xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 36ea32257974baa08e0d10b4b44ffa1a2118a7b5)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0),
54     NSConstantStringClassRef(0),
55     VMContext(M.getContext()) {
56 
57   if (!Features.ObjC1)
58     Runtime = 0;
59   else if (!Features.NeXTRuntime)
60     Runtime = CreateGNUObjCRuntime(*this);
61   else if (Features.ObjCNonFragileABI)
62     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
63   else
64     Runtime = CreateMacObjCRuntime(*this);
65 
66   if (!Features.CPlusPlus)
67     ABI = 0;
68   else createCXXABI();
69 
70   // If debug info generation is enabled, create the CGDebugInfo object.
71   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
72 }
73 
74 CodeGenModule::~CodeGenModule() {
75   delete Runtime;
76   delete ABI;
77   delete DebugInfo;
78 }
79 
80 void CodeGenModule::createObjCRuntime() {
81   if (!Features.NeXTRuntime)
82     Runtime = CreateGNUObjCRuntime(*this);
83   else if (Features.ObjCNonFragileABI)
84     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
85   else
86     Runtime = CreateMacObjCRuntime(*this);
87 }
88 
89 void CodeGenModule::createCXXABI() {
90   if (Context.Target.getCXXABI() == "microsoft")
91     ABI = CreateMicrosoftCXXABI(*this);
92   else
93     ABI = CreateItaniumCXXABI(*this);
94 }
95 
96 void CodeGenModule::Release() {
97   EmitDeferred();
98   EmitCXXGlobalInitFunc();
99   EmitCXXGlobalDtorFunc();
100   if (Runtime)
101     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
102       AddGlobalCtor(ObjCInitFunction);
103   EmitCtorList(GlobalCtors, "llvm.global_ctors");
104   EmitCtorList(GlobalDtors, "llvm.global_dtors");
105   EmitAnnotations();
106   EmitLLVMUsed();
107 
108   if (getCodeGenOpts().EmitDeclMetadata)
109     EmitDeclMetadata();
110 }
111 
112 bool CodeGenModule::isTargetDarwin() const {
113   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
114 }
115 
116 /// ErrorUnsupported - Print out an error that codegen doesn't support the
117 /// specified stmt yet.
118 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
119                                      bool OmitOnError) {
120   if (OmitOnError && getDiags().hasErrorOccurred())
121     return;
122   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
123                                                "cannot compile this %0 yet");
124   std::string Msg = Type;
125   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
126     << Msg << S->getSourceRange();
127 }
128 
129 /// ErrorUnsupported - Print out an error that codegen doesn't support the
130 /// specified decl yet.
131 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
132                                      bool OmitOnError) {
133   if (OmitOnError && getDiags().hasErrorOccurred())
134     return;
135   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
136                                                "cannot compile this %0 yet");
137   std::string Msg = Type;
138   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
139 }
140 
141 LangOptions::VisibilityMode
142 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
143   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
144     if (VD->getStorageClass() == VarDecl::PrivateExtern)
145       return LangOptions::Hidden;
146 
147   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
148     switch (attr->getVisibility()) {
149     default: assert(0 && "Unknown visibility!");
150     case VisibilityAttr::DefaultVisibility:
151       return LangOptions::Default;
152     case VisibilityAttr::HiddenVisibility:
153       return LangOptions::Hidden;
154     case VisibilityAttr::ProtectedVisibility:
155       return LangOptions::Protected;
156     }
157   }
158 
159   if (getLangOptions().CPlusPlus) {
160     // Entities subject to an explicit instantiation declaration get default
161     // visibility.
162     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
163       if (Function->getTemplateSpecializationKind()
164                                         == TSK_ExplicitInstantiationDeclaration)
165         return LangOptions::Default;
166     } else if (const ClassTemplateSpecializationDecl *ClassSpec
167                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
168       if (ClassSpec->getSpecializationKind()
169                                         == TSK_ExplicitInstantiationDeclaration)
170         return LangOptions::Default;
171     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
172       if (Record->getTemplateSpecializationKind()
173                                         == TSK_ExplicitInstantiationDeclaration)
174         return LangOptions::Default;
175     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
176       if (Var->isStaticDataMember() &&
177           (Var->getTemplateSpecializationKind()
178                                       == TSK_ExplicitInstantiationDeclaration))
179         return LangOptions::Default;
180     }
181 
182     // If -fvisibility-inlines-hidden was provided, then inline C++ member
183     // functions get "hidden" visibility by default.
184     if (getLangOptions().InlineVisibilityHidden)
185       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
186         if (Method->isInlined())
187           return LangOptions::Hidden;
188   }
189 
190   // This decl should have the same visibility as its parent.
191   if (const DeclContext *DC = D->getDeclContext())
192     return getDeclVisibilityMode(cast<Decl>(DC));
193 
194   return getLangOptions().getVisibilityMode();
195 }
196 
197 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
198                                         const Decl *D) const {
199   // Internal definitions always have default visibility.
200   if (GV->hasLocalLinkage()) {
201     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
202     return;
203   }
204 
205   switch (getDeclVisibilityMode(D)) {
206   default: assert(0 && "Unknown visibility!");
207   case LangOptions::Default:
208     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
209   case LangOptions::Hidden:
210     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
211   case LangOptions::Protected:
212     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
213   }
214 }
215 
216 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
217   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
218 
219   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
220   if (!Str.empty())
221     return Str;
222 
223   if (!getMangleContext().shouldMangleDeclName(ND)) {
224     IdentifierInfo *II = ND->getIdentifier();
225     assert(II && "Attempt to mangle unnamed decl.");
226 
227     Str = II->getName();
228     return Str;
229   }
230 
231   llvm::SmallString<256> Buffer;
232   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
233     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
234   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
235     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
236   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
237     getMangleContext().mangleBlock(GD, BD, Buffer);
238   else
239     getMangleContext().mangleName(ND, Buffer);
240 
241   // Allocate space for the mangled name.
242   size_t Length = Buffer.size();
243   char *Name = MangledNamesAllocator.Allocate<char>(Length);
244   std::copy(Buffer.begin(), Buffer.end(), Name);
245 
246   Str = llvm::StringRef(Name, Length);
247 
248   return Str;
249 }
250 
251 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
252                                    const BlockDecl *BD) {
253   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
254 }
255 
256 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
257   return getModule().getNamedValue(Name);
258 }
259 
260 /// AddGlobalCtor - Add a function to the list that will be called before
261 /// main() runs.
