1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 127 IntPtrTy = llvm::IntegerType::get(LLVMContext, 128 C.getTargetInfo().getMaxPointerWidth()); 129 Int8PtrTy = Int8Ty->getPointerTo(0); 130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 131 AllocaInt8PtrTy = Int8Ty->getPointerTo( 132 M.getDataLayout().getAllocaAddrSpace()); 133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 134 135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 136 137 if (LangOpts.ObjC) 138 createObjCRuntime(); 139 if (LangOpts.OpenCL) 140 createOpenCLRuntime(); 141 if (LangOpts.OpenMP) 142 createOpenMPRuntime(); 143 if (LangOpts.CUDA) 144 createCUDARuntime(); 145 146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 150 getCXXABI().getMangleContext())); 151 152 // If debug info or coverage generation is enabled, create the CGDebugInfo 153 // object. 154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 156 DebugInfo.reset(new CGDebugInfo(*this)); 157 158 Block.GlobalUniqueCount = 0; 159 160 if (C.getLangOpts().ObjC) 161 ObjCData.reset(new ObjCEntrypoints()); 162 163 if (CodeGenOpts.hasProfileClangUse()) { 164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 166 if (auto E = ReaderOrErr.takeError()) { 167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 168 "Could not read profile %0: %1"); 169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 171 << EI.message(); 172 }); 173 } else 174 PGOReader = std::move(ReaderOrErr.get()); 175 } 176 177 // If coverage mapping generation is enabled, create the 178 // CoverageMappingModuleGen object. 179 if (CodeGenOpts.CoverageMapping) 180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 181 } 182 183 CodeGenModule::~CodeGenModule() {} 184 185 void CodeGenModule::createObjCRuntime() { 186 // This is just isGNUFamily(), but we want to force implementors of 187 // new ABIs to decide how best to do this. 188 switch (LangOpts.ObjCRuntime.getKind()) { 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 case ObjCRuntime::ObjFW: 192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 193 return; 194 195 case ObjCRuntime::FragileMacOSX: 196 case ObjCRuntime::MacOSX: 197 case ObjCRuntime::iOS: 198 case ObjCRuntime::WatchOS: 199 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 200 return; 201 } 202 llvm_unreachable("bad runtime kind"); 203 } 204 205 void CodeGenModule::createOpenCLRuntime() { 206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 207 } 208 209 void CodeGenModule::createOpenMPRuntime() { 210 // Select a specialized code generation class based on the target, if any. 211 // If it does not exist use the default implementation. 212 switch (getTriple().getArch()) { 213 case llvm::Triple::nvptx: 214 case llvm::Triple::nvptx64: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP NVPTX is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 218 break; 219 case llvm::Triple::amdgcn: 220 assert(getLangOpts().OpenMPIsDevice && 221 "OpenMP AMDGCN is only prepared to deal with device code."); 222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 223 break; 224 default: 225 if (LangOpts.OpenMPSimd) 226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 227 else 228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 229 break; 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 405 llvm::Module &M) { 406 if (!LO.VisibilityFromDLLStorageClass) 407 return; 408 409 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 410 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 411 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 413 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 416 CodeGenModule::GetLLVMVisibility( 417 LO.getExternDeclNoDLLStorageClassVisibility()); 418 419 for (llvm::GlobalValue &GV : M.global_values()) { 420 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 421 continue; 422 423 // Reset DSO locality before setting the visibility. This removes 424 // any effects that visibility options and annotations may have 425 // had on the DSO locality. Setting the visibility will implicitly set 426 // appropriate globals to DSO Local; however, this will be pessimistic 427 // w.r.t. to the normal compiler IRGen. 428 GV.setDSOLocal(false); 429 430 if (GV.isDeclarationForLinker()) { 431 GV.setVisibility(GV.getDLLStorageClass() == 432 llvm::GlobalValue::DLLImportStorageClass 433 ? ExternDeclDLLImportVisibility 434 : ExternDeclNoDLLStorageClassVisibility); 435 } else { 436 GV.setVisibility(GV.getDLLStorageClass() == 437 llvm::GlobalValue::DLLExportStorageClass 438 ? DLLExportVisibility 439 : NoDLLStorageClassVisibility); 440 } 441 442 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 443 } 444 } 445 446 void CodeGenModule::Release() { 447 EmitDeferred(); 448 EmitVTablesOpportunistically(); 449 applyGlobalValReplacements(); 450 applyReplacements(); 451 checkAliases(); 452 emitMultiVersionFunctions(); 453 EmitCXXGlobalInitFunc(); 454 EmitCXXGlobalCleanUpFunc(); 455 registerGlobalDtorsWithAtExit(); 456 EmitCXXThreadLocalInitFunc(); 457 if (ObjCRuntime) 458 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 459 AddGlobalCtor(ObjCInitFunction); 460 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 461 CUDARuntime) { 462 if (llvm::Function *CudaCtorFunction = 463 CUDARuntime->makeModuleCtorFunction()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (Context.getLangOpts().SemanticInterposition) 535 // Require various optimization to respect semantic interposition. 536 getModule().setSemanticInterposition(1); 537 538 if (CodeGenOpts.EmitCodeView) { 539 // Indicate that we want CodeView in the metadata. 540 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 541 } 542 if (CodeGenOpts.CodeViewGHash) { 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 544 } 545 if (CodeGenOpts.ControlFlowGuard) { 546 // Function ID tables and checks for Control Flow Guard (cfguard=2). 547 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 548 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 549 // Function ID tables for Control Flow Guard (cfguard=1). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 551 } 552 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 553 // We don't support LTO with 2 with different StrictVTablePointers 554 // FIXME: we could support it by stripping all the information introduced 555 // by StrictVTablePointers. 556 557 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 558 559 llvm::Metadata *Ops[2] = { 560 llvm::MDString::get(VMContext, "StrictVTablePointers"), 561 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 562 llvm::Type::getInt32Ty(VMContext), 1))}; 563 564 getModule().addModuleFlag(llvm::Module::Require, 565 "StrictVTablePointersRequirement", 566 llvm::MDNode::get(VMContext, Ops)); 567 } 568 if (getModuleDebugInfo()) 569 // We support a single version in the linked module. The LLVM 570 // parser will drop debug info with a different version number 571 // (and warn about it, too). 572 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 573 llvm::DEBUG_METADATA_VERSION); 574 575 // We need to record the widths of enums and wchar_t, so that we can generate 576 // the correct build attributes in the ARM backend. wchar_size is also used by 577 // TargetLibraryInfo. 578 uint64_t WCharWidth = 579 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 580 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 581 582 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 583 if ( Arch == llvm::Triple::arm 584 || Arch == llvm::Triple::armeb 585 || Arch == llvm::Triple::thumb 586 || Arch == llvm::Triple::thumbeb) { 587 // The minimum width of an enum in bytes 588 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 589 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 590 } 591 592 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 593 StringRef ABIStr = Target.getABI(); 594 llvm::LLVMContext &Ctx = TheModule.getContext(); 595 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 596 llvm::MDString::get(Ctx, ABIStr)); 597 } 598 599 if (CodeGenOpts.SanitizeCfiCrossDso) { 600 // Indicate that we want cross-DSO control flow integrity checks. 601 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 602 } 603 604 if (CodeGenOpts.WholeProgramVTables) { 605 // Indicate whether VFE was enabled for this module, so that the 606 // vcall_visibility metadata added under whole program vtables is handled 607 // appropriately in the optimizer. 608 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 609 CodeGenOpts.VirtualFunctionElimination); 610 } 611 612 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 613 getModule().addModuleFlag(llvm::Module::Override, 614 "CFI Canonical Jump Tables", 615 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 616 } 617 618 if (CodeGenOpts.CFProtectionReturn && 619 Target.checkCFProtectionReturnSupported(getDiags())) { 620 // Indicate that we want to instrument return control flow protection. 621 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 622 1); 623 } 624 625 if (CodeGenOpts.CFProtectionBranch && 626 Target.checkCFProtectionBranchSupported(getDiags())) { 627 // Indicate that we want to instrument branch control flow protection. 628 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 629 1); 630 } 631 632 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 633 Arch == llvm::Triple::aarch64_be) { 634 getModule().addModuleFlag(llvm::Module::Error, 635 "branch-target-enforcement", 636 LangOpts.BranchTargetEnforcement); 637 638 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 639 LangOpts.hasSignReturnAddress()); 640 641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 642 LangOpts.isSignReturnAddressScopeAll()); 643 644 getModule().addModuleFlag(llvm::Module::Error, 645 "sign-return-address-with-bkey", 646 !LangOpts.isSignReturnAddressWithAKey()); 647 } 648 649 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 650 llvm::LLVMContext &Ctx = TheModule.getContext(); 651 getModule().addModuleFlag( 652 llvm::Module::Error, "MemProfProfileFilename", 653 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 654 } 655 656 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 657 // Indicate whether __nvvm_reflect should be configured to flush denormal 658 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 659 // property.) 660 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 661 CodeGenOpts.FP32DenormalMode.Output != 662 llvm::DenormalMode::IEEE); 663 } 664 665 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 666 if (LangOpts.OpenCL) { 667 EmitOpenCLMetadata(); 668 // Emit SPIR version. 669 if (getTriple().isSPIR()) { 670 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 671 // opencl.spir.version named metadata. 672 // C++ is backwards compatible with OpenCL v2.0. 673 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 674 llvm::Metadata *SPIRVerElts[] = { 675 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 676 Int32Ty, Version / 100)), 677 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 678 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 679 llvm::NamedMDNode *SPIRVerMD = 680 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 681 llvm::LLVMContext &Ctx = TheModule.getContext(); 682 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 683 } 684 } 685 686 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 687 assert(PLevel < 3 && "Invalid PIC Level"); 688 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 689 if (Context.getLangOpts().PIE) 690 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 691 } 692 693 if (getCodeGenOpts().CodeModel.size() > 0) { 694 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 695 .Case("tiny", llvm::CodeModel::Tiny) 696 .Case("small", llvm::CodeModel::Small) 697 .Case("kernel", llvm::CodeModel::Kernel) 698 .Case("medium", llvm::CodeModel::Medium) 699 .Case("large", llvm::CodeModel::Large) 700 .Default(~0u); 701 if (CM != ~0u) { 702 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 703 getModule().setCodeModel(codeModel); 704 } 705 } 706 707 if (CodeGenOpts.NoPLT) 708 getModule().setRtLibUseGOT(); 709 710 SimplifyPersonality(); 711 712 if (getCodeGenOpts().EmitDeclMetadata) 713 EmitDeclMetadata(); 714 715 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 716 EmitCoverageFile(); 717 718 if (CGDebugInfo *DI = getModuleDebugInfo()) 719 DI->finalize(); 720 721 if (getCodeGenOpts().EmitVersionIdentMetadata) 722 EmitVersionIdentMetadata(); 723 724 if (!getCodeGenOpts().RecordCommandLine.empty()) 725 EmitCommandLineMetadata(); 726 727 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 728 729 EmitBackendOptionsMetadata(getCodeGenOpts()); 730 731 // Set visibility from DLL storage class 732 // We do this at the end of LLVM IR generation; after any operation 733 // that might affect the DLL storage class or the visibility, and 734 // before anything that might act on these. 735 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 736 } 737 738 void CodeGenModule::EmitOpenCLMetadata() { 739 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 740 // opencl.ocl.version named metadata node. 741 // C++ is backwards compatible with OpenCL v2.0. 742 // FIXME: We might need to add CXX version at some point too? 743 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 744 llvm::Metadata *OCLVerElts[] = { 745 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 746 Int32Ty, Version / 100)), 747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 748 Int32Ty, (Version % 100) / 10))}; 749 llvm::NamedMDNode *OCLVerMD = 750 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 751 llvm::LLVMContext &Ctx = TheModule.getContext(); 752 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 753 } 754 755 void CodeGenModule::EmitBackendOptionsMetadata( 756 const CodeGenOptions CodeGenOpts) { 757 switch (getTriple().getArch()) { 758 default: 759 break; 760 case llvm::Triple::riscv32: 761 case llvm::Triple::riscv64: 762 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 763 CodeGenOpts.SmallDataLimit); 764 break; 765 } 766 } 767 768 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 769 // Make sure that this type is translated. 770 Types.UpdateCompletedType(TD); 771 } 772 773 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 774 // Make sure that this type is translated. 775 Types.RefreshTypeCacheForClass(RD); 776 } 777 778 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 779 if (!TBAA) 780 return nullptr; 781 return TBAA->getTypeInfo(QTy); 782 } 783 784 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 785 if (!TBAA) 786 return TBAAAccessInfo(); 787 if (getLangOpts().CUDAIsDevice) { 788 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 789 // access info. 790 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 791 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 792 nullptr) 793 return TBAAAccessInfo(); 794 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 795 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 796 nullptr) 797 return TBAAAccessInfo(); 798 } 799 } 800 return TBAA->getAccessInfo(AccessType); 801 } 802 803 TBAAAccessInfo 804 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 805 if (!TBAA) 806 return TBAAAccessInfo(); 807 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 808 } 809 810 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 811 if (!TBAA) 812 return nullptr; 813 return TBAA->getTBAAStructInfo(QTy); 814 } 815 816 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 817 if (!TBAA) 818 return nullptr; 819 return TBAA->getBaseTypeInfo(QTy); 820 } 821 822 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 823 if (!TBAA) 824 return nullptr; 825 return TBAA->getAccessTagInfo(Info); 826 } 827 828 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 829 TBAAAccessInfo TargetInfo) { 830 if (!TBAA) 831 return TBAAAccessInfo(); 832 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 833 } 834 835 TBAAAccessInfo 836 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 837 TBAAAccessInfo InfoB) { 838 if (!TBAA) 839 return TBAAAccessInfo(); 840 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 841 } 842 843 TBAAAccessInfo 844 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 845 TBAAAccessInfo SrcInfo) { 846 if (!TBAA) 847 return TBAAAccessInfo(); 848 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 849 } 850 851 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 852 TBAAAccessInfo TBAAInfo) { 853 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 854 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 855 } 856 857 void CodeGenModule::DecorateInstructionWithInvariantGroup( 858 llvm::Instruction *I, const CXXRecordDecl *RD) { 859 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 860 llvm::MDNode::get(getLLVMContext(), {})); 861 } 862 863 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 864 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 865 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 866 } 867 868 /// ErrorUnsupported - Print out an error that codegen doesn't support the 869 /// specified stmt yet. 870 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 871 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 872 "cannot compile this %0 yet"); 873 std::string Msg = Type; 874 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 875 << Msg << S->getSourceRange(); 876 } 877 878 /// ErrorUnsupported - Print out an error that codegen doesn't support the 879 /// specified decl yet. 880 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 881 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 882 "cannot compile this %0 yet"); 883 std::string Msg = Type; 884 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 885 } 886 887 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 888 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 889 } 890 891 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 892 const NamedDecl *D) const { 893 if (GV->hasDLLImportStorageClass()) 894 return; 895 // Internal definitions always have default visibility. 896 if (GV->hasLocalLinkage()) { 897 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 898 return; 899 } 900 if (!D) 901 return; 902 // Set visibility for definitions, and for declarations if requested globally 903 // or set explicitly. 904 LinkageInfo LV = D->getLinkageAndVisibility(); 905 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 906 !GV->isDeclarationForLinker()) 907 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 908 } 909 910 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 911 llvm::GlobalValue *GV) { 912 if (GV->hasLocalLinkage()) 913 return true; 914 915 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 916 return true; 917 918 // DLLImport explicitly marks the GV as external. 919 if (GV->hasDLLImportStorageClass()) 920 return false; 921 922 const llvm::Triple &TT = CGM.getTriple(); 923 if (TT.isWindowsGNUEnvironment()) { 924 // In MinGW, variables without DLLImport can still be automatically 925 // imported from a DLL by the linker; don't mark variables that 926 // potentially could come from another DLL as DSO local. 927 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 928 !GV->isThreadLocal()) 929 return false; 930 } 931 932 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 933 // remain unresolved in the link, they can be resolved to zero, which is 934 // outside the current DSO. 935 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 936 return false; 937 938 // Every other GV is local on COFF. 939 // Make an exception for windows OS in the triple: Some firmware builds use 940 // *-win32-macho triples. This (accidentally?) produced windows relocations 941 // without GOT tables in older clang versions; Keep this behaviour. 942 // FIXME: even thread local variables? 943 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 944 return true; 945 946 const auto &CGOpts = CGM.getCodeGenOpts(); 947 llvm::Reloc::Model RM = CGOpts.RelocationModel; 948 const auto &LOpts = CGM.getLangOpts(); 949 950 if (TT.isOSBinFormatMachO()) { 951 if (RM == llvm::Reloc::Static) 952 return true; 953 return GV->isStrongDefinitionForLinker(); 954 } 955 956 // Only handle COFF and ELF for now. 957 if (!TT.isOSBinFormatELF()) 958 return false; 959 960 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 961 // On ELF, if -fno-semantic-interposition is specified and the target 962 // supports local aliases, there will be neither CC1 963 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 964 // dso_local if using a local alias is preferable (can avoid GOT 965 // indirection). 966 if (!GV->canBenefitFromLocalAlias()) 967 return false; 968 return !(CGM.getLangOpts().SemanticInterposition || 969 CGM.getLangOpts().HalfNoSemanticInterposition); 970 } 971 972 // A definition cannot be preempted from an executable. 973 if (!GV->isDeclarationForLinker()) 974 return true; 975 976 // Most PIC code sequences that assume that a symbol is local cannot produce a 977 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 978 // depended, it seems worth it to handle it here. 979 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 980 return false; 981 982 // PowerPC64 prefers TOC indirection to avoid copy relocations. 983 if (TT.isPPC64()) 984 return false; 985 986 // If we can use copy relocations we can assume it is local. 987 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 988 if (!Var->isThreadLocal() && CGOpts.DirectAccessExternalData) 989 return true; 990 991 // If we can use a plt entry as the symbol address we can assume it 992 // is local. 993 // FIXME: This should work for PIE, but the gold linker doesn't support it. 994 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 995 return true; 996 997 // Otherwise don't assume it is local. 998 return false; 999 } 1000 1001 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1002 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1003 } 1004 1005 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1006 GlobalDecl GD) const { 1007 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1008 // C++ destructors have a few C++ ABI specific special cases. 1009 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1010 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1011 return; 1012 } 1013 setDLLImportDLLExport(GV, D); 1014 } 1015 1016 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1017 const NamedDecl *D) const { 1018 if (D && D->isExternallyVisible()) { 1019 if (D->hasAttr<DLLImportAttr>()) 1020 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1021 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1022 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1023 } 1024 } 1025 1026 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1027 GlobalDecl GD) const { 1028 setDLLImportDLLExport(GV, GD); 1029 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1030 } 1031 1032 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1033 const NamedDecl *D) const { 1034 setDLLImportDLLExport(GV, D); 1035 setGVPropertiesAux(GV, D); 1036 } 1037 1038 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1039 const NamedDecl *D) const { 1040 setGlobalVisibility(GV, D); 1041 setDSOLocal(GV); 1042 GV->setPartition(CodeGenOpts.SymbolPartition); 1043 } 1044 1045 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1046 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1047 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1048 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1049 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1050 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1051 } 1052 1053 llvm::GlobalVariable::ThreadLocalMode 1054 CodeGenModule::GetDefaultLLVMTLSModel() const { 1055 switch (CodeGenOpts.getDefaultTLSModel()) { 1056 case CodeGenOptions::GeneralDynamicTLSModel: 1057 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1058 case CodeGenOptions::LocalDynamicTLSModel: 1059 return llvm::GlobalVariable::LocalDynamicTLSModel; 1060 case CodeGenOptions::InitialExecTLSModel: 1061 return llvm::GlobalVariable::InitialExecTLSModel; 1062 case CodeGenOptions::LocalExecTLSModel: 1063 return llvm::GlobalVariable::LocalExecTLSModel; 1064 } 1065 llvm_unreachable("Invalid TLS model!"); 1066 } 1067 1068 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1069 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1070 1071 llvm::GlobalValue::ThreadLocalMode TLM; 1072 TLM = GetDefaultLLVMTLSModel(); 1073 1074 // Override the TLS model if it is explicitly specified. 1075 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1076 TLM = GetLLVMTLSModel(Attr->getModel()); 1077 } 1078 1079 GV->setThreadLocalMode(TLM); 1080 } 1081 1082 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1083 StringRef Name) { 1084 const TargetInfo &Target = CGM.getTarget(); 1085 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1086 } 1087 1088 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1089 const CPUSpecificAttr *Attr, 1090 unsigned CPUIndex, 1091 raw_ostream &Out) { 1092 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1093 // supported. 1094 if (Attr) 1095 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1096 else if (CGM.getTarget().supportsIFunc()) 1097 Out << ".resolver"; 1098 } 1099 1100 static void AppendTargetMangling(const CodeGenModule &CGM, 1101 const TargetAttr *Attr, raw_ostream &Out) { 1102 if (Attr->isDefaultVersion()) 1103 return; 1104 1105 Out << '.'; 1106 const TargetInfo &Target = CGM.getTarget(); 1107 ParsedTargetAttr Info = 1108 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1109 // Multiversioning doesn't allow "no-${feature}", so we can 1110 // only have "+" prefixes here. 1111 assert(LHS.startswith("+") && RHS.startswith("+") && 1112 "Features should always have a prefix."); 1113 return Target.multiVersionSortPriority(LHS.substr(1)) > 1114 Target.multiVersionSortPriority(RHS.substr(1)); 1115 }); 1116 1117 bool IsFirst = true; 1118 1119 if (!Info.Architecture.empty()) { 1120 IsFirst = false; 1121 Out << "arch_" << Info.Architecture; 1122 } 1123 1124 for (StringRef Feat : Info.Features) { 1125 if (!IsFirst) 1126 Out << '_'; 1127 IsFirst = false; 1128 Out << Feat.substr(1); 1129 } 1130 } 1131 1132 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1133 const NamedDecl *ND, 1134 bool OmitMultiVersionMangling = false) { 1135 SmallString<256> Buffer; 1136 llvm::raw_svector_ostream Out(Buffer); 1137 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1138 if (MC.shouldMangleDeclName(ND)) 1139 MC.mangleName(GD.getWithDecl(ND), Out); 1140 else { 1141 IdentifierInfo *II = ND->getIdentifier(); 1142 assert(II && "Attempt to mangle unnamed decl."); 1143 const auto *FD = dyn_cast<FunctionDecl>(ND); 1144 1145 if (FD && 1146 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1147 Out << "__regcall3__" << II->getName(); 1148 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1149 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1150 Out << "__device_stub__" << II->getName(); 1151 } else { 1152 Out << II->getName(); 1153 } 1154 } 1155 1156 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1157 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1158 switch (FD->getMultiVersionKind()) { 1159 case MultiVersionKind::CPUDispatch: 1160 case MultiVersionKind::CPUSpecific: 1161 AppendCPUSpecificCPUDispatchMangling(CGM, 1162 FD->getAttr<CPUSpecificAttr>(), 1163 GD.getMultiVersionIndex(), Out); 1164 break; 1165 case MultiVersionKind::Target: 1166 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1167 break; 1168 case MultiVersionKind::None: 1169 llvm_unreachable("None multiversion type isn't valid here"); 1170 } 1171 } 1172 1173 return std::string(Out.str()); 1174 } 1175 1176 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1177 const FunctionDecl *FD) { 1178 if (!FD->isMultiVersion()) 1179 return; 1180 1181 // Get the name of what this would be without the 'target' attribute. This 1182 // allows us to lookup the version that was emitted when this wasn't a 1183 // multiversion function. 