(SM.getBufferName(Loc)); 3227 } 3228 3229 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3230 SourceManager &SM = getContext().getSourceManager(); 3231 PresumedLoc PLoc = SM.getPresumedLoc(L); 3232 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3233 SM.getExpansionLineNumber(L); 3234 return llvm::ConstantInt::get(Int32Ty, LineNo); 3235 } 3236 3237 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3238 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3239 if (Exprs.empty()) 3240 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3241 3242 llvm::FoldingSetNodeID ID; 3243 for (Expr *E : Exprs) { 3244 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3245 } 3246 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3247 if (Lookup) 3248 return Lookup; 3249 3250 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3251 LLVMArgs.reserve(Exprs.size()); 3252 ConstantEmitter ConstEmiter(*this); 3253 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3254 const auto *CE = cast<clang::ConstantExpr>(E); 3255 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3256 CE->getType()); 3257 }); 3258 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3259 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3260 llvm::GlobalValue::PrivateLinkage, Struct, 3261 ".args"); 3262 GV->setSection(AnnotationSection); 3263 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3264 3265 Lookup = GV; 3266 return GV; 3267 } 3268 3269 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3270 const AnnotateAttr *AA, 3271 SourceLocation L) { 3272 // Get the globals for file name, annotation, and the line number. 3273 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3274 *UnitGV = EmitAnnotationUnit(L), 3275 *LineNoCst = EmitAnnotationLineNo(L), 3276 *Args = EmitAnnotationArgs(AA); 3277 3278 llvm::Constant *GVInGlobalsAS = GV; 3279 if (GV->getAddressSpace() != 3280 getDataLayout().getDefaultGlobalsAddressSpace()) { 3281 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3282 GV, 3283 llvm::PointerType::get( 3284 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3285 } 3286 3287 // Create the ConstantStruct for the global annotation. 3288 llvm::Constant *Fields[] = { 3289 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3290 }; 3291 return llvm::ConstantStruct::getAnon(Fields); 3292 } 3293 3294 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3295 llvm::GlobalValue *GV) { 3296 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3297 // Get the struct elements for these annotations. 3298 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3299 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3300 } 3301 3302 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3303 SourceLocation Loc) const { 3304 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3305 // NoSanitize by function name. 3306 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3307 return true; 3308 // NoSanitize by location. Check "mainfile" prefix. 3309 auto &SM = Context.getSourceManager(); 3310 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3311 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3312 return true; 3313 3314 // Check "src" prefix. 3315 if (Loc.isValid()) 3316 return NoSanitizeL.containsLocation(Kind, Loc); 3317 // If location is unknown, this may be a compiler-generated function. Assume 3318 // it's located in the main file. 3319 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3320 } 3321 3322 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3323 llvm::GlobalVariable *GV, 3324 SourceLocation Loc, QualType Ty, 3325 StringRef Category) const { 3326 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3327 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3328 return true; 3329 auto &SM = Context.getSourceManager(); 3330 if (NoSanitizeL.containsMainFile( 3331 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3332 Category)) 3333 return true; 3334 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3335 return true; 3336 3337 // Check global type. 3338 if (!Ty.isNull()) { 3339 // Drill down the array types: if global variable of a fixed type is 3340 // not sanitized, we also don't instrument arrays of them. 3341 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3342 Ty = AT->getElementType(); 3343 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3344 // Only record types (classes, structs etc.) are ignored. 3345 if (Ty->isRecordType()) { 3346 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3347 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3348 return true; 3349 } 3350 } 3351 return false; 3352 } 3353 3354 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3355 StringRef Category) const { 3356 const auto &XRayFilter = getContext().getXRayFilter(); 3357 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3358 auto Attr = ImbueAttr::NONE; 3359 if (Loc.isValid()) 3360 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3361 if (Attr == ImbueAttr::NONE) 3362 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3363 switch (Attr) { 3364 case ImbueAttr::NONE: 3365 return false; 3366 case ImbueAttr::ALWAYS: 3367 Fn->addFnAttr("function-instrument", "xray-always"); 3368 break; 3369 case ImbueAttr::ALWAYS_ARG1: 3370 Fn->addFnAttr("function-instrument", "xray-always"); 3371 Fn->addFnAttr("xray-log-args", "1"); 3372 break; 3373 case ImbueAttr::NEVER: 3374 Fn->addFnAttr("function-instrument", "xray-never"); 3375 break; 3376 } 3377 return true; 3378 } 3379 3380 ProfileList::ExclusionType 3381 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3382 SourceLocation Loc) const { 3383 const auto &ProfileList = getContext().getProfileList(); 3384 // If the profile list is empty, then instrument everything. 3385 if (ProfileList.isEmpty()) 3386 return ProfileList::Allow; 3387 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3388 // First, check the function name. 3389 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3390 return *V; 3391 // Next, check the source location. 3392 if (Loc.isValid()) 3393 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3394 return *V; 3395 // If location is unknown, this may be a compiler-generated function. Assume 3396 // it's located in the main file. 3397 auto &SM = Context.getSourceManager(); 3398 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3399 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3400 return *V; 3401 return ProfileList.getDefault(Kind); 3402 } 3403 3404 ProfileList::ExclusionType 3405 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3406 SourceLocation Loc) const { 3407 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3408 if (V != ProfileList::Allow) 3409 return V; 3410 3411 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3412 if (NumGroups > 1) { 3413 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3414 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3415 return ProfileList::Skip; 3416 } 3417 return ProfileList::Allow; 3418 } 3419 3420 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3421 // Never defer when EmitAllDecls is specified. 3422 if (LangOpts.EmitAllDecls) 3423 return true; 3424 3425 const auto *VD = dyn_cast<VarDecl>(Global); 3426 if (VD && 3427 ((CodeGenOpts.KeepPersistentStorageVariables && 3428 (VD->getStorageDuration() == SD_Static || 3429 VD->getStorageDuration() == SD_Thread)) || 3430 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3431 VD->getType().isConstQualified()))) 3432 return true; 3433 3434 return getContext().DeclMustBeEmitted(Global); 3435 } 3436 3437 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3438 // In OpenMP 5.0 variables and function may be marked as 3439 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3440 // that they must be emitted on the host/device. To be sure we need to have 3441 // seen a declare target with an explicit mentioning of the function, we know 3442 // we have if the level of the declare target attribute is -1. Note that we 3443 // check somewhere else if we should emit this at all. 3444 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3445 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3446 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3447 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3448 return false; 3449 } 3450 3451 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3452 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3453 // Implicit template instantiations may change linkage if they are later 3454 // explicitly instantiated, so they should not be emitted eagerly. 3455 return false; 3456 } 3457 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3458 if (Context.getInlineVariableDefinitionKind(VD) == 3459 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3460 // A definition of an inline constexpr static data member may change 3461 // linkage later if it's redeclared outside the class. 3462 return false; 3463 if (CXX20ModuleInits && VD->getOwningModule() && 3464 !VD->getOwningModule()->isModuleMapModule()) { 3465 // For CXX20, module-owned initializers need to be deferred, since it is 3466 // not known at this point if they will be run for the current module or 3467 // as part of the initializer for an imported one. 3468 return false; 3469 } 3470 } 3471 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3472 // codegen for global variables, because they may be marked as threadprivate. 3473 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3474 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3475 !Global->getType().isConstantStorage(getContext(), false, false) && 3476 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3477 return false; 3478 3479 return true; 3480 } 3481 3482 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3483 StringRef Name = getMangledName(GD); 3484 3485 // The UUID descriptor should be pointer aligned. 3486 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3487 3488 // Look for an existing global. 3489 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3490 return ConstantAddress(GV, GV->getValueType(), Alignment); 3491 3492 ConstantEmitter Emitter(*this); 3493 llvm::Constant *Init; 3494 3495 APValue &V = GD->getAsAPValue(); 3496 if (!V.isAbsent()) { 3497 // If possible, emit the APValue version of the initializer. In particular, 3498 // this gets the type of the constant right. 3499 Init = Emitter.emitForInitializer( 3500 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3501 } else { 3502 // As a fallback, directly construct the constant. 3503 // FIXME: This may get padding wrong under esoteric struct layout rules. 3504 // MSVC appears to create a complete type 'struct __s_GUID' that it 3505 // presumably uses to represent these constants. 3506 MSGuidDecl::Parts Parts = GD->getParts(); 3507 llvm::Constant *Fields[4] = { 3508 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3509 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3510 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3511 llvm::ConstantDataArray::getRaw( 3512 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3513 Int8Ty)}; 3514 Init = llvm::ConstantStruct::getAnon(Fields); 3515 } 3516 3517 auto *GV = new llvm::GlobalVariable( 3518 getModule(), Init->getType(), 3519 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3520 if (supportsCOMDAT()) 3521 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3522 setDSOLocal(GV); 3523 3524 if (!V.isAbsent()) { 3525 Emitter.finalize(GV); 3526 return ConstantAddress(GV, GV->getValueType(), Alignment); 3527 } 3528 3529 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3530 return ConstantAddress(GV, Ty, Alignment); 3531 } 3532 3533 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3534 const UnnamedGlobalConstantDecl *GCD) { 3535 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3536 3537 llvm::GlobalVariable **Entry = nullptr; 3538 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3539 if (*Entry) 3540 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3541 3542 ConstantEmitter Emitter(*this); 3543 llvm::Constant *Init; 3544 3545 const APValue &V = GCD->getValue(); 3546 3547 assert(!V.isAbsent()); 3548 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3549 GCD->getType()); 3550 3551 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3552 /*isConstant=*/true, 3553 llvm::GlobalValue::PrivateLinkage, Init, 3554 ".constant"); 3555 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3556 GV->setAlignment(Alignment.getAsAlign()); 3557 3558 Emitter.finalize(GV); 3559 3560 *Entry = GV; 3561 return ConstantAddress(GV, GV->getValueType(), Alignment); 3562 } 3563 3564 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3565 const TemplateParamObjectDecl *TPO) { 3566 StringRef Name = getMangledName(TPO); 3567 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3568 3569 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3570 return ConstantAddress(GV, GV->getValueType(), Alignment); 3571 3572 ConstantEmitter Emitter(*this); 3573 llvm::Constant *Init = Emitter.emitForInitializer( 3574 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3575 3576 if (!Init) { 3577 ErrorUnsupported(TPO, "template parameter object"); 3578 return ConstantAddress::invalid(); 3579 } 3580 3581 llvm::GlobalValue::LinkageTypes Linkage = 3582 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3583 ? llvm::GlobalValue::LinkOnceODRLinkage 3584 : llvm::GlobalValue::InternalLinkage; 3585 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3586 /*isConstant=*/true, Linkage, Init, Name); 3587 setGVProperties(GV, TPO); 3588 if (supportsCOMDAT()) 3589 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3590 Emitter.finalize(GV); 3591 3592 return ConstantAddress(GV, GV->getValueType(), Alignment); 3593 } 3594 3595 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3596 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3597 assert(AA && "No alias?"); 3598 3599 CharUnits Alignment = getContext().getDeclAlign(VD); 3600 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3601 3602 // See if there is already something with the target's name in the module. 3603 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3604 if (Entry) 3605 return ConstantAddress(Entry, DeclTy, Alignment); 3606 3607 llvm::Constant *Aliasee; 3608 if (isa<llvm::FunctionType>(DeclTy)) 3609 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3610 GlobalDecl(cast<FunctionDecl>(VD)), 3611 /*ForVTable=*/false); 3612 else 3613 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3614 nullptr); 3615 3616 auto *F = cast<llvm::GlobalValue>(Aliasee); 3617 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3618 WeakRefReferences.insert(F); 3619 3620 return ConstantAddress(Aliasee, DeclTy, Alignment); 3621 } 3622 3623 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3624 if (!D) 3625 return false; 3626 if (auto *A = D->getAttr<AttrT>()) 3627 return A->isImplicit(); 3628 return D->isImplicit(); 3629 } 3630 3631 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3632 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3633 3634 // Weak references don't produce any output by themselves. 3635 if (Global->hasAttr<WeakRefAttr>()) 3636 return; 3637 3638 // If this is an alias definition (which otherwise looks like a declaration) 3639 // emit it now. 3640 if (Global->hasAttr<AliasAttr>()) 3641 return EmitAliasDefinition(GD); 3642 3643 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3644 if (Global->hasAttr<IFuncAttr>()) 3645 return emitIFuncDefinition(GD); 3646 3647 // If this is a cpu_dispatch multiversion function, emit the resolver. 3648 if (Global->hasAttr<CPUDispatchAttr>()) 3649 return emitCPUDispatchDefinition(GD); 3650 3651 // If this is CUDA, be selective about which declarations we emit. 3652 // Non-constexpr non-lambda implicit host device functions are not emitted 3653 // unless they are used on device side. 3654 if (LangOpts.CUDA) { 3655 if (LangOpts.CUDAIsDevice) { 3656 const auto *FD = dyn_cast<FunctionDecl>(Global); 3657 if ((!Global->hasAttr<CUDADeviceAttr>() || 3658 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3659 hasImplicitAttr<CUDAHostAttr>(FD) && 3660 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3661 !isLambdaCallOperator(FD) && 3662 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3663 !Global->hasAttr<CUDAGlobalAttr>() && 3664 !Global->hasAttr<CUDAConstantAttr>() && 3665 !Global->hasAttr<CUDASharedAttr>() && 3666 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3667 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3668 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3669 !Global->hasAttr<CUDAHostAttr>())) 3670 return; 3671 } else { 3672 // We need to emit host-side 'shadows' for all global 3673 // device-side variables because the CUDA runtime needs their 3674 // size and host-side address in order to provide access to 3675 // their device-side incarnations. 3676 3677 // So device-only functions are the only things we skip. 3678 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3679 Global->hasAttr<CUDADeviceAttr>()) 3680 return; 3681 3682 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3683 "Expected Variable or Function"); 3684 } 3685 } 3686 3687 if (LangOpts.OpenMP) { 3688 // If this is OpenMP, check if it is legal to emit this global normally. 3689 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3690 return; 3691 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3692 if (MustBeEmitted(Global)) 3693 EmitOMPDeclareReduction(DRD); 3694 return; 3695 } 3696 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3697 if (MustBeEmitted(Global)) 3698 EmitOMPDeclareMapper(DMD); 3699 return; 3700 } 3701 } 3702 3703 // Ignore declarations, they will be emitted on their first use. 3704 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3705 // Update deferred annotations with the latest declaration if the function 3706 // function was already used or defined. 3707 if (FD->hasAttr<AnnotateAttr>()) { 3708 StringRef MangledName = getMangledName(GD); 3709 if (GetGlobalValue(MangledName)) 3710 DeferredAnnotations[MangledName] = FD; 3711 } 3712 3713 // Forward declarations are emitted lazily on first use. 3714 if (!FD->doesThisDeclarationHaveABody()) { 3715 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3716 return; 3717 3718 StringRef MangledName = getMangledName(GD); 3719 3720 // Compute the function info and LLVM type. 3721 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3722 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3723 3724 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3725 /*DontDefer=*/false); 3726 return; 3727 } 3728 } else { 3729 const auto *VD = cast<VarDecl>(Global); 3730 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3731 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3732 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3733 if (LangOpts.OpenMP) { 3734 // Emit declaration of the must-be-emitted declare target variable. 3735 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3736 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3737 3738 // If this variable has external storage and doesn't require special 3739 // link handling we defer to its canonical definition. 3740 if (VD->hasExternalStorage() && 3741 Res != OMPDeclareTargetDeclAttr::MT_Link) 3742 return; 3743 3744 bool UnifiedMemoryEnabled = 3745 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3746 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3747 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3748 !UnifiedMemoryEnabled) { 3749 (void)GetAddrOfGlobalVar(VD); 3750 } else { 3751 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3752 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3753 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3754 UnifiedMemoryEnabled)) && 3755 "Link clause or to clause with unified memory expected."); 3756 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3757 } 3758 3759 return; 3760 } 3761 } 3762 // If this declaration may have caused an inline variable definition to 3763 // change linkage, make sure that it's emitted. 