1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 57 #include "llvm/IR/AttributeMask.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/ProfileSummary.h" 64 #include "llvm/ProfileData/InstrProfReader.h" 65 #include "llvm/ProfileData/SampleProf.h" 66 #include "llvm/Support/CRC.h" 67 #include "llvm/Support/CodeGen.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/ConvertUTF.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/RISCVISAInfo.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/Triple.h" 75 #include "llvm/TargetParser/X86TargetParser.h" 76 #include <optional> 77 78 using namespace clang; 79 using namespace CodeGen; 80 81 static llvm::cl::opt<bool> LimitedCoverage( 82 "limited-coverage-experimental", llvm::cl::Hidden, 83 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 84 85 static const char AnnotationSection[] = "llvm.metadata"; 86 87 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 88 switch (CGM.getContext().getCXXABIKind()) { 89 case TargetCXXABI::AppleARM64: 90 case TargetCXXABI::Fuchsia: 91 case TargetCXXABI::GenericAArch64: 92 case TargetCXXABI::GenericARM: 93 case TargetCXXABI::iOS: 94 case TargetCXXABI::WatchOS: 95 case TargetCXXABI::GenericMIPS: 96 case TargetCXXABI::GenericItanium: 97 case TargetCXXABI::WebAssembly: 98 case TargetCXXABI::XL: 99 return CreateItaniumCXXABI(CGM); 100 case TargetCXXABI::Microsoft: 101 return CreateMicrosoftCXXABI(CGM); 102 } 103 104 llvm_unreachable("invalid C++ ABI kind"); 105 } 106 107 static std::unique_ptr<TargetCodeGenInfo> 108 createTargetCodeGenInfo(CodeGenModule &CGM) { 109 const TargetInfo &Target = CGM.getTarget(); 110 const llvm::Triple &Triple = Target.getTriple(); 111 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 112 113 switch (Triple.getArch()) { 114 default: 115 return createDefaultTargetCodeGenInfo(CGM); 116 117 case llvm::Triple::le32: 118 return createPNaClTargetCodeGenInfo(CGM); 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 149 return createAArch64TargetCodeGenInfo(CGM, Kind); 150 } 151 152 case llvm::Triple::wasm32: 153 case llvm::Triple::wasm64: { 154 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 155 if (Target.getABI() == "experimental-mv") 156 Kind = WebAssemblyABIKind::ExperimentalMV; 157 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 158 } 159 160 case llvm::Triple::arm: 161 case llvm::Triple::armeb: 162 case llvm::Triple::thumb: 163 case llvm::Triple::thumbeb: { 164 if (Triple.getOS() == llvm::Triple::Win32) 165 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 166 167 ARMABIKind Kind = ARMABIKind::AAPCS; 168 StringRef ABIStr = Target.getABI(); 169 if (ABIStr == "apcs-gnu") 170 Kind = ARMABIKind::APCS; 171 else if (ABIStr == "aapcs16") 172 Kind = ARMABIKind::AAPCS16_VFP; 173 else if (CodeGenOpts.FloatABI == "hard" || 174 (CodeGenOpts.FloatABI != "soft" && 175 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 176 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 177 Triple.getEnvironment() == llvm::Triple::EABIHF))) 178 Kind = ARMABIKind::AAPCS_VFP; 179 180 return createARMTargetCodeGenInfo(CGM, Kind); 181 } 182 183 case llvm::Triple::ppc: { 184 if (Triple.isOSAIX()) 185 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 186 187 bool IsSoftFloat = 188 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 189 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 190 } 191 case llvm::Triple::ppcle: { 192 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppc64: 196 if (Triple.isOSAIX()) 197 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 198 199 if (Triple.isOSBinFormatELF()) { 200 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 201 if (Target.getABI() == "elfv2") 202 Kind = PPC64_SVR4_ABIKind::ELFv2; 203 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 204 205 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 206 } 207 return createPPC64TargetCodeGenInfo(CGM); 208 case llvm::Triple::ppc64le: { 209 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 210 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 211 if (Target.getABI() == "elfv1") 212 Kind = PPC64_SVR4_ABIKind::ELFv1; 213 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 214 215 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 216 } 217 218 case llvm::Triple::nvptx: 219 case llvm::Triple::nvptx64: 220 return createNVPTXTargetCodeGenInfo(CGM); 221 222 case llvm::Triple::msp430: 223 return createMSP430TargetCodeGenInfo(CGM); 224 225 case llvm::Triple::riscv32: 226 case llvm::Triple::riscv64: { 227 StringRef ABIStr = Target.getABI(); 228 unsigned XLen = Target.getPointerWidth(LangAS::Default); 229 unsigned ABIFLen = 0; 230 if (ABIStr.ends_with("f")) 231 ABIFLen = 32; 232 else if (ABIStr.ends_with("d")) 233 ABIFLen = 64; 234 bool EABI = ABIStr.ends_with("e"); 235 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 236 } 237 238 case llvm::Triple::systemz: { 239 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 240 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 241 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 242 } 243 244 case llvm::Triple::tce: 245 case llvm::Triple::tcele: 246 return createTCETargetCodeGenInfo(CGM); 247 248 case llvm::Triple::x86: { 249 bool IsDarwinVectorABI = Triple.isOSDarwin(); 250 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 251 252 if (Triple.getOS() == llvm::Triple::Win32) { 253 return createWinX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters); 256 } 257 return createX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 260 } 261 262 case llvm::Triple::x86_64: { 263 StringRef ABI = Target.getABI(); 264 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 265 : ABI == "avx" ? X86AVXABILevel::AVX 266 : X86AVXABILevel::None); 267 268 switch (Triple.getOS()) { 269 case llvm::Triple::Win32: 270 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 271 default: 272 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 273 } 274 } 275 case llvm::Triple::hexagon: 276 return createHexagonTargetCodeGenInfo(CGM); 277 case llvm::Triple::lanai: 278 return createLanaiTargetCodeGenInfo(CGM); 279 case llvm::Triple::r600: 280 return createAMDGPUTargetCodeGenInfo(CGM); 281 case llvm::Triple::amdgcn: 282 return createAMDGPUTargetCodeGenInfo(CGM); 283 case llvm::Triple::sparc: 284 return createSparcV8TargetCodeGenInfo(CGM); 285 case llvm::Triple::sparcv9: 286 return createSparcV9TargetCodeGenInfo(CGM); 287 case llvm::Triple::xcore: 288 return createXCoreTargetCodeGenInfo(CGM); 289 case llvm::Triple::arc: 290 return createARCTargetCodeGenInfo(CGM); 291 case llvm::Triple::spir: 292 case llvm::Triple::spir64: 293 return createCommonSPIRTargetCodeGenInfo(CGM); 294 case llvm::Triple::spirv32: 295 case llvm::Triple::spirv64: 296 return createSPIRVTargetCodeGenInfo(CGM); 297 case llvm::Triple::ve: 298 return createVETargetCodeGenInfo(CGM); 299 case llvm::Triple::csky: { 300 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 301 bool hasFP64 = 302 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 303 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 304 : hasFP64 ? 64 305 : 32); 306 } 307 case llvm::Triple::bpfeb: 308 case llvm::Triple::bpfel: 309 return createBPFTargetCodeGenInfo(CGM); 310 case llvm::Triple::loongarch32: 311 case llvm::Triple::loongarch64: { 312 StringRef ABIStr = Target.getABI(); 313 unsigned ABIFRLen = 0; 314 if (ABIStr.ends_with("f")) 315 ABIFRLen = 32; 316 else if (ABIStr.ends_with("d")) 317 ABIFRLen = 64; 318 return createLoongArchTargetCodeGenInfo( 319 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 320 } 321 } 322 } 323 324 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 325 if (!TheTargetCodeGenInfo) 326 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 327 return *TheTargetCodeGenInfo; 328 } 329 330 CodeGenModule::CodeGenModule(ASTContext &C, 331 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 332 const HeaderSearchOptions &HSO, 333 const PreprocessorOptions &PPO, 334 const CodeGenOptions &CGO, llvm::Module &M, 335 DiagnosticsEngine &diags, 336 CoverageSourceInfo *CoverageInfo) 337 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 338 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 339 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 340 VMContext(M.getContext()), Types(*this), VTables(*this), 341 SanitizerMD(new SanitizerMetadata(*this)) { 342 343 // Initialize the type cache. 344 llvm::LLVMContext &LLVMContext = M.getContext(); 345 VoidTy = llvm::Type::getVoidTy(LLVMContext); 346 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 347 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 348 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 349 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 350 HalfTy = llvm::Type::getHalfTy(LLVMContext); 351 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 352 FloatTy = llvm::Type::getFloatTy(LLVMContext); 353 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 354 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 355 PointerAlignInBytes = 356 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 357 .getQuantity(); 358 SizeSizeInBytes = 359 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 360 IntAlignInBytes = 361 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 362 CharTy = 363 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 364 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 365 IntPtrTy = llvm::IntegerType::get(LLVMContext, 366 C.getTargetInfo().getMaxPointerWidth()); 367 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 368 const llvm::DataLayout &DL = M.getDataLayout(); 369 AllocaInt8PtrTy = 370 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 371 GlobalsInt8PtrTy = 372 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 373 ConstGlobalsPtrTy = llvm::PointerType::get( 374 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 375 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 376 377 // Build C++20 Module initializers. 378 // TODO: Add Microsoft here once we know the mangling required for the 379 // initializers. 380 CXX20ModuleInits = 381 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 382 ItaniumMangleContext::MK_Itanium; 383 384 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 385 386 if (LangOpts.ObjC) 387 createObjCRuntime(); 388 if (LangOpts.OpenCL) 389 createOpenCLRuntime(); 390 if (LangOpts.OpenMP) 391 createOpenMPRuntime(); 392 if (LangOpts.CUDA) 393 createCUDARuntime(); 394 if (LangOpts.HLSL) 395 createHLSLRuntime(); 396 397 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 398 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 399 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 400 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 401 getLangOpts(), getCXXABI().getMangleContext())); 402 403 // If debug info or coverage generation is enabled, create the CGDebugInfo 404 // object. 405 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 406 CodeGenOpts.CoverageNotesFile.size() || 407 CodeGenOpts.CoverageDataFile.size()) 408 DebugInfo.reset(new CGDebugInfo(*this)); 409 410 Block.GlobalUniqueCount = 0; 411 412 if (C.getLangOpts().ObjC) 413 ObjCData.reset(new ObjCEntrypoints()); 414 415 if (CodeGenOpts.hasProfileClangUse()) { 416 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 417 CodeGenOpts.ProfileInstrumentUsePath, *FS, 418 CodeGenOpts.ProfileRemappingFile); 419 // We're checking for profile read errors in CompilerInvocation, so if 420 // there was an error it should've already been caught. If it hasn't been 421 // somehow, trip an assertion. 422 assert(ReaderOrErr); 423 PGOReader = std::move(ReaderOrErr.get()); 424 } 425 426 // If coverage mapping generation is enabled, create the 427 // CoverageMappingModuleGen object. 428 if (CodeGenOpts.CoverageMapping) 429 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 430 431 // Generate the module name hash here if needed. 432 if (CodeGenOpts.UniqueInternalLinkageNames && 433 !getModule().getSourceFileName().empty()) { 434 std::string Path = getModule().getSourceFileName(); 435 // Check if a path substitution is needed from the MacroPrefixMap. 436 for (const auto &Entry : LangOpts.MacroPrefixMap) 437 if (Path.rfind(Entry.first, 0) != std::string::npos) { 438 Path = Entry.second + Path.substr(Entry.first.size()); 439 break; 440 } 441 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 442 } 443 } 444 445 CodeGenModule::~CodeGenModule() {} 446 447 void CodeGenModule::createObjCRuntime() { 448 // This is just isGNUFamily(), but we want to force implementors of 449 // new ABIs to decide how best to do this. 450 switch (LangOpts.ObjCRuntime.getKind()) { 451 case ObjCRuntime::GNUstep: 452 case ObjCRuntime::GCC: 453 case ObjCRuntime::ObjFW: 454 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 455 return; 456 457 case ObjCRuntime::FragileMacOSX: 458 case ObjCRuntime::MacOSX: 459 case ObjCRuntime::iOS: 460 case ObjCRuntime::WatchOS: 461 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 462 return; 463 } 464 llvm_unreachable("bad runtime kind"); 465 } 466 467 void CodeGenModule::createOpenCLRuntime() { 468 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 469 } 470 471 void CodeGenModule::createOpenMPRuntime() { 472 // Select a specialized code generation class based on the target, if any. 473 // If it does not exist use the default implementation. 474 switch (getTriple().getArch()) { 475 case llvm::Triple::nvptx: 476 case llvm::Triple::nvptx64: 477 case llvm::Triple::amdgcn: 478 assert(getLangOpts().OpenMPIsTargetDevice && 479 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 480 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 481 break; 482 default: 483 if (LangOpts.OpenMPSimd) 484 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 485 else 486 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 487 break; 488 } 489 } 490 491 void CodeGenModule::createCUDARuntime() { 492 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 493 } 494 495 void CodeGenModule::createHLSLRuntime() { 496 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 497 } 498 499 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 500 Replacements[Name] = C; 501 } 502 503 void CodeGenModule::applyReplacements() { 504 for (auto &I : Replacements) { 505 StringRef MangledName = I.first; 506 llvm::Constant *Replacement = I.second; 507 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 508 if (!Entry) 509 continue; 510 auto *OldF = cast<llvm::Function>(Entry); 511 auto *NewF = dyn_cast<llvm::Function>(Replacement); 512 if (!NewF) { 513 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 514 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 515 } else { 516 auto *CE = cast<llvm::ConstantExpr>(Replacement); 517 assert(CE->getOpcode() == llvm::Instruction::BitCast || 518 CE->getOpcode() == llvm::Instruction::GetElementPtr); 519 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 520 } 521 } 522 523 // Replace old with new, but keep the old order. 524 OldF->replaceAllUsesWith(Replacement); 525 if (NewF) { 526 NewF->removeFromParent(); 527 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 528 NewF); 529 } 530 OldF->eraseFromParent(); 531 } 532 } 533 534 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 535 GlobalValReplacements.push_back(std::make_pair(GV, C)); 536 } 537 538 void CodeGenModule::applyGlobalValReplacements() { 539 for (auto &I : GlobalValReplacements) { 540 llvm::GlobalValue *GV = I.first; 541 llvm::Constant *C = I.second; 542 543 GV->replaceAllUsesWith(C); 544 GV->eraseFromParent(); 545 } 546 } 547 548 // This is only used in aliases that we created and we know they have a 549 // linear structure. 550 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 551 const llvm::Constant *C; 552 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 553 C = GA->getAliasee(); 554 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 555 C = GI->getResolver(); 556 else 557 return GV; 558 559 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 560 if (!AliaseeGV) 561 return nullptr; 562 563 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 564 if (FinalGV == GV) 565 return nullptr; 566 567 return FinalGV; 568 } 569 570 static bool checkAliasedGlobal( 571 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 572 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 573 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 574 SourceRange AliasRange) { 575 GV = getAliasedGlobal(Alias); 576 if (!GV) { 577 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 578 return false; 579 } 580 581 if (GV->hasCommonLinkage()) { 582 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 583 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 584 Diags.Report(Location, diag::err_alias_to_common); 585 return false; 586 } 587 } 588 589 if (GV->isDeclaration()) { 590 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 591 Diags.Report(Location, diag::note_alias_requires_mangled_name) 592 << IsIFunc << IsIFunc; 593 // Provide a note if the given function is not found and exists as a 594 // mangled name. 595 for (const auto &[Decl, Name] : MangledDeclNames) { 596 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 597 if (ND->getName() == GV->getName()) { 598 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 599 << Name 600 << FixItHint::CreateReplacement( 601 AliasRange, 602 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 603 .str()); 604 } 605 } 606 } 607 return false; 608 } 609 610 if (IsIFunc) { 611 // Check resolver function type. 612 const auto *F = dyn_cast<llvm::Function>(GV); 613 if (!F) { 614 Diags.Report(Location, diag::err_alias_to_undefined) 615 << IsIFunc << IsIFunc; 616 return false; 617 } 618 619 llvm::FunctionType *FTy = F->getFunctionType(); 620 if (!FTy->getReturnType()->isPointerTy()) { 621 Diags.Report(Location, diag::err_ifunc_resolver_return); 622 return false; 623 } 624 } 625 626 return true; 627 } 628 629 // Emit a warning if toc-data attribute is requested for global variables that 630 // have aliases and remove the toc-data attribute. 631 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 632 const CodeGenOptions &CodeGenOpts, 633 DiagnosticsEngine &Diags, 634 SourceLocation Location) { 635 if (GVar->hasAttribute("toc-data")) { 636 auto GVId = GVar->getName(); 637 // Is this a global variable specified by the user as local? 638 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 639 Diags.Report(Location, diag::warn_toc_unsupported_type) 640 << GVId << "the variable has an alias"; 641 } 642 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 643 llvm::AttributeSet NewAttributes = 644 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 645 GVar->setAttributes(NewAttributes); 646 } 647 } 648 649 void CodeGenModule::checkAliases() { 650 // Check if the constructed aliases are well formed. It is really unfortunate 651 // that we have to do this in CodeGen, but we only construct mangled names 652 // and aliases during codegen. 653 bool Error = false; 654 DiagnosticsEngine &Diags = getDiags(); 655 for (const GlobalDecl &GD : Aliases) { 656 const auto *D = cast<ValueDecl>(GD.getDecl()); 657 SourceLocation Location; 658 SourceRange Range; 659 bool IsIFunc = D->hasAttr<IFuncAttr>(); 660 if (const Attr *A = D->getDefiningAttr()) { 661 Location = A->getLocation(); 662 Range = A->getRange(); 663 } else 664 llvm_unreachable("Not an alias or ifunc?"); 665 666 StringRef MangledName = getMangledName(GD); 667 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 668 const llvm::GlobalValue *GV = nullptr; 669 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 670 MangledDeclNames, Range)) { 671 Error = true; 672 continue; 673 } 674 675 if (getContext().getTargetInfo().getTriple().isOSAIX()) 676 if (const llvm::GlobalVariable *GVar = 677 dyn_cast<const llvm::GlobalVariable>(GV)) 678 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 679 getCodeGenOpts(), Diags, Location); 680 681 llvm::Constant *Aliasee = 682 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 683 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 684 685 llvm::GlobalValue *AliaseeGV; 686 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 687 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 688 else 689 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 690 691 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 692 StringRef AliasSection = SA->getName(); 693 if (AliasSection != AliaseeGV->getSection()) 694 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 695 << AliasSection << IsIFunc << IsIFunc; 696 } 697 698 // We have to handle alias to weak aliases in here. LLVM itself disallows 699 // this since the object semantics would not match the IL one. For 700 // compatibility with gcc we implement it by just pointing the alias 701 // to its aliasee's aliasee. We also warn, since the user is probably 702 // expecting the link to be weak. 703 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 704 if (GA->isInterposable()) { 705 Diags.Report(Location, diag::warn_alias_to_weak_alias) 706 << GV->getName() << GA->getName() << IsIFunc; 707 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 708 GA->getAliasee(), Alias->getType()); 709 710 if (IsIFunc) 711 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 712 else 713 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 714 } 715 } 716 } 717 if (!Error) 718 return; 719 720 for (const GlobalDecl &GD : Aliases) { 721 StringRef MangledName = getMangledName(GD); 722 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 723 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 724 Alias->eraseFromParent(); 725 } 726 } 727 728 void CodeGenModule::clear() { 729 DeferredDeclsToEmit.clear(); 730 EmittedDeferredDecls.clear(); 731 DeferredAnnotations.clear(); 732 if (OpenMPRuntime) 733 OpenMPRuntime->clear(); 734 } 735 736 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 737 StringRef MainFile) { 738 if (!hasDiagnostics()) 739 return; 740 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 741 if (MainFile.empty()) 742 MainFile = "<stdin>"; 743 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 744 } else { 745 if (Mismatched > 0) 746 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 747 748 if (Missing > 0) 749 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 750 } 751 } 752 753 static std::optional<llvm::GlobalValue::VisibilityTypes> 754 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 755 // Map to LLVM visibility. 756 switch (K) { 757 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 758 return std::nullopt; 759 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 760 return llvm::GlobalValue::DefaultVisibility; 761 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 762 return llvm::GlobalValue::HiddenVisibility; 763 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 764 return llvm::GlobalValue::ProtectedVisibility; 765 } 766 llvm_unreachable("unknown option value!"); 767 } 768 769 void setLLVMVisibility(llvm::GlobalValue &GV, 770 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 771 if (!V) 772 return; 773 774 // Reset DSO locality before setting the visibility. This removes 775 // any effects that visibility options and annotations may have 776 // had on the DSO locality. Setting the visibility will implicitly set 777 // appropriate globals to DSO Local; however, this will be pessimistic 778 // w.r.t. to the normal compiler IRGen. 779 GV.setDSOLocal(false); 780 GV.setVisibility(*V); 781 } 782 783 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 784 llvm::Module &M) { 785 if (!LO.VisibilityFromDLLStorageClass) 786 return; 787 788 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 789 getLLVMVisibility(LO.getDLLExportVisibility()); 790 791 std::optional<llvm::GlobalValue::VisibilityTypes> 792 NoDLLStorageClassVisibility = 793 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 794 795 std::optional<llvm::GlobalValue::VisibilityTypes> 796 ExternDeclDLLImportVisibility = 797 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 798 799 std::optional<llvm::GlobalValue::VisibilityTypes> 800 ExternDeclNoDLLStorageClassVisibility = 801 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 802 803 for (llvm::GlobalValue &GV : M.global_values()) { 804 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 805 continue; 806 807 if (GV.isDeclarationForLinker()) 808 setLLVMVisibility(GV, GV.getDLLStorageClass() == 809 llvm::GlobalValue::DLLImportStorageClass 810 ? ExternDeclDLLImportVisibility 811 : ExternDeclNoDLLStorageClassVisibility); 812 else 813 setLLVMVisibility(GV, GV.getDLLStorageClass() == 814 llvm::GlobalValue::DLLExportStorageClass 815 ? DLLExportVisibility 816 : NoDLLStorageClassVisibility); 817 818 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 819 } 820 } 821 822 static bool isStackProtectorOn(const LangOptions &LangOpts, 823 const llvm::Triple &Triple, 824 clang::LangOptions::StackProtectorMode Mode) { 825 if (Triple.isAMDGPU() || Triple.isNVPTX()) 826 return false; 827 return LangOpts.getStackProtector() == Mode; 828 } 829 830 void CodeGenModule::Release() { 831 Module *Primary = getContext().getCurrentNamedModule(); 832 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 833 EmitModuleInitializers(Primary); 834 EmitDeferred(); 835 DeferredDecls.insert(EmittedDeferredDecls.begin(), 836 EmittedDeferredDecls.end()); 837 EmittedDeferredDecls.clear(); 838 EmitVTablesOpportunistically(); 839 applyGlobalValReplacements(); 840 applyReplacements(); 841 emitMultiVersionFunctions(); 842 843 if (Context.getLangOpts().IncrementalExtensions && 844 GlobalTopLevelStmtBlockInFlight.first) { 845 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 846 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 847 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 848 } 849 850 // Module implementations are initialized the same way as a regular TU that 851 // imports one or more modules. 852 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 853 EmitCXXModuleInitFunc(Primary); 854 else 855 EmitCXXGlobalInitFunc(); 856 EmitCXXGlobalCleanUpFunc(); 857 registerGlobalDtorsWithAtExit(); 858 EmitCXXThreadLocalInitFunc(); 859 if (ObjCRuntime) 860 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 861 AddGlobalCtor(ObjCInitFunction); 862 if (Context.getLangOpts().CUDA && CUDARuntime) { 863 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 864 AddGlobalCtor(CudaCtorFunction); 865 } 866 if (OpenMPRuntime) { 867 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 868 OpenMPRuntime->clear(); 869 } 870 if (PGOReader) { 871 getModule().setProfileSummary( 872 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 873 llvm::ProfileSummary::PSK_Instr); 874 if (PGOStats.hasDiagnostics()) 875 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 876 } 877 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 878 return L.LexOrder < R.LexOrder; 879 }); 880 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 881 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 882 EmitGlobalAnnotations(); 883 EmitStaticExternCAliases(); 884 checkAliases(); 885 EmitDeferredUnusedCoverageMappings(); 886 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 887 CodeGenPGO(*this).setProfileVersion(getModule()); 888 if (CoverageMapping) 889 CoverageMapping->emit(); 890 if (CodeGenOpts.SanitizeCfiCrossDso) { 891 CodeGenFunction(*this).EmitCfiCheckFail(); 892 CodeGenFunction(*this).EmitCfiCheckStub(); 893 } 894 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 895 finalizeKCFITypes(); 896 emitAtAvailableLinkGuard(); 897 if (Context.getTargetInfo().getTriple().isWasm()) 898 EmitMainVoidAlias(); 899 900 if (getTriple().isAMDGPU()) { 901 // Emit amdhsa_code_object_version module flag, which is code object version 902 // times 100. 903 if (getTarget().getTargetOpts().CodeObjectVersion != 904 llvm::CodeObjectVersionKind::COV_None) { 905 getModule().addModuleFlag(llvm::Module::Error, 906 "amdhsa_code_object_version", 907 getTarget().getTargetOpts().CodeObjectVersion); 908 } 909 910 // Currently, "-mprintf-kind" option is only supported for HIP 911 if (LangOpts.HIP) { 912 auto *MDStr = llvm::MDString::get( 913 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 914 TargetOptions::AMDGPUPrintfKind::Hostcall) 915 ? "hostcall" 916 : "buffered"); 917 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 918 MDStr); 919 } 920 } 921 922 // Emit a global array containing all external kernels or device variables 923 // used by host functions and mark it as used for CUDA/HIP. This is necessary 924 // to get kernels or device variables in archives linked in even if these 925 // kernels or device variables are only used in host functions. 926 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 927 SmallVector<llvm::Constant *, 8> UsedArray; 928 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 929 GlobalDecl GD; 930 if (auto *FD = dyn_cast<FunctionDecl>(D)) 931 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 932 else 933 GD = GlobalDecl(D); 934 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 935 GetAddrOfGlobal(GD), Int8PtrTy)); 936 } 937 938 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 939 940 auto *GV = new llvm::GlobalVariable( 941 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 942 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 943 addCompilerUsedGlobal(GV); 944 } 945 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 946 // Emit a unique ID so that host and device binaries from the same 947 // compilation unit can be associated. 948 auto *GV = new llvm::GlobalVariable( 949 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 950 llvm::Constant::getNullValue(Int8Ty), 951 "__hip_cuid_" + getContext().getCUIDHash()); 952 addCompilerUsedGlobal(GV); 953 } 954 emitLLVMUsed(); 955 if (SanStats) 956 SanStats->finish(); 957 958 if (CodeGenOpts.Autolink && 959 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 960 EmitModuleLinkOptions(); 961 } 962 963 // On ELF we pass the dependent library specifiers directly to the linker 964 // without manipulating them. This is in contrast to other platforms where 965 // they are mapped to a specific linker option by the compiler. This 966 // difference is a result of the greater variety of ELF linkers and the fact 967 // that ELF linkers tend to handle libraries in a more complicated fashion 968 // than on other platforms. This forces us to defer handling the dependent 969 // libs to the linker. 970 // 971 // CUDA/HIP device and host libraries are different. Currently there is no 972 // way to differentiate dependent libraries for host or device. Existing 973 // usage of #pragma comment(lib, *) is intended for host libraries on 974 // Windows. Therefore emit llvm.dependent-libraries only for host. 975 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 976 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 977 for (auto *MD : ELFDependentLibraries) 978 NMD->addOperand(MD); 979 } 980 981 // Record mregparm value now so it is visible through rest of codegen. 982 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 983 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 984 CodeGenOpts.NumRegisterParameters); 985 986 if (CodeGenOpts.DwarfVersion) { 987 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 988 CodeGenOpts.DwarfVersion); 989 } 990 991 if (CodeGenOpts.Dwarf64) 992 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 993 994 if (Context.getLangOpts().SemanticInterposition) 995 // Require various optimization to respect semantic interposition. 996 getModule().setSemanticInterposition(true); 997 998 if (CodeGenOpts.EmitCodeView) { 999 // Indicate that we want CodeView in the metadata. 1000 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1001 } 1002 if (CodeGenOpts.CodeViewGHash) { 1003 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1004 } 1005 if (CodeGenOpts.ControlFlowGuard) { 1006 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1007 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1008 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1009 // Function ID tables for Control Flow Guard (cfguard=1). 1010 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1011 } 1012 if (CodeGenOpts.EHContGuard) { 1013 // Function ID tables for EH Continuation Guard. 1014 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1015 } 1016 if (Context.getLangOpts().Kernel) { 1017 // Note if we are compiling with /kernel. 1018 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1019 } 1020 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1021 // We don't support LTO with 2 with different StrictVTablePointers 1022 // FIXME: we could support it by stripping all the information introduced 1023 // by StrictVTablePointers. 1024 1025 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1026 1027 llvm::Metadata *Ops[2] = { 1028 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1029 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1030 llvm::Type::getInt32Ty(VMContext), 1))}; 1031 1032 getModule().addModuleFlag(llvm::Module::Require, 1033 "StrictVTablePointersRequirement", 1034 llvm::MDNode::get(VMContext, Ops)); 1035 } 1036 if (getModuleDebugInfo()) 1037 // We support a single version in the linked module. The LLVM 1038 // parser will drop debug info with a different version number 1039 // (and warn about it, too). 1040 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1041 llvm::DEBUG_METADATA_VERSION); 1042 1043 // We need to record the widths of enums and wchar_t, so that we can generate 1044 // the correct build attributes in the ARM backend. wchar_size is also used by 1045 // TargetLibraryInfo. 1046 uint64_t WCharWidth = 1047 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1048 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1049 1050 if (getTriple().isOSzOS()) { 1051 getModule().addModuleFlag(llvm::Module::Warning, 1052 "zos_product_major_version", 1053 uint32_t(CLANG_VERSION_MAJOR)); 1054 getModule().addModuleFlag(llvm::Module::Warning, 1055 "zos_product_minor_version", 1056 uint32_t(CLANG_VERSION_MINOR)); 1057 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1058 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1059 std::string ProductId = getClangVendor() + "clang"; 1060 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1061 llvm::MDString::get(VMContext, ProductId)); 1062 1063 // Record the language because we need it for the PPA2. 