1184 std::string NonTargetName = 1185 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1186 GlobalDecl OtherGD; 1187 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1188 assert(OtherGD.getCanonicalDecl() 1189 .getDecl() 1190 ->getAsFunction() 1191 ->isMultiVersion() && 1192 "Other GD should now be a multiversioned function"); 1193 // OtherFD is the version of this function that was mangled BEFORE 1194 // becoming a MultiVersion function. It potentially needs to be updated. 1195 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1196 .getDecl() 1197 ->getAsFunction() 1198 ->getMostRecentDecl(); 1199 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1200 // This is so that if the initial version was already the 'default' 1201 // version, we don't try to update it. 1202 if (OtherName != NonTargetName) { 1203 // Remove instead of erase, since others may have stored the StringRef 1204 // to this. 1205 const auto ExistingRecord = Manglings.find(NonTargetName); 1206 if (ExistingRecord != std::end(Manglings)) 1207 Manglings.remove(&(*ExistingRecord)); 1208 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1209 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1210 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1211 Entry->setName(OtherName); 1212 } 1213 } 1214 } 1215 1216 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1217 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1218 1219 // Some ABIs don't have constructor variants. Make sure that base and 1220 // complete constructors get mangled the same. 1221 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1222 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1223 CXXCtorType OrigCtorType = GD.getCtorType(); 1224 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1225 if (OrigCtorType == Ctor_Base) 1226 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1227 } 1228 } 1229 1230 auto FoundName = MangledDeclNames.find(CanonicalGD); 1231 if (FoundName != MangledDeclNames.end()) 1232 return FoundName->second; 1233 1234 // Keep the first result in the case of a mangling collision. 1235 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1236 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1237 1238 // Ensure either we have different ABIs between host and device compilations, 1239 // says host compilation following MSVC ABI but device compilation follows 1240 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1241 // mangling should be the same after name stubbing. The later checking is 1242 // very important as the device kernel name being mangled in host-compilation 1243 // is used to resolve the device binaries to be executed. Inconsistent naming 1244 // result in undefined behavior. Even though we cannot check that naming 1245 // directly between host- and device-compilations, the host- and 1246 // device-mangling in host compilation could help catching certain ones. 1247 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1248 getLangOpts().CUDAIsDevice || 1249 (getContext().getAuxTargetInfo() && 1250 (getContext().getAuxTargetInfo()->getCXXABI() != 1251 getContext().getTargetInfo().getCXXABI())) || 1252 getCUDARuntime().getDeviceSideName(ND) == 1253 getMangledNameImpl( 1254 *this, 1255 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1256 ND)); 1257 1258 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1259 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1260 } 1261 1262 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1263 const BlockDecl *BD) { 1264 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1265 const Decl *D = GD.getDecl(); 1266 1267 SmallString<256> Buffer; 1268 llvm::raw_svector_ostream Out(Buffer); 1269 if (!D) 1270 MangleCtx.mangleGlobalBlock(BD, 1271 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1272 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1273 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1274 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1275 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1276 else 1277 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1278 1279 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1280 return Result.first->first(); 1281 } 1282 1283 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1284 return getModule().getNamedValue(Name); 1285 } 1286 1287 /// AddGlobalCtor - Add a function to the list that will be called before 1288 /// main() runs. 1289 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1290 llvm::Constant *AssociatedData) { 1291 // FIXME: Type coercion of void()* types. 1292 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1293 } 1294 1295 /// AddGlobalDtor - Add a function to the list that will be called 1296 /// when the module is unloaded. 1297 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1298 bool IsDtorAttrFunc) { 1299 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1300 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1301 DtorsUsingAtExit[Priority].push_back(Dtor); 1302 return; 1303 } 1304 1305 // FIXME: Type coercion of void()* types. 1306 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1307 } 1308 1309 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1310 if (Fns.empty()) return; 1311 1312 // Ctor function type is void()*. 1313 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1314 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1315 TheModule.getDataLayout().getProgramAddressSpace()); 1316 1317 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1318 llvm::StructType *CtorStructTy = llvm::StructType::get( 1319 Int32Ty, CtorPFTy, VoidPtrTy); 1320 1321 // Construct the constructor and destructor arrays. 1322 ConstantInitBuilder builder(*this); 1323 auto ctors = builder.beginArray(CtorStructTy); 1324 for (const auto &I : Fns) { 1325 auto ctor = ctors.beginStruct(CtorStructTy); 1326 ctor.addInt(Int32Ty, I.Priority); 1327 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1328 if (I.AssociatedData) 1329 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1330 else 1331 ctor.addNullPointer(VoidPtrTy); 1332 ctor.finishAndAddTo(ctors); 1333 } 1334 1335 auto list = 1336 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1337 /*constant*/ false, 1338 llvm::GlobalValue::AppendingLinkage); 1339 1340 // The LTO linker doesn't seem to like it when we set an alignment 1341 // on appending variables. Take it off as a workaround. 1342 list->setAlignment(llvm::None); 1343 1344 Fns.clear(); 1345 } 1346 1347 llvm::GlobalValue::LinkageTypes 1348 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1349 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1350 1351 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1352 1353 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1354 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1355 1356 if (isa<CXXConstructorDecl>(D) && 1357 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1358 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1359 // Our approach to inheriting constructors is fundamentally different from 1360 // that used by the MS ABI, so keep our inheriting constructor thunks 1361 // internal rather than trying to pick an unambiguous mangling for them. 1362 return llvm::GlobalValue::InternalLinkage; 1363 } 1364 1365 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1366 } 1367 1368 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1369 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1370 if (!MDS) return nullptr; 1371 1372 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1373 } 1374 1375 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1376 const CGFunctionInfo &Info, 1377 llvm::Function *F) { 1378 unsigned CallingConv; 1379 llvm::AttributeList PAL; 1380 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1381 F->setAttributes(PAL); 1382 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1383 } 1384 1385 static void removeImageAccessQualifier(std::string& TyName) { 1386 std::string ReadOnlyQual("__read_only"); 1387 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1388 if (ReadOnlyPos != std::string::npos) 1389 // "+ 1" for the space after access qualifier. 1390 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1391 else { 1392 std::string WriteOnlyQual("__write_only"); 1393 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1394 if (WriteOnlyPos != std::string::npos) 1395 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1396 else { 1397 std::string ReadWriteQual("__read_write"); 1398 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1399 if (ReadWritePos != std::string::npos) 1400 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1401 } 1402 } 1403 } 1404 1405 // Returns the address space id that should be produced to the 1406 // kernel_arg_addr_space metadata. This is always fixed to the ids 1407 // as specified in the SPIR 2.0 specification in order to differentiate 1408 // for example in clGetKernelArgInfo() implementation between the address 1409 // spaces with targets without unique mapping to the OpenCL address spaces 1410 // (basically all single AS CPUs). 1411 static unsigned ArgInfoAddressSpace(LangAS AS) { 1412 switch (AS) { 1413 case LangAS::opencl_global: 1414 return 1; 1415 case LangAS::opencl_constant: 1416 return 2; 1417 case LangAS::opencl_local: 1418 return 3; 1419 case LangAS::opencl_generic: 1420 return 4; // Not in SPIR 2.0 specs. 1421 case LangAS::opencl_global_device: 1422 return 5; 1423 case LangAS::opencl_global_host: 1424 return 6; 1425 default: 1426 return 0; // Assume private. 1427 } 1428 } 1429 1430 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1431 const FunctionDecl *FD, 1432 CodeGenFunction *CGF) { 1433 assert(((FD && CGF) || (!FD && !CGF)) && 1434 "Incorrect use - FD and CGF should either be both null or not!"); 1435 // Create MDNodes that represent the kernel arg metadata. 1436 // Each MDNode is a list in the form of "key", N number of values which is 1437 // the same number of values as their are kernel arguments. 1438 1439 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1440 1441 // MDNode for the kernel argument address space qualifiers. 1442 SmallVector<llvm::Metadata *, 8> addressQuals; 1443 1444 // MDNode for the kernel argument access qualifiers (images only). 1445 SmallVector<llvm::Metadata *, 8> accessQuals; 1446 1447 // MDNode for the kernel argument type names. 1448 SmallVector<llvm::Metadata *, 8> argTypeNames; 1449 1450 // MDNode for the kernel argument base type names. 1451 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1452 1453 // MDNode for the kernel argument type qualifiers. 1454 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1455 1456 // MDNode for the kernel argument names. 1457 SmallVector<llvm::Metadata *, 8> argNames; 1458 1459 if (FD && CGF) 1460 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1461 const ParmVarDecl *parm = FD->getParamDecl(i); 1462 QualType ty = parm->getType(); 1463 std::string typeQuals; 1464 1465 if (ty->isPointerType()) { 1466 QualType pointeeTy = ty->getPointeeType(); 1467 1468 // Get address qualifier. 1469 addressQuals.push_back( 1470 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1471 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1472 1473 // Get argument type name. 1474 std::string typeName = 1475 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1476 1477 // Turn "unsigned type" to "utype" 1478 std::string::size_type pos = typeName.find("unsigned"); 1479 if (pointeeTy.isCanonical() && pos != std::string::npos) 1480 typeName.erase(pos + 1, 8); 1481 1482 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1483 1484 std::string baseTypeName = 1485 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1486 Policy) + 1487 "*"; 1488 1489 // Turn "unsigned type" to "utype" 1490 pos = baseTypeName.find("unsigned"); 1491 if (pos != std::string::npos) 1492 baseTypeName.erase(pos + 1, 8); 1493 1494 argBaseTypeNames.push_back( 1495 llvm::MDString::get(VMContext, baseTypeName)); 1496 1497 // Get argument type qualifiers: 1498 if (ty.isRestrictQualified()) 1499 typeQuals = "restrict"; 1500 if (pointeeTy.isConstQualified() || 1501 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1502 typeQuals += typeQuals.empty() ? "const" : " const"; 1503 if (pointeeTy.isVolatileQualified()) 1504 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1505 } else { 1506 uint32_t AddrSpc = 0; 1507 bool isPipe = ty->isPipeType(); 1508 if (ty->isImageType() || isPipe) 1509 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1510 1511 addressQuals.push_back( 1512 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1513 1514 // Get argument type name. 1515 std::string typeName; 1516 if (isPipe) 1517 typeName = ty.getCanonicalType() 1518 ->castAs<PipeType>() 1519 ->getElementType() 1520 .getAsString(Policy); 1521 else 1522 typeName = ty.getUnqualifiedType().getAsString(Policy); 1523 1524 // Turn "unsigned type" to "utype" 1525 std::string::size_type pos = typeName.find("unsigned"); 1526 if (ty.isCanonical() && pos != std::string::npos) 1527 typeName.erase(pos + 1, 8); 1528 1529 std::string baseTypeName; 1530 if (isPipe) 1531 baseTypeName = ty.getCanonicalType() 1532 ->castAs<PipeType>() 1533 ->getElementType() 1534 .getCanonicalType() 1535 .getAsString(Policy); 1536 else 1537 baseTypeName = 1538 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1539 1540 // Remove access qualifiers on images 1541 // (as they are inseparable from type in clang implementation, 1542 // but OpenCL spec provides a special query to get access qualifier 1543 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1544 if (ty->isImageType()) { 1545 removeImageAccessQualifier(typeName); 1546 removeImageAccessQualifier(baseTypeName); 1547 } 1548 1549 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1550 1551 // Turn "unsigned type" to "utype" 1552 pos = baseTypeName.find("unsigned"); 1553 if (pos != std::string::npos) 1554 baseTypeName.erase(pos + 1, 8); 1555 1556 argBaseTypeNames.push_back( 1557 llvm::MDString::get(VMContext, baseTypeName)); 1558 1559 if (isPipe) 1560 typeQuals = "pipe"; 1561 } 1562 1563 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1564 1565 // Get image and pipe access qualifier: 1566 if (ty->isImageType() || ty->isPipeType()) { 1567 const Decl *PDecl = parm; 1568 if (auto *TD = dyn_cast<TypedefType>(ty)) 1569 PDecl = TD->getDecl(); 1570 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1571 if (A && A->isWriteOnly()) 1572 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1573 else if (A && A->isReadWrite()) 1574 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1575 else 1576 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1577 } else 1578 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1579 1580 // Get argument name. 1581 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1582 } 1583 1584 Fn->setMetadata("kernel_arg_addr_space", 1585 llvm::MDNode::get(VMContext, addressQuals)); 1586 Fn->setMetadata("kernel_arg_access_qual", 1587 llvm::MDNode::get(VMContext, accessQuals)); 1588 Fn->setMetadata("kernel_arg_type", 1589 llvm::MDNode::get(VMContext, argTypeNames)); 1590 Fn->setMetadata("kernel_arg_base_type", 1591 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1592 Fn->setMetadata("kernel_arg_type_qual", 1593 llvm::MDNode::get(VMContext, argTypeQuals)); 1594 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1595 Fn->setMetadata("kernel_arg_name", 1596 llvm::MDNode::get(VMContext, argNames)); 1597 } 1598 1599 /// Determines whether the language options require us to model 1600 /// unwind exceptions. We treat -fexceptions as mandating this 1601 /// except under the fragile ObjC ABI with only ObjC exceptions 1602 /// enabled. This means, for example, that C with -fexceptions 1603 /// enables this. 1604 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1605 // If exceptions are completely disabled, obviously this is false. 1606 if (!LangOpts.Exceptions) return false; 1607 1608 // If C++ exceptions are enabled, this is true. 1609 if (LangOpts.CXXExceptions) return true; 1610 1611 // If ObjC exceptions are enabled, this depends on the ABI. 1612 if (LangOpts.ObjCExceptions) { 1613 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1614 } 1615 1616 return true; 1617 } 1618 1619 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1620 const CXXMethodDecl *MD) { 1621 // Check that the type metadata can ever actually be used by a call. 1622 if (!CGM.getCodeGenOpts().LTOUnit || 1623 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1624 return false; 1625 1626 // Only functions whose address can be taken with a member function pointer 1627 // need this sort of type metadata. 1628 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1629 !isa<CXXDestructorDecl>(MD); 1630 } 1631 1632 std::vector<const CXXRecordDecl *> 1633 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1634 llvm::SetVector<const CXXRecordDecl *> MostBases; 1635 1636 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1637 CollectMostBases = [&](const CXXRecordDecl *RD) { 1638 if (RD->getNumBases() == 0) 1639 MostBases.insert(RD); 1640 for (const CXXBaseSpecifier &B : RD->bases()) 1641 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1642 }; 1643 CollectMostBases(RD); 1644 return MostBases.takeVector(); 1645 } 1646 1647 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1648 llvm::Function *F) { 1649 llvm::AttrBuilder B; 1650 1651 if (CodeGenOpts.UnwindTables) 1652 B.addAttribute(llvm::Attribute::UWTable); 1653 1654 if (CodeGenOpts.StackClashProtector) 1655 B.addAttribute("probe-stack", "inline-asm"); 1656 1657 if (!hasUnwindExceptions(LangOpts)) 1658 B.addAttribute(llvm::Attribute::NoUnwind); 1659 1660 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1661 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1662 B.addAttribute(llvm::Attribute::StackProtect); 1663 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1664 B.addAttribute(llvm::Attribute::StackProtectStrong); 1665 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1666 B.addAttribute(llvm::Attribute::StackProtectReq); 1667 } 1668 1669 if (!D) { 1670 // If we don't have a declaration to control inlining, the function isn't 1671 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1672 // disabled, mark the function as noinline. 1673 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1674 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1675 B.addAttribute(llvm::Attribute::NoInline); 1676 1677 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1678 return; 1679 } 1680 1681 // Track whether we need to add the optnone LLVM attribute, 1682 // starting with the default for this optimization level. 1683 bool ShouldAddOptNone = 1684 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1685 // We can't add optnone in the following cases, it won't pass the verifier. 1686 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1687 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1688 1689 // Add optnone, but do so only if the function isn't always_inline. 1690 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1691 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1692 B.addAttribute(llvm::Attribute::OptimizeNone); 1693 1694 // OptimizeNone implies noinline; we should not be inlining such functions. 1695 B.addAttribute(llvm::Attribute::NoInline); 1696 1697 // We still need to handle naked functions even though optnone subsumes 1698 // much of their semantics. 1699 if (D->hasAttr<NakedAttr>()) 1700 B.addAttribute(llvm::Attribute::Naked); 1701 1702 // OptimizeNone wins over OptimizeForSize and MinSize. 1703 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1704 F->removeFnAttr(llvm::Attribute::MinSize); 1705 } else if (D->hasAttr<NakedAttr>()) { 1706 // Naked implies noinline: we should not be inlining such functions. 1707 B.addAttribute(llvm::Attribute::Naked); 1708 B.addAttribute(llvm::Attribute::NoInline); 1709 } else if (D->hasAttr<NoDuplicateAttr>()) { 1710 B.addAttribute(llvm::Attribute::NoDuplicate); 1711 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1712 // Add noinline if the function isn't always_inline. 1713 B.addAttribute(llvm::Attribute::NoInline); 1714 } else if (D->hasAttr<AlwaysInlineAttr>() && 1715 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1716 // (noinline wins over always_inline, and we can't specify both in IR) 1717 B.addAttribute(llvm::Attribute::AlwaysInline); 1718 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1719 // If we're not inlining, then force everything that isn't always_inline to 1720 // carry an explicit noinline attribute. 1721 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1722 B.addAttribute(llvm::Attribute::NoInline); 1723 } else { 1724 // Otherwise, propagate the inline hint attribute and potentially use its 1725 // absence to mark things as noinline. 1726 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1727 // Search function and template pattern redeclarations for inline. 1728 auto CheckForInline = [](const FunctionDecl *FD) { 1729 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1730 return Redecl->isInlineSpecified(); 1731 }; 1732 if (any_of(FD->redecls(), CheckRedeclForInline)) 1733 return true; 1734 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1735 if (!Pattern) 1736 return false; 1737 return any_of(Pattern->redecls(), CheckRedeclForInline); 1738 }; 1739 if (CheckForInline(FD)) { 1740 B.addAttribute(llvm::Attribute::InlineHint); 1741 } else if (CodeGenOpts.getInlining() == 1742 CodeGenOptions::OnlyHintInlining && 1743 !FD->isInlined() && 1744 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1745 B.addAttribute(llvm::Attribute::NoInline); 1746 } 1747 } 1748 } 1749 1750 // Add other optimization related attributes if we are optimizing this 1751 // function. 1752 if (!D->hasAttr<OptimizeNoneAttr>()) { 1753 if (D->hasAttr<ColdAttr>()) { 1754 if (!ShouldAddOptNone) 1755 B.addAttribute(llvm::Attribute::OptimizeForSize); 1756 B.addAttribute(llvm::Attribute::Cold); 1757 } 1758 if (D->hasAttr<HotAttr>()) 1759 B.addAttribute(llvm::Attribute::Hot); 1760 if (D->hasAttr<MinSizeAttr>()) 1761 B.addAttribute(llvm::Attribute::MinSize); 1762 } 1763 1764 if (D->hasAttr<NoMergeAttr>()) 1765 B.addAttribute(llvm::Attribute::NoMerge); 1766 1767 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1768 1769 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1770 if (alignment) 1771 F->setAlignment(llvm::Align(alignment)); 1772 1773 if (!D->hasAttr<AlignedAttr>()) 1774 if (LangOpts.FunctionAlignment) 1775 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1776 1777 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1778 // reserve a bit for differentiating between virtual and non-virtual member 1779 // functions. If the current target's C++ ABI requires this and this is a 1780 // member function, set its alignment accordingly. 1781 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1782 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1783 F->setAlignment(llvm::Align(2)); 1784 } 1785 1786 // In the cross-dso CFI mode with canonical jump tables, we want !type 1787 // attributes on definitions only. 1788 if (CodeGenOpts.SanitizeCfiCrossDso && 1789 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1790 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1791 // Skip available_externally functions. They won't be codegen'ed in the 1792 // current module anyway. 1793 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1794 CreateFunctionTypeMetadataForIcall(FD, F); 1795 } 1796 } 1797 1798 // Emit type metadata on member functions for member function pointer checks. 1799 // These are only ever necessary on definitions; we're guaranteed that the 1800 // definition will be present in the LTO unit as a result of LTO visibility. 1801 auto *MD = dyn_cast<CXXMethodDecl>(D); 1802 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1803 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1804 llvm::Metadata *Id = 1805 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1806 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1807 F->addTypeMetadata(0, Id); 1808 } 1809 } 1810 } 1811 1812 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1813 llvm::Function *F) { 1814 if (D->hasAttr<StrictFPAttr>()) { 1815 llvm::AttrBuilder FuncAttrs; 1816 FuncAttrs.addAttribute("strictfp"); 1817 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1818 } 1819 } 1820 1821 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1822 const Decl *D = GD.getDecl(); 1823 if (dyn_cast_or_null<NamedDecl>(D)) 1824 setGVProperties(GV, GD); 1825 else 1826 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1827 1828 if (D && D->hasAttr<UsedAttr>()) 1829 addUsedGlobal(GV); 1830 1831 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1832 const auto *VD = cast<VarDecl>(D); 1833 if (VD->getType().isConstQualified() && 1834 VD->getStorageDuration() == SD_Static) 1835 addUsedGlobal(GV); 1836 } 1837 } 1838 1839 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1840 llvm::AttrBuilder &Attrs) { 1841 // Add target-cpu and target-features attributes to functions. If 1842 // we have a decl for the function and it has a target attribute then 1843 // parse that and add it to the feature set. 1844 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1845 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1846 std::vector<std::string> Features; 1847 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1848 FD = FD ? FD->getMostRecentDecl() : FD; 1849 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1850 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1851 bool AddedAttr = false; 1852 if (TD || SD) { 1853 llvm::StringMap<bool> FeatureMap; 1854 getContext().getFunctionFeatureMap(FeatureMap, GD); 1855 1856 // Produce the canonical string for this set of features. 1857 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1858 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1859 1860 // Now add the target-cpu and target-features to the function. 1861 // While we populated the feature map above, we still need to 1862 // get and parse the target attribute so we can get the cpu for 1863 // the function. 