3764 if (Context.getInlineVariableDefinitionKind(VD) == 3765 ASTContext::InlineVariableDefinitionKind::Strong) 3766 GetAddrOfGlobalVar(VD); 3767 return; 3768 } 3769 } 3770 3771 // Defer code generation to first use when possible, e.g. if this is an inline 3772 // function. If the global must always be emitted, do it eagerly if possible 3773 // to benefit from cache locality. 3774 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3775 // Emit the definition if it can't be deferred. 3776 EmitGlobalDefinition(GD); 3777 addEmittedDeferredDecl(GD); 3778 return; 3779 } 3780 3781 // If we're deferring emission of a C++ variable with an 3782 // initializer, remember the order in which it appeared in the file. 3783 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3784 cast<VarDecl>(Global)->hasInit()) { 3785 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3786 CXXGlobalInits.push_back(nullptr); 3787 } 3788 3789 StringRef MangledName = getMangledName(GD); 3790 if (GetGlobalValue(MangledName) != nullptr) { 3791 // The value has already been used and should therefore be emitted. 3792 addDeferredDeclToEmit(GD); 3793 } else if (MustBeEmitted(Global)) { 3794 // The value must be emitted, but cannot be emitted eagerly. 3795 assert(!MayBeEmittedEagerly(Global)); 3796 addDeferredDeclToEmit(GD); 3797 } else { 3798 // Otherwise, remember that we saw a deferred decl with this name. The 3799 // first use of the mangled name will cause it to move into 3800 // DeferredDeclsToEmit. 3801 DeferredDecls[MangledName] = GD; 3802 } 3803 } 3804 3805 // Check if T is a class type with a destructor that's not dllimport. 3806 static bool HasNonDllImportDtor(QualType T) { 3807 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3808 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3809 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3810 return true; 3811 3812 return false; 3813 } 3814 3815 namespace { 3816 struct FunctionIsDirectlyRecursive 3817 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3818 const StringRef Name; 3819 const Builtin::Context &BI; 3820 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3821 : Name(N), BI(C) {} 3822 3823 bool VisitCallExpr(const CallExpr *E) { 3824 const FunctionDecl *FD = E->getDirectCallee(); 3825 if (!FD) 3826 return false; 3827 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3828 if (Attr && Name == Attr->getLabel()) 3829 return true; 3830 unsigned BuiltinID = FD->getBuiltinID(); 3831 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3832 return false; 3833 StringRef BuiltinName = BI.getName(BuiltinID); 3834 if (BuiltinName.starts_with("__builtin_") && 3835 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3836 return true; 3837 } 3838 return false; 3839 } 3840 3841 bool VisitStmt(const Stmt *S) { 3842 for (const Stmt *Child : S->children()) 3843 if (Child && this->Visit(Child)) 3844 return true; 3845 return false; 3846 } 3847 }; 3848 3849 // Make sure we're not referencing non-imported vars or functions. 3850 struct DLLImportFunctionVisitor 3851 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3852 bool SafeToInline = true; 3853 3854 bool shouldVisitImplicitCode() const { return true; } 3855 3856 bool VisitVarDecl(VarDecl *VD) { 3857 if (VD->getTLSKind()) { 3858 // A thread-local variable cannot be imported. 3859 SafeToInline = false; 3860 return SafeToInline; 3861 } 3862 3863 // A variable definition might imply a destructor call. 3864 if (VD->isThisDeclarationADefinition()) 3865 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3866 3867 return SafeToInline; 3868 } 3869 3870 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3871 if (const auto *D = E->getTemporary()->getDestructor()) 3872 SafeToInline = D->hasAttr<DLLImportAttr>(); 3873 return SafeToInline; 3874 } 3875 3876 bool VisitDeclRefExpr(DeclRefExpr *E) { 3877 ValueDecl *VD = E->getDecl(); 3878 if (isa<FunctionDecl>(VD)) 3879 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3880 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3881 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3882 return SafeToInline; 3883 } 3884 3885 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3886 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3887 return SafeToInline; 3888 } 3889 3890 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3891 CXXMethodDecl *M = E->getMethodDecl(); 3892 if (!M) { 3893 // Call through a pointer to member function. This is safe to inline. 3894 SafeToInline = true; 3895 } else { 3896 SafeToInline = M->hasAttr<DLLImportAttr>(); 3897 } 3898 return SafeToInline; 3899 } 3900 3901 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3902 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3903 return SafeToInline; 3904 } 3905 3906 bool VisitCXXNewExpr(CXXNewExpr *E) { 3907 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3908 return SafeToInline; 3909 } 3910 }; 3911 } 3912 3913 // isTriviallyRecursive - Check if this function calls another 3914 // decl that, because of the asm attribute or the other decl being a builtin, 3915 // ends up pointing to itself. 3916 bool 3917 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3918 StringRef Name; 3919 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3920 // asm labels are a special kind of mangling we have to support. 3921 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3922 if (!Attr) 3923 return false; 3924 Name = Attr->getLabel(); 3925 } else { 3926 Name = FD->getName(); 3927 } 3928 3929 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3930 const Stmt *Body = FD->getBody(); 3931 return Body ? Walker.Visit(Body) : false; 3932 } 3933 3934 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3935 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3936 return true; 3937 3938 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3939 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3940 return false; 3941 3942 // We don't import function bodies from other named module units since that 3943 // behavior may break ABI compatibility of the current unit. 3944 if (const Module *M = F->getOwningModule(); 3945 M && M->getTopLevelModule()->isNamedModule() && 3946 getContext().getCurrentNamedModule() != M->getTopLevelModule() && 3947 !F->hasAttr<AlwaysInlineAttr>()) 3948 return false; 3949 3950 if (F->hasAttr<NoInlineAttr>()) 3951 return false; 3952 3953 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3954 // Check whether it would be safe to inline this dllimport function. 3955 DLLImportFunctionVisitor Visitor; 3956 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3957 if (!Visitor.SafeToInline) 3958 return false; 3959 3960 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3961 // Implicit destructor invocations aren't captured in the AST, so the 3962 // check above can't see them. Check for them manually here. 3963 for (const Decl *Member : Dtor->getParent()->decls()) 3964 if (isa<FieldDecl>(Member)) 3965 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3966 return false; 3967 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3968 if (HasNonDllImportDtor(B.getType())) 3969 return false; 3970 } 3971 } 3972 3973 // Inline builtins declaration must be emitted. They often are fortified 3974 // functions. 3975 if (F->isInlineBuiltinDeclaration()) 3976 return true; 3977 3978 // PR9614. Avoid cases where the source code is lying to us. An available 3979 // externally function should have an equivalent function somewhere else, 3980 // but a function that calls itself through asm label/`__builtin_` trickery is 3981 // clearly not equivalent to the real implementation. 3982 // This happens in glibc's btowc and in some configure checks. 3983 return !isTriviallyRecursive(F); 3984 } 3985 3986 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3987 return CodeGenOpts.OptimizationLevel > 0; 3988 } 3989 3990 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3991 llvm::GlobalValue *GV) { 3992 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3993 3994 if (FD->isCPUSpecificMultiVersion()) { 3995 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3996 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3997 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3998 } else if (FD->isTargetClonesMultiVersion()) { 3999 auto *Clone = FD->getAttr<TargetClonesAttr>(); 4000 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 4001 if (Clone->isFirstOfVersion(I)) 4002 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4003 // Ensure that the resolver function is also emitted. 4004 GetOrCreateMultiVersionResolver(GD); 4005 } else 4006 EmitGlobalFunctionDefinition(GD, GV); 4007 } 4008 4009 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4010 const auto *D = cast<ValueDecl>(GD.getDecl()); 4011 4012 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4013 Context.getSourceManager(), 4014 "Generating code for declaration"); 4015 4016 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4017 // At -O0, don't generate IR for functions with available_externally 4018 // linkage. 4019 if (!shouldEmitFunction(GD)) 4020 return; 4021 4022 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4023 std::string Name; 4024 llvm::raw_string_ostream OS(Name); 4025 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4026 /*Qualified=*/true); 4027 return Name; 4028 }); 4029 4030 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4031 // Make sure to emit the definition(s) before we emit the thunks. 4032 // This is necessary for the generation of certain thunks. 4033 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4034 ABI->emitCXXStructor(GD); 4035 else if (FD->isMultiVersion()) 4036 EmitMultiVersionFunctionDefinition(GD, GV); 4037 else 4038 EmitGlobalFunctionDefinition(GD, GV); 4039 4040 if (Method->isVirtual()) 4041 getVTables().EmitThunks(GD); 4042 4043 return; 4044 } 4045 4046 if (FD->isMultiVersion()) 4047 return EmitMultiVersionFunctionDefinition(GD, GV); 4048 return EmitGlobalFunctionDefinition(GD, GV); 4049 } 4050 4051 if (const auto *VD = dyn_cast<VarDecl>(D)) 4052 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4053 4054 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4055 } 4056 4057 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4058 llvm::Function *NewFn); 4059 4060 static unsigned 4061 TargetMVPriority(const TargetInfo &TI, 4062 const CodeGenFunction::MultiVersionResolverOption &RO) { 4063 unsigned Priority = 0; 4064 unsigned NumFeatures = 0; 4065 for (StringRef Feat : RO.Conditions.Features) { 4066 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4067 NumFeatures++; 4068 } 4069 4070 if (!RO.Conditions.Architecture.empty()) 4071 Priority = std::max( 4072 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4073 4074 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4075 4076 return Priority; 4077 } 4078 4079 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4080 // TU can forward declare the function without causing problems. Particularly 4081 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4082 // work with internal linkage functions, so that the same function name can be 4083 // used with internal linkage in multiple TUs. 4084 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4085 GlobalDecl GD) { 4086 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4087 if (FD->getFormalLinkage() == Linkage::Internal) 4088 return llvm::GlobalValue::InternalLinkage; 4089 return llvm::GlobalValue::WeakODRLinkage; 4090 } 4091 4092 void CodeGenModule::emitMultiVersionFunctions() { 4093 std::vector<GlobalDecl> MVFuncsToEmit; 4094 MultiVersionFuncs.swap(MVFuncsToEmit); 4095 for (GlobalDecl GD : MVFuncsToEmit) { 4096 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4097 assert(FD && "Expected a FunctionDecl"); 4098 4099 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4100 if (FD->isTargetMultiVersion()) { 4101 getContext().forEachMultiversionedFunctionVersion( 4102 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4103 GlobalDecl CurGD{ 4104 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4105 StringRef MangledName = getMangledName(CurGD); 4106 llvm::Constant *Func = GetGlobalValue(MangledName); 4107 if (!Func) { 4108 if (CurFD->isDefined()) { 4109 EmitGlobalFunctionDefinition(CurGD, nullptr); 4110 Func = GetGlobalValue(MangledName); 4111 } else { 4112 const CGFunctionInfo &FI = 4113 getTypes().arrangeGlobalDeclaration(GD); 4114 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4115 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4116 /*DontDefer=*/false, ForDefinition); 4117 } 4118 assert(Func && "This should have just been created"); 4119 } 4120 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4121 const auto *TA = CurFD->getAttr<TargetAttr>(); 4122 llvm::SmallVector<StringRef, 8> Feats; 4123 TA->getAddedFeatures(Feats); 4124 Options.emplace_back(cast<llvm::Function>(Func), 4125 TA->getArchitecture(), Feats); 4126 } else { 4127 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4128 llvm::SmallVector<StringRef, 8> Feats; 4129 TVA->getFeatures(Feats); 4130 Options.emplace_back(cast<llvm::Function>(Func), 4131 /*Architecture*/ "", Feats); 4132 } 4133 }); 4134 } else if (FD->isTargetClonesMultiVersion()) { 4135 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4136 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4137 ++VersionIndex) { 4138 if (!TC->isFirstOfVersion(VersionIndex)) 4139 continue; 4140 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4141 VersionIndex}; 4142 StringRef Version = TC->getFeatureStr(VersionIndex); 4143 StringRef MangledName = getMangledName(CurGD); 4144 llvm::Constant *Func = GetGlobalValue(MangledName); 4145 if (!Func) { 4146 if (FD->isDefined()) { 4147 EmitGlobalFunctionDefinition(CurGD, nullptr); 4148 Func = GetGlobalValue(MangledName); 4149 } else { 4150 const CGFunctionInfo &FI = 4151 getTypes().arrangeGlobalDeclaration(CurGD); 4152 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4153 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4154 /*DontDefer=*/false, ForDefinition); 4155 } 4156 assert(Func && "This should have just been created"); 4157 } 4158 4159 StringRef Architecture; 4160 llvm::SmallVector<StringRef, 1> Feature; 4161 4162 if (getTarget().getTriple().isAArch64()) { 4163 if (Version != "default") { 4164 llvm::SmallVector<StringRef, 8> VerFeats; 4165 Version.split(VerFeats, "+"); 4166 for (auto &CurFeat : VerFeats) 4167 Feature.push_back(CurFeat.trim()); 4168 } 4169 } else { 4170 if (Version.starts_with("arch=")) 4171 Architecture = Version.drop_front(sizeof("arch=") - 1); 4172 else if (Version != "default") 4173 Feature.push_back(Version); 4174 } 4175 4176 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4177 } 4178 } else { 4179 assert(0 && "Expected a target or target_clones multiversion function"); 4180 continue; 4181 } 4182 4183 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4184 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4185 ResolverConstant = IFunc->getResolver(); 4186 // In Aarch64, default versions of multiversioned functions are mangled to 4187 // their 'normal' assembly name. This deviates from other targets which 4188 // append a '.default' string. As a result we need to continue appending 4189 // .ifunc in Aarch64. 4190 // FIXME: Should Aarch64 mangling for 'default' multiversion function and 4191 // in turn ifunc function match that of other targets? 4192 if (FD->isTargetClonesMultiVersion() && 4193 !getTarget().getTriple().isAArch64()) { 4194 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4195 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4196 std::string MangledName = getMangledNameImpl( 4197 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4198 // In prior versions of Clang, the mangling for ifuncs incorrectly 4199 // included an .ifunc suffix. This alias is generated for backward 4200 // compatibility. It is deprecated, and may be removed in the future. 4201 auto *Alias = llvm::GlobalAlias::create( 4202 DeclTy, 0, getMultiversionLinkage(*this, GD), 4203 MangledName + ".ifunc", IFunc, &getModule()); 4204 SetCommonAttributes(FD, Alias); 4205 } 4206 } 4207 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4208 4209 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4210 4211 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4212 ResolverFunc->setComdat( 4213 getModule().getOrInsertComdat(ResolverFunc->getName())); 4214 4215 const TargetInfo &TI = getTarget(); 4216 llvm::stable_sort( 4217 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4218 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4219 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4220 }); 4221 CodeGenFunction CGF(*this); 4222 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4223 } 4224 4225 // Ensure that any additions to the deferred decls list caused by emitting a 4226 // variant are emitted. This can happen when the variant itself is inline and 4227 // calls a function without linkage. 4228 if (!MVFuncsToEmit.empty()) 4229 EmitDeferred(); 4230 4231 // Ensure that any additions to the multiversion funcs list from either the 4232 // deferred decls or the multiversion functions themselves are emitted. 4233 if (!MultiVersionFuncs.empty()) 4234 emitMultiVersionFunctions(); 4235 } 4236 4237 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4238 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4239 assert(FD && "Not a FunctionDecl?"); 4240 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4241 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4242 assert(DD && "Not a cpu_dispatch Function?"); 4243 4244 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4245 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4246 4247 StringRef ResolverName = getMangledName(GD); 4248 UpdateMultiVersionNames(GD, FD, ResolverName); 4249 4250 llvm::Type *ResolverType; 4251 GlobalDecl ResolverGD; 4252 if (getTarget().supportsIFunc()) { 4253 ResolverType = llvm::FunctionType::get( 4254 llvm::PointerType::get(DeclTy, 4255 getTypes().getTargetAddressSpace(FD->getType())), 4256 false); 4257 } 4258 else { 4259 ResolverType = DeclTy; 4260 ResolverGD = GD; 4261 } 4262 4263 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4264 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4265 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4266 if (supportsCOMDAT()) 4267 ResolverFunc->setComdat( 4268 getModule().getOrInsertComdat(ResolverFunc->getName())); 4269 4270 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4271 const TargetInfo &Target = getTarget(); 4272 unsigned Index = 0; 4273 for (const IdentifierInfo *II : DD->cpus()) { 4274 // Get the name of the target function so we can look it up/create it. 4275 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4276 getCPUSpecificMangling(*this, II->getName()); 4277 4278 llvm::Constant *Func = GetGlobalValue(MangledName); 4279 4280 if (!Func) { 4281 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4282 if (ExistingDecl.getDecl() && 4283 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4284 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4285 Func = GetGlobalValue(MangledName); 4286 } else { 4287 if (!ExistingDecl.getDecl()) 4288 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4289 4290 Func = GetOrCreateLLVMFunction( 4291 MangledName, DeclTy, ExistingDecl, 4292 /*ForVTable=*/false, /*DontDefer=*/true, 4293 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4294 } 4295 } 4296 4297 llvm::SmallVector<StringRef, 32> Features; 4298 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4299 llvm::transform(Features, Features.begin(), 4300 [](StringRef Str) { return Str.substr(1); }); 4301 llvm::erase_if(Features, [&Target](StringRef Feat) { 4302 return !Target.validateCpuSupports(Feat); 4303 }); 4304 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4305 ++Index; 4306 } 4307 4308 llvm::stable_sort( 4309 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4310 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4311 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4312 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4313 }); 4314 4315 // If the list contains multiple 'default' versions, such as when it contains 4316 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4317 // always run on at least a 'pentium'). We do this by deleting the 'least 4318 // advanced' (read, lowest mangling letter). 