xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 387b37af1aabf325e9be844361564dfad8d45c75)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::m68k:
120     return createM68kTargetCodeGenInfo(CGM);
121   case llvm::Triple::mips:
122   case llvm::Triple::mipsel:
123     if (Triple.getOS() == llvm::Triple::NaCl)
124       return createPNaClTargetCodeGenInfo(CGM);
125     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
126 
127   case llvm::Triple::mips64:
128   case llvm::Triple::mips64el:
129     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
130 
131   case llvm::Triple::avr: {
132     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
133     // on avrtiny. For passing return value, R18~R25 are used on avr, and
134     // R22~R25 are used on avrtiny.
135     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
136     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
137     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
138   }
139 
140   case llvm::Triple::aarch64:
141   case llvm::Triple::aarch64_32:
142   case llvm::Triple::aarch64_be: {
143     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
144     if (Target.getABI() == "darwinpcs")
145       Kind = AArch64ABIKind::DarwinPCS;
146     else if (Triple.isOSWindows())
147       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
148     else if (Target.getABI() == "aapcs-soft")
149       Kind = AArch64ABIKind::AAPCSSoft;
150     else if (Target.getABI() == "pauthtest")
151       Kind = AArch64ABIKind::PAuthTest;
152 
153     return createAArch64TargetCodeGenInfo(CGM, Kind);
154   }
155 
156   case llvm::Triple::wasm32:
157   case llvm::Triple::wasm64: {
158     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
159     if (Target.getABI() == "experimental-mv")
160       Kind = WebAssemblyABIKind::ExperimentalMV;
161     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
162   }
163 
164   case llvm::Triple::arm:
165   case llvm::Triple::armeb:
166   case llvm::Triple::thumb:
167   case llvm::Triple::thumbeb: {
168     if (Triple.getOS() == llvm::Triple::Win32)
169       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
170 
171     ARMABIKind Kind = ARMABIKind::AAPCS;
172     StringRef ABIStr = Target.getABI();
173     if (ABIStr == "apcs-gnu")
174       Kind = ARMABIKind::APCS;
175     else if (ABIStr == "aapcs16")
176       Kind = ARMABIKind::AAPCS16_VFP;
177     else if (CodeGenOpts.FloatABI == "hard" ||
178              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
179       Kind = ARMABIKind::AAPCS_VFP;
180 
181     return createARMTargetCodeGenInfo(CGM, Kind);
182   }
183 
184   case llvm::Triple::ppc: {
185     if (Triple.isOSAIX())
186       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
187 
188     bool IsSoftFloat =
189         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
190     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191   }
192   case llvm::Triple::ppcle: {
193     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
194     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
195   }
196   case llvm::Triple::ppc64:
197     if (Triple.isOSAIX())
198       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
199 
200     if (Triple.isOSBinFormatELF()) {
201       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
202       if (Target.getABI() == "elfv2")
203         Kind = PPC64_SVR4_ABIKind::ELFv2;
204       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
205 
206       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
207     }
208     return createPPC64TargetCodeGenInfo(CGM);
209   case llvm::Triple::ppc64le: {
210     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
211     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
212     if (Target.getABI() == "elfv1")
213       Kind = PPC64_SVR4_ABIKind::ELFv1;
214     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
215 
216     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
217   }
218 
219   case llvm::Triple::nvptx:
220   case llvm::Triple::nvptx64:
221     return createNVPTXTargetCodeGenInfo(CGM);
222 
223   case llvm::Triple::msp430:
224     return createMSP430TargetCodeGenInfo(CGM);
225 
226   case llvm::Triple::riscv32:
227   case llvm::Triple::riscv64: {
228     StringRef ABIStr = Target.getABI();
229     unsigned XLen = Target.getPointerWidth(LangAS::Default);
230     unsigned ABIFLen = 0;
231     if (ABIStr.ends_with("f"))
232       ABIFLen = 32;
233     else if (ABIStr.ends_with("d"))
234       ABIFLen = 64;
235     bool EABI = ABIStr.ends_with("e");
236     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
237   }
238 
239   case llvm::Triple::systemz: {
240     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
241     bool HasVector = !SoftFloat && Target.getABI() == "vector";
242     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
243   }
244 
245   case llvm::Triple::tce:
246   case llvm::Triple::tcele:
247     return createTCETargetCodeGenInfo(CGM);
248 
249   case llvm::Triple::x86: {
250     bool IsDarwinVectorABI = Triple.isOSDarwin();
251     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
252 
253     if (Triple.getOS() == llvm::Triple::Win32) {
254       return createWinX86_32TargetCodeGenInfo(
255           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
256           CodeGenOpts.NumRegisterParameters);
257     }
258     return createX86_32TargetCodeGenInfo(
259         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
260         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
261   }
262 
263   case llvm::Triple::x86_64: {
264     StringRef ABI = Target.getABI();
265     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
266                                : ABI == "avx"  ? X86AVXABILevel::AVX
267                                                : X86AVXABILevel::None);
268 
269     switch (Triple.getOS()) {
270     case llvm::Triple::Win32:
271       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
272     default:
273       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
274     }
275   }
276   case llvm::Triple::hexagon:
277     return createHexagonTargetCodeGenInfo(CGM);
278   case llvm::Triple::lanai:
279     return createLanaiTargetCodeGenInfo(CGM);
280   case llvm::Triple::r600:
281     return createAMDGPUTargetCodeGenInfo(CGM);
282   case llvm::Triple::amdgcn:
283     return createAMDGPUTargetCodeGenInfo(CGM);
284   case llvm::Triple::sparc:
285     return createSparcV8TargetCodeGenInfo(CGM);
286   case llvm::Triple::sparcv9:
287     return createSparcV9TargetCodeGenInfo(CGM);
288   case llvm::Triple::xcore:
289     return createXCoreTargetCodeGenInfo(CGM);
290   case llvm::Triple::arc:
291     return createARCTargetCodeGenInfo(CGM);
292   case llvm::Triple::spir:
293   case llvm::Triple::spir64:
294     return createCommonSPIRTargetCodeGenInfo(CGM);
295   case llvm::Triple::spirv32:
296   case llvm::Triple::spirv64:
297     return createSPIRVTargetCodeGenInfo(CGM);
298   case llvm::Triple::dxil:
299     return createDirectXTargetCodeGenInfo(CGM);
300   case llvm::Triple::ve:
301     return createVETargetCodeGenInfo(CGM);
302   case llvm::Triple::csky: {
303     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
304     bool hasFP64 =
305         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
306     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
307                                             : hasFP64   ? 64
308                                                         : 32);
309   }
310   case llvm::Triple::bpfeb:
311   case llvm::Triple::bpfel:
312     return createBPFTargetCodeGenInfo(CGM);
313   case llvm::Triple::loongarch32:
314   case llvm::Triple::loongarch64: {
315     StringRef ABIStr = Target.getABI();
316     unsigned ABIFRLen = 0;
317     if (ABIStr.ends_with("f"))
318       ABIFRLen = 32;
319     else if (ABIStr.ends_with("d"))
320       ABIFRLen = 64;
321     return createLoongArchTargetCodeGenInfo(
322         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
323   }
324   }
325 }
326 
327 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
328   if (!TheTargetCodeGenInfo)
329     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
330   return *TheTargetCodeGenInfo;
331 }
332 
333 CodeGenModule::CodeGenModule(ASTContext &C,
334                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
335                              const HeaderSearchOptions &HSO,
336                              const PreprocessorOptions &PPO,
337                              const CodeGenOptions &CGO, llvm::Module &M,
338                              DiagnosticsEngine &diags,
339                              CoverageSourceInfo *CoverageInfo)
340     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
341       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
342       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
343       VMContext(M.getContext()), VTables(*this),
344       SanitizerMD(new SanitizerMetadata(*this)) {
345 
346   // Initialize the type cache.
347   Types.reset(new CodeGenTypes(*this));
348   llvm::LLVMContext &LLVMContext = M.getContext();
349   VoidTy = llvm::Type::getVoidTy(LLVMContext);
350   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354   HalfTy = llvm::Type::getHalfTy(LLVMContext);
355   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356   FloatTy = llvm::Type::getFloatTy(LLVMContext);
357   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359   PointerAlignInBytes =
360       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361           .getQuantity();
362   SizeSizeInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364   IntAlignInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366   CharTy =
367     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369   IntPtrTy = llvm::IntegerType::get(LLVMContext,
370     C.getTargetInfo().getMaxPointerWidth());
371   Int8PtrTy = llvm::PointerType::get(LLVMContext,
372                                      C.getTargetAddressSpace(LangAS::Default));
373   const llvm::DataLayout &DL = M.getDataLayout();
374   AllocaInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
376   GlobalsInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
378   ConstGlobalsPtrTy = llvm::PointerType::get(
379       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
380   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
381 
382   // Build C++20 Module initializers.
383   // TODO: Add Microsoft here once we know the mangling required for the
384   // initializers.
385   CXX20ModuleInits =
386       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
387                                        ItaniumMangleContext::MK_Itanium;
388 
389   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
390 
391   if (LangOpts.ObjC)
392     createObjCRuntime();
393   if (LangOpts.OpenCL)
394     createOpenCLRuntime();
395   if (LangOpts.OpenMP)
396     createOpenMPRuntime();
397   if (LangOpts.CUDA)
398     createCUDARuntime();
399   if (LangOpts.HLSL)
400     createHLSLRuntime();
401 
402   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
403   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
404       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
405     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
406                                getLangOpts()));
407 
408   // If debug info or coverage generation is enabled, create the CGDebugInfo
409   // object.
410   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
411       CodeGenOpts.CoverageNotesFile.size() ||
412       CodeGenOpts.CoverageDataFile.size())
413     DebugInfo.reset(new CGDebugInfo(*this));
414 
415   Block.GlobalUniqueCount = 0;
416 
417   if (C.getLangOpts().ObjC)
418     ObjCData.reset(new ObjCEntrypoints());
419 
420   if (CodeGenOpts.hasProfileClangUse()) {
421     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
422         CodeGenOpts.ProfileInstrumentUsePath, *FS,
423         CodeGenOpts.ProfileRemappingFile);
424     // We're checking for profile read errors in CompilerInvocation, so if
425     // there was an error it should've already been caught. If it hasn't been
426     // somehow, trip an assertion.
427     assert(ReaderOrErr);
428     PGOReader = std::move(ReaderOrErr.get());
429   }
430 
431   // If coverage mapping generation is enabled, create the
432   // CoverageMappingModuleGen object.
433   if (CodeGenOpts.CoverageMapping)
434     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
435 
436   // Generate the module name hash here if needed.
437   if (CodeGenOpts.UniqueInternalLinkageNames &&
438       !getModule().getSourceFileName().empty()) {
439     std::string Path = getModule().getSourceFileName();
440     // Check if a path substitution is needed from the MacroPrefixMap.
441     for (const auto &Entry : LangOpts.MacroPrefixMap)
442       if (Path.rfind(Entry.first, 0) != std::string::npos) {
443         Path = Entry.second + Path.substr(Entry.first.size());
444         break;
445       }
446     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447   }
448 
449   // Record mregparm value now so it is visible through all of codegen.
450   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
451     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
452                               CodeGenOpts.NumRegisterParameters);
453 }
454 
455 CodeGenModule::~CodeGenModule() {}
456 
457 void CodeGenModule::createObjCRuntime() {
458   // This is just isGNUFamily(), but we want to force implementors of
459   // new ABIs to decide how best to do this.
460   switch (LangOpts.ObjCRuntime.getKind()) {
461   case ObjCRuntime::GNUstep:
462   case ObjCRuntime::GCC:
463   case ObjCRuntime::ObjFW:
464     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
465     return;
466 
467   case ObjCRuntime::FragileMacOSX:
468   case ObjCRuntime::MacOSX:
469   case ObjCRuntime::iOS:
470   case ObjCRuntime::WatchOS:
471     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
472     return;
473   }
474   llvm_unreachable("bad runtime kind");
475 }
476 
477 void CodeGenModule::createOpenCLRuntime() {
478   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 }
480 
481 void CodeGenModule::createOpenMPRuntime() {
482   // Select a specialized code generation class based on the target, if any.
483   // If it does not exist use the default implementation.
484   switch (getTriple().getArch()) {
485   case llvm::Triple::nvptx:
486   case llvm::Triple::nvptx64:
487   case llvm::Triple::amdgcn:
488     assert(getLangOpts().OpenMPIsTargetDevice &&
489            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
490     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
491     break;
492   default:
493     if (LangOpts.OpenMPSimd)
494       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
495     else
496       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
497     break;
498   }
499 }
500 
501 void CodeGenModule::createCUDARuntime() {
502   CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 }
504 
505 void CodeGenModule::createHLSLRuntime() {
506   HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 }
508 
509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
510   Replacements[Name] = C;
511 }
512 
513 void CodeGenModule::applyReplacements() {
514   for (auto &I : Replacements) {
515     StringRef MangledName = I.first;
516     llvm::Constant *Replacement = I.second;
517     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
518     if (!Entry)
519       continue;
520     auto *OldF = cast<llvm::Function>(Entry);
521     auto *NewF = dyn_cast<llvm::Function>(Replacement);
522     if (!NewF) {
523       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
524         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
525       } else {
526         auto *CE = cast<llvm::ConstantExpr>(Replacement);
527         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
528                CE->getOpcode() == llvm::Instruction::GetElementPtr);
529         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
530       }
531     }
532 
533     // Replace old with new, but keep the old order.
534     OldF->replaceAllUsesWith(Replacement);
535     if (NewF) {
536       NewF->removeFromParent();
537       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
538                                                        NewF);
539     }
540     OldF->eraseFromParent();
541   }
542 }
543 
544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
545   GlobalValReplacements.push_back(std::make_pair(GV, C));
546 }
547 
548 void CodeGenModule::applyGlobalValReplacements() {
549   for (auto &I : GlobalValReplacements) {
550     llvm::GlobalValue *GV = I.first;
551     llvm::Constant *C = I.second;
552 
553     GV->replaceAllUsesWith(C);
554     GV->eraseFromParent();
555   }
556 }
557 
558 // This is only used in aliases that we created and we know they have a
559 // linear structure.
560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
561   const llvm::Constant *C;
562   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
563     C = GA->getAliasee();
564   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
565     C = GI->getResolver();
566   else
567     return GV;
568 
569   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
570   if (!AliaseeGV)
571     return nullptr;
572 
573   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
574   if (FinalGV == GV)
575     return nullptr;
576 
577   return FinalGV;
578 }
579 
580 static bool checkAliasedGlobal(
581     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
582     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
583     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
584     SourceRange AliasRange) {
585   GV = getAliasedGlobal(Alias);
586   if (!GV) {
587     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
588     return false;
589   }
590 
591   if (GV->hasCommonLinkage()) {
592     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
593     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
594       Diags.Report(Location, diag::err_alias_to_common);
595       return false;
596     }
597   }
598 
599   if (GV->isDeclaration()) {
600     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
601     Diags.Report(Location, diag::note_alias_requires_mangled_name)
602         << IsIFunc << IsIFunc;
603     // Provide a note if the given function is not found and exists as a
604     // mangled name.
605     for (const auto &[Decl, Name] : MangledDeclNames) {
606       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
607         if (ND->getName() == GV->getName()) {
608           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609               << Name
610               << FixItHint::CreateReplacement(
611                      AliasRange,
612                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613                          .str());
614         }
615       }
616     }
617     return false;
618   }
619 
620   if (IsIFunc) {
621     // Check resolver function type.
622     const auto *F = dyn_cast<llvm::Function>(GV);
623     if (!F) {
624       Diags.Report(Location, diag::err_alias_to_undefined)
625           << IsIFunc << IsIFunc;
626       return false;
627     }
628 
629     llvm::FunctionType *FTy = F->getFunctionType();
630     if (!FTy->getReturnType()->isPointerTy()) {
631       Diags.Report(Location, diag::err_ifunc_resolver_return);
632       return false;
633     }
634   }
635 
636   return true;
637 }
638 
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642                                  const CodeGenOptions &CodeGenOpts,
643                                  DiagnosticsEngine &Diags,
644                                  SourceLocation Location) {
645   if (GVar->hasAttribute("toc-data")) {
646     auto GVId = GVar->getName();
647     // Is this a global variable specified by the user as local?
648     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649       Diags.Report(Location, diag::warn_toc_unsupported_type)
650           << GVId << "the variable has an alias";
651     }
652     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653     llvm::AttributeSet NewAttributes =
654         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655     GVar->setAttributes(NewAttributes);
656   }
657 }
658 
659 void CodeGenModule::checkAliases() {
660   // Check if the constructed aliases are well formed. It is really unfortunate
661   // that we have to do this in CodeGen, but we only construct mangled names
662   // and aliases during codegen.
663   bool Error = false;
664   DiagnosticsEngine &Diags = getDiags();
665   for (const GlobalDecl &GD : Aliases) {
666     const auto *D = cast<ValueDecl>(GD.getDecl());
667     SourceLocation Location;
668     SourceRange Range;
669     bool IsIFunc = D->hasAttr<IFuncAttr>();
670     if (const Attr *A = D->getDefiningAttr()) {
671       Location = A->getLocation();
672       Range = A->getRange();
673     } else
674       llvm_unreachable("Not an alias or ifunc?");
675 
676     StringRef MangledName = getMangledName(GD);
677     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678     const llvm::GlobalValue *GV = nullptr;
679     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680                             MangledDeclNames, Range)) {
681       Error = true;
682       continue;
683     }
684 
685     if (getContext().getTargetInfo().getTriple().isOSAIX())
686       if (const llvm::GlobalVariable *GVar =
687               dyn_cast<const llvm::GlobalVariable>(GV))
688         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689                              getCodeGenOpts(), Diags, Location);
690 
691     llvm::Constant *Aliasee =
692         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694 
695     llvm::GlobalValue *AliaseeGV;
696     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698     else
699       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700 
701     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702       StringRef AliasSection = SA->getName();
703       if (AliasSection != AliaseeGV->getSection())
704         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705             << AliasSection << IsIFunc << IsIFunc;
706     }
707 
708     // We have to handle alias to weak aliases in here. LLVM itself disallows
709     // this since the object semantics would not match the IL one. For
710     // compatibility with gcc we implement it by just pointing the alias
711     // to its aliasee's aliasee. We also warn, since the user is probably
712     // expecting the link to be weak.
713     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714       if (GA->isInterposable()) {
715         Diags.Report(Location, diag::warn_alias_to_weak_alias)
716             << GV->getName() << GA->getName() << IsIFunc;
717         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718             GA->getAliasee(), Alias->getType());
719 
720         if (IsIFunc)
721           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722         else
723           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724       }
725     }
726     // ifunc resolvers are usually implemented to run before sanitizer
727     // initialization. Disable instrumentation to prevent the ordering issue.
728     if (IsIFunc)
729       cast<llvm::Function>(Aliasee)->addFnAttr(
730           llvm::Attribute::DisableSanitizerInstrumentation);
731   }
732   if (!Error)
733     return;
734 
735   for (const GlobalDecl &GD : Aliases) {
736     StringRef MangledName = getMangledName(GD);
737     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
738     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
739     Alias->eraseFromParent();
740   }
741 }
742 
743 void CodeGenModule::clear() {
744   DeferredDeclsToEmit.clear();
745   EmittedDeferredDecls.clear();
746   DeferredAnnotations.clear();
747   if (OpenMPRuntime)
748     OpenMPRuntime->clear();
749 }
750 
751 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
752                                        StringRef MainFile) {
753   if (!hasDiagnostics())
754     return;
755   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
756     if (MainFile.empty())
757       MainFile = "<stdin>";
758     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
759   } else {
760     if (Mismatched > 0)
761       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
762 
763     if (Missing > 0)
764       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
765   }
766 }
767 
768 static std::optional<llvm::GlobalValue::VisibilityTypes>
769 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
770   // Map to LLVM visibility.
771   switch (K) {
772   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
773     return std::nullopt;
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
775     return llvm::GlobalValue::DefaultVisibility;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
777     return llvm::GlobalValue::HiddenVisibility;
778   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
779     return llvm::GlobalValue::ProtectedVisibility;
780   }
781   llvm_unreachable("unknown option value!");
782 }
783 
784 static void
785 setLLVMVisibility(llvm::GlobalValue &GV,
786                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
787   if (!V)
788     return;
789 
790   // Reset DSO locality before setting the visibility. This removes
791   // any effects that visibility options and annotations may have
792   // had on the DSO locality. Setting the visibility will implicitly set
793   // appropriate globals to DSO Local; however, this will be pessimistic
794   // w.r.t. to the normal compiler IRGen.
795   GV.setDSOLocal(false);
796   GV.setVisibility(*V);
797 }
798 
799 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
800                                              llvm::Module &M) {
801   if (!LO.VisibilityFromDLLStorageClass)
802     return;
803 
804   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
805       getLLVMVisibility(LO.getDLLExportVisibility());
806 
807   std::optional<llvm::GlobalValue::VisibilityTypes>
808       NoDLLStorageClassVisibility =
809           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
810 
811   std::optional<llvm::GlobalValue::VisibilityTypes>
812       ExternDeclDLLImportVisibility =
813           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
814 
815   std::optional<llvm::GlobalValue::VisibilityTypes>
816       ExternDeclNoDLLStorageClassVisibility =
817           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
818 
819   for (llvm::GlobalValue &GV : M.global_values()) {
820     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
821       continue;
822 
823     if (GV.isDeclarationForLinker())
824       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
825                                     llvm::GlobalValue::DLLImportStorageClass
826                                 ? ExternDeclDLLImportVisibility
827                                 : ExternDeclNoDLLStorageClassVisibility);
828     else
829       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
830                                     llvm::GlobalValue::DLLExportStorageClass
831                                 ? DLLExportVisibility
832                                 : NoDLLStorageClassVisibility);
833 
834     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
835   }
836 }
837 
838 static bool isStackProtectorOn(const LangOptions &LangOpts,
839                                const llvm::Triple &Triple,
840                                clang::LangOptions::StackProtectorMode Mode) {
841   if (Triple.isAMDGPU() || Triple.isNVPTX())
842     return false;
843   return LangOpts.getStackProtector() == Mode;
844 }
845 
846 void CodeGenModule::Release() {
847   Module *Primary = getContext().getCurrentNamedModule();
848   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
849     EmitModuleInitializers(Primary);
850   EmitDeferred();
851   DeferredDecls.insert(EmittedDeferredDecls.begin(),
852                        EmittedDeferredDecls.end());
853   EmittedDeferredDecls.clear();
854   EmitVTablesOpportunistically();
855   applyGlobalValReplacements();
856   applyReplacements();
857   emitMultiVersionFunctions();
858 
859   if (Context.getLangOpts().IncrementalExtensions &&
860       GlobalTopLevelStmtBlockInFlight.first) {
861     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
862     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
863     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
864   }
865 
866   // Module implementations are initialized the same way as a regular TU that
867   // imports one or more modules.
868   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
869     EmitCXXModuleInitFunc(Primary);
870   else
871     EmitCXXGlobalInitFunc();
872   EmitCXXGlobalCleanUpFunc();
873   registerGlobalDtorsWithAtExit();
874   EmitCXXThreadLocalInitFunc();
875   if (ObjCRuntime)
876     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
877       AddGlobalCtor(ObjCInitFunction);
878   if (Context.getLangOpts().CUDA && CUDARuntime) {
879     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
880       AddGlobalCtor(CudaCtorFunction);
881   }
882   if (OpenMPRuntime) {
883     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
884     OpenMPRuntime->clear();
885   }
886   if (PGOReader) {
887     getModule().setProfileSummary(
888         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
889         llvm::ProfileSummary::PSK_Instr);
890     if (PGOStats.hasDiagnostics())
891       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
892   }
893   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
894     return L.LexOrder < R.LexOrder;
895   });
896   EmitCtorList(GlobalCtors, "llvm.global_ctors");
897   EmitCtorList(GlobalDtors, "llvm.global_dtors");
898   EmitGlobalAnnotations();
899   EmitStaticExternCAliases();
900   checkAliases();
901   EmitDeferredUnusedCoverageMappings();
902   CodeGenPGO(*this).setValueProfilingFlag(getModule());
903   CodeGenPGO(*this).setProfileVersion(getModule());
904   if (CoverageMapping)
905     CoverageMapping->emit();
906   if (CodeGenOpts.SanitizeCfiCrossDso) {
907     CodeGenFunction(*this).EmitCfiCheckFail();
908     CodeGenFunction(*this).EmitCfiCheckStub();
909   }
910   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
911     finalizeKCFITypes();
912   emitAtAvailableLinkGuard();
913   if (Context.getTargetInfo().getTriple().isWasm())
914     EmitMainVoidAlias();
915 
916   if (getTriple().isAMDGPU() ||
917       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
918     // Emit amdhsa_code_object_version module flag, which is code object version
919     // times 100.
920     if (getTarget().getTargetOpts().CodeObjectVersion !=
921         llvm::CodeObjectVersionKind::COV_None) {
922       getModule().addModuleFlag(llvm::Module::Error,
923                                 "amdhsa_code_object_version",
924                                 getTarget().getTargetOpts().CodeObjectVersion);
925     }
926 
927     // Currently, "-mprintf-kind" option is only supported for HIP
928     if (LangOpts.HIP) {
929       auto *MDStr = llvm::MDString::get(
930           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
931                              TargetOptions::AMDGPUPrintfKind::Hostcall)
932                                 ? "hostcall"
933                                 : "buffered");
934       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
935                                 MDStr);
936     }
937   }
938 
939   // Emit a global array containing all external kernels or device variables
940   // used by host functions and mark it as used for CUDA/HIP. This is necessary
941   // to get kernels or device variables in archives linked in even if these
942   // kernels or device variables are only used in host functions.
943   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
944     SmallVector<llvm::Constant *, 8> UsedArray;
945     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
946       GlobalDecl GD;
947       if (auto *FD = dyn_cast<FunctionDecl>(D))
948         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
949       else
950         GD = GlobalDecl(D);
951       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
952           GetAddrOfGlobal(GD), Int8PtrTy));
953     }
954 
955     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
956 
957     auto *GV = new llvm::GlobalVariable(
958         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
959         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
960     addCompilerUsedGlobal(GV);
961   }
962   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
963     // Emit a unique ID so that host and device binaries from the same
964     // compilation unit can be associated.
965     auto *GV = new llvm::GlobalVariable(
966         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
967         llvm::Constant::getNullValue(Int8Ty),
968         "__hip_cuid_" + getContext().getCUIDHash());
969     addCompilerUsedGlobal(GV);
970   }
971   emitLLVMUsed();
972   if (SanStats)
973     SanStats->finish();
974 
975   if (CodeGenOpts.Autolink &&
976       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
977     EmitModuleLinkOptions();
978   }
979 
980   // On ELF we pass the dependent library specifiers directly to the linker
981   // without manipulating them. This is in contrast to other platforms where
982   // they are mapped to a specific linker option by the compiler. This
983   // difference is a result of the greater variety of ELF linkers and the fact
984   // that ELF linkers tend to handle libraries in a more complicated fashion
985   // than on other platforms. This forces us to defer handling the dependent
986   // libs to the linker.
987   //
988   // CUDA/HIP device and host libraries are different. Currently there is no
989   // way to differentiate dependent libraries for host or device. Existing
990   // usage of #pragma comment(lib, *) is intended for host libraries on
991   // Windows. Therefore emit llvm.dependent-libraries only for host.
992   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
993     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
994     for (auto *MD : ELFDependentLibraries)
995       NMD->addOperand(MD);
996   }
997 
998   if (CodeGenOpts.DwarfVersion) {
999     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
1000                               CodeGenOpts.DwarfVersion);
1001   }
1002 
1003   if (CodeGenOpts.Dwarf64)
1004     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1005 
1006   if (Context.getLangOpts().SemanticInterposition)
1007     // Require various optimization to respect semantic interposition.
1008     getModule().setSemanticInterposition(true);
1009 
1010   if (CodeGenOpts.EmitCodeView) {
1011     // Indicate that we want CodeView in the metadata.
1012     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1013   }
1014   if (CodeGenOpts.CodeViewGHash) {
1015     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1016   }
1017   if (CodeGenOpts.ControlFlowGuard) {
1018     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1019     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1020   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1021     // Function ID tables for Control Flow Guard (cfguard=1).
1022     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1023   }
1024   if (CodeGenOpts.EHContGuard) {
1025     // Function ID tables for EH Continuation Guard.
1026     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1027   }
1028   if (Context.getLangOpts().Kernel) {
1029     // Note if we are compiling with /kernel.
1030     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1031   }
1032   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1033     // We don't support LTO with 2 with different StrictVTablePointers
1034     // FIXME: we could support it by stripping all the information introduced
1035     // by StrictVTablePointers.
1036 
1037     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1038 
1039     llvm::Metadata *Ops[2] = {
1040               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1041               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1042                   llvm::Type::getInt32Ty(VMContext), 1))};
1043 
1044     getModule().addModuleFlag(llvm::Module::Require,
1045                               "StrictVTablePointersRequirement",
1046                               llvm::MDNode::get(VMContext, Ops));
1047   }
1048   if (getModuleDebugInfo())
1049     // We support a single version in the linked module. The LLVM
1050     // parser will drop debug info with a different version number
1051     // (and warn about it, too).
1052     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1053                               llvm::DEBUG_METADATA_VERSION);
1054 
1055   // We need to record the widths of enums and wchar_t, so that we can generate
1056   // the correct build attributes in the ARM backend. wchar_size is also used by
1057   // TargetLibraryInfo.
1058   uint64_t WCharWidth =
1059       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1060   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1061 
1062   if (getTriple().isOSzOS()) {
1063     getModule().addModuleFlag(llvm::Module::Warning,
1064                               "zos_product_major_version",
1065                               uint32_t(CLANG_VERSION_MAJOR));
1066     getModule().addModuleFlag(llvm::Module::Warning,
1067                               "zos_product_minor_version",
1068                               uint32_t(CLANG_VERSION_MINOR));
1069     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1070                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1071     std::string ProductId = getClangVendor() + "clang";
1072     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1073                               llvm::MDString::get(VMContext, ProductId));
1074 
1075     // Record the language because we need it for the PPA2.
1076     StringRef lang_str = languageToString(
1077         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1078     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1079                               llvm::MDString::get(VMContext, lang_str));
1080 
1081     time_t TT = PreprocessorOpts.SourceDateEpoch
1082                     ? *PreprocessorOpts.SourceDateEpoch
1083                     : std::time(nullptr);
1084     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1085                               static_cast<uint64_t>(TT));
1086 
1087     // Multiple modes will be supported here.