1864 if (TD) { 1865 ParsedTargetAttr ParsedAttr = TD->parse(); 1866 if (!ParsedAttr.Architecture.empty() && 1867 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1868 TargetCPU = ParsedAttr.Architecture; 1869 TuneCPU = ""; // Clear the tune CPU. 1870 } 1871 if (!ParsedAttr.Tune.empty() && 1872 getTarget().isValidCPUName(ParsedAttr.Tune)) 1873 TuneCPU = ParsedAttr.Tune; 1874 } 1875 } else { 1876 // Otherwise just add the existing target cpu and target features to the 1877 // function. 1878 Features = getTarget().getTargetOpts().Features; 1879 } 1880 1881 if (!TargetCPU.empty()) { 1882 Attrs.addAttribute("target-cpu", TargetCPU); 1883 AddedAttr = true; 1884 } 1885 if (!TuneCPU.empty()) { 1886 Attrs.addAttribute("tune-cpu", TuneCPU); 1887 AddedAttr = true; 1888 } 1889 if (!Features.empty()) { 1890 llvm::sort(Features); 1891 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1892 AddedAttr = true; 1893 } 1894 1895 return AddedAttr; 1896 } 1897 1898 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1899 llvm::GlobalObject *GO) { 1900 const Decl *D = GD.getDecl(); 1901 SetCommonAttributes(GD, GO); 1902 1903 if (D) { 1904 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1905 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1906 GV->addAttribute("bss-section", SA->getName()); 1907 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1908 GV->addAttribute("data-section", SA->getName()); 1909 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1910 GV->addAttribute("rodata-section", SA->getName()); 1911 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1912 GV->addAttribute("relro-section", SA->getName()); 1913 } 1914 1915 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1916 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1917 if (!D->getAttr<SectionAttr>()) 1918 F->addFnAttr("implicit-section-name", SA->getName()); 1919 1920 llvm::AttrBuilder Attrs; 1921 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1922 // We know that GetCPUAndFeaturesAttributes will always have the 1923 // newest set, since it has the newest possible FunctionDecl, so the 1924 // new ones should replace the old. 1925 llvm::AttrBuilder RemoveAttrs; 1926 RemoveAttrs.addAttribute("target-cpu"); 1927 RemoveAttrs.addAttribute("target-features"); 1928 RemoveAttrs.addAttribute("tune-cpu"); 1929 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1930 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1931 } 1932 } 1933 1934 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1935 GO->setSection(CSA->getName()); 1936 else if (const auto *SA = D->getAttr<SectionAttr>()) 1937 GO->setSection(SA->getName()); 1938 } 1939 1940 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1941 } 1942 1943 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1944 llvm::Function *F, 1945 const CGFunctionInfo &FI) { 1946 const Decl *D = GD.getDecl(); 1947 SetLLVMFunctionAttributes(GD, FI, F); 1948 SetLLVMFunctionAttributesForDefinition(D, F); 1949 1950 F->setLinkage(llvm::Function::InternalLinkage); 1951 1952 setNonAliasAttributes(GD, F); 1953 } 1954 1955 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1956 // Set linkage and visibility in case we never see a definition. 1957 LinkageInfo LV = ND->getLinkageAndVisibility(); 1958 // Don't set internal linkage on declarations. 1959 // "extern_weak" is overloaded in LLVM; we probably should have 1960 // separate linkage types for this. 1961 if (isExternallyVisible(LV.getLinkage()) && 1962 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1963 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1964 } 1965 1966 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1967 llvm::Function *F) { 1968 // Only if we are checking indirect calls. 1969 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1970 return; 1971 1972 // Non-static class methods are handled via vtable or member function pointer 1973 // checks elsewhere. 1974 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1975 return; 1976 1977 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1978 F->addTypeMetadata(0, MD); 1979 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1980 1981 // Emit a hash-based bit set entry for cross-DSO calls. 1982 if (CodeGenOpts.SanitizeCfiCrossDso) 1983 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1984 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1985 } 1986 1987 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1988 bool IsIncompleteFunction, 1989 bool IsThunk) { 1990 1991 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1992 // If this is an intrinsic function, set the function's attributes 1993 // to the intrinsic's attributes. 1994 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1995 return; 1996 } 1997 1998 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1999 2000 if (!IsIncompleteFunction) 2001 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2002 2003 // Add the Returned attribute for "this", except for iOS 5 and earlier 2004 // where substantial code, including the libstdc++ dylib, was compiled with 2005 // GCC and does not actually return "this". 2006 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2007 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2008 assert(!F->arg_empty() && 2009 F->arg_begin()->getType() 2010 ->canLosslesslyBitCastTo(F->getReturnType()) && 2011 "unexpected this return"); 2012 F->addAttribute(1, llvm::Attribute::Returned); 2013 } 2014 2015 // Only a few attributes are set on declarations; these may later be 2016 // overridden by a definition. 2017 2018 setLinkageForGV(F, FD); 2019 setGVProperties(F, FD); 2020 2021 // Setup target-specific attributes. 2022 if (!IsIncompleteFunction && F->isDeclaration()) 2023 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2024 2025 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2026 F->setSection(CSA->getName()); 2027 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2028 F->setSection(SA->getName()); 2029 2030 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2031 if (FD->isInlineBuiltinDeclaration()) { 2032 const FunctionDecl *FDBody; 2033 bool HasBody = FD->hasBody(FDBody); 2034 (void)HasBody; 2035 assert(HasBody && "Inline builtin declarations should always have an " 2036 "available body!"); 2037 if (shouldEmitFunction(FDBody)) 2038 F->addAttribute(llvm::AttributeList::FunctionIndex, 2039 llvm::Attribute::NoBuiltin); 2040 } 2041 2042 if (FD->isReplaceableGlobalAllocationFunction()) { 2043 // A replaceable global allocation function does not act like a builtin by 2044 // default, only if it is invoked by a new-expression or delete-expression. 2045 F->addAttribute(llvm::AttributeList::FunctionIndex, 2046 llvm::Attribute::NoBuiltin); 2047 } 2048 2049 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2050 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2051 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2052 if (MD->isVirtual()) 2053 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2054 2055 // Don't emit entries for function declarations in the cross-DSO mode. This 2056 // is handled with better precision by the receiving DSO. But if jump tables 2057 // are non-canonical then we need type metadata in order to produce the local 2058 // jump table. 2059 if (!CodeGenOpts.SanitizeCfiCrossDso || 2060 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2061 CreateFunctionTypeMetadataForIcall(FD, F); 2062 2063 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2064 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2065 2066 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2067 // Annotate the callback behavior as metadata: 2068 // - The callback callee (as argument number). 2069 // - The callback payloads (as argument numbers). 2070 llvm::LLVMContext &Ctx = F->getContext(); 2071 llvm::MDBuilder MDB(Ctx); 2072 2073 // The payload indices are all but the first one in the encoding. The first 2074 // identifies the callback callee. 2075 int CalleeIdx = *CB->encoding_begin(); 2076 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2077 F->addMetadata(llvm::LLVMContext::MD_callback, 2078 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2079 CalleeIdx, PayloadIndices, 2080 /* VarArgsArePassed */ false)})); 2081 } 2082 } 2083 2084 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2085 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2086 "Only globals with definition can force usage."); 2087 LLVMUsed.emplace_back(GV); 2088 } 2089 2090 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2091 assert(!GV->isDeclaration() && 2092 "Only globals with definition can force usage."); 2093 LLVMCompilerUsed.emplace_back(GV); 2094 } 2095 2096 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2097 std::vector<llvm::WeakTrackingVH> &List) { 2098 // Don't create llvm.used if there is no need. 2099 if (List.empty()) 2100 return; 2101 2102 // Convert List to what ConstantArray needs. 2103 SmallVector<llvm::Constant*, 8> UsedArray; 2104 UsedArray.resize(List.size()); 2105 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2106 UsedArray[i] = 2107 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2108 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2109 } 2110 2111 if (UsedArray.empty()) 2112 return; 2113 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2114 2115 auto *GV = new llvm::GlobalVariable( 2116 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2117 llvm::ConstantArray::get(ATy, UsedArray), Name); 2118 2119 GV->setSection("llvm.metadata"); 2120 } 2121 2122 void CodeGenModule::emitLLVMUsed() { 2123 emitUsed(*this, "llvm.used", LLVMUsed); 2124 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2125 } 2126 2127 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2128 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2129 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2130 } 2131 2132 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2133 llvm::SmallString<32> Opt; 2134 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2135 if (Opt.empty()) 2136 return; 2137 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2138 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2139 } 2140 2141 void CodeGenModule::AddDependentLib(StringRef Lib) { 2142 auto &C = getLLVMContext(); 2143 if (getTarget().getTriple().isOSBinFormatELF()) { 2144 ELFDependentLibraries.push_back( 2145 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2146 return; 2147 } 2148 2149 llvm::SmallString<24> Opt; 2150 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2151 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2152 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2153 } 2154 2155 /// Add link options implied by the given module, including modules 2156 /// it depends on, using a postorder walk. 2157 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2158 SmallVectorImpl<llvm::MDNode *> &Metadata, 2159 llvm::SmallPtrSet<Module *, 16> &Visited) { 2160 // Import this module's parent. 2161 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2162 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2163 } 2164 2165 // Import this module's dependencies. 2166 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2167 if (Visited.insert(Mod->Imports[I - 1]).second) 2168 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2169 } 2170 2171 // Add linker options to link against the libraries/frameworks 2172 // described by this module. 2173 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2174 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2175 2176 // For modules that use export_as for linking, use that module 2177 // name instead. 2178 if (Mod->UseExportAsModuleLinkName) 2179 return; 2180 2181 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2182 // Link against a framework. Frameworks are currently Darwin only, so we 2183 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2184 if (Mod->LinkLibraries[I-1].IsFramework) { 2185 llvm::Metadata *Args[2] = { 2186 llvm::MDString::get(Context, "-framework"), 2187 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2188 2189 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2190 continue; 2191 } 2192 2193 // Link against a library. 2194 if (IsELF) { 2195 llvm::Metadata *Args[2] = { 2196 llvm::MDString::get(Context, "lib"), 2197 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2198 }; 2199 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2200 } else { 2201 llvm::SmallString<24> Opt; 2202 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2203 Mod->LinkLibraries[I - 1].Library, Opt); 2204 auto *OptString = llvm::MDString::get(Context, Opt); 2205 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2206 } 2207 } 2208 } 2209 2210 void CodeGenModule::EmitModuleLinkOptions() { 2211 // Collect the set of all of the modules we want to visit to emit link 2212 // options, which is essentially the imported modules and all of their 2213 // non-explicit child modules. 2214 llvm::SetVector<clang::Module *> LinkModules; 2215 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2216 SmallVector<clang::Module *, 16> Stack; 2217 2218 // Seed the stack with imported modules. 2219 for (Module *M : ImportedModules) { 2220 // Do not add any link flags when an implementation TU of a module imports 2221 // a header of that same module. 2222 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2223 !getLangOpts().isCompilingModule()) 2224 continue; 2225 if (Visited.insert(M).second) 2226 Stack.push_back(M); 2227 } 2228 2229 // Find all of the modules to import, making a little effort to prune 2230 // non-leaf modules. 2231 while (!Stack.empty()) { 2232 clang::Module *Mod = Stack.pop_back_val(); 2233 2234 bool AnyChildren = false; 2235 2236 // Visit the submodules of this module. 2237 for (const auto &SM : Mod->submodules()) { 2238 // Skip explicit children; they need to be explicitly imported to be 2239 // linked against. 2240 if (SM->IsExplicit) 2241 continue; 2242 2243 if (Visited.insert(SM).second) { 2244 Stack.push_back(SM); 2245 AnyChildren = true; 2246 } 2247 } 2248 2249 // We didn't find any children, so add this module to the list of 2250 // modules to link against. 2251 if (!AnyChildren) { 2252 LinkModules.insert(Mod); 2253 } 2254 } 2255 2256 // Add link options for all of the imported modules in reverse topological 2257 // order. We don't do anything to try to order import link flags with respect 2258 // to linker options inserted by things like #pragma comment(). 2259 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2260 Visited.clear(); 2261 for (Module *M : LinkModules) 2262 if (Visited.insert(M).second) 2263 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2264 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2265 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2266 2267 // Add the linker options metadata flag. 2268 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2269 for (auto *MD : LinkerOptionsMetadata) 2270 NMD->addOperand(MD); 2271 } 2272 2273 void CodeGenModule::EmitDeferred() { 2274 // Emit deferred declare target declarations. 2275 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2276 getOpenMPRuntime().emitDeferredTargetDecls(); 2277 2278 // Emit code for any potentially referenced deferred decls. Since a 2279 // previously unused static decl may become used during the generation of code 2280 // for a static function, iterate until no changes are made. 2281 2282 if (!DeferredVTables.empty()) { 2283 EmitDeferredVTables(); 2284 2285 // Emitting a vtable doesn't directly cause more vtables to 2286 // become deferred, although it can cause functions to be 2287 // emitted that then need those vtables. 2288 assert(DeferredVTables.empty()); 2289 } 2290 2291 // Emit CUDA/HIP static device variables referenced by host code only. 2292 if (getLangOpts().CUDA) 2293 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2294 DeferredDeclsToEmit.push_back(V); 2295 2296 // Stop if we're out of both deferred vtables and deferred declarations. 2297 if (DeferredDeclsToEmit.empty()) 2298 return; 2299 2300 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2301 // work, it will not interfere with this. 2302 std::vector<GlobalDecl> CurDeclsToEmit; 2303 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2304 2305 for (GlobalDecl &D : CurDeclsToEmit) { 2306 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2307 // to get GlobalValue with exactly the type we need, not something that 2308 // might had been created for another decl with the same mangled name but 2309 // different type. 2310 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2311 GetAddrOfGlobal(D, ForDefinition)); 2312 2313 // In case of different address spaces, we may still get a cast, even with 2314 // IsForDefinition equal to true. Query mangled names table to get 2315 // GlobalValue. 2316 if (!GV) 2317 GV = GetGlobalValue(getMangledName(D)); 2318 2319 // Make sure GetGlobalValue returned non-null. 2320 assert(GV); 2321 2322 // Check to see if we've already emitted this. This is necessary 2323 // for a couple of reasons: first, decls can end up in the 2324 // deferred-decls queue multiple times, and second, decls can end 2325 // up with definitions in unusual ways (e.g. by an extern inline 2326 // function acquiring a strong function redefinition). Just 2327 // ignore these cases. 2328 if (!GV->isDeclaration()) 2329 continue; 2330 2331 // If this is OpenMP, check if it is legal to emit this global normally. 2332 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2333 continue; 2334 2335 // Otherwise, emit the definition and move on to the next one. 2336 EmitGlobalDefinition(D, GV); 2337 2338 // If we found out that we need to emit more decls, do that recursively. 2339 // This has the advantage that the decls are emitted in a DFS and related 2340 // ones are close together, which is convenient for testing. 2341 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2342 EmitDeferred(); 2343 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2344 } 2345 } 2346 } 2347 2348 void CodeGenModule::EmitVTablesOpportunistically() { 2349 // Try to emit external vtables as available_externally if they have emitted 2350 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2351 // is not allowed to create new references to things that need to be emitted 2352 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2353 2354 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2355 && "Only emit opportunistic vtables with optimizations"); 2356 2357 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2358 assert(getVTables().isVTableExternal(RD) && 2359 "This queue should only contain external vtables"); 2360 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2361 VTables.GenerateClassData(RD); 2362 } 2363 OpportunisticVTables.clear(); 2364 } 2365 2366 void CodeGenModule::EmitGlobalAnnotations() { 2367 if (Annotations.empty()) 2368 return; 2369 2370 // Create a new global variable for the ConstantStruct in the Module. 2371 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2372 Annotations[0]->getType(), Annotations.size()), Annotations); 2373 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2374 llvm::GlobalValue::AppendingLinkage, 2375 Array, "llvm.global.annotations"); 2376 gv->setSection(AnnotationSection); 2377 } 2378 2379 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2380 llvm::Constant *&AStr = AnnotationStrings[Str]; 2381 if (AStr) 2382 return AStr; 2383 2384 // Not found yet, create a new global. 2385 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2386 auto *gv = 2387 new llvm::GlobalVariable(getModule(), s->getType(), true, 2388 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2389 gv->setSection(AnnotationSection); 2390 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2391 AStr = gv; 2392 return gv; 2393 } 2394 2395 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2396 SourceManager &SM = getContext().getSourceManager(); 2397 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2398 if (PLoc.isValid()) 2399 return EmitAnnotationString(PLoc.getFilename()); 2400 return EmitAnnotationString(SM.getBufferName(Loc)); 2401 } 2402 2403 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2404 SourceManager &SM = getContext().getSourceManager(); 2405 PresumedLoc PLoc = SM.getPresumedLoc(L); 2406 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2407 SM.getExpansionLineNumber(L); 2408 return llvm::ConstantInt::get(Int32Ty, LineNo); 2409 } 2410 2411 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2412 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2413 if (Exprs.empty()) 2414 return llvm::ConstantPointerNull::get(Int8PtrTy); 2415 2416 llvm::FoldingSetNodeID ID; 2417 for (Expr *E : Exprs) { 2418 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2419 } 2420 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2421 if (Lookup) 2422 return Lookup; 2423 2424 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2425 LLVMArgs.reserve(Exprs.size()); 2426 ConstantEmitter ConstEmiter(*this); 2427 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2428 const auto *CE = cast<clang::ConstantExpr>(E); 2429 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2430 CE->getType()); 2431 }); 2432 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2433 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2434 llvm::GlobalValue::PrivateLinkage, Struct, 2435 ".args"); 2436 GV->setSection(AnnotationSection); 2437 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2438 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2439 2440 Lookup = Bitcasted; 2441 return Bitcasted; 2442 } 2443 2444 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2445 const AnnotateAttr *AA, 2446 SourceLocation L) { 2447 // Get the globals for file name, annotation, and the line number. 2448 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2449 *UnitGV = EmitAnnotationUnit(L), 2450 *LineNoCst = EmitAnnotationLineNo(L), 2451 *Args = EmitAnnotationArgs(AA); 2452 2453 llvm::Constant *ASZeroGV = GV; 2454 if (GV->getAddressSpace() != 0) { 2455 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2456 GV, GV->getValueType()->getPointerTo(0)); 2457 } 2458 2459 // Create the ConstantStruct for the global annotation. 2460 llvm::Constant *Fields[] = { 2461 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2462 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2463 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2464 LineNoCst, 2465 Args, 2466 }; 2467 return llvm::ConstantStruct::getAnon(Fields); 2468 } 2469 2470 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2471 llvm::GlobalValue *GV) { 2472 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2473 // Get the struct elements for these annotations. 2474 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2475 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2476 } 2477 2478 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2479 llvm::Function *Fn, 2480 SourceLocation Loc) const { 2481 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2482 // Blacklist by function name. 2483 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2484 return true; 2485 // Blacklist by location. 2486 if (Loc.isValid()) 2487 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2488 // If location is unknown, this may be a compiler-generated function. Assume 2489 // it's located in the main file. 2490 auto &SM = Context.getSourceManager(); 2491 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2492 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2493 } 2494 return false; 2495 } 2496 2497 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2498 SourceLocation Loc, QualType Ty, 2499 StringRef Category) const { 2500 // For now globals can be blacklisted only in ASan and KASan. 2501 const SanitizerMask EnabledAsanMask = 2502 LangOpts.Sanitize.Mask & 2503 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2504 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2505 SanitizerKind::MemTag); 2506 if (!EnabledAsanMask) 2507 return false; 2508 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2509 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2510 return true; 2511 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2512 return true; 2513 // Check global type. 2514 if (!Ty.isNull()) { 2515 // Drill down the array types: if global variable of a fixed type is 2516 // blacklisted, we also don't instrument arrays of them. 2517 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2518 Ty = AT->getElementType(); 2519 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2520 // We allow to blacklist only record types (classes, structs etc.) 2521 if (Ty->isRecordType()) { 2522 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2523 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2524 return true; 2525 } 2526 } 2527 return false; 2528 } 2529 2530 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2531 StringRef Category) const { 2532 const auto &XRayFilter = getContext().getXRayFilter(); 2533 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2534 auto Attr = ImbueAttr::NONE; 2535 if (Loc.isValid()) 2536 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2537 if (Attr == ImbueAttr::NONE) 2538 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2539 switch (Attr) { 2540 case ImbueAttr::NONE: 2541 return false; 2542 case ImbueAttr::ALWAYS: 2543 Fn->addFnAttr("function-instrument", "xray-always"); 2544 break; 2545 case ImbueAttr::ALWAYS_ARG1: 2546 Fn->addFnAttr("function-instrument", "xray-always"); 2547 Fn->addFnAttr("xray-log-args", "1"); 2548 break; 2549 case ImbueAttr::NEVER: 2550 Fn->addFnAttr("function-instrument", "xray-never"); 2551 break; 2552 } 2553 return true; 2554 } 2555 2556 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2557 // Never defer when EmitAllDecls is specified. 2558 if (LangOpts.EmitAllDecls) 2559 return true; 2560 2561 if (CodeGenOpts.KeepStaticConsts) { 2562 const auto *VD = dyn_cast<VarDecl>(Global); 2563 if (VD && VD->getType().isConstQualified() && 2564 VD->getStorageDuration() == SD_Static) 2565 return true; 2566 } 2567 2568 return getContext().DeclMustBeEmitted(Global); 2569 } 2570 2571 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2572 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2573 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2574 // Implicit template instantiations may change linkage if they are later 2575 // explicitly instantiated, so they should not be emitted eagerly. 2576 return false; 2577 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2578 // not emit them eagerly unless we sure that the function must be emitted on 2579 // the host. 2580 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2581 !LangOpts.OpenMPIsDevice && 2582 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2583 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2584 return false; 2585 } 2586 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2587 if (Context.getInlineVariableDefinitionKind(VD) == 2588 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2589 // A definition of an inline constexpr static data member may change 2590 // linkage later if it's redeclared outside the class. 