4319 while (Options.size() > 1 && 4320 llvm::all_of(llvm::X86::getCpuSupportsMask( 4321 (Options.end() - 2)->Conditions.Features), 4322 [](auto X) { return X == 0; })) { 4323 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4324 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4325 if (LHSName.compare(RHSName) < 0) 4326 Options.erase(Options.end() - 2); 4327 else 4328 Options.erase(Options.end() - 1); 4329 } 4330 4331 CodeGenFunction CGF(*this); 4332 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4333 4334 if (getTarget().supportsIFunc()) { 4335 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4336 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4337 4338 // Fix up function declarations that were created for cpu_specific before 4339 // cpu_dispatch was known 4340 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4341 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4342 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4343 &getModule()); 4344 GI->takeName(IFunc); 4345 IFunc->replaceAllUsesWith(GI); 4346 IFunc->eraseFromParent(); 4347 IFunc = GI; 4348 } 4349 4350 std::string AliasName = getMangledNameImpl( 4351 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4352 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4353 if (!AliasFunc) { 4354 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4355 &getModule()); 4356 SetCommonAttributes(GD, GA); 4357 } 4358 } 4359 } 4360 4361 /// If a dispatcher for the specified mangled name is not in the module, create 4362 /// and return an llvm Function with the specified type. 4363 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4364 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4365 assert(FD && "Not a FunctionDecl?"); 4366 4367 std::string MangledName = 4368 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4369 4370 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4371 // a separate resolver). 4372 std::string ResolverName = MangledName; 4373 if (getTarget().supportsIFunc()) { 4374 // In Aarch64, default versions of multiversioned functions are mangled to 4375 // their 'normal' assembly name. This deviates from other targets which 4376 // append a '.default' string. As a result we need to continue appending 4377 // .ifunc in Aarch64. 4378 // FIXME: Should Aarch64 mangling for 'default' multiversion function and 4379 // in turn ifunc function match that of other targets? 4380 if (!FD->isTargetClonesMultiVersion() || 4381 getTarget().getTriple().isAArch64()) 4382 ResolverName += ".ifunc"; 4383 } else if (FD->isTargetMultiVersion()) { 4384 ResolverName += ".resolver"; 4385 } 4386 4387 // If the resolver has already been created, just return it. 4388 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4389 return ResolverGV; 4390 4391 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4392 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4393 4394 // The resolver needs to be created. For target and target_clones, defer 4395 // creation until the end of the TU. 4396 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4397 MultiVersionFuncs.push_back(GD); 4398 4399 // For cpu_specific, don't create an ifunc yet because we don't know if the 4400 // cpu_dispatch will be emitted in this translation unit. 4401 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4402 llvm::Type *ResolverType = llvm::FunctionType::get( 4403 llvm::PointerType::get(DeclTy, 4404 getTypes().getTargetAddressSpace(FD->getType())), 4405 false); 4406 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4407 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4408 /*ForVTable=*/false); 4409 llvm::GlobalIFunc *GIF = 4410 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4411 "", Resolver, &getModule()); 4412 GIF->setName(ResolverName); 4413 SetCommonAttributes(FD, GIF); 4414 4415 return GIF; 4416 } 4417 4418 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4419 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4420 assert(isa<llvm::GlobalValue>(Resolver) && 4421 "Resolver should be created for the first time"); 4422 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4423 return Resolver; 4424 } 4425 4426 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4427 /// module, create and return an llvm Function with the specified type. If there 4428 /// is something in the module with the specified name, return it potentially 4429 /// bitcasted to the right type. 4430 /// 4431 /// If D is non-null, it specifies a decl that correspond to this. This is used 4432 /// to set the attributes on the function when it is first created. 4433 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4434 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4435 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4436 ForDefinition_t IsForDefinition) { 4437 const Decl *D = GD.getDecl(); 4438 4439 // Any attempts to use a MultiVersion function should result in retrieving 4440 // the iFunc instead. Name Mangling will handle the rest of the changes. 4441 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4442 // For the device mark the function as one that should be emitted. 4443 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4444 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4445 !DontDefer && !IsForDefinition) { 4446 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4447 GlobalDecl GDDef; 4448 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4449 GDDef = GlobalDecl(CD, GD.getCtorType()); 4450 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4451 GDDef = GlobalDecl(DD, GD.getDtorType()); 4452 else 4453 GDDef = GlobalDecl(FDDef); 4454 EmitGlobal(GDDef); 4455 } 4456 } 4457 4458 if (FD->isMultiVersion()) { 4459 UpdateMultiVersionNames(GD, FD, MangledName); 4460 if (!IsForDefinition) 4461 return GetOrCreateMultiVersionResolver(GD); 4462 } 4463 } 4464 4465 // Lookup the entry, lazily creating it if necessary. 4466 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4467 if (Entry) { 4468 if (WeakRefReferences.erase(Entry)) { 4469 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4470 if (FD && !FD->hasAttr<WeakAttr>()) 4471 Entry->setLinkage(llvm::Function::ExternalLinkage); 4472 } 4473 4474 // Handle dropped DLL attributes. 4475 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4476 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4477 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4478 setDSOLocal(Entry); 4479 } 4480 4481 // If there are two attempts to define the same mangled name, issue an 4482 // error. 4483 if (IsForDefinition && !Entry->isDeclaration()) { 4484 GlobalDecl OtherGD; 4485 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4486 // to make sure that we issue an error only once. 4487 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4488 (GD.getCanonicalDecl().getDecl() != 4489 OtherGD.getCanonicalDecl().getDecl()) && 4490 DiagnosedConflictingDefinitions.insert(GD).second) { 4491 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4492 << MangledName; 4493 getDiags().Report(OtherGD.getDecl()->getLocation(), 4494 diag::note_previous_definition); 4495 } 4496 } 4497 4498 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4499 (Entry->getValueType() == Ty)) { 4500 return Entry; 4501 } 4502 4503 // Make sure the result is of the correct type. 4504 // (If function is requested for a definition, we always need to create a new 4505 // function, not just return a bitcast.) 4506 if (!IsForDefinition) 4507 return Entry; 4508 } 4509 4510 // This function doesn't have a complete type (for example, the return 4511 // type is an incomplete struct). Use a fake type instead, and make 4512 // sure not to try to set attributes. 4513 bool IsIncompleteFunction = false; 4514 4515 llvm::FunctionType *FTy; 4516 if (isa<llvm::FunctionType>(Ty)) { 4517 FTy = cast<llvm::FunctionType>(Ty); 4518 } else { 4519 FTy = llvm::FunctionType::get(VoidTy, false); 4520 IsIncompleteFunction = true; 4521 } 4522 4523 llvm::Function *F = 4524 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4525 Entry ? StringRef() : MangledName, &getModule()); 4526 4527 // Store the declaration associated with this function so it is potentially 4528 // updated by further declarations or definitions and emitted at the end. 4529 if (D && D->hasAttr<AnnotateAttr>()) 4530 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4531 4532 // If we already created a function with the same mangled name (but different 4533 // type) before, take its name and add it to the list of functions to be 4534 // replaced with F at the end of CodeGen. 4535 // 4536 // This happens if there is a prototype for a function (e.g. "int f()") and 4537 // then a definition of a different type (e.g. "int f(int x)"). 4538 if (Entry) { 4539 F->takeName(Entry); 4540 4541 // This might be an implementation of a function without a prototype, in 4542 // which case, try to do special replacement of calls which match the new 4543 // prototype. The really key thing here is that we also potentially drop 4544 // arguments from the call site so as to make a direct call, which makes the 4545 // inliner happier and suppresses a number of optimizer warnings (!) about 4546 // dropping arguments. 4547 if (!Entry->use_empty()) { 4548 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4549 Entry->removeDeadConstantUsers(); 4550 } 4551 4552 addGlobalValReplacement(Entry, F); 4553 } 4554 4555 assert(F->getName() == MangledName && "name was uniqued!"); 4556 if (D) 4557 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4558 if (ExtraAttrs.hasFnAttrs()) { 4559 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4560 F->addFnAttrs(B); 4561 } 4562 4563 if (!DontDefer) { 4564 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4565 // each other bottoming out with the base dtor. Therefore we emit non-base 4566 // dtors on usage, even if there is no dtor definition in the TU. 4567 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4568 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4569 GD.getDtorType())) 4570 addDeferredDeclToEmit(GD); 4571 4572 // This is the first use or definition of a mangled name. If there is a 4573 // deferred decl with this name, remember that we need to emit it at the end 4574 // of the file. 4575 auto DDI = DeferredDecls.find(MangledName); 4576 if (DDI != DeferredDecls.end()) { 4577 // Move the potentially referenced deferred decl to the 4578 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4579 // don't need it anymore). 4580 addDeferredDeclToEmit(DDI->second); 4581 DeferredDecls.erase(DDI); 4582 4583 // Otherwise, there are cases we have to worry about where we're 4584 // using a declaration for which we must emit a definition but where 4585 // we might not find a top-level definition: 4586 // - member functions defined inline in their classes 4587 // - friend functions defined inline in some class 4588 // - special member functions with implicit definitions 4589 // If we ever change our AST traversal to walk into class methods, 4590 // this will be unnecessary. 4591 // 4592 // We also don't emit a definition for a function if it's going to be an 4593 // entry in a vtable, unless it's already marked as used. 4594 } else if (getLangOpts().CPlusPlus && D) { 4595 // Look for a declaration that's lexically in a record. 4596 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4597 FD = FD->getPreviousDecl()) { 4598 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4599 if (FD->doesThisDeclarationHaveABody()) { 4600 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4601 break; 4602 } 4603 } 4604 } 4605 } 4606 } 4607 4608 // Make sure the result is of the requested type. 4609 if (!IsIncompleteFunction) { 4610 assert(F->getFunctionType() == Ty); 4611 return F; 4612 } 4613 4614 return F; 4615 } 4616 4617 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4618 /// non-null, then this function will use the specified type if it has to 4619 /// create it (this occurs when we see a definition of the function). 4620 llvm::Constant * 4621 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4622 bool DontDefer, 4623 ForDefinition_t IsForDefinition) { 4624 // If there was no specific requested type, just convert it now. 4625 if (!Ty) { 4626 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4627 Ty = getTypes().ConvertType(FD->getType()); 4628 } 4629 4630 // Devirtualized destructor calls may come through here instead of via 4631 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4632 // of the complete destructor when necessary. 4633 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4634 if (getTarget().getCXXABI().isMicrosoft() && 4635 GD.getDtorType() == Dtor_Complete && 4636 DD->getParent()->getNumVBases() == 0) 4637 GD = GlobalDecl(DD, Dtor_Base); 4638 } 4639 4640 StringRef MangledName = getMangledName(GD); 4641 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4642 /*IsThunk=*/false, llvm::AttributeList(), 4643 IsForDefinition); 4644 // Returns kernel handle for HIP kernel stub function. 4645 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4646 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4647 auto *Handle = getCUDARuntime().getKernelHandle( 4648 cast<llvm::Function>(F->stripPointerCasts()), GD); 4649 if (IsForDefinition) 4650 return F; 4651 return Handle; 4652 } 4653 return F; 4654 } 4655 4656 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4657 llvm::GlobalValue *F = 4658 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4659 4660 return llvm::NoCFIValue::get(F); 4661 } 4662 4663 static const FunctionDecl * 4664 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4665 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4666 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4667 4668 IdentifierInfo &CII = C.Idents.get(Name); 4669 for (const auto *Result : DC->lookup(&CII)) 4670 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4671 return FD; 4672 4673 if (!C.getLangOpts().CPlusPlus) 4674 return nullptr; 4675 4676 // Demangle the premangled name from getTerminateFn() 4677 IdentifierInfo &CXXII = 4678 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4679 ? C.Idents.get("terminate") 4680 : C.Idents.get(Name); 4681 4682 for (const auto &N : {"__cxxabiv1", "std"}) { 4683 IdentifierInfo &NS = C.Idents.get(N); 4684 for (const auto *Result : DC->lookup(&NS)) { 4685 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4686 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4687 for (const auto *Result : LSD->lookup(&NS)) 4688 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4689 break; 4690 4691 if (ND) 4692 for (const auto *Result : ND->lookup(&CXXII)) 4693 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4694 return FD; 4695 } 4696 } 4697 4698 return nullptr; 4699 } 4700 4701 /// CreateRuntimeFunction - Create a new runtime function with the specified 4702 /// type and name. 4703 llvm::FunctionCallee 4704 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4705 llvm::AttributeList ExtraAttrs, bool Local, 4706 bool AssumeConvergent) { 4707 if (AssumeConvergent) { 4708 ExtraAttrs = 4709 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4710 } 4711 4712 llvm::Constant *C = 4713 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4714 /*DontDefer=*/false, /*IsThunk=*/false, 4715 ExtraAttrs); 4716 4717 if (auto *F = dyn_cast<llvm::Function>(C)) { 4718 if (F->empty()) { 4719 F->setCallingConv(getRuntimeCC()); 4720 4721 // In Windows Itanium environments, try to mark runtime functions 4722 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4723 // will link their standard library statically or dynamically. Marking 4724 // functions imported when they are not imported can cause linker errors 4725 // and warnings. 4726 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4727 !getCodeGenOpts().LTOVisibilityPublicStd) { 4728 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4729 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4730 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4731 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4732 } 4733 } 4734 setDSOLocal(F); 4735 } 4736 } 4737 4738 return {FTy, C}; 4739 } 4740 4741 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4742 /// create and return an llvm GlobalVariable with the specified type and address 4743 /// space. If there is something in the module with the specified name, return 4744 /// it potentially bitcasted to the right type. 4745 /// 4746 /// If D is non-null, it specifies a decl that correspond to this. This is used 4747 /// to set the attributes on the global when it is first created. 4748 /// 4749 /// If IsForDefinition is true, it is guaranteed that an actual global with 4750 /// type Ty will be returned, not conversion of a variable with the same 4751 /// mangled name but some other type. 4752 llvm::Constant * 4753 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4754 LangAS AddrSpace, const VarDecl *D, 4755 ForDefinition_t IsForDefinition) { 4756 // Lookup the entry, lazily creating it if necessary. 4757 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4758 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4759 if (Entry) { 4760 if (WeakRefReferences.erase(Entry)) { 4761 if (D && !D->hasAttr<WeakAttr>()) 4762 Entry->setLinkage(llvm::Function::ExternalLinkage); 4763 } 4764 4765 // Handle dropped DLL attributes. 4766 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4767 !shouldMapVisibilityToDLLExport(D)) 4768 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4769 4770 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4771 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4772 4773 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4774 return Entry; 4775 4776 // If there are two attempts to define the same mangled name, issue an 4777 // error. 4778 if (IsForDefinition && !Entry->isDeclaration()) { 4779 GlobalDecl OtherGD; 4780 const VarDecl *OtherD; 4781 4782 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4783 // to make sure that we issue an error only once. 4784 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4785 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4786 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4787 OtherD->hasInit() && 4788 DiagnosedConflictingDefinitions.insert(D).second) { 4789 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4790 << MangledName; 4791 getDiags().Report(OtherGD.getDecl()->getLocation(), 4792 diag::note_previous_definition); 4793 } 4794 } 4795 4796 // Make sure the result is of the correct type. 4797 if (Entry->getType()->getAddressSpace() != TargetAS) 4798 return llvm::ConstantExpr::getAddrSpaceCast( 4799 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4800 4801 // (If global is requested for a definition, we always need to create a new 4802 // global, not just return a bitcast.) 4803 if (!IsForDefinition) 4804 return Entry; 4805 } 4806 4807 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4808 4809 auto *GV = new llvm::GlobalVariable( 4810 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4811 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4812 getContext().getTargetAddressSpace(DAddrSpace)); 4813 4814 // If we already created a global with the same mangled name (but different 4815 // type) before, take its name and remove it from its parent. 4816 if (Entry) { 4817 GV->takeName(Entry); 4818 4819 if (!Entry->use_empty()) { 4820 Entry->replaceAllUsesWith(GV); 4821 } 4822 4823 Entry->eraseFromParent(); 4824 } 4825 4826 // This is the first use or definition of a mangled name. If there is a 4827 // deferred decl with this name, remember that we need to emit it at the end 4828 // of the file. 4829 auto DDI = DeferredDecls.find(MangledName); 4830 if (DDI != DeferredDecls.end()) { 4831 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4832 // list, and remove it from DeferredDecls (since we don't need it anymore). 4833 addDeferredDeclToEmit(DDI->second); 4834 DeferredDecls.erase(DDI); 4835 } 4836 4837 // Handle things which are present even on external declarations. 4838 if (D) { 4839 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4840 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4841 4842 // FIXME: This code is overly simple and should be merged with other global 4843 // handling. 