262 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
263   // FIXME: Type coercion of void()* types.
264   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
265 }
266 
267 /// AddGlobalDtor - Add a function to the list that will be called
268 /// when the module is unloaded.
269 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
270   // FIXME: Type coercion of void()* types.
271   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
272 }
273 
274 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
275   // Ctor function type is void()*.
276   llvm::FunctionType* CtorFTy =
277     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
278                             std::vector<const llvm::Type*>(),
279                             false);
280   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
281 
282   // Get the type of a ctor entry, { i32, void ()* }.
283   llvm::StructType* CtorStructTy =
284     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
285                           llvm::PointerType::getUnqual(CtorFTy), NULL);
286 
287   // Construct the constructor and destructor arrays.
288   std::vector<llvm::Constant*> Ctors;
289   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
290     std::vector<llvm::Constant*> S;
291     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
292                 I->second, false));
293     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
294     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
295   }
296 
297   if (!Ctors.empty()) {
298     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
299     new llvm::GlobalVariable(TheModule, AT, false,
300                              llvm::GlobalValue::AppendingLinkage,
301                              llvm::ConstantArray::get(AT, Ctors),
302                              GlobalName);
303   }
304 }
305 
306 void CodeGenModule::EmitAnnotations() {
307   if (Annotations.empty())
308     return;
309 
310   // Create a new global variable for the ConstantStruct in the Module.
311   llvm::Constant *Array =
312   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
313                                                 Annotations.size()),
314                            Annotations);
315   llvm::GlobalValue *gv =
316   new llvm::GlobalVariable(TheModule, Array->getType(), false,
317                            llvm::GlobalValue::AppendingLinkage, Array,
318                            "llvm.global.annotations");
319   gv->setSection("llvm.metadata");
320 }
321 
322 static CodeGenModule::GVALinkage
323 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
324                       const LangOptions &Features) {
325   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
326 
327   Linkage L = FD->getLinkage();
328   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
329       FD->getType()->getLinkage() == UniqueExternalLinkage)
330     L = UniqueExternalLinkage;
331 
332   switch (L) {
333   case NoLinkage:
334   case InternalLinkage:
335   case UniqueExternalLinkage:
336     return CodeGenModule::GVA_Internal;
337 
338   case ExternalLinkage:
339     switch (FD->getTemplateSpecializationKind()) {
340     case TSK_Undeclared:
341     case TSK_ExplicitSpecialization:
342       External = CodeGenModule::GVA_StrongExternal;
343       break;
344 
345     case TSK_ExplicitInstantiationDefinition:
346       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
347 
348     case TSK_ExplicitInstantiationDeclaration:
349     case TSK_ImplicitInstantiation:
350       External = CodeGenModule::GVA_TemplateInstantiation;
351       break;
352     }
353   }
354 
355   if (!FD->isInlined())
356     return External;
357 
358   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
359     // GNU or C99 inline semantics. Determine whether this symbol should be
360     // externally visible.
361     if (FD->isInlineDefinitionExternallyVisible())
362       return External;
363 
364     // C99 inline semantics, where the symbol is not externally visible.
365     return CodeGenModule::GVA_C99Inline;
366   }
367 
368   // C++0x [temp.explicit]p9:
369   //   [ Note: The intent is that an inline function that is the subject of
370   //   an explicit instantiation declaration will still be implicitly
371   //   instantiated when used so that the body can be considered for
372   //   inlining, but that no out-of-line copy of the inline function would be
373   //   generated in the translation unit. -- end note ]
374   if (FD->getTemplateSpecializationKind()
375                                        == TSK_ExplicitInstantiationDeclaration)
376     return CodeGenModule::GVA_C99Inline;
377 
378   return CodeGenModule::GVA_CXXInline;
379 }
380 
381 llvm::GlobalValue::LinkageTypes
382 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
383   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
384 
385   if (Linkage == GVA_Internal)
386     return llvm::Function::InternalLinkage;
387 
388   if (D->hasAttr<DLLExportAttr>())
389     return llvm::Function::DLLExportLinkage;
390 
391   if (D->hasAttr<WeakAttr>())
392     return llvm::Function::WeakAnyLinkage;
393 
394   // In C99 mode, 'inline' functions are guaranteed to have a strong
395   // definition somewhere else, so we can use available_externally linkage.
396   if (Linkage == GVA_C99Inline)
397     return llvm::Function::AvailableExternallyLinkage;
398 
399   // In C++, the compiler has to emit a definition in every translation unit
400   // that references the function.  We should use linkonce_odr because
401   // a) if all references in this translation unit are optimized away, we
402   // don't need to codegen it.  b) if the function persists, it needs to be
403   // merged with other definitions. c) C++ has the ODR, so we know the
404   // definition is dependable.
405   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
406     return llvm::Function::LinkOnceODRLinkage;
407 
408   // An explicit instantiation of a template has weak linkage, since
409   // explicit instantiations can occur in multiple translation units
410   // and must all be equivalent. However, we are not allowed to
411   // throw away these explicit instantiations.
412   if (Linkage == GVA_ExplicitTemplateInstantiation)
413     return llvm::Function::WeakODRLinkage;
414 
415   // Otherwise, we have strong external linkage.
416   assert(Linkage == GVA_StrongExternal);
417   return llvm::Function::ExternalLinkage;
418 }
419 
420 
421 /// SetFunctionDefinitionAttributes - Set attributes for a global.
422 ///
423 /// FIXME: This is currently only done for aliases and functions, but not for
424 /// variables (these details are set in EmitGlobalVarDefinition for variables).
425 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
426                                                     llvm::GlobalValue *GV) {
427   SetCommonAttributes(D, GV);
428 }
429 
430 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
431                                               const CGFunctionInfo &Info,
432                                               llvm::Function *F) {
433   unsigned CallingConv;
434   AttributeListType AttributeList;
435   ConstructAttributeList(Info, D, AttributeList, CallingConv);
436   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
437                                           AttributeList.size()));
438   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
439 }
440 
441 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
442                                                            llvm::Function *F) {
443   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
444     F->addFnAttr(llvm::Attribute::NoUnwind);
445 
446   if (D->hasAttr<AlwaysInlineAttr>())
447     F->addFnAttr(llvm::Attribute::AlwaysInline);
448 
449   if (D->hasAttr<NoInlineAttr>())
450     F->addFnAttr(llvm::Attribute::NoInline);
451 
452   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
453     F->addFnAttr(llvm::Attribute::StackProtect);
454   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
455     F->addFnAttr(llvm::Attribute::StackProtectReq);
456 
457   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
458     unsigned width = Context.Target.getCharWidth();
459     F->setAlignment(AA->getAlignment() / width);
460     while ((AA = AA->getNext<AlignedAttr>()))
461       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
462   }
463   // C++ ABI requires 2-byte alignment for member functions.