2591 return false; 2592 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2593 // codegen for global variables, because they may be marked as threadprivate. 2594 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2595 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2596 !isTypeConstant(Global->getType(), false) && 2597 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2598 return false; 2599 2600 return true; 2601 } 2602 2603 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2604 StringRef Name = getMangledName(GD); 2605 2606 // The UUID descriptor should be pointer aligned. 2607 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2608 2609 // Look for an existing global. 2610 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2611 return ConstantAddress(GV, Alignment); 2612 2613 ConstantEmitter Emitter(*this); 2614 llvm::Constant *Init; 2615 2616 APValue &V = GD->getAsAPValue(); 2617 if (!V.isAbsent()) { 2618 // If possible, emit the APValue version of the initializer. In particular, 2619 // this gets the type of the constant right. 2620 Init = Emitter.emitForInitializer( 2621 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2622 } else { 2623 // As a fallback, directly construct the constant. 2624 // FIXME: This may get padding wrong under esoteric struct layout rules. 2625 // MSVC appears to create a complete type 'struct __s_GUID' that it 2626 // presumably uses to represent these constants. 2627 MSGuidDecl::Parts Parts = GD->getParts(); 2628 llvm::Constant *Fields[4] = { 2629 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2630 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2631 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2632 llvm::ConstantDataArray::getRaw( 2633 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2634 Int8Ty)}; 2635 Init = llvm::ConstantStruct::getAnon(Fields); 2636 } 2637 2638 auto *GV = new llvm::GlobalVariable( 2639 getModule(), Init->getType(), 2640 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2641 if (supportsCOMDAT()) 2642 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2643 setDSOLocal(GV); 2644 2645 llvm::Constant *Addr = GV; 2646 if (!V.isAbsent()) { 2647 Emitter.finalize(GV); 2648 } else { 2649 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2650 Addr = llvm::ConstantExpr::getBitCast( 2651 GV, Ty->getPointerTo(GV->getAddressSpace())); 2652 } 2653 return ConstantAddress(Addr, Alignment); 2654 } 2655 2656 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2657 const TemplateParamObjectDecl *TPO) { 2658 StringRef Name = getMangledName(TPO); 2659 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2660 2661 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2662 return ConstantAddress(GV, Alignment); 2663 2664 ConstantEmitter Emitter(*this); 2665 llvm::Constant *Init = Emitter.emitForInitializer( 2666 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2667 2668 if (!Init) { 2669 ErrorUnsupported(TPO, "template parameter object"); 2670 return ConstantAddress::invalid(); 2671 } 2672 2673 auto *GV = new llvm::GlobalVariable( 2674 getModule(), Init->getType(), 2675 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2676 if (supportsCOMDAT()) 2677 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2678 Emitter.finalize(GV); 2679 2680 return ConstantAddress(GV, Alignment); 2681 } 2682 2683 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2684 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2685 assert(AA && "No alias?"); 2686 2687 CharUnits Alignment = getContext().getDeclAlign(VD); 2688 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2689 2690 // See if there is already something with the target's name in the module. 2691 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2692 if (Entry) { 2693 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2694 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2695 return ConstantAddress(Ptr, Alignment); 2696 } 2697 2698 llvm::Constant *Aliasee; 2699 if (isa<llvm::FunctionType>(DeclTy)) 2700 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2701 GlobalDecl(cast<FunctionDecl>(VD)), 2702 /*ForVTable=*/false); 2703 else 2704 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2705 llvm::PointerType::getUnqual(DeclTy), 2706 nullptr); 2707 2708 auto *F = cast<llvm::GlobalValue>(Aliasee); 2709 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2710 WeakRefReferences.insert(F); 2711 2712 return ConstantAddress(Aliasee, Alignment); 2713 } 2714 2715 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2716 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2717 2718 // Weak references don't produce any output by themselves. 2719 if (Global->hasAttr<WeakRefAttr>()) 2720 return; 2721 2722 // If this is an alias definition (which otherwise looks like a declaration) 2723 // emit it now. 2724 if (Global->hasAttr<AliasAttr>()) 2725 return EmitAliasDefinition(GD); 2726 2727 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2728 if (Global->hasAttr<IFuncAttr>()) 2729 return emitIFuncDefinition(GD); 2730 2731 // If this is a cpu_dispatch multiversion function, emit the resolver. 2732 if (Global->hasAttr<CPUDispatchAttr>()) 2733 return emitCPUDispatchDefinition(GD); 2734 2735 // If this is CUDA, be selective about which declarations we emit. 2736 if (LangOpts.CUDA) { 2737 if (LangOpts.CUDAIsDevice) { 2738 if (!Global->hasAttr<CUDADeviceAttr>() && 2739 !Global->hasAttr<CUDAGlobalAttr>() && 2740 !Global->hasAttr<CUDAConstantAttr>() && 2741 !Global->hasAttr<CUDASharedAttr>() && 2742 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2743 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2744 return; 2745 } else { 2746 // We need to emit host-side 'shadows' for all global 2747 // device-side variables because the CUDA runtime needs their 2748 // size and host-side address in order to provide access to 2749 // their device-side incarnations. 2750 2751 // So device-only functions are the only things we skip. 2752 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2753 Global->hasAttr<CUDADeviceAttr>()) 2754 return; 2755 2756 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2757 "Expected Variable or Function"); 2758 } 2759 } 2760 2761 if (LangOpts.OpenMP) { 2762 // If this is OpenMP, check if it is legal to emit this global normally. 2763 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2764 return; 2765 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2766 if (MustBeEmitted(Global)) 2767 EmitOMPDeclareReduction(DRD); 2768 return; 2769 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2770 if (MustBeEmitted(Global)) 2771 EmitOMPDeclareMapper(DMD); 2772 return; 2773 } 2774 } 2775 2776 // Ignore declarations, they will be emitted on their first use. 2777 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2778 // Forward declarations are emitted lazily on first use. 2779 if (!FD->doesThisDeclarationHaveABody()) { 2780 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2781 return; 2782 2783 StringRef MangledName = getMangledName(GD); 2784 2785 // Compute the function info and LLVM type. 2786 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2787 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2788 2789 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2790 /*DontDefer=*/false); 2791 return; 2792 } 2793 } else { 2794 const auto *VD = cast<VarDecl>(Global); 2795 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2796 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2797 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2798 if (LangOpts.OpenMP) { 2799 // Emit declaration of the must-be-emitted declare target variable. 2800 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2801 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2802 bool UnifiedMemoryEnabled = 2803 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2804 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2805 !UnifiedMemoryEnabled) { 2806 (void)GetAddrOfGlobalVar(VD); 2807 } else { 2808 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2809 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2810 UnifiedMemoryEnabled)) && 2811 "Link clause or to clause with unified memory expected."); 2812 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2813 } 2814 2815 return; 2816 } 2817 } 2818 // If this declaration may have caused an inline variable definition to 2819 // change linkage, make sure that it's emitted. 2820 if (Context.getInlineVariableDefinitionKind(VD) == 2821 ASTContext::InlineVariableDefinitionKind::Strong) 2822 GetAddrOfGlobalVar(VD); 2823 return; 2824 } 2825 } 2826 2827 // Defer code generation to first use when possible, e.g. if this is an inline 2828 // function. If the global must always be emitted, do it eagerly if possible 2829 // to benefit from cache locality. 2830 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2831 // Emit the definition if it can't be deferred. 2832 EmitGlobalDefinition(GD); 2833 return; 2834 } 2835 2836 // If we're deferring emission of a C++ variable with an 2837 // initializer, remember the order in which it appeared in the file. 2838 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2839 cast<VarDecl>(Global)->hasInit()) { 2840 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2841 CXXGlobalInits.push_back(nullptr); 2842 } 2843 2844 StringRef MangledName = getMangledName(GD); 2845 if (GetGlobalValue(MangledName) != nullptr) { 2846 // The value has already been used and should therefore be emitted. 2847 addDeferredDeclToEmit(GD); 2848 } else if (MustBeEmitted(Global)) { 2849 // The value must be emitted, but cannot be emitted eagerly. 2850 assert(!MayBeEmittedEagerly(Global)); 2851 addDeferredDeclToEmit(GD); 2852 } else { 2853 // Otherwise, remember that we saw a deferred decl with this name. The 2854 // first use of the mangled name will cause it to move into 2855 // DeferredDeclsToEmit. 2856 DeferredDecls[MangledName] = GD; 2857 } 2858 } 2859 2860 // Check if T is a class type with a destructor that's not dllimport. 2861 static bool HasNonDllImportDtor(QualType T) { 2862 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2863 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2864 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2865 return true; 2866 2867 return false; 2868 } 2869 2870 namespace { 2871 struct FunctionIsDirectlyRecursive 2872 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2873 const StringRef Name; 2874 const Builtin::Context &BI; 2875 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2876 : Name(N), BI(C) {} 2877 2878 bool VisitCallExpr(const CallExpr *E) { 2879 const FunctionDecl *FD = E->getDirectCallee(); 2880 if (!FD) 2881 return false; 2882 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2883 if (Attr && Name == Attr->getLabel()) 2884 return true; 2885 unsigned BuiltinID = FD->getBuiltinID(); 2886 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2887 return false; 2888 StringRef BuiltinName = BI.getName(BuiltinID); 2889 if (BuiltinName.startswith("__builtin_") && 2890 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2891 return true; 2892 } 2893 return false; 2894 } 2895 2896 bool VisitStmt(const Stmt *S) { 2897 for (const Stmt *Child : S->children()) 2898 if (Child && this->Visit(Child)) 2899 return true; 2900 return false; 2901 } 2902 }; 2903 2904 // Make sure we're not referencing non-imported vars or functions. 2905 struct DLLImportFunctionVisitor 2906 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2907 bool SafeToInline = true; 2908 2909 bool shouldVisitImplicitCode() const { return true; } 2910 2911 bool VisitVarDecl(VarDecl *VD) { 2912 if (VD->getTLSKind()) { 2913 // A thread-local variable cannot be imported. 2914 SafeToInline = false; 2915 return SafeToInline; 2916 } 2917 2918 // A variable definition might imply a destructor call. 2919 if (VD->isThisDeclarationADefinition()) 2920 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2921 2922 return SafeToInline; 2923 } 2924 2925 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2926 if (const auto *D = E->getTemporary()->getDestructor()) 2927 SafeToInline = D->hasAttr<DLLImportAttr>(); 2928 return SafeToInline; 2929 } 2930 2931 bool VisitDeclRefExpr(DeclRefExpr *E) { 2932 ValueDecl *VD = E->getDecl(); 2933 if (isa<FunctionDecl>(VD)) 2934 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2935 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2936 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2937 return SafeToInline; 2938 } 2939 2940 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2941 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2942 return SafeToInline; 2943 } 2944 2945 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2946 CXXMethodDecl *M = E->getMethodDecl(); 2947 if (!M) { 2948 // Call through a pointer to member function. This is safe to inline. 2949 SafeToInline = true; 2950 } else { 2951 SafeToInline = M->hasAttr<DLLImportAttr>(); 2952 } 2953 return SafeToInline; 2954 } 2955 2956 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2957 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2958 return SafeToInline; 2959 } 2960 2961 bool VisitCXXNewExpr(CXXNewExpr *E) { 2962 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2963 return SafeToInline; 2964 } 2965 }; 2966 } 2967 2968 // isTriviallyRecursive - Check if this function calls another 2969 // decl that, because of the asm attribute or the other decl being a builtin, 2970 // ends up pointing to itself. 2971 bool 2972 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2973 StringRef Name; 2974 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2975 // asm labels are a special kind of mangling we have to support. 2976 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2977 if (!Attr) 2978 return false; 2979 Name = Attr->getLabel(); 2980 } else { 2981 Name = FD->getName(); 2982 } 2983 2984 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2985 const Stmt *Body = FD->getBody(); 2986 return Body ? Walker.Visit(Body) : false; 2987 } 2988 2989 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2990 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2991 return true; 2992 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2993 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2994 return false; 2995 2996 if (F->hasAttr<DLLImportAttr>()) { 2997 // Check whether it would be safe to inline this dllimport function. 2998 DLLImportFunctionVisitor Visitor; 2999 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3000 if (!Visitor.SafeToInline) 3001 return false; 3002 3003 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3004 // Implicit destructor invocations aren't captured in the AST, so the 3005 // check above can't see them. Check for them manually here. 3006 for (const Decl *Member : Dtor->getParent()->decls()) 3007 if (isa<FieldDecl>(Member)) 3008 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3009 return false; 3010 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3011 if (HasNonDllImportDtor(B.getType())) 3012 return false; 3013 } 3014 } 3015 3016 // PR9614. Avoid cases where the source code is lying to us. An available 3017 // externally function should have an equivalent function somewhere else, 3018 // but a function that calls itself through asm label/`__builtin_` trickery is 3019 // clearly not equivalent to the real implementation. 3020 // This happens in glibc's btowc and in some configure checks. 3021 return !isTriviallyRecursive(F); 3022 } 3023 3024 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3025 return CodeGenOpts.OptimizationLevel > 0; 3026 } 3027 3028 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3029 llvm::GlobalValue *GV) { 3030 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3031 3032 if (FD->isCPUSpecificMultiVersion()) { 3033 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3034 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3035 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3036 // Requires multiple emits. 3037 } else 3038 EmitGlobalFunctionDefinition(GD, GV); 3039 } 3040 3041 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3042 const auto *D = cast<ValueDecl>(GD.getDecl()); 3043 3044 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3045 Context.getSourceManager(), 3046 "Generating code for declaration"); 3047 3048 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3049 // At -O0, don't generate IR for functions with available_externally 3050 // linkage. 3051 if (!shouldEmitFunction(GD)) 3052 return; 3053 3054 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3055 std::string Name; 3056 llvm::raw_string_ostream OS(Name); 3057 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3058 /*Qualified=*/true); 3059 return Name; 3060 }); 3061 3062 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3063 // Make sure to emit the definition(s) before we emit the thunks. 3064 // This is necessary for the generation of certain thunks. 3065 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3066 ABI->emitCXXStructor(GD); 3067 else if (FD->isMultiVersion()) 3068 EmitMultiVersionFunctionDefinition(GD, GV); 3069 else 3070 EmitGlobalFunctionDefinition(GD, GV); 3071 3072 if (Method->isVirtual()) 3073 getVTables().EmitThunks(GD); 3074 3075 return; 3076 } 3077 3078 if (FD->isMultiVersion()) 3079 return EmitMultiVersionFunctionDefinition(GD, GV); 3080 return EmitGlobalFunctionDefinition(GD, GV); 3081 } 3082 3083 if (const auto *VD = dyn_cast<VarDecl>(D)) 3084 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3085 3086 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3087 } 3088 3089 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3090 llvm::Function *NewFn); 3091 3092 static unsigned 3093 TargetMVPriority(const TargetInfo &TI, 3094 const CodeGenFunction::MultiVersionResolverOption &RO) { 3095 unsigned Priority = 0; 3096 for (StringRef Feat : RO.Conditions.Features) 3097 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3098 3099 if (!RO.Conditions.Architecture.empty()) 3100 Priority = std::max( 3101 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3102 return Priority; 3103 } 3104 3105 void CodeGenModule::emitMultiVersionFunctions() { 3106 for (GlobalDecl GD : MultiVersionFuncs) { 3107 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3108 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3109 getContext().forEachMultiversionedFunctionVersion( 3110 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3111 GlobalDecl CurGD{ 3112 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3113 StringRef MangledName = getMangledName(CurGD); 3114 llvm::Constant *Func = GetGlobalValue(MangledName); 3115 if (!Func) { 3116 if (CurFD->isDefined()) { 3117 EmitGlobalFunctionDefinition(CurGD, nullptr); 3118 Func = GetGlobalValue(MangledName); 3119 } else { 3120 const CGFunctionInfo &FI = 3121 getTypes().arrangeGlobalDeclaration(GD); 3122 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3123 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3124 /*DontDefer=*/false, ForDefinition); 3125 } 3126 assert(Func && "This should have just been created"); 3127 } 3128 3129 const auto *TA = CurFD->getAttr<TargetAttr>(); 3130 llvm::SmallVector<StringRef, 8> Feats; 3131 TA->getAddedFeatures(Feats); 3132 3133 Options.emplace_back(cast<llvm::Function>(Func), 3134 TA->getArchitecture(), Feats); 3135 }); 3136 3137 llvm::Function *ResolverFunc; 3138 const TargetInfo &TI = getTarget(); 3139 3140 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3141 ResolverFunc = cast<llvm::Function>( 3142 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3143 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3144 } else { 3145 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3146 } 3147 3148 if (supportsCOMDAT()) 3149 ResolverFunc->setComdat( 3150 getModule().getOrInsertComdat(ResolverFunc->getName())); 3151 3152 llvm::stable_sort( 3153 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3154 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3155 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3156 }); 3157 CodeGenFunction CGF(*this); 3158 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3159 } 3160 } 3161 3162 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3163 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3164 assert(FD && "Not a FunctionDecl?"); 3165 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3166 assert(DD && "Not a cpu_dispatch Function?"); 3167 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3168 3169 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3170 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3171 DeclTy = getTypes().GetFunctionType(FInfo); 3172 } 3173 3174 StringRef ResolverName = getMangledName(GD); 3175 3176 llvm::Type *ResolverType; 3177 GlobalDecl ResolverGD; 3178 if (getTarget().supportsIFunc()) 3179 ResolverType = llvm::FunctionType::get( 3180 llvm::PointerType::get(DeclTy, 3181 Context.getTargetAddressSpace(FD->getType())), 3182 false); 3183 else { 3184 ResolverType = DeclTy; 3185 ResolverGD = GD; 3186 } 3187 3188 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3189 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3190 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3191 if (supportsCOMDAT()) 3192 ResolverFunc->setComdat( 3193 getModule().getOrInsertComdat(ResolverFunc->getName())); 3194 3195 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3196 const TargetInfo &Target = getTarget(); 3197 unsigned Index = 0; 3198 for (const IdentifierInfo *II : DD->cpus()) { 3199 // Get the name of the target function so we can look it up/create it. 3200 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3201 getCPUSpecificMangling(*this, II->getName()); 3202 3203 llvm::Constant *Func = GetGlobalValue(MangledName); 3204 3205 if (!Func) { 3206 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3207 if (ExistingDecl.getDecl() && 3208 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3209 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3210 Func = GetGlobalValue(MangledName); 3211 } else { 3212 if (!ExistingDecl.getDecl()) 3213 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3214 3215 Func = GetOrCreateLLVMFunction( 3216 MangledName, DeclTy, ExistingDecl, 3217 /*ForVTable=*/false, /*DontDefer=*/true, 3218 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3219 } 3220 } 3221 3222 llvm::SmallVector<StringRef, 32> Features; 3223 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3224 llvm::transform(Features, Features.begin(), 3225 [](StringRef Str) { return Str.substr(1); }); 3226 Features.erase(std::remove_if( 3227 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3228 return !Target.validateCpuSupports(Feat); 3229 }), Features.end()); 3230 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3231 ++Index; 3232 } 3233 3234 llvm::sort( 3235 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3236 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3237 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3238 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3239 }); 3240 3241 // If the list contains multiple 'default' versions, such as when it contains 3242 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3243 // always run on at least a 'pentium'). We do this by deleting the 'least 3244 // advanced' (read, lowest mangling letter). 3245 while (Options.size() > 1 && 3246 CodeGenFunction::GetX86CpuSupportsMask( 3247 (Options.end() - 2)->Conditions.Features) == 0) { 3248 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3249 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3250 if (LHSName.compare(RHSName) < 0) 3251 Options.erase(Options.end() - 2); 3252 else 3253 Options.erase(Options.end() - 1); 3254 } 3255 3256 CodeGenFunction CGF(*this); 3257 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3258 3259 if (getTarget().supportsIFunc()) { 3260 std::string AliasName = getMangledNameImpl( 3261 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3262 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3263 if (!AliasFunc) { 3264 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3265 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3266 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3267 auto *GA = llvm::GlobalAlias::create( 3268 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3269 GA->setLinkage(llvm::Function::WeakODRLinkage); 3270 SetCommonAttributes(GD, GA); 3271 } 3272 } 3273 } 3274 3275 /// If a dispatcher for the specified mangled name is not in the module, create 3276 /// and return an llvm Function with the specified type. 3277 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3278 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3279 std::string MangledName = 3280 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3281 3282 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3283 // a separate resolver). 3284 std::string ResolverName = MangledName; 3285 if (getTarget().supportsIFunc()) 3286 ResolverName += ".ifunc"; 3287 else if (FD->isTargetMultiVersion()) 3288 ResolverName += ".resolver"; 3289 3290 // If this already exists, just return that one. 3291 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3292 return ResolverGV; 3293 3294 // Since this is the first time we've created this IFunc, make sure 3295 // that we put this multiversioned function into the list to be 3296 // replaced later if necessary (target multiversioning only). 3297 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3298 MultiVersionFuncs.push_back(GD); 3299 3300 if (getTarget().supportsIFunc()) { 3301 llvm::Type *ResolverType = llvm::FunctionType::get( 3302 llvm::PointerType::get( 3303 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3304 false); 3305 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3306 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3307 /*ForVTable=*/false); 3308 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3309 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3310 GIF->setName(ResolverName); 3311 SetCommonAttributes(FD, GIF); 3312 3313 return GIF; 3314 } 3315 3316 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3317 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3318 assert(isa<llvm::GlobalValue>(Resolver) && 3319 "Resolver should be created for the first time"); 3320 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3321 return Resolver; 3322 } 3323 3324 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3325 /// module, create and return an llvm Function with the specified type. If there 3326 /// is something in the module with the specified name, return it potentially 3327 /// bitcasted to the right type. 3328 /// 3329 /// If D is non-null, it specifies a decl that correspond to this. This is used 3330 /// to set the attributes on the function when it is first created. 