4844 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4845 4846 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4847 4848 setLinkageForGV(GV, D); 4849 4850 if (D->getTLSKind()) { 4851 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4852 CXXThreadLocals.push_back(D); 4853 setTLSMode(GV, *D); 4854 } 4855 4856 setGVProperties(GV, D); 4857 4858 // If required by the ABI, treat declarations of static data members with 4859 // inline initializers as definitions. 4860 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4861 EmitGlobalVarDefinition(D); 4862 } 4863 4864 // Emit section information for extern variables. 4865 if (D->hasExternalStorage()) { 4866 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4867 GV->setSection(SA->getName()); 4868 } 4869 4870 // Handle XCore specific ABI requirements. 4871 if (getTriple().getArch() == llvm::Triple::xcore && 4872 D->getLanguageLinkage() == CLanguageLinkage && 4873 D->getType().isConstant(Context) && 4874 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4875 GV->setSection(".cp.rodata"); 4876 4877 // Handle code model attribute 4878 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4879 GV->setCodeModel(CMA->getModel()); 4880 4881 // Check if we a have a const declaration with an initializer, we may be 4882 // able to emit it as available_externally to expose it's value to the 4883 // optimizer. 4884 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4885 D->getType().isConstQualified() && !GV->hasInitializer() && 4886 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4887 const auto *Record = 4888 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4889 bool HasMutableFields = Record && Record->hasMutableFields(); 4890 if (!HasMutableFields) { 4891 const VarDecl *InitDecl; 4892 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4893 if (InitExpr) { 4894 ConstantEmitter emitter(*this); 4895 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4896 if (Init) { 4897 auto *InitType = Init->getType(); 4898 if (GV->getValueType() != InitType) { 4899 // The type of the initializer does not match the definition. 4900 // This happens when an initializer has a different type from 4901 // the type of the global (because of padding at the end of a 4902 // structure for instance). 4903 GV->setName(StringRef()); 4904 // Make a new global with the correct type, this is now guaranteed 4905 // to work. 4906 auto *NewGV = cast<llvm::GlobalVariable>( 4907 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4908 ->stripPointerCasts()); 4909 4910 // Erase the old global, since it is no longer used. 4911 GV->eraseFromParent(); 4912 GV = NewGV; 4913 } else { 4914 GV->setInitializer(Init); 4915 GV->setConstant(true); 4916 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4917 } 4918 emitter.finalize(GV); 4919 } 4920 } 4921 } 4922 } 4923 } 4924 4925 if (D && 4926 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4927 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4928 // External HIP managed variables needed to be recorded for transformation 4929 // in both device and host compilations. 4930 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4931 D->hasExternalStorage()) 4932 getCUDARuntime().handleVarRegistration(D, *GV); 4933 } 4934 4935 if (D) 4936 SanitizerMD->reportGlobal(GV, *D); 4937 4938 LangAS ExpectedAS = 4939 D ? D->getType().getAddressSpace() 4940 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4941 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4942 if (DAddrSpace != ExpectedAS) { 4943 return getTargetCodeGenInfo().performAddrSpaceCast( 4944 *this, GV, DAddrSpace, ExpectedAS, 4945 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4946 } 4947 4948 return GV; 4949 } 4950 4951 llvm::Constant * 4952 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4953 const Decl *D = GD.getDecl(); 4954 4955 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4956 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4957 /*DontDefer=*/false, IsForDefinition); 4958 4959 if (isa<CXXMethodDecl>(D)) { 4960 auto FInfo = 4961 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4962 auto Ty = getTypes().GetFunctionType(*FInfo); 4963 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4964 IsForDefinition); 4965 } 4966 4967 if (isa<FunctionDecl>(D)) { 4968 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4969 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4970 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4971 IsForDefinition); 4972 } 4973 4974 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4975 } 4976 4977 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4978 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4979 llvm::Align Alignment) { 4980 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4981 llvm::GlobalVariable *OldGV = nullptr; 4982 4983 if (GV) { 4984 // Check if the variable has the right type. 4985 if (GV->getValueType() == Ty) 4986 return GV; 4987 4988 // Because C++ name mangling, the only way we can end up with an already 4989 // existing global with the same name is if it has been declared extern "C". 4990 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4991 OldGV = GV; 4992 } 4993 4994 // Create a new variable. 4995 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4996 Linkage, nullptr, Name); 4997 4998 if (OldGV) { 4999 // Replace occurrences of the old variable if needed. 5000 GV->takeName(OldGV); 5001 5002 if (!OldGV->use_empty()) { 5003 OldGV->replaceAllUsesWith(GV); 5004 } 5005 5006 OldGV->eraseFromParent(); 5007 } 5008 5009 if (supportsCOMDAT() && GV->isWeakForLinker() && 5010 !GV->hasAvailableExternallyLinkage()) 5011 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5012 5013 GV->setAlignment(Alignment); 5014 5015 return GV; 5016 } 5017 5018 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5019 /// given global variable. If Ty is non-null and if the global doesn't exist, 5020 /// then it will be created with the specified type instead of whatever the 5021 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5022 /// that an actual global with type Ty will be returned, not conversion of a 5023 /// variable with the same mangled name but some other type. 5024 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5025 llvm::Type *Ty, 5026 ForDefinition_t IsForDefinition) { 5027 assert(D->hasGlobalStorage() && "Not a global variable"); 5028 QualType ASTTy = D->getType(); 5029 if (!Ty) 5030 Ty = getTypes().ConvertTypeForMem(ASTTy); 5031 5032 StringRef MangledName = getMangledName(D); 5033 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5034 IsForDefinition); 5035 } 5036 5037 /// CreateRuntimeVariable - Create a new runtime global variable with the 5038 /// specified type and name. 5039 llvm::Constant * 5040 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5041 StringRef Name) { 5042 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5043 : LangAS::Default; 5044 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5045 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5046 return Ret; 5047 } 5048 5049 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5050 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5051 5052 StringRef MangledName = getMangledName(D); 5053 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5054 5055 // We already have a definition, not declaration, with the same mangled name. 5056 // Emitting of declaration is not required (and actually overwrites emitted 5057 // definition). 5058 if (GV && !GV->isDeclaration()) 5059 return; 5060 5061 // If we have not seen a reference to this variable yet, place it into the 5062 // deferred declarations table to be emitted if needed later. 5063 if (!MustBeEmitted(D) && !GV) { 5064 DeferredDecls[MangledName] = D; 5065 return; 5066 } 5067 5068 // The tentative definition is the only definition. 5069 EmitGlobalVarDefinition(D); 5070 } 5071 5072 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5073 EmitExternalVarDeclaration(D); 5074 } 5075 5076 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5077 return Context.toCharUnitsFromBits( 5078 getDataLayout().getTypeStoreSizeInBits(Ty)); 5079 } 5080 5081 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5082 if (LangOpts.OpenCL) { 5083 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5084 assert(AS == LangAS::opencl_global || 5085 AS == LangAS::opencl_global_device || 5086 AS == LangAS::opencl_global_host || 5087 AS == LangAS::opencl_constant || 5088 AS == LangAS::opencl_local || 5089 AS >= LangAS::FirstTargetAddressSpace); 5090 return AS; 5091 } 5092 5093 if (LangOpts.SYCLIsDevice && 5094 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5095 return LangAS::sycl_global; 5096 5097 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5098 if (D) { 5099 if (D->hasAttr<CUDAConstantAttr>()) 5100 return LangAS::cuda_constant; 5101 if (D->hasAttr<CUDASharedAttr>()) 5102 return LangAS::cuda_shared; 5103 if (D->hasAttr<CUDADeviceAttr>()) 5104 return LangAS::cuda_device; 5105 if (D->getType().isConstQualified()) 5106 return LangAS::cuda_constant; 5107 } 5108 return LangAS::cuda_device; 5109 } 5110 5111 if (LangOpts.OpenMP) { 5112 LangAS AS; 5113 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5114 return AS; 5115 } 5116 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5117 } 5118 5119 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5120 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5121 if (LangOpts.OpenCL) 5122 return LangAS::opencl_constant; 5123 if (LangOpts.SYCLIsDevice) 5124 return LangAS::sycl_global; 5125 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5126 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5127 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5128 // with OpVariable instructions with Generic storage class which is not 5129 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5130 // UniformConstant storage class is not viable as pointers to it may not be 5131 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5132 return LangAS::cuda_device; 5133 if (auto AS = getTarget().getConstantAddressSpace()) 5134 return *AS; 5135 return LangAS::Default; 5136 } 5137 5138 // In address space agnostic languages, string literals are in default address 5139 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5140 // emitted in constant address space in LLVM IR. To be consistent with other 5141 // parts of AST, string literal global variables in constant address space 5142 // need to be casted to default address space before being put into address 5143 // map and referenced by other part of CodeGen. 5144 // In OpenCL, string literals are in constant address space in AST, therefore 5145 // they should not be casted to default address space. 5146 static llvm::Constant * 5147 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5148 llvm::GlobalVariable *GV) { 5149 llvm::Constant *Cast = GV; 5150 if (!CGM.getLangOpts().OpenCL) { 5151 auto AS = CGM.GetGlobalConstantAddressSpace(); 5152 if (AS != LangAS::Default) 5153 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5154 CGM, GV, AS, LangAS::Default, 5155 llvm::PointerType::get( 5156 CGM.getLLVMContext(), 5157 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5158 } 5159 return Cast; 5160 } 5161 5162 template<typename SomeDecl> 5163 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5164 llvm::GlobalValue *GV) { 5165 if (!getLangOpts().CPlusPlus) 5166 return; 5167 5168 // Must have 'used' attribute, or else inline assembly can't rely on 5169 // the name existing. 5170 if (!D->template hasAttr<UsedAttr>()) 5171 return; 5172 5173 // Must have internal linkage and an ordinary name. 5174 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5175 return; 5176 5177 // Must be in an extern "C" context. Entities declared directly within 5178 // a record are not extern "C" even if the record is in such a context. 5179 const SomeDecl *First = D->getFirstDecl(); 5180 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5181 return; 5182 5183 // OK, this is an internal linkage entity inside an extern "C" linkage 5184 // specification. Make a note of that so we can give it the "expected" 5185 // mangled name if nothing else is using that name. 5186 std::pair<StaticExternCMap::iterator, bool> R = 5187 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5188 5189 // If we have multiple internal linkage entities with the same name 5190 // in extern "C" regions, none of them gets that name. 5191 if (!R.second) 5192 R.first->second = nullptr; 5193 } 5194 5195 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5196 if (!CGM.supportsCOMDAT()) 5197 return false; 5198 5199 if (D.hasAttr<SelectAnyAttr>()) 5200 return true; 5201 5202 GVALinkage Linkage; 5203 if (auto *VD = dyn_cast<VarDecl>(&D)) 5204 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5205 else 5206 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5207 5208 switch (Linkage) { 5209 case GVA_Internal: 5210 case GVA_AvailableExternally: 5211 case GVA_StrongExternal: 5212 return false; 5213 case GVA_DiscardableODR: 5214 case GVA_StrongODR: 5215 return true; 5216 } 5217 llvm_unreachable("No such linkage"); 5218 } 5219 5220 bool CodeGenModule::supportsCOMDAT() const { 5221 return getTriple().supportsCOMDAT(); 5222 } 5223 5224 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5225 llvm::GlobalObject &GO) { 5226 if (!shouldBeInCOMDAT(*this, D)) 5227 return; 5228 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5229 } 5230 5231 /// Pass IsTentative as true if you want to create a tentative definition. 5232 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5233 bool IsTentative) { 5234 // OpenCL global variables of sampler type are translated to function calls, 5235 // therefore no need to be translated. 5236 QualType ASTTy = D->getType(); 5237 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5238 return; 5239 5240 // If this is OpenMP device, check if it is legal to emit this global 5241 // normally. 5242 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5243 OpenMPRuntime->emitTargetGlobalVariable(D)) 5244 return; 5245 5246 llvm::TrackingVH<llvm::Constant> Init; 5247 bool NeedsGlobalCtor = false; 5248 // Whether the definition of the variable is available externally. 5249 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5250 // since this is the job for its original source. 5251 bool IsDefinitionAvailableExternally = 5252 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5253 bool NeedsGlobalDtor = 5254 !IsDefinitionAvailableExternally && 5255 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5256 5257 const VarDecl *InitDecl; 5258 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5259 5260 std::optional<ConstantEmitter> emitter; 5261 5262 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5263 // as part of their declaration." Sema has already checked for 5264 // error cases, so we just need to set Init to UndefValue. 5265 bool IsCUDASharedVar = 5266 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5267 // Shadows of initialized device-side global variables are also left 5268 // undefined. 5269 // Managed Variables should be initialized on both host side and device side. 5270 bool IsCUDAShadowVar = 5271 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5272 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5273 D->hasAttr<CUDASharedAttr>()); 5274 bool IsCUDADeviceShadowVar = 5275 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5276 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5277 D->getType()->isCUDADeviceBuiltinTextureType()); 5278 if (getLangOpts().CUDA && 5279 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5280 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5281 else if (D->hasAttr<LoaderUninitializedAttr>()) 5282 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5283 else if (!InitExpr) { 5284 // This is a tentative definition; tentative definitions are 5285 // implicitly initialized with { 0 }. 5286 // 5287 // Note that tentative definitions are only emitted at the end of 5288 // a translation unit, so they should never have incomplete 5289 // type. In addition, EmitTentativeDefinition makes sure that we 5290 // never attempt to emit a tentative definition if a real one 5291 // exists. A use may still exists, however, so we still may need 5292 // to do a RAUW. 5293 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5294 Init = EmitNullConstant(D->getType()); 5295 } else { 5296 initializedGlobalDecl = GlobalDecl(D); 5297 emitter.emplace(*this); 5298 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5299 if (!Initializer) { 5300 QualType T = InitExpr->getType(); 5301 if (D->getType()->isReferenceType()) 5302 T = D->getType(); 5303 5304 if (getLangOpts().CPlusPlus) { 5305 if (InitDecl->hasFlexibleArrayInit(getContext())) 5306 ErrorUnsupported(D, "flexible array initializer"); 5307 Init = EmitNullConstant(T); 5308 5309 if (!IsDefinitionAvailableExternally) 5310 NeedsGlobalCtor = true; 5311 } else { 5312 ErrorUnsupported(D, "static initializer"); 5313 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5314 } 5315 } else { 5316 Init = Initializer; 5317 // We don't need an initializer, so remove the entry for the delayed 5318 // initializer position (just in case this entry was delayed) if we 5319 // also don't need to register a destructor. 5320 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5321 DelayedCXXInitPosition.erase(D); 5322 5323 #ifndef NDEBUG 5324 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5325 InitDecl->getFlexibleArrayInitChars(getContext()); 5326 CharUnits CstSize = CharUnits::fromQuantity( 5327 getDataLayout().getTypeAllocSize(Init->getType())); 5328 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5329 #endif 5330 } 5331 } 5332 5333 llvm::Type* InitType = Init->getType(); 5334 llvm::Constant *Entry = 5335 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5336 5337 // Strip off pointer casts if we got them. 5338 Entry = Entry->stripPointerCasts(); 5339 5340 // Entry is now either a Function or GlobalVariable. 5341 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5342 5343 // We have a definition after a declaration with the wrong type. 5344 // We must make a new GlobalVariable* and update everything that used OldGV 5345 // (a declaration or tentative definition) with the new GlobalVariable* 5346 // (which will be a definition). 5347 // 5348 // This happens if there is a prototype for a global (e.g. 5349 // "extern int x[];") and then a definition of a different type (e.g. 5350 // "int x[10];"). This also happens when an initializer has a different type 5351 // from the type of the global (this happens with unions). 5352 if (!GV || GV->getValueType() != InitType || 5353 GV->getType()->getAddressSpace() != 5354 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5355 5356 // Move the old entry aside so that we'll create a new one. 5357 Entry->setName(StringRef()); 5358 5359 // Make a new global with the correct type, this is now guaranteed to work. 5360 GV = cast<llvm::GlobalVariable>( 5361 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5362 ->stripPointerCasts()); 5363 5364 // Replace all uses of the old global with the new global 5365 llvm::Constant *NewPtrForOldDecl = 5366 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5367 Entry->getType()); 5368 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5369 5370 // Erase the old global, since it is no longer used. 5371 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5372 } 5373 5374 MaybeHandleStaticInExternC(D, GV); 5375 5376 if (D->hasAttr<AnnotateAttr>()) 5377 AddGlobalAnnotations(D, GV); 5378 5379 // Set the llvm linkage type as appropriate. 5380 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5381 5382 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5383 // the device. [...]" 5384 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5385 // __device__, declares a variable that: [...] 