464   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
465     F->setAlignment(2);
466 }
467 
468 void CodeGenModule::SetCommonAttributes(const Decl *D,
469                                         llvm::GlobalValue *GV) {
470   setGlobalVisibility(GV, D);
471 
472   if (D->hasAttr<UsedAttr>())
473     AddUsedGlobal(GV);
474 
475   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
476     GV->setSection(SA->getName());
477 
478   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
479 }
480 
481 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
482                                                   llvm::Function *F,
483                                                   const CGFunctionInfo &FI) {
484   SetLLVMFunctionAttributes(D, FI, F);
485   SetLLVMFunctionAttributesForDefinition(D, F);
486 
487   F->setLinkage(llvm::Function::InternalLinkage);
488 
489   SetCommonAttributes(D, F);
490 }
491 
492 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
493                                           llvm::Function *F,
494                                           bool IsIncompleteFunction) {
495   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
496 
497   if (!IsIncompleteFunction)
498     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
499 
500   // Only a few attributes are set on declarations; these may later be
501   // overridden by a definition.
502 
503   if (FD->hasAttr<DLLImportAttr>()) {
504     F->setLinkage(llvm::Function::DLLImportLinkage);
505   } else if (FD->hasAttr<WeakAttr>() ||
506              FD->hasAttr<WeakImportAttr>()) {
507     // "extern_weak" is overloaded in LLVM; we probably should have
508     // separate linkage types for this.
509     F->setLinkage(llvm::Function::ExternalWeakLinkage);
510   } else {
511     F->setLinkage(llvm::Function::ExternalLinkage);
512   }
513 
514   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
515     F->setSection(SA->getName());
516 }
517 
518 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
519   assert(!GV->isDeclaration() &&
520          "Only globals with definition can force usage.");
521   LLVMUsed.push_back(GV);
522 }
523 
524 void CodeGenModule::EmitLLVMUsed() {
525   // Don't create llvm.used if there is no need.
526   if (LLVMUsed.empty())
527     return;
528 
529   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
530 
531   // Convert LLVMUsed to what ConstantArray needs.
532   std::vector<llvm::Constant*> UsedArray;
533   UsedArray.resize(LLVMUsed.size());
534   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
535     UsedArray[i] =
536      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
537                                       i8PTy);
538   }
539 
540   if (UsedArray.empty())
541     return;
542   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
543 
544   llvm::GlobalVariable *GV =
545     new llvm::GlobalVariable(getModule(), ATy, false,
546                              llvm::GlobalValue::AppendingLinkage,
547                              llvm::ConstantArray::get(ATy, UsedArray),
548                              "llvm.used");
549 
550   GV->setSection("llvm.metadata");
551 }
552 
553 void CodeGenModule::EmitDeferred() {
554   // Emit code for any potentially referenced deferred decls.  Since a
555   // previously unused static decl may become used during the generation of code
556   // for a static function, iterate until no  changes are made.
557 
558   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
559     if (!DeferredVTables.empty()) {
560       const CXXRecordDecl *RD = DeferredVTables.back();
561       DeferredVTables.pop_back();
562       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
563       continue;
564     }
565 
566     GlobalDecl D = DeferredDeclsToEmit.back();
567     DeferredDeclsToEmit.pop_back();
568 
569     // Check to see if we've already emitted this.  This is necessary
570     // for a couple of reasons: first, decls can end up in the
571     // deferred-decls queue multiple times, and second, decls can end
572     // up with definitions in unusual ways (e.g. by an extern inline
573     // function acquiring a strong function redefinition).  Just
574     // ignore these cases.
575     //
576     // TODO: That said, looking this up multiple times is very wasteful.
577     llvm::StringRef Name = getMangledName(D);
578     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
579     assert(CGRef && "Deferred decl wasn't referenced?");
580 
581     if (!CGRef->isDeclaration())
582       continue;
583 
584     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
585     // purposes an alias counts as a definition.
586     if (isa<llvm::GlobalAlias>(CGRef))
587       continue;
588 
589     // Otherwise, emit the definition and move on to the next one.
590     EmitGlobalDefinition(D);
591   }
592 }
593 
594 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
595 /// annotation information for a given GlobalValue.  The annotation struct is
596 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
597 /// GlobalValue being annotated.  The second field is the constant string
598 /// created from the AnnotateAttr's annotation.  The third field is a constant
599 /// string containing the name of the translation unit.  The fourth field is
600 /// the line number in the file of the annotated value declaration.
601 ///
602 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
603 ///        appears to.
604 ///
605 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
606                                                 const AnnotateAttr *AA,
607                                                 unsigned LineNo) {
608   llvm::Module *M = &getModule();
609 
610   // get [N x i8] constants for the annotation string, and the filename string
611   // which are the 2nd and 3rd elements of the global annotation structure.
612   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
613   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
614                                                   AA->getAnnotation(), true);
615   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
616                                                   M->getModuleIdentifier(),
617                                                   true);
618 
619   // Get the two global values corresponding to the ConstantArrays we just
620   // created to hold the bytes of the strings.
621   llvm::GlobalValue *annoGV =
622     new llvm::GlobalVariable(*M, anno->getType(), false,
623                              llvm::GlobalValue::PrivateLinkage, anno,
624                              GV->getName());
625   // translation unit name string, emitted into the llvm.metadata section.
626   llvm::GlobalValue *unitGV =
627     new llvm::GlobalVariable(*M, unit->getType(), false,
628                              llvm::GlobalValue::PrivateLinkage, unit,
629                              ".str");
630 
631   // Create the ConstantStruct for the global annotation.