3331 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3332 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3333 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3334 ForDefinition_t IsForDefinition) { 3335 const Decl *D = GD.getDecl(); 3336 3337 // Any attempts to use a MultiVersion function should result in retrieving 3338 // the iFunc instead. Name Mangling will handle the rest of the changes. 3339 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3340 // For the device mark the function as one that should be emitted. 3341 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3342 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3343 !DontDefer && !IsForDefinition) { 3344 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3345 GlobalDecl GDDef; 3346 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3347 GDDef = GlobalDecl(CD, GD.getCtorType()); 3348 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3349 GDDef = GlobalDecl(DD, GD.getDtorType()); 3350 else 3351 GDDef = GlobalDecl(FDDef); 3352 EmitGlobal(GDDef); 3353 } 3354 } 3355 3356 if (FD->isMultiVersion()) { 3357 if (FD->hasAttr<TargetAttr>()) 3358 UpdateMultiVersionNames(GD, FD); 3359 if (!IsForDefinition) 3360 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3361 } 3362 } 3363 3364 // Lookup the entry, lazily creating it if necessary. 3365 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3366 if (Entry) { 3367 if (WeakRefReferences.erase(Entry)) { 3368 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3369 if (FD && !FD->hasAttr<WeakAttr>()) 3370 Entry->setLinkage(llvm::Function::ExternalLinkage); 3371 } 3372 3373 // Handle dropped DLL attributes. 3374 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3375 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3376 setDSOLocal(Entry); 3377 } 3378 3379 // If there are two attempts to define the same mangled name, issue an 3380 // error. 3381 if (IsForDefinition && !Entry->isDeclaration()) { 3382 GlobalDecl OtherGD; 3383 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3384 // to make sure that we issue an error only once. 3385 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3386 (GD.getCanonicalDecl().getDecl() != 3387 OtherGD.getCanonicalDecl().getDecl()) && 3388 DiagnosedConflictingDefinitions.insert(GD).second) { 3389 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3390 << MangledName; 3391 getDiags().Report(OtherGD.getDecl()->getLocation(), 3392 diag::note_previous_definition); 3393 } 3394 } 3395 3396 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3397 (Entry->getValueType() == Ty)) { 3398 return Entry; 3399 } 3400 3401 // Make sure the result is of the correct type. 3402 // (If function is requested for a definition, we always need to create a new 3403 // function, not just return a bitcast.) 3404 if (!IsForDefinition) 3405 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3406 } 3407 3408 // This function doesn't have a complete type (for example, the return 3409 // type is an incomplete struct). Use a fake type instead, and make 3410 // sure not to try to set attributes. 3411 bool IsIncompleteFunction = false; 3412 3413 llvm::FunctionType *FTy; 3414 if (isa<llvm::FunctionType>(Ty)) { 3415 FTy = cast<llvm::FunctionType>(Ty); 3416 } else { 3417 FTy = llvm::FunctionType::get(VoidTy, false); 3418 IsIncompleteFunction = true; 3419 } 3420 3421 llvm::Function *F = 3422 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3423 Entry ? StringRef() : MangledName, &getModule()); 3424 3425 // If we already created a function with the same mangled name (but different 3426 // type) before, take its name and add it to the list of functions to be 3427 // replaced with F at the end of CodeGen. 3428 // 3429 // This happens if there is a prototype for a function (e.g. "int f()") and 3430 // then a definition of a different type (e.g. "int f(int x)"). 3431 if (Entry) { 3432 F->takeName(Entry); 3433 3434 // This might be an implementation of a function without a prototype, in 3435 // which case, try to do special replacement of calls which match the new 3436 // prototype. The really key thing here is that we also potentially drop 3437 // arguments from the call site so as to make a direct call, which makes the 3438 // inliner happier and suppresses a number of optimizer warnings (!) about 3439 // dropping arguments. 3440 if (!Entry->use_empty()) { 3441 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3442 Entry->removeDeadConstantUsers(); 3443 } 3444 3445 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3446 F, Entry->getValueType()->getPointerTo()); 3447 addGlobalValReplacement(Entry, BC); 3448 } 3449 3450 assert(F->getName() == MangledName && "name was uniqued!"); 3451 if (D) 3452 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3453 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3454 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3455 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3456 } 3457 3458 if (!DontDefer) { 3459 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3460 // each other bottoming out with the base dtor. Therefore we emit non-base 3461 // dtors on usage, even if there is no dtor definition in the TU. 3462 if (D && isa<CXXDestructorDecl>(D) && 3463 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3464 GD.getDtorType())) 3465 addDeferredDeclToEmit(GD); 3466 3467 // This is the first use or definition of a mangled name. If there is a 3468 // deferred decl with this name, remember that we need to emit it at the end 3469 // of the file. 3470 auto DDI = DeferredDecls.find(MangledName); 3471 if (DDI != DeferredDecls.end()) { 3472 // Move the potentially referenced deferred decl to the 3473 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3474 // don't need it anymore). 3475 addDeferredDeclToEmit(DDI->second); 3476 DeferredDecls.erase(DDI); 3477 3478 // Otherwise, there are cases we have to worry about where we're 3479 // using a declaration for which we must emit a definition but where 3480 // we might not find a top-level definition: 3481 // - member functions defined inline in their classes 3482 // - friend functions defined inline in some class 3483 // - special member functions with implicit definitions 3484 // If we ever change our AST traversal to walk into class methods, 3485 // this will be unnecessary. 3486 // 3487 // We also don't emit a definition for a function if it's going to be an 3488 // entry in a vtable, unless it's already marked as used. 3489 } else if (getLangOpts().CPlusPlus && D) { 3490 // Look for a declaration that's lexically in a record. 3491 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3492 FD = FD->getPreviousDecl()) { 3493 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3494 if (FD->doesThisDeclarationHaveABody()) { 3495 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3496 break; 3497 } 3498 } 3499 } 3500 } 3501 } 3502 3503 // Make sure the result is of the requested type. 3504 if (!IsIncompleteFunction) { 3505 assert(F->getFunctionType() == Ty); 3506 return F; 3507 } 3508 3509 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3510 return llvm::ConstantExpr::getBitCast(F, PTy); 3511 } 3512 3513 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3514 /// non-null, then this function will use the specified type if it has to 3515 /// create it (this occurs when we see a definition of the function). 3516 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3517 llvm::Type *Ty, 3518 bool ForVTable, 3519 bool DontDefer, 3520 ForDefinition_t IsForDefinition) { 3521 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3522 "consteval function should never be emitted"); 3523 // If there was no specific requested type, just convert it now. 3524 if (!Ty) { 3525 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3526 Ty = getTypes().ConvertType(FD->getType()); 3527 } 3528 3529 // Devirtualized destructor calls may come through here instead of via 3530 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3531 // of the complete destructor when necessary. 3532 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3533 if (getTarget().getCXXABI().isMicrosoft() && 3534 GD.getDtorType() == Dtor_Complete && 3535 DD->getParent()->getNumVBases() == 0) 3536 GD = GlobalDecl(DD, Dtor_Base); 3537 } 3538 3539 StringRef MangledName = getMangledName(GD); 3540 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3541 /*IsThunk=*/false, llvm::AttributeList(), 3542 IsForDefinition); 3543 } 3544 3545 static const FunctionDecl * 3546 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3547 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3548 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3549 3550 IdentifierInfo &CII = C.Idents.get(Name); 3551 for (const auto &Result : DC->lookup(&CII)) 3552 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3553 return FD; 3554 3555 if (!C.getLangOpts().CPlusPlus) 3556 return nullptr; 3557 3558 // Demangle the premangled name from getTerminateFn() 3559 IdentifierInfo &CXXII = 3560 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3561 ? C.Idents.get("terminate") 3562 : C.Idents.get(Name); 3563 3564 for (const auto &N : {"__cxxabiv1", "std"}) { 3565 IdentifierInfo &NS = C.Idents.get(N); 3566 for (const auto &Result : DC->lookup(&NS)) { 3567 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3568 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3569 for (const auto &Result : LSD->lookup(&NS)) 3570 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3571 break; 3572 3573 if (ND) 3574 for (const auto &Result : ND->lookup(&CXXII)) 3575 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3576 return FD; 3577 } 3578 } 3579 3580 return nullptr; 3581 } 3582 3583 /// CreateRuntimeFunction - Create a new runtime function with the specified 3584 /// type and name. 3585 llvm::FunctionCallee 3586 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3587 llvm::AttributeList ExtraAttrs, bool Local, 3588 bool AssumeConvergent) { 3589 if (AssumeConvergent) { 3590 ExtraAttrs = 3591 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3592 llvm::Attribute::Convergent); 3593 } 3594 3595 llvm::Constant *C = 3596 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3597 /*DontDefer=*/false, /*IsThunk=*/false, 3598 ExtraAttrs); 3599 3600 if (auto *F = dyn_cast<llvm::Function>(C)) { 3601 if (F->empty()) { 3602 F->setCallingConv(getRuntimeCC()); 3603 3604 // In Windows Itanium environments, try to mark runtime functions 3605 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3606 // will link their standard library statically or dynamically. Marking 3607 // functions imported when they are not imported can cause linker errors 3608 // and warnings. 3609 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3610 !getCodeGenOpts().LTOVisibilityPublicStd) { 3611 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3612 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3613 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3614 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3615 } 3616 } 3617 setDSOLocal(F); 3618 } 3619 } 3620 3621 return {FTy, C}; 3622 } 3623 3624 /// isTypeConstant - Determine whether an object of this type can be emitted 3625 /// as a constant. 3626 /// 3627 /// If ExcludeCtor is true, the duration when the object's constructor runs 3628 /// will not be considered. The caller will need to verify that the object is 3629 /// not written to during its construction. 3630 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3631 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3632 return false; 3633 3634 if (Context.getLangOpts().CPlusPlus) { 3635 if (const CXXRecordDecl *Record 3636 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3637 return ExcludeCtor && !Record->hasMutableFields() && 3638 Record->hasTrivialDestructor(); 3639 } 3640 3641 return true; 3642 } 3643 3644 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3645 /// create and return an llvm GlobalVariable with the specified type. If there 3646 /// is something in the module with the specified name, return it potentially 3647 /// bitcasted to the right type. 3648 /// 3649 /// If D is non-null, it specifies a decl that correspond to this. This is used 3650 /// to set the attributes on the global when it is first created. 3651 /// 3652 /// If IsForDefinition is true, it is guaranteed that an actual global with 3653 /// type Ty will be returned, not conversion of a variable with the same 3654 /// mangled name but some other type. 3655 llvm::Constant * 3656 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3657 llvm::PointerType *Ty, 3658 const VarDecl *D, 3659 ForDefinition_t IsForDefinition) { 3660 // Lookup the entry, lazily creating it if necessary. 3661 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3662 if (Entry) { 3663 if (WeakRefReferences.erase(Entry)) { 3664 if (D && !D->hasAttr<WeakAttr>()) 3665 Entry->setLinkage(llvm::Function::ExternalLinkage); 3666 } 3667 3668 // Handle dropped DLL attributes. 3669 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3670 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3671 3672 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3673 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3674 3675 if (Entry->getType() == Ty) 3676 return Entry; 3677 3678 // If there are two attempts to define the same mangled name, issue an 3679 // error. 3680 if (IsForDefinition && !Entry->isDeclaration()) { 3681 GlobalDecl OtherGD; 3682 const VarDecl *OtherD; 3683 3684 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3685 // to make sure that we issue an error only once. 3686 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3687 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3688 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3689 OtherD->hasInit() && 3690 DiagnosedConflictingDefinitions.insert(D).second) { 3691 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3692 << MangledName; 3693 getDiags().Report(OtherGD.getDecl()->getLocation(), 3694 diag::note_previous_definition); 3695 } 3696 } 3697 3698 // Make sure the result is of the correct type. 3699 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3700 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3701 3702 // (If global is requested for a definition, we always need to create a new 3703 // global, not just return a bitcast.) 3704 if (!IsForDefinition) 3705 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3706 } 3707 3708 auto AddrSpace = GetGlobalVarAddressSpace(D); 3709 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3710 3711 auto *GV = new llvm::GlobalVariable( 3712 getModule(), Ty->getElementType(), false, 3713 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3714 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3715 3716 // If we already created a global with the same mangled name (but different 3717 // type) before, take its name and remove it from its parent. 3718 if (Entry) { 3719 GV->takeName(Entry); 3720 3721 if (!Entry->use_empty()) { 3722 llvm::Constant *NewPtrForOldDecl = 3723 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3724 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3725 } 3726 3727 Entry->eraseFromParent(); 3728 } 3729 3730 // This is the first use or definition of a mangled name. If there is a 3731 // deferred decl with this name, remember that we need to emit it at the end 3732 // of the file. 3733 auto DDI = DeferredDecls.find(MangledName); 3734 if (DDI != DeferredDecls.end()) { 3735 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3736 // list, and remove it from DeferredDecls (since we don't need it anymore). 3737 addDeferredDeclToEmit(DDI->second); 3738 DeferredDecls.erase(DDI); 3739 } 3740 3741 // Handle things which are present even on external declarations. 3742 if (D) { 3743 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3744 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3745 3746 // FIXME: This code is overly simple and should be merged with other global 3747 // handling. 3748 GV->setConstant(isTypeConstant(D->getType(), false)); 3749 3750 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3751 3752 setLinkageForGV(GV, D); 3753 3754 if (D->getTLSKind()) { 3755 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3756 CXXThreadLocals.push_back(D); 3757 setTLSMode(GV, *D); 3758 } 3759 3760 setGVProperties(GV, D); 3761 3762 // If required by the ABI, treat declarations of static data members with 3763 // inline initializers as definitions. 3764 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3765 EmitGlobalVarDefinition(D); 3766 } 3767 3768 // Emit section information for extern variables. 3769 if (D->hasExternalStorage()) { 3770 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3771 GV->setSection(SA->getName()); 3772 } 3773 3774 // Handle XCore specific ABI requirements. 3775 if (getTriple().getArch() == llvm::Triple::xcore && 3776 D->getLanguageLinkage() == CLanguageLinkage && 3777 D->getType().isConstant(Context) && 3778 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3779 GV->setSection(".cp.rodata"); 3780 3781 // Check if we a have a const declaration with an initializer, we may be 3782 // able to emit it as available_externally to expose it's value to the 3783 // optimizer. 3784 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3785 D->getType().isConstQualified() && !GV->hasInitializer() && 3786 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3787 const auto *Record = 3788 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3789 bool HasMutableFields = Record && Record->hasMutableFields(); 3790 if (!HasMutableFields) { 3791 const VarDecl *InitDecl; 3792 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3793 if (InitExpr) { 3794 ConstantEmitter emitter(*this); 3795 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3796 if (Init) { 3797 auto *InitType = Init->getType(); 3798 if (GV->getValueType() != InitType) { 3799 // The type of the initializer does not match the definition. 3800 // This happens when an initializer has a different type from 3801 // the type of the global (because of padding at the end of a 3802 // structure for instance). 3803 GV->setName(StringRef()); 3804 // Make a new global with the correct type, this is now guaranteed 3805 // to work. 3806 auto *NewGV = cast<llvm::GlobalVariable>( 3807 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3808 ->stripPointerCasts()); 3809 3810 // Erase the old global, since it is no longer used. 3811 GV->eraseFromParent(); 3812 GV = NewGV; 3813 } else { 3814 GV->setInitializer(Init); 3815 GV->setConstant(true); 3816 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3817 } 3818 emitter.finalize(GV); 3819 } 3820 } 3821 } 3822 } 3823 } 3824 3825 if (GV->isDeclaration()) 3826 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3827 3828 LangAS ExpectedAS = 3829 D ? D->getType().getAddressSpace() 3830 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3831 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3832 Ty->getPointerAddressSpace()); 3833 if (AddrSpace != ExpectedAS) 3834 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3835 ExpectedAS, Ty); 3836 3837 return GV; 3838 } 3839 3840 llvm::Constant * 3841 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3842 const Decl *D = GD.getDecl(); 3843 3844 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3845 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3846 /*DontDefer=*/false, IsForDefinition); 3847 3848 if (isa<CXXMethodDecl>(D)) { 3849 auto FInfo = 3850 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3851 auto Ty = getTypes().GetFunctionType(*FInfo); 3852 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3853 IsForDefinition); 3854 } 3855 3856 if (isa<FunctionDecl>(D)) { 3857 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3858 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3859 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3860 IsForDefinition); 3861 } 3862 3863 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3864 } 3865 3866 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3867 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3868 unsigned Alignment) { 3869 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3870 llvm::GlobalVariable *OldGV = nullptr; 3871 3872 if (GV) { 3873 // Check if the variable has the right type. 3874 if (GV->getValueType() == Ty) 3875 return GV; 3876 3877 // Because C++ name mangling, the only way we can end up with an already 3878 // existing global with the same name is if it has been declared extern "C". 3879 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3880 OldGV = GV; 3881 } 3882 3883 // Create a new variable. 3884 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3885 Linkage, nullptr, Name); 3886 3887 if (OldGV) { 3888 // Replace occurrences of the old variable if needed. 3889 GV->takeName(OldGV); 3890 3891 if (!OldGV->use_empty()) { 3892 llvm::Constant *NewPtrForOldDecl = 3893 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3894 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3895 } 3896 3897 OldGV->eraseFromParent(); 3898 } 3899 3900 if (supportsCOMDAT() && GV->isWeakForLinker() && 3901 !GV->hasAvailableExternallyLinkage()) 3902 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3903 3904 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3905 3906 return GV; 3907 } 3908 3909 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3910 /// given global variable. If Ty is non-null and if the global doesn't exist, 3911 /// then it will be created with the specified type instead of whatever the 3912 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3913 /// that an actual global with type Ty will be returned, not conversion of a 3914 /// variable with the same mangled name but some other type. 3915 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3916 llvm::Type *Ty, 3917 ForDefinition_t IsForDefinition) { 3918 assert(D->hasGlobalStorage() && "Not a global variable"); 3919 QualType ASTTy = D->getType(); 3920 if (!Ty) 3921 Ty = getTypes().ConvertTypeForMem(ASTTy); 3922 3923 llvm::PointerType *PTy = 3924 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3925 3926 StringRef MangledName = getMangledName(D); 3927 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3928 } 3929 3930 /// CreateRuntimeVariable - Create a new runtime global variable with the 3931 /// specified type and name. 3932 llvm::Constant * 3933 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3934 StringRef Name) { 3935 auto PtrTy = 3936 getContext().getLangOpts().OpenCL 3937 ? llvm::PointerType::get( 3938 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3939 : llvm::PointerType::getUnqual(Ty); 3940 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3941 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3942 return Ret; 3943 } 3944 3945 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3946 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3947 3948 StringRef MangledName = getMangledName(D); 3949 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3950 3951 // We already have a definition, not declaration, with the same mangled name. 3952 // Emitting of declaration is not required (and actually overwrites emitted 3953 // definition). 3954 if (GV && !GV->isDeclaration()) 3955 return; 3956 3957 // If we have not seen a reference to this variable yet, place it into the 3958 // deferred declarations table to be emitted if needed later. 3959 if (!MustBeEmitted(D) && !GV) { 3960 DeferredDecls[MangledName] = D; 3961 return; 3962 } 3963 3964 // The tentative definition is the only definition. 3965 EmitGlobalVarDefinition(D); 3966 } 3967 3968 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3969 EmitExternalVarDeclaration(D); 3970 } 3971 3972 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3973 return Context.toCharUnitsFromBits( 3974 getDataLayout().getTypeStoreSizeInBits(Ty)); 3975 } 3976 3977 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3978 LangAS AddrSpace = LangAS::Default; 3979 if (LangOpts.OpenCL) { 3980 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3981 assert(AddrSpace == LangAS::opencl_global || 3982 AddrSpace == LangAS::opencl_global_device || 3983 AddrSpace == LangAS::opencl_global_host || 3984 AddrSpace == LangAS::opencl_constant || 3985 AddrSpace == LangAS::opencl_local || 3986 AddrSpace >= LangAS::FirstTargetAddressSpace); 3987 return AddrSpace; 3988 } 3989 3990 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3991 if (D && D->hasAttr<CUDAConstantAttr>()) 3992 return LangAS::cuda_constant; 3993 else if (D && D->hasAttr<CUDASharedAttr>()) 3994 return LangAS::cuda_shared; 3995 else if (D && D->hasAttr<CUDADeviceAttr>()) 3996 return LangAS::cuda_device; 3997 else if (D && D->getType().isConstQualified()) 3998 return LangAS::cuda_constant; 3999 else 4000 return LangAS::cuda_device; 4001 } 4002 4003 if (LangOpts.OpenMP) { 4004 LangAS AS; 4005 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4006 return AS; 4007 } 4008 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4009 } 4010 4011 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4012 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4013 if (LangOpts.OpenCL) 4014 return LangAS::opencl_constant; 4015 if (auto AS = getTarget().getConstantAddressSpace()) 4016 return AS.getValue(); 4017 return LangAS::Default; 4018 } 4019 4020 // In address space agnostic languages, string literals are in default address 4021 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4022 // emitted in constant address space in LLVM IR. To be consistent with other 4023 // parts of AST, string literal global variables in constant address space 4024 // need to be casted to default address space before being put into address 4025 // map and referenced by other part of CodeGen. 4026 // In OpenCL, string literals are in constant address space in AST, therefore 4027 // they should not be casted to default address space. 4028 static llvm::Constant * 4029 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4030 llvm::GlobalVariable *GV) { 4031 llvm::Constant *Cast = GV; 4032 if (!CGM.getLangOpts().OpenCL) { 4033 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4034 if (AS != LangAS::Default) 4035 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4036 CGM, GV, AS.getValue(), LangAS::Default, 4037 GV->getValueType()->getPointerTo( 4038 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4039 } 4040 } 4041 return Cast; 4042 } 4043 4044 template<typename SomeDecl> 4045 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4046 llvm::GlobalValue *GV) { 4047 if (!getLangOpts().CPlusPlus) 4048 return; 4049 4050 // Must have 'used' attribute, or else inline assembly can't rely on 4051 // the name existing. 4052 if (!D->template hasAttr<UsedAttr>()) 4053 return; 4054 4055 // Must have internal linkage and an ordinary name. 4056 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4057 return; 4058 4059 // Must be in an extern "C" context. Entities declared directly within 4060 // a record are not extern "C" even if the record is in such a context. 