1064 StringRef lang_str = languageToString( 1065 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1066 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1067 llvm::MDString::get(VMContext, lang_str)); 1068 1069 time_t TT = PreprocessorOpts.SourceDateEpoch 1070 ? *PreprocessorOpts.SourceDateEpoch 1071 : std::time(nullptr); 1072 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1073 static_cast<uint64_t>(TT)); 1074 1075 // Multiple modes will be supported here. 1076 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1077 llvm::MDString::get(VMContext, "ascii")); 1078 } 1079 1080 llvm::Triple T = Context.getTargetInfo().getTriple(); 1081 if (T.isARM() || T.isThumb()) { 1082 // The minimum width of an enum in bytes 1083 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1084 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1085 } 1086 1087 if (T.isRISCV()) { 1088 StringRef ABIStr = Target.getABI(); 1089 llvm::LLVMContext &Ctx = TheModule.getContext(); 1090 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1091 llvm::MDString::get(Ctx, ABIStr)); 1092 1093 // Add the canonical ISA string as metadata so the backend can set the ELF 1094 // attributes correctly. We use AppendUnique so LTO will keep all of the 1095 // unique ISA strings that were linked together. 1096 const std::vector<std::string> &Features = 1097 getTarget().getTargetOpts().Features; 1098 auto ParseResult = 1099 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1100 if (!errorToBool(ParseResult.takeError())) 1101 getModule().addModuleFlag( 1102 llvm::Module::AppendUnique, "riscv-isa", 1103 llvm::MDNode::get( 1104 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1105 } 1106 1107 if (CodeGenOpts.SanitizeCfiCrossDso) { 1108 // Indicate that we want cross-DSO control flow integrity checks. 1109 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1110 } 1111 1112 if (CodeGenOpts.WholeProgramVTables) { 1113 // Indicate whether VFE was enabled for this module, so that the 1114 // vcall_visibility metadata added under whole program vtables is handled 1115 // appropriately in the optimizer. 1116 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1117 CodeGenOpts.VirtualFunctionElimination); 1118 } 1119 1120 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1121 getModule().addModuleFlag(llvm::Module::Override, 1122 "CFI Canonical Jump Tables", 1123 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1124 } 1125 1126 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1127 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1128 // KCFI assumes patchable-function-prefix is the same for all indirectly 1129 // called functions. Store the expected offset for code generation. 1130 if (CodeGenOpts.PatchableFunctionEntryOffset) 1131 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1132 CodeGenOpts.PatchableFunctionEntryOffset); 1133 } 1134 1135 if (CodeGenOpts.CFProtectionReturn && 1136 Target.checkCFProtectionReturnSupported(getDiags())) { 1137 // Indicate that we want to instrument return control flow protection. 1138 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1139 1); 1140 } 1141 1142 if (CodeGenOpts.CFProtectionBranch && 1143 Target.checkCFProtectionBranchSupported(getDiags())) { 1144 // Indicate that we want to instrument branch control flow protection. 1145 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1146 1); 1147 } 1148 1149 if (CodeGenOpts.FunctionReturnThunks) 1150 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1151 1152 if (CodeGenOpts.IndirectBranchCSPrefix) 1153 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1154 1155 // Add module metadata for return address signing (ignoring 1156 // non-leaf/all) and stack tagging. These are actually turned on by function 1157 // attributes, but we use module metadata to emit build attributes. This is 1158 // needed for LTO, where the function attributes are inside bitcode 1159 // serialised into a global variable by the time build attributes are 1160 // emitted, so we can't access them. LTO objects could be compiled with 1161 // different flags therefore module flags are set to "Min" behavior to achieve 1162 // the same end result of the normal build where e.g BTI is off if any object 1163 // doesn't support it. 1164 if (Context.getTargetInfo().hasFeature("ptrauth") && 1165 LangOpts.getSignReturnAddressScope() != 1166 LangOptions::SignReturnAddressScopeKind::None) 1167 getModule().addModuleFlag(llvm::Module::Override, 1168 "sign-return-address-buildattr", 1); 1169 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1170 getModule().addModuleFlag(llvm::Module::Override, 1171 "tag-stack-memory-buildattr", 1); 1172 1173 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1174 if (LangOpts.BranchTargetEnforcement) 1175 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1176 1); 1177 if (LangOpts.BranchProtectionPAuthLR) 1178 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1179 1); 1180 if (LangOpts.GuardedControlStack) 1181 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1182 if (LangOpts.hasSignReturnAddress()) 1183 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1184 if (LangOpts.isSignReturnAddressScopeAll()) 1185 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1186 1); 1187 if (!LangOpts.isSignReturnAddressWithAKey()) 1188 getModule().addModuleFlag(llvm::Module::Min, 1189 "sign-return-address-with-bkey", 1); 1190 } 1191 1192 if (CodeGenOpts.StackClashProtector) 1193 getModule().addModuleFlag( 1194 llvm::Module::Override, "probe-stack", 1195 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1196 1197 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1198 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1199 CodeGenOpts.StackProbeSize); 1200 1201 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1202 llvm::LLVMContext &Ctx = TheModule.getContext(); 1203 getModule().addModuleFlag( 1204 llvm::Module::Error, "MemProfProfileFilename", 1205 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1206 } 1207 1208 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1209 // Indicate whether __nvvm_reflect should be configured to flush denormal 1210 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1211 // property.) 1212 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1213 CodeGenOpts.FP32DenormalMode.Output != 1214 llvm::DenormalMode::IEEE); 1215 } 1216 1217 if (LangOpts.EHAsynch) 1218 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1219 1220 // Indicate whether this Module was compiled with -fopenmp 1221 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1222 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1223 if (getLangOpts().OpenMPIsTargetDevice) 1224 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1225 LangOpts.OpenMP); 1226 1227 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1228 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1229 EmitOpenCLMetadata(); 1230 // Emit SPIR version. 1231 if (getTriple().isSPIR()) { 1232 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1233 // opencl.spir.version named metadata. 1234 // C++ for OpenCL has a distinct mapping for version compatibility with 1235 // OpenCL. 1236 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1237 llvm::Metadata *SPIRVerElts[] = { 1238 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1239 Int32Ty, Version / 100)), 1240 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1241 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1242 llvm::NamedMDNode *SPIRVerMD = 1243 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1244 llvm::LLVMContext &Ctx = TheModule.getContext(); 1245 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1246 } 1247 } 1248 1249 // HLSL related end of code gen work items. 1250 if (LangOpts.HLSL) 1251 getHLSLRuntime().finishCodeGen(); 1252 1253 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1254 assert(PLevel < 3 && "Invalid PIC Level"); 1255 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1256 if (Context.getLangOpts().PIE) 1257 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1258 } 1259 1260 if (getCodeGenOpts().CodeModel.size() > 0) { 1261 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1262 .Case("tiny", llvm::CodeModel::Tiny) 1263 .Case("small", llvm::CodeModel::Small) 1264 .Case("kernel", llvm::CodeModel::Kernel) 1265 .Case("medium", llvm::CodeModel::Medium) 1266 .Case("large", llvm::CodeModel::Large) 1267 .Default(~0u); 1268 if (CM != ~0u) { 1269 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1270 getModule().setCodeModel(codeModel); 1271 1272 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1273 Context.getTargetInfo().getTriple().getArch() == 1274 llvm::Triple::x86_64) { 1275 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1276 } 1277 } 1278 } 1279 1280 if (CodeGenOpts.NoPLT) 1281 getModule().setRtLibUseGOT(); 1282 if (getTriple().isOSBinFormatELF() && 1283 CodeGenOpts.DirectAccessExternalData != 1284 getModule().getDirectAccessExternalData()) { 1285 getModule().setDirectAccessExternalData( 1286 CodeGenOpts.DirectAccessExternalData); 1287 } 1288 if (CodeGenOpts.UnwindTables) 1289 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1290 1291 switch (CodeGenOpts.getFramePointer()) { 1292 case CodeGenOptions::FramePointerKind::None: 1293 // 0 ("none") is the default. 1294 break; 1295 case CodeGenOptions::FramePointerKind::NonLeaf: 1296 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1297 break; 1298 case CodeGenOptions::FramePointerKind::All: 1299 getModule().setFramePointer(llvm::FramePointerKind::All); 1300 break; 1301 } 1302 1303 SimplifyPersonality(); 1304 1305 if (getCodeGenOpts().EmitDeclMetadata) 1306 EmitDeclMetadata(); 1307 1308 if (getCodeGenOpts().CoverageNotesFile.size() || 1309 getCodeGenOpts().CoverageDataFile.size()) 1310 EmitCoverageFile(); 1311 1312 if (CGDebugInfo *DI = getModuleDebugInfo()) 1313 DI->finalize(); 1314 1315 if (getCodeGenOpts().EmitVersionIdentMetadata) 1316 EmitVersionIdentMetadata(); 1317 1318 if (!getCodeGenOpts().RecordCommandLine.empty()) 1319 EmitCommandLineMetadata(); 1320 1321 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1322 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1323 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1324 getModule().setStackProtectorGuardReg( 1325 getCodeGenOpts().StackProtectorGuardReg); 1326 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1327 getModule().setStackProtectorGuardSymbol( 1328 getCodeGenOpts().StackProtectorGuardSymbol); 1329 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1330 getModule().setStackProtectorGuardOffset( 1331 getCodeGenOpts().StackProtectorGuardOffset); 1332 if (getCodeGenOpts().StackAlignment) 1333 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1334 if (getCodeGenOpts().SkipRaxSetup) 1335 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1336 if (getLangOpts().RegCall4) 1337 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1338 1339 if (getContext().getTargetInfo().getMaxTLSAlign()) 1340 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1341 getContext().getTargetInfo().getMaxTLSAlign()); 1342 1343 getTargetCodeGenInfo().emitTargetGlobals(*this); 1344 1345 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1346 1347 EmitBackendOptionsMetadata(getCodeGenOpts()); 1348 1349 // If there is device offloading code embed it in the host now. 1350 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1351 1352 // Set visibility from DLL storage class 1353 // We do this at the end of LLVM IR generation; after any operation 1354 // that might affect the DLL storage class or the visibility, and 1355 // before anything that might act on these. 1356 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1357 } 1358 1359 void CodeGenModule::EmitOpenCLMetadata() { 1360 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1361 // opencl.ocl.version named metadata node. 1362 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1363 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1364 llvm::Metadata *OCLVerElts[] = { 1365 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1366 Int32Ty, Version / 100)), 1367 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1368 Int32Ty, (Version % 100) / 10))}; 1369 llvm::NamedMDNode *OCLVerMD = 1370 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1371 llvm::LLVMContext &Ctx = TheModule.getContext(); 1372 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1373 } 1374 1375 void CodeGenModule::EmitBackendOptionsMetadata( 1376 const CodeGenOptions &CodeGenOpts) { 1377 if (getTriple().isRISCV()) { 1378 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1379 CodeGenOpts.SmallDataLimit); 1380 } 1381 } 1382 1383 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1384 // Make sure that this type is translated. 1385 Types.UpdateCompletedType(TD); 1386 } 1387 1388 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1389 // Make sure that this type is translated. 1390 Types.RefreshTypeCacheForClass(RD); 1391 } 1392 1393 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1394 if (!TBAA) 1395 return nullptr; 1396 return TBAA->getTypeInfo(QTy); 1397 } 1398 1399 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1400 if (!TBAA) 1401 return TBAAAccessInfo(); 1402 if (getLangOpts().CUDAIsDevice) { 1403 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1404 // access info. 1405 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1406 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1407 nullptr) 1408 return TBAAAccessInfo(); 1409 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1410 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1411 nullptr) 1412 return TBAAAccessInfo(); 1413 } 1414 } 1415 return TBAA->getAccessInfo(AccessType); 1416 } 1417 1418 TBAAAccessInfo 1419 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1420 if (!TBAA) 1421 return TBAAAccessInfo(); 1422 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1423 } 1424 1425 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1426 if (!TBAA) 1427 return nullptr; 1428 return TBAA->getTBAAStructInfo(QTy); 1429 } 1430 1431 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1432 if (!TBAA) 1433 return nullptr; 1434 return TBAA->getBaseTypeInfo(QTy); 1435 } 1436 1437 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1438 if (!TBAA) 1439 return nullptr; 1440 return TBAA->getAccessTagInfo(Info); 1441 } 1442 1443 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1444 TBAAAccessInfo TargetInfo) { 1445 if (!TBAA) 1446 return TBAAAccessInfo(); 1447 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1448 } 1449 1450 TBAAAccessInfo 1451 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1452 TBAAAccessInfo InfoB) { 1453 if (!TBAA) 1454 return TBAAAccessInfo(); 1455 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1456 } 1457 1458 TBAAAccessInfo 1459 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1460 TBAAAccessInfo SrcInfo) { 1461 if (!TBAA) 1462 return TBAAAccessInfo(); 1463 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1464 } 1465 1466 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1467 TBAAAccessInfo TBAAInfo) { 1468 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1469 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1470 } 1471 1472 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1473 llvm::Instruction *I, const CXXRecordDecl *RD) { 1474 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1475 llvm::MDNode::get(getLLVMContext(), {})); 1476 } 1477 1478 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1479 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1480 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1481 } 1482 1483 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1484 /// specified stmt yet. 1485 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1486 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1487 "cannot compile this %0 yet"); 1488 std::string Msg = Type; 1489 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1490 << Msg << S->getSourceRange(); 1491 } 1492 1493 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1494 /// specified decl yet. 1495 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1496 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1497 "cannot compile this %0 yet"); 1498 std::string Msg = Type; 1499 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1500 } 1501 1502 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1503 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1504 } 1505 1506 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1507 const NamedDecl *D) const { 1508 // Internal definitions always have default visibility. 1509 if (GV->hasLocalLinkage()) { 1510 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1511 return; 1512 } 1513 if (!D) 1514 return; 1515 1516 // Set visibility for definitions, and for declarations if requested globally 1517 // or set explicitly. 1518 LinkageInfo LV = D->getLinkageAndVisibility(); 1519 1520 // OpenMP declare target variables must be visible to the host so they can 1521 // be registered. We require protected visibility unless the variable has 1522 // the DT_nohost modifier and does not need to be registered. 1523 if (Context.getLangOpts().OpenMP && 1524 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1525 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1526 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1527 OMPDeclareTargetDeclAttr::DT_NoHost && 1528 LV.getVisibility() == HiddenVisibility) { 1529 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1530 return; 1531 } 1532 1533 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1534 // Reject incompatible dlllstorage and visibility annotations. 1535 if (!LV.isVisibilityExplicit()) 1536 return; 1537 if (GV->hasDLLExportStorageClass()) { 1538 if (LV.getVisibility() == HiddenVisibility) 1539 getDiags().Report(D->getLocation(), 1540 diag::err_hidden_visibility_dllexport); 1541 } else if (LV.getVisibility() != DefaultVisibility) { 1542 getDiags().Report(D->getLocation(), 1543 diag::err_non_default_visibility_dllimport); 1544 } 1545 return; 1546 } 1547 1548 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1549 !GV->isDeclarationForLinker()) 1550 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1551 } 1552 1553 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1554 llvm::GlobalValue *GV) { 1555 if (GV->hasLocalLinkage()) 1556 return true; 1557 1558 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1559 return true; 1560 1561 // DLLImport explicitly marks the GV as external. 1562 if (GV->hasDLLImportStorageClass()) 1563 return false; 1564 1565 const llvm::Triple &TT = CGM.getTriple(); 1566 const auto &CGOpts = CGM.getCodeGenOpts(); 1567 if (TT.isWindowsGNUEnvironment()) { 1568 // In MinGW, variables without DLLImport can still be automatically 1569 // imported from a DLL by the linker; don't mark variables that 1570 // potentially could come from another DLL as DSO local. 1571 1572 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1573 // (and this actually happens in the public interface of libstdc++), so 1574 // such variables can't be marked as DSO local. (Native TLS variables 1575 // can't be dllimported at all, though.) 1576 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1577 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1578 CGOpts.AutoImport) 1579 return false; 1580 } 1581 1582 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1583 // remain unresolved in the link, they can be resolved to zero, which is 1584 // outside the current DSO. 1585 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1586 return false; 1587 1588 // Every other GV is local on COFF. 1589 // Make an exception for windows OS in the triple: Some firmware builds use 1590 // *-win32-macho triples. This (accidentally?) produced windows relocations 1591 // without GOT tables in older clang versions; Keep this behaviour. 1592 // FIXME: even thread local variables? 1593 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1594 return true; 1595 1596 // Only handle COFF and ELF for now. 1597 if (!TT.isOSBinFormatELF()) 1598 return false; 1599 1600 // If this is not an executable, don't assume anything is local. 1601 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1602 const auto &LOpts = CGM.getLangOpts(); 1603 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1604 // On ELF, if -fno-semantic-interposition is specified and the target 1605 // supports local aliases, there will be neither CC1 1606 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1607 // dso_local on the function if using a local alias is preferable (can avoid 1608 // PLT indirection). 1609 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1610 return false; 1611 return !(CGM.getLangOpts().SemanticInterposition || 1612 CGM.getLangOpts().HalfNoSemanticInterposition); 1613 } 1614 1615 // A definition cannot be preempted from an executable. 1616 if (!GV->isDeclarationForLinker()) 1617 return true; 1618 1619 // Most PIC code sequences that assume that a symbol is local cannot produce a 1620 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1621 // depended, it seems worth it to handle it here. 1622 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1623 return false; 1624 1625 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1626 if (TT.isPPC64()) 1627 return false; 1628 1629 if (CGOpts.DirectAccessExternalData) { 1630 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1631 // for non-thread-local variables. If the symbol is not defined in the 1632 // executable, a copy relocation will be needed at link time. dso_local is 1633 // excluded for thread-local variables because they generally don't support 1634 // copy relocations. 1635 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1636 if (!Var->isThreadLocal()) 1637 return true; 1638 1639 // -fno-pic sets dso_local on a function declaration to allow direct 1640 // accesses when taking its address (similar to a data symbol). If the 1641 // function is not defined in the executable, a canonical PLT entry will be 1642 // needed at link time. -fno-direct-access-external-data can avoid the 1643 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1644 // it could just cause trouble without providing perceptible benefits. 1645 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1646 return true; 1647 } 1648 1649 // If we can use copy relocations we can assume it is local. 1650 1651 // Otherwise don't assume it is local. 1652 return false; 1653 } 1654 1655 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1656 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1657 } 1658 1659 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1660 GlobalDecl GD) const { 1661 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1662 // C++ destructors have a few C++ ABI specific special cases. 1663 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1664 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1665 return; 1666 } 1667 setDLLImportDLLExport(GV, D); 1668 } 1669 1670 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1671 const NamedDecl *D) const { 1672 if (D && D->isExternallyVisible()) { 1673 if (D->hasAttr<DLLImportAttr>()) 1674 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1675 else if ((D->hasAttr<DLLExportAttr>() || 1676 shouldMapVisibilityToDLLExport(D)) && 1677 !GV->isDeclarationForLinker()) 1678 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1679 } 1680 } 1681 1682 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1683 GlobalDecl GD) const { 1684 setDLLImportDLLExport(GV, GD); 1685 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1686 } 1687 1688 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1689 const NamedDecl *D) const { 1690 setDLLImportDLLExport(GV, D); 1691 setGVPropertiesAux(GV, D); 1692 } 1693 1694 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1695 const NamedDecl *D) const { 1696 setGlobalVisibility(GV, D); 1697 setDSOLocal(GV); 1698 GV->setPartition(CodeGenOpts.SymbolPartition); 1699 } 1700 1701 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1702 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1703 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1704 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1705 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1706 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1707 } 1708 1709 llvm::GlobalVariable::ThreadLocalMode 1710 CodeGenModule::GetDefaultLLVMTLSModel() const { 1711 switch (CodeGenOpts.getDefaultTLSModel()) { 1712 case CodeGenOptions::GeneralDynamicTLSModel: 1713 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1714 case CodeGenOptions::LocalDynamicTLSModel: 1715 return llvm::GlobalVariable::LocalDynamicTLSModel; 1716 case CodeGenOptions::InitialExecTLSModel: 1717 return llvm::GlobalVariable::InitialExecTLSModel; 1718 case CodeGenOptions::LocalExecTLSModel: 1719 return llvm::GlobalVariable::LocalExecTLSModel; 1720 } 1721 llvm_unreachable("Invalid TLS model!"); 1722 } 1723 1724 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1725 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1726 1727 llvm::GlobalValue::ThreadLocalMode TLM; 1728 TLM = GetDefaultLLVMTLSModel(); 1729 1730 // Override the TLS model if it is explicitly specified. 1731 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1732 TLM = GetLLVMTLSModel(Attr->getModel()); 1733 } 1734 1735 GV->setThreadLocalMode(TLM); 1736 } 1737 1738 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1739 StringRef Name) { 1740 const TargetInfo &Target = CGM.getTarget(); 1741 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1742 } 1743 1744 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1745 const CPUSpecificAttr *Attr, 1746 unsigned CPUIndex, 1747 raw_ostream &Out) { 1748 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1749 // supported. 1750 if (Attr) 1751 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1752 else if (CGM.getTarget().supportsIFunc()) 1753 Out << ".resolver"; 1754 } 1755 1756 // Returns true if GD is a function decl with internal linkage and 1757 // needs a unique suffix after the mangled name. 1758 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1759 CodeGenModule &CGM) { 1760 const Decl *D = GD.getDecl(); 1761 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1762 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1763 } 1764 1765 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1766 const NamedDecl *ND, 1767 bool OmitMultiVersionMangling = false) { 1768 SmallString<256> Buffer; 1769 llvm::raw_svector_ostream Out(Buffer); 1770 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1771 if (!CGM.getModuleNameHash().empty()) 1772 MC.needsUniqueInternalLinkageNames(); 1773 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1774 if (ShouldMangle) 1775 MC.mangleName(GD.getWithDecl(ND), Out); 1776 else { 1777 IdentifierInfo *II = ND->getIdentifier(); 1778 assert(II && "Attempt to mangle unnamed decl."); 1779 const auto *FD = dyn_cast<FunctionDecl>(ND); 1780 1781 if (FD && 1782 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1783 if (CGM.getLangOpts().RegCall4) 1784 Out << "__regcall4__" << II->getName(); 1785 else 1786 Out << "__regcall3__" << II->getName(); 1787 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1788 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1789 Out << "__device_stub__" << II->getName(); 1790 } else { 1791 Out << II->getName(); 1792 } 1793 } 1794 1795 // Check if the module name hash should be appended for internal linkage 1796 // symbols. This should come before multi-version target suffixes are 1797 // appended. This is to keep the name and module hash suffix of the 1798 // internal linkage function together. The unique suffix should only be 1799 // added when name mangling is done to make sure that the final name can 1800 // be properly demangled. For example, for C functions without prototypes, 1801 // name mangling is not done and the unique suffix should not be appeneded 1802 // then. 1803 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1804 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1805 "Hash computed when not explicitly requested"); 1806 Out << CGM.getModuleNameHash(); 1807 } 1808 1809 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1810 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1811 switch (FD->getMultiVersionKind()) { 1812 case MultiVersionKind::CPUDispatch: 1813 case MultiVersionKind::CPUSpecific: 1814 AppendCPUSpecificCPUDispatchMangling(CGM, 1815 FD->getAttr<CPUSpecificAttr>(), 1816 GD.getMultiVersionIndex(), Out); 1817 break; 1818 case MultiVersionKind::Target: { 1819 auto *Attr = FD->getAttr<TargetAttr>(); 1820 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1821 Info.appendAttributeMangling(Attr, Out); 1822 break; 1823 } 1824 case MultiVersionKind::TargetVersion: { 1825 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1826 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1827 Info.appendAttributeMangling(Attr, Out); 1828 break; 1829 } 1830 case MultiVersionKind::TargetClones: { 1831 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1832 unsigned Index = GD.getMultiVersionIndex(); 1833 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1834 Info.appendAttributeMangling(Attr, Index, Out); 1835 break; 1836 } 1837 case MultiVersionKind::None: 1838 llvm_unreachable("None multiversion type isn't valid here"); 1839 } 1840 } 1841 1842 // Make unique name for device side static file-scope variable for HIP. 1843 if (CGM.getContext().shouldExternalize(ND) && 1844 CGM.getLangOpts().GPURelocatableDeviceCode && 1845 CGM.getLangOpts().CUDAIsDevice) 1846 CGM.printPostfixForExternalizedDecl(Out, ND); 1847 1848 return std::string(Out.str()); 1849 } 1850 1851 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1852 const FunctionDecl *FD, 1853 StringRef &CurName) { 1854 if (!FD->isMultiVersion()) 1855 return; 1856 1857 // Get the name of what this would be without the 'target' attribute. This 1858 // allows us to lookup the version that was emitted when this wasn't a 1859 // multiversion function. 1860 std::string NonTargetName = 1861 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1862 GlobalDecl OtherGD; 1863 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1864 assert(OtherGD.getCanonicalDecl() 1865 .getDecl() 1866 ->getAsFunction() 1867 ->isMultiVersion() && 1868 "Other GD should now be a multiversioned function"); 1869 // OtherFD is the version of this function that was mangled BEFORE 1870 // becoming a MultiVersion function. It potentially needs to be updated. 1871 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1872 .getDecl() 1873 ->getAsFunction() 1874 ->getMostRecentDecl(); 1875 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1876 // This is so that if the initial version was already the 'default' 1877 // version, we don't try to update it. 1878 if (OtherName != NonTargetName) { 1879 // Remove instead of erase, since others may have stored the StringRef 1880 // to this. 1881 const auto ExistingRecord = Manglings.find(NonTargetName); 1882 if (ExistingRecord != std::end(Manglings)) 1883 Manglings.remove(&(*ExistingRecord)); 1884 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1885 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1886 Result.first->first(); 1887 // If this is the current decl is being created, make sure we update the name. 1888 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1889 CurName = OtherNameRef; 1890 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1891 Entry->setName(OtherName); 1892 } 1893 } 1894 } 1895 1896 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1897 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1898 1899 // Some ABIs don't have constructor variants. Make sure that base and 1900 // complete constructors get mangled the same. 1901 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1902 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1903 CXXCtorType OrigCtorType = GD.getCtorType(); 1904 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1905 if (OrigCtorType == Ctor_Base) 1906 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1907 } 1908 } 1909 1910 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1911 // static device variable depends on whether the variable is referenced by 1912 // a host or device host function. Therefore the mangled name cannot be 1913 // cached. 1914 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1915 auto FoundName = MangledDeclNames.find(CanonicalGD); 1916 if (FoundName != MangledDeclNames.end()) 1917 return FoundName->second; 1918 } 1919 1920 // Keep the first result in the case of a mangling collision. 1921 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1922 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1923 1924 // Ensure either we have different ABIs between host and device compilations, 1925 // says host compilation following MSVC ABI but device compilation follows 1926 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1927 // mangling should be the same after name stubbing. The later checking is 1928 // very important as the device kernel name being mangled in host-compilation 1929 // is used to resolve the device binaries to be executed. Inconsistent naming 1930 // result in undefined behavior. Even though we cannot check that naming 1931 // directly between host- and device-compilations, the host- and 1932 // device-mangling in host compilation could help catching certain ones. 1933 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1934 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1935 (getContext().getAuxTargetInfo() && 1936 (getContext().getAuxTargetInfo()->getCXXABI() != 1937 getContext().getTargetInfo().getCXXABI())) || 1938 getCUDARuntime().getDeviceSideName(ND) == 1939 getMangledNameImpl( 1940 *this, 1941 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1942 ND)); 1943 1944 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1945 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1946 } 1947 1948 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1949 const BlockDecl *BD) { 1950 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1951 const Decl *D = GD.getDecl(); 1952 1953 SmallString<256> Buffer; 1954 llvm::raw_svector_ostream Out(Buffer); 1955 if (!D) 1956 MangleCtx.mangleGlobalBlock(BD, 1957 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1958 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1959 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1960 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1961 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1962 else 1963 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1964 1965 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1966 return Result.first->first(); 1967 } 1968 1969 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1970 auto it = MangledDeclNames.begin(); 1971 while (it != MangledDeclNames.end()) { 1972 if (it->second == Name) 1973 return it->first; 1974 it++; 1975 } 1976 return GlobalDecl(); 1977 } 1978 1979 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1980 return getModule().getNamedValue(Name); 1981 } 1982 1983 /// AddGlobalCtor - Add a function to the list that will be called before 1984 /// main() runs. 1985 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1986 unsigned LexOrder, 1987 llvm::Constant *AssociatedData) { 1988 // FIXME: Type coercion of void()* types. 