632   llvm::Constant *Fields[4] = {
633     llvm::ConstantExpr::getBitCast(GV, SBP),
634     llvm::ConstantExpr::getBitCast(annoGV, SBP),
635     llvm::ConstantExpr::getBitCast(unitGV, SBP),
636     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
637   };
638   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
639 }
640 
641 static CodeGenModule::GVALinkage
642 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
643   // If this is a static data member, compute the kind of template
644   // specialization. Otherwise, this variable is not part of a
645   // template.
646   TemplateSpecializationKind TSK = TSK_Undeclared;
647   if (VD->isStaticDataMember())
648     TSK = VD->getTemplateSpecializationKind();
649 
650   Linkage L = VD->getLinkage();
651   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
652       VD->getType()->getLinkage() == UniqueExternalLinkage)
653     L = UniqueExternalLinkage;
654 
655   switch (L) {
656   case NoLinkage:
657   case InternalLinkage:
658   case UniqueExternalLinkage:
659     return CodeGenModule::GVA_Internal;
660 
661   case ExternalLinkage:
662     switch (TSK) {
663     case TSK_Undeclared:
664     case TSK_ExplicitSpecialization:
665       return CodeGenModule::GVA_StrongExternal;
666 
667     case TSK_ExplicitInstantiationDeclaration:
668       llvm_unreachable("Variable should not be instantiated");
669       // Fall through to treat this like any other instantiation.
670 
671     case TSK_ExplicitInstantiationDefinition:
672       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
673 
674     case TSK_ImplicitInstantiation:
675       return CodeGenModule::GVA_TemplateInstantiation;
676     }
677   }
678 
679   return CodeGenModule::GVA_StrongExternal;
680 }
681 
682 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
683   // Never defer when EmitAllDecls is specified or the decl has
684   // attribute used.
685   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
686     return false;
687 
688   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
689     // Constructors and destructors should never be deferred.
690     if (FD->hasAttr<ConstructorAttr>() ||
691         FD->hasAttr<DestructorAttr>())
692       return false;
693 
694     // The key function for a class must never be deferred.
695     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
696       const CXXRecordDecl *RD = MD->getParent();
697       if (MD->isOutOfLine() && RD->isDynamicClass()) {
698         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
699         if (KeyFunction &&
700             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
701           return false;
702       }
703     }
704 
705     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
706 
707     // static, static inline, always_inline, and extern inline functions can
708     // always be deferred.  Normal inline functions can be deferred in C99/C++.
709     // Implicit template instantiations can also be deferred in C++.
710     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
711         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
712       return true;
713     return false;
714   }
715 
716   const VarDecl *VD = cast<VarDecl>(Global);
717   assert(VD->isFileVarDecl() && "Invalid decl");
718 
719   // We never want to defer structs that have non-trivial constructors or
720   // destructors.
721 
722   // FIXME: Handle references.
723   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
724     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
725       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
726         return false;
727     }
728   }
729 
730   GVALinkage L = GetLinkageForVariable(getContext(), VD);
731   if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
732     if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context)))
733       return true;
734   }
735 
736   return false;
737 }
738 
739 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
740   const AliasAttr *AA = VD->getAttr<AliasAttr>();
741   assert(AA && "No alias?");
742 
743   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
744 
745   // See if there is already something with the target's name in the module.
746   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
747 
748   llvm::Constant *Aliasee;
749   if (isa<llvm::FunctionType>(DeclTy))
750     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
751   else
752     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
753                                     llvm::PointerType::getUnqual(DeclTy), 0);
754   if (!Entry) {
755     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
756     F->setLinkage(llvm::Function::ExternalWeakLinkage);
757     WeakRefReferences.insert(F);
758   }
759 
760   return Aliasee;
761 }
762 
763 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
764   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
765 
766   // Weak references don't produce any output by themselves.
767   if (Global->hasAttr<WeakRefAttr>())
768     return;
769 
770   // If this is an alias definition (which otherwise looks like a declaration)
771   // emit it now.
772   if (Global->hasAttr<AliasAttr>())
773     return EmitAliasDefinition(GD);
774 
775   // Ignore declarations, they will be emitted on their first use.
776   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
777     // Forward declarations are emitted lazily on first use.
778     if (!FD->isThisDeclarationADefinition())
779       return;
780   } else {
781     const VarDecl *VD = cast<VarDecl>(Global);
782     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
783 
784     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
785       return;
786   }
787 
788   // Defer code generation when possible if this is a static definition, inline
789   // function etc.  These we only want to emit if they are used.
790   if (!MayDeferGeneration(Global)) {
791     // Emit the definition if it can't be deferred.
792     EmitGlobalDefinition(GD);
793     return;
794   }
795 
796   // If the value has already been used, add it directly to the
797   // DeferredDeclsToEmit list.
798   llvm::StringRef MangledName = getMangledName(GD);
799   if (GetGlobalValue(MangledName))
800     DeferredDeclsToEmit.push_back(GD);
801   else {
802     // Otherwise, remember that we saw a deferred decl with this name.  The
803     // first use of the mangled name will cause it to move into
804     // DeferredDeclsToEmit.
805     DeferredDecls[MangledName] = GD;
806   }
807 }
808 
809 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
810   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
811 
812   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
813                                  Context.getSourceManager(),
814                                  "Generating code for declaration");
815 
816   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
817     if (Method->isVirtual())
818       getVTables().EmitThunks(GD);
819 
820   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
821     return EmitCXXConstructor(CD, GD.getCtorType());
822 
823   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
824     return EmitCXXDestructor(DD, GD.getDtorType());
825 
826   if (isa<FunctionDecl>(D))
827     return EmitGlobalFunctionDefinition(GD);
828 
829   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
830     return EmitGlobalVarDefinition(VD);
831 
832   assert(0 && "Invalid argument to EmitGlobalDefinition()");
833 }
834 
835 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
836 /// module, create and return an llvm Function with the specified type. If there
837 /// is something in the module with the specified name, return it potentially
838 /// bitcasted to the right type.
839 ///
840 /// If D is non-null, it specifies a decl that correspond to this.  This is used
841 /// to set the attributes on the function when it is first created.
842 llvm::Constant *
843 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
844                                        const llvm::Type *Ty,
845                                        GlobalDecl D) {
846   // Lookup the entry, lazily creating it if necessary.