1088     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1089                               llvm::MDString::get(VMContext, "ascii"));
1090   }
1091 
1092   llvm::Triple T = Context.getTargetInfo().getTriple();
1093   if (T.isARM() || T.isThumb()) {
1094     // The minimum width of an enum in bytes
1095     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1096     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1097   }
1098 
1099   if (T.isRISCV()) {
1100     StringRef ABIStr = Target.getABI();
1101     llvm::LLVMContext &Ctx = TheModule.getContext();
1102     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1103                               llvm::MDString::get(Ctx, ABIStr));
1104 
1105     // Add the canonical ISA string as metadata so the backend can set the ELF
1106     // attributes correctly. We use AppendUnique so LTO will keep all of the
1107     // unique ISA strings that were linked together.
1108     const std::vector<std::string> &Features =
1109         getTarget().getTargetOpts().Features;
1110     auto ParseResult =
1111         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1112     if (!errorToBool(ParseResult.takeError()))
1113       getModule().addModuleFlag(
1114           llvm::Module::AppendUnique, "riscv-isa",
1115           llvm::MDNode::get(
1116               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1117   }
1118 
1119   if (CodeGenOpts.SanitizeCfiCrossDso) {
1120     // Indicate that we want cross-DSO control flow integrity checks.
1121     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1122   }
1123 
1124   if (CodeGenOpts.WholeProgramVTables) {
1125     // Indicate whether VFE was enabled for this module, so that the
1126     // vcall_visibility metadata added under whole program vtables is handled
1127     // appropriately in the optimizer.
1128     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1129                               CodeGenOpts.VirtualFunctionElimination);
1130   }
1131 
1132   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1133     getModule().addModuleFlag(llvm::Module::Override,
1134                               "CFI Canonical Jump Tables",
1135                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1136   }
1137 
1138   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1139     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1140                               1);
1141   }
1142 
1143   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1144     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1145     // KCFI assumes patchable-function-prefix is the same for all indirectly
1146     // called functions. Store the expected offset for code generation.
1147     if (CodeGenOpts.PatchableFunctionEntryOffset)
1148       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1149                                 CodeGenOpts.PatchableFunctionEntryOffset);
1150   }
1151 
1152   if (CodeGenOpts.CFProtectionReturn &&
1153       Target.checkCFProtectionReturnSupported(getDiags())) {
1154     // Indicate that we want to instrument return control flow protection.
1155     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1156                               1);
1157   }
1158 
1159   if (CodeGenOpts.CFProtectionBranch &&
1160       Target.checkCFProtectionBranchSupported(getDiags())) {
1161     // Indicate that we want to instrument branch control flow protection.
1162     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1163                               1);
1164 
1165     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1166     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1167       if (Scheme == CFBranchLabelSchemeKind::Default)
1168         Scheme = Target.getDefaultCFBranchLabelScheme();
1169       getModule().addModuleFlag(
1170           llvm::Module::Error, "cf-branch-label-scheme",
1171           llvm::MDString::get(getLLVMContext(),
1172                               getCFBranchLabelSchemeFlagVal(Scheme)));
1173     }
1174   }
1175 
1176   if (CodeGenOpts.FunctionReturnThunks)
1177     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1178 
1179   if (CodeGenOpts.IndirectBranchCSPrefix)
1180     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1181 
1182   // Add module metadata for return address signing (ignoring
1183   // non-leaf/all) and stack tagging. These are actually turned on by function
1184   // attributes, but we use module metadata to emit build attributes. This is
1185   // needed for LTO, where the function attributes are inside bitcode
1186   // serialised into a global variable by the time build attributes are
1187   // emitted, so we can't access them. LTO objects could be compiled with
1188   // different flags therefore module flags are set to "Min" behavior to achieve
1189   // the same end result of the normal build where e.g BTI is off if any object
1190   // doesn't support it.
1191   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1192       LangOpts.getSignReturnAddressScope() !=
1193           LangOptions::SignReturnAddressScopeKind::None)
1194     getModule().addModuleFlag(llvm::Module::Override,
1195                               "sign-return-address-buildattr", 1);
1196   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1197     getModule().addModuleFlag(llvm::Module::Override,
1198                               "tag-stack-memory-buildattr", 1);
1199 
1200   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1201     if (LangOpts.BranchTargetEnforcement)
1202       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1203                                 1);
1204     if (LangOpts.BranchProtectionPAuthLR)
1205       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1206                                 1);
1207     if (LangOpts.GuardedControlStack)
1208       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1209     if (LangOpts.hasSignReturnAddress())
1210       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1211     if (LangOpts.isSignReturnAddressScopeAll())
1212       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1213                                 1);
1214     if (!LangOpts.isSignReturnAddressWithAKey())
1215       getModule().addModuleFlag(llvm::Module::Min,
1216                                 "sign-return-address-with-bkey", 1);
1217 
1218     if (getTriple().isOSLinux()) {
1219       assert(getTriple().isOSBinFormatELF());
1220       using namespace llvm::ELF;
1221       uint64_t PAuthABIVersion =
1222           (LangOpts.PointerAuthIntrinsics
1223            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1224           (LangOpts.PointerAuthCalls
1225            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1226           (LangOpts.PointerAuthReturns
1227            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1228           (LangOpts.PointerAuthAuthTraps
1229            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1230           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1231            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1232           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1233            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1234           (LangOpts.PointerAuthInitFini
1235            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1236           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1237            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1238           (LangOpts.PointerAuthELFGOT
1239            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1240           (LangOpts.PointerAuthIndirectGotos
1241            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1242           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1243            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1244           (LangOpts.PointerAuthFunctionTypeDiscrimination
1245            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1246       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1247                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1248                     "Update when new enum items are defined");
1249       if (PAuthABIVersion != 0) {
1250         getModule().addModuleFlag(llvm::Module::Error,
1251                                   "aarch64-elf-pauthabi-platform",
1252                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1253         getModule().addModuleFlag(llvm::Module::Error,
1254                                   "aarch64-elf-pauthabi-version",
1255                                   PAuthABIVersion);
1256       }
1257     }
1258   }
1259 
1260   if (CodeGenOpts.StackClashProtector)
1261     getModule().addModuleFlag(
1262         llvm::Module::Override, "probe-stack",
1263         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1264 
1265   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1266     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1267                               CodeGenOpts.StackProbeSize);
1268 
1269   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1270     llvm::LLVMContext &Ctx = TheModule.getContext();
1271     getModule().addModuleFlag(
1272         llvm::Module::Error, "MemProfProfileFilename",
1273         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1274   }
1275 
1276   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1277     // Indicate whether __nvvm_reflect should be configured to flush denormal
1278     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1279     // property.)
1280     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1281                               CodeGenOpts.FP32DenormalMode.Output !=
1282                                   llvm::DenormalMode::IEEE);
1283   }
1284 
1285   if (LangOpts.EHAsynch)
1286     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1287 
1288   // Indicate whether this Module was compiled with -fopenmp
1289   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1290     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1291   if (getLangOpts().OpenMPIsTargetDevice)
1292     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1293                               LangOpts.OpenMP);
1294 
1295   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1296   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1297     EmitOpenCLMetadata();
1298     // Emit SPIR version.
1299     if (getTriple().isSPIR()) {
1300       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1301       // opencl.spir.version named metadata.
1302       // C++ for OpenCL has a distinct mapping for version compatibility with
1303       // OpenCL.
1304       auto Version = LangOpts.getOpenCLCompatibleVersion();
1305       llvm::Metadata *SPIRVerElts[] = {
1306           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1307               Int32Ty, Version / 100)),
1308           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1309               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1310       llvm::NamedMDNode *SPIRVerMD =
1311           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1312       llvm::LLVMContext &Ctx = TheModule.getContext();
1313       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1314     }
1315   }
1316 
1317   // HLSL related end of code gen work items.
1318   if (LangOpts.HLSL)
1319     getHLSLRuntime().finishCodeGen();
1320 
1321   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1322     assert(PLevel < 3 && "Invalid PIC Level");
1323     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1324     if (Context.getLangOpts().PIE)
1325       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1326   }
1327 
1328   if (getCodeGenOpts().CodeModel.size() > 0) {
1329     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1330                   .Case("tiny", llvm::CodeModel::Tiny)
1331                   .Case("small", llvm::CodeModel::Small)
1332                   .Case("kernel", llvm::CodeModel::Kernel)
1333                   .Case("medium", llvm::CodeModel::Medium)
1334                   .Case("large", llvm::CodeModel::Large)
1335                   .Default(~0u);
1336     if (CM != ~0u) {
1337       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1338       getModule().setCodeModel(codeModel);
1339 
1340       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1341           Context.getTargetInfo().getTriple().getArch() ==
1342               llvm::Triple::x86_64) {
1343         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1344       }
1345     }
1346   }
1347 
1348   if (CodeGenOpts.NoPLT)
1349     getModule().setRtLibUseGOT();
1350   if (getTriple().isOSBinFormatELF() &&
1351       CodeGenOpts.DirectAccessExternalData !=
1352           getModule().getDirectAccessExternalData()) {
1353     getModule().setDirectAccessExternalData(
1354         CodeGenOpts.DirectAccessExternalData);
1355   }
1356   if (CodeGenOpts.UnwindTables)
1357     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1358 
1359   switch (CodeGenOpts.getFramePointer()) {
1360   case CodeGenOptions::FramePointerKind::None:
1361     // 0 ("none") is the default.
1362     break;
1363   case CodeGenOptions::FramePointerKind::Reserved:
1364     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1365     break;
1366   case CodeGenOptions::FramePointerKind::NonLeaf:
1367     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1368     break;
1369   case CodeGenOptions::FramePointerKind::All:
1370     getModule().setFramePointer(llvm::FramePointerKind::All);
1371     break;
1372   }
1373 
1374   SimplifyPersonality();
1375 
1376   if (getCodeGenOpts().EmitDeclMetadata)
1377     EmitDeclMetadata();
1378 
1379   if (getCodeGenOpts().CoverageNotesFile.size() ||
1380       getCodeGenOpts().CoverageDataFile.size())
1381     EmitCoverageFile();
1382 
1383   if (CGDebugInfo *DI = getModuleDebugInfo())
1384     DI->finalize();
1385 
1386   if (getCodeGenOpts().EmitVersionIdentMetadata)
1387     EmitVersionIdentMetadata();
1388 
1389   if (!getCodeGenOpts().RecordCommandLine.empty())
1390     EmitCommandLineMetadata();
1391 
1392   if (!getCodeGenOpts().StackProtectorGuard.empty())
1393     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1394   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1395     getModule().setStackProtectorGuardReg(
1396         getCodeGenOpts().StackProtectorGuardReg);
1397   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1398     getModule().setStackProtectorGuardSymbol(
1399         getCodeGenOpts().StackProtectorGuardSymbol);
1400   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1401     getModule().setStackProtectorGuardOffset(
1402         getCodeGenOpts().StackProtectorGuardOffset);
1403   if (getCodeGenOpts().StackAlignment)
1404     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1405   if (getCodeGenOpts().SkipRaxSetup)
1406     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1407   if (getLangOpts().RegCall4)
1408     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1409 
1410   if (getContext().getTargetInfo().getMaxTLSAlign())
1411     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1412                               getContext().getTargetInfo().getMaxTLSAlign());
1413 
1414   getTargetCodeGenInfo().emitTargetGlobals(*this);
1415 
1416   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1417 
1418   EmitBackendOptionsMetadata(getCodeGenOpts());
1419 
1420   // If there is device offloading code embed it in the host now.
1421   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1422 
1423   // Set visibility from DLL storage class
1424   // We do this at the end of LLVM IR generation; after any operation
1425   // that might affect the DLL storage class or the visibility, and
1426   // before anything that might act on these.
1427   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1428 
1429   // Check the tail call symbols are truly undefined.
1430   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1431     for (auto &I : MustTailCallUndefinedGlobals) {
1432       if (!I.first->isDefined())
1433         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1434       else {
1435         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1436         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1437         if (!Entry || Entry->isWeakForLinker() ||
1438             Entry->isDeclarationForLinker())
1439           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1440       }
1441     }
1442   }
1443 }
1444 
1445 void CodeGenModule::EmitOpenCLMetadata() {
1446   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1447   // opencl.ocl.version named metadata node.
1448   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1449   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1450 
1451   auto EmitVersion = [this](StringRef MDName, int Version) {
1452     llvm::Metadata *OCLVerElts[] = {
1453         llvm::ConstantAsMetadata::get(
1454             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1455         llvm::ConstantAsMetadata::get(
1456             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1457     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1458     llvm::LLVMContext &Ctx = TheModule.getContext();
1459     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1460   };
1461 
1462   EmitVersion("opencl.ocl.version", CLVersion);
1463   if (LangOpts.OpenCLCPlusPlus) {
1464     // In addition to the OpenCL compatible version, emit the C++ version.
1465     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1466   }
1467 }
1468 
1469 void CodeGenModule::EmitBackendOptionsMetadata(
1470     const CodeGenOptions &CodeGenOpts) {
1471   if (getTriple().isRISCV()) {
1472     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1473                               CodeGenOpts.SmallDataLimit);
1474   }
1475 }
1476 
1477 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1478   // Make sure that this type is translated.
1479   getTypes().UpdateCompletedType(TD);
1480 }
1481 
1482 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1483   // Make sure that this type is translated.
1484   getTypes().RefreshTypeCacheForClass(RD);
1485 }
1486 
1487 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1488   if (!TBAA)
1489     return nullptr;
1490   return TBAA->getTypeInfo(QTy);
1491 }
1492 
1493 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1494   if (!TBAA)
1495     return TBAAAccessInfo();
1496   if (getLangOpts().CUDAIsDevice) {
1497     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1498     // access info.
1499     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1500       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1501           nullptr)
1502         return TBAAAccessInfo();
1503     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1504       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1505           nullptr)
1506         return TBAAAccessInfo();
1507     }
1508   }
1509   return TBAA->getAccessInfo(AccessType);
1510 }
1511 
1512 TBAAAccessInfo
1513 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1514   if (!TBAA)
1515     return TBAAAccessInfo();
1516   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1517 }
1518 
1519 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1520   if (!TBAA)
1521     return nullptr;
1522   return TBAA->getTBAAStructInfo(QTy);
1523 }
1524 
1525 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1526   if (!TBAA)
1527     return nullptr;
1528   return TBAA->getBaseTypeInfo(QTy);
1529 }
1530 
1531 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1532   if (!TBAA)
1533     return nullptr;
1534   return TBAA->getAccessTagInfo(Info);
1535 }
1536 
1537 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1538                                                    TBAAAccessInfo TargetInfo) {
1539   if (!TBAA)
1540     return TBAAAccessInfo();
1541   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1542 }
1543 
1544 TBAAAccessInfo
1545 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1546                                                    TBAAAccessInfo InfoB) {
1547   if (!TBAA)
1548     return TBAAAccessInfo();
1549   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1550 }
1551 
1552 TBAAAccessInfo
1553 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1554                                               TBAAAccessInfo SrcInfo) {
1555   if (!TBAA)
1556     return TBAAAccessInfo();
1557   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1558 }
1559 
1560 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1561                                                 TBAAAccessInfo TBAAInfo) {
1562   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1563     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1564 }
1565 
1566 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1567     llvm::Instruction *I, const CXXRecordDecl *RD) {
1568   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1569                  llvm::MDNode::get(getLLVMContext(), {}));
1570 }
1571 
1572 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1573   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1574   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1575 }
1576 
1577 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1578 /// specified stmt yet.
1579 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1580   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1581                                                "cannot compile this %0 yet");
1582   std::string Msg = Type;
1583   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1584       << Msg << S->getSourceRange();
1585 }
1586 
1587 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1588 /// specified decl yet.
1589 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1590   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1591                                                "cannot compile this %0 yet");
1592   std::string Msg = Type;
1593   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1594 }
1595 
1596 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1597   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1598 }
1599 
1600 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1601                                         const NamedDecl *D) const {
1602   // Internal definitions always have default visibility.
1603   if (GV->hasLocalLinkage()) {
1604     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1605     return;
1606   }
1607   if (!D)
1608     return;
1609 
1610   // Set visibility for definitions, and for declarations if requested globally
1611   // or set explicitly.
1612   LinkageInfo LV = D->getLinkageAndVisibility();
1613 
1614   // OpenMP declare target variables must be visible to the host so they can
1615   // be registered. We require protected visibility unless the variable has
1616   // the DT_nohost modifier and does not need to be registered.
1617   if (Context.getLangOpts().OpenMP &&
1618       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1619       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1620       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1621           OMPDeclareTargetDeclAttr::DT_NoHost &&
1622       LV.getVisibility() == HiddenVisibility) {
1623     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1624     return;
1625   }
1626 
1627   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1628     // Reject incompatible dlllstorage and visibility annotations.
1629     if (!LV.isVisibilityExplicit())
1630       return;
1631     if (GV->hasDLLExportStorageClass()) {
1632       if (LV.getVisibility() == HiddenVisibility)
1633         getDiags().Report(D->getLocation(),
1634                           diag::err_hidden_visibility_dllexport);
1635     } else if (LV.getVisibility() != DefaultVisibility) {
1636       getDiags().Report(D->getLocation(),
1637                         diag::err_non_default_visibility_dllimport);
1638     }
1639     return;
1640   }
1641 
1642   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1643       !GV->isDeclarationForLinker())
1644     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1645 }
1646 
1647 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1648                                  llvm::GlobalValue *GV) {
1649   if (GV->hasLocalLinkage())
1650     return true;
1651 
1652   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1653     return true;
1654 
1655   // DLLImport explicitly marks the GV as external.
1656   if (GV->hasDLLImportStorageClass())
1657     return false;
1658 
1659   const llvm::Triple &TT = CGM.getTriple();
1660   const auto &CGOpts = CGM.getCodeGenOpts();
1661   if (TT.isWindowsGNUEnvironment()) {
1662     // In MinGW, variables without DLLImport can still be automatically
1663     // imported from a DLL by the linker; don't mark variables that
1664     // potentially could come from another DLL as DSO local.
1665 
1666     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1667     // (and this actually happens in the public interface of libstdc++), so
1668     // such variables can't be marked as DSO local. (Native TLS variables
1669     // can't be dllimported at all, though.)
1670     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1671         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1672         CGOpts.AutoImport)
1673       return false;
1674   }
1675 
1676   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1677   // remain unresolved in the link, they can be resolved to zero, which is
1678   // outside the current DSO.
1679   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1680     return false;
1681 
1682   // Every other GV is local on COFF.
1683   // Make an exception for windows OS in the triple: Some firmware builds use
1684   // *-win32-macho triples. This (accidentally?) produced windows relocations
1685   // without GOT tables in older clang versions; Keep this behaviour.
1686   // FIXME: even thread local variables?
1687   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1688     return true;
1689 
1690   // Only handle COFF and ELF for now.
1691   if (!TT.isOSBinFormatELF())
1692     return false;
1693 
1694   // If this is not an executable, don't assume anything is local.
1695   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1696   const auto &LOpts = CGM.getLangOpts();
1697   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1698     // On ELF, if -fno-semantic-interposition is specified and the target
1699     // supports local aliases, there will be neither CC1
1700     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1701     // dso_local on the function if using a local alias is preferable (can avoid
1702     // PLT indirection).
1703     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1704       return false;
1705     return !(CGM.getLangOpts().SemanticInterposition ||
1706              CGM.getLangOpts().HalfNoSemanticInterposition);
1707   }
1708 
1709   // A definition cannot be preempted from an executable.
1710   if (!GV->isDeclarationForLinker())
1711     return true;
1712 
1713   // Most PIC code sequences that assume that a symbol is local cannot produce a
1714   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1715   // depended, it seems worth it to handle it here.
1716   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1717     return false;
1718 
1719   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1720   if (TT.isPPC64())
1721     return false;
1722 
1723   if (CGOpts.DirectAccessExternalData) {
1724     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1725     // for non-thread-local variables. If the symbol is not defined in the
1726     // executable, a copy relocation will be needed at link time. dso_local is
1727     // excluded for thread-local variables because they generally don't support
1728     // copy relocations.
1729     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1730       if (!Var->isThreadLocal())
1731         return true;
1732 
1733     // -fno-pic sets dso_local on a function declaration to allow direct
1734     // accesses when taking its address (similar to a data symbol). If the
1735     // function is not defined in the executable, a canonical PLT entry will be
1736     // needed at link time. -fno-direct-access-external-data can avoid the
1737     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1738     // it could just cause trouble without providing perceptible benefits.
1739     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1740       return true;
1741   }
1742 
1743   // If we can use copy relocations we can assume it is local.
1744 
1745   // Otherwise don't assume it is local.
1746   return false;
1747 }
1748 
1749 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1750   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1751 }
1752 
1753 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1754                                           GlobalDecl GD) const {
1755   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1756   // C++ destructors have a few C++ ABI specific special cases.
1757   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1758     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1759     return;
1760   }
1761   setDLLImportDLLExport(GV, D);
1762 }
1763 
1764 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1765                                           const NamedDecl *D) const {
1766   if (D && D->isExternallyVisible()) {
1767     if (D->hasAttr<DLLImportAttr>())
1768       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1769     else if ((D->hasAttr<DLLExportAttr>() ||
1770               shouldMapVisibilityToDLLExport(D)) &&
1771              !GV->isDeclarationForLinker())
1772       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1773   }
1774 }
1775 
1776 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1777                                     GlobalDecl GD) const {
1778   setDLLImportDLLExport(GV, GD);
1779   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1780 }
1781 
1782 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1783                                     const NamedDecl *D) const {
1784   setDLLImportDLLExport(GV, D);
1785   setGVPropertiesAux(GV, D);
1786 }
1787 
1788 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1789                                        const NamedDecl *D) const {
1790   setGlobalVisibility(GV, D);
1791   setDSOLocal(GV);
1792   GV->setPartition(CodeGenOpts.SymbolPartition);
1793 }
1794 
1795 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1796   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1797       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1798       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1799       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1800       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1801 }
1802 
1803 llvm::GlobalVariable::ThreadLocalMode
1804 CodeGenModule::GetDefaultLLVMTLSModel() const {
1805   switch (CodeGenOpts.getDefaultTLSModel()) {
1806   case CodeGenOptions::GeneralDynamicTLSModel:
1807     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1808   case CodeGenOptions::LocalDynamicTLSModel:
1809     return llvm::GlobalVariable::LocalDynamicTLSModel;
1810   case CodeGenOptions::InitialExecTLSModel:
1811     return llvm::GlobalVariable::InitialExecTLSModel;
1812   case CodeGenOptions::LocalExecTLSModel:
1813     return llvm::GlobalVariable::LocalExecTLSModel;
1814   }
1815   llvm_unreachable("Invalid TLS model!");
1816 }
1817 
1818 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1819   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1820 
1821   llvm::GlobalValue::ThreadLocalMode TLM;
1822   TLM = GetDefaultLLVMTLSModel();
1823 
1824   // Override the TLS model if it is explicitly specified.
1825   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1826     TLM = GetLLVMTLSModel(Attr->getModel());
1827   }
1828 
1829   GV->setThreadLocalMode(TLM);
1830 }
1831 
1832 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1833                                           StringRef Name) {
1834   const TargetInfo &Target = CGM.getTarget();
1835   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1836 }
1837 
1838 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1839                                                  const CPUSpecificAttr *Attr,
1840                                                  unsigned CPUIndex,
1841                                                  raw_ostream &Out) {
1842   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1843   // supported.
1844   if (Attr)
1845     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1846   else if (CGM.getTarget().supportsIFunc())
1847     Out << ".resolver";
1848 }
1849 
1850 // Returns true if GD is a function decl with internal linkage and
1851 // needs a unique suffix after the mangled name.
1852 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1853                                         CodeGenModule &CGM) {
1854   const Decl *D = GD.getDecl();
1855   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1856          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1857 }
1858 
1859 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1860                                       const NamedDecl *ND,
1861                                       bool OmitMultiVersionMangling = false) {
1862   SmallString<256> Buffer;
1863   llvm::raw_svector_ostream Out(Buffer);
1864   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1865   if (!CGM.getModuleNameHash().empty())
1866     MC.needsUniqueInternalLinkageNames();
1867   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1868   if (ShouldMangle)
1869     MC.mangleName(GD.getWithDecl(ND), Out);
1870   else {
1871     IdentifierInfo *II = ND->getIdentifier();
1872     assert(II && "Attempt to mangle unnamed decl.");
1873     const auto *FD = dyn_cast<FunctionDecl>(ND);
1874 
1875     if (FD &&
1876         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1877       if (CGM.getLangOpts().RegCall4)
1878         Out << "__regcall4__" << II->getName();
1879       else
1880         Out << "__regcall3__" << II->getName();
1881     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1882                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1883       Out << "__device_stub__" << II->getName();
1884     } else {
1885       Out << II->getName();
1886     }
1887   }
1888 
1889   // Check if the module name hash should be appended for internal linkage
1890   // symbols.   This should come before multi-version target suffixes are
1891   // appended. This is to keep the name and module hash suffix of the
1892   // internal linkage function together.  The unique suffix should only be
1893   // added when name mangling is done to make sure that the final name can
1894   // be properly demangled.  For example, for C functions without prototypes,
1895   // name mangling is not done and the unique suffix should not be appeneded
1896   // then.
1897   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1898     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1899            "Hash computed when not explicitly requested");
1900     Out << CGM.getModuleNameHash();
1901   }
1902 
1903   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1904     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1905       switch (FD->getMultiVersionKind()) {
1906       case MultiVersionKind::CPUDispatch:
1907       case MultiVersionKind::CPUSpecific:
1908         AppendCPUSpecificCPUDispatchMangling(CGM,
1909                                              FD->getAttr<CPUSpecificAttr>(),
1910                                              GD.getMultiVersionIndex(), Out);
1911         break;
1912       case MultiVersionKind::Target: {
1913         auto *Attr = FD->getAttr<TargetAttr>();
1914         assert(Attr && "Expected TargetAttr to be present "
1915                        "for attribute mangling");
1916         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1917         Info.appendAttributeMangling(Attr, Out);
1918         break;
1919       }
1920       case MultiVersionKind::TargetVersion: {
1921         auto *Attr = FD->getAttr<TargetVersionAttr>();
1922         assert(Attr && "Expected TargetVersionAttr to be present "
1923                        "for attribute mangling");
1924         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1925         Info.appendAttributeMangling(Attr, Out);
1926         break;
1927       }
1928       case MultiVersionKind::TargetClones: {
1929         auto *Attr = FD->getAttr<TargetClonesAttr>();
1930         assert(Attr && "Expected TargetClonesAttr to be present "
1931                        "for attribute mangling");
1932         unsigned Index = GD.getMultiVersionIndex();
1933         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1934         Info.appendAttributeMangling(Attr, Index, Out);
1935         break;
1936       }
1937       case MultiVersionKind::None:
1938         llvm_unreachable("None multiversion type isn't valid here");
1939       }
1940     }
1941 
1942   // Make unique name for device side static file-scope variable for HIP.
1943   if (CGM.getContext().shouldExternalize(ND) &&
1944       CGM.getLangOpts().GPURelocatableDeviceCode &&
1945       CGM.getLangOpts().CUDAIsDevice)
1946     CGM.printPostfixForExternalizedDecl(Out, ND);
1947 
1948   return std::string(Out.str());
1949 }
1950 
1951 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1952                                             const FunctionDecl *FD,
1953                                             StringRef &CurName) {
1954   if (!FD->isMultiVersion())
1955     return;
1956 
1957   // Get the name of what this would be without the 'target' attribute.  This
1958   // allows us to lookup the version that was emitted when this wasn't a
1959   // multiversion function.
1960   std::string NonTargetName =
1961       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1962   GlobalDecl OtherGD;
1963   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1964     assert(OtherGD.getCanonicalDecl()
1965                .getDecl()
1966                ->getAsFunction()
1967                ->isMultiVersion() &&
1968            "Other GD should now be a multiversioned function");
1969     // OtherFD is the version of this function that was mangled BEFORE
1970     // becoming a MultiVersion function.  It potentially needs to be updated.
1971     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1972                                       .getDecl()
1973                                       ->getAsFunction()
1974                                       ->getMostRecentDecl();
1975     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1976     // This is so that if the initial version was already the 'default'
1977     // version, we don't try to update it.
1978     if (OtherName != NonTargetName) {
1979       // Remove instead of erase, since others may have stored the StringRef
1980       // to this.
1981       const auto ExistingRecord = Manglings.find(NonTargetName);
1982       if (ExistingRecord != std::end(Manglings))
1983         Manglings.remove(&(*ExistingRecord));
1984       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1985       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1986           Result.first->first();
1987       // If this is the current decl is being created, make sure we update the name.
1988       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1989         CurName = OtherNameRef;
1990       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1991         Entry->setName(OtherName);
1992     }
1993   }
1994 }
1995 
1996 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1997   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1998 
1999   // Some ABIs don't have constructor variants.  Make sure that base and
2000   // complete constructors get mangled the same.
2001   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2002     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2003       CXXCtorType OrigCtorType = GD.getCtorType();
2004       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2005       if (OrigCtorType == Ctor_Base)
2006         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2007     }
2008   }
2009 
2010   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2011   // static device variable depends on whether the variable is referenced by
2012   // a host or device host function. Therefore the mangled name cannot be
2013   // cached.
2014   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2015     auto FoundName = MangledDeclNames.find(CanonicalGD);
2016     if (FoundName != MangledDeclNames.end())
2017       return FoundName->second;
2018   }
2019 
2020   // Keep the first result in the case of a mangling collision.
2021   const auto *ND = cast<NamedDecl>(GD.getDecl());
2022   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2023 
2024   // Ensure either we have different ABIs between host and device compilations,
2025   // says host compilation following MSVC ABI but device compilation follows
2026   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2027   // mangling should be the same after name stubbing. The later checking is
2028   // very important as the device kernel name being mangled in host-compilation
2029   // is used to resolve the device binaries to be executed. Inconsistent naming
2030   // result in undefined behavior. Even though we cannot check that naming
2031   // directly between host- and device-compilations, the host- and
2032   // device-mangling in host compilation could help catching certain ones.