5386 // Is accessible from all the threads within the grid and from the host 5387 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5388 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5389 if (LangOpts.CUDA) { 5390 if (LangOpts.CUDAIsDevice) { 5391 if (Linkage != llvm::GlobalValue::InternalLinkage && 5392 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5393 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5394 D->getType()->isCUDADeviceBuiltinTextureType())) 5395 GV->setExternallyInitialized(true); 5396 } else { 5397 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5398 } 5399 getCUDARuntime().handleVarRegistration(D, *GV); 5400 } 5401 5402 GV->setInitializer(Init); 5403 if (emitter) 5404 emitter->finalize(GV); 5405 5406 // If it is safe to mark the global 'constant', do so now. 5407 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5408 D->getType().isConstantStorage(getContext(), true, true)); 5409 5410 // If it is in a read-only section, mark it 'constant'. 5411 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5412 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5413 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5414 GV->setConstant(true); 5415 } 5416 5417 CharUnits AlignVal = getContext().getDeclAlign(D); 5418 // Check for alignment specifed in an 'omp allocate' directive. 5419 if (std::optional<CharUnits> AlignValFromAllocate = 5420 getOMPAllocateAlignment(D)) 5421 AlignVal = *AlignValFromAllocate; 5422 GV->setAlignment(AlignVal.getAsAlign()); 5423 5424 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5425 // function is only defined alongside the variable, not also alongside 5426 // callers. Normally, all accesses to a thread_local go through the 5427 // thread-wrapper in order to ensure initialization has occurred, underlying 5428 // variable will never be used other than the thread-wrapper, so it can be 5429 // converted to internal linkage. 5430 // 5431 // However, if the variable has the 'constinit' attribute, it _can_ be 5432 // referenced directly, without calling the thread-wrapper, so the linkage 5433 // must not be changed. 5434 // 5435 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5436 // weak or linkonce, the de-duplication semantics are important to preserve, 5437 // so we don't change the linkage. 5438 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5439 Linkage == llvm::GlobalValue::ExternalLinkage && 5440 Context.getTargetInfo().getTriple().isOSDarwin() && 5441 !D->hasAttr<ConstInitAttr>()) 5442 Linkage = llvm::GlobalValue::InternalLinkage; 5443 5444 GV->setLinkage(Linkage); 5445 if (D->hasAttr<DLLImportAttr>()) 5446 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5447 else if (D->hasAttr<DLLExportAttr>()) 5448 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5449 else 5450 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5451 5452 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5453 // common vars aren't constant even if declared const. 5454 GV->setConstant(false); 5455 // Tentative definition of global variables may be initialized with 5456 // non-zero null pointers. In this case they should have weak linkage 5457 // since common linkage must have zero initializer and must not have 5458 // explicit section therefore cannot have non-zero initial value. 5459 if (!GV->getInitializer()->isNullValue()) 5460 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5461 } 5462 5463 setNonAliasAttributes(D, GV); 5464 5465 if (D->getTLSKind() && !GV->isThreadLocal()) { 5466 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5467 CXXThreadLocals.push_back(D); 5468 setTLSMode(GV, *D); 5469 } 5470 5471 maybeSetTrivialComdat(*D, *GV); 5472 5473 // Emit the initializer function if necessary. 5474 if (NeedsGlobalCtor || NeedsGlobalDtor) 5475 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5476 5477 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5478 5479 // Emit global variable debug information. 5480 if (CGDebugInfo *DI = getModuleDebugInfo()) 5481 if (getCodeGenOpts().hasReducedDebugInfo()) 5482 DI->EmitGlobalVariable(GV, D); 5483 } 5484 5485 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5486 if (CGDebugInfo *DI = getModuleDebugInfo()) 5487 if (getCodeGenOpts().hasReducedDebugInfo()) { 5488 QualType ASTTy = D->getType(); 5489 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5490 llvm::Constant *GV = 5491 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5492 DI->EmitExternalVariable( 5493 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5494 } 5495 } 5496 5497 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5498 CodeGenModule &CGM, const VarDecl *D, 5499 bool NoCommon) { 5500 // Don't give variables common linkage if -fno-common was specified unless it 5501 // was overridden by a NoCommon attribute. 5502 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5503 return true; 5504 5505 // C11 6.9.2/2: 5506 // A declaration of an identifier for an object that has file scope without 5507 // an initializer, and without a storage-class specifier or with the 5508 // storage-class specifier static, constitutes a tentative definition. 5509 if (D->getInit() || D->hasExternalStorage()) 5510 return true; 5511 5512 // A variable cannot be both common and exist in a section. 5513 if (D->hasAttr<SectionAttr>()) 5514 return true; 5515 5516 // A variable cannot be both common and exist in a section. 5517 // We don't try to determine which is the right section in the front-end. 5518 // If no specialized section name is applicable, it will resort to default. 5519 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5520 D->hasAttr<PragmaClangDataSectionAttr>() || 5521 D->hasAttr<PragmaClangRelroSectionAttr>() || 5522 D->hasAttr<PragmaClangRodataSectionAttr>()) 5523 return true; 5524 5525 // Thread local vars aren't considered common linkage. 5526 if (D->getTLSKind()) 5527 return true; 5528 5529 // Tentative definitions marked with WeakImportAttr are true definitions. 5530 if (D->hasAttr<WeakImportAttr>()) 5531 return true; 5532 5533 // A variable cannot be both common and exist in a comdat. 5534 if (shouldBeInCOMDAT(CGM, *D)) 5535 return true; 5536 5537 // Declarations with a required alignment do not have common linkage in MSVC 5538 // mode. 5539 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5540 if (D->hasAttr<AlignedAttr>()) 5541 return true; 5542 QualType VarType = D->getType(); 5543 if (Context.isAlignmentRequired(VarType)) 5544 return true; 5545 5546 if (const auto *RT = VarType->getAs<RecordType>()) { 5547 const RecordDecl *RD = RT->getDecl(); 5548 for (const FieldDecl *FD : RD->fields()) { 5549 if (FD->isBitField()) 5550 continue; 5551 if (FD->hasAttr<AlignedAttr>()) 5552 return true; 5553 if (Context.isAlignmentRequired(FD->getType())) 5554 return true; 5555 } 5556 } 5557 } 5558 5559 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5560 // common symbols, so symbols with greater alignment requirements cannot be 5561 // common. 5562 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5563 // alignments for common symbols via the aligncomm directive, so this 5564 // restriction only applies to MSVC environments. 5565 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5566 Context.getTypeAlignIfKnown(D->getType()) > 5567 Context.toBits(CharUnits::fromQuantity(32))) 5568 return true; 5569 5570 return false; 5571 } 5572 5573 llvm::GlobalValue::LinkageTypes 5574 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5575 GVALinkage Linkage) { 5576 if (Linkage == GVA_Internal) 5577 return llvm::Function::InternalLinkage; 5578 5579 if (D->hasAttr<WeakAttr>()) 5580 return llvm::GlobalVariable::WeakAnyLinkage; 5581 5582 if (const auto *FD = D->getAsFunction()) 5583 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5584 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5585 5586 // We are guaranteed to have a strong definition somewhere else, 5587 // so we can use available_externally linkage. 5588 if (Linkage == GVA_AvailableExternally) 5589 return llvm::GlobalValue::AvailableExternallyLinkage; 5590 5591 // Note that Apple's kernel linker doesn't support symbol 5592 // coalescing, so we need to avoid linkonce and weak linkages there. 5593 // Normally, this means we just map to internal, but for explicit 5594 // instantiations we'll map to external. 5595 5596 // In C++, the compiler has to emit a definition in every translation unit 5597 // that references the function. We should use linkonce_odr because 5598 // a) if all references in this translation unit are optimized away, we 5599 // don't need to codegen it. b) if the function persists, it needs to be 5600 // merged with other definitions. c) C++ has the ODR, so we know the 5601 // definition is dependable. 5602 if (Linkage == GVA_DiscardableODR) 5603 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5604 : llvm::Function::InternalLinkage; 5605 5606 // An explicit instantiation of a template has weak linkage, since 5607 // explicit instantiations can occur in multiple translation units 5608 // and must all be equivalent. However, we are not allowed to 5609 // throw away these explicit instantiations. 5610 // 5611 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5612 // so say that CUDA templates are either external (for kernels) or internal. 5613 // This lets llvm perform aggressive inter-procedural optimizations. For 5614 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5615 // therefore we need to follow the normal linkage paradigm. 5616 if (Linkage == GVA_StrongODR) { 5617 if (getLangOpts().AppleKext) 5618 return llvm::Function::ExternalLinkage; 5619 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5620 !getLangOpts().GPURelocatableDeviceCode) 5621 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5622 : llvm::Function::InternalLinkage; 5623 return llvm::Function::WeakODRLinkage; 5624 } 5625 5626 // C++ doesn't have tentative definitions and thus cannot have common 5627 // linkage. 5628 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5629 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5630 CodeGenOpts.NoCommon)) 5631 return llvm::GlobalVariable::CommonLinkage; 5632 5633 // selectany symbols are externally visible, so use weak instead of 5634 // linkonce. MSVC optimizes away references to const selectany globals, so 5635 // all definitions should be the same and ODR linkage should be used. 5636 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5637 if (D->hasAttr<SelectAnyAttr>()) 5638 return llvm::GlobalVariable::WeakODRLinkage; 5639 5640 // Otherwise, we have strong external linkage. 5641 assert(Linkage == GVA_StrongExternal); 5642 return llvm::GlobalVariable::ExternalLinkage; 5643 } 5644 5645 llvm::GlobalValue::LinkageTypes 5646 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5647 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5648 return getLLVMLinkageForDeclarator(VD, Linkage); 5649 } 5650 5651 /// Replace the uses of a function that was declared with a non-proto type. 5652 /// We want to silently drop extra arguments from call sites 5653 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5654 llvm::Function *newFn) { 5655 // Fast path. 5656 if (old->use_empty()) return; 5657 5658 llvm::Type *newRetTy = newFn->getReturnType(); 5659 SmallVector<llvm::Value*, 4> newArgs; 5660 5661 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5662 ui != ue; ) { 5663 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5664 llvm::User *user = use->getUser(); 5665 5666 // Recognize and replace uses of bitcasts. Most calls to 5667 // unprototyped functions will use bitcasts. 5668 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5669 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5670 replaceUsesOfNonProtoConstant(bitcast, newFn); 5671 continue; 5672 } 5673 5674 // Recognize calls to the function. 5675 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5676 if (!callSite) continue; 5677 if (!callSite->isCallee(&*use)) 5678 continue; 5679 5680 // If the return types don't match exactly, then we can't 5681 // transform this call unless it's dead. 5682 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5683 continue; 5684 5685 // Get the call site's attribute list. 5686 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5687 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5688 5689 // If the function was passed too few arguments, don't transform. 5690 unsigned newNumArgs = newFn->arg_size(); 5691 if (callSite->arg_size() < newNumArgs) 5692 continue; 5693 5694 // If extra arguments were passed, we silently drop them. 5695 // If any of the types mismatch, we don't transform. 5696 unsigned argNo = 0; 5697 bool dontTransform = false; 5698 for (llvm::Argument &A : newFn->args()) { 5699 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5700 dontTransform = true; 5701 break; 5702 } 5703 5704 // Add any parameter attributes. 5705 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5706 argNo++; 5707 } 5708 if (dontTransform) 5709 continue; 5710 5711 // Okay, we can transform this. Create the new call instruction and copy 5712 // over the required information. 5713 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5714 5715 // Copy over any operand bundles. 5716 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5717 callSite->getOperandBundlesAsDefs(newBundles); 5718 5719 llvm::CallBase *newCall; 5720 if (isa<llvm::CallInst>(callSite)) { 5721 newCall = 5722 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5723 } else { 5724 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5725 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5726 oldInvoke->getUnwindDest(), newArgs, 5727 newBundles, "", callSite); 5728 } 5729 newArgs.clear(); // for the next iteration 5730 5731 if (!newCall->getType()->isVoidTy()) 5732 newCall->takeName(callSite); 5733 newCall->setAttributes( 5734 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5735 oldAttrs.getRetAttrs(), newArgAttrs)); 5736 newCall->setCallingConv(callSite->getCallingConv()); 5737 5738 // Finally, remove the old call, replacing any uses with the new one. 5739 if (!callSite->use_empty()) 5740 callSite->replaceAllUsesWith(newCall); 5741 5742 // Copy debug location attached to CI. 5743 if (callSite->getDebugLoc()) 5744 newCall->setDebugLoc(callSite->getDebugLoc()); 5745 5746 callSite->eraseFromParent(); 5747 } 5748 } 5749 5750 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5751 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5752 /// existing call uses of the old function in the module, this adjusts them to 5753 /// call the new function directly. 5754 /// 5755 /// This is not just a cleanup: the always_inline pass requires direct calls to 5756 /// functions to be able to inline them. If there is a bitcast in the way, it 5757 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5758 /// run at -O0. 5759 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5760 llvm::Function *NewFn) { 5761 // If we're redefining a global as a function, don't transform it. 5762 if (!isa<llvm::Function>(Old)) return; 5763 5764 replaceUsesOfNonProtoConstant(Old, NewFn); 5765 } 5766 5767 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5768 auto DK = VD->isThisDeclarationADefinition(); 5769 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5770 return; 5771 5772 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5773 // If we have a definition, this might be a deferred decl. If the 5774 // instantiation is explicit, make sure we emit it at the end. 5775 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5776 GetAddrOfGlobalVar(VD); 5777 5778 EmitTopLevelDecl(VD); 5779 } 5780 5781 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5782 llvm::GlobalValue *GV) { 5783 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5784 5785 // Compute the function info and LLVM type. 5786 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5787 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5788 5789 // Get or create the prototype for the function. 5790 if (!GV || (GV->getValueType() != Ty)) 5791 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5792 /*DontDefer=*/true, 5793 ForDefinition)); 5794 5795 // Already emitted. 5796 if (!GV->isDeclaration()) 5797 return; 5798 5799 // We need to set linkage and visibility on the function before 5800 // generating code for it because various parts of IR generation 5801 // want to propagate this information down (e.g. to local static 5802 // declarations). 5803 auto *Fn = cast<llvm::Function>(GV); 5804 setFunctionLinkage(GD, Fn); 5805 5806 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5807 setGVProperties(Fn, GD); 5808 5809 MaybeHandleStaticInExternC(D, Fn); 5810 5811 maybeSetTrivialComdat(*D, *Fn); 5812 5813 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5814 5815 setNonAliasAttributes(GD, Fn); 5816 SetLLVMFunctionAttributesForDefinition(D, Fn); 5817 5818 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5819 AddGlobalCtor(Fn, CA->getPriority()); 5820 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5821 AddGlobalDtor(Fn, DA->getPriority(), true); 5822 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5823 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5824 } 5825 5826 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5827 const auto *D = cast<ValueDecl>(GD.getDecl()); 5828 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5829 assert(AA && "Not an alias?"); 5830 5831 StringRef MangledName = getMangledName(GD); 5832 5833 if (AA->getAliasee() == MangledName) { 5834 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5835 return; 5836 } 5837 5838 // If there is a definition in the module, then it wins over the alias. 5839 // This is dubious, but allow it to be safe. Just ignore the alias. 5840 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5841 if (Entry && !Entry->isDeclaration()) 5842 return; 5843 5844 Aliases.push_back(GD); 5845 5846 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5847 5848 // Create a reference to the named value. This ensures that it is emitted 5849 // if a deferred decl. 5850 llvm::Constant *Aliasee; 5851 llvm::GlobalValue::LinkageTypes LT; 5852 if (isa<llvm::FunctionType>(DeclTy)) { 5853 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5854 /*ForVTable=*/false); 5855 LT = getFunctionLinkage(GD); 5856 } else { 5857 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5858 /*D=*/nullptr); 5859 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5860 LT = getLLVMLinkageVarDefinition(VD); 5861 else 5862 LT = getFunctionLinkage(GD); 5863 } 5864 5865 // Create the new alias itself, but don't set a name yet. 5866 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5867 auto *GA = 5868 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5869 5870 if (Entry) { 5871 if (GA->getAliasee() == Entry) { 5872 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5873 return; 5874 } 5875 5876 assert(Entry->isDeclaration()); 5877 5878 // If there is a declaration in the module, then we had an extern followed 5879 // by the alias, as in: 5880 // extern int test6(); 5881 // ... 5882 // int test6() __attribute__((alias("test7"))); 5883 // 5884 // Remove it and replace uses of it with the alias. 5885 GA->takeName(Entry); 5886 5887 Entry->replaceAllUsesWith(GA); 5888 Entry->eraseFromParent(); 5889 } else { 5890 GA->setName(MangledName); 5891 } 5892 5893 // Set attributes which are particular to an alias; this is a 5894 // specialization of the attributes which may be set on a global 5895 // variable/function. 5896 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5897 D->isWeakImported()) { 5898 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5899 } 5900 5901 if (const auto *VD = dyn_cast<VarDecl>(D)) 5902 if (VD->getTLSKind()) 5903 setTLSMode(GA, *VD); 5904 5905 SetCommonAttributes(GD, GA); 5906 5907 // Emit global alias debug information. 5908 if (isa<VarDecl>(D)) 5909 if (CGDebugInfo *DI = getModuleDebugInfo()) 5910 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5911 } 5912 5913 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5914 const auto *D = cast<ValueDecl>(GD.getDecl()); 5915 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5916 assert(IFA && "Not an ifunc?"); 5917 5918 StringRef MangledName = getMangledName(GD); 5919 5920 if (IFA->getResolver() == MangledName) { 5921 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5922 return; 5923 } 5924 5925 // Report an error if some definition overrides ifunc. 