1989 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1990 } 1991 1992 /// AddGlobalDtor - Add a function to the list that will be called 1993 /// when the module is unloaded. 1994 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1995 bool IsDtorAttrFunc) { 1996 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1997 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1998 DtorsUsingAtExit[Priority].push_back(Dtor); 1999 return; 2000 } 2001 2002 // FIXME: Type coercion of void()* types. 2003 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2004 } 2005 2006 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2007 if (Fns.empty()) return; 2008 2009 // Ctor function type is void()*. 2010 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2011 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2012 TheModule.getDataLayout().getProgramAddressSpace()); 2013 2014 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2015 llvm::StructType *CtorStructTy = llvm::StructType::get( 2016 Int32Ty, CtorPFTy, VoidPtrTy); 2017 2018 // Construct the constructor and destructor arrays. 2019 ConstantInitBuilder builder(*this); 2020 auto ctors = builder.beginArray(CtorStructTy); 2021 for (const auto &I : Fns) { 2022 auto ctor = ctors.beginStruct(CtorStructTy); 2023 ctor.addInt(Int32Ty, I.Priority); 2024 ctor.add(I.Initializer); 2025 if (I.AssociatedData) 2026 ctor.add(I.AssociatedData); 2027 else 2028 ctor.addNullPointer(VoidPtrTy); 2029 ctor.finishAndAddTo(ctors); 2030 } 2031 2032 auto list = 2033 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2034 /*constant*/ false, 2035 llvm::GlobalValue::AppendingLinkage); 2036 2037 // The LTO linker doesn't seem to like it when we set an alignment 2038 // on appending variables. Take it off as a workaround. 2039 list->setAlignment(std::nullopt); 2040 2041 Fns.clear(); 2042 } 2043 2044 llvm::GlobalValue::LinkageTypes 2045 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2046 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2047 2048 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2049 2050 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2051 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2052 2053 return getLLVMLinkageForDeclarator(D, Linkage); 2054 } 2055 2056 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2057 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2058 if (!MDS) return nullptr; 2059 2060 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2061 } 2062 2063 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2064 if (auto *FnType = T->getAs<FunctionProtoType>()) 2065 T = getContext().getFunctionType( 2066 FnType->getReturnType(), FnType->getParamTypes(), 2067 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2068 2069 std::string OutName; 2070 llvm::raw_string_ostream Out(OutName); 2071 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2072 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2073 2074 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2075 Out << ".normalized"; 2076 2077 return llvm::ConstantInt::get(Int32Ty, 2078 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2079 } 2080 2081 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2082 const CGFunctionInfo &Info, 2083 llvm::Function *F, bool IsThunk) { 2084 unsigned CallingConv; 2085 llvm::AttributeList PAL; 2086 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2087 /*AttrOnCallSite=*/false, IsThunk); 2088 F->setAttributes(PAL); 2089 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2090 } 2091 2092 static void removeImageAccessQualifier(std::string& TyName) { 2093 std::string ReadOnlyQual("__read_only"); 2094 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2095 if (ReadOnlyPos != std::string::npos) 2096 // "+ 1" for the space after access qualifier. 2097 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2098 else { 2099 std::string WriteOnlyQual("__write_only"); 2100 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2101 if (WriteOnlyPos != std::string::npos) 2102 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2103 else { 2104 std::string ReadWriteQual("__read_write"); 2105 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2106 if (ReadWritePos != std::string::npos) 2107 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2108 } 2109 } 2110 } 2111 2112 // Returns the address space id that should be produced to the 2113 // kernel_arg_addr_space metadata. This is always fixed to the ids 2114 // as specified in the SPIR 2.0 specification in order to differentiate 2115 // for example in clGetKernelArgInfo() implementation between the address 2116 // spaces with targets without unique mapping to the OpenCL address spaces 2117 // (basically all single AS CPUs). 2118 static unsigned ArgInfoAddressSpace(LangAS AS) { 2119 switch (AS) { 2120 case LangAS::opencl_global: 2121 return 1; 2122 case LangAS::opencl_constant: 2123 return 2; 2124 case LangAS::opencl_local: 2125 return 3; 2126 case LangAS::opencl_generic: 2127 return 4; // Not in SPIR 2.0 specs. 2128 case LangAS::opencl_global_device: 2129 return 5; 2130 case LangAS::opencl_global_host: 2131 return 6; 2132 default: 2133 return 0; // Assume private. 2134 } 2135 } 2136 2137 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2138 const FunctionDecl *FD, 2139 CodeGenFunction *CGF) { 2140 assert(((FD && CGF) || (!FD && !CGF)) && 2141 "Incorrect use - FD and CGF should either be both null or not!"); 2142 // Create MDNodes that represent the kernel arg metadata. 2143 // Each MDNode is a list in the form of "key", N number of values which is 2144 // the same number of values as their are kernel arguments. 2145 2146 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2147 2148 // MDNode for the kernel argument address space qualifiers. 2149 SmallVector<llvm::Metadata *, 8> addressQuals; 2150 2151 // MDNode for the kernel argument access qualifiers (images only). 2152 SmallVector<llvm::Metadata *, 8> accessQuals; 2153 2154 // MDNode for the kernel argument type names. 2155 SmallVector<llvm::Metadata *, 8> argTypeNames; 2156 2157 // MDNode for the kernel argument base type names. 2158 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2159 2160 // MDNode for the kernel argument type qualifiers. 2161 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2162 2163 // MDNode for the kernel argument names. 2164 SmallVector<llvm::Metadata *, 8> argNames; 2165 2166 if (FD && CGF) 2167 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2168 const ParmVarDecl *parm = FD->getParamDecl(i); 2169 // Get argument name. 2170 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2171 2172 if (!getLangOpts().OpenCL) 2173 continue; 2174 QualType ty = parm->getType(); 2175 std::string typeQuals; 2176 2177 // Get image and pipe access qualifier: 2178 if (ty->isImageType() || ty->isPipeType()) { 2179 const Decl *PDecl = parm; 2180 if (const auto *TD = ty->getAs<TypedefType>()) 2181 PDecl = TD->getDecl(); 2182 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2183 if (A && A->isWriteOnly()) 2184 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2185 else if (A && A->isReadWrite()) 2186 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2187 else 2188 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2189 } else 2190 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2191 2192 auto getTypeSpelling = [&](QualType Ty) { 2193 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2194 2195 if (Ty.isCanonical()) { 2196 StringRef typeNameRef = typeName; 2197 // Turn "unsigned type" to "utype" 2198 if (typeNameRef.consume_front("unsigned ")) 2199 return std::string("u") + typeNameRef.str(); 2200 if (typeNameRef.consume_front("signed ")) 2201 return typeNameRef.str(); 2202 } 2203 2204 return typeName; 2205 }; 2206 2207 if (ty->isPointerType()) { 2208 QualType pointeeTy = ty->getPointeeType(); 2209 2210 // Get address qualifier. 2211 addressQuals.push_back( 2212 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2213 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2214 2215 // Get argument type name. 2216 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2217 std::string baseTypeName = 2218 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2219 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2220 argBaseTypeNames.push_back( 2221 llvm::MDString::get(VMContext, baseTypeName)); 2222 2223 // Get argument type qualifiers: 2224 if (ty.isRestrictQualified()) 2225 typeQuals = "restrict"; 2226 if (pointeeTy.isConstQualified() || 2227 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2228 typeQuals += typeQuals.empty() ? "const" : " const"; 2229 if (pointeeTy.isVolatileQualified()) 2230 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2231 } else { 2232 uint32_t AddrSpc = 0; 2233 bool isPipe = ty->isPipeType(); 2234 if (ty->isImageType() || isPipe) 2235 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2236 2237 addressQuals.push_back( 2238 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2239 2240 // Get argument type name. 2241 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2242 std::string typeName = getTypeSpelling(ty); 2243 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2244 2245 // Remove access qualifiers on images 2246 // (as they are inseparable from type in clang implementation, 2247 // but OpenCL spec provides a special query to get access qualifier 2248 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2249 if (ty->isImageType()) { 2250 removeImageAccessQualifier(typeName); 2251 removeImageAccessQualifier(baseTypeName); 2252 } 2253 2254 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2255 argBaseTypeNames.push_back( 2256 llvm::MDString::get(VMContext, baseTypeName)); 2257 2258 if (isPipe) 2259 typeQuals = "pipe"; 2260 } 2261 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2262 } 2263 2264 if (getLangOpts().OpenCL) { 2265 Fn->setMetadata("kernel_arg_addr_space", 2266 llvm::MDNode::get(VMContext, addressQuals)); 2267 Fn->setMetadata("kernel_arg_access_qual", 2268 llvm::MDNode::get(VMContext, accessQuals)); 2269 Fn->setMetadata("kernel_arg_type", 2270 llvm::MDNode::get(VMContext, argTypeNames)); 2271 Fn->setMetadata("kernel_arg_base_type", 2272 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2273 Fn->setMetadata("kernel_arg_type_qual", 2274 llvm::MDNode::get(VMContext, argTypeQuals)); 2275 } 2276 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2277 getCodeGenOpts().HIPSaveKernelArgName) 2278 Fn->setMetadata("kernel_arg_name", 2279 llvm::MDNode::get(VMContext, argNames)); 2280 } 2281 2282 /// Determines whether the language options require us to model 2283 /// unwind exceptions. We treat -fexceptions as mandating this 2284 /// except under the fragile ObjC ABI with only ObjC exceptions 2285 /// enabled. This means, for example, that C with -fexceptions 2286 /// enables this. 2287 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2288 // If exceptions are completely disabled, obviously this is false. 2289 if (!LangOpts.Exceptions) return false; 2290 2291 // If C++ exceptions are enabled, this is true. 2292 if (LangOpts.CXXExceptions) return true; 2293 2294 // If ObjC exceptions are enabled, this depends on the ABI. 2295 if (LangOpts.ObjCExceptions) { 2296 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2297 } 2298 2299 return true; 2300 } 2301 2302 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2303 const CXXMethodDecl *MD) { 2304 // Check that the type metadata can ever actually be used by a call. 2305 if (!CGM.getCodeGenOpts().LTOUnit || 2306 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2307 return false; 2308 2309 // Only functions whose address can be taken with a member function pointer 2310 // need this sort of type metadata. 2311 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2312 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2313 } 2314 2315 SmallVector<const CXXRecordDecl *, 0> 2316 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2317 llvm::SetVector<const CXXRecordDecl *> MostBases; 2318 2319 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2320 CollectMostBases = [&](const CXXRecordDecl *RD) { 2321 if (RD->getNumBases() == 0) 2322 MostBases.insert(RD); 2323 for (const CXXBaseSpecifier &B : RD->bases()) 2324 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2325 }; 2326 CollectMostBases(RD); 2327 return MostBases.takeVector(); 2328 } 2329 2330 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2331 llvm::Function *F) { 2332 llvm::AttrBuilder B(F->getContext()); 2333 2334 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2335 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2336 2337 if (CodeGenOpts.StackClashProtector) 2338 B.addAttribute("probe-stack", "inline-asm"); 2339 2340 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2341 B.addAttribute("stack-probe-size", 2342 std::to_string(CodeGenOpts.StackProbeSize)); 2343 2344 if (!hasUnwindExceptions(LangOpts)) 2345 B.addAttribute(llvm::Attribute::NoUnwind); 2346 2347 if (D && D->hasAttr<NoStackProtectorAttr>()) 2348 ; // Do nothing. 2349 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2350 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2351 B.addAttribute(llvm::Attribute::StackProtectStrong); 2352 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2353 B.addAttribute(llvm::Attribute::StackProtect); 2354 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2355 B.addAttribute(llvm::Attribute::StackProtectStrong); 2356 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2357 B.addAttribute(llvm::Attribute::StackProtectReq); 2358 2359 if (!D) { 2360 // If we don't have a declaration to control inlining, the function isn't 2361 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2362 // disabled, mark the function as noinline. 2363 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2364 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2365 B.addAttribute(llvm::Attribute::NoInline); 2366 2367 F->addFnAttrs(B); 2368 return; 2369 } 2370 2371 // Handle SME attributes that apply to function definitions, 2372 // rather than to function prototypes. 2373 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2374 B.addAttribute("aarch64_pstate_sm_body"); 2375 2376 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2377 if (Attr->isNewZA()) 2378 B.addAttribute("aarch64_new_za"); 2379 if (Attr->isNewZT0()) 2380 B.addAttribute("aarch64_new_zt0"); 2381 } 2382 2383 // Track whether we need to add the optnone LLVM attribute, 2384 // starting with the default for this optimization level. 2385 bool ShouldAddOptNone = 2386 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2387 // We can't add optnone in the following cases, it won't pass the verifier. 2388 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2389 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2390 2391 // Add optnone, but do so only if the function isn't always_inline. 2392 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2393 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2394 B.addAttribute(llvm::Attribute::OptimizeNone); 2395 2396 // OptimizeNone implies noinline; we should not be inlining such functions. 2397 B.addAttribute(llvm::Attribute::NoInline); 2398 2399 // We still need to handle naked functions even though optnone subsumes 2400 // much of their semantics. 2401 if (D->hasAttr<NakedAttr>()) 2402 B.addAttribute(llvm::Attribute::Naked); 2403 2404 // OptimizeNone wins over OptimizeForSize and MinSize. 2405 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2406 F->removeFnAttr(llvm::Attribute::MinSize); 2407 } else if (D->hasAttr<NakedAttr>()) { 2408 // Naked implies noinline: we should not be inlining such functions. 2409 B.addAttribute(llvm::Attribute::Naked); 2410 B.addAttribute(llvm::Attribute::NoInline); 2411 } else if (D->hasAttr<NoDuplicateAttr>()) { 2412 B.addAttribute(llvm::Attribute::NoDuplicate); 2413 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2414 // Add noinline if the function isn't always_inline. 2415 B.addAttribute(llvm::Attribute::NoInline); 2416 } else if (D->hasAttr<AlwaysInlineAttr>() && 2417 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2418 // (noinline wins over always_inline, and we can't specify both in IR) 2419 B.addAttribute(llvm::Attribute::AlwaysInline); 2420 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2421 // If we're not inlining, then force everything that isn't always_inline to 2422 // carry an explicit noinline attribute. 2423 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2424 B.addAttribute(llvm::Attribute::NoInline); 2425 } else { 2426 // Otherwise, propagate the inline hint attribute and potentially use its 2427 // absence to mark things as noinline. 2428 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2429 // Search function and template pattern redeclarations for inline. 2430 auto CheckForInline = [](const FunctionDecl *FD) { 2431 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2432 return Redecl->isInlineSpecified(); 2433 }; 2434 if (any_of(FD->redecls(), CheckRedeclForInline)) 2435 return true; 2436 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2437 if (!Pattern) 2438 return false; 2439 return any_of(Pattern->redecls(), CheckRedeclForInline); 2440 }; 2441 if (CheckForInline(FD)) { 2442 B.addAttribute(llvm::Attribute::InlineHint); 2443 } else if (CodeGenOpts.getInlining() == 2444 CodeGenOptions::OnlyHintInlining && 2445 !FD->isInlined() && 2446 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2447 B.addAttribute(llvm::Attribute::NoInline); 2448 } 2449 } 2450 } 2451 2452 // Add other optimization related attributes if we are optimizing this 2453 // function. 2454 if (!D->hasAttr<OptimizeNoneAttr>()) { 2455 if (D->hasAttr<ColdAttr>()) { 2456 if (!ShouldAddOptNone) 2457 B.addAttribute(llvm::Attribute::OptimizeForSize); 2458 B.addAttribute(llvm::Attribute::Cold); 2459 } 2460 if (D->hasAttr<HotAttr>()) 2461 B.addAttribute(llvm::Attribute::Hot); 2462 if (D->hasAttr<MinSizeAttr>()) 2463 B.addAttribute(llvm::Attribute::MinSize); 2464 } 2465 2466 F->addFnAttrs(B); 2467 2468 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2469 if (alignment) 2470 F->setAlignment(llvm::Align(alignment)); 2471 2472 if (!D->hasAttr<AlignedAttr>()) 2473 if (LangOpts.FunctionAlignment) 2474 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2475 2476 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2477 // reserve a bit for differentiating between virtual and non-virtual member 2478 // functions. If the current target's C++ ABI requires this and this is a 2479 // member function, set its alignment accordingly. 2480 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2481 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2482 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2483 } 2484 2485 // In the cross-dso CFI mode with canonical jump tables, we want !type 2486 // attributes on definitions only. 2487 if (CodeGenOpts.SanitizeCfiCrossDso && 2488 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2489 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2490 // Skip available_externally functions. They won't be codegen'ed in the 2491 // current module anyway. 2492 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2493 CreateFunctionTypeMetadataForIcall(FD, F); 2494 } 2495 } 2496 2497 // Emit type metadata on member functions for member function pointer checks. 2498 // These are only ever necessary on definitions; we're guaranteed that the 2499 // definition will be present in the LTO unit as a result of LTO visibility. 2500 auto *MD = dyn_cast<CXXMethodDecl>(D); 2501 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2502 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2503 llvm::Metadata *Id = 2504 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2505 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2506 F->addTypeMetadata(0, Id); 2507 } 2508 } 2509 } 2510 2511 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2512 const Decl *D = GD.getDecl(); 2513 if (isa_and_nonnull<NamedDecl>(D)) 2514 setGVProperties(GV, GD); 2515 else 2516 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2517 2518 if (D && D->hasAttr<UsedAttr>()) 2519 addUsedOrCompilerUsedGlobal(GV); 2520 2521 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2522 VD && 2523 ((CodeGenOpts.KeepPersistentStorageVariables && 2524 (VD->getStorageDuration() == SD_Static || 2525 VD->getStorageDuration() == SD_Thread)) || 2526 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2527 VD->getType().isConstQualified()))) 2528 addUsedOrCompilerUsedGlobal(GV); 2529 } 2530 2531 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2532 llvm::AttrBuilder &Attrs, 2533 bool SetTargetFeatures) { 2534 // Add target-cpu and target-features attributes to functions. If 2535 // we have a decl for the function and it has a target attribute then 2536 // parse that and add it to the feature set. 2537 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2538 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2539 std::vector<std::string> Features; 2540 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2541 FD = FD ? FD->getMostRecentDecl() : FD; 2542 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2543 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2544 assert((!TD || !TV) && "both target_version and target specified"); 2545 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2546 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2547 bool AddedAttr = false; 2548 if (TD || TV || SD || TC) { 2549 llvm::StringMap<bool> FeatureMap; 2550 getContext().getFunctionFeatureMap(FeatureMap, GD); 2551 2552 // Produce the canonical string for this set of features. 2553 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2554 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2555 2556 // Now add the target-cpu and target-features to the function. 2557 // While we populated the feature map above, we still need to 2558 // get and parse the target attribute so we can get the cpu for 2559 // the function. 2560 if (TD) { 2561 ParsedTargetAttr ParsedAttr = 2562 Target.parseTargetAttr(TD->getFeaturesStr()); 2563 if (!ParsedAttr.CPU.empty() && 2564 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2565 TargetCPU = ParsedAttr.CPU; 2566 TuneCPU = ""; // Clear the tune CPU. 2567 } 2568 if (!ParsedAttr.Tune.empty() && 2569 getTarget().isValidCPUName(ParsedAttr.Tune)) 2570 TuneCPU = ParsedAttr.Tune; 2571 } 2572 2573 if (SD) { 2574 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2575 // favor this processor. 2576 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2577 } 2578 } else { 2579 // Otherwise just add the existing target cpu and target features to the 2580 // function. 2581 Features = getTarget().getTargetOpts().Features; 2582 } 2583 2584 if (!TargetCPU.empty()) { 2585 Attrs.addAttribute("target-cpu", TargetCPU); 2586 AddedAttr = true; 2587 } 2588 if (!TuneCPU.empty()) { 2589 Attrs.addAttribute("tune-cpu", TuneCPU); 2590 AddedAttr = true; 2591 } 2592 if (!Features.empty() && SetTargetFeatures) { 2593 llvm::erase_if(Features, [&](const std::string& F) { 2594 return getTarget().isReadOnlyFeature(F.substr(1)); 2595 }); 2596 llvm::sort(Features); 2597 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2598 AddedAttr = true; 2599 } 2600 2601 return AddedAttr; 2602 } 2603 2604 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2605 llvm::GlobalObject *GO) { 2606 const Decl *D = GD.getDecl(); 2607 SetCommonAttributes(GD, GO); 2608 2609 if (D) { 2610 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2611 if (D->hasAttr<RetainAttr>()) 2612 addUsedGlobal(GV); 2613 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2614 GV->addAttribute("bss-section", SA->getName()); 2615 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2616 GV->addAttribute("data-section", SA->getName()); 2617 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2618 GV->addAttribute("rodata-section", SA->getName()); 2619 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2620 GV->addAttribute("relro-section", SA->getName()); 2621 } 2622 2623 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2624 if (D->hasAttr<RetainAttr>()) 2625 addUsedGlobal(F); 2626 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2627 if (!D->getAttr<SectionAttr>()) 2628 F->addFnAttr("implicit-section-name", SA->getName()); 2629 2630 llvm::AttrBuilder Attrs(F->getContext()); 2631 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2632 // We know that GetCPUAndFeaturesAttributes will always have the 2633 // newest set, since it has the newest possible FunctionDecl, so the 2634 // new ones should replace the old. 2635 llvm::AttributeMask RemoveAttrs; 2636 RemoveAttrs.addAttribute("target-cpu"); 2637 RemoveAttrs.addAttribute("target-features"); 2638 RemoveAttrs.addAttribute("tune-cpu"); 2639 F->removeFnAttrs(RemoveAttrs); 2640 F->addFnAttrs(Attrs); 2641 } 2642 } 2643 2644 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2645 GO->setSection(CSA->getName()); 2646 else if (const auto *SA = D->getAttr<SectionAttr>()) 2647 GO->setSection(SA->getName()); 2648 } 2649 2650 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2651 } 2652 2653 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2654 llvm::Function *F, 2655 const CGFunctionInfo &FI) { 2656 const Decl *D = GD.getDecl(); 2657 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2658 SetLLVMFunctionAttributesForDefinition(D, F); 2659 2660 F->setLinkage(llvm::Function::InternalLinkage); 2661 2662 setNonAliasAttributes(GD, F); 2663 } 2664 2665 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2666 // Set linkage and visibility in case we never see a definition. 2667 LinkageInfo LV = ND->getLinkageAndVisibility(); 2668 // Don't set internal linkage on declarations. 2669 // "extern_weak" is overloaded in LLVM; we probably should have 2670 // separate linkage types for this. 2671 if (isExternallyVisible(LV.getLinkage()) && 2672 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2673 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2674 } 2675 2676 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2677 llvm::Function *F) { 2678 // Only if we are checking indirect calls. 2679 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2680 return; 2681 2682 // Non-static class methods are handled via vtable or member function pointer 2683 // checks elsewhere. 2684 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2685 return; 2686 2687 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2688 F->addTypeMetadata(0, MD); 2689 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2690 2691 // Emit a hash-based bit set entry for cross-DSO calls. 2692 if (CodeGenOpts.SanitizeCfiCrossDso) 2693 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2694 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2695 } 2696 2697 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2698 llvm::LLVMContext &Ctx = F->getContext(); 2699 llvm::MDBuilder MDB(Ctx); 2700 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2701 llvm::MDNode::get( 2702 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2703 } 2704 2705 static bool allowKCFIIdentifier(StringRef Name) { 2706 // KCFI type identifier constants are only necessary for external assembly 2707 // functions, which means it's safe to skip unusual names. Subset of 2708 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2709 return llvm::all_of(Name, [](const char &C) { 2710 return llvm::isAlnum(C) || C == '_' || C == '.'; 2711 }); 2712 } 2713 2714 void CodeGenModule::finalizeKCFITypes() { 2715 llvm::Module &M = getModule(); 2716 for (auto &F : M.functions()) { 2717 // Remove KCFI type metadata from non-address-taken local functions. 2718 bool AddressTaken = F.hasAddressTaken(); 2719 if (!AddressTaken && F.hasLocalLinkage()) 2720 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2721 2722 // Generate a constant with the expected KCFI type identifier for all 2723 // address-taken function declarations to support annotating indirectly 2724 // called assembly functions. 2725 if (!AddressTaken || !F.isDeclaration()) 2726 continue; 2727 2728 const llvm::ConstantInt *Type; 2729 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2730 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2731 else 2732 continue; 2733 2734 StringRef Name = F.getName(); 2735 if (!allowKCFIIdentifier(Name)) 2736 continue; 2737 2738 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2739 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2740 .str(); 2741 M.appendModuleInlineAsm(Asm); 2742 } 2743 } 2744 2745 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2746 bool IsIncompleteFunction, 2747 bool IsThunk) { 2748 2749 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2750 // If this is an intrinsic function, set the function's attributes 2751 // to the intrinsic's attributes. 2752 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2753 return; 2754 } 2755 2756 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2757 2758 if (!IsIncompleteFunction) 2759 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2760 IsThunk); 2761 2762 // Add the Returned attribute for "this", except for iOS 5 and earlier 2763 // where substantial code, including the libstdc++ dylib, was compiled with 2764 // GCC and does not actually return "this". 2765 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2766 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2767 assert(!F->arg_empty() && 2768 F->arg_begin()->getType() 2769 ->canLosslesslyBitCastTo(F->getReturnType()) && 2770 "unexpected this return"); 2771 F->addParamAttr(0, llvm::Attribute::Returned); 2772 } 2773 2774 // Only a few attributes are set on declarations; these may later be 2775 // overridden by a definition. 2776 2777 setLinkageForGV(F, FD); 2778 setGVProperties(F, FD); 2779 2780 // Setup target-specific attributes. 2781 if (!IsIncompleteFunction && F->isDeclaration()) 2782 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2783 2784 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2785 F->setSection(CSA->getName()); 2786 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2787 F->setSection(SA->getName()); 2788 2789 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2790 if (EA->isError()) 2791 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2792 else if (EA->isWarning()) 2793 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2794 } 2795 2796 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2797 if (FD->isInlineBuiltinDeclaration()) { 2798 const FunctionDecl *FDBody; 2799 bool HasBody = FD->hasBody(FDBody); 2800 (void)HasBody; 2801 assert(HasBody && "Inline builtin declarations should always have an " 2802 "available body!"); 2803 if (shouldEmitFunction(FDBody)) 2804 F->addFnAttr(llvm::Attribute::NoBuiltin); 2805 } 2806 2807 if (FD->isReplaceableGlobalAllocationFunction()) { 2808 // A replaceable global allocation function does not act like a builtin by 2809 // default, only if it is invoked by a new-expression or delete-expression. 2810 F->addFnAttr(llvm::Attribute::NoBuiltin); 2811 } 2812 2813 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2814 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2815 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2816 if (MD->isVirtual()) 2817 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2818 2819 // Don't emit entries for function declarations in the cross-DSO mode. This 2820 // is handled with better precision by the receiving DSO. But if jump tables 2821 // are non-canonical then we need type metadata in order to produce the local 2822 // jump table. 2823 if (!CodeGenOpts.SanitizeCfiCrossDso || 2824 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2825 CreateFunctionTypeMetadataForIcall(FD, F); 2826 2827 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2828 setKCFIType(FD, F); 2829 2830 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2831 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2832 2833 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2834 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2835 2836 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2837 // Annotate the callback behavior as metadata: 2838 // - The callback callee (as argument number). 2839 // - The callback payloads (as argument numbers). 2840 llvm::LLVMContext &Ctx = F->getContext(); 2841 llvm::MDBuilder MDB(Ctx); 2842 2843 // The payload indices are all but the first one in the encoding. The first 2844 // identifies the callback callee. 2845 int CalleeIdx = *CB->encoding_begin(); 2846 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2847 F->addMetadata(llvm::LLVMContext::MD_callback, 2848 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2849 CalleeIdx, PayloadIndices, 2850 /* VarArgsArePassed */ false)})); 2851 } 2852 } 2853 2854 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2855 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2856 "Only globals with definition can force usage."); 2857 LLVMUsed.emplace_back(GV); 2858 } 2859 2860 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2861 assert(!GV->isDeclaration() && 2862 "Only globals with definition can force usage."); 2863 LLVMCompilerUsed.emplace_back(GV); 2864 } 2865 2866 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2867 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2868 "Only globals with definition can force usage."); 2869 if (getTriple().isOSBinFormatELF()) 2870 LLVMCompilerUsed.emplace_back(GV); 2871 else 2872 LLVMUsed.emplace_back(GV); 2873 } 2874 2875 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2876 std::vector<llvm::WeakTrackingVH> &List) { 2877 // Don't create llvm.used if there is no need. 2878 if (List.empty()) 2879 return; 2880 2881 // Convert List to what ConstantArray needs. 