2033   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2034          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2035          (getContext().getAuxTargetInfo() &&
2036           (getContext().getAuxTargetInfo()->getCXXABI() !=
2037            getContext().getTargetInfo().getCXXABI())) ||
2038          getCUDARuntime().getDeviceSideName(ND) ==
2039              getMangledNameImpl(
2040                  *this,
2041                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2042                  ND));
2043 
2044   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2045   return MangledDeclNames[CanonicalGD] = Result.first->first();
2046 }
2047 
2048 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2049                                              const BlockDecl *BD) {
2050   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2051   const Decl *D = GD.getDecl();
2052 
2053   SmallString<256> Buffer;
2054   llvm::raw_svector_ostream Out(Buffer);
2055   if (!D)
2056     MangleCtx.mangleGlobalBlock(BD,
2057       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2058   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2059     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2060   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2061     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2062   else
2063     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2064 
2065   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2066   return Result.first->first();
2067 }
2068 
2069 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2070   auto it = MangledDeclNames.begin();
2071   while (it != MangledDeclNames.end()) {
2072     if (it->second == Name)
2073       return it->first;
2074     it++;
2075   }
2076   return GlobalDecl();
2077 }
2078 
2079 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2080   return getModule().getNamedValue(Name);
2081 }
2082 
2083 /// AddGlobalCtor - Add a function to the list that will be called before
2084 /// main() runs.
2085 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2086                                   unsigned LexOrder,
2087                                   llvm::Constant *AssociatedData) {
2088   // FIXME: Type coercion of void()* types.
2089   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2090 }
2091 
2092 /// AddGlobalDtor - Add a function to the list that will be called
2093 /// when the module is unloaded.
2094 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2095                                   bool IsDtorAttrFunc) {
2096   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2097       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2098     DtorsUsingAtExit[Priority].push_back(Dtor);
2099     return;
2100   }
2101 
2102   // FIXME: Type coercion of void()* types.
2103   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2104 }
2105 
2106 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2107   if (Fns.empty()) return;
2108 
2109   const PointerAuthSchema &InitFiniAuthSchema =
2110       getCodeGenOpts().PointerAuth.InitFiniPointers;
2111 
2112   // Ctor function type is ptr.
2113   llvm::PointerType *PtrTy = llvm::PointerType::get(
2114       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2115 
2116   // Get the type of a ctor entry, { i32, ptr, ptr }.
2117   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2118 
2119   // Construct the constructor and destructor arrays.
2120   ConstantInitBuilder Builder(*this);
2121   auto Ctors = Builder.beginArray(CtorStructTy);
2122   for (const auto &I : Fns) {
2123     auto Ctor = Ctors.beginStruct(CtorStructTy);
2124     Ctor.addInt(Int32Ty, I.Priority);
2125     if (InitFiniAuthSchema) {
2126       llvm::Constant *StorageAddress =
2127           (InitFiniAuthSchema.isAddressDiscriminated()
2128                ? llvm::ConstantExpr::getIntToPtr(
2129                      llvm::ConstantInt::get(
2130                          IntPtrTy,
2131                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2132                      PtrTy)
2133                : nullptr);
2134       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2135           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2136           llvm::ConstantInt::get(
2137               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2138       Ctor.add(SignedCtorPtr);
2139     } else {
2140       Ctor.add(I.Initializer);
2141     }
2142     if (I.AssociatedData)
2143       Ctor.add(I.AssociatedData);
2144     else
2145       Ctor.addNullPointer(PtrTy);
2146     Ctor.finishAndAddTo(Ctors);
2147   }
2148 
2149   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2150                                           /*constant*/ false,
2151                                           llvm::GlobalValue::AppendingLinkage);
2152 
2153   // The LTO linker doesn't seem to like it when we set an alignment
2154   // on appending variables.  Take it off as a workaround.
2155   List->setAlignment(std::nullopt);
2156 
2157   Fns.clear();
2158 }
2159 
2160 llvm::GlobalValue::LinkageTypes
2161 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2162   const auto *D = cast<FunctionDecl>(GD.getDecl());
2163 
2164   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2165 
2166   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2167     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2168 
2169   return getLLVMLinkageForDeclarator(D, Linkage);
2170 }
2171 
2172 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2173   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2174   if (!MDS) return nullptr;
2175 
2176   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2177 }
2178 
2179 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2180   if (auto *FnType = T->getAs<FunctionProtoType>())
2181     T = getContext().getFunctionType(
2182         FnType->getReturnType(), FnType->getParamTypes(),
2183         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2184 
2185   std::string OutName;
2186   llvm::raw_string_ostream Out(OutName);
2187   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2188       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2189 
2190   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2191     Out << ".normalized";
2192 
2193   return llvm::ConstantInt::get(Int32Ty,
2194                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2195 }
2196 
2197 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2198                                               const CGFunctionInfo &Info,
2199                                               llvm::Function *F, bool IsThunk) {
2200   unsigned CallingConv;
2201   llvm::AttributeList PAL;
2202   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2203                          /*AttrOnCallSite=*/false, IsThunk);
2204   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2205       getTarget().getTriple().isWindowsArm64EC()) {
2206     SourceLocation Loc;
2207     if (const Decl *D = GD.getDecl())
2208       Loc = D->getLocation();
2209 
2210     Error(Loc, "__vectorcall calling convention is not currently supported");
2211   }
2212   F->setAttributes(PAL);
2213   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2214 }
2215 
2216 static void removeImageAccessQualifier(std::string& TyName) {
2217   std::string ReadOnlyQual("__read_only");
2218   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2219   if (ReadOnlyPos != std::string::npos)
2220     // "+ 1" for the space after access qualifier.
2221     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2222   else {
2223     std::string WriteOnlyQual("__write_only");
2224     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2225     if (WriteOnlyPos != std::string::npos)
2226       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2227     else {
2228       std::string ReadWriteQual("__read_write");
2229       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2230       if (ReadWritePos != std::string::npos)
2231         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2232     }
2233   }
2234 }
2235 
2236 // Returns the address space id that should be produced to the
2237 // kernel_arg_addr_space metadata. This is always fixed to the ids
2238 // as specified in the SPIR 2.0 specification in order to differentiate
2239 // for example in clGetKernelArgInfo() implementation between the address
2240 // spaces with targets without unique mapping to the OpenCL address spaces
2241 // (basically all single AS CPUs).
2242 static unsigned ArgInfoAddressSpace(LangAS AS) {
2243   switch (AS) {
2244   case LangAS::opencl_global:
2245     return 1;
2246   case LangAS::opencl_constant:
2247     return 2;
2248   case LangAS::opencl_local:
2249     return 3;
2250   case LangAS::opencl_generic:
2251     return 4; // Not in SPIR 2.0 specs.
2252   case LangAS::opencl_global_device:
2253     return 5;
2254   case LangAS::opencl_global_host:
2255     return 6;
2256   default:
2257     return 0; // Assume private.
2258   }
2259 }
2260 
2261 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2262                                          const FunctionDecl *FD,
2263                                          CodeGenFunction *CGF) {
2264   assert(((FD && CGF) || (!FD && !CGF)) &&
2265          "Incorrect use - FD and CGF should either be both null or not!");
2266   // Create MDNodes that represent the kernel arg metadata.
2267   // Each MDNode is a list in the form of "key", N number of values which is
2268   // the same number of values as their are kernel arguments.
2269 
2270   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2271 
2272   // MDNode for the kernel argument address space qualifiers.
2273   SmallVector<llvm::Metadata *, 8> addressQuals;
2274 
2275   // MDNode for the kernel argument access qualifiers (images only).
2276   SmallVector<llvm::Metadata *, 8> accessQuals;
2277 
2278   // MDNode for the kernel argument type names.
2279   SmallVector<llvm::Metadata *, 8> argTypeNames;
2280 
2281   // MDNode for the kernel argument base type names.
2282   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2283 
2284   // MDNode for the kernel argument type qualifiers.
2285   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2286 
2287   // MDNode for the kernel argument names.
2288   SmallVector<llvm::Metadata *, 8> argNames;
2289 
2290   if (FD && CGF)
2291     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2292       const ParmVarDecl *parm = FD->getParamDecl(i);
2293       // Get argument name.
2294       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2295 
2296       if (!getLangOpts().OpenCL)
2297         continue;
2298       QualType ty = parm->getType();
2299       std::string typeQuals;
2300 
2301       // Get image and pipe access qualifier:
2302       if (ty->isImageType() || ty->isPipeType()) {
2303         const Decl *PDecl = parm;
2304         if (const auto *TD = ty->getAs<TypedefType>())
2305           PDecl = TD->getDecl();
2306         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2307         if (A && A->isWriteOnly())
2308           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2309         else if (A && A->isReadWrite())
2310           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2311         else
2312           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2313       } else
2314         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2315 
2316       auto getTypeSpelling = [&](QualType Ty) {
2317         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2318 
2319         if (Ty.isCanonical()) {
2320           StringRef typeNameRef = typeName;
2321           // Turn "unsigned type" to "utype"
2322           if (typeNameRef.consume_front("unsigned "))
2323             return std::string("u") + typeNameRef.str();
2324           if (typeNameRef.consume_front("signed "))
2325             return typeNameRef.str();
2326         }
2327 
2328         return typeName;
2329       };
2330 
2331       if (ty->isPointerType()) {
2332         QualType pointeeTy = ty->getPointeeType();
2333 
2334         // Get address qualifier.
2335         addressQuals.push_back(
2336             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2337                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2338 
2339         // Get argument type name.
2340         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2341         std::string baseTypeName =
2342             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2343         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2344         argBaseTypeNames.push_back(
2345             llvm::MDString::get(VMContext, baseTypeName));
2346 
2347         // Get argument type qualifiers:
2348         if (ty.isRestrictQualified())
2349           typeQuals = "restrict";
2350         if (pointeeTy.isConstQualified() ||
2351             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2352           typeQuals += typeQuals.empty() ? "const" : " const";
2353         if (pointeeTy.isVolatileQualified())
2354           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2355       } else {
2356         uint32_t AddrSpc = 0;
2357         bool isPipe = ty->isPipeType();
2358         if (ty->isImageType() || isPipe)
2359           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2360 
2361         addressQuals.push_back(
2362             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2363 
2364         // Get argument type name.
2365         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2366         std::string typeName = getTypeSpelling(ty);
2367         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2368 
2369         // Remove access qualifiers on images
2370         // (as they are inseparable from type in clang implementation,
2371         // but OpenCL spec provides a special query to get access qualifier
2372         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2373         if (ty->isImageType()) {
2374           removeImageAccessQualifier(typeName);
2375           removeImageAccessQualifier(baseTypeName);
2376         }
2377 
2378         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2379         argBaseTypeNames.push_back(
2380             llvm::MDString::get(VMContext, baseTypeName));
2381 
2382         if (isPipe)
2383           typeQuals = "pipe";
2384       }
2385       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2386     }
2387 
2388   if (getLangOpts().OpenCL) {
2389     Fn->setMetadata("kernel_arg_addr_space",
2390                     llvm::MDNode::get(VMContext, addressQuals));
2391     Fn->setMetadata("kernel_arg_access_qual",
2392                     llvm::MDNode::get(VMContext, accessQuals));
2393     Fn->setMetadata("kernel_arg_type",
2394                     llvm::MDNode::get(VMContext, argTypeNames));
2395     Fn->setMetadata("kernel_arg_base_type",
2396                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2397     Fn->setMetadata("kernel_arg_type_qual",
2398                     llvm::MDNode::get(VMContext, argTypeQuals));
2399   }
2400   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2401       getCodeGenOpts().HIPSaveKernelArgName)
2402     Fn->setMetadata("kernel_arg_name",
2403                     llvm::MDNode::get(VMContext, argNames));
2404 }
2405 
2406 /// Determines whether the language options require us to model
2407 /// unwind exceptions.  We treat -fexceptions as mandating this
2408 /// except under the fragile ObjC ABI with only ObjC exceptions
2409 /// enabled.  This means, for example, that C with -fexceptions
2410 /// enables this.
2411 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2412   // If exceptions are completely disabled, obviously this is false.
2413   if (!LangOpts.Exceptions) return false;
2414 
2415   // If C++ exceptions are enabled, this is true.
2416   if (LangOpts.CXXExceptions) return true;
2417 
2418   // If ObjC exceptions are enabled, this depends on the ABI.
2419   if (LangOpts.ObjCExceptions) {
2420     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2421   }
2422 
2423   return true;
2424 }
2425 
2426 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2427                                                       const CXXMethodDecl *MD) {
2428   // Check that the type metadata can ever actually be used by a call.
2429   if (!CGM.getCodeGenOpts().LTOUnit ||
2430       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2431     return false;
2432 
2433   // Only functions whose address can be taken with a member function pointer
2434   // need this sort of type metadata.
2435   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2436          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2437 }
2438 
2439 SmallVector<const CXXRecordDecl *, 0>
2440 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2441   llvm::SetVector<const CXXRecordDecl *> MostBases;
2442 
2443   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2444   CollectMostBases = [&](const CXXRecordDecl *RD) {
2445     if (RD->getNumBases() == 0)
2446       MostBases.insert(RD);
2447     for (const CXXBaseSpecifier &B : RD->bases())
2448       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2449   };
2450   CollectMostBases(RD);
2451   return MostBases.takeVector();
2452 }
2453 
2454 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2455                                                            llvm::Function *F) {
2456   llvm::AttrBuilder B(F->getContext());
2457 
2458   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2459     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2460 
2461   if (CodeGenOpts.StackClashProtector)
2462     B.addAttribute("probe-stack", "inline-asm");
2463 
2464   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2465     B.addAttribute("stack-probe-size",
2466                    std::to_string(CodeGenOpts.StackProbeSize));
2467 
2468   if (!hasUnwindExceptions(LangOpts))
2469     B.addAttribute(llvm::Attribute::NoUnwind);
2470 
2471   if (D && D->hasAttr<NoStackProtectorAttr>())
2472     ; // Do nothing.
2473   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2474            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2475     B.addAttribute(llvm::Attribute::StackProtectStrong);
2476   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2477     B.addAttribute(llvm::Attribute::StackProtect);
2478   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2479     B.addAttribute(llvm::Attribute::StackProtectStrong);
2480   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2481     B.addAttribute(llvm::Attribute::StackProtectReq);
2482 
2483   if (!D) {
2484     // Non-entry HLSL functions must always be inlined.
2485     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2486       B.addAttribute(llvm::Attribute::AlwaysInline);
2487     // If we don't have a declaration to control inlining, the function isn't
2488     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2489     // disabled, mark the function as noinline.
2490     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2491              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2492       B.addAttribute(llvm::Attribute::NoInline);
2493 
2494     F->addFnAttrs(B);
2495     return;
2496   }
2497 
2498   // Handle SME attributes that apply to function definitions,
2499   // rather than to function prototypes.
2500   if (D->hasAttr<ArmLocallyStreamingAttr>())
2501     B.addAttribute("aarch64_pstate_sm_body");
2502 
2503   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2504     if (Attr->isNewZA())
2505       B.addAttribute("aarch64_new_za");
2506     if (Attr->isNewZT0())
2507       B.addAttribute("aarch64_new_zt0");
2508   }
2509 
2510   // Track whether we need to add the optnone LLVM attribute,
2511   // starting with the default for this optimization level.
2512   bool ShouldAddOptNone =
2513       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2514   // We can't add optnone in the following cases, it won't pass the verifier.
2515   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2516   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2517 
2518   // Non-entry HLSL functions must always be inlined.
2519   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2520       !D->hasAttr<NoInlineAttr>()) {
2521     B.addAttribute(llvm::Attribute::AlwaysInline);
2522   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2523              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2524     // Add optnone, but do so only if the function isn't always_inline.
2525     B.addAttribute(llvm::Attribute::OptimizeNone);
2526 
2527     // OptimizeNone implies noinline; we should not be inlining such functions.
2528     B.addAttribute(llvm::Attribute::NoInline);
2529 
2530     // We still need to handle naked functions even though optnone subsumes
2531     // much of their semantics.
2532     if (D->hasAttr<NakedAttr>())
2533       B.addAttribute(llvm::Attribute::Naked);
2534 
2535     // OptimizeNone wins over OptimizeForSize and MinSize.
2536     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2537     F->removeFnAttr(llvm::Attribute::MinSize);
2538   } else if (D->hasAttr<NakedAttr>()) {
2539     // Naked implies noinline: we should not be inlining such functions.
2540     B.addAttribute(llvm::Attribute::Naked);
2541     B.addAttribute(llvm::Attribute::NoInline);
2542   } else if (D->hasAttr<NoDuplicateAttr>()) {
2543     B.addAttribute(llvm::Attribute::NoDuplicate);
2544   } else if (D->hasAttr<NoInlineAttr>() &&
2545              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2546     // Add noinline if the function isn't always_inline.
2547     B.addAttribute(llvm::Attribute::NoInline);
2548   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2549              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2550     // (noinline wins over always_inline, and we can't specify both in IR)
2551     B.addAttribute(llvm::Attribute::AlwaysInline);
2552   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2553     // If we're not inlining, then force everything that isn't always_inline to
2554     // carry an explicit noinline attribute.
2555     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2556       B.addAttribute(llvm::Attribute::NoInline);
2557   } else {
2558     // Otherwise, propagate the inline hint attribute and potentially use its
2559     // absence to mark things as noinline.
2560     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2561       // Search function and template pattern redeclarations for inline.
2562       auto CheckForInline = [](const FunctionDecl *FD) {
2563         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2564           return Redecl->isInlineSpecified();
2565         };
2566         if (any_of(FD->redecls(), CheckRedeclForInline))
2567           return true;
2568         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2569         if (!Pattern)
2570           return false;
2571         return any_of(Pattern->redecls(), CheckRedeclForInline);
2572       };
2573       if (CheckForInline(FD)) {
2574         B.addAttribute(llvm::Attribute::InlineHint);
2575       } else if (CodeGenOpts.getInlining() ==
2576                      CodeGenOptions::OnlyHintInlining &&
2577                  !FD->isInlined() &&
2578                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2579         B.addAttribute(llvm::Attribute::NoInline);
2580       }
2581     }
2582   }
2583 
2584   // Add other optimization related attributes if we are optimizing this
2585   // function.
2586   if (!D->hasAttr<OptimizeNoneAttr>()) {
2587     if (D->hasAttr<ColdAttr>()) {
2588       if (!ShouldAddOptNone)
2589         B.addAttribute(llvm::Attribute::OptimizeForSize);
2590       B.addAttribute(llvm::Attribute::Cold);
2591     }
2592     if (D->hasAttr<HotAttr>())
2593       B.addAttribute(llvm::Attribute::Hot);
2594     if (D->hasAttr<MinSizeAttr>())
2595       B.addAttribute(llvm::Attribute::MinSize);
2596   }
2597 
2598   F->addFnAttrs(B);
2599 
2600   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2601   if (alignment)
2602     F->setAlignment(llvm::Align(alignment));
2603 
2604   if (!D->hasAttr<AlignedAttr>())
2605     if (LangOpts.FunctionAlignment)
2606       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2607 
2608   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2609   // reserve a bit for differentiating between virtual and non-virtual member
2610   // functions. If the current target's C++ ABI requires this and this is a
2611   // member function, set its alignment accordingly.
2612   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2613     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2614       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2615   }
2616 
2617   // In the cross-dso CFI mode with canonical jump tables, we want !type
2618   // attributes on definitions only.
2619   if (CodeGenOpts.SanitizeCfiCrossDso &&
2620       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2621     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2622       // Skip available_externally functions. They won't be codegen'ed in the
2623       // current module anyway.
2624       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2625         CreateFunctionTypeMetadataForIcall(FD, F);
2626     }
2627   }
2628 
2629   // Emit type metadata on member functions for member function pointer checks.
2630   // These are only ever necessary on definitions; we're guaranteed that the
2631   // definition will be present in the LTO unit as a result of LTO visibility.
2632   auto *MD = dyn_cast<CXXMethodDecl>(D);
2633   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2634     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2635       llvm::Metadata *Id =
2636           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2637               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2638       F->addTypeMetadata(0, Id);
2639     }
2640   }
2641 }
2642 
2643 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2644   const Decl *D = GD.getDecl();
2645   if (isa_and_nonnull<NamedDecl>(D))
2646     setGVProperties(GV, GD);
2647   else
2648     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2649 
2650   if (D && D->hasAttr<UsedAttr>())
2651     addUsedOrCompilerUsedGlobal(GV);
2652 
2653   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2654       VD &&
2655       ((CodeGenOpts.KeepPersistentStorageVariables &&
2656         (VD->getStorageDuration() == SD_Static ||
2657          VD->getStorageDuration() == SD_Thread)) ||
2658        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2659         VD->getType().isConstQualified())))
2660     addUsedOrCompilerUsedGlobal(GV);
2661 }
2662 
2663 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2664                                                 llvm::AttrBuilder &Attrs,
2665                                                 bool SetTargetFeatures) {
2666   // Add target-cpu and target-features attributes to functions. If
2667   // we have a decl for the function and it has a target attribute then
2668   // parse that and add it to the feature set.
2669   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2670   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2671   std::vector<std::string> Features;
2672   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2673   FD = FD ? FD->getMostRecentDecl() : FD;
2674   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2675   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2676   assert((!TD || !TV) && "both target_version and target specified");
2677   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2678   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2679   bool AddedAttr = false;
2680   if (TD || TV || SD || TC) {
2681     llvm::StringMap<bool> FeatureMap;
2682     getContext().getFunctionFeatureMap(FeatureMap, GD);
2683 
2684     // Produce the canonical string for this set of features.
2685     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2686       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2687 
2688     // Now add the target-cpu and target-features to the function.
2689     // While we populated the feature map above, we still need to
2690     // get and parse the target attribute so we can get the cpu for
2691     // the function.
2692     if (TD) {
2693       ParsedTargetAttr ParsedAttr =
2694           Target.parseTargetAttr(TD->getFeaturesStr());
2695       if (!ParsedAttr.CPU.empty() &&
2696           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2697         TargetCPU = ParsedAttr.CPU;
2698         TuneCPU = ""; // Clear the tune CPU.
2699       }
2700       if (!ParsedAttr.Tune.empty() &&
2701           getTarget().isValidCPUName(ParsedAttr.Tune))
2702         TuneCPU = ParsedAttr.Tune;
2703     }
2704 
2705     if (SD) {
2706       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2707       // favor this processor.
2708       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2709     }
2710   } else {
2711     // Otherwise just add the existing target cpu and target features to the
2712     // function.
2713     Features = getTarget().getTargetOpts().Features;
2714   }
2715 
2716   if (!TargetCPU.empty()) {
2717     Attrs.addAttribute("target-cpu", TargetCPU);
2718     AddedAttr = true;
2719   }
2720   if (!TuneCPU.empty()) {
2721     Attrs.addAttribute("tune-cpu", TuneCPU);
2722     AddedAttr = true;
2723   }
2724   if (!Features.empty() && SetTargetFeatures) {
2725     llvm::erase_if(Features, [&](const std::string& F) {
2726        return getTarget().isReadOnlyFeature(F.substr(1));
2727     });
2728     llvm::sort(Features);
2729     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2730     AddedAttr = true;
2731   }
2732 
2733   return AddedAttr;
2734 }
2735 
2736 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2737                                           llvm::GlobalObject *GO) {
2738   const Decl *D = GD.getDecl();
2739   SetCommonAttributes(GD, GO);
2740 
2741   if (D) {
2742     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2743       if (D->hasAttr<RetainAttr>())
2744         addUsedGlobal(GV);
2745       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2746         GV->addAttribute("bss-section", SA->getName());
2747       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2748         GV->addAttribute("data-section", SA->getName());
2749       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2750         GV->addAttribute("rodata-section", SA->getName());
2751       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2752         GV->addAttribute("relro-section", SA->getName());
2753     }
2754 
2755     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2756       if (D->hasAttr<RetainAttr>())
2757         addUsedGlobal(F);
2758       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2759         if (!D->getAttr<SectionAttr>())
2760           F->setSection(SA->getName());
2761 
2762       llvm::AttrBuilder Attrs(F->getContext());
2763       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2764         // We know that GetCPUAndFeaturesAttributes will always have the
2765         // newest set, since it has the newest possible FunctionDecl, so the
2766         // new ones should replace the old.
2767         llvm::AttributeMask RemoveAttrs;
2768         RemoveAttrs.addAttribute("target-cpu");
2769         RemoveAttrs.addAttribute("target-features");
2770         RemoveAttrs.addAttribute("tune-cpu");
2771         F->removeFnAttrs(RemoveAttrs);
2772         F->addFnAttrs(Attrs);
2773       }
2774     }
2775 
2776     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2777       GO->setSection(CSA->getName());
2778     else if (const auto *SA = D->getAttr<SectionAttr>())
2779       GO->setSection(SA->getName());
2780   }
2781 
2782   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2783 }
2784 
2785 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2786                                                   llvm::Function *F,
2787                                                   const CGFunctionInfo &FI) {
2788   const Decl *D = GD.getDecl();
2789   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2790   SetLLVMFunctionAttributesForDefinition(D, F);
2791 
2792   F->setLinkage(llvm::Function::InternalLinkage);
2793 
2794   setNonAliasAttributes(GD, F);
2795 }
2796 
2797 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2798   // Set linkage and visibility in case we never see a definition.
2799   LinkageInfo LV = ND->getLinkageAndVisibility();
2800   // Don't set internal linkage on declarations.
2801   // "extern_weak" is overloaded in LLVM; we probably should have
2802   // separate linkage types for this.
2803   if (isExternallyVisible(LV.getLinkage()) &&
2804       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2805     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2806 }
2807 
2808 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2809                                                        llvm::Function *F) {
2810   // Only if we are checking indirect calls.
2811   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2812     return;
2813 
2814   // Non-static class methods are handled via vtable or member function pointer
2815   // checks elsewhere.
2816   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2817     return;
2818 
2819   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2820   F->addTypeMetadata(0, MD);
2821   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2822 
2823   // Emit a hash-based bit set entry for cross-DSO calls.
2824   if (CodeGenOpts.SanitizeCfiCrossDso)
2825     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2826       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2827 }
2828 
2829 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2830   llvm::LLVMContext &Ctx = F->getContext();
2831   llvm::MDBuilder MDB(Ctx);
2832   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2833                  llvm::MDNode::get(
2834                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2835 }
2836 
2837 static bool allowKCFIIdentifier(StringRef Name) {
2838   // KCFI type identifier constants are only necessary for external assembly
2839   // functions, which means it's safe to skip unusual names. Subset of
2840   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2841   return llvm::all_of(Name, [](const char &C) {
2842     return llvm::isAlnum(C) || C == '_' || C == '.';
2843   });
2844 }
2845 
2846 void CodeGenModule::finalizeKCFITypes() {
2847   llvm::Module &M = getModule();
2848   for (auto &F : M.functions()) {
2849     // Remove KCFI type metadata from non-address-taken local functions.
2850     bool AddressTaken = F.hasAddressTaken();
2851     if (!AddressTaken && F.hasLocalLinkage())
2852       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2853 
2854     // Generate a constant with the expected KCFI type identifier for all
2855     // address-taken function declarations to support annotating indirectly
2856     // called assembly functions.
2857     if (!AddressTaken || !F.isDeclaration())
2858       continue;
2859 
2860     const llvm::ConstantInt *Type;
2861     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2862       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2863     else
2864       continue;
2865 
2866     StringRef Name = F.getName();
2867     if (!allowKCFIIdentifier(Name))
2868       continue;
2869 
2870     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2871                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2872                           .str();
2873     M.appendModuleInlineAsm(Asm);
2874   }
2875 }
2876 
2877 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2878                                           bool IsIncompleteFunction,
2879                                           bool IsThunk) {
2880 
2881   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2882     // If this is an intrinsic function, set the function's attributes
2883     // to the intrinsic's attributes.
2884     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2885     return;
2886   }
2887 
2888   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2889 
2890   if (!IsIncompleteFunction)
2891     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2892                               IsThunk);
2893 
2894   // Add the Returned attribute for "this", except for iOS 5 and earlier
2895   // where substantial code, including the libstdc++ dylib, was compiled with
2896   // GCC and does not actually return "this".
2897   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2898       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2899     assert(!F->arg_empty() &&
2900            F->arg_begin()->getType()
2901              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2902            "unexpected this return");
2903     F->addParamAttr(0, llvm::Attribute::Returned);
2904   }
2905 
2906   // Only a few attributes are set on declarations; these may later be
2907   // overridden by a definition.
2908 
2909   setLinkageForGV(F, FD);
2910   setGVProperties(F, FD);
2911 
2912   // Setup target-specific attributes.
2913   if (!IsIncompleteFunction && F->isDeclaration())
2914     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2915 
2916   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2917     F->setSection(CSA->getName());
2918   else if (const auto *SA = FD->getAttr<SectionAttr>())
2919      F->setSection(SA->getName());
2920 
2921   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2922     if (EA->isError())
2923       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2924     else if (EA->isWarning())
2925       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2926   }
2927 
2928   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2929   if (FD->isInlineBuiltinDeclaration()) {
2930     const FunctionDecl *FDBody;
2931     bool HasBody = FD->hasBody(FDBody);
2932     (void)HasBody;
2933     assert(HasBody && "Inline builtin declarations should always have an "
2934                       "available body!");
2935     if (shouldEmitFunction(FDBody))
2936       F->addFnAttr(llvm::Attribute::NoBuiltin);
2937   }
2938 
2939   if (FD->isReplaceableGlobalAllocationFunction()) {
2940     // A replaceable global allocation function does not act like a builtin by
2941     // default, only if it is invoked by a new-expression or delete-expression.
2942     F->addFnAttr(llvm::Attribute::NoBuiltin);
2943   }
2944 
2945   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2946     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2947   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2948     if (MD->isVirtual())
2949       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2950 
2951   // Don't emit entries for function declarations in the cross-DSO mode. This
2952   // is handled with better precision by the receiving DSO. But if jump tables
2953   // are non-canonical then we need type metadata in order to produce the local
2954   // jump table.
2955   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2956       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2957     CreateFunctionTypeMetadataForIcall(FD, F);
2958 
2959   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2960     setKCFIType(FD, F);
2961 
2962   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2963     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2964 
2965   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2966     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2967 
2968   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2969     // Annotate the callback behavior as metadata:
2970     //  - The callback callee (as argument number).
2971     //  - The callback payloads (as argument numbers).
2972     llvm::LLVMContext &Ctx = F->getContext();
2973     llvm::MDBuilder MDB(Ctx);
2974 
2975     // The payload indices are all but the first one in the encoding. The first
2976     // identifies the callback callee.