5926 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5927 if (Entry && !Entry->isDeclaration()) { 5928 GlobalDecl OtherGD; 5929 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5930 DiagnosedConflictingDefinitions.insert(GD).second) { 5931 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5932 << MangledName; 5933 Diags.Report(OtherGD.getDecl()->getLocation(), 5934 diag::note_previous_definition); 5935 } 5936 return; 5937 } 5938 5939 Aliases.push_back(GD); 5940 5941 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5942 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5943 llvm::Constant *Resolver = 5944 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5945 /*ForVTable=*/false); 5946 llvm::GlobalIFunc *GIF = 5947 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5948 "", Resolver, &getModule()); 5949 if (Entry) { 5950 if (GIF->getResolver() == Entry) { 5951 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5952 return; 5953 } 5954 assert(Entry->isDeclaration()); 5955 5956 // If there is a declaration in the module, then we had an extern followed 5957 // by the ifunc, as in: 5958 // extern int test(); 5959 // ... 5960 // int test() __attribute__((ifunc("resolver"))); 5961 // 5962 // Remove it and replace uses of it with the ifunc. 5963 GIF->takeName(Entry); 5964 5965 Entry->replaceAllUsesWith(GIF); 5966 Entry->eraseFromParent(); 5967 } else 5968 GIF->setName(MangledName); 5969 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5970 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5971 } 5972 SetCommonAttributes(GD, GIF); 5973 } 5974 5975 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5976 ArrayRef<llvm::Type*> Tys) { 5977 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5978 Tys); 5979 } 5980 5981 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5982 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5983 const StringLiteral *Literal, bool TargetIsLSB, 5984 bool &IsUTF16, unsigned &StringLength) { 5985 StringRef String = Literal->getString(); 5986 unsigned NumBytes = String.size(); 5987 5988 // Check for simple case. 5989 if (!Literal->containsNonAsciiOrNull()) { 5990 StringLength = NumBytes; 5991 return *Map.insert(std::make_pair(String, nullptr)).first; 5992 } 5993 5994 // Otherwise, convert the UTF8 literals into a string of shorts. 5995 IsUTF16 = true; 5996 5997 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5998 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5999 llvm::UTF16 *ToPtr = &ToBuf[0]; 6000 6001 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6002 ToPtr + NumBytes, llvm::strictConversion); 6003 6004 // ConvertUTF8toUTF16 returns the length in ToPtr. 6005 StringLength = ToPtr - &ToBuf[0]; 6006 6007 // Add an explicit null. 6008 *ToPtr = 0; 6009 return *Map.insert(std::make_pair( 6010 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6011 (StringLength + 1) * 2), 6012 nullptr)).first; 6013 } 6014 6015 ConstantAddress 6016 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6017 unsigned StringLength = 0; 6018 bool isUTF16 = false; 6019 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6020 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6021 getDataLayout().isLittleEndian(), isUTF16, 6022 StringLength); 6023 6024 if (auto *C = Entry.second) 6025 return ConstantAddress( 6026 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6027 6028 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6029 llvm::Constant *Zeros[] = { Zero, Zero }; 6030 6031 const ASTContext &Context = getContext(); 6032 const llvm::Triple &Triple = getTriple(); 6033 6034 const auto CFRuntime = getLangOpts().CFRuntime; 6035 const bool IsSwiftABI = 6036 static_cast<unsigned>(CFRuntime) >= 6037 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6038 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6039 6040 // If we don't already have it, get __CFConstantStringClassReference. 6041 if (!CFConstantStringClassRef) { 6042 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6043 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6044 Ty = llvm::ArrayType::get(Ty, 0); 6045 6046 switch (CFRuntime) { 6047 default: break; 6048 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6049 case LangOptions::CoreFoundationABI::Swift5_0: 6050 CFConstantStringClassName = 6051 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6052 : "$s10Foundation19_NSCFConstantStringCN"; 6053 Ty = IntPtrTy; 6054 break; 6055 case LangOptions::CoreFoundationABI::Swift4_2: 6056 CFConstantStringClassName = 6057 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6058 : "$S10Foundation19_NSCFConstantStringCN"; 6059 Ty = IntPtrTy; 6060 break; 6061 case LangOptions::CoreFoundationABI::Swift4_1: 6062 CFConstantStringClassName = 6063 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6064 : "__T010Foundation19_NSCFConstantStringCN"; 6065 Ty = IntPtrTy; 6066 break; 6067 } 6068 6069 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6070 6071 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6072 llvm::GlobalValue *GV = nullptr; 6073 6074 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6075 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6076 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6077 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6078 6079 const VarDecl *VD = nullptr; 6080 for (const auto *Result : DC->lookup(&II)) 6081 if ((VD = dyn_cast<VarDecl>(Result))) 6082 break; 6083 6084 if (Triple.isOSBinFormatELF()) { 6085 if (!VD) 6086 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6087 } else { 6088 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6089 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6090 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6091 else 6092 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6093 } 6094 6095 setDSOLocal(GV); 6096 } 6097 } 6098 6099 // Decay array -> ptr 6100 CFConstantStringClassRef = 6101 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6102 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6103 } 6104 6105 QualType CFTy = Context.getCFConstantStringType(); 6106 6107 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6108 6109 ConstantInitBuilder Builder(*this); 6110 auto Fields = Builder.beginStruct(STy); 6111 6112 // Class pointer. 6113 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6114 6115 // Flags. 6116 if (IsSwiftABI) { 6117 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6118 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6119 } else { 6120 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6121 } 6122 6123 // String pointer. 6124 llvm::Constant *C = nullptr; 6125 if (isUTF16) { 6126 auto Arr = llvm::ArrayRef( 6127 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6128 Entry.first().size() / 2); 6129 C = llvm::ConstantDataArray::get(VMContext, Arr); 6130 } else { 6131 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6132 } 6133 6134 // Note: -fwritable-strings doesn't make the backing store strings of 6135 // CFStrings writable. 6136 auto *GV = 6137 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6138 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6139 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6140 // Don't enforce the target's minimum global alignment, since the only use 6141 // of the string is via this class initializer. 6142 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6143 : Context.getTypeAlignInChars(Context.CharTy); 6144 GV->setAlignment(Align.getAsAlign()); 6145 6146 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6147 // Without it LLVM can merge the string with a non unnamed_addr one during 6148 // LTO. Doing that changes the section it ends in, which surprises ld64. 6149 if (Triple.isOSBinFormatMachO()) 6150 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6151 : "__TEXT,__cstring,cstring_literals"); 6152 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6153 // the static linker to adjust permissions to read-only later on. 6154 else if (Triple.isOSBinFormatELF()) 6155 GV->setSection(".rodata"); 6156 6157 // String. 6158 llvm::Constant *Str = 6159 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6160 6161 Fields.add(Str); 6162 6163 // String length. 6164 llvm::IntegerType *LengthTy = 6165 llvm::IntegerType::get(getModule().getContext(), 6166 Context.getTargetInfo().getLongWidth()); 6167 if (IsSwiftABI) { 6168 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6169 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6170 LengthTy = Int32Ty; 6171 else 6172 LengthTy = IntPtrTy; 6173 } 6174 Fields.addInt(LengthTy, StringLength); 6175 6176 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6177 // properly aligned on 32-bit platforms. 6178 CharUnits Alignment = 6179 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6180 6181 // The struct. 6182 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6183 /*isConstant=*/false, 6184 llvm::GlobalVariable::PrivateLinkage); 6185 GV->addAttribute("objc_arc_inert"); 6186 switch (Triple.getObjectFormat()) { 6187 case llvm::Triple::UnknownObjectFormat: 6188 llvm_unreachable("unknown file format"); 6189 case llvm::Triple::DXContainer: 6190 case llvm::Triple::GOFF: 6191 case llvm::Triple::SPIRV: 6192 case llvm::Triple::XCOFF: 6193 llvm_unreachable("unimplemented"); 6194 case llvm::Triple::COFF: 6195 case llvm::Triple::ELF: 6196 case llvm::Triple::Wasm: 6197 GV->setSection("cfstring"); 6198 break; 6199 case llvm::Triple::MachO: 6200 GV->setSection("__DATA,__cfstring"); 6201 break; 6202 } 6203 Entry.second = GV; 6204 6205 return ConstantAddress(GV, GV->getValueType(), Alignment); 6206 } 6207 6208 bool CodeGenModule::getExpressionLocationsEnabled() const { 6209 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6210 } 6211 6212 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6213 if (ObjCFastEnumerationStateType.isNull()) { 6214 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6215 D->startDefinition(); 6216 6217 QualType FieldTypes[] = { 6218 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6219 Context.getPointerType(Context.UnsignedLongTy), 6220 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6221 nullptr, ArraySizeModifier::Normal, 0)}; 6222 6223 for (size_t i = 0; i < 4; ++i) { 6224 FieldDecl *Field = FieldDecl::Create(Context, 6225 D, 6226 SourceLocation(), 6227 SourceLocation(), nullptr, 6228 FieldTypes[i], /*TInfo=*/nullptr, 6229 /*BitWidth=*/nullptr, 6230 /*Mutable=*/false, 6231 ICIS_NoInit); 6232 Field->setAccess(AS_public); 6233 D->addDecl(Field); 6234 } 6235 6236 D->completeDefinition(); 6237 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6238 } 6239 6240 return ObjCFastEnumerationStateType; 6241 } 6242 6243 llvm::Constant * 6244 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6245 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6246 6247 // Don't emit it as the address of the string, emit the string data itself 6248 // as an inline array. 6249 if (E->getCharByteWidth() == 1) { 6250 SmallString<64> Str(E->getString()); 6251 6252 // Resize the string to the right size, which is indicated by its type. 6253 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6254 assert(CAT && "String literal not of constant array type!"); 6255 Str.resize(CAT->getSize().getZExtValue()); 6256 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6257 } 6258 6259 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6260 llvm::Type *ElemTy = AType->getElementType(); 6261 unsigned NumElements = AType->getNumElements(); 6262 6263 // Wide strings have either 2-byte or 4-byte elements. 6264 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6265 SmallVector<uint16_t, 32> Elements; 6266 Elements.reserve(NumElements); 6267 6268 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6269 Elements.push_back(E->getCodeUnit(i)); 6270 Elements.resize(NumElements); 6271 return llvm::ConstantDataArray::get(VMContext, Elements); 6272 } 6273 6274 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6275 SmallVector<uint32_t, 32> Elements; 6276 Elements.reserve(NumElements); 6277 6278 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6279 Elements.push_back(E->getCodeUnit(i)); 6280 Elements.resize(NumElements); 6281 return llvm::ConstantDataArray::get(VMContext, Elements); 6282 } 6283 6284 static llvm::GlobalVariable * 6285 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6286 CodeGenModule &CGM, StringRef GlobalName, 6287 CharUnits Alignment) { 6288 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6289 CGM.GetGlobalConstantAddressSpace()); 6290 6291 llvm::Module &M = CGM.getModule(); 6292 // Create a global variable for this string 6293 auto *GV = new llvm::GlobalVariable( 6294 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6295 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6296 GV->setAlignment(Alignment.getAsAlign()); 6297 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6298 if (GV->isWeakForLinker()) { 6299 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6300 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6301 } 6302 CGM.setDSOLocal(GV); 6303 6304 return GV; 6305 } 6306 6307 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6308 /// constant array for the given string literal. 6309 ConstantAddress 6310 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6311 StringRef Name) { 6312 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6313 6314 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6315 llvm::GlobalVariable **Entry = nullptr; 6316 if (!LangOpts.WritableStrings) { 6317 Entry = &ConstantStringMap[C]; 6318 if (auto GV = *Entry) { 6319 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6320 GV->setAlignment(Alignment.getAsAlign()); 6321 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6322 GV->getValueType(), Alignment); 6323 } 6324 } 6325 6326 SmallString<256> MangledNameBuffer; 6327 StringRef GlobalVariableName; 6328 llvm::GlobalValue::LinkageTypes LT; 6329 6330 // Mangle the string literal if that's how the ABI merges duplicate strings. 6331 // Don't do it if they are writable, since we don't want writes in one TU to 6332 // affect strings in another. 6333 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6334 !LangOpts.WritableStrings) { 6335 llvm::raw_svector_ostream Out(MangledNameBuffer); 6336 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6337 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6338 GlobalVariableName = MangledNameBuffer; 6339 } else { 6340 LT = llvm::GlobalValue::PrivateLinkage; 6341 GlobalVariableName = Name; 6342 } 6343 6344 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6345 6346 CGDebugInfo *DI = getModuleDebugInfo(); 6347 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6348 DI->AddStringLiteralDebugInfo(GV, S); 6349 6350 if (Entry) 6351 *Entry = GV; 6352 6353 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6354 6355 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6356 GV->getValueType(), Alignment); 6357 } 6358 6359 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6360 /// array for the given ObjCEncodeExpr node. 6361 ConstantAddress 6362 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6363 std::string Str; 6364 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6365 6366 return GetAddrOfConstantCString(Str); 6367 } 6368 6369 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6370 /// the literal and a terminating '\0' character. 6371 /// The result has pointer to array type. 6372 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6373 const std::string &Str, const char *GlobalName) { 6374 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6375 CharUnits Alignment = 6376 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6377 6378 llvm::Constant *C = 6379 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6380 6381 // Don't share any string literals if strings aren't constant. 6382 llvm::GlobalVariable **Entry = nullptr; 6383 if (!LangOpts.WritableStrings) { 6384 Entry = &ConstantStringMap[C]; 6385 if (auto GV = *Entry) { 6386 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6387 GV->setAlignment(Alignment.getAsAlign()); 6388 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6389 GV->getValueType(), Alignment); 6390 } 6391 } 6392 6393 // Get the default prefix if a name wasn't specified. 6394 if (!GlobalName) 6395 GlobalName = ".str"; 6396 // Create a global variable for this. 6397 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6398 GlobalName, Alignment); 6399 if (Entry) 6400 *Entry = GV; 6401 6402 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6403 GV->getValueType(), Alignment); 6404 } 6405 6406 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6407 const MaterializeTemporaryExpr *E, const Expr *Init) { 6408 assert((E->getStorageDuration() == SD_Static || 6409 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6410 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6411 6412 // If we're not materializing a subobject of the temporary, keep the 6413 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6414 QualType MaterializedType = Init->getType(); 6415 if (Init == E->getSubExpr()) 6416 MaterializedType = E->getType(); 6417 6418 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6419 6420 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6421 if (!InsertResult.second) { 6422 // We've seen this before: either we already created it or we're in the 6423 // process of doing so. 6424 if (!InsertResult.first->second) { 6425 // We recursively re-entered this function, probably during emission of 6426 // the initializer. Create a placeholder. We'll clean this up in the 6427 // outer call, at the end of this function. 6428 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6429 InsertResult.first->second = new llvm::GlobalVariable( 6430 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6431 nullptr); 6432 } 6433 return ConstantAddress(InsertResult.first->second, 6434 llvm::cast<llvm::GlobalVariable>( 6435 InsertResult.first->second->stripPointerCasts()) 6436 ->getValueType(), 6437 Align); 6438 } 6439 6440 // FIXME: If an externally-visible declaration extends multiple temporaries, 6441 // we need to give each temporary the same name in every translation unit (and 6442 // we also need to make the temporaries externally-visible). 6443 SmallString<256> Name; 6444 llvm::raw_svector_ostream Out(Name); 6445 getCXXABI().getMangleContext().mangleReferenceTemporary( 6446 VD, E->getManglingNumber(), Out); 6447 6448 APValue *Value = nullptr; 6449 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6450 // If the initializer of the extending declaration is a constant 6451 // initializer, we should have a cached constant initializer for this 6452 // temporary. Note that this might have a different value from the value 6453 // computed by evaluating the initializer if the surrounding constant 6454 // expression modifies the temporary. 6455 Value = E->getOrCreateValue(false); 6456 } 6457 6458 // Try evaluating it now, it might have a constant initializer. 6459 Expr::EvalResult EvalResult; 6460 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6461 !EvalResult.hasSideEffects()) 6462 Value = &EvalResult.Val; 6463 6464 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6465 6466 std::optional<ConstantEmitter> emitter; 6467 llvm::Constant *InitialValue = nullptr; 6468 bool Constant = false; 6469 llvm::Type *Type; 6470 if (Value) { 6471 // The temporary has a constant initializer, use it. 6472 emitter.emplace(*this); 6473 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6474 MaterializedType); 6475 Constant = 6476 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6477 /*ExcludeDtor*/ false); 6478 Type = InitialValue->getType(); 6479 } else { 6480 // No initializer, the initialization will be provided when we 6481 // initialize the declaration which performed lifetime extension. 6482 Type = getTypes().ConvertTypeForMem(MaterializedType); 6483 } 6484 6485 // Create a global variable for this lifetime-extended temporary. 6486 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6487 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6488 const VarDecl *InitVD; 6489 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6490 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6491 // Temporaries defined inside a class get linkonce_odr linkage because the 6492 // class can be defined in multiple translation units. 