2882 SmallVector<llvm::Constant*, 8> UsedArray; 2883 UsedArray.resize(List.size()); 2884 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2885 UsedArray[i] = 2886 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2887 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2888 } 2889 2890 if (UsedArray.empty()) 2891 return; 2892 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2893 2894 auto *GV = new llvm::GlobalVariable( 2895 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2896 llvm::ConstantArray::get(ATy, UsedArray), Name); 2897 2898 GV->setSection("llvm.metadata"); 2899 } 2900 2901 void CodeGenModule::emitLLVMUsed() { 2902 emitUsed(*this, "llvm.used", LLVMUsed); 2903 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2904 } 2905 2906 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2907 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2908 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2909 } 2910 2911 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2912 llvm::SmallString<32> Opt; 2913 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2914 if (Opt.empty()) 2915 return; 2916 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2917 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2918 } 2919 2920 void CodeGenModule::AddDependentLib(StringRef Lib) { 2921 auto &C = getLLVMContext(); 2922 if (getTarget().getTriple().isOSBinFormatELF()) { 2923 ELFDependentLibraries.push_back( 2924 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2925 return; 2926 } 2927 2928 llvm::SmallString<24> Opt; 2929 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2930 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2931 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2932 } 2933 2934 /// Add link options implied by the given module, including modules 2935 /// it depends on, using a postorder walk. 2936 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2937 SmallVectorImpl<llvm::MDNode *> &Metadata, 2938 llvm::SmallPtrSet<Module *, 16> &Visited) { 2939 // Import this module's parent. 2940 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2941 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2942 } 2943 2944 // Import this module's dependencies. 2945 for (Module *Import : llvm::reverse(Mod->Imports)) { 2946 if (Visited.insert(Import).second) 2947 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2948 } 2949 2950 // Add linker options to link against the libraries/frameworks 2951 // described by this module. 2952 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2953 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2954 2955 // For modules that use export_as for linking, use that module 2956 // name instead. 2957 if (Mod->UseExportAsModuleLinkName) 2958 return; 2959 2960 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2961 // Link against a framework. Frameworks are currently Darwin only, so we 2962 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2963 if (LL.IsFramework) { 2964 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2965 llvm::MDString::get(Context, LL.Library)}; 2966 2967 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2968 continue; 2969 } 2970 2971 // Link against a library. 2972 if (IsELF) { 2973 llvm::Metadata *Args[2] = { 2974 llvm::MDString::get(Context, "lib"), 2975 llvm::MDString::get(Context, LL.Library), 2976 }; 2977 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2978 } else { 2979 llvm::SmallString<24> Opt; 2980 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2981 auto *OptString = llvm::MDString::get(Context, Opt); 2982 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2983 } 2984 } 2985 } 2986 2987 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2988 assert(Primary->isNamedModuleUnit() && 2989 "We should only emit module initializers for named modules."); 2990 2991 // Emit the initializers in the order that sub-modules appear in the 2992 // source, first Global Module Fragments, if present. 2993 if (auto GMF = Primary->getGlobalModuleFragment()) { 2994 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2995 if (isa<ImportDecl>(D)) 2996 continue; 2997 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2998 EmitTopLevelDecl(D); 2999 } 3000 } 3001 // Second any associated with the module, itself. 3002 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3003 // Skip import decls, the inits for those are called explicitly. 3004 if (isa<ImportDecl>(D)) 3005 continue; 3006 EmitTopLevelDecl(D); 3007 } 3008 // Third any associated with the Privat eMOdule Fragment, if present. 3009 if (auto PMF = Primary->getPrivateModuleFragment()) { 3010 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3011 // Skip import decls, the inits for those are called explicitly. 3012 if (isa<ImportDecl>(D)) 3013 continue; 3014 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3015 EmitTopLevelDecl(D); 3016 } 3017 } 3018 } 3019 3020 void CodeGenModule::EmitModuleLinkOptions() { 3021 // Collect the set of all of the modules we want to visit to emit link 3022 // options, which is essentially the imported modules and all of their 3023 // non-explicit child modules. 3024 llvm::SetVector<clang::Module *> LinkModules; 3025 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3026 SmallVector<clang::Module *, 16> Stack; 3027 3028 // Seed the stack with imported modules. 3029 for (Module *M : ImportedModules) { 3030 // Do not add any link flags when an implementation TU of a module imports 3031 // a header of that same module. 3032 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3033 !getLangOpts().isCompilingModule()) 3034 continue; 3035 if (Visited.insert(M).second) 3036 Stack.push_back(M); 3037 } 3038 3039 // Find all of the modules to import, making a little effort to prune 3040 // non-leaf modules. 3041 while (!Stack.empty()) { 3042 clang::Module *Mod = Stack.pop_back_val(); 3043 3044 bool AnyChildren = false; 3045 3046 // Visit the submodules of this module. 3047 for (const auto &SM : Mod->submodules()) { 3048 // Skip explicit children; they need to be explicitly imported to be 3049 // linked against. 3050 if (SM->IsExplicit) 3051 continue; 3052 3053 if (Visited.insert(SM).second) { 3054 Stack.push_back(SM); 3055 AnyChildren = true; 3056 } 3057 } 3058 3059 // We didn't find any children, so add this module to the list of 3060 // modules to link against. 3061 if (!AnyChildren) { 3062 LinkModules.insert(Mod); 3063 } 3064 } 3065 3066 // Add link options for all of the imported modules in reverse topological 3067 // order. We don't do anything to try to order import link flags with respect 3068 // to linker options inserted by things like #pragma comment(). 3069 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3070 Visited.clear(); 3071 for (Module *M : LinkModules) 3072 if (Visited.insert(M).second) 3073 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3074 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3075 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3076 3077 // Add the linker options metadata flag. 3078 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3079 for (auto *MD : LinkerOptionsMetadata) 3080 NMD->addOperand(MD); 3081 } 3082 3083 void CodeGenModule::EmitDeferred() { 3084 // Emit deferred declare target declarations. 3085 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3086 getOpenMPRuntime().emitDeferredTargetDecls(); 3087 3088 // Emit code for any potentially referenced deferred decls. Since a 3089 // previously unused static decl may become used during the generation of code 3090 // for a static function, iterate until no changes are made. 3091 3092 if (!DeferredVTables.empty()) { 3093 EmitDeferredVTables(); 3094 3095 // Emitting a vtable doesn't directly cause more vtables to 3096 // become deferred, although it can cause functions to be 3097 // emitted that then need those vtables. 3098 assert(DeferredVTables.empty()); 3099 } 3100 3101 // Emit CUDA/HIP static device variables referenced by host code only. 3102 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3103 // needed for further handling. 3104 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3105 llvm::append_range(DeferredDeclsToEmit, 3106 getContext().CUDADeviceVarODRUsedByHost); 3107 3108 // Stop if we're out of both deferred vtables and deferred declarations. 3109 if (DeferredDeclsToEmit.empty()) 3110 return; 3111 3112 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3113 // work, it will not interfere with this. 3114 std::vector<GlobalDecl> CurDeclsToEmit; 3115 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3116 3117 for (GlobalDecl &D : CurDeclsToEmit) { 3118 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3119 // to get GlobalValue with exactly the type we need, not something that 3120 // might had been created for another decl with the same mangled name but 3121 // different type. 3122 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3123 GetAddrOfGlobal(D, ForDefinition)); 3124 3125 // In case of different address spaces, we may still get a cast, even with 3126 // IsForDefinition equal to true. Query mangled names table to get 3127 // GlobalValue. 3128 if (!GV) 3129 GV = GetGlobalValue(getMangledName(D)); 3130 3131 // Make sure GetGlobalValue returned non-null. 3132 assert(GV); 3133 3134 // Check to see if we've already emitted this. This is necessary 3135 // for a couple of reasons: first, decls can end up in the 3136 // deferred-decls queue multiple times, and second, decls can end 3137 // up with definitions in unusual ways (e.g. by an extern inline 3138 // function acquiring a strong function redefinition). Just 3139 // ignore these cases. 3140 if (!GV->isDeclaration()) 3141 continue; 3142 3143 // If this is OpenMP, check if it is legal to emit this global normally. 3144 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3145 continue; 3146 3147 // Otherwise, emit the definition and move on to the next one. 3148 EmitGlobalDefinition(D, GV); 3149 3150 // If we found out that we need to emit more decls, do that recursively. 3151 // This has the advantage that the decls are emitted in a DFS and related 3152 // ones are close together, which is convenient for testing. 3153 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3154 EmitDeferred(); 3155 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3156 } 3157 } 3158 } 3159 3160 void CodeGenModule::EmitVTablesOpportunistically() { 3161 // Try to emit external vtables as available_externally if they have emitted 3162 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3163 // is not allowed to create new references to things that need to be emitted 3164 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3165 3166 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3167 && "Only emit opportunistic vtables with optimizations"); 3168 3169 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3170 assert(getVTables().isVTableExternal(RD) && 3171 "This queue should only contain external vtables"); 3172 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3173 VTables.GenerateClassData(RD); 3174 } 3175 OpportunisticVTables.clear(); 3176 } 3177 3178 void CodeGenModule::EmitGlobalAnnotations() { 3179 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3180 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3181 if (GV) 3182 AddGlobalAnnotations(VD, GV); 3183 } 3184 DeferredAnnotations.clear(); 3185 3186 if (Annotations.empty()) 3187 return; 3188 3189 // Create a new global variable for the ConstantStruct in the Module. 3190 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3191 Annotations[0]->getType(), Annotations.size()), Annotations); 3192 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3193 llvm::GlobalValue::AppendingLinkage, 3194 Array, "llvm.global.annotations"); 3195 gv->setSection(AnnotationSection); 3196 } 3197 3198 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3199 llvm::Constant *&AStr = AnnotationStrings[Str]; 3200 if (AStr) 3201 return AStr; 3202 3203 // Not found yet, create a new global. 3204 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3205 auto *gv = new llvm::GlobalVariable( 3206 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3207 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3208 ConstGlobalsPtrTy->getAddressSpace()); 3209 gv->setSection(AnnotationSection); 3210 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3211 AStr = gv; 3212 return gv; 3213 } 3214 3215 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3216 SourceManager &SM = getContext().getSourceManager(); 3217 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3218 if (PLoc.isValid()) 3219 return EmitAnnotationString(PLoc.getFilename()); 3220 return EmitAnnotationString(SM.getBufferName(Loc)); 3221 } 3222 3223 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3224 SourceManager &SM = getContext().getSourceManager(); 3225 PresumedLoc PLoc = SM.getPresumedLoc(L); 3226 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3227 SM.getExpansionLineNumber(L); 3228 return llvm::ConstantInt::get(Int32Ty, LineNo); 3229 } 3230 3231 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3232 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3233 if (Exprs.empty()) 3234 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3235 3236 llvm::FoldingSetNodeID ID; 3237 for (Expr *E : Exprs) { 3238 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3239 } 3240 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3241 if (Lookup) 3242 return Lookup; 3243 3244 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3245 LLVMArgs.reserve(Exprs.size()); 3246 ConstantEmitter ConstEmiter(*this); 3247 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3248 const auto *CE = cast<clang::ConstantExpr>(E); 3249 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3250 CE->getType()); 3251 }); 3252 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3253 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3254 llvm::GlobalValue::PrivateLinkage, Struct, 3255 ".args"); 3256 GV->setSection(AnnotationSection); 3257 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3258 3259 Lookup = GV; 3260 return GV; 3261 } 3262 3263 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3264 const AnnotateAttr *AA, 3265 SourceLocation L) { 3266 // Get the globals for file name, annotation, and the line number. 3267 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3268 *UnitGV = EmitAnnotationUnit(L), 3269 *LineNoCst = EmitAnnotationLineNo(L), 3270 *Args = EmitAnnotationArgs(AA); 3271 3272 llvm::Constant *GVInGlobalsAS = GV; 3273 if (GV->getAddressSpace() != 3274 getDataLayout().getDefaultGlobalsAddressSpace()) { 3275 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3276 GV, 3277 llvm::PointerType::get( 3278 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3279 } 3280 3281 // Create the ConstantStruct for the global annotation. 3282 llvm::Constant *Fields[] = { 3283 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3284 }; 3285 return llvm::ConstantStruct::getAnon(Fields); 3286 } 3287 3288 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3289 llvm::GlobalValue *GV) { 3290 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3291 // Get the struct elements for these annotations. 3292 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3293 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3294 } 3295 3296 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3297 SourceLocation Loc) const { 3298 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3299 // NoSanitize by function name. 3300 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3301 return true; 3302 // NoSanitize by location. Check "mainfile" prefix. 3303 auto &SM = Context.getSourceManager(); 3304 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3305 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3306 return true; 3307 3308 // Check "src" prefix. 3309 if (Loc.isValid()) 3310 return NoSanitizeL.containsLocation(Kind, Loc); 3311 // If location is unknown, this may be a compiler-generated function. Assume 3312 // it's located in the main file. 3313 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3314 } 3315 3316 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3317 llvm::GlobalVariable *GV, 3318 SourceLocation Loc, QualType Ty, 3319 StringRef Category) const { 3320 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3321 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3322 return true; 3323 auto &SM = Context.getSourceManager(); 3324 if (NoSanitizeL.containsMainFile( 3325 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3326 Category)) 3327 return true; 3328 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3329 return true; 3330 3331 // Check global type. 3332 if (!Ty.isNull()) { 3333 // Drill down the array types: if global variable of a fixed type is 3334 // not sanitized, we also don't instrument arrays of them. 3335 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3336 Ty = AT->getElementType(); 3337 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3338 // Only record types (classes, structs etc.) are ignored. 3339 if (Ty->isRecordType()) { 3340 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3341 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3342 return true; 3343 } 3344 } 3345 return false; 3346 } 3347 3348 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3349 StringRef Category) const { 3350 const auto &XRayFilter = getContext().getXRayFilter(); 3351 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3352 auto Attr = ImbueAttr::NONE; 3353 if (Loc.isValid()) 3354 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3355 if (Attr == ImbueAttr::NONE) 3356 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3357 switch (Attr) { 3358 case ImbueAttr::NONE: 3359 return false; 3360 case ImbueAttr::ALWAYS: 3361 Fn->addFnAttr("function-instrument", "xray-always"); 3362 break; 3363 case ImbueAttr::ALWAYS_ARG1: 3364 Fn->addFnAttr("function-instrument", "xray-always"); 3365 Fn->addFnAttr("xray-log-args", "1"); 3366 break; 3367 case ImbueAttr::NEVER: 3368 Fn->addFnAttr("function-instrument", "xray-never"); 3369 break; 3370 } 3371 return true; 3372 } 3373 3374 ProfileList::ExclusionType 3375 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3376 SourceLocation Loc) const { 3377 const auto &ProfileList = getContext().getProfileList(); 3378 // If the profile list is empty, then instrument everything. 3379 if (ProfileList.isEmpty()) 3380 return ProfileList::Allow; 3381 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3382 // First, check the function name. 3383 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3384 return *V; 3385 // Next, check the source location. 3386 if (Loc.isValid()) 3387 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3388 return *V; 3389 // If location is unknown, this may be a compiler-generated function. Assume 3390 // it's located in the main file. 3391 auto &SM = Context.getSourceManager(); 3392 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3393 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3394 return *V; 3395 return ProfileList.getDefault(Kind); 3396 } 3397 3398 ProfileList::ExclusionType 3399 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3400 SourceLocation Loc) const { 3401 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3402 if (V != ProfileList::Allow) 3403 return V; 3404 3405 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3406 if (NumGroups > 1) { 3407 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3408 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3409 return ProfileList::Skip; 3410 } 3411 return ProfileList::Allow; 3412 } 3413 3414 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3415 // Never defer when EmitAllDecls is specified. 3416 if (LangOpts.EmitAllDecls) 3417 return true; 3418 3419 const auto *VD = dyn_cast<VarDecl>(Global); 3420 if (VD && 3421 ((CodeGenOpts.KeepPersistentStorageVariables && 3422 (VD->getStorageDuration() == SD_Static || 3423 VD->getStorageDuration() == SD_Thread)) || 3424 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3425 VD->getType().isConstQualified()))) 3426 return true; 3427 3428 return getContext().DeclMustBeEmitted(Global); 3429 } 3430 3431 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3432 // In OpenMP 5.0 variables and function may be marked as 3433 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3434 // that they must be emitted on the host/device. To be sure we need to have 3435 // seen a declare target with an explicit mentioning of the function, we know 3436 // we have if the level of the declare target attribute is -1. Note that we 3437 // check somewhere else if we should emit this at all. 3438 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3439 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3440 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3441 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3442 return false; 3443 } 3444 3445 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3446 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3447 // Implicit template instantiations may change linkage if they are later 3448 // explicitly instantiated, so they should not be emitted eagerly. 3449 return false; 3450 } 3451 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3452 if (Context.getInlineVariableDefinitionKind(VD) == 3453 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3454 // A definition of an inline constexpr static data member may change 3455 // linkage later if it's redeclared outside the class. 3456 return false; 3457 if (CXX20ModuleInits && VD->getOwningModule() && 3458 !VD->getOwningModule()->isModuleMapModule()) { 3459 // For CXX20, module-owned initializers need to be deferred, since it is 3460 // not known at this point if they will be run for the current module or 3461 // as part of the initializer for an imported one. 3462 return false; 3463 } 3464 } 3465 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3466 // codegen for global variables, because they may be marked as threadprivate. 3467 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3468 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3469 !Global->getType().isConstantStorage(getContext(), false, false) && 3470 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3471 return false; 3472 3473 return true; 3474 } 3475 3476 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3477 StringRef Name = getMangledName(GD); 3478 3479 // The UUID descriptor should be pointer aligned. 3480 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3481 3482 // Look for an existing global. 3483 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3484 return ConstantAddress(GV, GV->getValueType(), Alignment); 3485 3486 ConstantEmitter Emitter(*this); 3487 llvm::Constant *Init; 3488 3489 APValue &V = GD->getAsAPValue(); 3490 if (!V.isAbsent()) { 3491 // If possible, emit the APValue version of the initializer. In particular, 3492 // this gets the type of the constant right. 3493 Init = Emitter.emitForInitializer( 3494 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3495 } else { 3496 // As a fallback, directly construct the constant. 3497 // FIXME: This may get padding wrong under esoteric struct layout rules. 3498 // MSVC appears to create a complete type 'struct __s_GUID' that it 3499 // presumably uses to represent these constants. 3500 MSGuidDecl::Parts Parts = GD->getParts(); 3501 llvm::Constant *Fields[4] = { 3502 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3503 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3504 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3505 llvm::ConstantDataArray::getRaw( 3506 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3507 Int8Ty)}; 3508 Init = llvm::ConstantStruct::getAnon(Fields); 3509 } 3510 3511 auto *GV = new llvm::GlobalVariable( 3512 getModule(), Init->getType(), 3513 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3514 if (supportsCOMDAT()) 3515 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3516 setDSOLocal(GV); 3517 3518 if (!V.isAbsent()) { 3519 Emitter.finalize(GV); 3520 return ConstantAddress(GV, GV->getValueType(), Alignment); 3521 } 3522 3523 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3524 return ConstantAddress(GV, Ty, Alignment); 3525 } 3526 3527 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3528 const UnnamedGlobalConstantDecl *GCD) { 3529 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3530 3531 llvm::GlobalVariable **Entry = nullptr; 3532 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3533 if (*Entry) 3534 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3535 3536 ConstantEmitter Emitter(*this); 3537 llvm::Constant *Init; 3538 3539 const APValue &V = GCD->getValue(); 3540 3541 assert(!V.isAbsent()); 3542 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3543 GCD->getType()); 3544 3545 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3546 /*isConstant=*/true, 3547 llvm::GlobalValue::PrivateLinkage, Init, 3548 ".constant"); 3549 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3550 GV->setAlignment(Alignment.getAsAlign()); 3551 3552 Emitter.finalize(GV); 3553 3554 *Entry = GV; 3555 return ConstantAddress(GV, GV->getValueType(), Alignment); 3556 } 3557 3558 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3559 const TemplateParamObjectDecl *TPO) { 3560 StringRef Name = getMangledName(TPO); 3561 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3562 3563 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3564 return ConstantAddress(GV, GV->getValueType(), Alignment); 3565 3566 ConstantEmitter Emitter(*this); 3567 llvm::Constant *Init = Emitter.emitForInitializer( 3568 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3569 3570 if (!Init) { 3571 ErrorUnsupported(TPO, "template parameter object"); 3572 return ConstantAddress::invalid(); 3573 } 3574 3575 llvm::GlobalValue::LinkageTypes Linkage = 3576 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3577 ? llvm::GlobalValue::LinkOnceODRLinkage 3578 : llvm::GlobalValue::InternalLinkage; 3579 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3580 /*isConstant=*/true, Linkage, Init, Name); 3581 setGVProperties(GV, TPO); 3582 if (supportsCOMDAT()) 3583 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3584 Emitter.finalize(GV); 3585 3586 return ConstantAddress(GV, GV->getValueType(), Alignment); 3587 } 3588 3589 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3590 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3591 assert(AA && "No alias?"); 3592 3593 CharUnits Alignment = getContext().getDeclAlign(VD); 3594 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3595 3596 // See if there is already something with the target's name in the module. 3597 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3598 if (Entry) 3599 return ConstantAddress(Entry, DeclTy, Alignment); 3600 3601 llvm::Constant *Aliasee; 3602 if (isa<llvm::FunctionType>(DeclTy)) 3603 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3604 GlobalDecl(cast<FunctionDecl>(VD)), 3605 /*ForVTable=*/false); 3606 else 3607 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3608 nullptr); 3609 3610 auto *F = cast<llvm::GlobalValue>(Aliasee); 3611 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3612 WeakRefReferences.insert(F); 3613 3614 return ConstantAddress(Aliasee, DeclTy, Alignment); 3615 } 3616 3617 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3618 if (!D) 3619 return false; 3620 if (auto *A = D->getAttr<AttrT>()) 3621 return A->isImplicit(); 3622 return D->isImplicit(); 3623 } 3624 3625 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3626 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3627 3628 // Weak references don't produce any output by themselves. 3629 if (Global->hasAttr<WeakRefAttr>()) 3630 return; 3631 3632 // If this is an alias definition (which otherwise looks like a declaration) 3633 // emit it now. 3634 if (Global->hasAttr<AliasAttr>()) 3635 return EmitAliasDefinition(GD); 3636 3637 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3638 if (Global->hasAttr<IFuncAttr>()) 3639 return emitIFuncDefinition(GD); 3640 3641 // If this is a cpu_dispatch multiversion function, emit the resolver. 3642 if (Global->hasAttr<CPUDispatchAttr>()) 3643 return emitCPUDispatchDefinition(GD); 3644 3645 // If this is CUDA, be selective about which declarations we emit. 3646 // Non-constexpr non-lambda implicit host device functions are not emitted 3647 // unless they are used on device side. 3648 if (LangOpts.CUDA) { 3649 if (LangOpts.CUDAIsDevice) { 3650 const auto *FD = dyn_cast<FunctionDecl>(Global); 3651 if ((!Global->hasAttr<CUDADeviceAttr>() || 3652 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3653 hasImplicitAttr<CUDAHostAttr>(FD) && 3654 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3655 !isLambdaCallOperator(FD) && 3656 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3657 !Global->hasAttr<CUDAGlobalAttr>() && 3658 !Global->hasAttr<CUDAConstantAttr>() && 3659 !Global->hasAttr<CUDASharedAttr>() && 3660 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3661 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3662 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3663 !Global->hasAttr<CUDAHostAttr>())) 3664 return; 3665 } else { 3666 // We need to emit host-side 'shadows' for all global 3667 // device-side variables because the CUDA runtime needs their 3668 // size and host-side address in order to provide access to 3669 // their device-side incarnations. 3670 3671 // So device-only functions are the only things we skip. 3672 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3673 Global->hasAttr<CUDADeviceAttr>()) 3674 return; 3675 3676 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3677 "Expected Variable or Function"); 3678 } 3679 } 3680 3681 if (LangOpts.OpenMP) { 3682 // If this is OpenMP, check if it is legal to emit this global normally. 3683 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3684 return; 3685 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3686 if (MustBeEmitted(Global)) 3687 EmitOMPDeclareReduction(DRD); 3688 return; 3689 } 3690 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3691 if (MustBeEmitted(Global)) 3692 EmitOMPDeclareMapper(DMD); 3693 return; 3694 } 3695 } 3696 3697 // Ignore declarations, they will be emitted on their first use. 3698 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3699 // Update deferred annotations with the latest declaration if the function 3700 // function was already used or defined. 3701 if (FD->hasAttr<AnnotateAttr>()) { 3702 StringRef MangledName = getMangledName(GD); 3703 if (GetGlobalValue(MangledName)) 3704 DeferredAnnotations[MangledName] = FD; 3705 } 3706 3707 // Forward declarations are emitted lazily on first use. 3708 if (!FD->doesThisDeclarationHaveABody()) { 3709 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3710 return; 3711 3712 StringRef MangledName = getMangledName(GD); 3713 3714 // Compute the function info and LLVM type. 3715 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3716 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3717 3718 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3719 /*DontDefer=*/false); 3720 return; 3721 } 3722 } else { 3723 const auto *VD = cast<VarDecl>(Global); 3724 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3725 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3726 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3727 if (LangOpts.OpenMP) { 3728 // Emit declaration of the must-be-emitted declare target variable. 3729 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3730 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3731 3732 // If this variable has external storage and doesn't require special 3733 // link handling we defer to its canonical definition. 3734 if (VD->hasExternalStorage() && 3735 Res != OMPDeclareTargetDeclAttr::MT_Link) 3736 return; 3737 3738 bool UnifiedMemoryEnabled = 3739 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3740 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3741 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3742 !UnifiedMemoryEnabled) { 3743 (void)GetAddrOfGlobalVar(VD); 3744 } else { 3745 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3746 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3747 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3748 UnifiedMemoryEnabled)) && 3749 "Link clause or to clause with unified memory expected."); 3750 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3751 } 3752 3753 return; 3754 } 3755 } 3756 // If this declaration may have caused an inline variable definition to 3757 // change linkage, make sure that it's emitted. 3758 if (Context.getInlineVariableDefinitionKind(VD) == 3759 ASTContext::InlineVariableDefinitionKind::Strong) 3760 GetAddrOfGlobalVar(VD); 3761 return; 3762 } 3763 } 3764 3765 // Defer code generation to first use when possible, e.g. if this is an inline 3766 // function. If the global must always be emitted, do it eagerly if possible 3767 // to benefit from cache locality. 3768 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3769 // Emit the definition if it can't be deferred. 3770 EmitGlobalDefinition(GD); 3771 addEmittedDeferredDecl(GD); 3772 return; 3773 } 3774 3775 // If we're deferring emission of a C++ variable with an 3776 // initializer, remember the order in which it appeared in the file. 3777 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3778 cast<VarDecl>(Global)->hasInit()) { 3779 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3780 CXXGlobalInits.push_back(nullptr); 3781 } 3782 3783 StringRef MangledName = getMangledName(GD); 3784 if (GetGlobalValue(MangledName) != nullptr) { 3785 // The value has already been used and should therefore be emitted. 3786 addDeferredDeclToEmit(GD); 3787 } else if (MustBeEmitted(Global)) { 3788 // The value must be emitted, but cannot be emitted eagerly. 3789 assert(!MayBeEmittedEagerly(Global)); 3790 addDeferredDeclToEmit(GD); 3791 } else { 3792 // Otherwise, remember that we saw a deferred decl with this name. The 3793 // first use of the mangled name will cause it to move into 3794 // DeferredDeclsToEmit. 3795 DeferredDecls[MangledName] = GD; 3796 } 3797 } 3798 3799 // Check if T is a class type with a destructor that's not dllimport. 3800 static bool HasNonDllImportDtor(QualType T) { 3801 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3802 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3803 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3804 return true; 3805 3806 return false; 3807 } 3808 3809 namespace { 3810 struct FunctionIsDirectlyRecursive 3811 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3812 const StringRef Name; 3813 const Builtin::Context &BI; 3814 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3815 : Name(N), BI(C) {} 3816 3817 bool VisitCallExpr(const CallExpr *E) { 3818 const FunctionDecl *FD = E->getDirectCallee(); 3819 if (!FD) 3820 return false; 3821 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3822 if (Attr && Name == Attr->getLabel()) 3823 return true; 3824 unsigned BuiltinID = FD->getBuiltinID(); 3825 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3826 return false; 3827 StringRef BuiltinName = BI.getName(BuiltinID); 3828 if (BuiltinName.starts_with("__builtin_") && 3829 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3830 return true; 3831 } 3832 return false; 3833 } 3834 3835 bool VisitStmt(const Stmt *S) { 3836 for (const Stmt *Child : S->children()) 3837 if (Child && this->Visit(Child)) 3838 return true; 3839 return false; 3840 } 3841 }; 3842 3843 // Make sure we're not referencing non-imported vars or functions. 