2977     int CalleeIdx = *CB->encoding_begin();
2978     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2979     F->addMetadata(llvm::LLVMContext::MD_callback,
2980                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2981                                                CalleeIdx, PayloadIndices,
2982                                                /* VarArgsArePassed */ false)}));
2983   }
2984 }
2985 
2986 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2987   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2988          "Only globals with definition can force usage.");
2989   LLVMUsed.emplace_back(GV);
2990 }
2991 
2992 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2993   assert(!GV->isDeclaration() &&
2994          "Only globals with definition can force usage.");
2995   LLVMCompilerUsed.emplace_back(GV);
2996 }
2997 
2998 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2999   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3000          "Only globals with definition can force usage.");
3001   if (getTriple().isOSBinFormatELF())
3002     LLVMCompilerUsed.emplace_back(GV);
3003   else
3004     LLVMUsed.emplace_back(GV);
3005 }
3006 
3007 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3008                      std::vector<llvm::WeakTrackingVH> &List) {
3009   // Don't create llvm.used if there is no need.
3010   if (List.empty())
3011     return;
3012 
3013   // Convert List to what ConstantArray needs.
3014   SmallVector<llvm::Constant*, 8> UsedArray;
3015   UsedArray.resize(List.size());
3016   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3017     UsedArray[i] =
3018         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3019             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3020   }
3021 
3022   if (UsedArray.empty())
3023     return;
3024   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3025 
3026   auto *GV = new llvm::GlobalVariable(
3027       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3028       llvm::ConstantArray::get(ATy, UsedArray), Name);
3029 
3030   GV->setSection("llvm.metadata");
3031 }
3032 
3033 void CodeGenModule::emitLLVMUsed() {
3034   emitUsed(*this, "llvm.used", LLVMUsed);
3035   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3036 }
3037 
3038 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3039   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3040   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3041 }
3042 
3043 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3044   llvm::SmallString<32> Opt;
3045   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3046   if (Opt.empty())
3047     return;
3048   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3049   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3050 }
3051 
3052 void CodeGenModule::AddDependentLib(StringRef Lib) {
3053   auto &C = getLLVMContext();
3054   if (getTarget().getTriple().isOSBinFormatELF()) {
3055       ELFDependentLibraries.push_back(
3056         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3057     return;
3058   }
3059 
3060   llvm::SmallString<24> Opt;
3061   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3062   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3063   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3064 }
3065 
3066 /// Add link options implied by the given module, including modules
3067 /// it depends on, using a postorder walk.
3068 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3069                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3070                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3071   // Import this module's parent.
3072   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3073     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3074   }
3075 
3076   // Import this module's dependencies.
3077   for (Module *Import : llvm::reverse(Mod->Imports)) {
3078     if (Visited.insert(Import).second)
3079       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3080   }
3081 
3082   // Add linker options to link against the libraries/frameworks
3083   // described by this module.
3084   llvm::LLVMContext &Context = CGM.getLLVMContext();
3085   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3086 
3087   // For modules that use export_as for linking, use that module
3088   // name instead.
3089   if (Mod->UseExportAsModuleLinkName)
3090     return;
3091 
3092   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3093     // Link against a framework.  Frameworks are currently Darwin only, so we
3094     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3095     if (LL.IsFramework) {
3096       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3097                                  llvm::MDString::get(Context, LL.Library)};
3098 
3099       Metadata.push_back(llvm::MDNode::get(Context, Args));
3100       continue;
3101     }
3102 
3103     // Link against a library.
3104     if (IsELF) {
3105       llvm::Metadata *Args[2] = {
3106           llvm::MDString::get(Context, "lib"),
3107           llvm::MDString::get(Context, LL.Library),
3108       };
3109       Metadata.push_back(llvm::MDNode::get(Context, Args));
3110     } else {
3111       llvm::SmallString<24> Opt;
3112       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3113       auto *OptString = llvm::MDString::get(Context, Opt);
3114       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3115     }
3116   }
3117 }
3118 
3119 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3120   assert(Primary->isNamedModuleUnit() &&
3121          "We should only emit module initializers for named modules.");
3122 
3123   // Emit the initializers in the order that sub-modules appear in the
3124   // source, first Global Module Fragments, if present.
3125   if (auto GMF = Primary->getGlobalModuleFragment()) {
3126     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3127       if (isa<ImportDecl>(D))
3128         continue;
3129       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3130       EmitTopLevelDecl(D);
3131     }
3132   }
3133   // Second any associated with the module, itself.
3134   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3135     // Skip import decls, the inits for those are called explicitly.
3136     if (isa<ImportDecl>(D))
3137       continue;
3138     EmitTopLevelDecl(D);
3139   }
3140   // Third any associated with the Privat eMOdule Fragment, if present.
3141   if (auto PMF = Primary->getPrivateModuleFragment()) {
3142     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3143       // Skip import decls, the inits for those are called explicitly.
3144       if (isa<ImportDecl>(D))
3145         continue;
3146       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3147       EmitTopLevelDecl(D);
3148     }
3149   }
3150 }
3151 
3152 void CodeGenModule::EmitModuleLinkOptions() {
3153   // Collect the set of all of the modules we want to visit to emit link
3154   // options, which is essentially the imported modules and all of their
3155   // non-explicit child modules.
3156   llvm::SetVector<clang::Module *> LinkModules;
3157   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3158   SmallVector<clang::Module *, 16> Stack;
3159 
3160   // Seed the stack with imported modules.
3161   for (Module *M : ImportedModules) {
3162     // Do not add any link flags when an implementation TU of a module imports
3163     // a header of that same module.
3164     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3165         !getLangOpts().isCompilingModule())
3166       continue;
3167     if (Visited.insert(M).second)
3168       Stack.push_back(M);
3169   }
3170 
3171   // Find all of the modules to import, making a little effort to prune
3172   // non-leaf modules.
3173   while (!Stack.empty()) {
3174     clang::Module *Mod = Stack.pop_back_val();
3175 
3176     bool AnyChildren = false;
3177 
3178     // Visit the submodules of this module.
3179     for (const auto &SM : Mod->submodules()) {
3180       // Skip explicit children; they need to be explicitly imported to be
3181       // linked against.
3182       if (SM->IsExplicit)
3183         continue;
3184 
3185       if (Visited.insert(SM).second) {
3186         Stack.push_back(SM);
3187         AnyChildren = true;
3188       }
3189     }
3190 
3191     // We didn't find any children, so add this module to the list of
3192     // modules to link against.
3193     if (!AnyChildren) {
3194       LinkModules.insert(Mod);
3195     }
3196   }
3197 
3198   // Add link options for all of the imported modules in reverse topological
3199   // order.  We don't do anything to try to order import link flags with respect
3200   // to linker options inserted by things like #pragma comment().
3201   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3202   Visited.clear();
3203   for (Module *M : LinkModules)
3204     if (Visited.insert(M).second)
3205       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3206   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3207   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3208 
3209   // Add the linker options metadata flag.
3210   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3211   for (auto *MD : LinkerOptionsMetadata)
3212     NMD->addOperand(MD);
3213 }
3214 
3215 void CodeGenModule::EmitDeferred() {
3216   // Emit deferred declare target declarations.
3217   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3218     getOpenMPRuntime().emitDeferredTargetDecls();
3219 
3220   // Emit code for any potentially referenced deferred decls.  Since a
3221   // previously unused static decl may become used during the generation of code
3222   // for a static function, iterate until no changes are made.
3223 
3224   if (!DeferredVTables.empty()) {
3225     EmitDeferredVTables();
3226 
3227     // Emitting a vtable doesn't directly cause more vtables to
3228     // become deferred, although it can cause functions to be
3229     // emitted that then need those vtables.
3230     assert(DeferredVTables.empty());
3231   }
3232 
3233   // Emit CUDA/HIP static device variables referenced by host code only.
3234   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3235   // needed for further handling.
3236   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3237     llvm::append_range(DeferredDeclsToEmit,
3238                        getContext().CUDADeviceVarODRUsedByHost);
3239 
3240   // Stop if we're out of both deferred vtables and deferred declarations.
3241   if (DeferredDeclsToEmit.empty())
3242     return;
3243 
3244   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3245   // work, it will not interfere with this.
3246   std::vector<GlobalDecl> CurDeclsToEmit;
3247   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3248 
3249   for (GlobalDecl &D : CurDeclsToEmit) {
3250     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3251     // to get GlobalValue with exactly the type we need, not something that
3252     // might had been created for another decl with the same mangled name but
3253     // different type.
3254     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3255         GetAddrOfGlobal(D, ForDefinition));
3256 
3257     // In case of different address spaces, we may still get a cast, even with
3258     // IsForDefinition equal to true. Query mangled names table to get
3259     // GlobalValue.
3260     if (!GV)
3261       GV = GetGlobalValue(getMangledName(D));
3262 
3263     // Make sure GetGlobalValue returned non-null.
3264     assert(GV);
3265 
3266     // Check to see if we've already emitted this.  This is necessary
3267     // for a couple of reasons: first, decls can end up in the
3268     // deferred-decls queue multiple times, and second, decls can end
3269     // up with definitions in unusual ways (e.g. by an extern inline
3270     // function acquiring a strong function redefinition).  Just
3271     // ignore these cases.
3272     if (!GV->isDeclaration())
3273       continue;
3274 
3275     // If this is OpenMP, check if it is legal to emit this global normally.
3276     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3277       continue;
3278 
3279     // Otherwise, emit the definition and move on to the next one.
3280     EmitGlobalDefinition(D, GV);
3281 
3282     // If we found out that we need to emit more decls, do that recursively.
3283     // This has the advantage that the decls are emitted in a DFS and related
3284     // ones are close together, which is convenient for testing.
3285     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3286       EmitDeferred();
3287       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3288     }
3289   }
3290 }
3291 
3292 void CodeGenModule::EmitVTablesOpportunistically() {
3293   // Try to emit external vtables as available_externally if they have emitted
3294   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3295   // is not allowed to create new references to things that need to be emitted
3296   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3297 
3298   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3299          && "Only emit opportunistic vtables with optimizations");
3300 
3301   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3302     assert(getVTables().isVTableExternal(RD) &&
3303            "This queue should only contain external vtables");
3304     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3305       VTables.GenerateClassData(RD);
3306   }
3307   OpportunisticVTables.clear();
3308 }
3309 
3310 void CodeGenModule::EmitGlobalAnnotations() {
3311   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3312     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3313     if (GV)
3314       AddGlobalAnnotations(VD, GV);
3315   }
3316   DeferredAnnotations.clear();
3317 
3318   if (Annotations.empty())
3319     return;
3320 
3321   // Create a new global variable for the ConstantStruct in the Module.
3322   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3323     Annotations[0]->getType(), Annotations.size()), Annotations);
3324   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3325                                       llvm::GlobalValue::AppendingLinkage,
3326                                       Array, "llvm.global.annotations");
3327   gv->setSection(AnnotationSection);
3328 }
3329 
3330 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3331   llvm::Constant *&AStr = AnnotationStrings[Str];
3332   if (AStr)
3333     return AStr;
3334 
3335   // Not found yet, create a new global.
3336   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3337   auto *gv = new llvm::GlobalVariable(
3338       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3339       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3340       ConstGlobalsPtrTy->getAddressSpace());
3341   gv->setSection(AnnotationSection);
3342   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3343   AStr = gv;
3344   return gv;
3345 }
3346 
3347 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3348   SourceManager &SM = getContext().getSourceManager();
3349   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3350   if (PLoc.isValid())
3351     return EmitAnnotationString(PLoc.getFilename());
3352   return EmitAnnotationString(SM.getBufferName(Loc));
3353 }
3354 
3355 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3356   SourceManager &SM = getContext().getSourceManager();
3357   PresumedLoc PLoc = SM.getPresumedLoc(L);
3358   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3359     SM.getExpansionLineNumber(L);
3360   return llvm::ConstantInt::get(Int32Ty, LineNo);
3361 }
3362 
3363 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3364   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3365   if (Exprs.empty())
3366     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3367 
3368   llvm::FoldingSetNodeID ID;
3369   for (Expr *E : Exprs) {
3370     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3371   }
3372   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3373   if (Lookup)
3374     return Lookup;
3375 
3376   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3377   LLVMArgs.reserve(Exprs.size());
3378   ConstantEmitter ConstEmiter(*this);
3379   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3380     const auto *CE = cast<clang::ConstantExpr>(E);
3381     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3382                                     CE->getType());
3383   });
3384   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3385   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3386                                       llvm::GlobalValue::PrivateLinkage, Struct,
3387                                       ".args");
3388   GV->setSection(AnnotationSection);
3389   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3390 
3391   Lookup = GV;
3392   return GV;
3393 }
3394 
3395 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3396                                                 const AnnotateAttr *AA,
3397                                                 SourceLocation L) {
3398   // Get the globals for file name, annotation, and the line number.
3399   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3400                  *UnitGV = EmitAnnotationUnit(L),
3401                  *LineNoCst = EmitAnnotationLineNo(L),
3402                  *Args = EmitAnnotationArgs(AA);
3403 
3404   llvm::Constant *GVInGlobalsAS = GV;
3405   if (GV->getAddressSpace() !=
3406       getDataLayout().getDefaultGlobalsAddressSpace()) {
3407     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3408         GV,
3409         llvm::PointerType::get(
3410             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3411   }
3412 
3413   // Create the ConstantStruct for the global annotation.
3414   llvm::Constant *Fields[] = {
3415       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3416   };
3417   return llvm::ConstantStruct::getAnon(Fields);
3418 }
3419 
3420 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3421                                          llvm::GlobalValue *GV) {
3422   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3423   // Get the struct elements for these annotations.
3424   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3425     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3426 }
3427 
3428 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3429                                        SourceLocation Loc) const {
3430   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3431   // NoSanitize by function name.
3432   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3433     return true;
3434   // NoSanitize by location. Check "mainfile" prefix.
3435   auto &SM = Context.getSourceManager();
3436   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3437   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3438     return true;
3439 
3440   // Check "src" prefix.
3441   if (Loc.isValid())
3442     return NoSanitizeL.containsLocation(Kind, Loc);
3443   // If location is unknown, this may be a compiler-generated function. Assume
3444   // it's located in the main file.
3445   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3446 }
3447 
3448 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3449                                        llvm::GlobalVariable *GV,
3450                                        SourceLocation Loc, QualType Ty,
3451                                        StringRef Category) const {
3452   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3453   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3454     return true;
3455   auto &SM = Context.getSourceManager();
3456   if (NoSanitizeL.containsMainFile(
3457           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3458           Category))
3459     return true;
3460   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3461     return true;
3462 
3463   // Check global type.
3464   if (!Ty.isNull()) {
3465     // Drill down the array types: if global variable of a fixed type is
3466     // not sanitized, we also don't instrument arrays of them.
3467     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3468       Ty = AT->getElementType();
3469     Ty = Ty.getCanonicalType().getUnqualifiedType();
3470     // Only record types (classes, structs etc.) are ignored.
3471     if (Ty->isRecordType()) {
3472       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3473       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3474         return true;
3475     }
3476   }
3477   return false;
3478 }
3479 
3480 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3481                                    StringRef Category) const {
3482   const auto &XRayFilter = getContext().getXRayFilter();
3483   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3484   auto Attr = ImbueAttr::NONE;
3485   if (Loc.isValid())
3486     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3487   if (Attr == ImbueAttr::NONE)
3488     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3489   switch (Attr) {
3490   case ImbueAttr::NONE:
3491     return false;
3492   case ImbueAttr::ALWAYS:
3493     Fn->addFnAttr("function-instrument", "xray-always");
3494     break;
3495   case ImbueAttr::ALWAYS_ARG1:
3496     Fn->addFnAttr("function-instrument", "xray-always");
3497     Fn->addFnAttr("xray-log-args", "1");
3498     break;
3499   case ImbueAttr::NEVER:
3500     Fn->addFnAttr("function-instrument", "xray-never");
3501     break;
3502   }
3503   return true;
3504 }
3505 
3506 ProfileList::ExclusionType
3507 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3508                                               SourceLocation Loc) const {
3509   const auto &ProfileList = getContext().getProfileList();
3510   // If the profile list is empty, then instrument everything.
3511   if (ProfileList.isEmpty())
3512     return ProfileList::Allow;
3513   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3514   // First, check the function name.
3515   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3516     return *V;
3517   // Next, check the source location.
3518   if (Loc.isValid())
3519     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3520       return *V;
3521   // If location is unknown, this may be a compiler-generated function. Assume
3522   // it's located in the main file.
3523   auto &SM = Context.getSourceManager();
3524   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3525     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3526       return *V;
3527   return ProfileList.getDefault(Kind);
3528 }
3529 
3530 ProfileList::ExclusionType
3531 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3532                                                  SourceLocation Loc) const {
3533   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3534   if (V != ProfileList::Allow)
3535     return V;
3536 
3537   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3538   if (NumGroups > 1) {
3539     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3540     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3541       return ProfileList::Skip;
3542   }
3543   return ProfileList::Allow;
3544 }
3545 
3546 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3547   // Never defer when EmitAllDecls is specified.
3548   if (LangOpts.EmitAllDecls)
3549     return true;
3550 
3551   const auto *VD = dyn_cast<VarDecl>(Global);
3552   if (VD &&
3553       ((CodeGenOpts.KeepPersistentStorageVariables &&
3554         (VD->getStorageDuration() == SD_Static ||
3555          VD->getStorageDuration() == SD_Thread)) ||
3556        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3557         VD->getType().isConstQualified())))
3558     return true;
3559 
3560   return getContext().DeclMustBeEmitted(Global);
3561 }
3562 
3563 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3564   // In OpenMP 5.0 variables and function may be marked as
3565   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3566   // that they must be emitted on the host/device. To be sure we need to have
3567   // seen a declare target with an explicit mentioning of the function, we know
3568   // we have if the level of the declare target attribute is -1. Note that we
3569   // check somewhere else if we should emit this at all.
3570   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3571     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3572         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3573     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3574       return false;
3575   }
3576 
3577   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3578     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3579       // Implicit template instantiations may change linkage if they are later
3580       // explicitly instantiated, so they should not be emitted eagerly.
3581       return false;
3582     // Defer until all versions have been semantically checked.
3583     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3584       return false;
3585   }
3586   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3587     if (Context.getInlineVariableDefinitionKind(VD) ==
3588         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3589       // A definition of an inline constexpr static data member may change
3590       // linkage later if it's redeclared outside the class.
3591       return false;
3592     if (CXX20ModuleInits && VD->getOwningModule() &&
3593         !VD->getOwningModule()->isModuleMapModule()) {
3594       // For CXX20, module-owned initializers need to be deferred, since it is
3595       // not known at this point if they will be run for the current module or
3596       // as part of the initializer for an imported one.
3597       return false;
3598     }
3599   }
3600   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3601   // codegen for global variables, because they may be marked as threadprivate.
3602   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3603       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3604       !Global->getType().isConstantStorage(getContext(), false, false) &&
3605       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3606     return false;
3607 
3608   return true;
3609 }
3610 
3611 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3612   StringRef Name = getMangledName(GD);
3613 
3614   // The UUID descriptor should be pointer aligned.
3615   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3616 
3617   // Look for an existing global.
3618   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3619     return ConstantAddress(GV, GV->getValueType(), Alignment);
3620 
3621   ConstantEmitter Emitter(*this);
3622   llvm::Constant *Init;
3623 
3624   APValue &V = GD->getAsAPValue();
3625   if (!V.isAbsent()) {
3626     // If possible, emit the APValue version of the initializer. In particular,
3627     // this gets the type of the constant right.
3628     Init = Emitter.emitForInitializer(
3629         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3630   } else {
3631     // As a fallback, directly construct the constant.
3632     // FIXME: This may get padding wrong under esoteric struct layout rules.
3633     // MSVC appears to create a complete type 'struct __s_GUID' that it
3634     // presumably uses to represent these constants.
3635     MSGuidDecl::Parts Parts = GD->getParts();
3636     llvm::Constant *Fields[4] = {
3637         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3638         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3639         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3640         llvm::ConstantDataArray::getRaw(
3641             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3642             Int8Ty)};
3643     Init = llvm::ConstantStruct::getAnon(Fields);
3644   }
3645 
3646   auto *GV = new llvm::GlobalVariable(
3647       getModule(), Init->getType(),
3648       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3649   if (supportsCOMDAT())
3650     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3651   setDSOLocal(GV);
3652 
3653   if (!V.isAbsent()) {
3654     Emitter.finalize(GV);
3655     return ConstantAddress(GV, GV->getValueType(), Alignment);
3656   }
3657 
3658   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3659   return ConstantAddress(GV, Ty, Alignment);
3660 }
3661 
3662 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3663     const UnnamedGlobalConstantDecl *GCD) {
3664   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3665 
3666   llvm::GlobalVariable **Entry = nullptr;
3667   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3668   if (*Entry)
3669     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3670 
3671   ConstantEmitter Emitter(*this);
3672   llvm::Constant *Init;
3673 
3674   const APValue &V = GCD->getValue();
3675 
3676   assert(!V.isAbsent());
3677   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3678                                     GCD->getType());
3679 
3680   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3681                                       /*isConstant=*/true,
3682                                       llvm::GlobalValue::PrivateLinkage, Init,
3683                                       ".constant");
3684   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3685   GV->setAlignment(Alignment.getAsAlign());
3686 
3687   Emitter.finalize(GV);
3688 
3689   *Entry = GV;
3690   return ConstantAddress(GV, GV->getValueType(), Alignment);
3691 }
3692 
3693 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3694     const TemplateParamObjectDecl *TPO) {
3695   StringRef Name = getMangledName(TPO);
3696   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3697 
3698   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3699     return ConstantAddress(GV, GV->getValueType(), Alignment);
3700 
3701   ConstantEmitter Emitter(*this);
3702   llvm::Constant *Init = Emitter.emitForInitializer(
3703         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3704 
3705   if (!Init) {
3706     ErrorUnsupported(TPO, "template parameter object");
3707     return ConstantAddress::invalid();
3708   }
3709 
3710   llvm::GlobalValue::LinkageTypes Linkage =
3711       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3712           ? llvm::GlobalValue::LinkOnceODRLinkage
3713           : llvm::GlobalValue::InternalLinkage;
3714   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3715                                       /*isConstant=*/true, Linkage, Init, Name);
3716   setGVProperties(GV, TPO);
3717   if (supportsCOMDAT())
3718     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3719   Emitter.finalize(GV);
3720 
3721     return ConstantAddress(GV, GV->getValueType(), Alignment);
3722 }
3723 
3724 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3725   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3726   assert(AA && "No alias?");
3727 
3728   CharUnits Alignment = getContext().getDeclAlign(VD);
3729   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3730 
3731   // See if there is already something with the target's name in the module.
3732   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3733   if (Entry)
3734     return ConstantAddress(Entry, DeclTy, Alignment);
3735 
3736   llvm::Constant *Aliasee;
3737   if (isa<llvm::FunctionType>(DeclTy))
3738     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3739                                       GlobalDecl(cast<FunctionDecl>(VD)),
3740                                       /*ForVTable=*/false);
3741   else
3742     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3743                                     nullptr);
3744 
3745   auto *F = cast<llvm::GlobalValue>(Aliasee);
3746   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3747   WeakRefReferences.insert(F);
3748 
3749   return ConstantAddress(Aliasee, DeclTy, Alignment);
3750 }
3751 
3752 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3753   if (!D)
3754     return false;
3755   if (auto *A = D->getAttr<AttrT>())
3756     return A->isImplicit();
3757   return D->isImplicit();
3758 }
3759 
3760 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3761   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3762   // We need to emit host-side 'shadows' for all global
3763   // device-side variables because the CUDA runtime needs their
3764   // size and host-side address in order to provide access to
3765   // their device-side incarnations.
3766   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3767          Global->hasAttr<CUDAConstantAttr>() ||
3768          Global->hasAttr<CUDASharedAttr>() ||
3769          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3770          Global->getType()->isCUDADeviceBuiltinTextureType();
3771 }
3772 
3773 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3774   const auto *Global = cast<ValueDecl>(GD.getDecl());
3775 
3776   // Weak references don't produce any output by themselves.
3777   if (Global->hasAttr<WeakRefAttr>())
3778     return;
3779 
3780   // If this is an alias definition (which otherwise looks like a declaration)
3781   // emit it now.
3782   if (Global->hasAttr<AliasAttr>())
3783     return EmitAliasDefinition(GD);
3784 
3785   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3786   if (Global->hasAttr<IFuncAttr>())
3787     return emitIFuncDefinition(GD);
3788 
3789   // If this is a cpu_dispatch multiversion function, emit the resolver.
3790   if (Global->hasAttr<CPUDispatchAttr>())
3791     return emitCPUDispatchDefinition(GD);
3792 
3793   // If this is CUDA, be selective about which declarations we emit.
3794   // Non-constexpr non-lambda implicit host device functions are not emitted
3795   // unless they are used on device side.
3796   if (LangOpts.CUDA) {
3797     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3798            "Expected Variable or Function");
3799     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3800       if (!shouldEmitCUDAGlobalVar(VD))
3801         return;
3802     } else if (LangOpts.CUDAIsDevice) {
3803       const auto *FD = dyn_cast<FunctionDecl>(Global);
3804       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3805            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3806             hasImplicitAttr<CUDAHostAttr>(FD) &&
3807             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3808             !isLambdaCallOperator(FD) &&
3809             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3810           !Global->hasAttr<CUDAGlobalAttr>() &&
3811           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3812             !Global->hasAttr<CUDAHostAttr>()))
3813         return;
3814       // Device-only functions are the only things we skip.
3815     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3816                Global->hasAttr<CUDADeviceAttr>())
3817       return;
3818   }
3819 
3820   if (LangOpts.OpenMP) {
3821     // If this is OpenMP, check if it is legal to emit this global normally.
3822     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3823       return;
3824     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3825       if (MustBeEmitted(Global))
3826         EmitOMPDeclareReduction(DRD);
3827       return;
3828     }
3829     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3830       if (MustBeEmitted(Global))
3831         EmitOMPDeclareMapper(DMD);
3832       return;
3833     }
3834   }
3835 
3836   // Ignore declarations, they will be emitted on their first use.
3837   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3838     // Update deferred annotations with the latest declaration if the function
3839     // function was already used or defined.
3840     if (FD->hasAttr<AnnotateAttr>()) {
3841       StringRef MangledName = getMangledName(GD);
3842       if (GetGlobalValue(MangledName))
3843         DeferredAnnotations[MangledName] = FD;
3844     }
3845 
3846     // Forward declarations are emitted lazily on first use.
3847     if (!FD->doesThisDeclarationHaveABody()) {
3848       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3849           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3850         return;
3851 
3852       StringRef MangledName = getMangledName(GD);
3853 
3854       // Compute the function info and LLVM type.
3855       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3856       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3857 
3858       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3859                               /*DontDefer=*/false);
3860       return;
3861     }
3862   } else {
3863     const auto *VD = cast<VarDecl>(Global);
3864     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3865     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3866         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3867       if (LangOpts.OpenMP) {
3868         // Emit declaration of the must-be-emitted declare target variable.
3869         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3870                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3871 
3872           // If this variable has external storage and doesn't require special
3873           // link handling we defer to its canonical definition.
3874           if (VD->hasExternalStorage() &&
3875               Res != OMPDeclareTargetDeclAttr::MT_Link)
3876             return;
3877 
3878           bool UnifiedMemoryEnabled =
3879               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3880           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3881                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3882               !UnifiedMemoryEnabled) {
3883             (void)GetAddrOfGlobalVar(VD);
3884           } else {
3885             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3886                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3887                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3888                      UnifiedMemoryEnabled)) &&
3889                    "Link clause or to clause with unified memory expected.");
3890             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3891           }
3892 
3893           return;
3894         }
3895       }
3896       // If this declaration may have caused an inline variable definition to
3897       // change linkage, make sure that it's emitted.
3898       if (Context.getInlineVariableDefinitionKind(VD) ==
3899           ASTContext::InlineVariableDefinitionKind::Strong)
3900         GetAddrOfGlobalVar(VD);
3901       return;
3902     }
3903   }
3904 
3905   // Defer code generation to first use when possible, e.g. if this is an inline
3906   // function. If the global must always be emitted, do it eagerly if possible
3907   // to benefit from cache locality.
3908   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3909     // Emit the definition if it can't be deferred.
3910     EmitGlobalDefinition(GD);
3911     addEmittedDeferredDecl(GD);
3912     return;
3913   }
3914 
3915   // If we're deferring emission of a C++ variable with an
3916   // initializer, remember the order in which it appeared in the file.
3917   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3918       cast<VarDecl>(Global)->hasInit()) {
3919     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3920     CXXGlobalInits.push_back(nullptr);
3921   }
3922 
3923   StringRef MangledName = getMangledName(GD);
3924   if (GetGlobalValue(MangledName) != nullptr) {
3925     // The value has already been used and should therefore be emitted.
3926     addDeferredDeclToEmit(GD);
3927   } else if (MustBeEmitted(Global)) {
3928     // The value must be emitted, but cannot be emitted eagerly.
3929     assert(!MayBeEmittedEagerly(Global));
3930     addDeferredDeclToEmit(GD);
3931   } else {
3932     // Otherwise, remember that we saw a deferred decl with this name.  The
3933     // first use of the mangled name will cause it to move into
3934     // DeferredDeclsToEmit.
3935     DeferredDecls[MangledName] = GD;
3936   }
3937 }
3938 
3939 // Check if T is a class type with a destructor that's not dllimport.
3940 static bool HasNonDllImportDtor(QualType T) {
3941   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3942     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3943       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3944         return true;
3945 
3946   return false;
3947 }
3948 
3949 namespace {
3950   struct FunctionIsDirectlyRecursive
3951       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3952     const StringRef Name;
3953     const Builtin::Context &BI;
3954     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3955         : Name(N), BI(C) {}
3956 
3957     bool VisitCallExpr(const CallExpr *E) {
3958       const FunctionDecl *FD = E->getDirectCallee();
3959       if (!FD)
3960         return false;
3961       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3962       if (Attr && Name == Attr->getLabel())
3963         return true;
3964       unsigned BuiltinID = FD->getBuiltinID();
3965       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3966         return false;
3967       StringRef BuiltinName = BI.getName(BuiltinID);
3968       if (BuiltinName.starts_with("__builtin_") &&
3969           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3970         return true;
3971       }
3972       return false;
3973     }
3974 
3975     bool VisitStmt(const Stmt *S) {
3976       for (const Stmt *Child : S->children())
3977         if (Child && this->Visit(Child))
3978           return true;
3979       return false;
3980     }
3981   };
3982 
3983   // Make sure we're not referencing non-imported vars or functions.