4061 const SomeDecl *First = D->getFirstDecl(); 4062 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4063 return; 4064 4065 // OK, this is an internal linkage entity inside an extern "C" linkage 4066 // specification. Make a note of that so we can give it the "expected" 4067 // mangled name if nothing else is using that name. 4068 std::pair<StaticExternCMap::iterator, bool> R = 4069 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4070 4071 // If we have multiple internal linkage entities with the same name 4072 // in extern "C" regions, none of them gets that name. 4073 if (!R.second) 4074 R.first->second = nullptr; 4075 } 4076 4077 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4078 if (!CGM.supportsCOMDAT()) 4079 return false; 4080 4081 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4082 // them being "merged" by the COMDAT Folding linker optimization. 4083 if (D.hasAttr<CUDAGlobalAttr>()) 4084 return false; 4085 4086 if (D.hasAttr<SelectAnyAttr>()) 4087 return true; 4088 4089 GVALinkage Linkage; 4090 if (auto *VD = dyn_cast<VarDecl>(&D)) 4091 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4092 else 4093 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4094 4095 switch (Linkage) { 4096 case GVA_Internal: 4097 case GVA_AvailableExternally: 4098 case GVA_StrongExternal: 4099 return false; 4100 case GVA_DiscardableODR: 4101 case GVA_StrongODR: 4102 return true; 4103 } 4104 llvm_unreachable("No such linkage"); 4105 } 4106 4107 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4108 llvm::GlobalObject &GO) { 4109 if (!shouldBeInCOMDAT(*this, D)) 4110 return; 4111 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4112 } 4113 4114 /// Pass IsTentative as true if you want to create a tentative definition. 4115 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4116 bool IsTentative) { 4117 // OpenCL global variables of sampler type are translated to function calls, 4118 // therefore no need to be translated. 4119 QualType ASTTy = D->getType(); 4120 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4121 return; 4122 4123 // If this is OpenMP device, check if it is legal to emit this global 4124 // normally. 4125 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4126 OpenMPRuntime->emitTargetGlobalVariable(D)) 4127 return; 4128 4129 llvm::Constant *Init = nullptr; 4130 bool NeedsGlobalCtor = false; 4131 bool NeedsGlobalDtor = 4132 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4133 4134 const VarDecl *InitDecl; 4135 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4136 4137 Optional<ConstantEmitter> emitter; 4138 4139 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4140 // as part of their declaration." Sema has already checked for 4141 // error cases, so we just need to set Init to UndefValue. 4142 bool IsCUDASharedVar = 4143 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4144 // Shadows of initialized device-side global variables are also left 4145 // undefined. 4146 bool IsCUDAShadowVar = 4147 !getLangOpts().CUDAIsDevice && 4148 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4149 D->hasAttr<CUDASharedAttr>()); 4150 bool IsCUDADeviceShadowVar = 4151 getLangOpts().CUDAIsDevice && 4152 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4153 D->getType()->isCUDADeviceBuiltinTextureType()); 4154 // HIP pinned shadow of initialized host-side global variables are also 4155 // left undefined. 4156 if (getLangOpts().CUDA && 4157 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4158 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4159 else if (D->hasAttr<LoaderUninitializedAttr>()) 4160 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4161 else if (!InitExpr) { 4162 // This is a tentative definition; tentative definitions are 4163 // implicitly initialized with { 0 }. 4164 // 4165 // Note that tentative definitions are only emitted at the end of 4166 // a translation unit, so they should never have incomplete 4167 // type. In addition, EmitTentativeDefinition makes sure that we 4168 // never attempt to emit a tentative definition if a real one 4169 // exists. A use may still exists, however, so we still may need 4170 // to do a RAUW. 4171 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4172 Init = EmitNullConstant(D->getType()); 4173 } else { 4174 initializedGlobalDecl = GlobalDecl(D); 4175 emitter.emplace(*this); 4176 Init = emitter->tryEmitForInitializer(*InitDecl); 4177 4178 if (!Init) { 4179 QualType T = InitExpr->getType(); 4180 if (D->getType()->isReferenceType()) 4181 T = D->getType(); 4182 4183 if (getLangOpts().CPlusPlus) { 4184 Init = EmitNullConstant(T); 4185 NeedsGlobalCtor = true; 4186 } else { 4187 ErrorUnsupported(D, "static initializer"); 4188 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4189 } 4190 } else { 4191 // We don't need an initializer, so remove the entry for the delayed 4192 // initializer position (just in case this entry was delayed) if we 4193 // also don't need to register a destructor. 4194 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4195 DelayedCXXInitPosition.erase(D); 4196 } 4197 } 4198 4199 llvm::Type* InitType = Init->getType(); 4200 llvm::Constant *Entry = 4201 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4202 4203 // Strip off pointer casts if we got them. 4204 Entry = Entry->stripPointerCasts(); 4205 4206 // Entry is now either a Function or GlobalVariable. 4207 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4208 4209 // We have a definition after a declaration with the wrong type. 4210 // We must make a new GlobalVariable* and update everything that used OldGV 4211 // (a declaration or tentative definition) with the new GlobalVariable* 4212 // (which will be a definition). 4213 // 4214 // This happens if there is a prototype for a global (e.g. 4215 // "extern int x[];") and then a definition of a different type (e.g. 4216 // "int x[10];"). This also happens when an initializer has a different type 4217 // from the type of the global (this happens with unions). 4218 if (!GV || GV->getValueType() != InitType || 4219 GV->getType()->getAddressSpace() != 4220 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4221 4222 // Move the old entry aside so that we'll create a new one. 4223 Entry->setName(StringRef()); 4224 4225 // Make a new global with the correct type, this is now guaranteed to work. 4226 GV = cast<llvm::GlobalVariable>( 4227 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4228 ->stripPointerCasts()); 4229 4230 // Replace all uses of the old global with the new global 4231 llvm::Constant *NewPtrForOldDecl = 4232 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4233 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4234 4235 // Erase the old global, since it is no longer used. 4236 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4237 } 4238 4239 MaybeHandleStaticInExternC(D, GV); 4240 4241 if (D->hasAttr<AnnotateAttr>()) 4242 AddGlobalAnnotations(D, GV); 4243 4244 // Set the llvm linkage type as appropriate. 4245 llvm::GlobalValue::LinkageTypes Linkage = 4246 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4247 4248 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4249 // the device. [...]" 4250 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4251 // __device__, declares a variable that: [...] 4252 // Is accessible from all the threads within the grid and from the host 4253 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4254 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4255 if (GV && LangOpts.CUDA) { 4256 if (LangOpts.CUDAIsDevice) { 4257 if (Linkage != llvm::GlobalValue::InternalLinkage && 4258 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4259 GV->setExternallyInitialized(true); 4260 } else { 4261 // Host-side shadows of external declarations of device-side 4262 // global variables become internal definitions. These have to 4263 // be internal in order to prevent name conflicts with global 4264 // host variables with the same name in a different TUs. 4265 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4266 Linkage = llvm::GlobalValue::InternalLinkage; 4267 // Shadow variables and their properties must be registered with CUDA 4268 // runtime. Skip Extern global variables, which will be registered in 4269 // the TU where they are defined. 4270 // 4271 // Don't register a C++17 inline variable. The local symbol can be 4272 // discarded and referencing a discarded local symbol from outside the 4273 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4274 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4275 if (!D->hasExternalStorage() && !D->isInline()) 4276 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4277 D->hasAttr<CUDAConstantAttr>()); 4278 } else if (D->hasAttr<CUDASharedAttr>()) { 4279 // __shared__ variables are odd. Shadows do get created, but 4280 // they are not registered with the CUDA runtime, so they 4281 // can't really be used to access their device-side 4282 // counterparts. It's not clear yet whether it's nvcc's bug or 4283 // a feature, but we've got to do the same for compatibility. 4284 Linkage = llvm::GlobalValue::InternalLinkage; 4285 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4286 D->getType()->isCUDADeviceBuiltinTextureType()) { 4287 // Builtin surfaces and textures and their template arguments are 4288 // also registered with CUDA runtime. 4289 Linkage = llvm::GlobalValue::InternalLinkage; 4290 const ClassTemplateSpecializationDecl *TD = 4291 cast<ClassTemplateSpecializationDecl>( 4292 D->getType()->getAs<RecordType>()->getDecl()); 4293 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4294 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4295 assert(Args.size() == 2 && 4296 "Unexpected number of template arguments of CUDA device " 4297 "builtin surface type."); 4298 auto SurfType = Args[1].getAsIntegral(); 4299 if (!D->hasExternalStorage()) 4300 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4301 SurfType.getSExtValue()); 4302 } else { 4303 assert(Args.size() == 3 && 4304 "Unexpected number of template arguments of CUDA device " 4305 "builtin texture type."); 4306 auto TexType = Args[1].getAsIntegral(); 4307 auto Normalized = Args[2].getAsIntegral(); 4308 if (!D->hasExternalStorage()) 4309 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4310 TexType.getSExtValue(), 4311 Normalized.getZExtValue()); 4312 } 4313 } 4314 } 4315 } 4316 4317 GV->setInitializer(Init); 4318 if (emitter) 4319 emitter->finalize(GV); 4320 4321 // If it is safe to mark the global 'constant', do so now. 4322 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4323 isTypeConstant(D->getType(), true)); 4324 4325 // If it is in a read-only section, mark it 'constant'. 4326 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4327 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4328 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4329 GV->setConstant(true); 4330 } 4331 4332 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4333 4334 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4335 // function is only defined alongside the variable, not also alongside 4336 // callers. Normally, all accesses to a thread_local go through the 4337 // thread-wrapper in order to ensure initialization has occurred, underlying 4338 // variable will never be used other than the thread-wrapper, so it can be 4339 // converted to internal linkage. 4340 // 4341 // However, if the variable has the 'constinit' attribute, it _can_ be 4342 // referenced directly, without calling the thread-wrapper, so the linkage 4343 // must not be changed. 4344 // 4345 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4346 // weak or linkonce, the de-duplication semantics are important to preserve, 4347 // so we don't change the linkage. 4348 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4349 Linkage == llvm::GlobalValue::ExternalLinkage && 4350 Context.getTargetInfo().getTriple().isOSDarwin() && 4351 !D->hasAttr<ConstInitAttr>()) 4352 Linkage = llvm::GlobalValue::InternalLinkage; 4353 4354 GV->setLinkage(Linkage); 4355 if (D->hasAttr<DLLImportAttr>()) 4356 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4357 else if (D->hasAttr<DLLExportAttr>()) 4358 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4359 else 4360 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4361 4362 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4363 // common vars aren't constant even if declared const. 4364 GV->setConstant(false); 4365 // Tentative definition of global variables may be initialized with 4366 // non-zero null pointers. In this case they should have weak linkage 4367 // since common linkage must have zero initializer and must not have 4368 // explicit section therefore cannot have non-zero initial value. 4369 if (!GV->getInitializer()->isNullValue()) 4370 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4371 } 4372 4373 setNonAliasAttributes(D, GV); 4374 4375 if (D->getTLSKind() && !GV->isThreadLocal()) { 4376 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4377 CXXThreadLocals.push_back(D); 4378 setTLSMode(GV, *D); 4379 } 4380 4381 maybeSetTrivialComdat(*D, *GV); 4382 4383 // Emit the initializer function if necessary. 4384 if (NeedsGlobalCtor || NeedsGlobalDtor) 4385 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4386 4387 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4388 4389 // Emit global variable debug information. 4390 if (CGDebugInfo *DI = getModuleDebugInfo()) 4391 if (getCodeGenOpts().hasReducedDebugInfo()) 4392 DI->EmitGlobalVariable(GV, D); 4393 } 4394 4395 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4396 if (CGDebugInfo *DI = getModuleDebugInfo()) 4397 if (getCodeGenOpts().hasReducedDebugInfo()) { 4398 QualType ASTTy = D->getType(); 4399 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4400 llvm::PointerType *PTy = 4401 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4402 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4403 DI->EmitExternalVariable( 4404 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4405 } 4406 } 4407 4408 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4409 CodeGenModule &CGM, const VarDecl *D, 4410 bool NoCommon) { 4411 // Don't give variables common linkage if -fno-common was specified unless it 4412 // was overridden by a NoCommon attribute. 4413 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4414 return true; 4415 4416 // C11 6.9.2/2: 4417 // A declaration of an identifier for an object that has file scope without 4418 // an initializer, and without a storage-class specifier or with the 4419 // storage-class specifier static, constitutes a tentative definition. 4420 if (D->getInit() || D->hasExternalStorage()) 4421 return true; 4422 4423 // A variable cannot be both common and exist in a section. 4424 if (D->hasAttr<SectionAttr>()) 4425 return true; 4426 4427 // A variable cannot be both common and exist in a section. 4428 // We don't try to determine which is the right section in the front-end. 4429 // If no specialized section name is applicable, it will resort to default. 4430 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4431 D->hasAttr<PragmaClangDataSectionAttr>() || 4432 D->hasAttr<PragmaClangRelroSectionAttr>() || 4433 D->hasAttr<PragmaClangRodataSectionAttr>()) 4434 return true; 4435 4436 // Thread local vars aren't considered common linkage. 4437 if (D->getTLSKind()) 4438 return true; 4439 4440 // Tentative definitions marked with WeakImportAttr are true definitions. 4441 if (D->hasAttr<WeakImportAttr>()) 4442 return true; 4443 4444 // A variable cannot be both common and exist in a comdat. 4445 if (shouldBeInCOMDAT(CGM, *D)) 4446 return true; 4447 4448 // Declarations with a required alignment do not have common linkage in MSVC 4449 // mode. 4450 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4451 if (D->hasAttr<AlignedAttr>()) 4452 return true; 4453 QualType VarType = D->getType(); 4454 if (Context.isAlignmentRequired(VarType)) 4455 return true; 4456 4457 if (const auto *RT = VarType->getAs<RecordType>()) { 4458 const RecordDecl *RD = RT->getDecl(); 4459 for (const FieldDecl *FD : RD->fields()) { 4460 if (FD->isBitField()) 4461 continue; 4462 if (FD->hasAttr<AlignedAttr>()) 4463 return true; 4464 if (Context.isAlignmentRequired(FD->getType())) 4465 return true; 4466 } 4467 } 4468 } 4469 4470 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4471 // common symbols, so symbols with greater alignment requirements cannot be 4472 // common. 4473 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4474 // alignments for common symbols via the aligncomm directive, so this 4475 // restriction only applies to MSVC environments. 4476 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4477 Context.getTypeAlignIfKnown(D->getType()) > 4478 Context.toBits(CharUnits::fromQuantity(32))) 4479 return true; 4480 4481 return false; 4482 } 4483 4484 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4485 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4486 if (Linkage == GVA_Internal) 4487 return llvm::Function::InternalLinkage; 4488 4489 if (D->hasAttr<WeakAttr>()) { 4490 if (IsConstantVariable) 4491 return llvm::GlobalVariable::WeakODRLinkage; 4492 else 4493 return llvm::GlobalVariable::WeakAnyLinkage; 4494 } 4495 4496 if (const auto *FD = D->getAsFunction()) 4497 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4498 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4499 4500 // We are guaranteed to have a strong definition somewhere else, 4501 // so we can use available_externally linkage. 4502 if (Linkage == GVA_AvailableExternally) 4503 return llvm::GlobalValue::AvailableExternallyLinkage; 4504 4505 // Note that Apple's kernel linker doesn't support symbol 4506 // coalescing, so we need to avoid linkonce and weak linkages there. 4507 // Normally, this means we just map to internal, but for explicit 4508 // instantiations we'll map to external. 4509 4510 // In C++, the compiler has to emit a definition in every translation unit 4511 // that references the function. We should use linkonce_odr because 4512 // a) if all references in this translation unit are optimized away, we 4513 // don't need to codegen it. b) if the function persists, it needs to be 4514 // merged with other definitions. c) C++ has the ODR, so we know the 4515 // definition is dependable. 4516 if (Linkage == GVA_DiscardableODR) 4517 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4518 : llvm::Function::InternalLinkage; 4519 4520 // An explicit instantiation of a template has weak linkage, since 4521 // explicit instantiations can occur in multiple translation units 4522 // and must all be equivalent. However, we are not allowed to 4523 // throw away these explicit instantiations. 4524 // 4525 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4526 // so say that CUDA templates are either external (for kernels) or internal. 4527 // This lets llvm perform aggressive inter-procedural optimizations. For 4528 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4529 // therefore we need to follow the normal linkage paradigm. 4530 if (Linkage == GVA_StrongODR) { 4531 if (getLangOpts().AppleKext) 4532 return llvm::Function::ExternalLinkage; 4533 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4534 !getLangOpts().GPURelocatableDeviceCode) 4535 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4536 : llvm::Function::InternalLinkage; 4537 return llvm::Function::WeakODRLinkage; 4538 } 4539 4540 // C++ doesn't have tentative definitions and thus cannot have common 4541 // linkage. 4542 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4543 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4544 CodeGenOpts.NoCommon)) 4545 return llvm::GlobalVariable::CommonLinkage; 4546 4547 // selectany symbols are externally visible, so use weak instead of 4548 // linkonce. MSVC optimizes away references to const selectany globals, so 4549 // all definitions should be the same and ODR linkage should be used. 4550 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4551 if (D->hasAttr<SelectAnyAttr>()) 4552 return llvm::GlobalVariable::WeakODRLinkage; 4553 4554 // Otherwise, we have strong external linkage. 4555 assert(Linkage == GVA_StrongExternal); 4556 return llvm::GlobalVariable::ExternalLinkage; 4557 } 4558 4559 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4560 const VarDecl *VD, bool IsConstant) { 4561 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4562 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4563 } 4564 4565 /// Replace the uses of a function that was declared with a non-proto type. 4566 /// We want to silently drop extra arguments from call sites 4567 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4568 llvm::Function *newFn) { 4569 // Fast path. 4570 if (old->use_empty()) return; 4571 4572 llvm::Type *newRetTy = newFn->getReturnType(); 4573 SmallVector<llvm::Value*, 4> newArgs; 4574 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4575 4576 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4577 ui != ue; ) { 4578 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4579 llvm::User *user = use->getUser(); 4580 4581 // Recognize and replace uses of bitcasts. Most calls to 4582 // unprototyped functions will use bitcasts. 4583 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4584 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4585 replaceUsesOfNonProtoConstant(bitcast, newFn); 4586 continue; 4587 } 4588 4589 // Recognize calls to the function. 4590 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4591 if (!callSite) continue; 4592 if (!callSite->isCallee(&*use)) 4593 continue; 4594 4595 // If the return types don't match exactly, then we can't 4596 // transform this call unless it's dead. 4597 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4598 continue; 4599 4600 // Get the call site's attribute list. 4601 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4602 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4603 4604 // If the function was passed too few arguments, don't transform. 4605 unsigned newNumArgs = newFn->arg_size(); 4606 if (callSite->arg_size() < newNumArgs) 4607 continue; 4608 4609 // If extra arguments were passed, we silently drop them. 4610 // If any of the types mismatch, we don't transform. 4611 unsigned argNo = 0; 4612 bool dontTransform = false; 4613 for (llvm::Argument &A : newFn->args()) { 4614 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4615 dontTransform = true; 4616 break; 4617 } 4618 4619 // Add any parameter attributes. 4620 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4621 argNo++; 4622 } 4623 if (dontTransform) 4624 continue; 4625 4626 // Okay, we can transform this. Create the new call instruction and copy 4627 // over the required information. 4628 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4629 4630 // Copy over any operand bundles. 4631 callSite->getOperandBundlesAsDefs(newBundles); 4632 4633 llvm::CallBase *newCall; 4634 if (dyn_cast<llvm::CallInst>(callSite)) { 4635 newCall = 4636 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4637 } else { 4638 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4639 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4640 oldInvoke->getUnwindDest(), newArgs, 4641 newBundles, "", callSite); 4642 } 4643 newArgs.clear(); // for the next iteration 4644 4645 if (!newCall->getType()->isVoidTy()) 4646 newCall->takeName(callSite); 4647 newCall->setAttributes(llvm::AttributeList::get( 4648 newFn->getContext(), oldAttrs.getFnAttributes(), 4649 oldAttrs.getRetAttributes(), newArgAttrs)); 4650 newCall->setCallingConv(callSite->getCallingConv()); 4651 4652 // Finally, remove the old call, replacing any uses with the new one. 4653 if (!callSite->use_empty()) 4654 callSite->replaceAllUsesWith(newCall); 4655 4656 // Copy debug location attached to CI. 4657 if (callSite->getDebugLoc()) 4658 newCall->setDebugLoc(callSite->getDebugLoc()); 4659 4660 callSite->eraseFromParent(); 4661 } 4662 } 4663 4664 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4665 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4666 /// existing call uses of the old function in the module, this adjusts them to 4667 /// call the new function directly. 4668 /// 4669 /// This is not just a cleanup: the always_inline pass requires direct calls to 4670 /// functions to be able to inline them. If there is a bitcast in the way, it 4671 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4672 /// run at -O0. 4673 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4674 llvm::Function *NewFn) { 4675 // If we're redefining a global as a function, don't transform it. 4676 if (!isa<llvm::Function>(Old)) return; 4677 4678 replaceUsesOfNonProtoConstant(Old, NewFn); 4679 } 4680 4681 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4682 auto DK = VD->isThisDeclarationADefinition(); 4683 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4684 return; 4685 4686 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4687 // If we have a definition, this might be a deferred decl. If the 4688 // instantiation is explicit, make sure we emit it at the end. 4689 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4690 GetAddrOfGlobalVar(VD); 4691 4692 EmitTopLevelDecl(VD); 4693 } 4694 4695 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4696 llvm::GlobalValue *GV) { 4697 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4698 4699 // Compute the function info and LLVM type. 4700 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4701 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4702 4703 // Get or create the prototype for the function. 4704 if (!GV || (GV->getValueType() != Ty)) 4705 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4706 /*DontDefer=*/true, 4707 ForDefinition)); 4708 4709 // Already emitted. 4710 if (!GV->isDeclaration()) 4711 return; 4712 4713 // We need to set linkage and visibility on the function before 4714 // generating code for it because various parts of IR generation 4715 // want to propagate this information down (e.g. to local static 4716 // declarations). 4717 auto *Fn = cast<llvm::Function>(GV); 4718 setFunctionLinkage(GD, Fn); 4719 4720 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4721 setGVProperties(Fn, GD); 4722 4723 MaybeHandleStaticInExternC(D, Fn); 4724 4725 maybeSetTrivialComdat(*D, *Fn); 4726 4727 // Set CodeGen attributes that represent floating point environment. 4728 setLLVMFunctionFEnvAttributes(D, Fn); 4729 4730 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4731 4732 setNonAliasAttributes(GD, Fn); 4733 SetLLVMFunctionAttributesForDefinition(D, Fn); 4734 4735 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4736 AddGlobalCtor(Fn, CA->getPriority()); 4737 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4738 AddGlobalDtor(Fn, DA->getPriority(), true); 4739 if (D->hasAttr<AnnotateAttr>()) 4740 AddGlobalAnnotations(D, Fn); 4741 } 4742 4743 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4744 const auto *D = cast<ValueDecl>(GD.getDecl()); 4745 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4746 assert(AA && "Not an alias?"); 4747 4748 StringRef MangledName = getMangledName(GD); 4749 4750 if (AA->getAliasee() == MangledName) { 4751 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4752 return; 4753 } 4754 4755 // If there is a definition in the module, then it wins over the alias. 