3844 struct DLLImportFunctionVisitor 3845 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3846 bool SafeToInline = true; 3847 3848 bool shouldVisitImplicitCode() const { return true; } 3849 3850 bool VisitVarDecl(VarDecl *VD) { 3851 if (VD->getTLSKind()) { 3852 // A thread-local variable cannot be imported. 3853 SafeToInline = false; 3854 return SafeToInline; 3855 } 3856 3857 // A variable definition might imply a destructor call. 3858 if (VD->isThisDeclarationADefinition()) 3859 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3860 3861 return SafeToInline; 3862 } 3863 3864 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3865 if (const auto *D = E->getTemporary()->getDestructor()) 3866 SafeToInline = D->hasAttr<DLLImportAttr>(); 3867 return SafeToInline; 3868 } 3869 3870 bool VisitDeclRefExpr(DeclRefExpr *E) { 3871 ValueDecl *VD = E->getDecl(); 3872 if (isa<FunctionDecl>(VD)) 3873 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3874 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3875 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3876 return SafeToInline; 3877 } 3878 3879 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3880 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3881 return SafeToInline; 3882 } 3883 3884 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3885 CXXMethodDecl *M = E->getMethodDecl(); 3886 if (!M) { 3887 // Call through a pointer to member function. This is safe to inline. 3888 SafeToInline = true; 3889 } else { 3890 SafeToInline = M->hasAttr<DLLImportAttr>(); 3891 } 3892 return SafeToInline; 3893 } 3894 3895 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3896 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3897 return SafeToInline; 3898 } 3899 3900 bool VisitCXXNewExpr(CXXNewExpr *E) { 3901 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3902 return SafeToInline; 3903 } 3904 }; 3905 } 3906 3907 // isTriviallyRecursive - Check if this function calls another 3908 // decl that, because of the asm attribute or the other decl being a builtin, 3909 // ends up pointing to itself. 3910 bool 3911 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3912 StringRef Name; 3913 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3914 // asm labels are a special kind of mangling we have to support. 3915 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3916 if (!Attr) 3917 return false; 3918 Name = Attr->getLabel(); 3919 } else { 3920 Name = FD->getName(); 3921 } 3922 3923 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3924 const Stmt *Body = FD->getBody(); 3925 return Body ? Walker.Visit(Body) : false; 3926 } 3927 3928 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3929 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3930 return true; 3931 3932 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3933 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3934 return false; 3935 3936 // We don't import function bodies from other named module units since that 3937 // behavior may break ABI compatibility of the current unit. 3938 if (const Module *M = F->getOwningModule(); 3939 M && M->getTopLevelModule()->isNamedModule() && 3940 getContext().getCurrentNamedModule() != M->getTopLevelModule()) 3941 return false; 3942 3943 if (F->hasAttr<NoInlineAttr>()) 3944 return false; 3945 3946 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3947 // Check whether it would be safe to inline this dllimport function. 3948 DLLImportFunctionVisitor Visitor; 3949 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3950 if (!Visitor.SafeToInline) 3951 return false; 3952 3953 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3954 // Implicit destructor invocations aren't captured in the AST, so the 3955 // check above can't see them. Check for them manually here. 3956 for (const Decl *Member : Dtor->getParent()->decls()) 3957 if (isa<FieldDecl>(Member)) 3958 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3959 return false; 3960 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3961 if (HasNonDllImportDtor(B.getType())) 3962 return false; 3963 } 3964 } 3965 3966 // Inline builtins declaration must be emitted. They often are fortified 3967 // functions. 3968 if (F->isInlineBuiltinDeclaration()) 3969 return true; 3970 3971 // PR9614. Avoid cases where the source code is lying to us. An available 3972 // externally function should have an equivalent function somewhere else, 3973 // but a function that calls itself through asm label/`__builtin_` trickery is 3974 // clearly not equivalent to the real implementation. 3975 // This happens in glibc's btowc and in some configure checks. 3976 return !isTriviallyRecursive(F); 3977 } 3978 3979 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3980 return CodeGenOpts.OptimizationLevel > 0; 3981 } 3982 3983 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3984 llvm::GlobalValue *GV) { 3985 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3986 3987 if (FD->isCPUSpecificMultiVersion()) { 3988 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3989 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3990 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3991 } else if (FD->isTargetClonesMultiVersion()) { 3992 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3993 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3994 if (Clone->isFirstOfVersion(I)) 3995 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3996 // Ensure that the resolver function is also emitted. 3997 GetOrCreateMultiVersionResolver(GD); 3998 } else if (FD->hasAttr<TargetVersionAttr>()) { 3999 GetOrCreateMultiVersionResolver(GD); 4000 } else 4001 EmitGlobalFunctionDefinition(GD, GV); 4002 } 4003 4004 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4005 const auto *D = cast<ValueDecl>(GD.getDecl()); 4006 4007 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4008 Context.getSourceManager(), 4009 "Generating code for declaration"); 4010 4011 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4012 // At -O0, don't generate IR for functions with available_externally 4013 // linkage. 4014 if (!shouldEmitFunction(GD)) 4015 return; 4016 4017 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4018 std::string Name; 4019 llvm::raw_string_ostream OS(Name); 4020 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4021 /*Qualified=*/true); 4022 return Name; 4023 }); 4024 4025 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4026 // Make sure to emit the definition(s) before we emit the thunks. 4027 // This is necessary for the generation of certain thunks. 4028 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4029 ABI->emitCXXStructor(GD); 4030 else if (FD->isMultiVersion()) 4031 EmitMultiVersionFunctionDefinition(GD, GV); 4032 else 4033 EmitGlobalFunctionDefinition(GD, GV); 4034 4035 if (Method->isVirtual()) 4036 getVTables().EmitThunks(GD); 4037 4038 return; 4039 } 4040 4041 if (FD->isMultiVersion()) 4042 return EmitMultiVersionFunctionDefinition(GD, GV); 4043 return EmitGlobalFunctionDefinition(GD, GV); 4044 } 4045 4046 if (const auto *VD = dyn_cast<VarDecl>(D)) 4047 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4048 4049 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4050 } 4051 4052 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4053 llvm::Function *NewFn); 4054 4055 static unsigned 4056 TargetMVPriority(const TargetInfo &TI, 4057 const CodeGenFunction::MultiVersionResolverOption &RO) { 4058 unsigned Priority = 0; 4059 unsigned NumFeatures = 0; 4060 for (StringRef Feat : RO.Conditions.Features) { 4061 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4062 NumFeatures++; 4063 } 4064 4065 if (!RO.Conditions.Architecture.empty()) 4066 Priority = std::max( 4067 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4068 4069 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4070 4071 return Priority; 4072 } 4073 4074 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4075 // TU can forward declare the function without causing problems. Particularly 4076 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4077 // work with internal linkage functions, so that the same function name can be 4078 // used with internal linkage in multiple TUs. 4079 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4080 GlobalDecl GD) { 4081 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4082 if (FD->getFormalLinkage() == Linkage::Internal) 4083 return llvm::GlobalValue::InternalLinkage; 4084 return llvm::GlobalValue::WeakODRLinkage; 4085 } 4086 4087 void CodeGenModule::emitMultiVersionFunctions() { 4088 std::vector<GlobalDecl> MVFuncsToEmit; 4089 MultiVersionFuncs.swap(MVFuncsToEmit); 4090 for (GlobalDecl GD : MVFuncsToEmit) { 4091 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4092 assert(FD && "Expected a FunctionDecl"); 4093 4094 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4095 if (FD->isTargetMultiVersion()) { 4096 getContext().forEachMultiversionedFunctionVersion( 4097 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4098 GlobalDecl CurGD{ 4099 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4100 StringRef MangledName = getMangledName(CurGD); 4101 llvm::Constant *Func = GetGlobalValue(MangledName); 4102 if (!Func) { 4103 if (CurFD->isDefined()) { 4104 EmitGlobalFunctionDefinition(CurGD, nullptr); 4105 Func = GetGlobalValue(MangledName); 4106 } else { 4107 const CGFunctionInfo &FI = 4108 getTypes().arrangeGlobalDeclaration(GD); 4109 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4110 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4111 /*DontDefer=*/false, ForDefinition); 4112 } 4113 assert(Func && "This should have just been created"); 4114 } 4115 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4116 const auto *TA = CurFD->getAttr<TargetAttr>(); 4117 llvm::SmallVector<StringRef, 8> Feats; 4118 TA->getAddedFeatures(Feats); 4119 Options.emplace_back(cast<llvm::Function>(Func), 4120 TA->getArchitecture(), Feats); 4121 } else { 4122 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4123 llvm::SmallVector<StringRef, 8> Feats; 4124 TVA->getFeatures(Feats); 4125 Options.emplace_back(cast<llvm::Function>(Func), 4126 /*Architecture*/ "", Feats); 4127 } 4128 }); 4129 } else if (FD->isTargetClonesMultiVersion()) { 4130 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4131 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4132 ++VersionIndex) { 4133 if (!TC->isFirstOfVersion(VersionIndex)) 4134 continue; 4135 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4136 VersionIndex}; 4137 StringRef Version = TC->getFeatureStr(VersionIndex); 4138 StringRef MangledName = getMangledName(CurGD); 4139 llvm::Constant *Func = GetGlobalValue(MangledName); 4140 if (!Func) { 4141 if (FD->isDefined()) { 4142 EmitGlobalFunctionDefinition(CurGD, nullptr); 4143 Func = GetGlobalValue(MangledName); 4144 } else { 4145 const CGFunctionInfo &FI = 4146 getTypes().arrangeGlobalDeclaration(CurGD); 4147 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4148 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4149 /*DontDefer=*/false, ForDefinition); 4150 } 4151 assert(Func && "This should have just been created"); 4152 } 4153 4154 StringRef Architecture; 4155 llvm::SmallVector<StringRef, 1> Feature; 4156 4157 if (getTarget().getTriple().isAArch64()) { 4158 if (Version != "default") { 4159 llvm::SmallVector<StringRef, 8> VerFeats; 4160 Version.split(VerFeats, "+"); 4161 for (auto &CurFeat : VerFeats) 4162 Feature.push_back(CurFeat.trim()); 4163 } 4164 } else { 4165 if (Version.starts_with("arch=")) 4166 Architecture = Version.drop_front(sizeof("arch=") - 1); 4167 else if (Version != "default") 4168 Feature.push_back(Version); 4169 } 4170 4171 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4172 } 4173 } else { 4174 assert(0 && "Expected a target or target_clones multiversion function"); 4175 continue; 4176 } 4177 4178 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4179 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4180 ResolverConstant = IFunc->getResolver(); 4181 if (FD->isTargetClonesMultiVersion() || 4182 FD->isTargetVersionMultiVersion()) { 4183 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4184 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4185 std::string MangledName = getMangledNameImpl( 4186 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4187 // In prior versions of Clang, the mangling for ifuncs incorrectly 4188 // included an .ifunc suffix. This alias is generated for backward 4189 // compatibility. It is deprecated, and may be removed in the future. 4190 auto *Alias = llvm::GlobalAlias::create( 4191 DeclTy, 0, getMultiversionLinkage(*this, GD), 4192 MangledName + ".ifunc", IFunc, &getModule()); 4193 SetCommonAttributes(FD, Alias); 4194 } 4195 } 4196 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4197 4198 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4199 4200 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4201 ResolverFunc->setComdat( 4202 getModule().getOrInsertComdat(ResolverFunc->getName())); 4203 4204 const TargetInfo &TI = getTarget(); 4205 llvm::stable_sort( 4206 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4207 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4208 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4209 }); 4210 CodeGenFunction CGF(*this); 4211 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4212 } 4213 4214 // Ensure that any additions to the deferred decls list caused by emitting a 4215 // variant are emitted. This can happen when the variant itself is inline and 4216 // calls a function without linkage. 4217 if (!MVFuncsToEmit.empty()) 4218 EmitDeferred(); 4219 4220 // Ensure that any additions to the multiversion funcs list from either the 4221 // deferred decls or the multiversion functions themselves are emitted. 4222 if (!MultiVersionFuncs.empty()) 4223 emitMultiVersionFunctions(); 4224 } 4225 4226 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4227 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4228 assert(FD && "Not a FunctionDecl?"); 4229 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4230 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4231 assert(DD && "Not a cpu_dispatch Function?"); 4232 4233 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4234 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4235 4236 StringRef ResolverName = getMangledName(GD); 4237 UpdateMultiVersionNames(GD, FD, ResolverName); 4238 4239 llvm::Type *ResolverType; 4240 GlobalDecl ResolverGD; 4241 if (getTarget().supportsIFunc()) { 4242 ResolverType = llvm::FunctionType::get( 4243 llvm::PointerType::get(DeclTy, 4244 getTypes().getTargetAddressSpace(FD->getType())), 4245 false); 4246 } 4247 else { 4248 ResolverType = DeclTy; 4249 ResolverGD = GD; 4250 } 4251 4252 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4253 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4254 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4255 if (supportsCOMDAT()) 4256 ResolverFunc->setComdat( 4257 getModule().getOrInsertComdat(ResolverFunc->getName())); 4258 4259 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4260 const TargetInfo &Target = getTarget(); 4261 unsigned Index = 0; 4262 for (const IdentifierInfo *II : DD->cpus()) { 4263 // Get the name of the target function so we can look it up/create it. 4264 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4265 getCPUSpecificMangling(*this, II->getName()); 4266 4267 llvm::Constant *Func = GetGlobalValue(MangledName); 4268 4269 if (!Func) { 4270 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4271 if (ExistingDecl.getDecl() && 4272 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4273 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4274 Func = GetGlobalValue(MangledName); 4275 } else { 4276 if (!ExistingDecl.getDecl()) 4277 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4278 4279 Func = GetOrCreateLLVMFunction( 4280 MangledName, DeclTy, ExistingDecl, 4281 /*ForVTable=*/false, /*DontDefer=*/true, 4282 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4283 } 4284 } 4285 4286 llvm::SmallVector<StringRef, 32> Features; 4287 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4288 llvm::transform(Features, Features.begin(), 4289 [](StringRef Str) { return Str.substr(1); }); 4290 llvm::erase_if(Features, [&Target](StringRef Feat) { 4291 return !Target.validateCpuSupports(Feat); 4292 }); 4293 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4294 ++Index; 4295 } 4296 4297 llvm::stable_sort( 4298 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4299 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4300 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4301 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4302 }); 4303 4304 // If the list contains multiple 'default' versions, such as when it contains 4305 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4306 // always run on at least a 'pentium'). We do this by deleting the 'least 4307 // advanced' (read, lowest mangling letter). 4308 while (Options.size() > 1 && 4309 llvm::all_of(llvm::X86::getCpuSupportsMask( 4310 (Options.end() - 2)->Conditions.Features), 4311 [](auto X) { return X == 0; })) { 4312 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4313 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4314 if (LHSName.compare(RHSName) < 0) 4315 Options.erase(Options.end() - 2); 4316 else 4317 Options.erase(Options.end() - 1); 4318 } 4319 4320 CodeGenFunction CGF(*this); 4321 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4322 4323 if (getTarget().supportsIFunc()) { 4324 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4325 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4326 4327 // Fix up function declarations that were created for cpu_specific before 4328 // cpu_dispatch was known 4329 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4330 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4331 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4332 &getModule()); 4333 GI->takeName(IFunc); 4334 IFunc->replaceAllUsesWith(GI); 4335 IFunc->eraseFromParent(); 4336 IFunc = GI; 4337 } 4338 4339 std::string AliasName = getMangledNameImpl( 4340 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4341 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4342 if (!AliasFunc) { 4343 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4344 &getModule()); 4345 SetCommonAttributes(GD, GA); 4346 } 4347 } 4348 } 4349 4350 /// If a dispatcher for the specified mangled name is not in the module, create 4351 /// and return an llvm Function with the specified type. 4352 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4353 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4354 assert(FD && "Not a FunctionDecl?"); 4355 4356 std::string MangledName = 4357 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4358 4359 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4360 // a separate resolver). 4361 std::string ResolverName = MangledName; 4362 if (getTarget().supportsIFunc()) { 4363 switch (FD->getMultiVersionKind()) { 4364 case MultiVersionKind::None: 4365 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4366 case MultiVersionKind::Target: 4367 case MultiVersionKind::CPUSpecific: 4368 case MultiVersionKind::CPUDispatch: 4369 ResolverName += ".ifunc"; 4370 break; 4371 case MultiVersionKind::TargetClones: 4372 case MultiVersionKind::TargetVersion: 4373 break; 4374 } 4375 } else if (FD->isTargetMultiVersion()) { 4376 ResolverName += ".resolver"; 4377 } 4378 4379 // If the resolver has already been created, just return it. 4380 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4381 return ResolverGV; 4382 4383 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4384 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4385 4386 // The resolver needs to be created. For target and target_clones, defer 4387 // creation until the end of the TU. 4388 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4389 MultiVersionFuncs.push_back(GD); 4390 4391 // For cpu_specific, don't create an ifunc yet because we don't know if the 4392 // cpu_dispatch will be emitted in this translation unit. 4393 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4394 llvm::Type *ResolverType = llvm::FunctionType::get( 4395 llvm::PointerType::get(DeclTy, 4396 getTypes().getTargetAddressSpace(FD->getType())), 4397 false); 4398 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4399 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4400 /*ForVTable=*/false); 4401 llvm::GlobalIFunc *GIF = 4402 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4403 "", Resolver, &getModule()); 4404 GIF->setName(ResolverName); 4405 SetCommonAttributes(FD, GIF); 4406 4407 return GIF; 4408 } 4409 4410 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4411 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4412 assert(isa<llvm::GlobalValue>(Resolver) && 4413 "Resolver should be created for the first time"); 4414 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4415 return Resolver; 4416 } 4417 4418 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4419 /// module, create and return an llvm Function with the specified type. If there 4420 /// is something in the module with the specified name, return it potentially 4421 /// bitcasted to the right type. 4422 /// 4423 /// If D is non-null, it specifies a decl that correspond to this. This is used 4424 /// to set the attributes on the function when it is first created. 4425 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4426 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4427 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4428 ForDefinition_t IsForDefinition) { 4429 const Decl *D = GD.getDecl(); 4430 4431 // Any attempts to use a MultiVersion function should result in retrieving 4432 // the iFunc instead. Name Mangling will handle the rest of the changes. 4433 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4434 // For the device mark the function as one that should be emitted. 4435 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4436 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4437 !DontDefer && !IsForDefinition) { 4438 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4439 GlobalDecl GDDef; 4440 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4441 GDDef = GlobalDecl(CD, GD.getCtorType()); 4442 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4443 GDDef = GlobalDecl(DD, GD.getDtorType()); 4444 else 4445 GDDef = GlobalDecl(FDDef); 4446 EmitGlobal(GDDef); 4447 } 4448 } 4449 4450 if (FD->isMultiVersion()) { 4451 UpdateMultiVersionNames(GD, FD, MangledName); 4452 if (!IsForDefinition) 4453 return GetOrCreateMultiVersionResolver(GD); 4454 } 4455 } 4456 4457 // Lookup the entry, lazily creating it if necessary. 4458 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4459 if (Entry) { 4460 if (WeakRefReferences.erase(Entry)) { 4461 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4462 if (FD && !FD->hasAttr<WeakAttr>()) 4463 Entry->setLinkage(llvm::Function::ExternalLinkage); 4464 } 4465 4466 // Handle dropped DLL attributes. 4467 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4468 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4469 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4470 setDSOLocal(Entry); 4471 } 4472 4473 // If there are two attempts to define the same mangled name, issue an 4474 // error. 4475 if (IsForDefinition && !Entry->isDeclaration()) { 4476 GlobalDecl OtherGD; 4477 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4478 // to make sure that we issue an error only once. 4479 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4480 (GD.getCanonicalDecl().getDecl() != 4481 OtherGD.getCanonicalDecl().getDecl()) && 4482 DiagnosedConflictingDefinitions.insert(GD).second) { 4483 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4484 << MangledName; 4485 getDiags().Report(OtherGD.getDecl()->getLocation(), 4486 diag::note_previous_definition); 4487 } 4488 } 4489 4490 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4491 (Entry->getValueType() == Ty)) { 4492 return Entry; 4493 } 4494 4495 // Make sure the result is of the correct type. 4496 // (If function is requested for a definition, we always need to create a new 4497 // function, not just return a bitcast.) 4498 if (!IsForDefinition) 4499 return Entry; 4500 } 4501 4502 // This function doesn't have a complete type (for example, the return 4503 // type is an incomplete struct). Use a fake type instead, and make 4504 // sure not to try to set attributes. 4505 bool IsIncompleteFunction = false; 4506 4507 llvm::FunctionType *FTy; 4508 if (isa<llvm::FunctionType>(Ty)) { 4509 FTy = cast<llvm::FunctionType>(Ty); 4510 } else { 4511 FTy = llvm::FunctionType::get(VoidTy, false); 4512 IsIncompleteFunction = true; 4513 } 4514 4515 llvm::Function *F = 4516 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4517 Entry ? StringRef() : MangledName, &getModule()); 4518 4519 // Store the declaration associated with this function so it is potentially 4520 // updated by further declarations or definitions and emitted at the end. 4521 if (D && D->hasAttr<AnnotateAttr>()) 4522 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4523 4524 // If we already created a function with the same mangled name (but different 4525 // type) before, take its name and add it to the list of functions to be 4526 // replaced with F at the end of CodeGen. 4527 // 4528 // This happens if there is a prototype for a function (e.g. "int f()") and 4529 // then a definition of a different type (e.g. "int f(int x)"). 4530 if (Entry) { 4531 F->takeName(Entry); 4532 4533 // This might be an implementation of a function without a prototype, in 4534 // which case, try to do special replacement of calls which match the new 4535 // prototype. The really key thing here is that we also potentially drop 4536 // arguments from the call site so as to make a direct call, which makes the 4537 // inliner happier and suppresses a number of optimizer warnings (!) about 4538 // dropping arguments. 4539 if (!Entry->use_empty()) { 4540 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4541 Entry->removeDeadConstantUsers(); 4542 } 4543 4544 addGlobalValReplacement(Entry, F); 4545 } 4546 4547 assert(F->getName() == MangledName && "name was uniqued!"); 4548 if (D) 4549 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4550 if (ExtraAttrs.hasFnAttrs()) { 4551 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4552 F->addFnAttrs(B); 4553 } 4554 4555 if (!DontDefer) { 4556 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4557 // each other bottoming out with the base dtor. Therefore we emit non-base 4558 // dtors on usage, even if there is no dtor definition in the TU. 4559 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4560 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4561 GD.getDtorType())) 4562 addDeferredDeclToEmit(GD); 4563 4564 // This is the first use or definition of a mangled name. If there is a 4565 // deferred decl with this name, remember that we need to emit it at the end 4566 // of the file. 4567 auto DDI = DeferredDecls.find(MangledName); 4568 if (DDI != DeferredDecls.end()) { 4569 // Move the potentially referenced deferred decl to the 4570 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4571 // don't need it anymore). 4572 addDeferredDeclToEmit(DDI->second); 4573 DeferredDecls.erase(DDI); 4574 4575 // Otherwise, there are cases we have to worry about where we're 4576 // using a declaration for which we must emit a definition but where 4577 // we might not find a top-level definition: 4578 // - member functions defined inline in their classes 4579 // - friend functions defined inline in some class 4580 // - special member functions with implicit definitions 4581 // If we ever change our AST traversal to walk into class methods, 4582 // this will be unnecessary. 4583 // 4584 // We also don't emit a definition for a function if it's going to be an 4585 // entry in a vtable, unless it's already marked as used. 4586 } else if (getLangOpts().CPlusPlus && D) { 4587 // Look for a declaration that's lexically in a record. 4588 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4589 FD = FD->getPreviousDecl()) { 4590 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4591 if (FD->doesThisDeclarationHaveABody()) { 4592 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4593 break; 4594 } 4595 } 4596 } 4597 } 4598 } 4599 4600 // Make sure the result is of the requested type. 4601 if (!IsIncompleteFunction) { 4602 assert(F->getFunctionType() == Ty); 4603 return F; 4604 } 4605 4606 return F; 4607 } 4608 4609 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4610 /// non-null, then this function will use the specified type if it has to 4611 /// create it (this occurs when we see a definition of the function). 4612 llvm::Constant * 4613 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4614 bool DontDefer, 4615 ForDefinition_t IsForDefinition) { 4616 // If there was no specific requested type, just convert it now. 4617 if (!Ty) { 4618 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4619 Ty = getTypes().ConvertType(FD->getType()); 4620 } 4621 4622 // Devirtualized destructor calls may come through here instead of via 4623 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4624 // of the complete destructor when necessary. 4625 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4626 if (getTarget().getCXXABI().isMicrosoft() && 4627 GD.getDtorType() == Dtor_Complete && 4628 DD->getParent()->getNumVBases() == 0) 4629 GD = GlobalDecl(DD, Dtor_Base); 4630 } 4631 4632 StringRef MangledName = getMangledName(GD); 4633 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4634 /*IsThunk=*/false, llvm::AttributeList(), 4635 IsForDefinition); 4636 // Returns kernel handle for HIP kernel stub function. 4637 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4638 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4639 auto *Handle = getCUDARuntime().getKernelHandle( 4640 cast<llvm::Function>(F->stripPointerCasts()), GD); 4641 if (IsForDefinition) 4642 return F; 4643 return Handle; 4644 } 4645 return F; 4646 } 4647 4648 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4649 llvm::GlobalValue *F = 4650 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4651 4652 return llvm::NoCFIValue::get(F); 4653 } 4654 4655 static const FunctionDecl * 4656 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4657 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4658 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4659 4660 IdentifierInfo &CII = C.Idents.get(Name); 4661 for (const auto *Result : DC->lookup(&CII)) 4662 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4663 return FD; 4664 4665 if (!C.getLangOpts().CPlusPlus) 4666 return nullptr; 4667 4668 // Demangle the premangled name from getTerminateFn() 4669 IdentifierInfo &CXXII = 4670 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4671 ? C.Idents.get("terminate") 4672 : C.Idents.get(Name); 4673 4674 for (const auto &N : {"__cxxabiv1", "std"}) { 4675 IdentifierInfo &NS = C.Idents.get(N); 4676 for (const auto *Result : DC->lookup(&NS)) { 4677 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4678 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4679 for (const auto *Result : LSD->lookup(&NS)) 4680 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4681 break; 4682 4683 if (ND) 4684 for (const auto *Result : ND->lookup(&CXXII)) 4685 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4686 return FD; 4687 } 4688 } 4689 4690 return nullptr; 4691 } 4692 4693 /// CreateRuntimeFunction - Create a new runtime function with the specified 4694 /// type and name. 4695 llvm::FunctionCallee 4696 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4697 llvm::AttributeList ExtraAttrs, bool Local, 4698 bool AssumeConvergent) { 4699 if (AssumeConvergent) { 4700 ExtraAttrs = 4701 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4702 } 4703 4704 llvm::Constant *C = 4705 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4706 /*DontDefer=*/false, /*IsThunk=*/false, 4707 ExtraAttrs); 4708 4709 if (auto *F = dyn_cast<llvm::Function>(C)) { 4710 if (F->empty()) { 4711 F->setCallingConv(getRuntimeCC()); 4712 4713 // In Windows Itanium environments, try to mark runtime functions 4714 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4715 // will link their standard library statically or dynamically. Marking 4716 // functions imported when they are not imported can cause linker errors 4717 // and warnings. 4718 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4719 !getCodeGenOpts().LTOVisibilityPublicStd) { 4720 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4721 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4722 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4723 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4724 } 4725 } 4726 setDSOLocal(F); 4727 } 4728 } 4729 4730 return {FTy, C}; 4731 } 4732 4733 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4734 /// create and return an llvm GlobalVariable with the specified type and address 4735 /// space. If there is something in the module with the specified name, return 4736 /// it potentially bitcasted to the right type. 4737 /// 4738 /// If D is non-null, it specifies a decl that correspond to this. This is used 4739 /// to set the attributes on the global when it is first created. 4740 /// 4741 /// If IsForDefinition is true, it is guaranteed that an actual global with 4742 /// type Ty will be returned, not conversion of a variable with the same 4743 /// mangled name but some other type. 4744 llvm::Constant * 4745 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4746 LangAS AddrSpace, const VarDecl *D, 4747 ForDefinition_t IsForDefinition) { 4748 // Lookup the entry, lazily creating it if necessary. 4749 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4750 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4751 if (Entry) { 4752 if (WeakRefReferences.erase(Entry)) { 4753 if (D && !D->hasAttr<WeakAttr>()) 4754 Entry->setLinkage(llvm::Function::ExternalLinkage); 4755 } 4756 4757 // Handle dropped DLL attributes. 