3984   struct DLLImportFunctionVisitor
3985       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3986     bool SafeToInline = true;
3987 
3988     bool shouldVisitImplicitCode() const { return true; }
3989 
3990     bool VisitVarDecl(VarDecl *VD) {
3991       if (VD->getTLSKind()) {
3992         // A thread-local variable cannot be imported.
3993         SafeToInline = false;
3994         return SafeToInline;
3995       }
3996 
3997       // A variable definition might imply a destructor call.
3998       if (VD->isThisDeclarationADefinition())
3999         SafeToInline = !HasNonDllImportDtor(VD->getType());
4000 
4001       return SafeToInline;
4002     }
4003 
4004     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4005       if (const auto *D = E->getTemporary()->getDestructor())
4006         SafeToInline = D->hasAttr<DLLImportAttr>();
4007       return SafeToInline;
4008     }
4009 
4010     bool VisitDeclRefExpr(DeclRefExpr *E) {
4011       ValueDecl *VD = E->getDecl();
4012       if (isa<FunctionDecl>(VD))
4013         SafeToInline = VD->hasAttr<DLLImportAttr>();
4014       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4015         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4016       return SafeToInline;
4017     }
4018 
4019     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4020       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4021       return SafeToInline;
4022     }
4023 
4024     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4025       CXXMethodDecl *M = E->getMethodDecl();
4026       if (!M) {
4027         // Call through a pointer to member function. This is safe to inline.
4028         SafeToInline = true;
4029       } else {
4030         SafeToInline = M->hasAttr<DLLImportAttr>();
4031       }
4032       return SafeToInline;
4033     }
4034 
4035     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4036       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4037       return SafeToInline;
4038     }
4039 
4040     bool VisitCXXNewExpr(CXXNewExpr *E) {
4041       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4042       return SafeToInline;
4043     }
4044   };
4045 }
4046 
4047 // isTriviallyRecursive - Check if this function calls another
4048 // decl that, because of the asm attribute or the other decl being a builtin,
4049 // ends up pointing to itself.
4050 bool
4051 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4052   StringRef Name;
4053   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4054     // asm labels are a special kind of mangling we have to support.
4055     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4056     if (!Attr)
4057       return false;
4058     Name = Attr->getLabel();
4059   } else {
4060     Name = FD->getName();
4061   }
4062 
4063   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4064   const Stmt *Body = FD->getBody();
4065   return Body ? Walker.Visit(Body) : false;
4066 }
4067 
4068 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4069   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4070     return true;
4071 
4072   const auto *F = cast<FunctionDecl>(GD.getDecl());
4073   // Inline builtins declaration must be emitted. They often are fortified
4074   // functions.
4075   if (F->isInlineBuiltinDeclaration())
4076     return true;
4077 
4078   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4079     return false;
4080 
4081   // We don't import function bodies from other named module units since that
4082   // behavior may break ABI compatibility of the current unit.
4083   if (const Module *M = F->getOwningModule();
4084       M && M->getTopLevelModule()->isNamedModule() &&
4085       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4086     // There are practices to mark template member function as always-inline
4087     // and mark the template as extern explicit instantiation but not give
4088     // the definition for member function. So we have to emit the function
4089     // from explicitly instantiation with always-inline.
4090     //
4091     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4092     //
4093     // TODO: Maybe it is better to give it a warning if we call a non-inline
4094     // function from other module units which is marked as always-inline.
4095     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4096       return false;
4097     }
4098   }
4099 
4100   if (F->hasAttr<NoInlineAttr>())
4101     return false;
4102 
4103   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4104     // Check whether it would be safe to inline this dllimport function.
4105     DLLImportFunctionVisitor Visitor;
4106     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4107     if (!Visitor.SafeToInline)
4108       return false;
4109 
4110     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4111       // Implicit destructor invocations aren't captured in the AST, so the
4112       // check above can't see them. Check for them manually here.
4113       for (const Decl *Member : Dtor->getParent()->decls())
4114         if (isa<FieldDecl>(Member))
4115           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4116             return false;
4117       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4118         if (HasNonDllImportDtor(B.getType()))
4119           return false;
4120     }
4121   }
4122 
4123   // PR9614. Avoid cases where the source code is lying to us. An available
4124   // externally function should have an equivalent function somewhere else,
4125   // but a function that calls itself through asm label/`__builtin_` trickery is
4126   // clearly not equivalent to the real implementation.
4127   // This happens in glibc's btowc and in some configure checks.
4128   return !isTriviallyRecursive(F);
4129 }
4130 
4131 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4132   return CodeGenOpts.OptimizationLevel > 0;
4133 }
4134 
4135 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4136                                                        llvm::GlobalValue *GV) {
4137   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4138 
4139   if (FD->isCPUSpecificMultiVersion()) {
4140     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4141     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4142       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4143   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4144     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4145       // AArch64 favors the default target version over the clone if any.
4146       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4147           TC->isFirstOfVersion(I))
4148         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4149     // Ensure that the resolver function is also emitted.
4150     GetOrCreateMultiVersionResolver(GD);
4151   } else
4152     EmitGlobalFunctionDefinition(GD, GV);
4153 
4154   // Defer the resolver emission until we can reason whether the TU
4155   // contains a default target version implementation.
4156   if (FD->isTargetVersionMultiVersion())
4157     AddDeferredMultiVersionResolverToEmit(GD);
4158 }
4159 
4160 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4161   const auto *D = cast<ValueDecl>(GD.getDecl());
4162 
4163   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4164                                  Context.getSourceManager(),
4165                                  "Generating code for declaration");
4166 
4167   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4168     // At -O0, don't generate IR for functions with available_externally
4169     // linkage.
4170     if (!shouldEmitFunction(GD))
4171       return;
4172 
4173     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4174       std::string Name;
4175       llvm::raw_string_ostream OS(Name);
4176       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4177                                /*Qualified=*/true);
4178       return Name;
4179     });
4180 
4181     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4182       // Make sure to emit the definition(s) before we emit the thunks.
4183       // This is necessary for the generation of certain thunks.
4184       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4185         ABI->emitCXXStructor(GD);
4186       else if (FD->isMultiVersion())
4187         EmitMultiVersionFunctionDefinition(GD, GV);
4188       else
4189         EmitGlobalFunctionDefinition(GD, GV);
4190 
4191       if (Method->isVirtual())
4192         getVTables().EmitThunks(GD);
4193 
4194       return;
4195     }
4196 
4197     if (FD->isMultiVersion())
4198       return EmitMultiVersionFunctionDefinition(GD, GV);
4199     return EmitGlobalFunctionDefinition(GD, GV);
4200   }
4201 
4202   if (const auto *VD = dyn_cast<VarDecl>(D))
4203     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4204 
4205   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4206 }
4207 
4208 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4209                                                       llvm::Function *NewFn);
4210 
4211 static unsigned
4212 TargetMVPriority(const TargetInfo &TI,
4213                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4214   unsigned Priority = 0;
4215   unsigned NumFeatures = 0;
4216   for (StringRef Feat : RO.Conditions.Features) {
4217     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4218     NumFeatures++;
4219   }
4220 
4221   if (!RO.Conditions.Architecture.empty())
4222     Priority = std::max(
4223         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4224 
4225   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4226 
4227   return Priority;
4228 }
4229 
4230 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4231 // TU can forward declare the function without causing problems.  Particularly
4232 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4233 // work with internal linkage functions, so that the same function name can be
4234 // used with internal linkage in multiple TUs.
4235 static llvm::GlobalValue::LinkageTypes
4236 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4237   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4238   if (FD->getFormalLinkage() == Linkage::Internal)
4239     return llvm::GlobalValue::InternalLinkage;
4240   return llvm::GlobalValue::WeakODRLinkage;
4241 }
4242 
4243 void CodeGenModule::emitMultiVersionFunctions() {
4244   std::vector<GlobalDecl> MVFuncsToEmit;
4245   MultiVersionFuncs.swap(MVFuncsToEmit);
4246   for (GlobalDecl GD : MVFuncsToEmit) {
4247     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4248     assert(FD && "Expected a FunctionDecl");
4249 
4250     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4251       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4252       StringRef MangledName = getMangledName(CurGD);
4253       llvm::Constant *Func = GetGlobalValue(MangledName);
4254       if (!Func) {
4255         if (Decl->isDefined()) {
4256           EmitGlobalFunctionDefinition(CurGD, nullptr);
4257           Func = GetGlobalValue(MangledName);
4258         } else {
4259           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4260           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4261           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4262                                    /*DontDefer=*/false, ForDefinition);
4263         }
4264         assert(Func && "This should have just been created");
4265       }
4266       return cast<llvm::Function>(Func);
4267     };
4268 
4269     // For AArch64, a resolver is only emitted if a function marked with
4270     // target_version("default")) or target_clones() is present and defined
4271     // in this TU. For other architectures it is always emitted.
4272     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4273     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4274 
4275     getContext().forEachMultiversionedFunctionVersion(
4276         FD, [&](const FunctionDecl *CurFD) {
4277           llvm::SmallVector<StringRef, 8> Feats;
4278           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4279 
4280           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4281             TA->getAddedFeatures(Feats);
4282             llvm::Function *Func = createFunction(CurFD);
4283             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4284           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4285             if (TVA->isDefaultVersion() && IsDefined)
4286               ShouldEmitResolver = true;
4287             llvm::Function *Func = createFunction(CurFD);
4288             if (getTarget().getTriple().isRISCV()) {
4289               Feats.push_back(TVA->getName());
4290             } else {
4291               assert(getTarget().getTriple().isAArch64());
4292               TVA->getFeatures(Feats);
4293             }
4294             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4295           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4296             if (IsDefined)
4297               ShouldEmitResolver = true;
4298             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4299               if (!TC->isFirstOfVersion(I))
4300                 continue;
4301 
4302               llvm::Function *Func = createFunction(CurFD, I);
4303               StringRef Architecture;
4304               Feats.clear();
4305               if (getTarget().getTriple().isAArch64())
4306                 TC->getFeatures(Feats, I);
4307               else if (getTarget().getTriple().isRISCV()) {
4308                 StringRef Version = TC->getFeatureStr(I);
4309                 Feats.push_back(Version);
4310               } else {
4311                 StringRef Version = TC->getFeatureStr(I);
4312                 if (Version.starts_with("arch="))
4313                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4314                 else if (Version != "default")
4315                   Feats.push_back(Version);
4316               }
4317               Options.emplace_back(Func, Architecture, Feats);
4318             }
4319           } else
4320             llvm_unreachable("unexpected MultiVersionKind");
4321         });
4322 
4323     if (!ShouldEmitResolver)
4324       continue;
4325 
4326     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4327     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4328       ResolverConstant = IFunc->getResolver();
4329       if (FD->isTargetClonesMultiVersion() &&
4330           !getTarget().getTriple().isAArch64()) {
4331         std::string MangledName = getMangledNameImpl(
4332             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4333         if (!GetGlobalValue(MangledName + ".ifunc")) {
4334           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4335           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4336           // In prior versions of Clang, the mangling for ifuncs incorrectly
4337           // included an .ifunc suffix. This alias is generated for backward
4338           // compatibility. It is deprecated, and may be removed in the future.
4339           auto *Alias = llvm::GlobalAlias::create(
4340               DeclTy, 0, getMultiversionLinkage(*this, GD),
4341               MangledName + ".ifunc", IFunc, &getModule());
4342           SetCommonAttributes(FD, Alias);
4343         }
4344       }
4345     }
4346     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4347 
4348     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4349 
4350     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4351       ResolverFunc->setComdat(
4352           getModule().getOrInsertComdat(ResolverFunc->getName()));
4353 
4354     const TargetInfo &TI = getTarget();
4355     llvm::stable_sort(
4356         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4357                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4358           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4359         });
4360     CodeGenFunction CGF(*this);
4361     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4362   }
4363 
4364   // Ensure that any additions to the deferred decls list caused by emitting a
4365   // variant are emitted.  This can happen when the variant itself is inline and
4366   // calls a function without linkage.
4367   if (!MVFuncsToEmit.empty())
4368     EmitDeferred();
4369 
4370   // Ensure that any additions to the multiversion funcs list from either the
4371   // deferred decls or the multiversion functions themselves are emitted.
4372   if (!MultiVersionFuncs.empty())
4373     emitMultiVersionFunctions();
4374 }
4375 
4376 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4377                                    llvm::Constant *New) {
4378   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4379   New->takeName(Old);
4380   Old->replaceAllUsesWith(New);
4381   Old->eraseFromParent();
4382 }
4383 
4384 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4385   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4386   assert(FD && "Not a FunctionDecl?");
4387   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4388   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4389   assert(DD && "Not a cpu_dispatch Function?");
4390 
4391   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4392   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4393 
4394   StringRef ResolverName = getMangledName(GD);
4395   UpdateMultiVersionNames(GD, FD, ResolverName);
4396 
4397   llvm::Type *ResolverType;
4398   GlobalDecl ResolverGD;
4399   if (getTarget().supportsIFunc()) {
4400     ResolverType = llvm::FunctionType::get(
4401         llvm::PointerType::get(DeclTy,
4402                                getTypes().getTargetAddressSpace(FD->getType())),
4403         false);
4404   }
4405   else {
4406     ResolverType = DeclTy;
4407     ResolverGD = GD;
4408   }
4409 
4410   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4411       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4412   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4413   if (supportsCOMDAT())
4414     ResolverFunc->setComdat(
4415         getModule().getOrInsertComdat(ResolverFunc->getName()));
4416 
4417   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4418   const TargetInfo &Target = getTarget();
4419   unsigned Index = 0;
4420   for (const IdentifierInfo *II : DD->cpus()) {
4421     // Get the name of the target function so we can look it up/create it.
4422     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4423                               getCPUSpecificMangling(*this, II->getName());
4424 
4425     llvm::Constant *Func = GetGlobalValue(MangledName);
4426 
4427     if (!Func) {
4428       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4429       if (ExistingDecl.getDecl() &&
4430           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4431         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4432         Func = GetGlobalValue(MangledName);
4433       } else {
4434         if (!ExistingDecl.getDecl())
4435           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4436 
4437       Func = GetOrCreateLLVMFunction(
4438           MangledName, DeclTy, ExistingDecl,
4439           /*ForVTable=*/false, /*DontDefer=*/true,
4440           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4441       }
4442     }
4443 
4444     llvm::SmallVector<StringRef, 32> Features;
4445     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4446     llvm::transform(Features, Features.begin(),
4447                     [](StringRef Str) { return Str.substr(1); });
4448     llvm::erase_if(Features, [&Target](StringRef Feat) {
4449       return !Target.validateCpuSupports(Feat);
4450     });
4451     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4452     ++Index;
4453   }
4454 
4455   llvm::stable_sort(
4456       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4457                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4458         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4459                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4460       });
4461 
4462   // If the list contains multiple 'default' versions, such as when it contains
4463   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4464   // always run on at least a 'pentium'). We do this by deleting the 'least
4465   // advanced' (read, lowest mangling letter).
4466   while (Options.size() > 1 &&
4467          llvm::all_of(llvm::X86::getCpuSupportsMask(
4468                           (Options.end() - 2)->Conditions.Features),
4469                       [](auto X) { return X == 0; })) {
4470     StringRef LHSName = (Options.end() - 2)->Function->getName();
4471     StringRef RHSName = (Options.end() - 1)->Function->getName();
4472     if (LHSName.compare(RHSName) < 0)
4473       Options.erase(Options.end() - 2);
4474     else
4475       Options.erase(Options.end() - 1);
4476   }
4477 
4478   CodeGenFunction CGF(*this);
4479   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4480 
4481   if (getTarget().supportsIFunc()) {
4482     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4483     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4484     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4485 
4486     // Fix up function declarations that were created for cpu_specific before
4487     // cpu_dispatch was known
4488     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4489       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4490                                            ResolverFunc, &getModule());
4491       replaceDeclarationWith(IFunc, GI);
4492       IFunc = GI;
4493     }
4494 
4495     std::string AliasName = getMangledNameImpl(
4496         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4497     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4498     if (!AliasFunc) {
4499       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4500                                            IFunc, &getModule());
4501       SetCommonAttributes(GD, GA);
4502     }
4503   }
4504 }
4505 
4506 /// Adds a declaration to the list of multi version functions if not present.
4507 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4508   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4509   assert(FD && "Not a FunctionDecl?");
4510 
4511   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4512     std::string MangledName =
4513         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4514     if (!DeferredResolversToEmit.insert(MangledName).second)
4515       return;
4516   }
4517   MultiVersionFuncs.push_back(GD);
4518 }
4519 
4520 /// If a dispatcher for the specified mangled name is not in the module, create
4521 /// and return it. The dispatcher is either an llvm Function with the specified
4522 /// type, or a global ifunc.
4523 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4524   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4525   assert(FD && "Not a FunctionDecl?");
4526 
4527   std::string MangledName =
4528       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4529 
4530   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4531   // a separate resolver).
4532   std::string ResolverName = MangledName;
4533   if (getTarget().supportsIFunc()) {
4534     switch (FD->getMultiVersionKind()) {
4535     case MultiVersionKind::None:
4536       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4537     case MultiVersionKind::Target:
4538     case MultiVersionKind::CPUSpecific:
4539     case MultiVersionKind::CPUDispatch:
4540       ResolverName += ".ifunc";
4541       break;
4542     case MultiVersionKind::TargetClones:
4543     case MultiVersionKind::TargetVersion:
4544       break;
4545     }
4546   } else if (FD->isTargetMultiVersion()) {
4547     ResolverName += ".resolver";
4548   }
4549 
4550   // If the resolver has already been created, just return it. This lookup may
4551   // yield a function declaration instead of a resolver on AArch64. That is
4552   // because we didn't know whether a resolver will be generated when we first
4553   // encountered a use of the symbol named after this resolver. Therefore,
4554   // targets which support ifuncs should not return here unless we actually
4555   // found an ifunc.
4556   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4557   if (ResolverGV &&
4558       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4559     return ResolverGV;
4560 
4561   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4562   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4563 
4564   // The resolver needs to be created. For target and target_clones, defer
4565   // creation until the end of the TU.
4566   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4567     AddDeferredMultiVersionResolverToEmit(GD);
4568 
4569   // For cpu_specific, don't create an ifunc yet because we don't know if the
4570   // cpu_dispatch will be emitted in this translation unit.
4571   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4572     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4573     llvm::Type *ResolverType =
4574         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4575     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4576         MangledName + ".resolver", ResolverType, GlobalDecl{},
4577         /*ForVTable=*/false);
4578     llvm::GlobalIFunc *GIF =
4579         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4580                                   "", Resolver, &getModule());
4581     GIF->setName(ResolverName);
4582     SetCommonAttributes(FD, GIF);
4583     if (ResolverGV)
4584       replaceDeclarationWith(ResolverGV, GIF);
4585     return GIF;
4586   }
4587 
4588   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4589       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4590   assert(isa<llvm::GlobalValue>(Resolver) &&
4591          "Resolver should be created for the first time");
4592   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4593   if (ResolverGV)
4594     replaceDeclarationWith(ResolverGV, Resolver);
4595   return Resolver;
4596 }
4597 
4598 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4599                                            const llvm::GlobalValue *GV) const {
4600   auto SC = GV->getDLLStorageClass();
4601   if (SC == llvm::GlobalValue::DefaultStorageClass)
4602     return false;
4603   const Decl *MRD = D->getMostRecentDecl();
4604   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4605             !MRD->hasAttr<DLLImportAttr>()) ||
4606            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4607             !MRD->hasAttr<DLLExportAttr>())) &&
4608           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4609 }
4610 
4611 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4612 /// module, create and return an llvm Function with the specified type. If there
4613 /// is something in the module with the specified name, return it potentially
4614 /// bitcasted to the right type.
4615 ///
4616 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4617 /// to set the attributes on the function when it is first created.
4618 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4619     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4620     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4621     ForDefinition_t IsForDefinition) {
4622   const Decl *D = GD.getDecl();
4623 
4624   std::string NameWithoutMultiVersionMangling;
4625   // Any attempts to use a MultiVersion function should result in retrieving
4626   // the iFunc instead. Name Mangling will handle the rest of the changes.
4627   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4628     // For the device mark the function as one that should be emitted.
4629     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4630         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4631         !DontDefer && !IsForDefinition) {
4632       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4633         GlobalDecl GDDef;
4634         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4635           GDDef = GlobalDecl(CD, GD.getCtorType());
4636         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4637           GDDef = GlobalDecl(DD, GD.getDtorType());
4638         else
4639           GDDef = GlobalDecl(FDDef);
4640         EmitGlobal(GDDef);
4641       }
4642     }
4643 
4644     if (FD->isMultiVersion()) {
4645       UpdateMultiVersionNames(GD, FD, MangledName);
4646       if (!IsForDefinition) {
4647         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4648         // function is used. Instead we defer the emission until we see a
4649         // default definition. In the meantime we just reference the symbol
4650         // without FMV mangling (it may or may not be replaced later).
4651         if (getTarget().getTriple().isAArch64()) {
4652           AddDeferredMultiVersionResolverToEmit(GD);
4653           NameWithoutMultiVersionMangling = getMangledNameImpl(
4654               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4655         } else
4656           return GetOrCreateMultiVersionResolver(GD);
4657       }
4658     }
4659   }
4660 
4661   if (!NameWithoutMultiVersionMangling.empty())
4662     MangledName = NameWithoutMultiVersionMangling;
4663 
4664   // Lookup the entry, lazily creating it if necessary.
4665   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4666   if (Entry) {
4667     if (WeakRefReferences.erase(Entry)) {
4668       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4669       if (FD && !FD->hasAttr<WeakAttr>())
4670         Entry->setLinkage(llvm::Function::ExternalLinkage);
4671     }
4672 
4673     // Handle dropped DLL attributes.
4674     if (D && shouldDropDLLAttribute(D, Entry)) {
4675       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4676       setDSOLocal(Entry);
4677     }
4678 
4679     // If there are two attempts to define the same mangled name, issue an
4680     // error.
4681     if (IsForDefinition && !Entry->isDeclaration()) {
4682       GlobalDecl OtherGD;
4683       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4684       // to make sure that we issue an error only once.
4685       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4686           (GD.getCanonicalDecl().getDecl() !=
4687            OtherGD.getCanonicalDecl().getDecl()) &&
4688           DiagnosedConflictingDefinitions.insert(GD).second) {
4689         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4690             << MangledName;
4691         getDiags().Report(OtherGD.getDecl()->getLocation(),
4692                           diag::note_previous_definition);
4693       }
4694     }
4695 
4696     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4697         (Entry->getValueType() == Ty)) {
4698       return Entry;
4699     }
4700 
4701     // Make sure the result is of the correct type.
4702     // (If function is requested for a definition, we always need to create a new
4703     // function, not just return a bitcast.)
4704     if (!IsForDefinition)
4705       return Entry;
4706   }
4707 
4708   // This function doesn't have a complete type (for example, the return
4709   // type is an incomplete struct). Use a fake type instead, and make
4710   // sure not to try to set attributes.
4711   bool IsIncompleteFunction = false;
4712 
4713   llvm::FunctionType *FTy;
4714   if (isa<llvm::FunctionType>(Ty)) {
4715     FTy = cast<llvm::FunctionType>(Ty);
4716   } else {
4717     FTy = llvm::FunctionType::get(VoidTy, false);
4718     IsIncompleteFunction = true;
4719   }
4720 
4721   llvm::Function *F =
4722       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4723                              Entry ? StringRef() : MangledName, &getModule());
4724 
4725   // Store the declaration associated with this function so it is potentially
4726   // updated by further declarations or definitions and emitted at the end.
4727   if (D && D->hasAttr<AnnotateAttr>())
4728     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4729 
4730   // If we already created a function with the same mangled name (but different
4731   // type) before, take its name and add it to the list of functions to be
4732   // replaced with F at the end of CodeGen.
4733   //
4734   // This happens if there is a prototype for a function (e.g. "int f()") and
4735   // then a definition of a different type (e.g. "int f(int x)").
4736   if (Entry) {
4737     F->takeName(Entry);
4738 
4739     // This might be an implementation of a function without a prototype, in
4740     // which case, try to do special replacement of calls which match the new
4741     // prototype.  The really key thing here is that we also potentially drop
4742     // arguments from the call site so as to make a direct call, which makes the
4743     // inliner happier and suppresses a number of optimizer warnings (!) about
4744     // dropping arguments.
4745     if (!Entry->use_empty()) {
4746       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4747       Entry->removeDeadConstantUsers();
4748     }
4749 
4750     addGlobalValReplacement(Entry, F);
4751   }
4752 
4753   assert(F->getName() == MangledName && "name was uniqued!");
4754   if (D)
4755     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4756   if (ExtraAttrs.hasFnAttrs()) {
4757     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4758     F->addFnAttrs(B);
4759   }
4760 
4761   if (!DontDefer) {
4762     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4763     // each other bottoming out with the base dtor.  Therefore we emit non-base
4764     // dtors on usage, even if there is no dtor definition in the TU.
4765     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4766         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4767                                            GD.getDtorType()))
4768       addDeferredDeclToEmit(GD);
4769 
4770     // This is the first use or definition of a mangled name.  If there is a
4771     // deferred decl with this name, remember that we need to emit it at the end
4772     // of the file.
4773     auto DDI = DeferredDecls.find(MangledName);
4774     if (DDI != DeferredDecls.end()) {
4775       // Move the potentially referenced deferred decl to the
4776       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4777       // don't need it anymore).
4778       addDeferredDeclToEmit(DDI->second);
4779       DeferredDecls.erase(DDI);
4780 
4781       // Otherwise, there are cases we have to worry about where we're
4782       // using a declaration for which we must emit a definition but where
4783       // we might not find a top-level definition:
4784       //   - member functions defined inline in their classes
4785       //   - friend functions defined inline in some class
4786       //   - special member functions with implicit definitions
4787       // If we ever change our AST traversal to walk into class methods,
4788       // this will be unnecessary.
4789       //
4790       // We also don't emit a definition for a function if it's going to be an
4791       // entry in a vtable, unless it's already marked as used.
4792     } else if (getLangOpts().CPlusPlus && D) {
4793       // Look for a declaration that's lexically in a record.
4794       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4795            FD = FD->getPreviousDecl()) {
4796         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4797           if (FD->doesThisDeclarationHaveABody()) {
4798             addDeferredDeclToEmit(GD.getWithDecl(FD));
4799             break;
4800           }
4801         }
4802       }
4803     }
4804   }
4805 
4806   // Make sure the result is of the requested type.
4807   if (!IsIncompleteFunction) {
4808     assert(F->getFunctionType() == Ty);
4809     return F;
4810   }
4811 
4812   return F;
4813 }
4814 
4815 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4816 /// non-null, then this function will use the specified type if it has to
4817 /// create it (this occurs when we see a definition of the function).
4818 llvm::Constant *
4819 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4820                                  bool DontDefer,
4821                                  ForDefinition_t IsForDefinition) {
4822   // If there was no specific requested type, just convert it now.
4823   if (!Ty) {
4824     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4825     Ty = getTypes().ConvertType(FD->getType());
4826   }
4827 
4828   // Devirtualized destructor calls may come through here instead of via
4829   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4830   // of the complete destructor when necessary.
4831   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4832     if (getTarget().getCXXABI().isMicrosoft() &&
4833         GD.getDtorType() == Dtor_Complete &&
4834         DD->getParent()->getNumVBases() == 0)
4835       GD = GlobalDecl(DD, Dtor_Base);
4836   }
4837 
4838   StringRef MangledName = getMangledName(GD);
4839   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4840                                     /*IsThunk=*/false, llvm::AttributeList(),
4841                                     IsForDefinition);
4842   // Returns kernel handle for HIP kernel stub function.
4843   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4844       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4845     auto *Handle = getCUDARuntime().getKernelHandle(
4846         cast<llvm::Function>(F->stripPointerCasts()), GD);
4847     if (IsForDefinition)
4848       return F;
4849     return Handle;
4850   }
4851   return F;
4852 }
4853 
4854 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4855   llvm::GlobalValue *F =
4856       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4857 
4858   return llvm::NoCFIValue::get(F);
4859 }
4860 
4861 static const FunctionDecl *
4862 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4863   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4864   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4865 
4866   IdentifierInfo &CII = C.Idents.get(Name);
4867   for (const auto *Result : DC->lookup(&CII))
4868     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4869       return FD;
4870 
4871   if (!C.getLangOpts().CPlusPlus)
4872     return nullptr;
4873 
4874   // Demangle the premangled name from getTerminateFn()
4875   IdentifierInfo &CXXII =
4876       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4877           ? C.Idents.get("terminate")
4878           : C.Idents.get(Name);
4879 
4880   for (const auto &N : {"__cxxabiv1", "std"}) {
4881     IdentifierInfo &NS = C.Idents.get(N);
4882     for (const auto *Result : DC->lookup(&NS)) {
4883       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4884       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4885         for (const auto *Result : LSD->lookup(&NS))
4886           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4887             break;
4888 
4889       if (ND)
4890         for (const auto *Result : ND->lookup(&CXXII))
4891           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4892             return FD;
4893     }
4894   }
4895 
4896   return nullptr;
4897 }
4898 
4899 /// CreateRuntimeFunction - Create a new runtime function with the specified
4900 /// type and name.
4901 llvm::FunctionCallee
4902 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4903                                      llvm::AttributeList ExtraAttrs, bool Local,
4904                                      bool AssumeConvergent) {
4905   if (AssumeConvergent) {
4906     ExtraAttrs =
4907         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4908   }
4909 
4910   llvm::Constant *C =
4911       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4912                               /*DontDefer=*/false, /*IsThunk=*/false,
4913                               ExtraAttrs);
4914 
4915   if (auto *F = dyn_cast<llvm::Function>(C)) {
4916     if (F->empty()) {
4917       F->setCallingConv(getRuntimeCC());
4918 
4919       // In Windows Itanium environments, try to mark runtime functions
4920       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4921       // will link their standard library statically or dynamically. Marking
4922       // functions imported when they are not imported can cause linker errors
4923       // and warnings.