847   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
848   if (Entry) {
849     if (WeakRefReferences.count(Entry)) {
850       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
851       if (FD && !FD->hasAttr<WeakAttr>())
852         Entry->setLinkage(llvm::Function::ExternalLinkage);
853 
854       WeakRefReferences.erase(Entry);
855     }
856 
857     if (Entry->getType()->getElementType() == Ty)
858       return Entry;
859 
860     // Make sure the result is of the correct type.
861     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
862     return llvm::ConstantExpr::getBitCast(Entry, PTy);
863   }
864 
865   // This function doesn't have a complete type (for example, the return
866   // type is an incomplete struct). Use a fake type instead, and make
867   // sure not to try to set attributes.
868   bool IsIncompleteFunction = false;
869 
870   const llvm::FunctionType *FTy;
871   if (isa<llvm::FunctionType>(Ty)) {
872     FTy = cast<llvm::FunctionType>(Ty);
873   } else {
874     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
875                                   std::vector<const llvm::Type*>(), false);
876     IsIncompleteFunction = true;
877   }
878 
879   llvm::Function *F = llvm::Function::Create(FTy,
880                                              llvm::Function::ExternalLinkage,
881                                              MangledName, &getModule());
882   assert(F->getName() == MangledName && "name was uniqued!");
883   if (D.getDecl())
884     SetFunctionAttributes(D, F, IsIncompleteFunction);
885 
886   // This is the first use or definition of a mangled name.  If there is a
887   // deferred decl with this name, remember that we need to emit it at the end
888   // of the file.
889   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
890   if (DDI != DeferredDecls.end()) {
891     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
892     // list, and remove it from DeferredDecls (since we don't need it anymore).
893     DeferredDeclsToEmit.push_back(DDI->second);
894     DeferredDecls.erase(DDI);
895   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
896     // If this the first reference to a C++ inline function in a class, queue up
897     // the deferred function body for emission.  These are not seen as
898     // top-level declarations.
899     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
900       DeferredDeclsToEmit.push_back(D);
901     // A called constructor which has no definition or declaration need be
902     // synthesized.
903     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
904       if (CD->isImplicit()) {
905         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
906         DeferredDeclsToEmit.push_back(D);
907       }
908     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
909       if (DD->isImplicit()) {
910         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
911         DeferredDeclsToEmit.push_back(D);
912       }
913     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
914       if (MD->isCopyAssignment() && MD->isImplicit()) {
915         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
916         DeferredDeclsToEmit.push_back(D);
917       }
918     }
919   }
920 
921   // Make sure the result is of the requested type.
922   if (!IsIncompleteFunction) {
923     assert(F->getType()->getElementType() == Ty);
924     return F;
925   }
926 
927   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
928   return llvm::ConstantExpr::getBitCast(F, PTy);
929 }
930 
931 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
932 /// non-null, then this function will use the specified type if it has to
933 /// create it (this occurs when we see a definition of the function).
934 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
935                                                  const llvm::Type *Ty) {
936   // If there was no specific requested type, just convert it now.
937   if (!Ty)
938     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
939 
940   llvm::StringRef MangledName = getMangledName(GD);
941   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
942 }
943 
944 /// CreateRuntimeFunction - Create a new runtime function with the specified
945 /// type and name.
946 llvm::Constant *
947 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
948                                      llvm::StringRef Name) {
949   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
950 }
951 
952 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
953   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
954     return false;
955   if (Context.getLangOptions().CPlusPlus &&
956       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
957     // FIXME: We should do something fancier here!
958     return false;
959   }
960   return true;
961 }
962 
963 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
964 /// create and return an llvm GlobalVariable with the specified type.  If there
965 /// is something in the module with the specified name, return it potentially
966 /// bitcasted to the right type.
967 ///
968 /// If D is non-null, it specifies a decl that correspond to this.  This is used
969 /// to set the attributes on the global when it is first created.
970 llvm::Constant *
971 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
972                                      const llvm::PointerType *Ty,
973                                      const VarDecl *D) {
974   // Lookup the entry, lazily creating it if necessary.
975   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
976   if (Entry) {
977     if (WeakRefReferences.count(Entry)) {
978       if (D && !D->hasAttr<WeakAttr>())
979         Entry->setLinkage(llvm::Function::ExternalLinkage);
980 
981       WeakRefReferences.erase(Entry);
982     }
983 
984     if (Entry->getType() == Ty)
985       return Entry;
986 
987     // Make sure the result is of the correct type.
988     return llvm::ConstantExpr::getBitCast(Entry, Ty);
989   }
990 
991   // This is the first use or definition of a mangled name.  If there is a
992   // deferred decl with this name, remember that we need to emit it at the end
993   // of the file.
994   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
995   if (DDI != DeferredDecls.end()) {
996     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
997     // list, and remove it from DeferredDecls (since we don't need it anymore).
998     DeferredDeclsToEmit.push_back(DDI->second);
999     DeferredDecls.erase(DDI);
1000   }
1001 
1002   llvm::GlobalVariable *GV =
1003     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1004                              llvm::GlobalValue::ExternalLinkage,
1005                              0, MangledName, 0,
1006                              false, Ty->getAddressSpace());
1007 
1008   // Handle things which are present even on external declarations.
1009   if (D) {
1010     // FIXME: This code is overly simple and should be merged with other global
1011     // handling.
1012     GV->setConstant(DeclIsConstantGlobal(Context, D));
1013 
1014     // FIXME: Merge with other attribute handling code.
1015     if (D->getStorageClass() == VarDecl::PrivateExtern)
1016       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1017 
1018     if (D->hasAttr<WeakAttr>() ||
1019         D->hasAttr<WeakImportAttr>())
1020       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1021 
1022     GV->setThreadLocal(D->isThreadSpecified());
1023   }
1024 
1025   return GV;
1026 }
1027 
1028 
1029 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1030 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1031 /// then it will be greated with the specified type instead of whatever the
1032 /// normal requested type would be.
1033 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1034                                                   const llvm::Type *Ty) {
1035   assert(D->hasGlobalStorage() && "Not a global variable");
1036   QualType ASTTy = D->getType();
1037   if (Ty == 0)
1038     Ty = getTypes().ConvertTypeForMem(ASTTy);
1039 
1040   const llvm::PointerType *PTy =
1041     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1042 
1043   llvm::StringRef MangledName = getMangledName(D);
1044   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1045 }
1046 
1047 /// CreateRuntimeVariable - Create a new runtime global variable with the
1048 /// specified type and name.