4756 // This is dubious, but allow it to be safe. Just ignore the alias. 4757 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4758 if (Entry && !Entry->isDeclaration()) 4759 return; 4760 4761 Aliases.push_back(GD); 4762 4763 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4764 4765 // Create a reference to the named value. This ensures that it is emitted 4766 // if a deferred decl. 4767 llvm::Constant *Aliasee; 4768 llvm::GlobalValue::LinkageTypes LT; 4769 if (isa<llvm::FunctionType>(DeclTy)) { 4770 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4771 /*ForVTable=*/false); 4772 LT = getFunctionLinkage(GD); 4773 } else { 4774 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4775 llvm::PointerType::getUnqual(DeclTy), 4776 /*D=*/nullptr); 4777 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4778 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4779 else 4780 LT = getFunctionLinkage(GD); 4781 } 4782 4783 // Create the new alias itself, but don't set a name yet. 4784 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4785 auto *GA = 4786 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4787 4788 if (Entry) { 4789 if (GA->getAliasee() == Entry) { 4790 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4791 return; 4792 } 4793 4794 assert(Entry->isDeclaration()); 4795 4796 // If there is a declaration in the module, then we had an extern followed 4797 // by the alias, as in: 4798 // extern int test6(); 4799 // ... 4800 // int test6() __attribute__((alias("test7"))); 4801 // 4802 // Remove it and replace uses of it with the alias. 4803 GA->takeName(Entry); 4804 4805 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4806 Entry->getType())); 4807 Entry->eraseFromParent(); 4808 } else { 4809 GA->setName(MangledName); 4810 } 4811 4812 // Set attributes which are particular to an alias; this is a 4813 // specialization of the attributes which may be set on a global 4814 // variable/function. 4815 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4816 D->isWeakImported()) { 4817 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4818 } 4819 4820 if (const auto *VD = dyn_cast<VarDecl>(D)) 4821 if (VD->getTLSKind()) 4822 setTLSMode(GA, *VD); 4823 4824 SetCommonAttributes(GD, GA); 4825 } 4826 4827 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4828 const auto *D = cast<ValueDecl>(GD.getDecl()); 4829 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4830 assert(IFA && "Not an ifunc?"); 4831 4832 StringRef MangledName = getMangledName(GD); 4833 4834 if (IFA->getResolver() == MangledName) { 4835 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4836 return; 4837 } 4838 4839 // Report an error if some definition overrides ifunc. 4840 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4841 if (Entry && !Entry->isDeclaration()) { 4842 GlobalDecl OtherGD; 4843 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4844 DiagnosedConflictingDefinitions.insert(GD).second) { 4845 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4846 << MangledName; 4847 Diags.Report(OtherGD.getDecl()->getLocation(), 4848 diag::note_previous_definition); 4849 } 4850 return; 4851 } 4852 4853 Aliases.push_back(GD); 4854 4855 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4856 llvm::Constant *Resolver = 4857 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4858 /*ForVTable=*/false); 4859 llvm::GlobalIFunc *GIF = 4860 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4861 "", Resolver, &getModule()); 4862 if (Entry) { 4863 if (GIF->getResolver() == Entry) { 4864 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4865 return; 4866 } 4867 assert(Entry->isDeclaration()); 4868 4869 // If there is a declaration in the module, then we had an extern followed 4870 // by the ifunc, as in: 4871 // extern int test(); 4872 // ... 4873 // int test() __attribute__((ifunc("resolver"))); 4874 // 4875 // Remove it and replace uses of it with the ifunc. 4876 GIF->takeName(Entry); 4877 4878 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4879 Entry->getType())); 4880 Entry->eraseFromParent(); 4881 } else 4882 GIF->setName(MangledName); 4883 4884 SetCommonAttributes(GD, GIF); 4885 } 4886 4887 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4888 ArrayRef<llvm::Type*> Tys) { 4889 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4890 Tys); 4891 } 4892 4893 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4894 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4895 const StringLiteral *Literal, bool TargetIsLSB, 4896 bool &IsUTF16, unsigned &StringLength) { 4897 StringRef String = Literal->getString(); 4898 unsigned NumBytes = String.size(); 4899 4900 // Check for simple case. 4901 if (!Literal->containsNonAsciiOrNull()) { 4902 StringLength = NumBytes; 4903 return *Map.insert(std::make_pair(String, nullptr)).first; 4904 } 4905 4906 // Otherwise, convert the UTF8 literals into a string of shorts. 4907 IsUTF16 = true; 4908 4909 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4910 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4911 llvm::UTF16 *ToPtr = &ToBuf[0]; 4912 4913 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4914 ToPtr + NumBytes, llvm::strictConversion); 4915 4916 // ConvertUTF8toUTF16 returns the length in ToPtr. 4917 StringLength = ToPtr - &ToBuf[0]; 4918 4919 // Add an explicit null. 4920 *ToPtr = 0; 4921 return *Map.insert(std::make_pair( 4922 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4923 (StringLength + 1) * 2), 4924 nullptr)).first; 4925 } 4926 4927 ConstantAddress 4928 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4929 unsigned StringLength = 0; 4930 bool isUTF16 = false; 4931 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4932 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4933 getDataLayout().isLittleEndian(), isUTF16, 4934 StringLength); 4935 4936 if (auto *C = Entry.second) 4937 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4938 4939 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4940 llvm::Constant *Zeros[] = { Zero, Zero }; 4941 4942 const ASTContext &Context = getContext(); 4943 const llvm::Triple &Triple = getTriple(); 4944 4945 const auto CFRuntime = getLangOpts().CFRuntime; 4946 const bool IsSwiftABI = 4947 static_cast<unsigned>(CFRuntime) >= 4948 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4949 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4950 4951 // If we don't already have it, get __CFConstantStringClassReference. 4952 if (!CFConstantStringClassRef) { 4953 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4954 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4955 Ty = llvm::ArrayType::get(Ty, 0); 4956 4957 switch (CFRuntime) { 4958 default: break; 4959 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4960 case LangOptions::CoreFoundationABI::Swift5_0: 4961 CFConstantStringClassName = 4962 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4963 : "$s10Foundation19_NSCFConstantStringCN"; 4964 Ty = IntPtrTy; 4965 break; 4966 case LangOptions::CoreFoundationABI::Swift4_2: 4967 CFConstantStringClassName = 4968 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4969 : "$S10Foundation19_NSCFConstantStringCN"; 4970 Ty = IntPtrTy; 4971 break; 4972 case LangOptions::CoreFoundationABI::Swift4_1: 4973 CFConstantStringClassName = 4974 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4975 : "__T010Foundation19_NSCFConstantStringCN"; 4976 Ty = IntPtrTy; 4977 break; 4978 } 4979 4980 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4981 4982 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4983 llvm::GlobalValue *GV = nullptr; 4984 4985 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4986 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4987 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4988 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4989 4990 const VarDecl *VD = nullptr; 4991 for (const auto &Result : DC->lookup(&II)) 4992 if ((VD = dyn_cast<VarDecl>(Result))) 4993 break; 4994 4995 if (Triple.isOSBinFormatELF()) { 4996 if (!VD) 4997 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4998 } else { 4999 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5000 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5001 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5002 else 5003 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5004 } 5005 5006 setDSOLocal(GV); 5007 } 5008 } 5009 5010 // Decay array -> ptr 5011 CFConstantStringClassRef = 5012 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5013 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5014 } 5015 5016 QualType CFTy = Context.getCFConstantStringType(); 5017 5018 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5019 5020 ConstantInitBuilder Builder(*this); 5021 auto Fields = Builder.beginStruct(STy); 5022 5023 // Class pointer. 5024 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5025 5026 // Flags. 5027 if (IsSwiftABI) { 5028 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5029 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5030 } else { 5031 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5032 } 5033 5034 // String pointer. 5035 llvm::Constant *C = nullptr; 5036 if (isUTF16) { 5037 auto Arr = llvm::makeArrayRef( 5038 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5039 Entry.first().size() / 2); 5040 C = llvm::ConstantDataArray::get(VMContext, Arr); 5041 } else { 5042 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5043 } 5044 5045 // Note: -fwritable-strings doesn't make the backing store strings of 5046 // CFStrings writable. (See <rdar://problem/10657500>) 5047 auto *GV = 5048 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5049 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5050 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5051 // Don't enforce the target's minimum global alignment, since the only use 5052 // of the string is via this class initializer. 5053 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5054 : Context.getTypeAlignInChars(Context.CharTy); 5055 GV->setAlignment(Align.getAsAlign()); 5056 5057 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5058 // Without it LLVM can merge the string with a non unnamed_addr one during 5059 // LTO. Doing that changes the section it ends in, which surprises ld64. 5060 if (Triple.isOSBinFormatMachO()) 5061 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5062 : "__TEXT,__cstring,cstring_literals"); 5063 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5064 // the static linker to adjust permissions to read-only later on. 5065 else if (Triple.isOSBinFormatELF()) 5066 GV->setSection(".rodata"); 5067 5068 // String. 5069 llvm::Constant *Str = 5070 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5071 5072 if (isUTF16) 5073 // Cast the UTF16 string to the correct type. 5074 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5075 Fields.add(Str); 5076 5077 // String length. 5078 llvm::IntegerType *LengthTy = 5079 llvm::IntegerType::get(getModule().getContext(), 5080 Context.getTargetInfo().getLongWidth()); 5081 if (IsSwiftABI) { 5082 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5083 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5084 LengthTy = Int32Ty; 5085 else 5086 LengthTy = IntPtrTy; 5087 } 5088 Fields.addInt(LengthTy, StringLength); 5089 5090 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5091 // properly aligned on 32-bit platforms. 5092 CharUnits Alignment = 5093 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5094 5095 // The struct. 5096 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5097 /*isConstant=*/false, 5098 llvm::GlobalVariable::PrivateLinkage); 5099 GV->addAttribute("objc_arc_inert"); 5100 switch (Triple.getObjectFormat()) { 5101 case llvm::Triple::UnknownObjectFormat: 5102 llvm_unreachable("unknown file format"); 5103 case llvm::Triple::GOFF: 5104 llvm_unreachable("GOFF is not yet implemented"); 5105 case llvm::Triple::XCOFF: 5106 llvm_unreachable("XCOFF is not yet implemented"); 5107 case llvm::Triple::COFF: 5108 case llvm::Triple::ELF: 5109 case llvm::Triple::Wasm: 5110 GV->setSection("cfstring"); 5111 break; 5112 case llvm::Triple::MachO: 5113 GV->setSection("__DATA,__cfstring"); 5114 break; 5115 } 5116 Entry.second = GV; 5117 5118 return ConstantAddress(GV, Alignment); 5119 } 5120 5121 bool CodeGenModule::getExpressionLocationsEnabled() const { 5122 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5123 } 5124 5125 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5126 if (ObjCFastEnumerationStateType.isNull()) { 5127 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5128 D->startDefinition(); 5129 5130 QualType FieldTypes[] = { 5131 Context.UnsignedLongTy, 5132 Context.getPointerType(Context.getObjCIdType()), 5133 Context.getPointerType(Context.UnsignedLongTy), 5134 Context.getConstantArrayType(Context.UnsignedLongTy, 5135 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5136 }; 5137 5138 for (size_t i = 0; i < 4; ++i) { 5139 FieldDecl *Field = FieldDecl::Create(Context, 5140 D, 5141 SourceLocation(), 5142 SourceLocation(), nullptr, 5143 FieldTypes[i], /*TInfo=*/nullptr, 5144 /*BitWidth=*/nullptr, 5145 /*Mutable=*/false, 5146 ICIS_NoInit); 5147 Field->setAccess(AS_public); 5148 D->addDecl(Field); 5149 } 5150 5151 D->completeDefinition(); 5152 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5153 } 5154 5155 return ObjCFastEnumerationStateType; 5156 } 5157 5158 llvm::Constant * 5159 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5160 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5161 5162 // Don't emit it as the address of the string, emit the string data itself 5163 // as an inline array. 5164 if (E->getCharByteWidth() == 1) { 5165 SmallString<64> Str(E->getString()); 5166 5167 // Resize the string to the right size, which is indicated by its type. 5168 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5169 Str.resize(CAT->getSize().getZExtValue()); 5170 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5171 } 5172 5173 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5174 llvm::Type *ElemTy = AType->getElementType(); 5175 unsigned NumElements = AType->getNumElements(); 5176 5177 // Wide strings have either 2-byte or 4-byte elements. 5178 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5179 SmallVector<uint16_t, 32> Elements; 5180 Elements.reserve(NumElements); 5181 5182 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5183 Elements.push_back(E->getCodeUnit(i)); 5184 Elements.resize(NumElements); 5185 return llvm::ConstantDataArray::get(VMContext, Elements); 5186 } 5187 5188 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5189 SmallVector<uint32_t, 32> Elements; 5190 Elements.reserve(NumElements); 5191 5192 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5193 Elements.push_back(E->getCodeUnit(i)); 5194 Elements.resize(NumElements); 5195 return llvm::ConstantDataArray::get(VMContext, Elements); 5196 } 5197 5198 static llvm::GlobalVariable * 5199 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5200 CodeGenModule &CGM, StringRef GlobalName, 5201 CharUnits Alignment) { 5202 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5203 CGM.getStringLiteralAddressSpace()); 5204 5205 llvm::Module &M = CGM.getModule(); 5206 // Create a global variable for this string 5207 auto *GV = new llvm::GlobalVariable( 5208 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5209 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5210 GV->setAlignment(Alignment.getAsAlign()); 5211 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5212 if (GV->isWeakForLinker()) { 5213 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5214 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5215 } 5216 CGM.setDSOLocal(GV); 5217 5218 return GV; 5219 } 5220 5221 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5222 /// constant array for the given string literal. 5223 ConstantAddress 5224 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5225 StringRef Name) { 5226 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5227 5228 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5229 llvm::GlobalVariable **Entry = nullptr; 5230 if (!LangOpts.WritableStrings) { 5231 Entry = &ConstantStringMap[C]; 5232 if (auto GV = *Entry) { 5233 if (Alignment.getQuantity() > GV->getAlignment()) 5234 GV->setAlignment(Alignment.getAsAlign()); 5235 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5236 Alignment); 5237 } 5238 } 5239 5240 SmallString<256> MangledNameBuffer; 5241 StringRef GlobalVariableName; 5242 llvm::GlobalValue::LinkageTypes LT; 5243 5244 // Mangle the string literal if that's how the ABI merges duplicate strings. 5245 // Don't do it if they are writable, since we don't want writes in one TU to 5246 // affect strings in another. 5247 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5248 !LangOpts.WritableStrings) { 5249 llvm::raw_svector_ostream Out(MangledNameBuffer); 5250 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5251 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5252 GlobalVariableName = MangledNameBuffer; 5253 } else { 5254 LT = llvm::GlobalValue::PrivateLinkage; 5255 GlobalVariableName = Name; 5256 } 5257 5258 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5259 if (Entry) 5260 *Entry = GV; 5261 5262 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5263 QualType()); 5264 5265 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5266 Alignment); 5267 } 5268 5269 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5270 /// array for the given ObjCEncodeExpr node. 5271 ConstantAddress 5272 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5273 std::string Str; 5274 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5275 5276 return GetAddrOfConstantCString(Str); 5277 } 5278 5279 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5280 /// the literal and a terminating '\0' character. 5281 /// The result has pointer to array type. 5282 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5283 const std::string &Str, const char *GlobalName) { 5284 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5285 CharUnits Alignment = 5286 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5287 5288 llvm::Constant *C = 5289 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5290 5291 // Don't share any string literals if strings aren't constant. 5292 llvm::GlobalVariable **Entry = nullptr; 5293 if (!LangOpts.WritableStrings) { 5294 Entry = &ConstantStringMap[C]; 5295 if (auto GV = *Entry) { 5296 if (Alignment.getQuantity() > GV->getAlignment()) 5297 GV->setAlignment(Alignment.getAsAlign()); 5298 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5299 Alignment); 5300 } 5301 } 5302 5303 // Get the default prefix if a name wasn't specified. 5304 if (!GlobalName) 5305 GlobalName = ".str"; 5306 // Create a global variable for this. 5307 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5308 GlobalName, Alignment); 5309 if (Entry) 5310 *Entry = GV; 5311 5312 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5313 Alignment); 5314 } 5315 5316 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5317 const MaterializeTemporaryExpr *E, const Expr *Init) { 5318 assert((E->getStorageDuration() == SD_Static || 5319 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5320 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5321 5322 // If we're not materializing a subobject of the temporary, keep the 5323 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5324 QualType MaterializedType = Init->getType(); 5325 if (Init == E->getSubExpr()) 5326 MaterializedType = E->getType(); 5327 5328 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5329 5330 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5331 return ConstantAddress(Slot, Align); 5332 5333 // FIXME: If an externally-visible declaration extends multiple temporaries, 5334 // we need to give each temporary the same name in every translation unit (and 5335 // we also need to make the temporaries externally-visible). 5336 SmallString<256> Name; 5337 llvm::raw_svector_ostream Out(Name); 5338 getCXXABI().getMangleContext().mangleReferenceTemporary( 5339 VD, E->getManglingNumber(), Out); 5340 5341 APValue *Value = nullptr; 5342 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5343 // If the initializer of the extending declaration is a constant 5344 // initializer, we should have a cached constant initializer for this 5345 // temporary. Note that this might have a different value from the value 5346 // computed by evaluating the initializer if the surrounding constant 5347 // expression modifies the temporary. 5348 Value = E->getOrCreateValue(false); 5349 } 5350 5351 // Try evaluating it now, it might have a constant initializer. 5352 Expr::EvalResult EvalResult; 5353 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5354 !EvalResult.hasSideEffects()) 5355 Value = &EvalResult.Val; 5356 5357 LangAS AddrSpace = 5358 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5359 5360 Optional<ConstantEmitter> emitter; 5361 llvm::Constant *InitialValue = nullptr; 5362 bool Constant = false; 5363 llvm::Type *Type; 5364 if (Value) { 5365 // The temporary has a constant initializer, use it. 5366 emitter.emplace(*this); 5367 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5368 MaterializedType); 5369 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5370 Type = InitialValue->getType(); 5371 } else { 5372 // No initializer, the initialization will be provided when we 5373 // initialize the declaration which performed lifetime extension. 5374 Type = getTypes().ConvertTypeForMem(MaterializedType); 5375 } 5376 5377 // Create a global variable for this lifetime-extended temporary. 5378 llvm::GlobalValue::LinkageTypes Linkage = 5379 getLLVMLinkageVarDefinition(VD, Constant); 5380 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5381 const VarDecl *InitVD; 5382 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5383 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5384 // Temporaries defined inside a class get linkonce_odr linkage because the 5385 // class can be defined in multiple translation units. 5386 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5387 } else { 5388 // There is no need for this temporary to have external linkage if the 5389 // VarDecl has external linkage. 5390 Linkage = llvm::GlobalVariable::InternalLinkage; 5391 } 5392 } 5393 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5394 auto *GV = new llvm::GlobalVariable( 5395 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5396 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5397 if (emitter) emitter->finalize(GV); 5398 setGVProperties(GV, VD); 5399 GV->setAlignment(Align.getAsAlign()); 5400 if (supportsCOMDAT() && GV->isWeakForLinker()) 5401 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5402 if (VD->getTLSKind()) 5403 setTLSMode(GV, *VD); 5404 llvm::Constant *CV = GV; 5405 if (AddrSpace != LangAS::Default) 5406 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5407 *this, GV, AddrSpace, LangAS::Default, 5408 Type->getPointerTo( 5409 getContext().getTargetAddressSpace(LangAS::Default))); 5410 MaterializedGlobalTemporaryMap[E] = CV; 5411 return ConstantAddress(CV, Align); 5412 } 5413 5414 /// EmitObjCPropertyImplementations - Emit information for synthesized 5415 /// properties for an implementation. 5416 void CodeGenModule::EmitObjCPropertyImplementations(const 5417 ObjCImplementationDecl *D) { 5418 for (const auto *PID : D->property_impls()) { 5419 // Dynamic is just for type-checking. 5420 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5421 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5422 5423 // Determine which methods need to be implemented, some may have 5424 // been overridden. Note that ::isPropertyAccessor is not the method 5425 // we want, that just indicates if the decl came from a 5426 // property. What we want to know is if the method is defined in 5427 // this implementation. 5428 auto *Getter = PID->getGetterMethodDecl(); 5429 if (!Getter || Getter->isSynthesizedAccessorStub()) 5430 CodeGenFunction(*this).GenerateObjCGetter( 5431 const_cast<ObjCImplementationDecl *>(D), PID); 5432 auto *Setter = PID->getSetterMethodDecl(); 5433 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5434 CodeGenFunction(*this).GenerateObjCSetter( 5435 const_cast<ObjCImplementationDecl *>(D), PID); 5436 } 5437 } 5438 } 5439 5440 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5441 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5442 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5443 ivar; ivar = ivar->getNextIvar()) 5444 if (ivar->getType().isDestructedType()) 5445 return true; 5446 5447 return false; 5448 } 5449 5450 static bool AllTrivialInitializers(CodeGenModule &CGM, 5451 ObjCImplementationDecl *D) { 5452 CodeGenFunction CGF(CGM); 5453 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5454 E = D->init_end(); B != E; ++B) { 5455 CXXCtorInitializer *CtorInitExp = *B; 5456 Expr *Init = CtorInitExp->getInit(); 5457 if (!CGF.isTrivialInitializer(Init)) 5458 return false; 5459 } 5460 return true; 5461 } 5462 5463 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5464 /// for an implementation. 5465 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5466 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5467 if (needsDestructMethod(D)) { 5468 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5469 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5470 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5471 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5472 getContext().VoidTy, nullptr, D, 5473 /*isInstance=*/true, /*isVariadic=*/false, 5474 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5475 /*isImplicitlyDeclared=*/true, 5476 /*isDefined=*/false, ObjCMethodDecl::Required); 5477 D->addInstanceMethod(DTORMethod); 5478 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5479 D->setHasDestructors(true); 5480 } 5481 5482 // If the implementation doesn't have any ivar initializers, we don't need 5483 // a .cxx_construct. 5484 if (D->getNumIvarInitializers() == 0 || 5485 AllTrivialInitializers(*this, D)) 5486 return; 5487 5488 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5489 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5490 // The constructor returns 'self'. 