4924       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4925           !getCodeGenOpts().LTOVisibilityPublicStd) {
4926         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4927         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4928           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4929           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4930         }
4931       }
4932       setDSOLocal(F);
4933       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4934       // of trying to approximate the attributes using the LLVM function
4935       // signature. This requires revising the API of CreateRuntimeFunction().
4936       markRegisterParameterAttributes(F);
4937     }
4938   }
4939 
4940   return {FTy, C};
4941 }
4942 
4943 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4944 /// create and return an llvm GlobalVariable with the specified type and address
4945 /// space. If there is something in the module with the specified name, return
4946 /// it potentially bitcasted to the right type.
4947 ///
4948 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4949 /// to set the attributes on the global when it is first created.
4950 ///
4951 /// If IsForDefinition is true, it is guaranteed that an actual global with
4952 /// type Ty will be returned, not conversion of a variable with the same
4953 /// mangled name but some other type.
4954 llvm::Constant *
4955 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4956                                      LangAS AddrSpace, const VarDecl *D,
4957                                      ForDefinition_t IsForDefinition) {
4958   // Lookup the entry, lazily creating it if necessary.
4959   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4960   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4961   if (Entry) {
4962     if (WeakRefReferences.erase(Entry)) {
4963       if (D && !D->hasAttr<WeakAttr>())
4964         Entry->setLinkage(llvm::Function::ExternalLinkage);
4965     }
4966 
4967     // Handle dropped DLL attributes.
4968     if (D && shouldDropDLLAttribute(D, Entry))
4969       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4970 
4971     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4972       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4973 
4974     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4975       return Entry;
4976 
4977     // If there are two attempts to define the same mangled name, issue an
4978     // error.
4979     if (IsForDefinition && !Entry->isDeclaration()) {
4980       GlobalDecl OtherGD;
4981       const VarDecl *OtherD;
4982 
4983       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4984       // to make sure that we issue an error only once.
4985       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4986           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4987           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4988           OtherD->hasInit() &&
4989           DiagnosedConflictingDefinitions.insert(D).second) {
4990         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4991             << MangledName;
4992         getDiags().Report(OtherGD.getDecl()->getLocation(),
4993                           diag::note_previous_definition);
4994       }
4995     }
4996 
4997     // Make sure the result is of the correct type.
4998     if (Entry->getType()->getAddressSpace() != TargetAS)
4999       return llvm::ConstantExpr::getAddrSpaceCast(
5000           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5001 
5002     // (If global is requested for a definition, we always need to create a new
5003     // global, not just return a bitcast.)
5004     if (!IsForDefinition)
5005       return Entry;
5006   }
5007 
5008   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5009 
5010   auto *GV = new llvm::GlobalVariable(
5011       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5012       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5013       getContext().getTargetAddressSpace(DAddrSpace));
5014 
5015   // If we already created a global with the same mangled name (but different
5016   // type) before, take its name and remove it from its parent.
5017   if (Entry) {
5018     GV->takeName(Entry);
5019 
5020     if (!Entry->use_empty()) {
5021       Entry->replaceAllUsesWith(GV);
5022     }
5023 
5024     Entry->eraseFromParent();
5025   }
5026 
5027   // This is the first use or definition of a mangled name.  If there is a
5028   // deferred decl with this name, remember that we need to emit it at the end
5029   // of the file.
5030   auto DDI = DeferredDecls.find(MangledName);
5031   if (DDI != DeferredDecls.end()) {
5032     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5033     // list, and remove it from DeferredDecls (since we don't need it anymore).
5034     addDeferredDeclToEmit(DDI->second);
5035     DeferredDecls.erase(DDI);
5036   }
5037 
5038   // Handle things which are present even on external declarations.
5039   if (D) {
5040     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5041       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5042 
5043     // FIXME: This code is overly simple and should be merged with other global
5044     // handling.
5045     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5046 
5047     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5048 
5049     setLinkageForGV(GV, D);
5050 
5051     if (D->getTLSKind()) {
5052       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5053         CXXThreadLocals.push_back(D);
5054       setTLSMode(GV, *D);
5055     }
5056 
5057     setGVProperties(GV, D);
5058 
5059     // If required by the ABI, treat declarations of static data members with
5060     // inline initializers as definitions.
5061     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5062       EmitGlobalVarDefinition(D);
5063     }
5064 
5065     // Emit section information for extern variables.
5066     if (D->hasExternalStorage()) {
5067       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5068         GV->setSection(SA->getName());
5069     }
5070 
5071     // Handle XCore specific ABI requirements.
5072     if (getTriple().getArch() == llvm::Triple::xcore &&
5073         D->getLanguageLinkage() == CLanguageLinkage &&
5074         D->getType().isConstant(Context) &&
5075         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5076       GV->setSection(".cp.rodata");
5077 
5078     // Handle code model attribute
5079     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5080       GV->setCodeModel(CMA->getModel());
5081 
5082     // Check if we a have a const declaration with an initializer, we may be
5083     // able to emit it as available_externally to expose it's value to the
5084     // optimizer.
5085     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5086         D->getType().isConstQualified() && !GV->hasInitializer() &&
5087         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5088       const auto *Record =
5089           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5090       bool HasMutableFields = Record && Record->hasMutableFields();
5091       if (!HasMutableFields) {
5092         const VarDecl *InitDecl;
5093         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5094         if (InitExpr) {
5095           ConstantEmitter emitter(*this);
5096           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5097           if (Init) {
5098             auto *InitType = Init->getType();
5099             if (GV->getValueType() != InitType) {
5100               // The type of the initializer does not match the definition.
5101               // This happens when an initializer has a different type from
5102               // the type of the global (because of padding at the end of a
5103               // structure for instance).
5104               GV->setName(StringRef());
5105               // Make a new global with the correct type, this is now guaranteed
5106               // to work.
5107               auto *NewGV = cast<llvm::GlobalVariable>(
5108                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5109                       ->stripPointerCasts());
5110 
5111               // Erase the old global, since it is no longer used.
5112               GV->eraseFromParent();
5113               GV = NewGV;
5114             } else {
5115               GV->setInitializer(Init);
5116               GV->setConstant(true);
5117               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5118             }
5119             emitter.finalize(GV);
5120           }
5121         }
5122       }
5123     }
5124   }
5125 
5126   if (D &&
5127       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5128     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5129     // External HIP managed variables needed to be recorded for transformation
5130     // in both device and host compilations.
5131     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5132         D->hasExternalStorage())
5133       getCUDARuntime().handleVarRegistration(D, *GV);
5134   }
5135 
5136   if (D)
5137     SanitizerMD->reportGlobal(GV, *D);
5138 
5139   LangAS ExpectedAS =
5140       D ? D->getType().getAddressSpace()
5141         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5142   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5143   if (DAddrSpace != ExpectedAS) {
5144     return getTargetCodeGenInfo().performAddrSpaceCast(
5145         *this, GV, DAddrSpace, ExpectedAS,
5146         llvm::PointerType::get(getLLVMContext(), TargetAS));
5147   }
5148 
5149   return GV;
5150 }
5151 
5152 llvm::Constant *
5153 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5154   const Decl *D = GD.getDecl();
5155 
5156   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5157     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5158                                 /*DontDefer=*/false, IsForDefinition);
5159 
5160   if (isa<CXXMethodDecl>(D)) {
5161     auto FInfo =
5162         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5163     auto Ty = getTypes().GetFunctionType(*FInfo);
5164     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5165                              IsForDefinition);
5166   }
5167 
5168   if (isa<FunctionDecl>(D)) {
5169     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5170     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5171     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5172                              IsForDefinition);
5173   }
5174 
5175   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5176 }
5177 
5178 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5179     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5180     llvm::Align Alignment) {
5181   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5182   llvm::GlobalVariable *OldGV = nullptr;
5183 
5184   if (GV) {
5185     // Check if the variable has the right type.
5186     if (GV->getValueType() == Ty)
5187       return GV;
5188 
5189     // Because C++ name mangling, the only way we can end up with an already
5190     // existing global with the same name is if it has been declared extern "C".
5191     assert(GV->isDeclaration() && "Declaration has wrong type!");
5192     OldGV = GV;
5193   }
5194 
5195   // Create a new variable.
5196   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5197                                 Linkage, nullptr, Name);
5198 
5199   if (OldGV) {
5200     // Replace occurrences of the old variable if needed.
5201     GV->takeName(OldGV);
5202 
5203     if (!OldGV->use_empty()) {
5204       OldGV->replaceAllUsesWith(GV);
5205     }
5206 
5207     OldGV->eraseFromParent();
5208   }
5209 
5210   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5211       !GV->hasAvailableExternallyLinkage())
5212     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5213 
5214   GV->setAlignment(Alignment);
5215 
5216   return GV;
5217 }
5218 
5219 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5220 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5221 /// then it will be created with the specified type instead of whatever the
5222 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5223 /// that an actual global with type Ty will be returned, not conversion of a
5224 /// variable with the same mangled name but some other type.
5225 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5226                                                   llvm::Type *Ty,
5227                                            ForDefinition_t IsForDefinition) {
5228   assert(D->hasGlobalStorage() && "Not a global variable");
5229   QualType ASTTy = D->getType();
5230   if (!Ty)
5231     Ty = getTypes().ConvertTypeForMem(ASTTy);
5232 
5233   StringRef MangledName = getMangledName(D);
5234   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5235                                IsForDefinition);
5236 }
5237 
5238 /// CreateRuntimeVariable - Create a new runtime global variable with the
5239 /// specified type and name.
5240 llvm::Constant *
5241 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5242                                      StringRef Name) {
5243   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5244                                                        : LangAS::Default;
5245   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5246   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5247   return Ret;
5248 }
5249 
5250 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5251   assert(!D->getInit() && "Cannot emit definite definitions here!");
5252 
5253   StringRef MangledName = getMangledName(D);
5254   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5255 
5256   // We already have a definition, not declaration, with the same mangled name.
5257   // Emitting of declaration is not required (and actually overwrites emitted
5258   // definition).
5259   if (GV && !GV->isDeclaration())
5260     return;
5261 
5262   // If we have not seen a reference to this variable yet, place it into the
5263   // deferred declarations table to be emitted if needed later.
5264   if (!MustBeEmitted(D) && !GV) {
5265       DeferredDecls[MangledName] = D;
5266       return;
5267   }
5268 
5269   // The tentative definition is the only definition.
5270   EmitGlobalVarDefinition(D);
5271 }
5272 
5273 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5274   if (auto const *V = dyn_cast<const VarDecl>(D))
5275     EmitExternalVarDeclaration(V);
5276   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5277     EmitExternalFunctionDeclaration(FD);
5278 }
5279 
5280 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5281   return Context.toCharUnitsFromBits(
5282       getDataLayout().getTypeStoreSizeInBits(Ty));
5283 }
5284 
5285 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5286   if (LangOpts.OpenCL) {
5287     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5288     assert(AS == LangAS::opencl_global ||
5289            AS == LangAS::opencl_global_device ||
5290            AS == LangAS::opencl_global_host ||
5291            AS == LangAS::opencl_constant ||
5292            AS == LangAS::opencl_local ||
5293            AS >= LangAS::FirstTargetAddressSpace);
5294     return AS;
5295   }
5296 
5297   if (LangOpts.SYCLIsDevice &&
5298       (!D || D->getType().getAddressSpace() == LangAS::Default))
5299     return LangAS::sycl_global;
5300 
5301   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5302     if (D) {
5303       if (D->hasAttr<CUDAConstantAttr>())
5304         return LangAS::cuda_constant;
5305       if (D->hasAttr<CUDASharedAttr>())
5306         return LangAS::cuda_shared;
5307       if (D->hasAttr<CUDADeviceAttr>())
5308         return LangAS::cuda_device;
5309       if (D->getType().isConstQualified())
5310         return LangAS::cuda_constant;
5311     }
5312     return LangAS::cuda_device;
5313   }
5314 
5315   if (LangOpts.OpenMP) {
5316     LangAS AS;
5317     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5318       return AS;
5319   }
5320   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5321 }
5322 
5323 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5324   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5325   if (LangOpts.OpenCL)
5326     return LangAS::opencl_constant;
5327   if (LangOpts.SYCLIsDevice)
5328     return LangAS::sycl_global;
5329   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5330     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5331     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5332     // with OpVariable instructions with Generic storage class which is not
5333     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5334     // UniformConstant storage class is not viable as pointers to it may not be
5335     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5336     return LangAS::cuda_device;
5337   if (auto AS = getTarget().getConstantAddressSpace())
5338     return *AS;
5339   return LangAS::Default;
5340 }
5341 
5342 // In address space agnostic languages, string literals are in default address
5343 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5344 // emitted in constant address space in LLVM IR. To be consistent with other
5345 // parts of AST, string literal global variables in constant address space
5346 // need to be casted to default address space before being put into address
5347 // map and referenced by other part of CodeGen.
5348 // In OpenCL, string literals are in constant address space in AST, therefore
5349 // they should not be casted to default address space.
5350 static llvm::Constant *
5351 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5352                                        llvm::GlobalVariable *GV) {
5353   llvm::Constant *Cast = GV;
5354   if (!CGM.getLangOpts().OpenCL) {
5355     auto AS = CGM.GetGlobalConstantAddressSpace();
5356     if (AS != LangAS::Default)
5357       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5358           CGM, GV, AS, LangAS::Default,
5359           llvm::PointerType::get(
5360               CGM.getLLVMContext(),
5361               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5362   }
5363   return Cast;
5364 }
5365 
5366 template<typename SomeDecl>
5367 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5368                                                llvm::GlobalValue *GV) {
5369   if (!getLangOpts().CPlusPlus)
5370     return;
5371 
5372   // Must have 'used' attribute, or else inline assembly can't rely on
5373   // the name existing.
5374   if (!D->template hasAttr<UsedAttr>())
5375     return;
5376 
5377   // Must have internal linkage and an ordinary name.
5378   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5379     return;
5380 
5381   // Must be in an extern "C" context. Entities declared directly within
5382   // a record are not extern "C" even if the record is in such a context.
5383   const SomeDecl *First = D->getFirstDecl();
5384   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5385     return;
5386 
5387   // OK, this is an internal linkage entity inside an extern "C" linkage
5388   // specification. Make a note of that so we can give it the "expected"
5389   // mangled name if nothing else is using that name.
5390   std::pair<StaticExternCMap::iterator, bool> R =
5391       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5392 
5393   // If we have multiple internal linkage entities with the same name
5394   // in extern "C" regions, none of them gets that name.
5395   if (!R.second)
5396     R.first->second = nullptr;
5397 }
5398 
5399 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5400   if (!CGM.supportsCOMDAT())
5401     return false;
5402 
5403   if (D.hasAttr<SelectAnyAttr>())
5404     return true;
5405 
5406   GVALinkage Linkage;
5407   if (auto *VD = dyn_cast<VarDecl>(&D))
5408     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5409   else
5410     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5411 
5412   switch (Linkage) {
5413   case GVA_Internal:
5414   case GVA_AvailableExternally:
5415   case GVA_StrongExternal:
5416     return false;
5417   case GVA_DiscardableODR:
5418   case GVA_StrongODR:
5419     return true;
5420   }
5421   llvm_unreachable("No such linkage");
5422 }
5423 
5424 bool CodeGenModule::supportsCOMDAT() const {
5425   return getTriple().supportsCOMDAT();
5426 }
5427 
5428 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5429                                           llvm::GlobalObject &GO) {
5430   if (!shouldBeInCOMDAT(*this, D))
5431     return;
5432   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5433 }
5434 
5435 const ABIInfo &CodeGenModule::getABIInfo() {
5436   return getTargetCodeGenInfo().getABIInfo();
5437 }
5438 
5439 /// Pass IsTentative as true if you want to create a tentative definition.
5440 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5441                                             bool IsTentative) {
5442   // OpenCL global variables of sampler type are translated to function calls,
5443   // therefore no need to be translated.
5444   QualType ASTTy = D->getType();
5445   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5446     return;
5447 
5448   // If this is OpenMP device, check if it is legal to emit this global
5449   // normally.
5450   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5451       OpenMPRuntime->emitTargetGlobalVariable(D))
5452     return;
5453 
5454   llvm::TrackingVH<llvm::Constant> Init;
5455   bool NeedsGlobalCtor = false;
5456   // Whether the definition of the variable is available externally.
5457   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5458   // since this is the job for its original source.
5459   bool IsDefinitionAvailableExternally =
5460       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5461   bool NeedsGlobalDtor =
5462       !IsDefinitionAvailableExternally &&
5463       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5464 
5465   // It is helpless to emit the definition for an available_externally variable
5466   // which can't be marked as const.
5467   // We don't need to check if it needs global ctor or dtor. See the above
5468   // comment for ideas.
5469   if (IsDefinitionAvailableExternally &&
5470       (!D->hasConstantInitialization() ||
5471        // TODO: Update this when we have interface to check constexpr
5472        // destructor.
5473        D->needsDestruction(getContext()) ||
5474        !D->getType().isConstantStorage(getContext(), true, true)))
5475     return;
5476 
5477   const VarDecl *InitDecl;
5478   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5479 
5480   std::optional<ConstantEmitter> emitter;
5481 
5482   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5483   // as part of their declaration."  Sema has already checked for
5484   // error cases, so we just need to set Init to UndefValue.
5485   bool IsCUDASharedVar =
5486       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5487   // Shadows of initialized device-side global variables are also left
5488   // undefined.
5489   // Managed Variables should be initialized on both host side and device side.
5490   bool IsCUDAShadowVar =
5491       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5492       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5493        D->hasAttr<CUDASharedAttr>());
5494   bool IsCUDADeviceShadowVar =
5495       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5496       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5497        D->getType()->isCUDADeviceBuiltinTextureType());
5498   if (getLangOpts().CUDA &&
5499       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5500     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5501   else if (D->hasAttr<LoaderUninitializedAttr>())
5502     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5503   else if (!InitExpr) {
5504     // This is a tentative definition; tentative definitions are
5505     // implicitly initialized with { 0 }.
5506     //
5507     // Note that tentative definitions are only emitted at the end of
5508     // a translation unit, so they should never have incomplete
5509     // type. In addition, EmitTentativeDefinition makes sure that we
5510     // never attempt to emit a tentative definition if a real one
5511     // exists. A use may still exists, however, so we still may need
5512     // to do a RAUW.
5513     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5514     Init = EmitNullConstant(D->getType());
5515   } else {
5516     initializedGlobalDecl = GlobalDecl(D);
5517     emitter.emplace(*this);
5518     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5519     if (!Initializer) {
5520       QualType T = InitExpr->getType();
5521       if (D->getType()->isReferenceType())
5522         T = D->getType();
5523 
5524       if (getLangOpts().CPlusPlus) {
5525         if (InitDecl->hasFlexibleArrayInit(getContext()))
5526           ErrorUnsupported(D, "flexible array initializer");
5527         Init = EmitNullConstant(T);
5528 
5529         if (!IsDefinitionAvailableExternally)
5530           NeedsGlobalCtor = true;
5531       } else {
5532         ErrorUnsupported(D, "static initializer");
5533         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5534       }
5535     } else {
5536       Init = Initializer;
5537       // We don't need an initializer, so remove the entry for the delayed
5538       // initializer position (just in case this entry was delayed) if we
5539       // also don't need to register a destructor.
5540       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5541         DelayedCXXInitPosition.erase(D);
5542 
5543 #ifndef NDEBUG
5544       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5545                           InitDecl->getFlexibleArrayInitChars(getContext());
5546       CharUnits CstSize = CharUnits::fromQuantity(
5547           getDataLayout().getTypeAllocSize(Init->getType()));
5548       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5549 #endif
5550     }
5551   }
5552 
5553   llvm::Type* InitType = Init->getType();
5554   llvm::Constant *Entry =
5555       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5556 
5557   // Strip off pointer casts if we got them.
5558   Entry = Entry->stripPointerCasts();
5559 
5560   // Entry is now either a Function or GlobalVariable.
5561   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5562 
5563   // We have a definition after a declaration with the wrong type.
5564   // We must make a new GlobalVariable* and update everything that used OldGV
5565   // (a declaration or tentative definition) with the new GlobalVariable*
5566   // (which will be a definition).
5567   //
5568   // This happens if there is a prototype for a global (e.g.
5569   // "extern int x[];") and then a definition of a different type (e.g.
5570   // "int x[10];"). This also happens when an initializer has a different type
5571   // from the type of the global (this happens with unions).
5572   if (!GV || GV->getValueType() != InitType ||
5573       GV->getType()->getAddressSpace() !=
5574           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5575 
5576     // Move the old entry aside so that we'll create a new one.
5577     Entry->setName(StringRef());
5578 
5579     // Make a new global with the correct type, this is now guaranteed to work.
5580     GV = cast<llvm::GlobalVariable>(
5581         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5582             ->stripPointerCasts());
5583 
5584     // Replace all uses of the old global with the new global
5585     llvm::Constant *NewPtrForOldDecl =
5586         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5587                                                              Entry->getType());
5588     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5589 
5590     // Erase the old global, since it is no longer used.
5591     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5592   }
5593 
5594   MaybeHandleStaticInExternC(D, GV);
5595 
5596   if (D->hasAttr<AnnotateAttr>())
5597     AddGlobalAnnotations(D, GV);
5598 
5599   // Set the llvm linkage type as appropriate.
5600   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5601 
5602   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5603   // the device. [...]"
5604   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5605   // __device__, declares a variable that: [...]
5606   // Is accessible from all the threads within the grid and from the host
5607   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5608   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5609   if (LangOpts.CUDA) {
5610     if (LangOpts.CUDAIsDevice) {
5611       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5612           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5613            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5614            D->getType()->isCUDADeviceBuiltinTextureType()))
5615         GV->setExternallyInitialized(true);
5616     } else {
5617       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5618     }
5619     getCUDARuntime().handleVarRegistration(D, *GV);
5620   }
5621 
5622   GV->setInitializer(Init);
5623   if (emitter)
5624     emitter->finalize(GV);
5625 
5626   // If it is safe to mark the global 'constant', do so now.
5627   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5628                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5629                    D->getType().isConstantStorage(getContext(), true, true)));
5630 
5631   // If it is in a read-only section, mark it 'constant'.
5632   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5633     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5634     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5635       GV->setConstant(true);
5636   }
5637 
5638   CharUnits AlignVal = getContext().getDeclAlign(D);
5639   // Check for alignment specifed in an 'omp allocate' directive.
5640   if (std::optional<CharUnits> AlignValFromAllocate =
5641           getOMPAllocateAlignment(D))
5642     AlignVal = *AlignValFromAllocate;
5643   GV->setAlignment(AlignVal.getAsAlign());
5644 
5645   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5646   // function is only defined alongside the variable, not also alongside
5647   // callers. Normally, all accesses to a thread_local go through the
5648   // thread-wrapper in order to ensure initialization has occurred, underlying
5649   // variable will never be used other than the thread-wrapper, so it can be
5650   // converted to internal linkage.
5651   //
5652   // However, if the variable has the 'constinit' attribute, it _can_ be
5653   // referenced directly, without calling the thread-wrapper, so the linkage
5654   // must not be changed.
5655   //
5656   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5657   // weak or linkonce, the de-duplication semantics are important to preserve,
5658   // so we don't change the linkage.
5659   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5660       Linkage == llvm::GlobalValue::ExternalLinkage &&
5661       Context.getTargetInfo().getTriple().isOSDarwin() &&
5662       !D->hasAttr<ConstInitAttr>())
5663     Linkage = llvm::GlobalValue::InternalLinkage;
5664 
5665   GV->setLinkage(Linkage);
5666   if (D->hasAttr<DLLImportAttr>())
5667     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5668   else if (D->hasAttr<DLLExportAttr>())
5669     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5670   else
5671     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5672 
5673   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5674     // common vars aren't constant even if declared const.
5675     GV->setConstant(false);
5676     // Tentative definition of global variables may be initialized with
5677     // non-zero null pointers. In this case they should have weak linkage
5678     // since common linkage must have zero initializer and must not have
5679     // explicit section therefore cannot have non-zero initial value.
5680     if (!GV->getInitializer()->isNullValue())
5681       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5682   }
5683 
5684   setNonAliasAttributes(D, GV);
5685 
5686   if (D->getTLSKind() && !GV->isThreadLocal()) {
5687     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5688       CXXThreadLocals.push_back(D);
5689     setTLSMode(GV, *D);
5690   }
5691 
5692   maybeSetTrivialComdat(*D, *GV);
5693 
5694   // Emit the initializer function if necessary.
5695   if (NeedsGlobalCtor || NeedsGlobalDtor)
5696     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5697 
5698   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5699 
5700   // Emit global variable debug information.
5701   if (CGDebugInfo *DI = getModuleDebugInfo())
5702     if (getCodeGenOpts().hasReducedDebugInfo())
5703       DI->EmitGlobalVariable(GV, D);
5704 }
5705 
5706 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5707   if (CGDebugInfo *DI = getModuleDebugInfo())
5708     if (getCodeGenOpts().hasReducedDebugInfo()) {
5709       QualType ASTTy = D->getType();
5710       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5711       llvm::Constant *GV =
5712           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5713       DI->EmitExternalVariable(
5714           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5715     }
5716 }
5717 
5718 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5719   if (CGDebugInfo *DI = getModuleDebugInfo())
5720     if (getCodeGenOpts().hasReducedDebugInfo()) {
5721       auto *Ty = getTypes().ConvertType(FD->getType());
5722       StringRef MangledName = getMangledName(FD);
5723       auto *Fn = cast<llvm::Function>(
5724           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5725       if (!Fn->getSubprogram())
5726         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5727     }
5728 }
5729 
5730 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5731                                       CodeGenModule &CGM, const VarDecl *D,
5732                                       bool NoCommon) {
5733   // Don't give variables common linkage if -fno-common was specified unless it
5734   // was overridden by a NoCommon attribute.
5735   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5736     return true;
5737 
5738   // C11 6.9.2/2:
5739   //   A declaration of an identifier for an object that has file scope without
5740   //   an initializer, and without a storage-class specifier or with the
5741   //   storage-class specifier static, constitutes a tentative definition.
5742   if (D->getInit() || D->hasExternalStorage())
5743     return true;
5744 
5745   // A variable cannot be both common and exist in a section.
5746   if (D->hasAttr<SectionAttr>())
5747     return true;
5748 
5749   // A variable cannot be both common and exist in a section.
5750   // We don't try to determine which is the right section in the front-end.
5751   // If no specialized section name is applicable, it will resort to default.
5752   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5753       D->hasAttr<PragmaClangDataSectionAttr>() ||
5754       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5755       D->hasAttr<PragmaClangRodataSectionAttr>())
5756     return true;
5757 
5758   // Thread local vars aren't considered common linkage.
5759   if (D->getTLSKind())
5760     return true;
5761 
5762   // Tentative definitions marked with WeakImportAttr are true definitions.
5763   if (D->hasAttr<WeakImportAttr>())
5764     return true;
5765 
5766   // A variable cannot be both common and exist in a comdat.
5767   if (shouldBeInCOMDAT(CGM, *D))
5768     return true;
5769 
5770   // Declarations with a required alignment do not have common linkage in MSVC
5771   // mode.
5772   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5773     if (D->hasAttr<AlignedAttr>())
5774       return true;
5775     QualType VarType = D->getType();
5776     if (Context.isAlignmentRequired(VarType))
5777       return true;
5778 
5779     if (const auto *RT = VarType->getAs<RecordType>()) {
5780       const RecordDecl *RD = RT->getDecl();
5781       for (const FieldDecl *FD : RD->fields()) {
5782         if (FD->isBitField())
5783           continue;
5784         if (FD->hasAttr<AlignedAttr>())
5785           return true;
5786         if (Context.isAlignmentRequired(FD->getType()))
5787           return true;
5788       }
5789     }
5790   }
5791 
5792   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5793   // common symbols, so symbols with greater alignment requirements cannot be
5794   // common.
5795   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5796   // alignments for common symbols via the aligncomm directive, so this
5797   // restriction only applies to MSVC environments.
5798   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5799       Context.getTypeAlignIfKnown(D->getType()) >
5800           Context.toBits(CharUnits::fromQuantity(32)))
5801     return true;
5802 
5803   return false;
5804 }
5805 
5806 llvm::GlobalValue::LinkageTypes
5807 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5808                                            GVALinkage Linkage) {
5809   if (Linkage == GVA_Internal)
5810     return llvm::Function::InternalLinkage;
5811 
5812   if (D->hasAttr<WeakAttr>())
5813     return llvm::GlobalVariable::WeakAnyLinkage;
5814 
5815   if (const auto *FD = D->getAsFunction())
5816     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5817       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5818 
5819   // We are guaranteed to have a strong definition somewhere else,
5820   // so we can use available_externally linkage.
5821   if (Linkage == GVA_AvailableExternally)
5822     return llvm::GlobalValue::AvailableExternallyLinkage;
5823 
5824   // Note that Apple's kernel linker doesn't support symbol
5825   // coalescing, so we need to avoid linkonce and weak linkages there.
5826   // Normally, this means we just map to internal, but for explicit
5827   // instantiations we'll map to external.
5828 
5829   // In C++, the compiler has to emit a definition in every translation unit
5830   // that references the function.  We should use linkonce_odr because
5831   // a) if all references in this translation unit are optimized away, we
5832   // don't need to codegen it.  b) if the function persists, it needs to be
5833   // merged with other definitions. c) C++ has the ODR, so we know the
5834   // definition is dependable.
5835   if (Linkage == GVA_DiscardableODR)
5836     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5837                                             : llvm::Function::InternalLinkage;
5838 
5839   // An explicit instantiation of a template has weak linkage, since
5840   // explicit instantiations can occur in multiple translation units
5841   // and must all be equivalent. However, we are not allowed to
5842   // throw away these explicit instantiations.
5843   //
5844   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5845   // so say that CUDA templates are either external (for kernels) or internal.
5846   // This lets llvm perform aggressive inter-procedural optimizations. For
5847   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5848   // therefore we need to follow the normal linkage paradigm.
5849   if (Linkage == GVA_StrongODR) {
5850     if (getLangOpts().AppleKext)
5851       return llvm::Function::ExternalLinkage;
5852     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5853         !getLangOpts().GPURelocatableDeviceCode)
5854       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5855                                           : llvm::Function::InternalLinkage;
5856     return llvm::Function::WeakODRLinkage;
5857   }
5858 
5859   // C++ doesn't have tentative definitions and thus cannot have common
5860   // linkage.