1049 llvm::Constant *
1050 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1051                                      llvm::StringRef Name) {
1052   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1053 }
1054 
1055 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1056   assert(!D->getInit() && "Cannot emit definite definitions here!");
1057 
1058   if (MayDeferGeneration(D)) {
1059     // If we have not seen a reference to this variable yet, place it
1060     // into the deferred declarations table to be emitted if needed
1061     // later.
1062     llvm::StringRef MangledName = getMangledName(D);
1063     if (!GetGlobalValue(MangledName)) {
1064       DeferredDecls[MangledName] = D;
1065       return;
1066     }
1067   }
1068 
1069   // The tentative definition is the only definition.
1070   EmitGlobalVarDefinition(D);
1071 }
1072 
1073 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1074   if (DefinitionRequired)
1075     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1076 }
1077 
1078 llvm::GlobalVariable::LinkageTypes
1079 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1080   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1081     return llvm::GlobalVariable::InternalLinkage;
1082 
1083   if (const CXXMethodDecl *KeyFunction
1084                                     = RD->getASTContext().getKeyFunction(RD)) {
1085     // If this class has a key function, use that to determine the linkage of
1086     // the vtable.
1087     const FunctionDecl *Def = 0;
1088     if (KeyFunction->hasBody(Def))
1089       KeyFunction = cast<CXXMethodDecl>(Def);
1090 
1091     switch (KeyFunction->getTemplateSpecializationKind()) {
1092       case TSK_Undeclared:
1093       case TSK_ExplicitSpecialization:
1094         if (KeyFunction->isInlined())
1095           return llvm::GlobalVariable::WeakODRLinkage;
1096 
1097         return llvm::GlobalVariable::ExternalLinkage;
1098 
1099       case TSK_ImplicitInstantiation:
1100       case TSK_ExplicitInstantiationDefinition:
1101         return llvm::GlobalVariable::WeakODRLinkage;
1102 
1103       case TSK_ExplicitInstantiationDeclaration:
1104         // FIXME: Use available_externally linkage. However, this currently
1105         // breaks LLVM's build due to undefined symbols.
1106         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1107         return llvm::GlobalVariable::WeakODRLinkage;
1108     }
1109   }
1110 
1111   switch (RD->getTemplateSpecializationKind()) {
1112   case TSK_Undeclared:
1113   case TSK_ExplicitSpecialization:
1114   case TSK_ImplicitInstantiation:
1115   case TSK_ExplicitInstantiationDefinition:
1116     return llvm::GlobalVariable::WeakODRLinkage;
1117 
1118   case TSK_ExplicitInstantiationDeclaration:
1119     // FIXME: Use available_externally linkage. However, this currently
1120     // breaks LLVM's build due to undefined symbols.
1121     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1122     return llvm::GlobalVariable::WeakODRLinkage;
1123   }
1124 
1125   // Silence GCC warning.
1126   return llvm::GlobalVariable::WeakODRLinkage;
1127 }
1128 
1129 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1130     return CharUnits::fromQuantity(
1131       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1132 }
1133 
1134 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1135   llvm::Constant *Init = 0;
1136   QualType ASTTy = D->getType();
1137   bool NonConstInit = false;
1138 
1139   const Expr *InitExpr = D->getAnyInitializer();
1140 
1141   if (!InitExpr) {
1142     // This is a tentative definition; tentative definitions are
1143     // implicitly initialized with { 0 }.
1144     //
1145     // Note that tentative definitions are only emitted at the end of
1146     // a translation unit, so they should never have incomplete
1147     // type. In addition, EmitTentativeDefinition makes sure that we
1148     // never attempt to emit a tentative definition if a real one
1149     // exists. A use may still exists, however, so we still may need
1150     // to do a RAUW.
1151     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1152     Init = EmitNullConstant(D->getType());
1153   } else {
1154     Init = EmitConstantExpr(InitExpr, D->getType());
1155     if (!Init) {
1156       QualType T = InitExpr->getType();
1157       if (D->getType()->isReferenceType())
1158         T = D->getType();
1159 
1160       if (getLangOptions().CPlusPlus) {
1161         EmitCXXGlobalVarDeclInitFunc(D);
1162         Init = EmitNullConstant(T);
1163         NonConstInit = true;
1164       } else {
1165         ErrorUnsupported(D, "static initializer");
1166         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1167       }
1168     }
1169   }
1170 
1171   const llvm::Type* InitType = Init->getType();
1172   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1173 
1174   // Strip off a bitcast if we got one back.
1175   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1176     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1177            // all zero index gep.
1178            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1179     Entry = CE->getOperand(0);
1180   }
1181 
1182   // Entry is now either a Function or GlobalVariable.
1183   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1184 
1185   // We have a definition after a declaration with the wrong type.
1186   // We must make a new GlobalVariable* and update everything that used OldGV
1187   // (a declaration or tentative definition) with the new GlobalVariable*
1188   // (which will be a definition).
1189   //
1190   // This happens if there is a prototype for a global (e.g.
1191   // "extern int x[];") and then a definition of a different type (e.g.
1192   // "int x[10];"). This also happens when an initializer has a different type
1193   // from the type of the global (this happens with unions).
1194   if (GV == 0 ||
1195       GV->getType()->getElementType() != InitType ||
1196       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1197 
1198     // Move the old entry aside so that we'll create a new one.
1199     Entry->setName(llvm::StringRef());
1200 
1201     // Make a new global with the correct type, this is now guaranteed to work.
1202     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1203 
1204     // Replace all uses of the old global with the new global
1205     llvm::Constant *NewPtrForOldDecl =
1206         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1207     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1208 
1209     // Erase the old global, since it is no longer used.
1210     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1211   }
1212 
1213   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1214     SourceManager &SM = Context.getSourceManager();
1215     AddAnnotation(EmitAnnotateAttr(GV, AA,
1216                               SM.getInstantiationLineNumber(D->getLocation())));
1217   }
1218 
1219   GV->setInitializer(Init);
1220 
1221   // If it is safe to mark the global 'constant', do so now.
1222   GV->setConstant(false);
1223   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1224     GV->setConstant(true);
1225 
1226   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1227 
1228   // Set the llvm linkage type as appropriate.