5491 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5492 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5493 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5494 /*isVariadic=*/false, 5495 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5496 /*isImplicitlyDeclared=*/true, 5497 /*isDefined=*/false, ObjCMethodDecl::Required); 5498 D->addInstanceMethod(CTORMethod); 5499 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5500 D->setHasNonZeroConstructors(true); 5501 } 5502 5503 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5504 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5505 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5506 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5507 ErrorUnsupported(LSD, "linkage spec"); 5508 return; 5509 } 5510 5511 EmitDeclContext(LSD); 5512 } 5513 5514 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5515 for (auto *I : DC->decls()) { 5516 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5517 // are themselves considered "top-level", so EmitTopLevelDecl on an 5518 // ObjCImplDecl does not recursively visit them. We need to do that in 5519 // case they're nested inside another construct (LinkageSpecDecl / 5520 // ExportDecl) that does stop them from being considered "top-level". 5521 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5522 for (auto *M : OID->methods()) 5523 EmitTopLevelDecl(M); 5524 } 5525 5526 EmitTopLevelDecl(I); 5527 } 5528 } 5529 5530 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5531 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5532 // Ignore dependent declarations. 5533 if (D->isTemplated()) 5534 return; 5535 5536 // Consteval function shouldn't be emitted. 5537 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5538 if (FD->isConsteval()) 5539 return; 5540 5541 switch (D->getKind()) { 5542 case Decl::CXXConversion: 5543 case Decl::CXXMethod: 5544 case Decl::Function: 5545 EmitGlobal(cast<FunctionDecl>(D)); 5546 // Always provide some coverage mapping 5547 // even for the functions that aren't emitted. 5548 AddDeferredUnusedCoverageMapping(D); 5549 break; 5550 5551 case Decl::CXXDeductionGuide: 5552 // Function-like, but does not result in code emission. 5553 break; 5554 5555 case Decl::Var: 5556 case Decl::Decomposition: 5557 case Decl::VarTemplateSpecialization: 5558 EmitGlobal(cast<VarDecl>(D)); 5559 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5560 for (auto *B : DD->bindings()) 5561 if (auto *HD = B->getHoldingVar()) 5562 EmitGlobal(HD); 5563 break; 5564 5565 // Indirect fields from global anonymous structs and unions can be 5566 // ignored; only the actual variable requires IR gen support. 5567 case Decl::IndirectField: 5568 break; 5569 5570 // C++ Decls 5571 case Decl::Namespace: 5572 EmitDeclContext(cast<NamespaceDecl>(D)); 5573 break; 5574 case Decl::ClassTemplateSpecialization: { 5575 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5576 if (CGDebugInfo *DI = getModuleDebugInfo()) 5577 if (Spec->getSpecializationKind() == 5578 TSK_ExplicitInstantiationDefinition && 5579 Spec->hasDefinition()) 5580 DI->completeTemplateDefinition(*Spec); 5581 } LLVM_FALLTHROUGH; 5582 case Decl::CXXRecord: { 5583 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5584 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5585 if (CRD->hasDefinition()) 5586 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5587 if (auto *ES = D->getASTContext().getExternalSource()) 5588 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5589 DI->completeUnusedClass(*CRD); 5590 } 5591 // Emit any static data members, they may be definitions. 5592 for (auto *I : CRD->decls()) 5593 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5594 EmitTopLevelDecl(I); 5595 break; 5596 } 5597 // No code generation needed. 5598 case Decl::UsingShadow: 5599 case Decl::ClassTemplate: 5600 case Decl::VarTemplate: 5601 case Decl::Concept: 5602 case Decl::VarTemplatePartialSpecialization: 5603 case Decl::FunctionTemplate: 5604 case Decl::TypeAliasTemplate: 5605 case Decl::Block: 5606 case Decl::Empty: 5607 case Decl::Binding: 5608 break; 5609 case Decl::Using: // using X; [C++] 5610 if (CGDebugInfo *DI = getModuleDebugInfo()) 5611 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5612 break; 5613 case Decl::NamespaceAlias: 5614 if (CGDebugInfo *DI = getModuleDebugInfo()) 5615 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5616 break; 5617 case Decl::UsingDirective: // using namespace X; [C++] 5618 if (CGDebugInfo *DI = getModuleDebugInfo()) 5619 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5620 break; 5621 case Decl::CXXConstructor: 5622 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5623 break; 5624 case Decl::CXXDestructor: 5625 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5626 break; 5627 5628 case Decl::StaticAssert: 5629 // Nothing to do. 5630 break; 5631 5632 // Objective-C Decls 5633 5634 // Forward declarations, no (immediate) code generation. 5635 case Decl::ObjCInterface: 5636 case Decl::ObjCCategory: 5637 break; 5638 5639 case Decl::ObjCProtocol: { 5640 auto *Proto = cast<ObjCProtocolDecl>(D); 5641 if (Proto->isThisDeclarationADefinition()) 5642 ObjCRuntime->GenerateProtocol(Proto); 5643 break; 5644 } 5645 5646 case Decl::ObjCCategoryImpl: 5647 // Categories have properties but don't support synthesize so we 5648 // can ignore them here. 5649 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5650 break; 5651 5652 case Decl::ObjCImplementation: { 5653 auto *OMD = cast<ObjCImplementationDecl>(D); 5654 EmitObjCPropertyImplementations(OMD); 5655 EmitObjCIvarInitializations(OMD); 5656 ObjCRuntime->GenerateClass(OMD); 5657 // Emit global variable debug information. 5658 if (CGDebugInfo *DI = getModuleDebugInfo()) 5659 if (getCodeGenOpts().hasReducedDebugInfo()) 5660 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5661 OMD->getClassInterface()), OMD->getLocation()); 5662 break; 5663 } 5664 case Decl::ObjCMethod: { 5665 auto *OMD = cast<ObjCMethodDecl>(D); 5666 // If this is not a prototype, emit the body. 5667 if (OMD->getBody()) 5668 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5669 break; 5670 } 5671 case Decl::ObjCCompatibleAlias: 5672 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5673 break; 5674 5675 case Decl::PragmaComment: { 5676 const auto *PCD = cast<PragmaCommentDecl>(D); 5677 switch (PCD->getCommentKind()) { 5678 case PCK_Unknown: 5679 llvm_unreachable("unexpected pragma comment kind"); 5680 case PCK_Linker: 5681 AppendLinkerOptions(PCD->getArg()); 5682 break; 5683 case PCK_Lib: 5684 AddDependentLib(PCD->getArg()); 5685 break; 5686 case PCK_Compiler: 5687 case PCK_ExeStr: 5688 case PCK_User: 5689 break; // We ignore all of these. 5690 } 5691 break; 5692 } 5693 5694 case Decl::PragmaDetectMismatch: { 5695 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5696 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5697 break; 5698 } 5699 5700 case Decl::LinkageSpec: 5701 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5702 break; 5703 5704 case Decl::FileScopeAsm: { 5705 // File-scope asm is ignored during device-side CUDA compilation. 5706 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5707 break; 5708 // File-scope asm is ignored during device-side OpenMP compilation. 5709 if (LangOpts.OpenMPIsDevice) 5710 break; 5711 auto *AD = cast<FileScopeAsmDecl>(D); 5712 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5713 break; 5714 } 5715 5716 case Decl::Import: { 5717 auto *Import = cast<ImportDecl>(D); 5718 5719 // If we've already imported this module, we're done. 5720 if (!ImportedModules.insert(Import->getImportedModule())) 5721 break; 5722 5723 // Emit debug information for direct imports. 5724 if (!Import->getImportedOwningModule()) { 5725 if (CGDebugInfo *DI = getModuleDebugInfo()) 5726 DI->EmitImportDecl(*Import); 5727 } 5728 5729 // Find all of the submodules and emit the module initializers. 5730 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5731 SmallVector<clang::Module *, 16> Stack; 5732 Visited.insert(Import->getImportedModule()); 5733 Stack.push_back(Import->getImportedModule()); 5734 5735 while (!Stack.empty()) { 5736 clang::Module *Mod = Stack.pop_back_val(); 5737 if (!EmittedModuleInitializers.insert(Mod).second) 5738 continue; 5739 5740 for (auto *D : Context.getModuleInitializers(Mod)) 5741 EmitTopLevelDecl(D); 5742 5743 // Visit the submodules of this module. 5744 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5745 SubEnd = Mod->submodule_end(); 5746 Sub != SubEnd; ++Sub) { 5747 // Skip explicit children; they need to be explicitly imported to emit 5748 // the initializers. 5749 if ((*Sub)->IsExplicit) 5750 continue; 5751 5752 if (Visited.insert(*Sub).second) 5753 Stack.push_back(*Sub); 5754 } 5755 } 5756 break; 5757 } 5758 5759 case Decl::Export: 5760 EmitDeclContext(cast<ExportDecl>(D)); 5761 break; 5762 5763 case Decl::OMPThreadPrivate: 5764 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5765 break; 5766 5767 case Decl::OMPAllocate: 5768 break; 5769 5770 case Decl::OMPDeclareReduction: 5771 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5772 break; 5773 5774 case Decl::OMPDeclareMapper: 5775 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5776 break; 5777 5778 case Decl::OMPRequires: 5779 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5780 break; 5781 5782 case Decl::Typedef: 5783 case Decl::TypeAlias: // using foo = bar; [C++11] 5784 if (CGDebugInfo *DI = getModuleDebugInfo()) 5785 DI->EmitAndRetainType( 5786 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5787 break; 5788 5789 case Decl::Record: 5790 if (CGDebugInfo *DI = getModuleDebugInfo()) 5791 if (cast<RecordDecl>(D)->getDefinition()) 5792 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5793 break; 5794 5795 case Decl::Enum: 5796 if (CGDebugInfo *DI = getModuleDebugInfo()) 5797 if (cast<EnumDecl>(D)->getDefinition()) 5798 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5799 break; 5800 5801 default: 5802 // Make sure we handled everything we should, every other kind is a 5803 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5804 // function. Need to recode Decl::Kind to do that easily. 5805 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5806 break; 5807 } 5808 } 5809 5810 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5811 // Do we need to generate coverage mapping? 5812 if (!CodeGenOpts.CoverageMapping) 5813 return; 5814 switch (D->getKind()) { 5815 case Decl::CXXConversion: 5816 case Decl::CXXMethod: 5817 case Decl::Function: 5818 case Decl::ObjCMethod: 5819 case Decl::CXXConstructor: 5820 case Decl::CXXDestructor: { 5821 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5822 break; 5823 SourceManager &SM = getContext().getSourceManager(); 5824 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5825 break; 5826 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5827 if (I == DeferredEmptyCoverageMappingDecls.end()) 5828 DeferredEmptyCoverageMappingDecls[D] = true; 5829 break; 5830 } 5831 default: 5832 break; 5833 }; 5834 } 5835 5836 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5837 // Do we need to generate coverage mapping? 5838 if (!CodeGenOpts.CoverageMapping) 5839 return; 5840 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5841 if (Fn->isTemplateInstantiation()) 5842 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5843 } 5844 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5845 if (I == DeferredEmptyCoverageMappingDecls.end()) 5846 DeferredEmptyCoverageMappingDecls[D] = false; 5847 else 5848 I->second = false; 5849 } 5850 5851 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5852 // We call takeVector() here to avoid use-after-free. 5853 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5854 // we deserialize function bodies to emit coverage info for them, and that 5855 // deserializes more declarations. How should we handle that case? 5856 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5857 if (!Entry.second) 5858 continue; 5859 const Decl *D = Entry.first; 5860 switch (D->getKind()) { 5861 case Decl::CXXConversion: 5862 case Decl::CXXMethod: 5863 case Decl::Function: 5864 case Decl::ObjCMethod: { 5865 CodeGenPGO PGO(*this); 5866 GlobalDecl GD(cast<FunctionDecl>(D)); 5867 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5868 getFunctionLinkage(GD)); 5869 break; 5870 } 5871 case Decl::CXXConstructor: { 5872 CodeGenPGO PGO(*this); 5873 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5874 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5875 getFunctionLinkage(GD)); 5876 break; 5877 } 5878 case Decl::CXXDestructor: { 5879 CodeGenPGO PGO(*this); 5880 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5881 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5882 getFunctionLinkage(GD)); 5883 break; 5884 } 5885 default: 5886 break; 5887 }; 5888 } 5889 } 5890 5891 void CodeGenModule::EmitMainVoidAlias() { 5892 // In order to transition away from "__original_main" gracefully, emit an 5893 // alias for "main" in the no-argument case so that libc can detect when 5894 // new-style no-argument main is in used. 5895 if (llvm::Function *F = getModule().getFunction("main")) { 5896 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5897 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5898 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5899 } 5900 } 5901 5902 /// Turns the given pointer into a constant. 5903 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5904 const void *Ptr) { 5905 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5906 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5907 return llvm::ConstantInt::get(i64, PtrInt); 5908 } 5909 5910 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5911 llvm::NamedMDNode *&GlobalMetadata, 5912 GlobalDecl D, 5913 llvm::GlobalValue *Addr) { 5914 if (!GlobalMetadata) 5915 GlobalMetadata = 5916 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5917 5918 // TODO: should we report variant information for ctors/dtors? 5919 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5920 llvm::ConstantAsMetadata::get(GetPointerConstant( 5921 CGM.getLLVMContext(), D.getDecl()))}; 5922 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5923 } 5924 5925 /// For each function which is declared within an extern "C" region and marked 5926 /// as 'used', but has internal linkage, create an alias from the unmangled 5927 /// name to the mangled name if possible. People expect to be able to refer 5928 /// to such functions with an unmangled name from inline assembly within the 5929 /// same translation unit. 5930 void CodeGenModule::EmitStaticExternCAliases() { 5931 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5932 return; 5933 for (auto &I : StaticExternCValues) { 5934 IdentifierInfo *Name = I.first; 5935 llvm::GlobalValue *Val = I.second; 5936 if (Val && !getModule().getNamedValue(Name->getName())) 5937 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5938 } 5939 } 5940 5941 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5942 GlobalDecl &Result) const { 5943 auto Res = Manglings.find(MangledName); 5944 if (Res == Manglings.end()) 5945 return false; 5946 Result = Res->getValue(); 5947 return true; 5948 } 5949 5950 /// Emits metadata nodes associating all the global values in the 5951 /// current module with the Decls they came from. This is useful for 5952 /// projects using IR gen as a subroutine. 5953 /// 5954 /// Since there's currently no way to associate an MDNode directly 5955 /// with an llvm::GlobalValue, we create a global named metadata 5956 /// with the name 'clang.global.decl.ptrs'. 5957 void CodeGenModule::EmitDeclMetadata() { 5958 llvm::NamedMDNode *GlobalMetadata = nullptr; 5959 5960 for (auto &I : MangledDeclNames) { 5961 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5962 // Some mangled names don't necessarily have an associated GlobalValue 5963 // in this module, e.g. if we mangled it for DebugInfo. 5964 if (Addr) 5965 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5966 } 5967 } 5968 5969 /// Emits metadata nodes for all the local variables in the current 5970 /// function. 5971 void CodeGenFunction::EmitDeclMetadata() { 5972 if (LocalDeclMap.empty()) return; 5973 5974 llvm::LLVMContext &Context = getLLVMContext(); 5975 5976 // Find the unique metadata ID for this name. 5977 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5978 5979 llvm::NamedMDNode *GlobalMetadata = nullptr; 5980 5981 for (auto &I : LocalDeclMap) { 5982 const Decl *D = I.first; 5983 llvm::Value *Addr = I.second.getPointer(); 5984 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5985 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5986 Alloca->setMetadata( 5987 DeclPtrKind, llvm::MDNode::get( 5988 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5989 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5990 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5991 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5992 } 5993 } 5994 } 5995 5996 void CodeGenModule::EmitVersionIdentMetadata() { 5997 llvm::NamedMDNode *IdentMetadata = 5998 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5999 std::string Version = getClangFullVersion(); 6000 llvm::LLVMContext &Ctx = TheModule.getContext(); 6001 6002 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6003 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6004 } 6005 6006 void CodeGenModule::EmitCommandLineMetadata() { 6007 llvm::NamedMDNode *CommandLineMetadata = 6008 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6009 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6010 llvm::LLVMContext &Ctx = TheModule.getContext(); 6011 6012 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6013 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6014 } 6015 6016 void CodeGenModule::EmitCoverageFile() { 6017 if (getCodeGenOpts().CoverageDataFile.empty() && 6018 getCodeGenOpts().CoverageNotesFile.empty()) 6019 return; 6020 6021 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6022 if (!CUNode) 6023 return; 6024 6025 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6026 llvm::LLVMContext &Ctx = TheModule.getContext(); 6027 auto *CoverageDataFile = 6028 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6029 auto *CoverageNotesFile = 6030 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6031 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6032 llvm::MDNode *CU = CUNode->getOperand(i); 6033 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6034 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6035 } 6036 } 6037 6038 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6039 bool ForEH) { 6040 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6041 // FIXME: should we even be calling this method if RTTI is disabled 6042 // and it's not for EH? 6043 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6044 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6045 getTriple().isNVPTX())) 6046 return llvm::Constant::getNullValue(Int8PtrTy); 6047 6048 if (ForEH && Ty->isObjCObjectPointerType() && 6049 LangOpts.ObjCRuntime.isGNUFamily()) 6050 return ObjCRuntime->GetEHType(Ty); 6051 6052 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6053 } 6054 6055 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6056 // Do not emit threadprivates in simd-only mode. 6057 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6058 return; 6059 for (auto RefExpr : D->varlists()) { 6060 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6061 bool PerformInit = 6062 VD->getAnyInitializer() && 6063 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6064 /*ForRef=*/false); 6065 6066 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6067 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6068 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6069 CXXGlobalInits.push_back(InitFunction); 6070 } 6071 } 6072 6073 llvm::Metadata * 6074 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6075 StringRef Suffix) { 6076 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6077 if (InternalId) 6078 return InternalId; 6079 6080 if (isExternallyVisible(T->getLinkage())) { 6081 std::string OutName; 6082 llvm::raw_string_ostream Out(OutName); 6083 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6084 Out << Suffix; 6085 6086 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6087 } else { 6088 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6089 llvm::ArrayRef<llvm::Metadata *>()); 6090 } 6091 6092 return InternalId; 6093 } 6094 6095 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6096 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6097 } 6098 6099 llvm::Metadata * 6100 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6101 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6102 } 6103 6104 // Generalize pointer types to a void pointer with the qualifiers of the 6105 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6106 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6107 // 'void *'. 6108 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6109 if (!Ty->isPointerType()) 6110 return Ty; 6111 6112 return Ctx.getPointerType( 6113 QualType(Ctx.VoidTy).withCVRQualifiers( 6114 Ty->getPointeeType().getCVRQualifiers())); 6115 } 6116 6117 // Apply type generalization to a FunctionType's return and argument types 6118 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6119 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6120 SmallVector<QualType, 8> GeneralizedParams; 6121 for (auto &Param : FnType->param_types()) 6122 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6123 6124 return Ctx.getFunctionType( 6125 GeneralizeType(Ctx, FnType->getReturnType()), 6126 GeneralizedParams, FnType->getExtProtoInfo()); 6127 } 6128 6129 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6130 return Ctx.getFunctionNoProtoType( 6131 GeneralizeType(Ctx, FnType->getReturnType())); 6132 6133 llvm_unreachable("Encountered unknown FunctionType"); 6134 } 6135 6136 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6137 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6138 GeneralizedMetadataIdMap, ".generalized"); 6139 } 6140 6141 /// Returns whether this module needs the "all-vtables" type identifier. 6142 bool CodeGenModule::NeedAllVtablesTypeId() const { 6143 // Returns true if at least one of vtable-based CFI checkers is enabled and 6144 // is not in the trapping mode. 6145 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6146 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6147 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6148 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6149 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6150 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6151 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6152 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6153 } 6154 6155 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6156 CharUnits Offset, 6157 const CXXRecordDecl *RD) { 6158 llvm::Metadata *MD = 6159 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6160 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6161 6162 if (CodeGenOpts.SanitizeCfiCrossDso) 6163 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6164 VTable->addTypeMetadata(Offset.getQuantity(), 6165 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6166 6167 if (NeedAllVtablesTypeId()) { 6168 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6169 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6170 } 6171 } 6172 6173 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6174 if (!SanStats) 6175 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6176 6177 return *SanStats; 6178 } 6179 llvm::Value * 6180 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6181 CodeGenFunction &CGF) { 6182 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6183 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6184 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6185 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6186 "__translate_sampler_initializer"), 6187 {C}); 6188 } 6189 6190 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6191 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6192 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6193 /* forPointeeType= */ true); 6194 } 6195 6196 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6197 LValueBaseInfo *BaseInfo, 6198 TBAAAccessInfo *TBAAInfo, 6199 bool forPointeeType) { 6200 if (TBAAInfo) 6201 *TBAAInfo = getTBAAAccessInfo(T); 6202 6203 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6204 // that doesn't return the information we need to compute BaseInfo. 6205 6206 // Honor alignment typedef attributes even on incomplete types. 6207 // We also honor them straight for C++ class types, even as pointees; 6208 // there's an expressivity gap here. 6209 if (auto TT = T->getAs<TypedefType>()) { 6210 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6211 if (BaseInfo) 6212 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6213 return getContext().toCharUnitsFromBits(Align); 6214 } 6215 } 6216 6217 bool AlignForArray = T->isArrayType(); 6218 6219 // Analyze the base element type, so we don't get confused by incomplete 6220 // array types. 6221 T = getContext().getBaseElementType(T); 6222 6223 if (T->isIncompleteType()) { 6224 // We could try to replicate the logic from 6225 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6226 // type is incomplete, so it's impossible to test. We could try to reuse 6227 // getTypeAlignIfKnown, but that doesn't return the information we need 6228 // to set BaseInfo. So just ignore the possibility that the alignment is 6229 // greater than one. 6230 if (BaseInfo) 6231 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6232 return CharUnits::One(); 6233 } 6234 6235 if (BaseInfo) 6236 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6237 6238 CharUnits Alignment; 6239 const CXXRecordDecl *RD; 6240 if (T.getQualifiers().hasUnaligned()) { 6241 Alignment = CharUnits::One(); 6242 } else if (forPointeeType && !AlignForArray && 6243 (RD = T->getAsCXXRecordDecl())) { 6244 // For C++ class pointees, we don't know whether we're pointing at a 6245 // base or a complete object, so we generally need to use the 6246 // non-virtual alignment. 6247 Alignment = getClassPointerAlignment(RD); 6248 } else { 6249 Alignment = getContext().getTypeAlignInChars(T); 6250 } 6251 6252 // Cap to the global maximum type alignment unless the alignment 6253 // was somehow explicit on the type. 6254 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6255 if (Alignment.getQuantity() > MaxAlign && 6256 !getContext().isAlignmentRequired(T)) 6257 Alignment = CharUnits::fromQuantity(MaxAlign); 6258 } 6259 return Alignment; 6260 } 6261 6262 bool CodeGenModule::stopAutoInit() { 6263 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6264 if (StopAfter) { 6265 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6266 // used 6267 if (NumAutoVarInit >= StopAfter) { 6268 return true; 6269 } 6270 if (!NumAutoVarInit) { 6271 unsigned DiagID = getDiags().getCustomDiagID( 6272 DiagnosticsEngine::Warning, 6273 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6274 "number of times ftrivial-auto-var-init=%1 gets applied."); 6275 getDiags().Report(DiagID) 6276 << StopAfter 6277 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6278 LangOptions::TrivialAutoVarInitKind::Zero 6279 ? "zero" 6280 : "pattern"); 6281 } 6282 ++NumAutoVarInit; 6283 } 6284 return false; 6285 } 6286