4758 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4759 !shouldMapVisibilityToDLLExport(D)) 4760 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4761 4762 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4763 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4764 4765 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4766 return Entry; 4767 4768 // If there are two attempts to define the same mangled name, issue an 4769 // error. 4770 if (IsForDefinition && !Entry->isDeclaration()) { 4771 GlobalDecl OtherGD; 4772 const VarDecl *OtherD; 4773 4774 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4775 // to make sure that we issue an error only once. 4776 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4777 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4778 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4779 OtherD->hasInit() && 4780 DiagnosedConflictingDefinitions.insert(D).second) { 4781 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4782 << MangledName; 4783 getDiags().Report(OtherGD.getDecl()->getLocation(), 4784 diag::note_previous_definition); 4785 } 4786 } 4787 4788 // Make sure the result is of the correct type. 4789 if (Entry->getType()->getAddressSpace() != TargetAS) 4790 return llvm::ConstantExpr::getAddrSpaceCast( 4791 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4792 4793 // (If global is requested for a definition, we always need to create a new 4794 // global, not just return a bitcast.) 4795 if (!IsForDefinition) 4796 return Entry; 4797 } 4798 4799 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4800 4801 auto *GV = new llvm::GlobalVariable( 4802 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4803 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4804 getContext().getTargetAddressSpace(DAddrSpace)); 4805 4806 // If we already created a global with the same mangled name (but different 4807 // type) before, take its name and remove it from its parent. 4808 if (Entry) { 4809 GV->takeName(Entry); 4810 4811 if (!Entry->use_empty()) { 4812 Entry->replaceAllUsesWith(GV); 4813 } 4814 4815 Entry->eraseFromParent(); 4816 } 4817 4818 // This is the first use or definition of a mangled name. If there is a 4819 // deferred decl with this name, remember that we need to emit it at the end 4820 // of the file. 4821 auto DDI = DeferredDecls.find(MangledName); 4822 if (DDI != DeferredDecls.end()) { 4823 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4824 // list, and remove it from DeferredDecls (since we don't need it anymore). 4825 addDeferredDeclToEmit(DDI->second); 4826 DeferredDecls.erase(DDI); 4827 } 4828 4829 // Handle things which are present even on external declarations. 4830 if (D) { 4831 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4832 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4833 4834 // FIXME: This code is overly simple and should be merged with other global 4835 // handling. 4836 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4837 4838 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4839 4840 setLinkageForGV(GV, D); 4841 4842 if (D->getTLSKind()) { 4843 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4844 CXXThreadLocals.push_back(D); 4845 setTLSMode(GV, *D); 4846 } 4847 4848 setGVProperties(GV, D); 4849 4850 // If required by the ABI, treat declarations of static data members with 4851 // inline initializers as definitions. 4852 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4853 EmitGlobalVarDefinition(D); 4854 } 4855 4856 // Emit section information for extern variables. 4857 if (D->hasExternalStorage()) { 4858 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4859 GV->setSection(SA->getName()); 4860 } 4861 4862 // Handle XCore specific ABI requirements. 4863 if (getTriple().getArch() == llvm::Triple::xcore && 4864 D->getLanguageLinkage() == CLanguageLinkage && 4865 D->getType().isConstant(Context) && 4866 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4867 GV->setSection(".cp.rodata"); 4868 4869 // Handle code model attribute 4870 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4871 GV->setCodeModel(CMA->getModel()); 4872 4873 // Check if we a have a const declaration with an initializer, we may be 4874 // able to emit it as available_externally to expose it's value to the 4875 // optimizer. 4876 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4877 D->getType().isConstQualified() && !GV->hasInitializer() && 4878 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4879 const auto *Record = 4880 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4881 bool HasMutableFields = Record && Record->hasMutableFields(); 4882 if (!HasMutableFields) { 4883 const VarDecl *InitDecl; 4884 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4885 if (InitExpr) { 4886 ConstantEmitter emitter(*this); 4887 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4888 if (Init) { 4889 auto *InitType = Init->getType(); 4890 if (GV->getValueType() != InitType) { 4891 // The type of the initializer does not match the definition. 4892 // This happens when an initializer has a different type from 4893 // the type of the global (because of padding at the end of a 4894 // structure for instance). 4895 GV->setName(StringRef()); 4896 // Make a new global with the correct type, this is now guaranteed 4897 // to work. 4898 auto *NewGV = cast<llvm::GlobalVariable>( 4899 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4900 ->stripPointerCasts()); 4901 4902 // Erase the old global, since it is no longer used. 4903 GV->eraseFromParent(); 4904 GV = NewGV; 4905 } else { 4906 GV->setInitializer(Init); 4907 GV->setConstant(true); 4908 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4909 } 4910 emitter.finalize(GV); 4911 } 4912 } 4913 } 4914 } 4915 } 4916 4917 if (D && 4918 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4919 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4920 // External HIP managed variables needed to be recorded for transformation 4921 // in both device and host compilations. 4922 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4923 D->hasExternalStorage()) 4924 getCUDARuntime().handleVarRegistration(D, *GV); 4925 } 4926 4927 if (D) 4928 SanitizerMD->reportGlobal(GV, *D); 4929 4930 LangAS ExpectedAS = 4931 D ? D->getType().getAddressSpace() 4932 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4933 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4934 if (DAddrSpace != ExpectedAS) { 4935 return getTargetCodeGenInfo().performAddrSpaceCast( 4936 *this, GV, DAddrSpace, ExpectedAS, 4937 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4938 } 4939 4940 return GV; 4941 } 4942 4943 llvm::Constant * 4944 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4945 const Decl *D = GD.getDecl(); 4946 4947 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4948 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4949 /*DontDefer=*/false, IsForDefinition); 4950 4951 if (isa<CXXMethodDecl>(D)) { 4952 auto FInfo = 4953 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4954 auto Ty = getTypes().GetFunctionType(*FInfo); 4955 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4956 IsForDefinition); 4957 } 4958 4959 if (isa<FunctionDecl>(D)) { 4960 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4961 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4962 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4963 IsForDefinition); 4964 } 4965 4966 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4967 } 4968 4969 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4970 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4971 llvm::Align Alignment) { 4972 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4973 llvm::GlobalVariable *OldGV = nullptr; 4974 4975 if (GV) { 4976 // Check if the variable has the right type. 4977 if (GV->getValueType() == Ty) 4978 return GV; 4979 4980 // Because C++ name mangling, the only way we can end up with an already 4981 // existing global with the same name is if it has been declared extern "C". 4982 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4983 OldGV = GV; 4984 } 4985 4986 // Create a new variable. 4987 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4988 Linkage, nullptr, Name); 4989 4990 if (OldGV) { 4991 // Replace occurrences of the old variable if needed. 4992 GV->takeName(OldGV); 4993 4994 if (!OldGV->use_empty()) { 4995 OldGV->replaceAllUsesWith(GV); 4996 } 4997 4998 OldGV->eraseFromParent(); 4999 } 5000 5001 if (supportsCOMDAT() && GV->isWeakForLinker() && 5002 !GV->hasAvailableExternallyLinkage()) 5003 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5004 5005 GV->setAlignment(Alignment); 5006 5007 return GV; 5008 } 5009 5010 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5011 /// given global variable. If Ty is non-null and if the global doesn't exist, 5012 /// then it will be created with the specified type instead of whatever the 5013 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5014 /// that an actual global with type Ty will be returned, not conversion of a 5015 /// variable with the same mangled name but some other type. 5016 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5017 llvm::Type *Ty, 5018 ForDefinition_t IsForDefinition) { 5019 assert(D->hasGlobalStorage() && "Not a global variable"); 5020 QualType ASTTy = D->getType(); 5021 if (!Ty) 5022 Ty = getTypes().ConvertTypeForMem(ASTTy); 5023 5024 StringRef MangledName = getMangledName(D); 5025 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5026 IsForDefinition); 5027 } 5028 5029 /// CreateRuntimeVariable - Create a new runtime global variable with the 5030 /// specified type and name. 5031 llvm::Constant * 5032 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5033 StringRef Name) { 5034 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5035 : LangAS::Default; 5036 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5037 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5038 return Ret; 5039 } 5040 5041 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5042 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5043 5044 StringRef MangledName = getMangledName(D); 5045 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5046 5047 // We already have a definition, not declaration, with the same mangled name. 5048 // Emitting of declaration is not required (and actually overwrites emitted 5049 // definition). 5050 if (GV && !GV->isDeclaration()) 5051 return; 5052 5053 // If we have not seen a reference to this variable yet, place it into the 5054 // deferred declarations table to be emitted if needed later. 5055 if (!MustBeEmitted(D) && !GV) { 5056 DeferredDecls[MangledName] = D; 5057 return; 5058 } 5059 5060 // The tentative definition is the only definition. 5061 EmitGlobalVarDefinition(D); 5062 } 5063 5064 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5065 EmitExternalVarDeclaration(D); 5066 } 5067 5068 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5069 return Context.toCharUnitsFromBits( 5070 getDataLayout().getTypeStoreSizeInBits(Ty)); 5071 } 5072 5073 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5074 if (LangOpts.OpenCL) { 5075 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5076 assert(AS == LangAS::opencl_global || 5077 AS == LangAS::opencl_global_device || 5078 AS == LangAS::opencl_global_host || 5079 AS == LangAS::opencl_constant || 5080 AS == LangAS::opencl_local || 5081 AS >= LangAS::FirstTargetAddressSpace); 5082 return AS; 5083 } 5084 5085 if (LangOpts.SYCLIsDevice && 5086 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5087 return LangAS::sycl_global; 5088 5089 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5090 if (D) { 5091 if (D->hasAttr<CUDAConstantAttr>()) 5092 return LangAS::cuda_constant; 5093 if (D->hasAttr<CUDASharedAttr>()) 5094 return LangAS::cuda_shared; 5095 if (D->hasAttr<CUDADeviceAttr>()) 5096 return LangAS::cuda_device; 5097 if (D->getType().isConstQualified()) 5098 return LangAS::cuda_constant; 5099 } 5100 return LangAS::cuda_device; 5101 } 5102 5103 if (LangOpts.OpenMP) { 5104 LangAS AS; 5105 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5106 return AS; 5107 } 5108 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5109 } 5110 5111 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5112 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5113 if (LangOpts.OpenCL) 5114 return LangAS::opencl_constant; 5115 if (LangOpts.SYCLIsDevice) 5116 return LangAS::sycl_global; 5117 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5118 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5119 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5120 // with OpVariable instructions with Generic storage class which is not 5121 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5122 // UniformConstant storage class is not viable as pointers to it may not be 5123 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5124 return LangAS::cuda_device; 5125 if (auto AS = getTarget().getConstantAddressSpace()) 5126 return *AS; 5127 return LangAS::Default; 5128 } 5129 5130 // In address space agnostic languages, string literals are in default address 5131 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5132 // emitted in constant address space in LLVM IR. To be consistent with other 5133 // parts of AST, string literal global variables in constant address space 5134 // need to be casted to default address space before being put into address 5135 // map and referenced by other part of CodeGen. 5136 // In OpenCL, string literals are in constant address space in AST, therefore 5137 // they should not be casted to default address space. 5138 static llvm::Constant * 5139 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5140 llvm::GlobalVariable *GV) { 5141 llvm::Constant *Cast = GV; 5142 if (!CGM.getLangOpts().OpenCL) { 5143 auto AS = CGM.GetGlobalConstantAddressSpace(); 5144 if (AS != LangAS::Default) 5145 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5146 CGM, GV, AS, LangAS::Default, 5147 llvm::PointerType::get( 5148 CGM.getLLVMContext(), 5149 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5150 } 5151 return Cast; 5152 } 5153 5154 template<typename SomeDecl> 5155 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5156 llvm::GlobalValue *GV) { 5157 if (!getLangOpts().CPlusPlus) 5158 return; 5159 5160 // Must have 'used' attribute, or else inline assembly can't rely on 5161 // the name existing. 5162 if (!D->template hasAttr<UsedAttr>()) 5163 return; 5164 5165 // Must have internal linkage and an ordinary name. 5166 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5167 return; 5168 5169 // Must be in an extern "C" context. Entities declared directly within 5170 // a record are not extern "C" even if the record is in such a context. 5171 const SomeDecl *First = D->getFirstDecl(); 5172 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5173 return; 5174 5175 // OK, this is an internal linkage entity inside an extern "C" linkage 5176 // specification. Make a note of that so we can give it the "expected" 5177 // mangled name if nothing else is using that name. 5178 std::pair<StaticExternCMap::iterator, bool> R = 5179 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5180 5181 // If we have multiple internal linkage entities with the same name 5182 // in extern "C" regions, none of them gets that name. 5183 if (!R.second) 5184 R.first->second = nullptr; 5185 } 5186 5187 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5188 if (!CGM.supportsCOMDAT()) 5189 return false; 5190 5191 if (D.hasAttr<SelectAnyAttr>()) 5192 return true; 5193 5194 GVALinkage Linkage; 5195 if (auto *VD = dyn_cast<VarDecl>(&D)) 5196 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5197 else 5198 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5199 5200 switch (Linkage) { 5201 case GVA_Internal: 5202 case GVA_AvailableExternally: 5203 case GVA_StrongExternal: 5204 return false; 5205 case GVA_DiscardableODR: 5206 case GVA_StrongODR: 5207 return true; 5208 } 5209 llvm_unreachable("No such linkage"); 5210 } 5211 5212 bool CodeGenModule::supportsCOMDAT() const { 5213 return getTriple().supportsCOMDAT(); 5214 } 5215 5216 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5217 llvm::GlobalObject &GO) { 5218 if (!shouldBeInCOMDAT(*this, D)) 5219 return; 5220 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5221 } 5222 5223 /// Pass IsTentative as true if you want to create a tentative definition. 5224 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5225 bool IsTentative) { 5226 // OpenCL global variables of sampler type are translated to function calls, 5227 // therefore no need to be translated. 5228 QualType ASTTy = D->getType(); 5229 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5230 return; 5231 5232 // If this is OpenMP device, check if it is legal to emit this global 5233 // normally. 5234 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5235 OpenMPRuntime->emitTargetGlobalVariable(D)) 5236 return; 5237 5238 llvm::TrackingVH<llvm::Constant> Init; 5239 bool NeedsGlobalCtor = false; 5240 // Whether the definition of the variable is available externally. 5241 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5242 // since this is the job for its original source. 5243 bool IsDefinitionAvailableExternally = 5244 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5245 bool NeedsGlobalDtor = 5246 !IsDefinitionAvailableExternally && 5247 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5248 5249 const VarDecl *InitDecl; 5250 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5251 5252 std::optional<ConstantEmitter> emitter; 5253 5254 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5255 // as part of their declaration." Sema has already checked for 5256 // error cases, so we just need to set Init to UndefValue. 5257 bool IsCUDASharedVar = 5258 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5259 // Shadows of initialized device-side global variables are also left 5260 // undefined. 5261 // Managed Variables should be initialized on both host side and device side. 5262 bool IsCUDAShadowVar = 5263 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5264 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5265 D->hasAttr<CUDASharedAttr>()); 5266 bool IsCUDADeviceShadowVar = 5267 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5268 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5269 D->getType()->isCUDADeviceBuiltinTextureType()); 5270 if (getLangOpts().CUDA && 5271 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5272 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5273 else if (D->hasAttr<LoaderUninitializedAttr>()) 5274 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5275 else if (!InitExpr) { 5276 // This is a tentative definition; tentative definitions are 5277 // implicitly initialized with { 0 }. 5278 // 5279 // Note that tentative definitions are only emitted at the end of 5280 // a translation unit, so they should never have incomplete 5281 // type. In addition, EmitTentativeDefinition makes sure that we 5282 // never attempt to emit a tentative definition if a real one 5283 // exists. A use may still exists, however, so we still may need 5284 // to do a RAUW. 5285 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5286 Init = EmitNullConstant(D->getType()); 5287 } else { 5288 initializedGlobalDecl = GlobalDecl(D); 5289 emitter.emplace(*this); 5290 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5291 if (!Initializer) { 5292 QualType T = InitExpr->getType(); 5293 if (D->getType()->isReferenceType()) 5294 T = D->getType(); 5295 5296 if (getLangOpts().CPlusPlus) { 5297 if (InitDecl->hasFlexibleArrayInit(getContext())) 5298 ErrorUnsupported(D, "flexible array initializer"); 5299 Init = EmitNullConstant(T); 5300 5301 if (!IsDefinitionAvailableExternally) 5302 NeedsGlobalCtor = true; 5303 } else { 5304 ErrorUnsupported(D, "static initializer"); 5305 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5306 } 5307 } else { 5308 Init = Initializer; 5309 // We don't need an initializer, so remove the entry for the delayed 5310 // initializer position (just in case this entry was delayed) if we 5311 // also don't need to register a destructor. 5312 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5313 DelayedCXXInitPosition.erase(D); 5314 5315 #ifndef NDEBUG 5316 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5317 InitDecl->getFlexibleArrayInitChars(getContext()); 5318 CharUnits CstSize = CharUnits::fromQuantity( 5319 getDataLayout().getTypeAllocSize(Init->getType())); 5320 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5321 #endif 5322 } 5323 } 5324 5325 llvm::Type* InitType = Init->getType(); 5326 llvm::Constant *Entry = 5327 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5328 5329 // Strip off pointer casts if we got them. 5330 Entry = Entry->stripPointerCasts(); 5331 5332 // Entry is now either a Function or GlobalVariable. 5333 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5334 5335 // We have a definition after a declaration with the wrong type. 5336 // We must make a new GlobalVariable* and update everything that used OldGV 5337 // (a declaration or tentative definition) with the new GlobalVariable* 5338 // (which will be a definition). 5339 // 5340 // This happens if there is a prototype for a global (e.g. 5341 // "extern int x[];") and then a definition of a different type (e.g. 5342 // "int x[10];"). This also happens when an initializer has a different type 5343 // from the type of the global (this happens with unions). 5344 if (!GV || GV->getValueType() != InitType || 5345 GV->getType()->getAddressSpace() != 5346 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5347 5348 // Move the old entry aside so that we'll create a new one. 5349 Entry->setName(StringRef()); 5350 5351 // Make a new global with the correct type, this is now guaranteed to work. 5352 GV = cast<llvm::GlobalVariable>( 5353 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5354 ->stripPointerCasts()); 5355 5356 // Replace all uses of the old global with the new global 5357 llvm::Constant *NewPtrForOldDecl = 5358 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5359 Entry->getType()); 5360 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5361 5362 // Erase the old global, since it is no longer used. 5363 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5364 } 5365 5366 MaybeHandleStaticInExternC(D, GV); 5367 5368 if (D->hasAttr<AnnotateAttr>()) 5369 AddGlobalAnnotations(D, GV); 5370 5371 // Set the llvm linkage type as appropriate. 5372 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5373 5374 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5375 // the device. [...]" 5376 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5377 // __device__, declares a variable that: [...] 5378 // Is accessible from all the threads within the grid and from the host 5379 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5380 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5381 if (LangOpts.CUDA) { 5382 if (LangOpts.CUDAIsDevice) { 5383 if (Linkage != llvm::GlobalValue::InternalLinkage && 5384 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5385 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5386 D->getType()->isCUDADeviceBuiltinTextureType())) 5387 GV->setExternallyInitialized(true); 5388 } else { 5389 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5390 } 5391 getCUDARuntime().handleVarRegistration(D, *GV); 5392 } 5393 5394 GV->setInitializer(Init); 5395 if (emitter) 5396 emitter->finalize(GV); 5397 5398 // If it is safe to mark the global 'constant', do so now. 5399 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5400 D->getType().isConstantStorage(getContext(), true, true)); 5401 5402 // If it is in a read-only section, mark it 'constant'. 5403 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5404 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5405 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5406 GV->setConstant(true); 5407 } 5408 5409 CharUnits AlignVal = getContext().getDeclAlign(D); 5410 // Check for alignment specifed in an 'omp allocate' directive. 5411 if (std::optional<CharUnits> AlignValFromAllocate = 5412 getOMPAllocateAlignment(D)) 5413 AlignVal = *AlignValFromAllocate; 5414 GV->setAlignment(AlignVal.getAsAlign()); 5415 5416 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5417 // function is only defined alongside the variable, not also alongside 5418 // callers. Normally, all accesses to a thread_local go through the 5419 // thread-wrapper in order to ensure initialization has occurred, underlying 5420 // variable will never be used other than the thread-wrapper, so it can be 5421 // converted to internal linkage. 5422 // 5423 // However, if the variable has the 'constinit' attribute, it _can_ be 5424 // referenced directly, without calling the thread-wrapper, so the linkage 5425 // must not be changed. 5426 // 5427 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5428 // weak or linkonce, the de-duplication semantics are important to preserve, 5429 // so we don't change the linkage. 5430 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5431 Linkage == llvm::GlobalValue::ExternalLinkage && 5432 Context.getTargetInfo().getTriple().isOSDarwin() && 5433 !D->hasAttr<ConstInitAttr>()) 5434 Linkage = llvm::GlobalValue::InternalLinkage; 5435 5436 GV->setLinkage(Linkage); 5437 if (D->hasAttr<DLLImportAttr>()) 5438 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5439 else if (D->hasAttr<DLLExportAttr>()) 5440 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5441 else 5442 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5443 5444 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5445 // common vars aren't constant even if declared const. 5446 GV->setConstant(false); 5447 // Tentative definition of global variables may be initialized with 5448 // non-zero null pointers. In this case they should have weak linkage 5449 // since common linkage must have zero initializer and must not have 5450 // explicit section therefore cannot have non-zero initial value. 5451 if (!GV->getInitializer()->isNullValue()) 5452 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5453 } 5454 5455 setNonAliasAttributes(D, GV); 5456 5457 if (D->getTLSKind() && !GV->isThreadLocal()) { 5458 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5459 CXXThreadLocals.push_back(D); 5460 setTLSMode(GV, *D); 5461 } 5462 5463 maybeSetTrivialComdat(*D, *GV); 5464 5465 // Emit the initializer function if necessary. 5466 if (NeedsGlobalCtor || NeedsGlobalDtor) 5467 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5468 5469 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5470 5471 // Emit global variable debug information. 5472 if (CGDebugInfo *DI = getModuleDebugInfo()) 5473 if (getCodeGenOpts().hasReducedDebugInfo()) 5474 DI->EmitGlobalVariable(GV, D); 5475 } 5476 5477 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5478 if (CGDebugInfo *DI = getModuleDebugInfo()) 5479 if (getCodeGenOpts().hasReducedDebugInfo()) { 5480 QualType ASTTy = D->getType(); 5481 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5482 llvm::Constant *GV = 5483 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5484 DI->EmitExternalVariable( 5485 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5486 } 5487 } 5488 5489 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5490 CodeGenModule &CGM, const VarDecl *D, 5491 bool NoCommon) { 5492 // Don't give variables common linkage if -fno-common was specified unless it 5493 // was overridden by a NoCommon attribute. 5494 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5495 return true; 5496 5497 // C11 6.9.2/2: 5498 // A declaration of an identifier for an object that has file scope without 5499 // an initializer, and without a storage-class specifier or with the 5500 // storage-class specifier static, constitutes a tentative definition. 5501 if (D->getInit() || D->hasExternalStorage()) 5502 return true; 5503 5504 // A variable cannot be both common and exist in a section. 5505 if (D->hasAttr<SectionAttr>()) 5506 return true; 5507 5508 // A variable cannot be both common and exist in a section. 5509 // We don't try to determine which is the right section in the front-end. 5510 // If no specialized section name is applicable, it will resort to default. 5511 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5512 D->hasAttr<PragmaClangDataSectionAttr>() || 5513 D->hasAttr<PragmaClangRelroSectionAttr>() || 5514 D->hasAttr<PragmaClangRodataSectionAttr>()) 5515 return true; 5516 5517 // Thread local vars aren't considered common linkage. 5518 if (D->getTLSKind()) 5519 return true; 5520 5521 // Tentative definitions marked with WeakImportAttr are true definitions. 5522 if (D->hasAttr<WeakImportAttr>()) 5523 return true; 5524 5525 // A variable cannot be both common and exist in a comdat. 5526 if (shouldBeInCOMDAT(CGM, *D)) 5527 return true; 5528 5529 // Declarations with a required alignment do not have common linkage in MSVC 5530 // mode. 5531 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5532 if (D->hasAttr<AlignedAttr>()) 5533 return true; 5534 QualType VarType = D->getType(); 5535 if (Context.isAlignmentRequired(VarType)) 5536 return true; 5537 5538 if (const auto *RT = VarType->getAs<RecordType>()) { 5539 const RecordDecl *RD = RT->getDecl(); 5540 for (const FieldDecl *FD : RD->fields()) { 5541 if (FD->isBitField()) 5542 continue; 5543 if (FD->hasAttr<AlignedAttr>()) 5544 return true; 5545 if (Context.isAlignmentRequired(FD->getType())) 5546 return true; 5547 } 5548 } 5549 } 5550 5551 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5552 // common symbols, so symbols with greater alignment requirements cannot be 5553 // common. 5554 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5555 // alignments for common symbols via the aligncomm directive, so this 5556 // restriction only applies to MSVC environments. 5557 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5558 Context.getTypeAlignIfKnown(D->getType()) > 5559 Context.toBits(CharUnits::fromQuantity(32))) 5560 return true; 5561 5562 return false; 5563 } 5564 5565 llvm::GlobalValue::LinkageTypes 5566 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5567 GVALinkage Linkage) { 5568 if (Linkage == GVA_Internal) 5569 return llvm::Function::InternalLinkage; 5570 5571 if (D->hasAttr<WeakAttr>()) 5572 return llvm::GlobalVariable::WeakAnyLinkage; 5573 5574 if (const auto *FD = D->getAsFunction()) 5575 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5576 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5577 5578 // We are guaranteed to have a strong definition somewhere else, 5579 // so we can use available_externally linkage. 5580 if (Linkage == GVA_AvailableExternally) 5581 return llvm::GlobalValue::AvailableExternallyLinkage; 5582 5583 // Note that Apple's kernel linker doesn't support symbol 5584 // coalescing, so we need to avoid linkonce and weak linkages there. 5585 // Normally, this means we just map to internal, but for explicit 5586 // instantiations we'll map to external. 5587 5588 // In C++, the compiler has to emit a definition in every translation unit 5589 // that references the function. We should use linkonce_odr because 5590 // a) if all references in this translation unit are optimized away, we 5591 // don't need to codegen it. b) if the function persists, it needs to be 5592 // merged with other definitions. c) C++ has the ODR, so we know the 5593 // definition is dependable. 5594 if (Linkage == GVA_DiscardableODR) 5595 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5596 : llvm::Function::InternalLinkage; 5597 5598 // An explicit instantiation of a template has weak linkage, since 5599 // explicit instantiations can occur in multiple translation units 5600 // and must all be equivalent. However, we are not allowed to 5601 // throw away these explicit instantiations. 5602 // 5603 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5604 // so say that CUDA templates are either external (for kernels) or internal. 5605 // This lets llvm perform aggressive inter-procedural optimizations. For 5606 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5607 // therefore we need to follow the normal linkage paradigm. 5608 if (Linkage == GVA_StrongODR) { 5609 if (getLangOpts().AppleKext) 5610 return llvm::Function::ExternalLinkage; 5611 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5612 !getLangOpts().GPURelocatableDeviceCode) 5613 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5614 : llvm::Function::InternalLinkage; 5615 return llvm::Function::WeakODRLinkage; 5616 } 5617 5618 // C++ doesn't have tentative definitions and thus cannot have common 5619 // linkage. 5620 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5621 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5622 CodeGenOpts.NoCommon)) 5623 return llvm::GlobalVariable::CommonLinkage; 5624 5625 // selectany symbols are externally visible, so use weak instead of 5626 // linkonce. MSVC optimizes away references to const selectany globals, so 5627 // all definitions should be the same and ODR linkage should be used. 5628 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5629 if (D->hasAttr<SelectAnyAttr>()) 5630 return llvm::GlobalVariable::WeakODRLinkage; 5631 5632 // Otherwise, we have strong external linkage. 5633 assert(Linkage == GVA_StrongExternal); 5634 return llvm::GlobalVariable::ExternalLinkage; 5635 } 5636 5637 llvm::GlobalValue::LinkageTypes 5638 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5639 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5640 return getLLVMLinkageForDeclarator(VD, Linkage); 5641 } 5642 5643 /// Replace the uses of a function that was declared with a non-proto type. 5644 /// We want to silently drop extra arguments from call sites 5645 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5646 llvm::Function *newFn) { 5647 // Fast path. 5648 if (old->use_empty()) return; 5649 5650 llvm::Type *newRetTy = newFn->getReturnType(); 5651 SmallVector<llvm::Value*, 4> newArgs; 5652 5653 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5654 ui != ue; ) { 5655 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5656 llvm::User *user = use->getUser(); 5657 5658 // Recognize and replace uses of bitcasts. Most calls to 5659 // unprototyped functions will use bitcasts. 5660 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5661 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5662 replaceUsesOfNonProtoConstant(bitcast, newFn); 5663 continue; 5664 } 5665 5666 // Recognize calls to the function. 