5861   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5862       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5863                                  CodeGenOpts.NoCommon))
5864     return llvm::GlobalVariable::CommonLinkage;
5865 
5866   // selectany symbols are externally visible, so use weak instead of
5867   // linkonce.  MSVC optimizes away references to const selectany globals, so
5868   // all definitions should be the same and ODR linkage should be used.
5869   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5870   if (D->hasAttr<SelectAnyAttr>())
5871     return llvm::GlobalVariable::WeakODRLinkage;
5872 
5873   // Otherwise, we have strong external linkage.
5874   assert(Linkage == GVA_StrongExternal);
5875   return llvm::GlobalVariable::ExternalLinkage;
5876 }
5877 
5878 llvm::GlobalValue::LinkageTypes
5879 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5880   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5881   return getLLVMLinkageForDeclarator(VD, Linkage);
5882 }
5883 
5884 /// Replace the uses of a function that was declared with a non-proto type.
5885 /// We want to silently drop extra arguments from call sites
5886 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5887                                           llvm::Function *newFn) {
5888   // Fast path.
5889   if (old->use_empty())
5890     return;
5891 
5892   llvm::Type *newRetTy = newFn->getReturnType();
5893   SmallVector<llvm::Value *, 4> newArgs;
5894 
5895   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5896 
5897   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5898        ui != ue; ui++) {
5899     llvm::User *user = ui->getUser();
5900 
5901     // Recognize and replace uses of bitcasts.  Most calls to
5902     // unprototyped functions will use bitcasts.
5903     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5904       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5905         replaceUsesOfNonProtoConstant(bitcast, newFn);
5906       continue;
5907     }
5908 
5909     // Recognize calls to the function.
5910     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5911     if (!callSite)
5912       continue;
5913     if (!callSite->isCallee(&*ui))
5914       continue;
5915 
5916     // If the return types don't match exactly, then we can't
5917     // transform this call unless it's dead.
5918     if (callSite->getType() != newRetTy && !callSite->use_empty())
5919       continue;
5920 
5921     // Get the call site's attribute list.
5922     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5923     llvm::AttributeList oldAttrs = callSite->getAttributes();
5924 
5925     // If the function was passed too few arguments, don't transform.
5926     unsigned newNumArgs = newFn->arg_size();
5927     if (callSite->arg_size() < newNumArgs)
5928       continue;
5929 
5930     // If extra arguments were passed, we silently drop them.
5931     // If any of the types mismatch, we don't transform.
5932     unsigned argNo = 0;
5933     bool dontTransform = false;
5934     for (llvm::Argument &A : newFn->args()) {
5935       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5936         dontTransform = true;
5937         break;
5938       }
5939 
5940       // Add any parameter attributes.
5941       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5942       argNo++;
5943     }
5944     if (dontTransform)
5945       continue;
5946 
5947     // Okay, we can transform this.  Create the new call instruction and copy
5948     // over the required information.
5949     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5950 
5951     // Copy over any operand bundles.
5952     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5953     callSite->getOperandBundlesAsDefs(newBundles);
5954 
5955     llvm::CallBase *newCall;
5956     if (isa<llvm::CallInst>(callSite)) {
5957       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
5958                                        callSite->getIterator());
5959     } else {
5960       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5961       newCall = llvm::InvokeInst::Create(
5962           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
5963           newArgs, newBundles, "", callSite->getIterator());
5964     }
5965     newArgs.clear(); // for the next iteration
5966 
5967     if (!newCall->getType()->isVoidTy())
5968       newCall->takeName(callSite);
5969     newCall->setAttributes(
5970         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5971                                  oldAttrs.getRetAttrs(), newArgAttrs));
5972     newCall->setCallingConv(callSite->getCallingConv());
5973 
5974     // Finally, remove the old call, replacing any uses with the new one.
5975     if (!callSite->use_empty())
5976       callSite->replaceAllUsesWith(newCall);
5977 
5978     // Copy debug location attached to CI.
5979     if (callSite->getDebugLoc())
5980       newCall->setDebugLoc(callSite->getDebugLoc());
5981 
5982     callSitesToBeRemovedFromParent.push_back(callSite);
5983   }
5984 
5985   for (auto *callSite : callSitesToBeRemovedFromParent) {
5986     callSite->eraseFromParent();
5987   }
5988 }
5989 
5990 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5991 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5992 /// existing call uses of the old function in the module, this adjusts them to
5993 /// call the new function directly.
5994 ///
5995 /// This is not just a cleanup: the always_inline pass requires direct calls to
5996 /// functions to be able to inline them.  If there is a bitcast in the way, it
5997 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5998 /// run at -O0.
5999 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6000                                                       llvm::Function *NewFn) {
6001   // If we're redefining a global as a function, don't transform it.
6002   if (!isa<llvm::Function>(Old)) return;
6003 
6004   replaceUsesOfNonProtoConstant(Old, NewFn);
6005 }
6006 
6007 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6008   auto DK = VD->isThisDeclarationADefinition();
6009   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6010       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6011     return;
6012 
6013   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6014   // If we have a definition, this might be a deferred decl. If the
6015   // instantiation is explicit, make sure we emit it at the end.
6016   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6017     GetAddrOfGlobalVar(VD);
6018 
6019   EmitTopLevelDecl(VD);
6020 }
6021 
6022 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6023                                                  llvm::GlobalValue *GV) {
6024   const auto *D = cast<FunctionDecl>(GD.getDecl());
6025 
6026   // Compute the function info and LLVM type.
6027   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6028   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6029 
6030   // Get or create the prototype for the function.
6031   if (!GV || (GV->getValueType() != Ty))
6032     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6033                                                    /*DontDefer=*/true,
6034                                                    ForDefinition));
6035 
6036   // Already emitted.
6037   if (!GV->isDeclaration())
6038     return;
6039 
6040   // We need to set linkage and visibility on the function before
6041   // generating code for it because various parts of IR generation
6042   // want to propagate this information down (e.g. to local static
6043   // declarations).
6044   auto *Fn = cast<llvm::Function>(GV);
6045   setFunctionLinkage(GD, Fn);
6046 
6047   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6048   setGVProperties(Fn, GD);
6049 
6050   MaybeHandleStaticInExternC(D, Fn);
6051 
6052   maybeSetTrivialComdat(*D, *Fn);
6053 
6054   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6055 
6056   setNonAliasAttributes(GD, Fn);
6057   SetLLVMFunctionAttributesForDefinition(D, Fn);
6058 
6059   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6060     AddGlobalCtor(Fn, CA->getPriority());
6061   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6062     AddGlobalDtor(Fn, DA->getPriority(), true);
6063   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6064     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6065 }
6066 
6067 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6068   const auto *D = cast<ValueDecl>(GD.getDecl());
6069   const AliasAttr *AA = D->getAttr<AliasAttr>();
6070   assert(AA && "Not an alias?");
6071 
6072   StringRef MangledName = getMangledName(GD);
6073 
6074   if (AA->getAliasee() == MangledName) {
6075     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6076     return;
6077   }
6078 
6079   // If there is a definition in the module, then it wins over the alias.
6080   // This is dubious, but allow it to be safe.  Just ignore the alias.
6081   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6082   if (Entry && !Entry->isDeclaration())
6083     return;
6084 
6085   Aliases.push_back(GD);
6086 
6087   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6088 
6089   // Create a reference to the named value.  This ensures that it is emitted
6090   // if a deferred decl.
6091   llvm::Constant *Aliasee;
6092   llvm::GlobalValue::LinkageTypes LT;
6093   if (isa<llvm::FunctionType>(DeclTy)) {
6094     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6095                                       /*ForVTable=*/false);
6096     LT = getFunctionLinkage(GD);
6097   } else {
6098     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6099                                     /*D=*/nullptr);
6100     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6101       LT = getLLVMLinkageVarDefinition(VD);
6102     else
6103       LT = getFunctionLinkage(GD);
6104   }
6105 
6106   // Create the new alias itself, but don't set a name yet.
6107   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6108   auto *GA =
6109       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6110 
6111   if (Entry) {
6112     if (GA->getAliasee() == Entry) {
6113       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6114       return;
6115     }
6116 
6117     assert(Entry->isDeclaration());
6118 
6119     // If there is a declaration in the module, then we had an extern followed
6120     // by the alias, as in:
6121     //   extern int test6();
6122     //   ...
6123     //   int test6() __attribute__((alias("test7")));
6124     //
6125     // Remove it and replace uses of it with the alias.
6126     GA->takeName(Entry);
6127 
6128     Entry->replaceAllUsesWith(GA);
6129     Entry->eraseFromParent();
6130   } else {
6131     GA->setName(MangledName);
6132   }
6133 
6134   // Set attributes which are particular to an alias; this is a
6135   // specialization of the attributes which may be set on a global
6136   // variable/function.
6137   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6138       D->isWeakImported()) {
6139     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6140   }
6141 
6142   if (const auto *VD = dyn_cast<VarDecl>(D))
6143     if (VD->getTLSKind())
6144       setTLSMode(GA, *VD);
6145 
6146   SetCommonAttributes(GD, GA);
6147 
6148   // Emit global alias debug information.
6149   if (isa<VarDecl>(D))
6150     if (CGDebugInfo *DI = getModuleDebugInfo())
6151       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6152 }
6153 
6154 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6155   const auto *D = cast<ValueDecl>(GD.getDecl());
6156   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6157   assert(IFA && "Not an ifunc?");
6158 
6159   StringRef MangledName = getMangledName(GD);
6160 
6161   if (IFA->getResolver() == MangledName) {
6162     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6163     return;
6164   }
6165 
6166   // Report an error if some definition overrides ifunc.
6167   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6168   if (Entry && !Entry->isDeclaration()) {
6169     GlobalDecl OtherGD;
6170     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6171         DiagnosedConflictingDefinitions.insert(GD).second) {
6172       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6173           << MangledName;
6174       Diags.Report(OtherGD.getDecl()->getLocation(),
6175                    diag::note_previous_definition);
6176     }
6177     return;
6178   }
6179 
6180   Aliases.push_back(GD);
6181 
6182   // The resolver might not be visited yet. Specify a dummy non-function type to
6183   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6184   // was emitted) or the whole function will be replaced (if the resolver has
6185   // not been emitted).
6186   llvm::Constant *Resolver =
6187       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6188                               /*ForVTable=*/false);
6189   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6190   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6191   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6192       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6193   if (Entry) {
6194     if (GIF->getResolver() == Entry) {
6195       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6196       return;
6197     }
6198     assert(Entry->isDeclaration());
6199 
6200     // If there is a declaration in the module, then we had an extern followed
6201     // by the ifunc, as in:
6202     //   extern int test();
6203     //   ...
6204     //   int test() __attribute__((ifunc("resolver")));
6205     //
6206     // Remove it and replace uses of it with the ifunc.
6207     GIF->takeName(Entry);
6208 
6209     Entry->replaceAllUsesWith(GIF);
6210     Entry->eraseFromParent();
6211   } else
6212     GIF->setName(MangledName);
6213   SetCommonAttributes(GD, GIF);
6214 }
6215 
6216 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6217                                             ArrayRef<llvm::Type*> Tys) {
6218   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6219                                                  (llvm::Intrinsic::ID)IID, Tys);
6220 }
6221 
6222 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6223 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6224                          const StringLiteral *Literal, bool TargetIsLSB,
6225                          bool &IsUTF16, unsigned &StringLength) {
6226   StringRef String = Literal->getString();
6227   unsigned NumBytes = String.size();
6228 
6229   // Check for simple case.
6230   if (!Literal->containsNonAsciiOrNull()) {
6231     StringLength = NumBytes;
6232     return *Map.insert(std::make_pair(String, nullptr)).first;
6233   }
6234 
6235   // Otherwise, convert the UTF8 literals into a string of shorts.
6236   IsUTF16 = true;
6237 
6238   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6239   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6240   llvm::UTF16 *ToPtr = &ToBuf[0];
6241 
6242   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6243                                  ToPtr + NumBytes, llvm::strictConversion);
6244 
6245   // ConvertUTF8toUTF16 returns the length in ToPtr.
6246   StringLength = ToPtr - &ToBuf[0];
6247 
6248   // Add an explicit null.
6249   *ToPtr = 0;
6250   return *Map.insert(std::make_pair(
6251                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6252                                    (StringLength + 1) * 2),
6253                          nullptr)).first;
6254 }
6255 
6256 ConstantAddress
6257 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6258   unsigned StringLength = 0;
6259   bool isUTF16 = false;
6260   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6261       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6262                                getDataLayout().isLittleEndian(), isUTF16,
6263                                StringLength);
6264 
6265   if (auto *C = Entry.second)
6266     return ConstantAddress(
6267         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6268 
6269   const ASTContext &Context = getContext();
6270   const llvm::Triple &Triple = getTriple();
6271 
6272   const auto CFRuntime = getLangOpts().CFRuntime;
6273   const bool IsSwiftABI =
6274       static_cast<unsigned>(CFRuntime) >=
6275       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6276   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6277 
6278   // If we don't already have it, get __CFConstantStringClassReference.
6279   if (!CFConstantStringClassRef) {
6280     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6281     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6282     Ty = llvm::ArrayType::get(Ty, 0);
6283 
6284     switch (CFRuntime) {
6285     default: break;
6286     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6287     case LangOptions::CoreFoundationABI::Swift5_0:
6288       CFConstantStringClassName =
6289           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6290                               : "$s10Foundation19_NSCFConstantStringCN";
6291       Ty = IntPtrTy;
6292       break;
6293     case LangOptions::CoreFoundationABI::Swift4_2:
6294       CFConstantStringClassName =
6295           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6296                               : "$S10Foundation19_NSCFConstantStringCN";
6297       Ty = IntPtrTy;
6298       break;
6299     case LangOptions::CoreFoundationABI::Swift4_1:
6300       CFConstantStringClassName =
6301           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6302                               : "__T010Foundation19_NSCFConstantStringCN";
6303       Ty = IntPtrTy;
6304       break;
6305     }
6306 
6307     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6308 
6309     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6310       llvm::GlobalValue *GV = nullptr;
6311 
6312       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6313         IdentifierInfo &II = Context.Idents.get(GV->getName());
6314         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6315         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6316 
6317         const VarDecl *VD = nullptr;
6318         for (const auto *Result : DC->lookup(&II))
6319           if ((VD = dyn_cast<VarDecl>(Result)))
6320             break;
6321 
6322         if (Triple.isOSBinFormatELF()) {
6323           if (!VD)
6324             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6325         } else {
6326           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6327           if (!VD || !VD->hasAttr<DLLExportAttr>())
6328             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6329           else
6330             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6331         }
6332 
6333         setDSOLocal(GV);
6334       }
6335     }
6336 
6337     // Decay array -> ptr
6338     CFConstantStringClassRef =
6339         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6340   }
6341 
6342   QualType CFTy = Context.getCFConstantStringType();
6343 
6344   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6345 
6346   ConstantInitBuilder Builder(*this);
6347   auto Fields = Builder.beginStruct(STy);
6348 
6349   // Class pointer.
6350   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6351 
6352   // Flags.
6353   if (IsSwiftABI) {
6354     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6355     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6356   } else {
6357     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6358   }
6359 
6360   // String pointer.
6361   llvm::Constant *C = nullptr;
6362   if (isUTF16) {
6363     auto Arr = llvm::ArrayRef(
6364         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6365         Entry.first().size() / 2);
6366     C = llvm::ConstantDataArray::get(VMContext, Arr);
6367   } else {
6368     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6369   }
6370 
6371   // Note: -fwritable-strings doesn't make the backing store strings of
6372   // CFStrings writable.
6373   auto *GV =
6374       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6375                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6376   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6377   // Don't enforce the target's minimum global alignment, since the only use
6378   // of the string is via this class initializer.
6379   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6380                             : Context.getTypeAlignInChars(Context.CharTy);
6381   GV->setAlignment(Align.getAsAlign());
6382 
6383   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6384   // Without it LLVM can merge the string with a non unnamed_addr one during
6385   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6386   if (Triple.isOSBinFormatMachO())
6387     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6388                            : "__TEXT,__cstring,cstring_literals");
6389   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6390   // the static linker to adjust permissions to read-only later on.
6391   else if (Triple.isOSBinFormatELF())
6392     GV->setSection(".rodata");
6393 
6394   // String.
6395   Fields.add(GV);
6396 
6397   // String length.
6398   llvm::IntegerType *LengthTy =
6399       llvm::IntegerType::get(getModule().getContext(),
6400                              Context.getTargetInfo().getLongWidth());
6401   if (IsSwiftABI) {
6402     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6403         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6404       LengthTy = Int32Ty;
6405     else
6406       LengthTy = IntPtrTy;
6407   }
6408   Fields.addInt(LengthTy, StringLength);
6409 
6410   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6411   // properly aligned on 32-bit platforms.
6412   CharUnits Alignment =
6413       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6414 
6415   // The struct.
6416   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6417                                     /*isConstant=*/false,
6418                                     llvm::GlobalVariable::PrivateLinkage);
6419   GV->addAttribute("objc_arc_inert");
6420   switch (Triple.getObjectFormat()) {
6421   case llvm::Triple::UnknownObjectFormat:
6422     llvm_unreachable("unknown file format");
6423   case llvm::Triple::DXContainer:
6424   case llvm::Triple::GOFF:
6425   case llvm::Triple::SPIRV:
6426   case llvm::Triple::XCOFF:
6427     llvm_unreachable("unimplemented");
6428   case llvm::Triple::COFF:
6429   case llvm::Triple::ELF:
6430   case llvm::Triple::Wasm:
6431     GV->setSection("cfstring");
6432     break;
6433   case llvm::Triple::MachO:
6434     GV->setSection("__DATA,__cfstring");
6435     break;
6436   }
6437   Entry.second = GV;
6438 
6439   return ConstantAddress(GV, GV->getValueType(), Alignment);
6440 }
6441 
6442 bool CodeGenModule::getExpressionLocationsEnabled() const {
6443   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6444 }
6445 
6446 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6447   if (ObjCFastEnumerationStateType.isNull()) {
6448     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6449     D->startDefinition();
6450 
6451     QualType FieldTypes[] = {
6452         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6453         Context.getPointerType(Context.UnsignedLongTy),
6454         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6455                                      nullptr, ArraySizeModifier::Normal, 0)};
6456 
6457     for (size_t i = 0; i < 4; ++i) {
6458       FieldDecl *Field = FieldDecl::Create(Context,
6459                                            D,
6460                                            SourceLocation(),
6461                                            SourceLocation(), nullptr,
6462                                            FieldTypes[i], /*TInfo=*/nullptr,
6463                                            /*BitWidth=*/nullptr,
6464                                            /*Mutable=*/false,
6465                                            ICIS_NoInit);
6466       Field->setAccess(AS_public);
6467       D->addDecl(Field);
6468     }
6469 
6470     D->completeDefinition();
6471     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6472   }
6473 
6474   return ObjCFastEnumerationStateType;
6475 }
6476 
6477 llvm::Constant *
6478 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6479   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6480 
6481   // Don't emit it as the address of the string, emit the string data itself
6482   // as an inline array.
6483   if (E->getCharByteWidth() == 1) {
6484     SmallString<64> Str(E->getString());
6485 
6486     // Resize the string to the right size, which is indicated by its type.
6487     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6488     assert(CAT && "String literal not of constant array type!");
6489     Str.resize(CAT->getZExtSize());
6490     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6491   }
6492 
6493   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6494   llvm::Type *ElemTy = AType->getElementType();
6495   unsigned NumElements = AType->getNumElements();
6496 
6497   // Wide strings have either 2-byte or 4-byte elements.
6498   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6499     SmallVector<uint16_t, 32> Elements;
6500     Elements.reserve(NumElements);
6501 
6502     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6503       Elements.push_back(E->getCodeUnit(i));
6504     Elements.resize(NumElements);
6505     return llvm::ConstantDataArray::get(VMContext, Elements);
6506   }
6507 
6508   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6509   SmallVector<uint32_t, 32> Elements;
6510   Elements.reserve(NumElements);
6511 
6512   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6513     Elements.push_back(E->getCodeUnit(i));
6514   Elements.resize(NumElements);
6515   return llvm::ConstantDataArray::get(VMContext, Elements);
6516 }
6517 
6518 static llvm::GlobalVariable *
6519 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6520                       CodeGenModule &CGM, StringRef GlobalName,
6521                       CharUnits Alignment) {
6522   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6523       CGM.GetGlobalConstantAddressSpace());
6524 
6525   llvm::Module &M = CGM.getModule();
6526   // Create a global variable for this string
6527   auto *GV = new llvm::GlobalVariable(
6528       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6529       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6530   GV->setAlignment(Alignment.getAsAlign());
6531   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6532   if (GV->isWeakForLinker()) {
6533     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6534     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6535   }
6536   CGM.setDSOLocal(GV);
6537 
6538   return GV;
6539 }
6540 
6541 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6542 /// constant array for the given string literal.
6543 ConstantAddress
6544 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6545                                                   StringRef Name) {
6546   CharUnits Alignment =
6547       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6548 
6549   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6550   llvm::GlobalVariable **Entry = nullptr;
6551   if (!LangOpts.WritableStrings) {
6552     Entry = &ConstantStringMap[C];
6553     if (auto GV = *Entry) {
6554       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6555         GV->setAlignment(Alignment.getAsAlign());
6556       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6557                              GV->getValueType(), Alignment);
6558     }
6559   }
6560 
6561   SmallString<256> MangledNameBuffer;
6562   StringRef GlobalVariableName;
6563   llvm::GlobalValue::LinkageTypes LT;
6564 
6565   // Mangle the string literal if that's how the ABI merges duplicate strings.
6566   // Don't do it if they are writable, since we don't want writes in one TU to
6567   // affect strings in another.
6568   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6569       !LangOpts.WritableStrings) {
6570     llvm::raw_svector_ostream Out(MangledNameBuffer);
6571     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6572     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6573     GlobalVariableName = MangledNameBuffer;
6574   } else {
6575     LT = llvm::GlobalValue::PrivateLinkage;
6576     GlobalVariableName = Name;
6577   }
6578 
6579   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6580 
6581   CGDebugInfo *DI = getModuleDebugInfo();
6582   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6583     DI->AddStringLiteralDebugInfo(GV, S);
6584 
6585   if (Entry)
6586     *Entry = GV;
6587 
6588   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6589 
6590   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6591                          GV->getValueType(), Alignment);
6592 }
6593 
6594 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6595 /// array for the given ObjCEncodeExpr node.
6596 ConstantAddress
6597 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6598   std::string Str;
6599   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6600 
6601   return GetAddrOfConstantCString(Str);
6602 }
6603 
6604 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6605 /// the literal and a terminating '\0' character.
6606 /// The result has pointer to array type.
6607 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6608     const std::string &Str, const char *GlobalName) {
6609   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6610   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6611       getContext().CharTy, /*VD=*/nullptr);
6612 
6613   llvm::Constant *C =
6614       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6615 
6616   // Don't share any string literals if strings aren't constant.
6617   llvm::GlobalVariable **Entry = nullptr;
6618   if (!LangOpts.WritableStrings) {
6619     Entry = &ConstantStringMap[C];
6620     if (auto GV = *Entry) {
6621       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6622         GV->setAlignment(Alignment.getAsAlign());
6623       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6624                              GV->getValueType(), Alignment);
6625     }
6626   }
6627 
6628   // Get the default prefix if a name wasn't specified.
6629   if (!GlobalName)
6630     GlobalName = ".str";
6631   // Create a global variable for this.
6632   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6633                                   GlobalName, Alignment);
6634   if (Entry)
6635     *Entry = GV;
6636 
6637   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6638                          GV->getValueType(), Alignment);
6639 }
6640 
6641 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6642     const MaterializeTemporaryExpr *E, const Expr *Init) {
6643   assert((E->getStorageDuration() == SD_Static ||
6644           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6645   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6646 
6647   // If we're not materializing a subobject of the temporary, keep the
6648   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6649   QualType MaterializedType = Init->getType();
6650   if (Init == E->getSubExpr())
6651     MaterializedType = E->getType();
6652 
6653   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6654 
6655   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6656   if (!InsertResult.second) {
6657     // We've seen this before: either we already created it or we're in the
6658     // process of doing so.
6659     if (!InsertResult.first->second) {
6660       // We recursively re-entered this function, probably during emission of
6661       // the initializer. Create a placeholder. We'll clean this up in the
6662       // outer call, at the end of this function.
6663       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6664       InsertResult.first->second = new llvm::GlobalVariable(
6665           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6666           nullptr);
6667     }
6668     return ConstantAddress(InsertResult.first->second,
6669                            llvm::cast<llvm::GlobalVariable>(
6670                                InsertResult.first->second->stripPointerCasts())
6671                                ->getValueType(),
6672                            Align);
6673   }
6674 
6675   // FIXME: If an externally-visible declaration extends multiple temporaries,
6676   // we need to give each temporary the same name in every translation unit (and
6677   // we also need to make the temporaries externally-visible).
6678   SmallString<256> Name;
6679   llvm::raw_svector_ostream Out(Name);
6680   getCXXABI().getMangleContext().mangleReferenceTemporary(
6681       VD, E->getManglingNumber(), Out);
6682 
6683   APValue *Value = nullptr;
6684   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6685     // If the initializer of the extending declaration is a constant
6686     // initializer, we should have a cached constant initializer for this
6687     // temporary. Note that this might have a different value from the value
6688     // computed by evaluating the initializer if the surrounding constant
6689     // expression modifies the temporary.
6690     Value = E->getOrCreateValue(false);
6691   }
6692 
6693   // Try evaluating it now, it might have a constant initializer.
6694   Expr::EvalResult EvalResult;
6695   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6696       !EvalResult.hasSideEffects())
6697     Value = &EvalResult.Val;
6698 
6699   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6700 
6701   std::optional<ConstantEmitter> emitter;
6702   llvm::Constant *InitialValue = nullptr;
6703   bool Constant = false;
6704   llvm::Type *Type;
6705   if (Value) {
6706     // The temporary has a constant initializer, use it.
6707     emitter.emplace(*this);
6708     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6709                                                MaterializedType);
6710     Constant =
6711         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6712                                            /*ExcludeDtor*/ false);
6713     Type = InitialValue->getType();
6714   } else {
6715     // No initializer, the initialization will be provided when we
6716     // initialize the declaration which performed lifetime extension.
6717     Type = getTypes().ConvertTypeForMem(MaterializedType);
6718   }
6719 
6720   // Create a global variable for this lifetime-extended temporary.
6721   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6722   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6723     const VarDecl *InitVD;
6724     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6725         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6726       // Temporaries defined inside a class get linkonce_odr linkage because the
6727       // class can be defined in multiple translation units.
6728       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6729     } else {
6730       // There is no need for this temporary to have external linkage if the
6731       // VarDecl has external linkage.
6732       Linkage = llvm::GlobalVariable::InternalLinkage;
6733     }
6734   }
6735   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6736   auto *GV = new llvm::GlobalVariable(
6737       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6738       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6739   if (emitter) emitter->finalize(GV);
6740   // Don't assign dllimport or dllexport to local linkage globals.
6741   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6742     setGVProperties(GV, VD);
6743     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6744       // The reference temporary should never be dllexport.
6745       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6746   }
6747   GV->setAlignment(Align.getAsAlign());
6748   if (supportsCOMDAT() && GV->isWeakForLinker())
6749     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6750   if (VD->getTLSKind())
6751     setTLSMode(GV, *VD);
6752   llvm::Constant *CV = GV;
6753   if (AddrSpace != LangAS::Default)
6754     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6755         *this, GV, AddrSpace, LangAS::Default,
6756         llvm::PointerType::get(
6757             getLLVMContext(),
6758             getContext().getTargetAddressSpace(LangAS::Default)));
6759 
6760   // Update the map with the new temporary. If we created a placeholder above,
6761   // replace it with the new global now.
6762   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6763   if (Entry) {
6764     Entry->replaceAllUsesWith(CV);
6765     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6766   }
6767   Entry = CV;
6768 
6769   return ConstantAddress(CV, Type, Align);
6770 }
6771 
6772 /// EmitObjCPropertyImplementations - Emit information for synthesized
6773 /// properties for an implementation.
6774 void CodeGenModule::EmitObjCPropertyImplementations(const
6775                                                     ObjCImplementationDecl *D) {
6776   for (const auto *PID : D->property_impls()) {
6777     // Dynamic is just for type-checking.
6778     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6779       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6780 
6781       // Determine which methods need to be implemented, some may have
6782       // been overridden. Note that ::isPropertyAccessor is not the method
6783       // we want, that just indicates if the decl came from a
6784       // property. What we want to know is if the method is defined in
6785       // this implementation.
6786       auto *Getter = PID->getGetterMethodDecl();
6787       if (!Getter || Getter->isSynthesizedAccessorStub())
6788         CodeGenFunction(*this).GenerateObjCGetter(
6789             const_cast<ObjCImplementationDecl *>(D), PID);
6790       auto *Setter = PID->getSetterMethodDecl();
6791       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6792         CodeGenFunction(*this).GenerateObjCSetter(
6793                                  const_cast<ObjCImplementationDecl *>(D), PID);
6794     }
6795   }
6796 }
6797 
6798 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6799   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6800   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6801        ivar; ivar = ivar->getNextIvar())
6802     if (ivar->getType().isDestructedType())
6803       return true;
6804 
6805   return false;
6806 }
6807 
6808 static bool AllTrivialInitializers(CodeGenModule &CGM,
6809                                    ObjCImplementationDecl *D) {
6810   CodeGenFunction CGF(CGM);
6811   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6812        E = D->init_end(); B != E; ++B) {
6813     CXXCtorInitializer *CtorInitExp = *B;
6814     Expr *Init = CtorInitExp->getInit();
6815     if (!CGF.isTrivialInitializer(Init))
6816       return false;
6817   }
6818   return true;
6819 }
6820 
6821 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6822 /// for an implementation.
6823 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6824   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6825   if (needsDestructMethod(D)) {
6826     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6827     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6828     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6829         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6830         getContext().VoidTy, nullptr, D,
6831         /*isInstance=*/true, /*isVariadic=*/false,
6832         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6833         /*isImplicitlyDeclared=*/true,
6834         /*isDefined=*/false, ObjCImplementationControl::Required);
6835     D->addInstanceMethod(DTORMethod);
6836     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6837     D->setHasDestructors(true);
6838   }
6839 
6840   // If the implementation doesn't have any ivar initializers, we don't need
6841   // a .cxx_construct.