1229   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1230   if (Linkage == GVA_Internal)
1231     GV->setLinkage(llvm::Function::InternalLinkage);
1232   else if (D->hasAttr<DLLImportAttr>())
1233     GV->setLinkage(llvm::Function::DLLImportLinkage);
1234   else if (D->hasAttr<DLLExportAttr>())
1235     GV->setLinkage(llvm::Function::DLLExportLinkage);
1236   else if (D->hasAttr<WeakAttr>()) {
1237     if (GV->isConstant())
1238       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1239     else
1240       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1241   } else if (Linkage == GVA_TemplateInstantiation ||
1242              Linkage == GVA_ExplicitTemplateInstantiation)
1243     // FIXME: It seems like we can provide more specific linkage here
1244     // (LinkOnceODR, WeakODR).
1245     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1246   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1247            !D->hasExternalStorage() && !D->getInit() &&
1248            !D->getAttr<SectionAttr>()) {
1249     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1250     // common vars aren't constant even if declared const.
1251     GV->setConstant(false);
1252   } else
1253     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1254 
1255   SetCommonAttributes(D, GV);
1256 
1257   // Emit global variable debug information.
1258   if (CGDebugInfo *DI = getDebugInfo()) {
1259     DI->setLocation(D->getLocation());
1260     DI->EmitGlobalVariable(GV, D);
1261   }
1262 }
1263 
1264 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1265 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1266 /// existing call uses of the old function in the module, this adjusts them to
1267 /// call the new function directly.
1268 ///
1269 /// This is not just a cleanup: the always_inline pass requires direct calls to
1270 /// functions to be able to inline them.  If there is a bitcast in the way, it
1271 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1272 /// run at -O0.
1273 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1274                                                       llvm::Function *NewFn) {
1275   // If we're redefining a global as a function, don't transform it.
1276   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1277   if (OldFn == 0) return;
1278 
1279   const llvm::Type *NewRetTy = NewFn->getReturnType();
1280   llvm::SmallVector<llvm::Value*, 4> ArgList;
1281 
1282   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1283        UI != E; ) {
1284     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1285     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1286     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1287     llvm::CallSite CS(CI);
1288     if (!CI || !CS.isCallee(I)) continue;
1289 
1290     // If the return types don't match exactly, and if the call isn't dead, then
1291     // we can't transform this call.
1292     if (CI->getType() != NewRetTy && !CI->use_empty())
1293       continue;
1294 
1295     // If the function was passed too few arguments, don't transform.  If extra
1296     // arguments were passed, we silently drop them.  If any of the types
1297     // mismatch, we don't transform.
1298     unsigned ArgNo = 0;
1299     bool DontTransform = false;
1300     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1301          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1302       if (CS.arg_size() == ArgNo ||
1303           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1304         DontTransform = true;
1305         break;
1306       }
1307     }
1308     if (DontTransform)
1309       continue;
1310 
1311     // Okay, we can transform this.  Create the new call instruction and copy
1312     // over the required information.
1313     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1314     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1315                                                      ArgList.end(), "", CI);
1316     ArgList.clear();
1317     if (!NewCall->getType()->isVoidTy())
1318       NewCall->takeName(CI);
1319     NewCall->setAttributes(CI->getAttributes());
1320     NewCall->setCallingConv(CI->getCallingConv());
1321 
1322     // Finally, remove the old call, replacing any uses with the new one.
1323     if (!CI->use_empty())
1324       CI->replaceAllUsesWith(NewCall);
1325 
1326     // Copy debug location attached to CI.
1327     if (!CI->getDebugLoc().isUnknown())
1328       NewCall->setDebugLoc(CI->getDebugLoc());
1329     CI->eraseFromParent();
1330   }
1331 }
1332 
1333 
1334 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1335   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1336   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1337   getMangleContext().mangleInitDiscriminator();
1338   // Get or create the prototype for the function.
1339   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1340 
1341   // Strip off a bitcast if we got one back.
1342   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1343     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1344     Entry = CE->getOperand(0);
1345   }
1346 
1347 
1348   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1349     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1350 
1351     // If the types mismatch then we have to rewrite the definition.
1352     assert(OldFn->isDeclaration() &&
1353            "Shouldn't replace non-declaration");
1354 
1355     // F is the Function* for the one with the wrong type, we must make a new
1356     // Function* and update everything that used F (a declaration) with the new
1357     // Function* (which will be a definition).
1358     //
1359     // This happens if there is a prototype for a function
1360     // (e.g. "int f()") and then a definition of a different type
1361     // (e.g. "int f(int x)").  Move the old function aside so that it
1362     // doesn't interfere with GetAddrOfFunction.
1363     OldFn->setName(llvm::StringRef());
1364     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1365 
1366     // If this is an implementation of a function without a prototype, try to
1367     // replace any existing uses of the function (which may be calls) with uses
1368     // of the new function
1369     if (D->getType()->isFunctionNoProtoType()) {
1370       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1371       OldFn->removeDeadConstantUsers();
1372     }
1373 
1374     // Replace uses of F with the Function we will endow with a body.
1375     if (!Entry->use_empty()) {
1376       llvm::Constant *NewPtrForOldDecl =
1377         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1378       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1379     }
1380 
1381     // Ok, delete the old function now, which is dead.
1382     OldFn->eraseFromParent();
1383 
1384     Entry = NewFn;
1385   }
1386 
1387   llvm::Function *Fn = cast<llvm::Function>(Entry);
1388   setFunctionLinkage(D, Fn);
1389 
1390   CodeGenFunction(*this).GenerateCode(D, Fn);
1391 
1392   SetFunctionDefinitionAttributes(D, Fn);
1393   SetLLVMFunctionAttributesForDefinition(D, Fn);
1394 
1395   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1396     AddGlobalCtor(Fn, CA->getPriority());
1397   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1398     AddGlobalDtor(Fn, DA->getPriority());
1399 }
1400 
1401 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1402   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1403   const AliasAttr *AA = D->getAttr<AliasAttr>();
1404   assert(AA && "Not an alias?");
1405 
1406   llvm::StringRef MangledName = getMangledName(GD);
1407 
1408   // If there is a definition in the module, then it wins over the alias.
1409   // This is dubious, but allow it to be safe.  Just ignore the alias.
1410   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1411   if (Entry && !Entry->isDeclaration())
1412     return;
1413 
1414   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1415 
1416   // Create a reference to the named value.  This ensures that it is emitted
1417   // if a deferred decl.