5667 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5668 if (!callSite) continue; 5669 if (!callSite->isCallee(&*use)) 5670 continue; 5671 5672 // If the return types don't match exactly, then we can't 5673 // transform this call unless it's dead. 5674 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5675 continue; 5676 5677 // Get the call site's attribute list. 5678 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5679 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5680 5681 // If the function was passed too few arguments, don't transform. 5682 unsigned newNumArgs = newFn->arg_size(); 5683 if (callSite->arg_size() < newNumArgs) 5684 continue; 5685 5686 // If extra arguments were passed, we silently drop them. 5687 // If any of the types mismatch, we don't transform. 5688 unsigned argNo = 0; 5689 bool dontTransform = false; 5690 for (llvm::Argument &A : newFn->args()) { 5691 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5692 dontTransform = true; 5693 break; 5694 } 5695 5696 // Add any parameter attributes. 5697 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5698 argNo++; 5699 } 5700 if (dontTransform) 5701 continue; 5702 5703 // Okay, we can transform this. Create the new call instruction and copy 5704 // over the required information. 5705 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5706 5707 // Copy over any operand bundles. 5708 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5709 callSite->getOperandBundlesAsDefs(newBundles); 5710 5711 llvm::CallBase *newCall; 5712 if (isa<llvm::CallInst>(callSite)) { 5713 newCall = 5714 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5715 } else { 5716 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5717 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5718 oldInvoke->getUnwindDest(), newArgs, 5719 newBundles, "", callSite); 5720 } 5721 newArgs.clear(); // for the next iteration 5722 5723 if (!newCall->getType()->isVoidTy()) 5724 newCall->takeName(callSite); 5725 newCall->setAttributes( 5726 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5727 oldAttrs.getRetAttrs(), newArgAttrs)); 5728 newCall->setCallingConv(callSite->getCallingConv()); 5729 5730 // Finally, remove the old call, replacing any uses with the new one. 5731 if (!callSite->use_empty()) 5732 callSite->replaceAllUsesWith(newCall); 5733 5734 // Copy debug location attached to CI. 5735 if (callSite->getDebugLoc()) 5736 newCall->setDebugLoc(callSite->getDebugLoc()); 5737 5738 callSite->eraseFromParent(); 5739 } 5740 } 5741 5742 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5743 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5744 /// existing call uses of the old function in the module, this adjusts them to 5745 /// call the new function directly. 5746 /// 5747 /// This is not just a cleanup: the always_inline pass requires direct calls to 5748 /// functions to be able to inline them. If there is a bitcast in the way, it 5749 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5750 /// run at -O0. 5751 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5752 llvm::Function *NewFn) { 5753 // If we're redefining a global as a function, don't transform it. 5754 if (!isa<llvm::Function>(Old)) return; 5755 5756 replaceUsesOfNonProtoConstant(Old, NewFn); 5757 } 5758 5759 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5760 auto DK = VD->isThisDeclarationADefinition(); 5761 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5762 return; 5763 5764 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5765 // If we have a definition, this might be a deferred decl. If the 5766 // instantiation is explicit, make sure we emit it at the end. 5767 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5768 GetAddrOfGlobalVar(VD); 5769 5770 EmitTopLevelDecl(VD); 5771 } 5772 5773 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5774 llvm::GlobalValue *GV) { 5775 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5776 5777 // Compute the function info and LLVM type. 5778 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5779 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5780 5781 // Get or create the prototype for the function. 5782 if (!GV || (GV->getValueType() != Ty)) 5783 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5784 /*DontDefer=*/true, 5785 ForDefinition)); 5786 5787 // Already emitted. 5788 if (!GV->isDeclaration()) 5789 return; 5790 5791 // We need to set linkage and visibility on the function before 5792 // generating code for it because various parts of IR generation 5793 // want to propagate this information down (e.g. to local static 5794 // declarations). 5795 auto *Fn = cast<llvm::Function>(GV); 5796 setFunctionLinkage(GD, Fn); 5797 5798 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5799 setGVProperties(Fn, GD); 5800 5801 MaybeHandleStaticInExternC(D, Fn); 5802 5803 maybeSetTrivialComdat(*D, *Fn); 5804 5805 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5806 5807 setNonAliasAttributes(GD, Fn); 5808 SetLLVMFunctionAttributesForDefinition(D, Fn); 5809 5810 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5811 AddGlobalCtor(Fn, CA->getPriority()); 5812 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5813 AddGlobalDtor(Fn, DA->getPriority(), true); 5814 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5815 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5816 } 5817 5818 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5819 const auto *D = cast<ValueDecl>(GD.getDecl()); 5820 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5821 assert(AA && "Not an alias?"); 5822 5823 StringRef MangledName = getMangledName(GD); 5824 5825 if (AA->getAliasee() == MangledName) { 5826 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5827 return; 5828 } 5829 5830 // If there is a definition in the module, then it wins over the alias. 5831 // This is dubious, but allow it to be safe. Just ignore the alias. 5832 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5833 if (Entry && !Entry->isDeclaration()) 5834 return; 5835 5836 Aliases.push_back(GD); 5837 5838 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5839 5840 // Create a reference to the named value. This ensures that it is emitted 5841 // if a deferred decl. 5842 llvm::Constant *Aliasee; 5843 llvm::GlobalValue::LinkageTypes LT; 5844 if (isa<llvm::FunctionType>(DeclTy)) { 5845 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5846 /*ForVTable=*/false); 5847 LT = getFunctionLinkage(GD); 5848 } else { 5849 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5850 /*D=*/nullptr); 5851 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5852 LT = getLLVMLinkageVarDefinition(VD); 5853 else 5854 LT = getFunctionLinkage(GD); 5855 } 5856 5857 // Create the new alias itself, but don't set a name yet. 5858 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5859 auto *GA = 5860 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5861 5862 if (Entry) { 5863 if (GA->getAliasee() == Entry) { 5864 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5865 return; 5866 } 5867 5868 assert(Entry->isDeclaration()); 5869 5870 // If there is a declaration in the module, then we had an extern followed 5871 // by the alias, as in: 5872 // extern int test6(); 5873 // ... 5874 // int test6() __attribute__((alias("test7"))); 5875 // 5876 // Remove it and replace uses of it with the alias. 5877 GA->takeName(Entry); 5878 5879 Entry->replaceAllUsesWith(GA); 5880 Entry->eraseFromParent(); 5881 } else { 5882 GA->setName(MangledName); 5883 } 5884 5885 // Set attributes which are particular to an alias; this is a 5886 // specialization of the attributes which may be set on a global 5887 // variable/function. 5888 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5889 D->isWeakImported()) { 5890 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5891 } 5892 5893 if (const auto *VD = dyn_cast<VarDecl>(D)) 5894 if (VD->getTLSKind()) 5895 setTLSMode(GA, *VD); 5896 5897 SetCommonAttributes(GD, GA); 5898 5899 // Emit global alias debug information. 5900 if (isa<VarDecl>(D)) 5901 if (CGDebugInfo *DI = getModuleDebugInfo()) 5902 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5903 } 5904 5905 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5906 const auto *D = cast<ValueDecl>(GD.getDecl()); 5907 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5908 assert(IFA && "Not an ifunc?"); 5909 5910 StringRef MangledName = getMangledName(GD); 5911 5912 if (IFA->getResolver() == MangledName) { 5913 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5914 return; 5915 } 5916 5917 // Report an error if some definition overrides ifunc. 5918 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5919 if (Entry && !Entry->isDeclaration()) { 5920 GlobalDecl OtherGD; 5921 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5922 DiagnosedConflictingDefinitions.insert(GD).second) { 5923 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5924 << MangledName; 5925 Diags.Report(OtherGD.getDecl()->getLocation(), 5926 diag::note_previous_definition); 5927 } 5928 return; 5929 } 5930 5931 Aliases.push_back(GD); 5932 5933 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5934 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5935 llvm::Constant *Resolver = 5936 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5937 /*ForVTable=*/false); 5938 llvm::GlobalIFunc *GIF = 5939 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5940 "", Resolver, &getModule()); 5941 if (Entry) { 5942 if (GIF->getResolver() == Entry) { 5943 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5944 return; 5945 } 5946 assert(Entry->isDeclaration()); 5947 5948 // If there is a declaration in the module, then we had an extern followed 5949 // by the ifunc, as in: 5950 // extern int test(); 5951 // ... 5952 // int test() __attribute__((ifunc("resolver"))); 5953 // 5954 // Remove it and replace uses of it with the ifunc. 5955 GIF->takeName(Entry); 5956 5957 Entry->replaceAllUsesWith(GIF); 5958 Entry->eraseFromParent(); 5959 } else 5960 GIF->setName(MangledName); 5961 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5962 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5963 } 5964 SetCommonAttributes(GD, GIF); 5965 } 5966 5967 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5968 ArrayRef<llvm::Type*> Tys) { 5969 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5970 Tys); 5971 } 5972 5973 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5974 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5975 const StringLiteral *Literal, bool TargetIsLSB, 5976 bool &IsUTF16, unsigned &StringLength) { 5977 StringRef String = Literal->getString(); 5978 unsigned NumBytes = String.size(); 5979 5980 // Check for simple case. 5981 if (!Literal->containsNonAsciiOrNull()) { 5982 StringLength = NumBytes; 5983 return *Map.insert(std::make_pair(String, nullptr)).first; 5984 } 5985 5986 // Otherwise, convert the UTF8 literals into a string of shorts. 5987 IsUTF16 = true; 5988 5989 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5990 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5991 llvm::UTF16 *ToPtr = &ToBuf[0]; 5992 5993 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5994 ToPtr + NumBytes, llvm::strictConversion); 5995 5996 // ConvertUTF8toUTF16 returns the length in ToPtr. 5997 StringLength = ToPtr - &ToBuf[0]; 5998 5999 // Add an explicit null. 6000 *ToPtr = 0; 6001 return *Map.insert(std::make_pair( 6002 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6003 (StringLength + 1) * 2), 6004 nullptr)).first; 6005 } 6006 6007 ConstantAddress 6008 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6009 unsigned StringLength = 0; 6010 bool isUTF16 = false; 6011 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6012 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6013 getDataLayout().isLittleEndian(), isUTF16, 6014 StringLength); 6015 6016 if (auto *C = Entry.second) 6017 return ConstantAddress( 6018 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6019 6020 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6021 llvm::Constant *Zeros[] = { Zero, Zero }; 6022 6023 const ASTContext &Context = getContext(); 6024 const llvm::Triple &Triple = getTriple(); 6025 6026 const auto CFRuntime = getLangOpts().CFRuntime; 6027 const bool IsSwiftABI = 6028 static_cast<unsigned>(CFRuntime) >= 6029 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6030 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6031 6032 // If we don't already have it, get __CFConstantStringClassReference. 6033 if (!CFConstantStringClassRef) { 6034 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6035 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6036 Ty = llvm::ArrayType::get(Ty, 0); 6037 6038 switch (CFRuntime) { 6039 default: break; 6040 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6041 case LangOptions::CoreFoundationABI::Swift5_0: 6042 CFConstantStringClassName = 6043 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6044 : "$s10Foundation19_NSCFConstantStringCN"; 6045 Ty = IntPtrTy; 6046 break; 6047 case LangOptions::CoreFoundationABI::Swift4_2: 6048 CFConstantStringClassName = 6049 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6050 : "$S10Foundation19_NSCFConstantStringCN"; 6051 Ty = IntPtrTy; 6052 break; 6053 case LangOptions::CoreFoundationABI::Swift4_1: 6054 CFConstantStringClassName = 6055 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6056 : "__T010Foundation19_NSCFConstantStringCN"; 6057 Ty = IntPtrTy; 6058 break; 6059 } 6060 6061 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6062 6063 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6064 llvm::GlobalValue *GV = nullptr; 6065 6066 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6067 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6068 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6069 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6070 6071 const VarDecl *VD = nullptr; 6072 for (const auto *Result : DC->lookup(&II)) 6073 if ((VD = dyn_cast<VarDecl>(Result))) 6074 break; 6075 6076 if (Triple.isOSBinFormatELF()) { 6077 if (!VD) 6078 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6079 } else { 6080 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6081 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6082 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6083 else 6084 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6085 } 6086 6087 setDSOLocal(GV); 6088 } 6089 } 6090 6091 // Decay array -> ptr 6092 CFConstantStringClassRef = 6093 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6094 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6095 } 6096 6097 QualType CFTy = Context.getCFConstantStringType(); 6098 6099 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6100 6101 ConstantInitBuilder Builder(*this); 6102 auto Fields = Builder.beginStruct(STy); 6103 6104 // Class pointer. 6105 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6106 6107 // Flags. 6108 if (IsSwiftABI) { 6109 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6110 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6111 } else { 6112 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6113 } 6114 6115 // String pointer. 6116 llvm::Constant *C = nullptr; 6117 if (isUTF16) { 6118 auto Arr = llvm::ArrayRef( 6119 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6120 Entry.first().size() / 2); 6121 C = llvm::ConstantDataArray::get(VMContext, Arr); 6122 } else { 6123 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6124 } 6125 6126 // Note: -fwritable-strings doesn't make the backing store strings of 6127 // CFStrings writable. 6128 auto *GV = 6129 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6130 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6131 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6132 // Don't enforce the target's minimum global alignment, since the only use 6133 // of the string is via this class initializer. 6134 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6135 : Context.getTypeAlignInChars(Context.CharTy); 6136 GV->setAlignment(Align.getAsAlign()); 6137 6138 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6139 // Without it LLVM can merge the string with a non unnamed_addr one during 6140 // LTO. Doing that changes the section it ends in, which surprises ld64. 6141 if (Triple.isOSBinFormatMachO()) 6142 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6143 : "__TEXT,__cstring,cstring_literals"); 6144 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6145 // the static linker to adjust permissions to read-only later on. 6146 else if (Triple.isOSBinFormatELF()) 6147 GV->setSection(".rodata"); 6148 6149 // String. 6150 llvm::Constant *Str = 6151 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6152 6153 Fields.add(Str); 6154 6155 // String length. 6156 llvm::IntegerType *LengthTy = 6157 llvm::IntegerType::get(getModule().getContext(), 6158 Context.getTargetInfo().getLongWidth()); 6159 if (IsSwiftABI) { 6160 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6161 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6162 LengthTy = Int32Ty; 6163 else 6164 LengthTy = IntPtrTy; 6165 } 6166 Fields.addInt(LengthTy, StringLength); 6167 6168 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6169 // properly aligned on 32-bit platforms. 6170 CharUnits Alignment = 6171 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6172 6173 // The struct. 6174 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6175 /*isConstant=*/false, 6176 llvm::GlobalVariable::PrivateLinkage); 6177 GV->addAttribute("objc_arc_inert"); 6178 switch (Triple.getObjectFormat()) { 6179 case llvm::Triple::UnknownObjectFormat: 6180 llvm_unreachable("unknown file format"); 6181 case llvm::Triple::DXContainer: 6182 case llvm::Triple::GOFF: 6183 case llvm::Triple::SPIRV: 6184 case llvm::Triple::XCOFF: 6185 llvm_unreachable("unimplemented"); 6186 case llvm::Triple::COFF: 6187 case llvm::Triple::ELF: 6188 case llvm::Triple::Wasm: 6189 GV->setSection("cfstring"); 6190 break; 6191 case llvm::Triple::MachO: 6192 GV->setSection("__DATA,__cfstring"); 6193 break; 6194 } 6195 Entry.second = GV; 6196 6197 return ConstantAddress(GV, GV->getValueType(), Alignment); 6198 } 6199 6200 bool CodeGenModule::getExpressionLocationsEnabled() const { 6201 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6202 } 6203 6204 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6205 if (ObjCFastEnumerationStateType.isNull()) { 6206 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6207 D->startDefinition(); 6208 6209 QualType FieldTypes[] = { 6210 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6211 Context.getPointerType(Context.UnsignedLongTy), 6212 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6213 nullptr, ArraySizeModifier::Normal, 0)}; 6214 6215 for (size_t i = 0; i < 4; ++i) { 6216 FieldDecl *Field = FieldDecl::Create(Context, 6217 D, 6218 SourceLocation(), 6219 SourceLocation(), nullptr, 6220 FieldTypes[i], /*TInfo=*/nullptr, 6221 /*BitWidth=*/nullptr, 6222 /*Mutable=*/false, 6223 ICIS_NoInit); 6224 Field->setAccess(AS_public); 6225 D->addDecl(Field); 6226 } 6227 6228 D->completeDefinition(); 6229 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6230 } 6231 6232 return ObjCFastEnumerationStateType; 6233 } 6234 6235 llvm::Constant * 6236 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6237 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6238 6239 // Don't emit it as the address of the string, emit the string data itself 6240 // as an inline array. 6241 if (E->getCharByteWidth() == 1) { 6242 SmallString<64> Str(E->getString()); 6243 6244 // Resize the string to the right size, which is indicated by its type. 6245 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6246 assert(CAT && "String literal not of constant array type!"); 6247 Str.resize(CAT->getSize().getZExtValue()); 6248 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6249 } 6250 6251 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6252 llvm::Type *ElemTy = AType->getElementType(); 6253 unsigned NumElements = AType->getNumElements(); 6254 6255 // Wide strings have either 2-byte or 4-byte elements. 6256 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6257 SmallVector<uint16_t, 32> Elements; 6258 Elements.reserve(NumElements); 6259 6260 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6261 Elements.push_back(E->getCodeUnit(i)); 6262 Elements.resize(NumElements); 6263 return llvm::ConstantDataArray::get(VMContext, Elements); 6264 } 6265 6266 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6267 SmallVector<uint32_t, 32> Elements; 6268 Elements.reserve(NumElements); 6269 6270 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6271 Elements.push_back(E->getCodeUnit(i)); 6272 Elements.resize(NumElements); 6273 return llvm::ConstantDataArray::get(VMContext, Elements); 6274 } 6275 6276 static llvm::GlobalVariable * 6277 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6278 CodeGenModule &CGM, StringRef GlobalName, 6279 CharUnits Alignment) { 6280 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6281 CGM.GetGlobalConstantAddressSpace()); 6282 6283 llvm::Module &M = CGM.getModule(); 6284 // Create a global variable for this string 6285 auto *GV = new llvm::GlobalVariable( 6286 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6287 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6288 GV->setAlignment(Alignment.getAsAlign()); 6289 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6290 if (GV->isWeakForLinker()) { 6291 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6292 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6293 } 6294 CGM.setDSOLocal(GV); 6295 6296 return GV; 6297 } 6298 6299 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6300 /// constant array for the given string literal. 6301 ConstantAddress 6302 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6303 StringRef Name) { 6304 CharUnits Alignment = 6305 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6306 6307 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6308 llvm::GlobalVariable **Entry = nullptr; 6309 if (!LangOpts.WritableStrings) { 6310 Entry = &ConstantStringMap[C]; 6311 if (auto GV = *Entry) { 6312 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6313 GV->setAlignment(Alignment.getAsAlign()); 6314 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6315 GV->getValueType(), Alignment); 6316 } 6317 } 6318 6319 SmallString<256> MangledNameBuffer; 6320 StringRef GlobalVariableName; 6321 llvm::GlobalValue::LinkageTypes LT; 6322 6323 // Mangle the string literal if that's how the ABI merges duplicate strings. 6324 // Don't do it if they are writable, since we don't want writes in one TU to 6325 // affect strings in another. 6326 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6327 !LangOpts.WritableStrings) { 6328 llvm::raw_svector_ostream Out(MangledNameBuffer); 6329 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6330 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6331 GlobalVariableName = MangledNameBuffer; 6332 } else { 6333 LT = llvm::GlobalValue::PrivateLinkage; 6334 GlobalVariableName = Name; 6335 } 6336 6337 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6338 6339 CGDebugInfo *DI = getModuleDebugInfo(); 6340 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6341 DI->AddStringLiteralDebugInfo(GV, S); 6342 6343 if (Entry) 6344 *Entry = GV; 6345 6346 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6347 6348 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6349 GV->getValueType(), Alignment); 6350 } 6351 6352 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6353 /// array for the given ObjCEncodeExpr node. 6354 ConstantAddress 6355 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6356 std::string Str; 6357 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6358 6359 return GetAddrOfConstantCString(Str); 6360 } 6361 6362 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6363 /// the literal and a terminating '\0' character. 6364 /// The result has pointer to array type. 6365 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6366 const std::string &Str, const char *GlobalName) { 6367 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6368 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6369 getContext().CharTy, /*VD=*/nullptr); 6370 6371 llvm::Constant *C = 6372 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6373 6374 // Don't share any string literals if strings aren't constant. 6375 llvm::GlobalVariable **Entry = nullptr; 6376 if (!LangOpts.WritableStrings) { 6377 Entry = &ConstantStringMap[C]; 6378 if (auto GV = *Entry) { 6379 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6380 GV->setAlignment(Alignment.getAsAlign()); 6381 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6382 GV->getValueType(), Alignment); 6383 } 6384 } 6385 6386 // Get the default prefix if a name wasn't specified. 6387 if (!GlobalName) 6388 GlobalName = ".str"; 6389 // Create a global variable for this. 6390 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6391 GlobalName, Alignment); 6392 if (Entry) 6393 *Entry = GV; 6394 6395 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6396 GV->getValueType(), Alignment); 6397 } 6398 6399 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6400 const MaterializeTemporaryExpr *E, const Expr *Init) { 6401 assert((E->getStorageDuration() == SD_Static || 6402 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6403 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6404 6405 // If we're not materializing a subobject of the temporary, keep the 6406 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6407 QualType MaterializedType = Init->getType(); 6408 if (Init == E->getSubExpr()) 6409 MaterializedType = E->getType(); 6410 6411 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6412 6413 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6414 if (!InsertResult.second) { 6415 // We've seen this before: either we already created it or we're in the 6416 // process of doing so. 6417 if (!InsertResult.first->second) { 6418 // We recursively re-entered this function, probably during emission of 6419 // the initializer. Create a placeholder. We'll clean this up in the 6420 // outer call, at the end of this function. 6421 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6422 InsertResult.first->second = new llvm::GlobalVariable( 6423 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6424 nullptr); 6425 } 6426 return ConstantAddress(InsertResult.first->second, 6427 llvm::cast<llvm::GlobalVariable>( 6428 InsertResult.first->second->stripPointerCasts()) 6429 ->getValueType(), 6430 Align); 6431 } 6432 6433 // FIXME: If an externally-visible declaration extends multiple temporaries, 6434 // we need to give each temporary the same name in every translation unit (and 6435 // we also need to make the temporaries externally-visible). 6436 SmallString<256> Name; 6437 llvm::raw_svector_ostream Out(Name); 6438 getCXXABI().getMangleContext().mangleReferenceTemporary( 6439 VD, E->getManglingNumber(), Out); 6440 6441 APValue *Value = nullptr; 6442 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6443 // If the initializer of the extending declaration is a constant 6444 // initializer, we should have a cached constant initializer for this 6445 // temporary. Note that this might have a different value from the value 6446 // computed by evaluating the initializer if the surrounding constant 6447 // expression modifies the temporary. 6448 Value = E->getOrCreateValue(false); 6449 } 6450 6451 // Try evaluating it now, it might have a constant initializer. 6452 Expr::EvalResult EvalResult; 6453 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6454 !EvalResult.hasSideEffects()) 6455 Value = &EvalResult.Val; 6456 6457 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6458 6459 std::optional<ConstantEmitter> emitter; 6460 llvm::Constant *InitialValue = nullptr; 6461 bool Constant = false; 6462 llvm::Type *Type; 6463 if (Value) { 6464 // The temporary has a constant initializer, use it. 6465 emitter.emplace(*this); 6466 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6467 MaterializedType); 6468 Constant = 6469 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6470 /*ExcludeDtor*/ false); 6471 Type = InitialValue->getType(); 6472 } else { 6473 // No initializer, the initialization will be provided when we 6474 // initialize the declaration which performed lifetime extension. 6475 Type = getTypes().ConvertTypeForMem(MaterializedType); 6476 } 6477 6478 // Create a global variable for this lifetime-extended temporary. 6479 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6480 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6481 const VarDecl *InitVD; 6482 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6483 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6484 // Temporaries defined inside a class get linkonce_odr linkage because the 6485 // class can be defined in multiple translation units. 6486 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6487 } else { 6488 // There is no need for this temporary to have external linkage if the 6489 // VarDecl has external linkage. 6490 Linkage = llvm::GlobalVariable::InternalLinkage; 6491 } 6492 } 6493 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6494 auto *GV = new llvm::GlobalVariable( 6495 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6496 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6497 if (emitter) emitter->finalize(GV); 6498 // Don't assign dllimport or dllexport to local linkage globals. 6499 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6500 setGVProperties(GV, VD); 6501 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6502 // The reference temporary should never be dllexport. 6503 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6504 } 6505 GV->setAlignment(Align.getAsAlign()); 6506 if (supportsCOMDAT() && GV->isWeakForLinker()) 6507 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6508 if (VD->getTLSKind()) 6509 setTLSMode(GV, *VD); 6510 llvm::Constant *CV = GV; 6511 if (AddrSpace != LangAS::Default) 6512 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6513 *this, GV, AddrSpace, LangAS::Default, 6514 llvm::PointerType::get( 6515 getLLVMContext(), 6516 getContext().getTargetAddressSpace(LangAS::Default))); 6517 6518 // Update the map with the new temporary. If we created a placeholder above, 6519 // replace it with the new global now. 6520 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6521 if (Entry) { 6522 Entry->replaceAllUsesWith(CV); 6523 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6524 } 6525 Entry = CV; 6526 6527 return ConstantAddress(CV, Type, Align); 6528 } 6529 6530 /// EmitObjCPropertyImplementations - Emit information for synthesized 6531 /// properties for an implementation. 6532 void CodeGenModule::EmitObjCPropertyImplementations(const 6533 ObjCImplementationDecl *D) { 6534 for (const auto *PID : D->property_impls()) { 6535 // Dynamic is just for type-checking. 6536 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6537 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6538 6539 // Determine which methods need to be implemented, some may have 6540 // been overridden. Note that ::isPropertyAccessor is not the method 6541 // we want, that just indicates if the decl came from a 6542 // property. What we want to know is if the method is defined in 6543 // this implementation. 6544 auto *Getter = PID->getGetterMethodDecl(); 6545 if (!Getter || Getter->isSynthesizedAccessorStub()) 6546 CodeGenFunction(*this).GenerateObjCGetter( 6547 const_cast<ObjCImplementationDecl *>(D), PID); 6548 auto *Setter = PID->getSetterMethodDecl(); 6549 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6550 CodeGenFunction(*this).GenerateObjCSetter( 6551 const_cast<ObjCImplementationDecl *>(D), PID); 6552 } 6553 } 6554 } 6555 6556 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6557 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6558 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6559 ivar; ivar = ivar->getNextIvar()) 6560 if (ivar->getType().isDestructedType()) 6561 return true; 6562 6563 return false; 6564 } 6565 6566 static bool AllTrivialInitializers(CodeGenModule &CGM, 6567 ObjCImplementationDecl *D) { 6568 CodeGenFunction CGF(CGM); 6569 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6570 E = D->init_end(); B != E; ++B) { 6571 CXXCtorInitializer *CtorInitExp = *B; 6572 Expr *Init = CtorInitExp->getInit(); 6573 if (!CGF.isTrivialInitializer(Init)) 6574 return false; 6575 } 6576 return true; 6577 } 6578 6579 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6580 /// for an implementation. 6581 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6582 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6583 if (needsDestructMethod(D)) { 6584 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6585 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6586 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6587 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6588 getContext().VoidTy, nullptr, D, 6589 /*isInstance=*/true, /*isVariadic=*/false, 6590 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6591 /*isImplicitlyDeclared=*/true, 6592 /*isDefined=*/false, ObjCImplementationControl::Required); 6593 D->addInstanceMethod(DTORMethod); 6594 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6595 D->setHasDestructors(true); 6596 } 6597 6598 // If the implementation doesn't have any ivar initializers, we don't need 6599 // a .cxx_construct. 6600 if (D->getNumIvarInitializers() == 0 || 6601 AllTrivialInitializers(*this, D)) 6602 return; 6603 6604 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6605 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6606 // The constructor returns 'self'. 6607 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6608 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6609 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6610 /*isVariadic=*/false, 6611 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6612 /*isImplicitlyDeclared=*/true, 6613 /*isDefined=*/false, ObjCImplementationControl::Required); 6614 D->addInstanceMethod(CTORMethod); 6615 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6616 D->setHasNonZeroConstructors(true); 6617 } 6618 6619 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6620 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6621 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6622 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6623 ErrorUnsupported(LSD, "linkage spec"); 6624 return; 6625 } 6626 6627 EmitDeclContext(LSD); 6628 } 6629 6630 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6631 // Device code should not be at top level. 