6493 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6494 } else { 6495 // There is no need for this temporary to have external linkage if the 6496 // VarDecl has external linkage. 6497 Linkage = llvm::GlobalVariable::InternalLinkage; 6498 } 6499 } 6500 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6501 auto *GV = new llvm::GlobalVariable( 6502 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6503 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6504 if (emitter) emitter->finalize(GV); 6505 // Don't assign dllimport or dllexport to local linkage globals. 6506 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6507 setGVProperties(GV, VD); 6508 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6509 // The reference temporary should never be dllexport. 6510 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6511 } 6512 GV->setAlignment(Align.getAsAlign()); 6513 if (supportsCOMDAT() && GV->isWeakForLinker()) 6514 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6515 if (VD->getTLSKind()) 6516 setTLSMode(GV, *VD); 6517 llvm::Constant *CV = GV; 6518 if (AddrSpace != LangAS::Default) 6519 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6520 *this, GV, AddrSpace, LangAS::Default, 6521 llvm::PointerType::get( 6522 getLLVMContext(), 6523 getContext().getTargetAddressSpace(LangAS::Default))); 6524 6525 // Update the map with the new temporary. If we created a placeholder above, 6526 // replace it with the new global now. 6527 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6528 if (Entry) { 6529 Entry->replaceAllUsesWith(CV); 6530 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6531 } 6532 Entry = CV; 6533 6534 return ConstantAddress(CV, Type, Align); 6535 } 6536 6537 /// EmitObjCPropertyImplementations - Emit information for synthesized 6538 /// properties for an implementation. 6539 void CodeGenModule::EmitObjCPropertyImplementations(const 6540 ObjCImplementationDecl *D) { 6541 for (const auto *PID : D->property_impls()) { 6542 // Dynamic is just for type-checking. 6543 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6544 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6545 6546 // Determine which methods need to be implemented, some may have 6547 // been overridden. Note that ::isPropertyAccessor is not the method 6548 // we want, that just indicates if the decl came from a 6549 // property. What we want to know is if the method is defined in 6550 // this implementation. 6551 auto *Getter = PID->getGetterMethodDecl(); 6552 if (!Getter || Getter->isSynthesizedAccessorStub()) 6553 CodeGenFunction(*this).GenerateObjCGetter( 6554 const_cast<ObjCImplementationDecl *>(D), PID); 6555 auto *Setter = PID->getSetterMethodDecl(); 6556 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6557 CodeGenFunction(*this).GenerateObjCSetter( 6558 const_cast<ObjCImplementationDecl *>(D), PID); 6559 } 6560 } 6561 } 6562 6563 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6564 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6565 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6566 ivar; ivar = ivar->getNextIvar()) 6567 if (ivar->getType().isDestructedType()) 6568 return true; 6569 6570 return false; 6571 } 6572 6573 static bool AllTrivialInitializers(CodeGenModule &CGM, 6574 ObjCImplementationDecl *D) { 6575 CodeGenFunction CGF(CGM); 6576 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6577 E = D->init_end(); B != E; ++B) { 6578 CXXCtorInitializer *CtorInitExp = *B; 6579 Expr *Init = CtorInitExp->getInit(); 6580 if (!CGF.isTrivialInitializer(Init)) 6581 return false; 6582 } 6583 return true; 6584 } 6585 6586 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6587 /// for an implementation. 6588 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6589 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6590 if (needsDestructMethod(D)) { 6591 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6592 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6593 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6594 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6595 getContext().VoidTy, nullptr, D, 6596 /*isInstance=*/true, /*isVariadic=*/false, 6597 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6598 /*isImplicitlyDeclared=*/true, 6599 /*isDefined=*/false, ObjCImplementationControl::Required); 6600 D->addInstanceMethod(DTORMethod); 6601 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6602 D->setHasDestructors(true); 6603 } 6604 6605 // If the implementation doesn't have any ivar initializers, we don't need 6606 // a .cxx_construct. 6607 if (D->getNumIvarInitializers() == 0 || 6608 AllTrivialInitializers(*this, D)) 6609 return; 6610 6611 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6612 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6613 // The constructor returns 'self'. 6614 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6615 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6616 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6617 /*isVariadic=*/false, 6618 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6619 /*isImplicitlyDeclared=*/true, 6620 /*isDefined=*/false, ObjCImplementationControl::Required); 6621 D->addInstanceMethod(CTORMethod); 6622 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6623 D->setHasNonZeroConstructors(true); 6624 } 6625 6626 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6627 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6628 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6629 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6630 ErrorUnsupported(LSD, "linkage spec"); 6631 return; 6632 } 6633 6634 EmitDeclContext(LSD); 6635 } 6636 6637 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6638 // Device code should not be at top level. 6639 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6640 return; 6641 6642 std::unique_ptr<CodeGenFunction> &CurCGF = 6643 GlobalTopLevelStmtBlockInFlight.first; 6644 6645 // We emitted a top-level stmt but after it there is initialization. 6646 // Stop squashing the top-level stmts into a single function. 6647 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6648 CurCGF->FinishFunction(D->getEndLoc()); 6649 CurCGF = nullptr; 6650 } 6651 6652 if (!CurCGF) { 6653 // void __stmts__N(void) 6654 // FIXME: Ask the ABI name mangler to pick a name. 6655 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6656 FunctionArgList Args; 6657 QualType RetTy = getContext().VoidTy; 6658 const CGFunctionInfo &FnInfo = 6659 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6660 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6661 llvm::Function *Fn = llvm::Function::Create( 6662 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6663 6664 CurCGF.reset(new CodeGenFunction(*this)); 6665 GlobalTopLevelStmtBlockInFlight.second = D; 6666 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6667 D->getBeginLoc(), D->getBeginLoc()); 6668 CXXGlobalInits.push_back(Fn); 6669 } 6670 6671 CurCGF->EmitStmt(D->getStmt()); 6672 } 6673 6674 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6675 for (auto *I : DC->decls()) { 6676 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6677 // are themselves considered "top-level", so EmitTopLevelDecl on an 6678 // ObjCImplDecl does not recursively visit them. We need to do that in 6679 // case they're nested inside another construct (LinkageSpecDecl / 6680 // ExportDecl) that does stop them from being considered "top-level". 6681 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6682 for (auto *M : OID->methods()) 6683 EmitTopLevelDecl(M); 6684 } 6685 6686 EmitTopLevelDecl(I); 6687 } 6688 } 6689 6690 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6691 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6692 // Ignore dependent declarations. 6693 if (D->isTemplated()) 6694 return; 6695 6696 // Consteval function shouldn't be emitted. 6697 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6698 return; 6699 6700 switch (D->getKind()) { 6701 case Decl::CXXConversion: 6702 case Decl::CXXMethod: 6703 case Decl::Function: 6704 EmitGlobal(cast<FunctionDecl>(D)); 6705 // Always provide some coverage mapping 6706 // even for the functions that aren't emitted. 6707 AddDeferredUnusedCoverageMapping(D); 6708 break; 6709 6710 case Decl::CXXDeductionGuide: 6711 // Function-like, but does not result in code emission. 6712 break; 6713 6714 case Decl::Var: 6715 case Decl::Decomposition: 6716 case Decl::VarTemplateSpecialization: 6717 EmitGlobal(cast<VarDecl>(D)); 6718 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6719 for (auto *B : DD->bindings()) 6720 if (auto *HD = B->getHoldingVar()) 6721 EmitGlobal(HD); 6722 break; 6723 6724 // Indirect fields from global anonymous structs and unions can be 6725 // ignored; only the actual variable requires IR gen support. 6726 case Decl::IndirectField: 6727 break; 6728 6729 // C++ Decls 6730 case Decl::Namespace: 6731 EmitDeclContext(cast<NamespaceDecl>(D)); 6732 break; 6733 case Decl::ClassTemplateSpecialization: { 6734 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6735 if (CGDebugInfo *DI = getModuleDebugInfo()) 6736 if (Spec->getSpecializationKind() == 6737 TSK_ExplicitInstantiationDefinition && 6738 Spec->hasDefinition()) 6739 DI->completeTemplateDefinition(*Spec); 6740 } [[fallthrough]]; 6741 case Decl::CXXRecord: { 6742 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6743 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6744 if (CRD->hasDefinition()) 6745 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6746 if (auto *ES = D->getASTContext().getExternalSource()) 6747 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6748 DI->completeUnusedClass(*CRD); 6749 } 6750 // Emit any static data members, they may be definitions. 6751 for (auto *I : CRD->decls()) 6752 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6753 EmitTopLevelDecl(I); 6754 break; 6755 } 6756 // No code generation needed. 6757 case Decl::UsingShadow: 6758 case Decl::ClassTemplate: 6759 case Decl::VarTemplate: 6760 case Decl::Concept: 6761 case Decl::VarTemplatePartialSpecialization: 6762 case Decl::FunctionTemplate: 6763 case Decl::TypeAliasTemplate: 6764 case Decl::Block: 6765 case Decl::Empty: 6766 case Decl::Binding: 6767 break; 6768 case Decl::Using: // using X; [C++] 6769 if (CGDebugInfo *DI = getModuleDebugInfo()) 6770 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6771 break; 6772 case Decl::UsingEnum: // using enum X; [C++] 6773 if (CGDebugInfo *DI = getModuleDebugInfo()) 6774 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6775 break; 6776 case Decl::NamespaceAlias: 6777 if (CGDebugInfo *DI = getModuleDebugInfo()) 6778 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6779 break; 6780 case Decl::UsingDirective: // using namespace X; [C++] 6781 if (CGDebugInfo *DI = getModuleDebugInfo()) 6782 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6783 break; 6784 case Decl::CXXConstructor: 6785 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6786 break; 6787 case Decl::CXXDestructor: 6788 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6789 break; 6790 6791 case Decl::StaticAssert: 6792 // Nothing to do. 6793 break; 6794 6795 // Objective-C Decls 6796 6797 // Forward declarations, no (immediate) code generation. 6798 case Decl::ObjCInterface: 6799 case Decl::ObjCCategory: 6800 break; 6801 6802 case Decl::ObjCProtocol: { 6803 auto *Proto = cast<ObjCProtocolDecl>(D); 6804 if (Proto->isThisDeclarationADefinition()) 6805 ObjCRuntime->GenerateProtocol(Proto); 6806 break; 6807 } 6808 6809 case Decl::ObjCCategoryImpl: 6810 // Categories have properties but don't support synthesize so we 6811 // can ignore them here. 6812 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6813 break; 6814 6815 case Decl::ObjCImplementation: { 6816 auto *OMD = cast<ObjCImplementationDecl>(D); 6817 EmitObjCPropertyImplementations(OMD); 6818 EmitObjCIvarInitializations(OMD); 6819 ObjCRuntime->GenerateClass(OMD); 6820 // Emit global variable debug information. 6821 if (CGDebugInfo *DI = getModuleDebugInfo()) 6822 if (getCodeGenOpts().hasReducedDebugInfo()) 6823 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6824 OMD->getClassInterface()), OMD->getLocation()); 6825 break; 6826 } 6827 case Decl::ObjCMethod: { 6828 auto *OMD = cast<ObjCMethodDecl>(D); 6829 // If this is not a prototype, emit the body. 6830 if (OMD->getBody()) 6831 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6832 break; 6833 } 6834 case Decl::ObjCCompatibleAlias: 6835 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6836 break; 6837 6838 case Decl::PragmaComment: { 6839 const auto *PCD = cast<PragmaCommentDecl>(D); 6840 switch (PCD->getCommentKind()) { 6841 case PCK_Unknown: 6842 llvm_unreachable("unexpected pragma comment kind"); 6843 case PCK_Linker: 6844 AppendLinkerOptions(PCD->getArg()); 6845 break; 6846 case PCK_Lib: 6847 AddDependentLib(PCD->getArg()); 6848 break; 6849 case PCK_Compiler: 6850 case PCK_ExeStr: 6851 case PCK_User: 6852 break; // We ignore all of these. 6853 } 6854 break; 6855 } 6856 6857 case Decl::PragmaDetectMismatch: { 6858 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6859 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6860 break; 6861 } 6862 6863 case Decl::LinkageSpec: 6864 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6865 break; 6866 6867 case Decl::FileScopeAsm: { 6868 // File-scope asm is ignored during device-side CUDA compilation. 6869 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6870 break; 6871 // File-scope asm is ignored during device-side OpenMP compilation. 6872 if (LangOpts.OpenMPIsTargetDevice) 6873 break; 6874 // File-scope asm is ignored during device-side SYCL compilation. 6875 if (LangOpts.SYCLIsDevice) 6876 break; 6877 auto *AD = cast<FileScopeAsmDecl>(D); 6878 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6879 break; 6880 } 6881 6882 case Decl::TopLevelStmt: 6883 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6884 break; 6885 6886 case Decl::Import: { 6887 auto *Import = cast<ImportDecl>(D); 6888 6889 // If we've already imported this module, we're done. 6890 if (!ImportedModules.insert(Import->getImportedModule())) 6891 break; 6892 6893 // Emit debug information for direct imports. 6894 if (!Import->getImportedOwningModule()) { 6895 if (CGDebugInfo *DI = getModuleDebugInfo()) 6896 DI->EmitImportDecl(*Import); 6897 } 6898 6899 // For C++ standard modules we are done - we will call the module 6900 // initializer for imported modules, and that will likewise call those for 6901 // any imports it has. 6902 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6903 !Import->getImportedOwningModule()->isModuleMapModule()) 6904 break; 6905 6906 // For clang C++ module map modules the initializers for sub-modules are 6907 // emitted here. 6908 6909 // Find all of the submodules and emit the module initializers. 6910 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6911 SmallVector<clang::Module *, 16> Stack; 6912 Visited.insert(Import->getImportedModule()); 6913 Stack.push_back(Import->getImportedModule()); 6914 6915 while (!Stack.empty()) { 6916 clang::Module *Mod = Stack.pop_back_val(); 6917 if (!EmittedModuleInitializers.insert(Mod).second) 6918 continue; 6919 6920 for (auto *D : Context.getModuleInitializers(Mod)) 6921 EmitTopLevelDecl(D); 6922 6923 // Visit the submodules of this module. 6924 for (auto *Submodule : Mod->submodules()) { 6925 // Skip explicit children; they need to be explicitly imported to emit 6926 // the initializers. 6927 if (Submodule->IsExplicit) 6928 continue; 6929 6930 if (Visited.insert(Submodule).second) 6931 Stack.push_back(Submodule); 6932 } 6933 } 6934 break; 6935 } 6936 6937 case Decl::Export: 6938 EmitDeclContext(cast<ExportDecl>(D)); 6939 break; 6940 6941 case Decl::OMPThreadPrivate: 6942 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6943 break; 6944 6945 case Decl::OMPAllocate: 6946 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6947 break; 6948 6949 case Decl::OMPDeclareReduction: 6950 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6951 break; 6952 6953 case Decl::OMPDeclareMapper: 6954 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6955 break; 6956 6957 case Decl::OMPRequires: 6958 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6959 break; 6960 6961 case Decl::Typedef: 6962 case Decl::TypeAlias: // using foo = bar; [C++11] 6963 if (CGDebugInfo *DI = getModuleDebugInfo()) 6964 DI->EmitAndRetainType( 6965 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6966 break; 6967 6968 case Decl::Record: 6969 if (CGDebugInfo *DI = getModuleDebugInfo()) 6970 if (cast<RecordDecl>(D)->getDefinition()) 6971 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6972 break; 6973 6974 case Decl::Enum: 6975 if (CGDebugInfo *DI = getModuleDebugInfo()) 6976 if (cast<EnumDecl>(D)->getDefinition()) 6977 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6978 break; 6979 6980 case Decl::HLSLBuffer: 6981 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6982 break; 6983 6984 default: 6985 // Make sure we handled everything we should, every other kind is a 6986 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6987 // function. Need to recode Decl::Kind to do that easily. 6988 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6989 break; 6990 } 6991 } 6992 6993 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6994 // Do we need to generate coverage mapping? 6995 if (!CodeGenOpts.CoverageMapping) 6996 return; 6997 switch (D->getKind()) { 6998 case Decl::CXXConversion: 6999 case Decl::CXXMethod: 7000 case Decl::Function: 7001 case Decl::ObjCMethod: 7002 case Decl::CXXConstructor: 7003 case Decl::CXXDestructor: { 7004 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7005 break; 7006 SourceManager &SM = getContext().getSourceManager(); 7007 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7008 break; 7009 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7010 break; 7011 } 7012 default: 7013 break; 7014 }; 7015 } 7016 7017 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7018 // Do we need to generate coverage mapping? 7019 if (!CodeGenOpts.CoverageMapping) 7020 return; 7021 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7022 if (Fn->isTemplateInstantiation()) 7023 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7024 } 7025 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7026 } 7027 7028 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7029 // We call takeVector() here to avoid use-after-free. 7030 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7031 // we deserialize function bodies to emit coverage info for them, and that 7032 // deserializes more declarations. How should we handle that case? 7033 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7034 if (!Entry.second) 7035 continue; 7036 const Decl *D = Entry.first; 7037 switch (D->getKind()) { 7038 case Decl::CXXConversion: 7039 case Decl::CXXMethod: 7040 case Decl::Function: 7041 case Decl::ObjCMethod: { 7042 CodeGenPGO PGO(*this); 7043 GlobalDecl GD(cast<FunctionDecl>(D)); 7044 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7045 getFunctionLinkage(GD)); 7046 break; 7047 } 7048 case Decl::CXXConstructor: { 7049 CodeGenPGO PGO(*this); 7050 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7051 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7052 getFunctionLinkage(GD)); 7053 break; 7054 } 7055 case Decl::CXXDestructor: { 7056 CodeGenPGO PGO(*this); 7057 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7058 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7059 getFunctionLinkage(GD)); 7060 break; 7061 } 7062 default: 7063 break; 7064 }; 7065 } 7066 } 7067 7068 void CodeGenModule::EmitMainVoidAlias() { 7069 // In order to transition away from "__original_main" gracefully, emit an 7070 // alias for "main" in the no-argument case so that libc can detect when 7071 // new-style no-argument main is in used. 7072 if (llvm::Function *F = getModule().getFunction("main")) { 7073 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7074 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7075 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7076 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7077 } 7078 } 7079 } 7080 7081 /// Turns the given pointer into a constant. 