6842   if (D->getNumIvarInitializers() == 0 ||
6843       AllTrivialInitializers(*this, D))
6844     return;
6845 
6846   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6847   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6848   // The constructor returns 'self'.
6849   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6850       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6851       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6852       /*isVariadic=*/false,
6853       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6854       /*isImplicitlyDeclared=*/true,
6855       /*isDefined=*/false, ObjCImplementationControl::Required);
6856   D->addInstanceMethod(CTORMethod);
6857   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6858   D->setHasNonZeroConstructors(true);
6859 }
6860 
6861 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6862 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6863   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6864       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6865     ErrorUnsupported(LSD, "linkage spec");
6866     return;
6867   }
6868 
6869   EmitDeclContext(LSD);
6870 }
6871 
6872 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6873   // Device code should not be at top level.
6874   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6875     return;
6876 
6877   std::unique_ptr<CodeGenFunction> &CurCGF =
6878       GlobalTopLevelStmtBlockInFlight.first;
6879 
6880   // We emitted a top-level stmt but after it there is initialization.
6881   // Stop squashing the top-level stmts into a single function.
6882   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6883     CurCGF->FinishFunction(D->getEndLoc());
6884     CurCGF = nullptr;
6885   }
6886 
6887   if (!CurCGF) {
6888     // void __stmts__N(void)
6889     // FIXME: Ask the ABI name mangler to pick a name.
6890     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6891     FunctionArgList Args;
6892     QualType RetTy = getContext().VoidTy;
6893     const CGFunctionInfo &FnInfo =
6894         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6895     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6896     llvm::Function *Fn = llvm::Function::Create(
6897         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6898 
6899     CurCGF.reset(new CodeGenFunction(*this));
6900     GlobalTopLevelStmtBlockInFlight.second = D;
6901     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6902                           D->getBeginLoc(), D->getBeginLoc());
6903     CXXGlobalInits.push_back(Fn);
6904   }
6905 
6906   CurCGF->EmitStmt(D->getStmt());
6907 }
6908 
6909 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6910   for (auto *I : DC->decls()) {
6911     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6912     // are themselves considered "top-level", so EmitTopLevelDecl on an
6913     // ObjCImplDecl does not recursively visit them. We need to do that in
6914     // case they're nested inside another construct (LinkageSpecDecl /
6915     // ExportDecl) that does stop them from being considered "top-level".
6916     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6917       for (auto *M : OID->methods())
6918         EmitTopLevelDecl(M);
6919     }
6920 
6921     EmitTopLevelDecl(I);
6922   }
6923 }
6924 
6925 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6926 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6927   // Ignore dependent declarations.
6928   if (D->isTemplated())
6929     return;
6930 
6931   // Consteval function shouldn't be emitted.
6932   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6933     return;
6934 
6935   switch (D->getKind()) {
6936   case Decl::CXXConversion:
6937   case Decl::CXXMethod:
6938   case Decl::Function:
6939     EmitGlobal(cast<FunctionDecl>(D));
6940     // Always provide some coverage mapping
6941     // even for the functions that aren't emitted.
6942     AddDeferredUnusedCoverageMapping(D);
6943     break;
6944 
6945   case Decl::CXXDeductionGuide:
6946     // Function-like, but does not result in code emission.
6947     break;
6948 
6949   case Decl::Var:
6950   case Decl::Decomposition:
6951   case Decl::VarTemplateSpecialization:
6952     EmitGlobal(cast<VarDecl>(D));
6953     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6954       for (auto *B : DD->bindings())
6955         if (auto *HD = B->getHoldingVar())
6956           EmitGlobal(HD);
6957     break;
6958 
6959   // Indirect fields from global anonymous structs and unions can be
6960   // ignored; only the actual variable requires IR gen support.
6961   case Decl::IndirectField:
6962     break;
6963 
6964   // C++ Decls
6965   case Decl::Namespace:
6966     EmitDeclContext(cast<NamespaceDecl>(D));
6967     break;
6968   case Decl::ClassTemplateSpecialization: {
6969     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6970     if (CGDebugInfo *DI = getModuleDebugInfo())
6971       if (Spec->getSpecializationKind() ==
6972               TSK_ExplicitInstantiationDefinition &&
6973           Spec->hasDefinition())
6974         DI->completeTemplateDefinition(*Spec);
6975   } [[fallthrough]];
6976   case Decl::CXXRecord: {
6977     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6978     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6979       if (CRD->hasDefinition())
6980         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6981       if (auto *ES = D->getASTContext().getExternalSource())
6982         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6983           DI->completeUnusedClass(*CRD);
6984     }
6985     // Emit any static data members, they may be definitions.
6986     for (auto *I : CRD->decls())
6987       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6988         EmitTopLevelDecl(I);
6989     break;
6990   }
6991     // No code generation needed.
6992   case Decl::UsingShadow:
6993   case Decl::ClassTemplate:
6994   case Decl::VarTemplate:
6995   case Decl::Concept:
6996   case Decl::VarTemplatePartialSpecialization:
6997   case Decl::FunctionTemplate:
6998   case Decl::TypeAliasTemplate:
6999   case Decl::Block:
7000   case Decl::Empty:
7001   case Decl::Binding:
7002     break;
7003   case Decl::Using:          // using X; [C++]
7004     if (CGDebugInfo *DI = getModuleDebugInfo())
7005         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7006     break;
7007   case Decl::UsingEnum: // using enum X; [C++]
7008     if (CGDebugInfo *DI = getModuleDebugInfo())
7009       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7010     break;
7011   case Decl::NamespaceAlias:
7012     if (CGDebugInfo *DI = getModuleDebugInfo())
7013         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7014     break;
7015   case Decl::UsingDirective: // using namespace X; [C++]
7016     if (CGDebugInfo *DI = getModuleDebugInfo())
7017       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7018     break;
7019   case Decl::CXXConstructor:
7020     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7021     break;
7022   case Decl::CXXDestructor:
7023     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7024     break;
7025 
7026   case Decl::StaticAssert:
7027     // Nothing to do.
7028     break;
7029 
7030   // Objective-C Decls
7031 
7032   // Forward declarations, no (immediate) code generation.
7033   case Decl::ObjCInterface:
7034   case Decl::ObjCCategory:
7035     break;
7036 
7037   case Decl::ObjCProtocol: {
7038     auto *Proto = cast<ObjCProtocolDecl>(D);
7039     if (Proto->isThisDeclarationADefinition())
7040       ObjCRuntime->GenerateProtocol(Proto);
7041     break;
7042   }
7043 
7044   case Decl::ObjCCategoryImpl:
7045     // Categories have properties but don't support synthesize so we
7046     // can ignore them here.
7047     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7048     break;
7049 
7050   case Decl::ObjCImplementation: {
7051     auto *OMD = cast<ObjCImplementationDecl>(D);
7052     EmitObjCPropertyImplementations(OMD);
7053     EmitObjCIvarInitializations(OMD);
7054     ObjCRuntime->GenerateClass(OMD);
7055     // Emit global variable debug information.
7056     if (CGDebugInfo *DI = getModuleDebugInfo())
7057       if (getCodeGenOpts().hasReducedDebugInfo())
7058         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7059             OMD->getClassInterface()), OMD->getLocation());
7060     break;
7061   }
7062   case Decl::ObjCMethod: {
7063     auto *OMD = cast<ObjCMethodDecl>(D);
7064     // If this is not a prototype, emit the body.
7065     if (OMD->getBody())
7066       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7067     break;
7068   }
7069   case Decl::ObjCCompatibleAlias:
7070     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7071     break;
7072 
7073   case Decl::PragmaComment: {
7074     const auto *PCD = cast<PragmaCommentDecl>(D);
7075     switch (PCD->getCommentKind()) {
7076     case PCK_Unknown:
7077       llvm_unreachable("unexpected pragma comment kind");
7078     case PCK_Linker:
7079       AppendLinkerOptions(PCD->getArg());
7080       break;
7081     case PCK_Lib:
7082         AddDependentLib(PCD->getArg());
7083       break;
7084     case PCK_Compiler:
7085     case PCK_ExeStr:
7086     case PCK_User:
7087       break; // We ignore all of these.
7088     }
7089     break;
7090   }
7091 
7092   case Decl::PragmaDetectMismatch: {
7093     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7094     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7095     break;
7096   }
7097 
7098   case Decl::LinkageSpec:
7099     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7100     break;
7101 
7102   case Decl::FileScopeAsm: {
7103     // File-scope asm is ignored during device-side CUDA compilation.
7104     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7105       break;
7106     // File-scope asm is ignored during device-side OpenMP compilation.
7107     if (LangOpts.OpenMPIsTargetDevice)
7108       break;
7109     // File-scope asm is ignored during device-side SYCL compilation.
7110     if (LangOpts.SYCLIsDevice)
7111       break;
7112     auto *AD = cast<FileScopeAsmDecl>(D);
7113     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7114     break;
7115   }
7116 
7117   case Decl::TopLevelStmt:
7118     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7119     break;
7120 
7121   case Decl::Import: {
7122     auto *Import = cast<ImportDecl>(D);
7123 
7124     // If we've already imported this module, we're done.
7125     if (!ImportedModules.insert(Import->getImportedModule()))
7126       break;
7127 
7128     // Emit debug information for direct imports.
7129     if (!Import->getImportedOwningModule()) {
7130       if (CGDebugInfo *DI = getModuleDebugInfo())
7131         DI->EmitImportDecl(*Import);
7132     }
7133 
7134     // For C++ standard modules we are done - we will call the module
7135     // initializer for imported modules, and that will likewise call those for
7136     // any imports it has.
7137     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7138         !Import->getImportedOwningModule()->isModuleMapModule())
7139       break;
7140 
7141     // For clang C++ module map modules the initializers for sub-modules are
7142     // emitted here.
7143 
7144     // Find all of the submodules and emit the module initializers.
7145     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7146     SmallVector<clang::Module *, 16> Stack;
7147     Visited.insert(Import->getImportedModule());
7148     Stack.push_back(Import->getImportedModule());
7149 
7150     while (!Stack.empty()) {
7151       clang::Module *Mod = Stack.pop_back_val();
7152       if (!EmittedModuleInitializers.insert(Mod).second)
7153         continue;
7154 
7155       for (auto *D : Context.getModuleInitializers(Mod))
7156         EmitTopLevelDecl(D);
7157 
7158       // Visit the submodules of this module.
7159       for (auto *Submodule : Mod->submodules()) {
7160         // Skip explicit children; they need to be explicitly imported to emit
7161         // the initializers.
7162         if (Submodule->IsExplicit)
7163           continue;
7164 
7165         if (Visited.insert(Submodule).second)
7166           Stack.push_back(Submodule);
7167       }
7168     }
7169     break;
7170   }
7171 
7172   case Decl::Export:
7173     EmitDeclContext(cast<ExportDecl>(D));
7174     break;
7175 
7176   case Decl::OMPThreadPrivate:
7177     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7178     break;
7179 
7180   case Decl::OMPAllocate:
7181     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7182     break;
7183 
7184   case Decl::OMPDeclareReduction:
7185     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7186     break;
7187 
7188   case Decl::OMPDeclareMapper:
7189     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7190     break;
7191 
7192   case Decl::OMPRequires:
7193     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7194     break;
7195 
7196   case Decl::Typedef:
7197   case Decl::TypeAlias: // using foo = bar; [C++11]
7198     if (CGDebugInfo *DI = getModuleDebugInfo())
7199       DI->EmitAndRetainType(
7200           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7201     break;
7202 
7203   case Decl::Record:
7204     if (CGDebugInfo *DI = getModuleDebugInfo())
7205       if (cast<RecordDecl>(D)->getDefinition())
7206         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7207     break;
7208 
7209   case Decl::Enum:
7210     if (CGDebugInfo *DI = getModuleDebugInfo())
7211       if (cast<EnumDecl>(D)->getDefinition())
7212         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7213     break;
7214 
7215   case Decl::HLSLBuffer:
7216     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7217     break;
7218 
7219   default:
7220     // Make sure we handled everything we should, every other kind is a
7221     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7222     // function. Need to recode Decl::Kind to do that easily.
7223     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7224     break;
7225   }
7226 }
7227 
7228 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7229   // Do we need to generate coverage mapping?
7230   if (!CodeGenOpts.CoverageMapping)
7231     return;
7232   switch (D->getKind()) {
7233   case Decl::CXXConversion:
7234   case Decl::CXXMethod:
7235   case Decl::Function:
7236   case Decl::ObjCMethod:
7237   case Decl::CXXConstructor:
7238   case Decl::CXXDestructor: {
7239     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7240       break;
7241     SourceManager &SM = getContext().getSourceManager();
7242     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7243       break;
7244     if (!llvm::coverage::SystemHeadersCoverage &&
7245         SM.isInSystemHeader(D->getBeginLoc()))
7246       break;
7247     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7248     break;
7249   }
7250   default:
7251     break;
7252   };
7253 }
7254 
7255 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7256   // Do we need to generate coverage mapping?
7257   if (!CodeGenOpts.CoverageMapping)
7258     return;
7259   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7260     if (Fn->isTemplateInstantiation())
7261       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7262   }
7263   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7264 }
7265 
7266 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7267   // We call takeVector() here to avoid use-after-free.
7268   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7269   // we deserialize function bodies to emit coverage info for them, and that
7270   // deserializes more declarations. How should we handle that case?
7271   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7272     if (!Entry.second)
7273       continue;
7274     const Decl *D = Entry.first;
7275     switch (D->getKind()) {
7276     case Decl::CXXConversion:
7277     case Decl::CXXMethod:
7278     case Decl::Function:
7279     case Decl::ObjCMethod: {
7280       CodeGenPGO PGO(*this);
7281       GlobalDecl GD(cast<FunctionDecl>(D));
7282       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7283                                   getFunctionLinkage(GD));
7284       break;
7285     }
7286     case Decl::CXXConstructor: {
7287       CodeGenPGO PGO(*this);
7288       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7289       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7290                                   getFunctionLinkage(GD));
7291       break;
7292     }
7293     case Decl::CXXDestructor: {
7294       CodeGenPGO PGO(*this);
7295       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7296       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7297                                   getFunctionLinkage(GD));
7298       break;
7299     }
7300     default:
7301       break;
7302     };
7303   }
7304 }
7305 
7306 void CodeGenModule::EmitMainVoidAlias() {
7307   // In order to transition away from "__original_main" gracefully, emit an
7308   // alias for "main" in the no-argument case so that libc can detect when
7309   // new-style no-argument main is in used.
7310   if (llvm::Function *F = getModule().getFunction("main")) {
7311     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7312         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7313       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7314       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7315     }
7316   }
7317 }
7318 
7319 /// Turns the given pointer into a constant.
7320 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7321                                           const void *Ptr) {
7322   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7323   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7324   return llvm::ConstantInt::get(i64, PtrInt);
7325 }
7326 
7327 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7328                                    llvm::NamedMDNode *&GlobalMetadata,
7329                                    GlobalDecl D,
7330                                    llvm::GlobalValue *Addr) {
7331   if (!GlobalMetadata)
7332     GlobalMetadata =
7333       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7334 
7335   // TODO: should we report variant information for ctors/dtors?
7336   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7337                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7338                                CGM.getLLVMContext(), D.getDecl()))};
7339   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7340 }
7341 
7342 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7343                                                  llvm::GlobalValue *CppFunc) {
7344   // Store the list of ifuncs we need to replace uses in.
7345   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7346   // List of ConstantExprs that we should be able to delete when we're done
7347   // here.
7348   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7349 
7350   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7351   if (Elem == CppFunc)
7352     return false;
7353 
7354   // First make sure that all users of this are ifuncs (or ifuncs via a
7355   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7356   // later.
7357   for (llvm::User *User : Elem->users()) {
7358     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7359     // ifunc directly. In any other case, just give up, as we don't know what we
7360     // could break by changing those.
7361     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7362       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7363         return false;
7364 
7365       for (llvm::User *CEUser : ConstExpr->users()) {
7366         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7367           IFuncs.push_back(IFunc);
7368         } else {
7369           return false;
7370         }
7371       }
7372       CEs.push_back(ConstExpr);
7373     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7374       IFuncs.push_back(IFunc);
7375     } else {
7376       // This user is one we don't know how to handle, so fail redirection. This
7377       // will result in an ifunc retaining a resolver name that will ultimately
7378       // fail to be resolved to a defined function.
7379       return false;
7380     }
7381   }
7382 
7383   // Now we know this is a valid case where we can do this alias replacement, we
7384   // need to remove all of the references to Elem (and the bitcasts!) so we can
7385   // delete it.
7386   for (llvm::GlobalIFunc *IFunc : IFuncs)
7387     IFunc->setResolver(nullptr);
7388   for (llvm::ConstantExpr *ConstExpr : CEs)
7389     ConstExpr->destroyConstant();
7390 
7391   // We should now be out of uses for the 'old' version of this function, so we
7392   // can erase it as well.
7393   Elem->eraseFromParent();
7394 
7395   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7396     // The type of the resolver is always just a function-type that returns the
7397     // type of the IFunc, so create that here. If the type of the actual
7398     // resolver doesn't match, it just gets bitcast to the right thing.
7399     auto *ResolverTy =
7400         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7401     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7402         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7403     IFunc->setResolver(Resolver);
7404   }
7405   return true;
7406 }
7407 
7408 /// For each function which is declared within an extern "C" region and marked
7409 /// as 'used', but has internal linkage, create an alias from the unmangled
7410 /// name to the mangled name if possible. People expect to be able to refer
7411 /// to such functions with an unmangled name from inline assembly within the
7412 /// same translation unit.
7413 void CodeGenModule::EmitStaticExternCAliases() {
7414   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7415     return;
7416   for (auto &I : StaticExternCValues) {
7417     const IdentifierInfo *Name = I.first;
7418     llvm::GlobalValue *Val = I.second;
7419 
7420     // If Val is null, that implies there were multiple declarations that each
7421     // had a claim to the unmangled name. In this case, generation of the alias
7422     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7423     if (!Val)
7424       break;
7425 
7426     llvm::GlobalValue *ExistingElem =
7427         getModule().getNamedValue(Name->getName());
7428 
7429     // If there is either not something already by this name, or we were able to
7430     // replace all uses from IFuncs, create the alias.
7431     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7432       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7433   }
7434 }
7435 
7436 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7437                                              GlobalDecl &Result) const {
7438   auto Res = Manglings.find(MangledName);
7439   if (Res == Manglings.end())
7440     return false;
7441   Result = Res->getValue();
7442   return true;
7443 }
7444 
7445 /// Emits metadata nodes associating all the global values in the
7446 /// current module with the Decls they came from.  This is useful for
7447 /// projects using IR gen as a subroutine.
7448 ///
7449 /// Since there's currently no way to associate an MDNode directly
7450 /// with an llvm::GlobalValue, we create a global named metadata
7451 /// with the name 'clang.global.decl.ptrs'.
7452 void CodeGenModule::EmitDeclMetadata() {
7453   llvm::NamedMDNode *GlobalMetadata = nullptr;
7454 
7455   for (auto &I : MangledDeclNames) {
7456     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7457     // Some mangled names don't necessarily have an associated GlobalValue
7458     // in this module, e.g. if we mangled it for DebugInfo.
7459     if (Addr)
7460       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7461   }
7462 }
7463 
7464 /// Emits metadata nodes for all the local variables in the current
7465 /// function.
7466 void CodeGenFunction::EmitDeclMetadata() {
7467   if (LocalDeclMap.empty()) return;
7468 
7469   llvm::LLVMContext &Context = getLLVMContext();
7470 
7471   // Find the unique metadata ID for this name.
7472   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7473 
7474   llvm::NamedMDNode *GlobalMetadata = nullptr;
7475 
7476   for (auto &I : LocalDeclMap) {
7477     const Decl *D = I.first;
7478     llvm::Value *Addr = I.second.emitRawPointer(*this);
7479     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7480       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7481       Alloca->setMetadata(
7482           DeclPtrKind, llvm::MDNode::get(
7483                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7484     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7485       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7486       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7487     }
7488   }
7489 }
7490 
7491 void CodeGenModule::EmitVersionIdentMetadata() {
7492   llvm::NamedMDNode *IdentMetadata =
7493     TheModule.getOrInsertNamedMetadata("llvm.ident");
7494   std::string Version = getClangFullVersion();
7495   llvm::LLVMContext &Ctx = TheModule.getContext();
7496 
7497   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7498   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7499 }
7500 
7501 void CodeGenModule::EmitCommandLineMetadata() {
7502   llvm::NamedMDNode *CommandLineMetadata =
7503     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7504   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7505   llvm::LLVMContext &Ctx = TheModule.getContext();
7506 
7507   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7508   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7509 }
7510 
7511 void CodeGenModule::EmitCoverageFile() {
7512   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7513   if (!CUNode)
7514     return;
7515 
7516   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7517   llvm::LLVMContext &Ctx = TheModule.getContext();
7518   auto *CoverageDataFile =
7519       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7520   auto *CoverageNotesFile =
7521       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7522   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7523     llvm::MDNode *CU = CUNode->getOperand(i);
7524     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7525     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7526   }
7527 }
7528 
7529 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7530                                                        bool ForEH) {
7531   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7532   // FIXME: should we even be calling this method if RTTI is disabled
7533   // and it's not for EH?
7534   if (!shouldEmitRTTI(ForEH))
7535     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7536 
7537   if (ForEH && Ty->isObjCObjectPointerType() &&
7538       LangOpts.ObjCRuntime.isGNUFamily())
7539     return ObjCRuntime->GetEHType(Ty);
7540 
7541   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7542 }
7543 
7544 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7545   // Do not emit threadprivates in simd-only mode.
7546   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7547     return;
7548   for (auto RefExpr : D->varlist()) {
7549     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7550     bool PerformInit =
7551         VD->getAnyInitializer() &&
7552         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7553                                                         /*ForRef=*/false);
7554 
7555     Address Addr(GetAddrOfGlobalVar(VD),
7556                  getTypes().ConvertTypeForMem(VD->getType()),
7557                  getContext().getDeclAlign(VD));
7558     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7559             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7560       CXXGlobalInits.push_back(InitFunction);
7561   }
7562 }
7563 
7564 llvm::Metadata *
7565 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7566                                             StringRef Suffix) {
7567   if (auto *FnType = T->getAs<FunctionProtoType>())
7568     T = getContext().getFunctionType(
7569         FnType->getReturnType(), FnType->getParamTypes(),
7570         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7571 
7572   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7573   if (InternalId)
7574     return InternalId;
7575 
7576   if (isExternallyVisible(T->getLinkage())) {
7577     std::string OutName;
7578     llvm::raw_string_ostream Out(OutName);
7579     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7580         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7581 
7582     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7583       Out << ".normalized";
7584 
7585     Out << Suffix;
7586 
7587     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7588   } else {
7589     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7590                                            llvm::ArrayRef<llvm::Metadata *>());
7591   }
7592 
7593   return InternalId;
7594 }
7595 
7596 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7597   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7598 }
7599 
7600 llvm::Metadata *
7601 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7602   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7603 }
7604 
7605 // Generalize pointer types to a void pointer with the qualifiers of the
7606 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7607 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7608 // 'void *'.
7609 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7610   if (!Ty->isPointerType())
7611     return Ty;
7612 
7613   return Ctx.getPointerType(
7614       QualType(Ctx.VoidTy).withCVRQualifiers(
7615           Ty->getPointeeType().getCVRQualifiers()));
7616 }
7617 
7618 // Apply type generalization to a FunctionType's return and argument types
7619 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7620   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7621     SmallVector<QualType, 8> GeneralizedParams;
7622     for (auto &Param : FnType->param_types())
7623       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7624 
7625     return Ctx.getFunctionType(
7626         GeneralizeType(Ctx, FnType->getReturnType()),
7627         GeneralizedParams, FnType->getExtProtoInfo());
7628   }
7629 
7630   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7631     return Ctx.getFunctionNoProtoType(
7632         GeneralizeType(Ctx, FnType->getReturnType()));
7633 
7634   llvm_unreachable("Encountered unknown FunctionType");
7635 }
7636 
7637 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7638   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7639                                       GeneralizedMetadataIdMap, ".generalized");
7640 }
7641 
7642 /// Returns whether this module needs the "all-vtables" type identifier.
7643 bool CodeGenModule::NeedAllVtablesTypeId() const {
7644   // Returns true if at least one of vtable-based CFI checkers is enabled and
7645   // is not in the trapping mode.
7646   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7647            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7648           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7649            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7650           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7651            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7652           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7653            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7654 }
7655 
7656 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7657                                           CharUnits Offset,
7658                                           const CXXRecordDecl *RD) {
7659   llvm::Metadata *MD =
7660       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7661   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7662 
7663   if (CodeGenOpts.SanitizeCfiCrossDso)
7664     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7665       VTable->addTypeMetadata(Offset.getQuantity(),
7666                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7667 
7668   if (NeedAllVtablesTypeId()) {
7669     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7670     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7671   }
7672 }
7673 
7674 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7675   if (!SanStats)
7676     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7677 
7678   return *SanStats;
7679 }
7680 
7681 llvm::Value *
7682 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7683                                                   CodeGenFunction &CGF) {
7684   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7685   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7686   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7687   auto *Call = CGF.EmitRuntimeCall(
7688       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7689   return Call;
7690 }
7691 
7692 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7693     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7694   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7695                                  /* forPointeeType= */ true);
7696 }
7697 
7698 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7699                                                  LValueBaseInfo *BaseInfo,
7700                                                  TBAAAccessInfo *TBAAInfo,
7701                                                  bool forPointeeType) {
7702   if (TBAAInfo)
7703     *TBAAInfo = getTBAAAccessInfo(T);
7704 
7705   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7706   // that doesn't return the information we need to compute BaseInfo.
7707 
7708   // Honor alignment typedef attributes even on incomplete types.
7709   // We also honor them straight for C++ class types, even as pointees;
7710   // there's an expressivity gap here.
7711   if (auto TT = T->getAs<TypedefType>()) {
7712     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7713       if (BaseInfo)
7714         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7715       return getContext().toCharUnitsFromBits(Align);
7716     }
7717   }
7718 
7719   bool AlignForArray = T->isArrayType();
7720 
7721   // Analyze the base element type, so we don't get confused by incomplete
7722   // array types.
7723   T = getContext().getBaseElementType(T);
7724 
7725   if (T->isIncompleteType()) {
7726     // We could try to replicate the logic from
7727     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7728     // type is incomplete, so it's impossible to test. We could try to reuse
7729     // getTypeAlignIfKnown, but that doesn't return the information we need
7730     // to set BaseInfo.  So just ignore the possibility that the alignment is
7731     // greater than one.
7732     if (BaseInfo)
7733       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7734     return CharUnits::One();
7735   }
7736 
7737   if (BaseInfo)
7738     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7739 
7740   CharUnits Alignment;
7741   const CXXRecordDecl *RD;
7742   if (T.getQualifiers().hasUnaligned()) {
7743     Alignment = CharUnits::One();
7744   } else if (forPointeeType && !AlignForArray &&
7745              (RD = T->getAsCXXRecordDecl())) {
7746     // For C++ class pointees, we don't know whether we're pointing at a
7747     // base or a complete object, so we generally need to use the
7748     // non-virtual alignment.
7749     Alignment = getClassPointerAlignment(RD);
7750   } else {
7751     Alignment = getContext().getTypeAlignInChars(T);
7752   }
7753 
7754   // Cap to the global maximum type alignment unless the alignment
7755   // was somehow explicit on the type.
7756   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7757     if (Alignment.getQuantity() > MaxAlign &&
7758         !getContext().isAlignmentRequired(T))
7759       Alignment = CharUnits::fromQuantity(MaxAlign);
7760   }
7761   return Alignment;
7762 }
7763 
7764 bool CodeGenModule::stopAutoInit() {
7765   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7766   if (StopAfter) {
7767     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7768     // used
7769     if (NumAutoVarInit >= StopAfter) {
7770       return true;
7771     }
7772     if (!NumAutoVarInit) {
7773       unsigned DiagID = getDiags().getCustomDiagID(
7774           DiagnosticsEngine::Warning,
7775           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7776           "number of times ftrivial-auto-var-init=%1 gets applied.");
7777       getDiags().Report(DiagID)
7778           << StopAfter
7779           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7780                       LangOptions::TrivialAutoVarInitKind::Zero
7781                   ? "zero"
7782                   : "pattern");
7783     }
7784     ++NumAutoVarInit;
7785   }
7786   return false;
7787 }
7788 
7789 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7790                                                     const Decl *D) const {
7791   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7792   // postfix beginning with '.' since the symbol name can be demangled.
7793   if (LangOpts.HIP)
7794     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7795   else
7796     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7797 
7798   // If the CUID is not specified we try to generate a unique postfix.
7799   if (getLangOpts().CUID.empty()) {
7800     SourceManager &SM = getContext().getSourceManager();
7801     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7802     assert(PLoc.isValid() && "Source location is expected to be valid.");
7803 
7804     // Get the hash of the user defined macros.
7805     llvm::MD5 Hash;
7806     llvm::MD5::MD5Result Result;
7807     for (const auto &Arg : PreprocessorOpts.Macros)
7808       Hash.update(Arg.first);
7809     Hash.final(Result);
7810 
7811     // Get the UniqueID for the file containing the decl.
7812     llvm::sys::fs::UniqueID ID;
7813     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7814       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7815       assert(PLoc.isValid() && "Source location is expected to be valid.");
7816       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7817         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7818             << PLoc.getFilename() << EC.message();
7819     }
7820     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7821        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7822   } else {
7823     OS << getContext().getCUIDHash();
7824   }
7825 }
7826 
7827 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7828   assert(DeferredDeclsToEmit.empty() &&
7829          "Should have emitted all decls deferred to emit.");
7830   assert(NewBuilder->DeferredDecls.empty() &&
7831          "Newly created module should not have deferred decls");
7832   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7833   assert(EmittedDeferredDecls.empty() &&
7834          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7835 
7836   assert(NewBuilder->DeferredVTables.empty() &&
7837          "Newly created module should not have deferred vtables");
7838   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7839 
7840   assert(NewBuilder->MangledDeclNames.empty() &&
7841          "Newly created module should not have mangled decl names");
7842   assert(NewBuilder->Manglings.empty() &&
7843          "Newly created module should not have manglings");
7844   NewBuilder->Manglings = std::move(Manglings);
7845 
7846   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7847 
7848   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7849 }
7850