6632 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6633 return; 6634 6635 std::unique_ptr<CodeGenFunction> &CurCGF = 6636 GlobalTopLevelStmtBlockInFlight.first; 6637 6638 // We emitted a top-level stmt but after it there is initialization. 6639 // Stop squashing the top-level stmts into a single function. 6640 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6641 CurCGF->FinishFunction(D->getEndLoc()); 6642 CurCGF = nullptr; 6643 } 6644 6645 if (!CurCGF) { 6646 // void __stmts__N(void) 6647 // FIXME: Ask the ABI name mangler to pick a name. 6648 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6649 FunctionArgList Args; 6650 QualType RetTy = getContext().VoidTy; 6651 const CGFunctionInfo &FnInfo = 6652 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6653 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6654 llvm::Function *Fn = llvm::Function::Create( 6655 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6656 6657 CurCGF.reset(new CodeGenFunction(*this)); 6658 GlobalTopLevelStmtBlockInFlight.second = D; 6659 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6660 D->getBeginLoc(), D->getBeginLoc()); 6661 CXXGlobalInits.push_back(Fn); 6662 } 6663 6664 CurCGF->EmitStmt(D->getStmt()); 6665 } 6666 6667 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6668 for (auto *I : DC->decls()) { 6669 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6670 // are themselves considered "top-level", so EmitTopLevelDecl on an 6671 // ObjCImplDecl does not recursively visit them. We need to do that in 6672 // case they're nested inside another construct (LinkageSpecDecl / 6673 // ExportDecl) that does stop them from being considered "top-level". 6674 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6675 for (auto *M : OID->methods()) 6676 EmitTopLevelDecl(M); 6677 } 6678 6679 EmitTopLevelDecl(I); 6680 } 6681 } 6682 6683 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6684 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6685 // Ignore dependent declarations. 6686 if (D->isTemplated()) 6687 return; 6688 6689 // Consteval function shouldn't be emitted. 6690 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6691 return; 6692 6693 switch (D->getKind()) { 6694 case Decl::CXXConversion: 6695 case Decl::CXXMethod: 6696 case Decl::Function: 6697 EmitGlobal(cast<FunctionDecl>(D)); 6698 // Always provide some coverage mapping 6699 // even for the functions that aren't emitted. 6700 AddDeferredUnusedCoverageMapping(D); 6701 break; 6702 6703 case Decl::CXXDeductionGuide: 6704 // Function-like, but does not result in code emission. 6705 break; 6706 6707 case Decl::Var: 6708 case Decl::Decomposition: 6709 case Decl::VarTemplateSpecialization: 6710 EmitGlobal(cast<VarDecl>(D)); 6711 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6712 for (auto *B : DD->bindings()) 6713 if (auto *HD = B->getHoldingVar()) 6714 EmitGlobal(HD); 6715 break; 6716 6717 // Indirect fields from global anonymous structs and unions can be 6718 // ignored; only the actual variable requires IR gen support. 6719 case Decl::IndirectField: 6720 break; 6721 6722 // C++ Decls 6723 case Decl::Namespace: 6724 EmitDeclContext(cast<NamespaceDecl>(D)); 6725 break; 6726 case Decl::ClassTemplateSpecialization: { 6727 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6728 if (CGDebugInfo *DI = getModuleDebugInfo()) 6729 if (Spec->getSpecializationKind() == 6730 TSK_ExplicitInstantiationDefinition && 6731 Spec->hasDefinition()) 6732 DI->completeTemplateDefinition(*Spec); 6733 } [[fallthrough]]; 6734 case Decl::CXXRecord: { 6735 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6736 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6737 if (CRD->hasDefinition()) 6738 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6739 if (auto *ES = D->getASTContext().getExternalSource()) 6740 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6741 DI->completeUnusedClass(*CRD); 6742 } 6743 // Emit any static data members, they may be definitions. 6744 for (auto *I : CRD->decls()) 6745 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6746 EmitTopLevelDecl(I); 6747 break; 6748 } 6749 // No code generation needed. 6750 case Decl::UsingShadow: 6751 case Decl::ClassTemplate: 6752 case Decl::VarTemplate: 6753 case Decl::Concept: 6754 case Decl::VarTemplatePartialSpecialization: 6755 case Decl::FunctionTemplate: 6756 case Decl::TypeAliasTemplate: 6757 case Decl::Block: 6758 case Decl::Empty: 6759 case Decl::Binding: 6760 break; 6761 case Decl::Using: // using X; [C++] 6762 if (CGDebugInfo *DI = getModuleDebugInfo()) 6763 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6764 break; 6765 case Decl::UsingEnum: // using enum X; [C++] 6766 if (CGDebugInfo *DI = getModuleDebugInfo()) 6767 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6768 break; 6769 case Decl::NamespaceAlias: 6770 if (CGDebugInfo *DI = getModuleDebugInfo()) 6771 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6772 break; 6773 case Decl::UsingDirective: // using namespace X; [C++] 6774 if (CGDebugInfo *DI = getModuleDebugInfo()) 6775 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6776 break; 6777 case Decl::CXXConstructor: 6778 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6779 break; 6780 case Decl::CXXDestructor: 6781 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6782 break; 6783 6784 case Decl::StaticAssert: 6785 // Nothing to do. 6786 break; 6787 6788 // Objective-C Decls 6789 6790 // Forward declarations, no (immediate) code generation. 6791 case Decl::ObjCInterface: 6792 case Decl::ObjCCategory: 6793 break; 6794 6795 case Decl::ObjCProtocol: { 6796 auto *Proto = cast<ObjCProtocolDecl>(D); 6797 if (Proto->isThisDeclarationADefinition()) 6798 ObjCRuntime->GenerateProtocol(Proto); 6799 break; 6800 } 6801 6802 case Decl::ObjCCategoryImpl: 6803 // Categories have properties but don't support synthesize so we 6804 // can ignore them here. 6805 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6806 break; 6807 6808 case Decl::ObjCImplementation: { 6809 auto *OMD = cast<ObjCImplementationDecl>(D); 6810 EmitObjCPropertyImplementations(OMD); 6811 EmitObjCIvarInitializations(OMD); 6812 ObjCRuntime->GenerateClass(OMD); 6813 // Emit global variable debug information. 6814 if (CGDebugInfo *DI = getModuleDebugInfo()) 6815 if (getCodeGenOpts().hasReducedDebugInfo()) 6816 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6817 OMD->getClassInterface()), OMD->getLocation()); 6818 break; 6819 } 6820 case Decl::ObjCMethod: { 6821 auto *OMD = cast<ObjCMethodDecl>(D); 6822 // If this is not a prototype, emit the body. 6823 if (OMD->getBody()) 6824 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6825 break; 6826 } 6827 case Decl::ObjCCompatibleAlias: 6828 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6829 break; 6830 6831 case Decl::PragmaComment: { 6832 const auto *PCD = cast<PragmaCommentDecl>(D); 6833 switch (PCD->getCommentKind()) { 6834 case PCK_Unknown: 6835 llvm_unreachable("unexpected pragma comment kind"); 6836 case PCK_Linker: 6837 AppendLinkerOptions(PCD->getArg()); 6838 break; 6839 case PCK_Lib: 6840 AddDependentLib(PCD->getArg()); 6841 break; 6842 case PCK_Compiler: 6843 case PCK_ExeStr: 6844 case PCK_User: 6845 break; // We ignore all of these. 6846 } 6847 break; 6848 } 6849 6850 case Decl::PragmaDetectMismatch: { 6851 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6852 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6853 break; 6854 } 6855 6856 case Decl::LinkageSpec: 6857 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6858 break; 6859 6860 case Decl::FileScopeAsm: { 6861 // File-scope asm is ignored during device-side CUDA compilation. 6862 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6863 break; 6864 // File-scope asm is ignored during device-side OpenMP compilation. 6865 if (LangOpts.OpenMPIsTargetDevice) 6866 break; 6867 // File-scope asm is ignored during device-side SYCL compilation. 6868 if (LangOpts.SYCLIsDevice) 6869 break; 6870 auto *AD = cast<FileScopeAsmDecl>(D); 6871 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6872 break; 6873 } 6874 6875 case Decl::TopLevelStmt: 6876 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6877 break; 6878 6879 case Decl::Import: { 6880 auto *Import = cast<ImportDecl>(D); 6881 6882 // If we've already imported this module, we're done. 6883 if (!ImportedModules.insert(Import->getImportedModule())) 6884 break; 6885 6886 // Emit debug information for direct imports. 6887 if (!Import->getImportedOwningModule()) { 6888 if (CGDebugInfo *DI = getModuleDebugInfo()) 6889 DI->EmitImportDecl(*Import); 6890 } 6891 6892 // For C++ standard modules we are done - we will call the module 6893 // initializer for imported modules, and that will likewise call those for 6894 // any imports it has. 6895 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6896 !Import->getImportedOwningModule()->isModuleMapModule()) 6897 break; 6898 6899 // For clang C++ module map modules the initializers for sub-modules are 6900 // emitted here. 6901 6902 // Find all of the submodules and emit the module initializers. 6903 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6904 SmallVector<clang::Module *, 16> Stack; 6905 Visited.insert(Import->getImportedModule()); 6906 Stack.push_back(Import->getImportedModule()); 6907 6908 while (!Stack.empty()) { 6909 clang::Module *Mod = Stack.pop_back_val(); 6910 if (!EmittedModuleInitializers.insert(Mod).second) 6911 continue; 6912 6913 for (auto *D : Context.getModuleInitializers(Mod)) 6914 EmitTopLevelDecl(D); 6915 6916 // Visit the submodules of this module. 6917 for (auto *Submodule : Mod->submodules()) { 6918 // Skip explicit children; they need to be explicitly imported to emit 6919 // the initializers. 6920 if (Submodule->IsExplicit) 6921 continue; 6922 6923 if (Visited.insert(Submodule).second) 6924 Stack.push_back(Submodule); 6925 } 6926 } 6927 break; 6928 } 6929 6930 case Decl::Export: 6931 EmitDeclContext(cast<ExportDecl>(D)); 6932 break; 6933 6934 case Decl::OMPThreadPrivate: 6935 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6936 break; 6937 6938 case Decl::OMPAllocate: 6939 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6940 break; 6941 6942 case Decl::OMPDeclareReduction: 6943 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6944 break; 6945 6946 case Decl::OMPDeclareMapper: 6947 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6948 break; 6949 6950 case Decl::OMPRequires: 6951 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6952 break; 6953 6954 case Decl::Typedef: 6955 case Decl::TypeAlias: // using foo = bar; [C++11] 6956 if (CGDebugInfo *DI = getModuleDebugInfo()) 6957 DI->EmitAndRetainType( 6958 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6959 break; 6960 6961 case Decl::Record: 6962 if (CGDebugInfo *DI = getModuleDebugInfo()) 6963 if (cast<RecordDecl>(D)->getDefinition()) 6964 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6965 break; 6966 6967 case Decl::Enum: 6968 if (CGDebugInfo *DI = getModuleDebugInfo()) 6969 if (cast<EnumDecl>(D)->getDefinition()) 6970 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6971 break; 6972 6973 case Decl::HLSLBuffer: 6974 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6975 break; 6976 6977 default: 6978 // Make sure we handled everything we should, every other kind is a 6979 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6980 // function. Need to recode Decl::Kind to do that easily. 6981 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6982 break; 6983 } 6984 } 6985 6986 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6987 // Do we need to generate coverage mapping? 6988 if (!CodeGenOpts.CoverageMapping) 6989 return; 6990 switch (D->getKind()) { 6991 case Decl::CXXConversion: 6992 case Decl::CXXMethod: 6993 case Decl::Function: 6994 case Decl::ObjCMethod: 6995 case Decl::CXXConstructor: 6996 case Decl::CXXDestructor: { 6997 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6998 break; 6999 SourceManager &SM = getContext().getSourceManager(); 7000 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7001 break; 7002 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7003 break; 7004 } 7005 default: 7006 break; 7007 }; 7008 } 7009 7010 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7011 // Do we need to generate coverage mapping? 7012 if (!CodeGenOpts.CoverageMapping) 7013 return; 7014 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7015 if (Fn->isTemplateInstantiation()) 7016 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7017 } 7018 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7019 } 7020 7021 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7022 // We call takeVector() here to avoid use-after-free. 7023 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7024 // we deserialize function bodies to emit coverage info for them, and that 7025 // deserializes more declarations. How should we handle that case? 7026 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7027 if (!Entry.second) 7028 continue; 7029 const Decl *D = Entry.first; 7030 switch (D->getKind()) { 7031 case Decl::CXXConversion: 7032 case Decl::CXXMethod: 7033 case Decl::Function: 7034 case Decl::ObjCMethod: { 7035 CodeGenPGO PGO(*this); 7036 GlobalDecl GD(cast<FunctionDecl>(D)); 7037 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7038 getFunctionLinkage(GD)); 7039 break; 7040 } 7041 case Decl::CXXConstructor: { 7042 CodeGenPGO PGO(*this); 7043 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7044 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7045 getFunctionLinkage(GD)); 7046 break; 7047 } 7048 case Decl::CXXDestructor: { 7049 CodeGenPGO PGO(*this); 7050 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7051 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7052 getFunctionLinkage(GD)); 7053 break; 7054 } 7055 default: 7056 break; 7057 }; 7058 } 7059 } 7060 7061 void CodeGenModule::EmitMainVoidAlias() { 7062 // In order to transition away from "__original_main" gracefully, emit an 7063 // alias for "main" in the no-argument case so that libc can detect when 7064 // new-style no-argument main is in used. 7065 if (llvm::Function *F = getModule().getFunction("main")) { 7066 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7067 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7068 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7069 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7070 } 7071 } 7072 } 7073 7074 /// Turns the given pointer into a constant. 7075 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7076 const void *Ptr) { 7077 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7078 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7079 return llvm::ConstantInt::get(i64, PtrInt); 7080 } 7081 7082 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7083 llvm::NamedMDNode *&GlobalMetadata, 7084 GlobalDecl D, 7085 llvm::GlobalValue *Addr) { 7086 if (!GlobalMetadata) 7087 GlobalMetadata = 7088 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7089 7090 // TODO: should we report variant information for ctors/dtors? 7091 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7092 llvm::ConstantAsMetadata::get(GetPointerConstant( 7093 CGM.getLLVMContext(), D.getDecl()))}; 7094 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7095 } 7096 7097 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7098 llvm::GlobalValue *CppFunc) { 7099 // Store the list of ifuncs we need to replace uses in. 7100 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7101 // List of ConstantExprs that we should be able to delete when we're done 7102 // here. 7103 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7104 7105 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7106 if (Elem == CppFunc) 7107 return false; 7108 7109 // First make sure that all users of this are ifuncs (or ifuncs via a 7110 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7111 // later. 7112 for (llvm::User *User : Elem->users()) { 7113 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7114 // ifunc directly. In any other case, just give up, as we don't know what we 7115 // could break by changing those. 7116 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7117 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7118 return false; 7119 7120 for (llvm::User *CEUser : ConstExpr->users()) { 7121 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7122 IFuncs.push_back(IFunc); 7123 } else { 7124 return false; 7125 } 7126 } 7127 CEs.push_back(ConstExpr); 7128 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7129 IFuncs.push_back(IFunc); 7130 } else { 7131 // This user is one we don't know how to handle, so fail redirection. This 7132 // will result in an ifunc retaining a resolver name that will ultimately 7133 // fail to be resolved to a defined function. 7134 return false; 7135 } 7136 } 7137 7138 // Now we know this is a valid case where we can do this alias replacement, we 7139 // need to remove all of the references to Elem (and the bitcasts!) so we can 7140 // delete it. 7141 for (llvm::GlobalIFunc *IFunc : IFuncs) 7142 IFunc->setResolver(nullptr); 7143 for (llvm::ConstantExpr *ConstExpr : CEs) 7144 ConstExpr->destroyConstant(); 7145 7146 // We should now be out of uses for the 'old' version of this function, so we 7147 // can erase it as well. 7148 Elem->eraseFromParent(); 7149 7150 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7151 // The type of the resolver is always just a function-type that returns the 7152 // type of the IFunc, so create that here. If the type of the actual 7153 // resolver doesn't match, it just gets bitcast to the right thing. 7154 auto *ResolverTy = 7155 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7156 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7157 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7158 IFunc->setResolver(Resolver); 7159 } 7160 return true; 7161 } 7162 7163 /// For each function which is declared within an extern "C" region and marked 7164 /// as 'used', but has internal linkage, create an alias from the unmangled 7165 /// name to the mangled name if possible. People expect to be able to refer 7166 /// to such functions with an unmangled name from inline assembly within the 7167 /// same translation unit. 7168 void CodeGenModule::EmitStaticExternCAliases() { 7169 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7170 return; 7171 for (auto &I : StaticExternCValues) { 7172 IdentifierInfo *Name = I.first; 7173 llvm::GlobalValue *Val = I.second; 7174 7175 // If Val is null, that implies there were multiple declarations that each 7176 // had a claim to the unmangled name. In this case, generation of the alias 7177 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7178 if (!Val) 7179 break; 7180 7181 llvm::GlobalValue *ExistingElem = 7182 getModule().getNamedValue(Name->getName()); 7183 7184 // If there is either not something already by this name, or we were able to 7185 // replace all uses from IFuncs, create the alias. 7186 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7187 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7188 } 7189 } 7190 7191 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7192 GlobalDecl &Result) const { 7193 auto Res = Manglings.find(MangledName); 7194 if (Res == Manglings.end()) 7195 return false; 7196 Result = Res->getValue(); 7197 return true; 7198 } 7199 7200 /// Emits metadata nodes associating all the global values in the 7201 /// current module with the Decls they came from. This is useful for 7202 /// projects using IR gen as a subroutine. 7203 /// 7204 /// Since there's currently no way to associate an MDNode directly 7205 /// with an llvm::GlobalValue, we create a global named metadata 7206 /// with the name 'clang.global.decl.ptrs'. 7207 void CodeGenModule::EmitDeclMetadata() { 7208 llvm::NamedMDNode *GlobalMetadata = nullptr; 7209 7210 for (auto &I : MangledDeclNames) { 7211 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7212 // Some mangled names don't necessarily have an associated GlobalValue 7213 // in this module, e.g. if we mangled it for DebugInfo. 7214 if (Addr) 7215 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7216 } 7217 } 7218 7219 /// Emits metadata nodes for all the local variables in the current 7220 /// function. 7221 void CodeGenFunction::EmitDeclMetadata() { 7222 if (LocalDeclMap.empty()) return; 7223 7224 llvm::LLVMContext &Context = getLLVMContext(); 7225 7226 // Find the unique metadata ID for this name. 7227 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7228 7229 llvm::NamedMDNode *GlobalMetadata = nullptr; 7230 7231 for (auto &I : LocalDeclMap) { 7232 const Decl *D = I.first; 7233 llvm::Value *Addr = I.second.getPointer(); 7234 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7235 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7236 Alloca->setMetadata( 7237 DeclPtrKind, llvm::MDNode::get( 7238 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7239 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7240 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7241 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7242 } 7243 } 7244 } 7245 7246 void CodeGenModule::EmitVersionIdentMetadata() { 7247 llvm::NamedMDNode *IdentMetadata = 7248 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7249 std::string Version = getClangFullVersion(); 7250 llvm::LLVMContext &Ctx = TheModule.getContext(); 7251 7252 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7253 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7254 } 7255 7256 void CodeGenModule::EmitCommandLineMetadata() { 7257 llvm::NamedMDNode *CommandLineMetadata = 7258 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7259 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7260 llvm::LLVMContext &Ctx = TheModule.getContext(); 7261 7262 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7263 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7264 } 7265 7266 void CodeGenModule::EmitCoverageFile() { 7267 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7268 if (!CUNode) 7269 return; 7270 7271 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7272 llvm::LLVMContext &Ctx = TheModule.getContext(); 7273 auto *CoverageDataFile = 7274 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7275 auto *CoverageNotesFile = 7276 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7277 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7278 llvm::MDNode *CU = CUNode->getOperand(i); 7279 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7280 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7281 } 7282 } 7283 7284 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7285 bool ForEH) { 7286 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7287 // FIXME: should we even be calling this method if RTTI is disabled 7288 // and it's not for EH? 7289 if (!shouldEmitRTTI(ForEH)) 7290 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7291 7292 if (ForEH && Ty->isObjCObjectPointerType() && 7293 LangOpts.ObjCRuntime.isGNUFamily()) 7294 return ObjCRuntime->GetEHType(Ty); 7295 7296 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7297 } 7298 7299 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7300 // Do not emit threadprivates in simd-only mode. 7301 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7302 return; 7303 for (auto RefExpr : D->varlists()) { 7304 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7305 bool PerformInit = 7306 VD->getAnyInitializer() && 7307 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7308 /*ForRef=*/false); 7309 7310 Address Addr(GetAddrOfGlobalVar(VD), 7311 getTypes().ConvertTypeForMem(VD->getType()), 7312 getContext().getDeclAlign(VD)); 7313 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7314 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7315 CXXGlobalInits.push_back(InitFunction); 7316 } 7317 } 7318 7319 llvm::Metadata * 7320 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7321 StringRef Suffix) { 7322 if (auto *FnType = T->getAs<FunctionProtoType>()) 7323 T = getContext().getFunctionType( 7324 FnType->getReturnType(), FnType->getParamTypes(), 7325 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7326 7327 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7328 if (InternalId) 7329 return InternalId; 7330 7331 if (isExternallyVisible(T->getLinkage())) { 7332 std::string OutName; 7333 llvm::raw_string_ostream Out(OutName); 7334 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7335 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7336 7337 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7338 Out << ".normalized"; 7339 7340 Out << Suffix; 7341 7342 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7343 } else { 7344 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7345 llvm::ArrayRef<llvm::Metadata *>()); 7346 } 7347 7348 return InternalId; 7349 } 7350 7351 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7352 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7353 } 7354 7355 llvm::Metadata * 7356 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7357 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7358 } 7359 7360 // Generalize pointer types to a void pointer with the qualifiers of the 7361 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7362 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7363 // 'void *'. 7364 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7365 if (!Ty->isPointerType()) 7366 return Ty; 7367 7368 return Ctx.getPointerType( 7369 QualType(Ctx.VoidTy).withCVRQualifiers( 7370 Ty->getPointeeType().getCVRQualifiers())); 7371 } 7372 7373 // Apply type generalization to a FunctionType's return and argument types 7374 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7375 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7376 SmallVector<QualType, 8> GeneralizedParams; 7377 for (auto &Param : FnType->param_types()) 7378 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7379 7380 return Ctx.getFunctionType( 7381 GeneralizeType(Ctx, FnType->getReturnType()), 7382 GeneralizedParams, FnType->getExtProtoInfo()); 7383 } 7384 7385 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7386 return Ctx.getFunctionNoProtoType( 7387 GeneralizeType(Ctx, FnType->getReturnType())); 7388 7389 llvm_unreachable("Encountered unknown FunctionType"); 7390 } 7391 7392 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7393 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7394 GeneralizedMetadataIdMap, ".generalized"); 7395 } 7396 7397 /// Returns whether this module needs the "all-vtables" type identifier. 7398 bool CodeGenModule::NeedAllVtablesTypeId() const { 7399 // Returns true if at least one of vtable-based CFI checkers is enabled and 7400 // is not in the trapping mode. 7401 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7402 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7403 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7404 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7405 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7406 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7407 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7408 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7409 } 7410 7411 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7412 CharUnits Offset, 7413 const CXXRecordDecl *RD) { 7414 llvm::Metadata *MD = 7415 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7416 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7417 7418 if (CodeGenOpts.SanitizeCfiCrossDso) 7419 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7420 VTable->addTypeMetadata(Offset.getQuantity(), 7421 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7422 7423 if (NeedAllVtablesTypeId()) { 7424 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7425 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7426 } 7427 } 7428 7429 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7430 if (!SanStats) 7431 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7432 7433 return *SanStats; 7434 } 7435 7436 llvm::Value * 7437 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7438 CodeGenFunction &CGF) { 7439 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7440 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7441 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7442 auto *Call = CGF.EmitRuntimeCall( 7443 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7444 return Call; 7445 } 7446 7447 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7448 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7449 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7450 /* forPointeeType= */ true); 7451 } 7452 7453 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7454 LValueBaseInfo *BaseInfo, 7455 TBAAAccessInfo *TBAAInfo, 7456 bool forPointeeType) { 7457 if (TBAAInfo) 7458 *TBAAInfo = getTBAAAccessInfo(T); 7459 7460 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7461 // that doesn't return the information we need to compute BaseInfo. 7462 7463 // Honor alignment typedef attributes even on incomplete types. 7464 // We also honor them straight for C++ class types, even as pointees; 7465 // there's an expressivity gap here. 7466 if (auto TT = T->getAs<TypedefType>()) { 7467 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7468 if (BaseInfo) 7469 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7470 return getContext().toCharUnitsFromBits(Align); 7471 } 7472 } 7473 7474 bool AlignForArray = T->isArrayType(); 7475 7476 // Analyze the base element type, so we don't get confused by incomplete 7477 // array types. 7478 T = getContext().getBaseElementType(T); 7479 7480 if (T->isIncompleteType()) { 7481 // We could try to replicate the logic from 7482 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7483 // type is incomplete, so it's impossible to test. We could try to reuse 7484 // getTypeAlignIfKnown, but that doesn't return the information we need 7485 // to set BaseInfo. So just ignore the possibility that the alignment is 7486 // greater than one. 7487 if (BaseInfo) 7488 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7489 return CharUnits::One(); 7490 } 7491 7492 if (BaseInfo) 7493 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7494 7495 CharUnits Alignment; 7496 const CXXRecordDecl *RD; 7497 if (T.getQualifiers().hasUnaligned()) { 7498 Alignment = CharUnits::One(); 7499 } else if (forPointeeType && !AlignForArray && 7500 (RD = T->getAsCXXRecordDecl())) { 7501 // For C++ class pointees, we don't know whether we're pointing at a 7502 // base or a complete object, so we generally need to use the 7503 // non-virtual alignment. 7504 Alignment = getClassPointerAlignment(RD); 7505 } else { 7506 Alignment = getContext().getTypeAlignInChars(T); 7507 } 7508 7509 // Cap to the global maximum type alignment unless the alignment 7510 // was somehow explicit on the type. 7511 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7512 if (Alignment.getQuantity() > MaxAlign && 7513 !getContext().isAlignmentRequired(T)) 7514 Alignment = CharUnits::fromQuantity(MaxAlign); 7515 } 7516 return Alignment; 7517 } 7518 7519 bool CodeGenModule::stopAutoInit() { 7520 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7521 if (StopAfter) { 7522 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7523 // used 7524 if (NumAutoVarInit >= StopAfter) { 7525 return true; 7526 } 7527 if (!NumAutoVarInit) { 7528 unsigned DiagID = getDiags().getCustomDiagID( 7529 DiagnosticsEngine::Warning, 7530 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7531 "number of times ftrivial-auto-var-init=%1 gets applied."); 7532 getDiags().Report(DiagID) 7533 << StopAfter 7534 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7535 LangOptions::TrivialAutoVarInitKind::Zero 7536 ? "zero" 7537 : "pattern"); 7538 } 7539 ++NumAutoVarInit; 7540 } 7541 return false; 7542 } 7543 7544 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7545 const Decl *D) const { 7546 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7547 // postfix beginning with '.' since the symbol name can be demangled. 7548 if (LangOpts.HIP) 7549 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7550 else 7551 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7552 7553 // If the CUID is not specified we try to generate a unique postfix. 7554 if (getLangOpts().CUID.empty()) { 7555 SourceManager &SM = getContext().getSourceManager(); 7556 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7557 assert(PLoc.isValid() && "Source location is expected to be valid."); 7558 7559 // Get the hash of the user defined macros. 7560 llvm::MD5 Hash; 7561 llvm::MD5::MD5Result Result; 7562 for (const auto &Arg : PreprocessorOpts.Macros) 7563 Hash.update(Arg.first); 7564 Hash.final(Result); 7565 7566 // Get the UniqueID for the file containing the decl. 7567 llvm::sys::fs::UniqueID ID; 7568 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7569 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7570 assert(PLoc.isValid() && "Source location is expected to be valid."); 7571 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7572 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7573 << PLoc.getFilename() << EC.message(); 7574 } 7575 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7576 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7577 } else { 7578 OS << getContext().getCUIDHash(); 7579 } 7580 } 7581 7582 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7583 assert(DeferredDeclsToEmit.empty() && 7584 "Should have emitted all decls deferred to emit."); 7585 assert(NewBuilder->DeferredDecls.empty() && 7586 "Newly created module should not have deferred decls"); 7587 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7588 assert(EmittedDeferredDecls.empty() && 7589 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7590 7591 assert(NewBuilder->DeferredVTables.empty() && 7592 "Newly created module should not have deferred vtables"); 7593 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7594 7595 assert(NewBuilder->MangledDeclNames.empty() && 7596 "Newly created module should not have mangled decl names"); 7597 assert(NewBuilder->Manglings.empty() && 7598 "Newly created module should not have manglings"); 7599 NewBuilder->Manglings = std::move(Manglings); 7600 7601 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7602 7603 NewBuilder->TBAA = std::move(TBAA); 7604 7605 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7606 } 7607