7082 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7083 const void *Ptr) { 7084 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7085 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7086 return llvm::ConstantInt::get(i64, PtrInt); 7087 } 7088 7089 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7090 llvm::NamedMDNode *&GlobalMetadata, 7091 GlobalDecl D, 7092 llvm::GlobalValue *Addr) { 7093 if (!GlobalMetadata) 7094 GlobalMetadata = 7095 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7096 7097 // TODO: should we report variant information for ctors/dtors? 7098 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7099 llvm::ConstantAsMetadata::get(GetPointerConstant( 7100 CGM.getLLVMContext(), D.getDecl()))}; 7101 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7102 } 7103 7104 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7105 llvm::GlobalValue *CppFunc) { 7106 // Store the list of ifuncs we need to replace uses in. 7107 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7108 // List of ConstantExprs that we should be able to delete when we're done 7109 // here. 7110 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7111 7112 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7113 if (Elem == CppFunc) 7114 return false; 7115 7116 // First make sure that all users of this are ifuncs (or ifuncs via a 7117 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7118 // later. 7119 for (llvm::User *User : Elem->users()) { 7120 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7121 // ifunc directly. In any other case, just give up, as we don't know what we 7122 // could break by changing those. 7123 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7124 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7125 return false; 7126 7127 for (llvm::User *CEUser : ConstExpr->users()) { 7128 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7129 IFuncs.push_back(IFunc); 7130 } else { 7131 return false; 7132 } 7133 } 7134 CEs.push_back(ConstExpr); 7135 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7136 IFuncs.push_back(IFunc); 7137 } else { 7138 // This user is one we don't know how to handle, so fail redirection. This 7139 // will result in an ifunc retaining a resolver name that will ultimately 7140 // fail to be resolved to a defined function. 7141 return false; 7142 } 7143 } 7144 7145 // Now we know this is a valid case where we can do this alias replacement, we 7146 // need to remove all of the references to Elem (and the bitcasts!) so we can 7147 // delete it. 7148 for (llvm::GlobalIFunc *IFunc : IFuncs) 7149 IFunc->setResolver(nullptr); 7150 for (llvm::ConstantExpr *ConstExpr : CEs) 7151 ConstExpr->destroyConstant(); 7152 7153 // We should now be out of uses for the 'old' version of this function, so we 7154 // can erase it as well. 7155 Elem->eraseFromParent(); 7156 7157 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7158 // The type of the resolver is always just a function-type that returns the 7159 // type of the IFunc, so create that here. If the type of the actual 7160 // resolver doesn't match, it just gets bitcast to the right thing. 7161 auto *ResolverTy = 7162 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7163 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7164 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7165 IFunc->setResolver(Resolver); 7166 } 7167 return true; 7168 } 7169 7170 /// For each function which is declared within an extern "C" region and marked 7171 /// as 'used', but has internal linkage, create an alias from the unmangled 7172 /// name to the mangled name if possible. People expect to be able to refer 7173 /// to such functions with an unmangled name from inline assembly within the 7174 /// same translation unit. 7175 void CodeGenModule::EmitStaticExternCAliases() { 7176 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7177 return; 7178 for (auto &I : StaticExternCValues) { 7179 IdentifierInfo *Name = I.first; 7180 llvm::GlobalValue *Val = I.second; 7181 7182 // If Val is null, that implies there were multiple declarations that each 7183 // had a claim to the unmangled name. In this case, generation of the alias 7184 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7185 if (!Val) 7186 break; 7187 7188 llvm::GlobalValue *ExistingElem = 7189 getModule().getNamedValue(Name->getName()); 7190 7191 // If there is either not something already by this name, or we were able to 7192 // replace all uses from IFuncs, create the alias. 7193 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7194 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7195 } 7196 } 7197 7198 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7199 GlobalDecl &Result) const { 7200 auto Res = Manglings.find(MangledName); 7201 if (Res == Manglings.end()) 7202 return false; 7203 Result = Res->getValue(); 7204 return true; 7205 } 7206 7207 /// Emits metadata nodes associating all the global values in the 7208 /// current module with the Decls they came from. This is useful for 7209 /// projects using IR gen as a subroutine. 7210 /// 7211 /// Since there's currently no way to associate an MDNode directly 7212 /// with an llvm::GlobalValue, we create a global named metadata 7213 /// with the name 'clang.global.decl.ptrs'. 7214 void CodeGenModule::EmitDeclMetadata() { 7215 llvm::NamedMDNode *GlobalMetadata = nullptr; 7216 7217 for (auto &I : MangledDeclNames) { 7218 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7219 // Some mangled names don't necessarily have an associated GlobalValue 7220 // in this module, e.g. if we mangled it for DebugInfo. 7221 if (Addr) 7222 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7223 } 7224 } 7225 7226 /// Emits metadata nodes for all the local variables in the current 7227 /// function. 7228 void CodeGenFunction::EmitDeclMetadata() { 7229 if (LocalDeclMap.empty()) return; 7230 7231 llvm::LLVMContext &Context = getLLVMContext(); 7232 7233 // Find the unique metadata ID for this name. 7234 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7235 7236 llvm::NamedMDNode *GlobalMetadata = nullptr; 7237 7238 for (auto &I : LocalDeclMap) { 7239 const Decl *D = I.first; 7240 llvm::Value *Addr = I.second.getPointer(); 7241 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7242 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7243 Alloca->setMetadata( 7244 DeclPtrKind, llvm::MDNode::get( 7245 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7246 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7247 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7248 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7249 } 7250 } 7251 } 7252 7253 void CodeGenModule::EmitVersionIdentMetadata() { 7254 llvm::NamedMDNode *IdentMetadata = 7255 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7256 std::string Version = getClangFullVersion(); 7257 llvm::LLVMContext &Ctx = TheModule.getContext(); 7258 7259 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7260 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7261 } 7262 7263 void CodeGenModule::EmitCommandLineMetadata() { 7264 llvm::NamedMDNode *CommandLineMetadata = 7265 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7266 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7267 llvm::LLVMContext &Ctx = TheModule.getContext(); 7268 7269 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7270 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7271 } 7272 7273 void CodeGenModule::EmitCoverageFile() { 7274 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7275 if (!CUNode) 7276 return; 7277 7278 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7279 llvm::LLVMContext &Ctx = TheModule.getContext(); 7280 auto *CoverageDataFile = 7281 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7282 auto *CoverageNotesFile = 7283 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7284 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7285 llvm::MDNode *CU = CUNode->getOperand(i); 7286 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7287 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7288 } 7289 } 7290 7291 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7292 bool ForEH) { 7293 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7294 // FIXME: should we even be calling this method if RTTI is disabled 7295 // and it's not for EH? 7296 if (!shouldEmitRTTI(ForEH)) 7297 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7298 7299 if (ForEH && Ty->isObjCObjectPointerType() && 7300 LangOpts.ObjCRuntime.isGNUFamily()) 7301 return ObjCRuntime->GetEHType(Ty); 7302 7303 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7304 } 7305 7306 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7307 // Do not emit threadprivates in simd-only mode. 7308 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7309 return; 7310 for (auto RefExpr : D->varlists()) { 7311 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7312 bool PerformInit = 7313 VD->getAnyInitializer() && 7314 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7315 /*ForRef=*/false); 7316 7317 Address Addr(GetAddrOfGlobalVar(VD), 7318 getTypes().ConvertTypeForMem(VD->getType()), 7319 getContext().getDeclAlign(VD)); 7320 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7321 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7322 CXXGlobalInits.push_back(InitFunction); 7323 } 7324 } 7325 7326 llvm::Metadata * 7327 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7328 StringRef Suffix) { 7329 if (auto *FnType = T->getAs<FunctionProtoType>()) 7330 T = getContext().getFunctionType( 7331 FnType->getReturnType(), FnType->getParamTypes(), 7332 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7333 7334 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7335 if (InternalId) 7336 return InternalId; 7337 7338 if (isExternallyVisible(T->getLinkage())) { 7339 std::string OutName; 7340 llvm::raw_string_ostream Out(OutName); 7341 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7342 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7343 7344 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7345 Out << ".normalized"; 7346 7347 Out << Suffix; 7348 7349 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7350 } else { 7351 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7352 llvm::ArrayRef<llvm::Metadata *>()); 7353 } 7354 7355 return InternalId; 7356 } 7357 7358 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7359 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7360 } 7361 7362 llvm::Metadata * 7363 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7364 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7365 } 7366 7367 // Generalize pointer types to a void pointer with the qualifiers of the 7368 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7369 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7370 // 'void *'. 7371 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7372 if (!Ty->isPointerType()) 7373 return Ty; 7374 7375 return Ctx.getPointerType( 7376 QualType(Ctx.VoidTy).withCVRQualifiers( 7377 Ty->getPointeeType().getCVRQualifiers())); 7378 } 7379 7380 // Apply type generalization to a FunctionType's return and argument types 7381 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7382 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7383 SmallVector<QualType, 8> GeneralizedParams; 7384 for (auto &Param : FnType->param_types()) 7385 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7386 7387 return Ctx.getFunctionType( 7388 GeneralizeType(Ctx, FnType->getReturnType()), 7389 GeneralizedParams, FnType->getExtProtoInfo()); 7390 } 7391 7392 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7393 return Ctx.getFunctionNoProtoType( 7394 GeneralizeType(Ctx, FnType->getReturnType())); 7395 7396 llvm_unreachable("Encountered unknown FunctionType"); 7397 } 7398 7399 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7400 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7401 GeneralizedMetadataIdMap, ".generalized"); 7402 } 7403 7404 /// Returns whether this module needs the "all-vtables" type identifier. 7405 bool CodeGenModule::NeedAllVtablesTypeId() const { 7406 // Returns true if at least one of vtable-based CFI checkers is enabled and 7407 // is not in the trapping mode. 7408 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7409 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7410 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7411 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7412 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7413 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7414 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7415 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7416 } 7417 7418 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7419 CharUnits Offset, 7420 const CXXRecordDecl *RD) { 7421 llvm::Metadata *MD = 7422 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7423 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7424 7425 if (CodeGenOpts.SanitizeCfiCrossDso) 7426 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7427 VTable->addTypeMetadata(Offset.getQuantity(), 7428 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7429 7430 if (NeedAllVtablesTypeId()) { 7431 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7432 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7433 } 7434 } 7435 7436 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7437 if (!SanStats) 7438 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7439 7440 return *SanStats; 7441 } 7442 7443 llvm::Value * 7444 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7445 CodeGenFunction &CGF) { 7446 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7447 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7448 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7449 auto *Call = CGF.EmitRuntimeCall( 7450 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7451 return Call; 7452 } 7453 7454 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7455 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7456 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7457 /* forPointeeType= */ true); 7458 } 7459 7460 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7461 LValueBaseInfo *BaseInfo, 7462 TBAAAccessInfo *TBAAInfo, 7463 bool forPointeeType) { 7464 if (TBAAInfo) 7465 *TBAAInfo = getTBAAAccessInfo(T); 7466 7467 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7468 // that doesn't return the information we need to compute BaseInfo. 7469 7470 // Honor alignment typedef attributes even on incomplete types. 7471 // We also honor them straight for C++ class types, even as pointees; 7472 // there's an expressivity gap here. 7473 if (auto TT = T->getAs<TypedefType>()) { 7474 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7475 if (BaseInfo) 7476 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7477 return getContext().toCharUnitsFromBits(Align); 7478 } 7479 } 7480 7481 bool AlignForArray = T->isArrayType(); 7482 7483 // Analyze the base element type, so we don't get confused by incomplete 7484 // array types. 7485 T = getContext().getBaseElementType(T); 7486 7487 if (T->isIncompleteType()) { 7488 // We could try to replicate the logic from 7489 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7490 // type is incomplete, so it's impossible to test. We could try to reuse 7491 // getTypeAlignIfKnown, but that doesn't return the information we need 7492 // to set BaseInfo. So just ignore the possibility that the alignment is 7493 // greater than one. 7494 if (BaseInfo) 7495 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7496 return CharUnits::One(); 7497 } 7498 7499 if (BaseInfo) 7500 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7501 7502 CharUnits Alignment; 7503 const CXXRecordDecl *RD; 7504 if (T.getQualifiers().hasUnaligned()) { 7505 Alignment = CharUnits::One(); 7506 } else if (forPointeeType && !AlignForArray && 7507 (RD = T->getAsCXXRecordDecl())) { 7508 // For C++ class pointees, we don't know whether we're pointing at a 7509 // base or a complete object, so we generally need to use the 7510 // non-virtual alignment. 7511 Alignment = getClassPointerAlignment(RD); 7512 } else { 7513 Alignment = getContext().getTypeAlignInChars(T); 7514 } 7515 7516 // Cap to the global maximum type alignment unless the alignment 7517 // was somehow explicit on the type. 7518 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7519 if (Alignment.getQuantity() > MaxAlign && 7520 !getContext().isAlignmentRequired(T)) 7521 Alignment = CharUnits::fromQuantity(MaxAlign); 7522 } 7523 return Alignment; 7524 } 7525 7526 bool CodeGenModule::stopAutoInit() { 7527 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7528 if (StopAfter) { 7529 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7530 // used 7531 if (NumAutoVarInit >= StopAfter) { 7532 return true; 7533 } 7534 if (!NumAutoVarInit) { 7535 unsigned DiagID = getDiags().getCustomDiagID( 7536 DiagnosticsEngine::Warning, 7537 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7538 "number of times ftrivial-auto-var-init=%1 gets applied."); 7539 getDiags().Report(DiagID) 7540 << StopAfter 7541 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7542 LangOptions::TrivialAutoVarInitKind::Zero 7543 ? "zero" 7544 : "pattern"); 7545 } 7546 ++NumAutoVarInit; 7547 } 7548 return false; 7549 } 7550 7551 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7552 const Decl *D) const { 7553 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7554 // postfix beginning with '.' since the symbol name can be demangled. 7555 if (LangOpts.HIP) 7556 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7557 else 7558 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7559 7560 // If the CUID is not specified we try to generate a unique postfix. 7561 if (getLangOpts().CUID.empty()) { 7562 SourceManager &SM = getContext().getSourceManager(); 7563 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7564 assert(PLoc.isValid() && "Source location is expected to be valid."); 7565 7566 // Get the hash of the user defined macros. 7567 llvm::MD5 Hash; 7568 llvm::MD5::MD5Result Result; 7569 for (const auto &Arg : PreprocessorOpts.Macros) 7570 Hash.update(Arg.first); 7571 Hash.final(Result); 7572 7573 // Get the UniqueID for the file containing the decl. 7574 llvm::sys::fs::UniqueID ID; 7575 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7576 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7577 assert(PLoc.isValid() && "Source location is expected to be valid."); 7578 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7579 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7580 << PLoc.getFilename() << EC.message(); 7581 } 7582 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7583 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7584 } else { 7585 OS << getContext().getCUIDHash(); 7586 } 7587 } 7588 7589 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7590 assert(DeferredDeclsToEmit.empty() && 7591 "Should have emitted all decls deferred to emit."); 7592 assert(NewBuilder->DeferredDecls.empty() && 7593 "Newly created module should not have deferred decls"); 7594 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7595 assert(EmittedDeferredDecls.empty() && 7596 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7597 7598 assert(NewBuilder->DeferredVTables.empty() && 7599 "Newly created module should not have deferred vtables"); 7600 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7601 7602 assert(NewBuilder->MangledDeclNames.empty() && 7603 "Newly created module should not have mangled decl names"); 7604 assert(NewBuilder->Manglings.empty() && 7605 "Newly created module should not have manglings"); 7606 NewBuilder->Manglings = std::move(Manglings); 7607 7608 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7609 7610 NewBuilder->TBAA = std::move(TBAA); 7611 7612 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7613 } 7614