1418   llvm::Constant *Aliasee;
1419   if (isa<llvm::FunctionType>(DeclTy))
1420     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1421   else
1422     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1423                                     llvm::PointerType::getUnqual(DeclTy), 0);
1424 
1425   // Create the new alias itself, but don't set a name yet.
1426   llvm::GlobalValue *GA =
1427     new llvm::GlobalAlias(Aliasee->getType(),
1428                           llvm::Function::ExternalLinkage,
1429                           "", Aliasee, &getModule());
1430 
1431   if (Entry) {
1432     assert(Entry->isDeclaration());
1433 
1434     // If there is a declaration in the module, then we had an extern followed
1435     // by the alias, as in:
1436     //   extern int test6();
1437     //   ...
1438     //   int test6() __attribute__((alias("test7")));
1439     //
1440     // Remove it and replace uses of it with the alias.
1441     GA->takeName(Entry);
1442 
1443     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1444                                                           Entry->getType()));
1445     Entry->eraseFromParent();
1446   } else {
1447     GA->setName(MangledName);
1448   }
1449 
1450   // Set attributes which are particular to an alias; this is a
1451   // specialization of the attributes which may be set on a global
1452   // variable/function.
1453   if (D->hasAttr<DLLExportAttr>()) {
1454     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1455       // The dllexport attribute is ignored for undefined symbols.
1456       if (FD->hasBody())
1457         GA->setLinkage(llvm::Function::DLLExportLinkage);
1458     } else {
1459       GA->setLinkage(llvm::Function::DLLExportLinkage);
1460     }
1461   } else if (D->hasAttr<WeakAttr>() ||
1462              D->hasAttr<WeakRefAttr>() ||
1463              D->hasAttr<WeakImportAttr>()) {
1464     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1465   }
1466 
1467   SetCommonAttributes(D, GA);
1468 }
1469 
1470 /// getBuiltinLibFunction - Given a builtin id for a function like
1471 /// "__builtin_fabsf", return a Function* for "fabsf".
1472 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1473                                                   unsigned BuiltinID) {
1474   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1475           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1476          "isn't a lib fn");
1477 
1478   // Get the name, skip over the __builtin_ prefix (if necessary).
1479   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1480   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1481     Name += 10;
1482 
1483   const llvm::FunctionType *Ty =
1484     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1485 
1486   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1487 }
1488 
1489 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1490                                             unsigned NumTys) {
1491   return llvm::Intrinsic::getDeclaration(&getModule(),
1492                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1493 }
1494 
1495 
1496 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1497                                            const llvm::Type *SrcType,
1498                                            const llvm::Type *SizeType) {
1499   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1500   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1501 }
1502 
1503 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1504                                             const llvm::Type *SrcType,
1505                                             const llvm::Type *SizeType) {
1506   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1507   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1508 }
1509 
1510 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1511                                            const llvm::Type *SizeType) {
1512   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1513   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1514 }
1515 
1516 static llvm::StringMapEntry<llvm::Constant*> &
1517 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1518                          const StringLiteral *Literal,
1519                          bool TargetIsLSB,
1520                          bool &IsUTF16,
1521                          unsigned &StringLength) {
1522   unsigned NumBytes = Literal->getByteLength();
1523 
1524   // Check for simple case.
1525   if (!Literal->containsNonAsciiOrNull()) {
1526     StringLength = NumBytes;
1527     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1528                                                 StringLength));
1529   }
1530 
1531   // Otherwise, convert the UTF8 literals into a byte string.
1532   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1533   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1534   UTF16 *ToPtr = &ToBuf[0];
1535 
1536   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1537                                                &ToPtr, ToPtr + NumBytes,
1538                                                strictConversion);
1539 
1540   // Check for conversion failure.
1541   if (Result != conversionOK) {
1542     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1543     // this duplicate code.
1544     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1545     StringLength = NumBytes;
1546     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1547                                                 StringLength));
1548   }
1549 
1550   // ConvertUTF8toUTF16 returns the length in ToPtr.
1551   StringLength = ToPtr - &ToBuf[0];
1552 
1553   // Render the UTF-16 string into a byte array and convert to the target byte
1554   // order.
1555   //
1556   // FIXME: This isn't something we should need to do here.
1557   llvm::SmallString<128> AsBytes;
1558   AsBytes.reserve(StringLength * 2);
1559   for (unsigned i = 0; i != StringLength; ++i) {
1560     unsigned short Val = ToBuf[i];
1561     if (TargetIsLSB) {
1562       AsBytes.push_back(Val & 0xFF);
1563       AsBytes.push_back(Val >> 8);
1564     } else {
1565       AsBytes.push_back(Val >> 8);
1566       AsBytes.push_back(Val & 0xFF);
1567     }
1568   }
1569   // Append one extra null character, the second is automatically added by our
1570   // caller.
1571   AsBytes.push_back(0);
1572 
1573   IsUTF16 = true;
1574   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1575 }
1576 
1577 llvm::Constant *
1578 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1579   unsigned StringLength = 0;
1580   bool isUTF16 = false;
1581   llvm::StringMapEntry<llvm::Constant*> &Entry =
1582     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1583                              getTargetData().isLittleEndian(),
1584                              isUTF16, StringLength);
1585 
1586   if (llvm::Constant *C = Entry.getValue())
1587     return C;
1588 
1589   llvm::Constant *Zero =
1590       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1591   llvm::Constant *Zeros[] = { Zero, Zero };
1592 
1593   // If we don't already have it, get __CFConstantStringClassReference.
1594   if (!CFConstantStringClassRef) {
1595     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1596     Ty = llvm::ArrayType::get(Ty, 0);
1597     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1598                                            "__CFConstantStringClassReference");
1599     // Decay array -> ptr
1600     CFConstantStringClassRef =
1601       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1602   }
1603 
1604   QualType CFTy = getContext().getCFConstantStringType();
1605 
1606   const llvm::StructType *STy =
1607     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1608 
1609   std::vector<llvm::Constant*> Fields(4);
1610 
1611   // Class pointer.
1612   Fields[0] = CFConstantStringClassRef;
1613 
1614   // Flags.
1615   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1616   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1617     llvm::ConstantInt::get(Ty, 0x07C8);
1618 
1619   // String pointer.
1620   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1621 
1622   llvm::GlobalValue::LinkageTypes Linkage;
1623   bool isConstant;
1624   if (isUTF16) {
1625     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1626     Linkage = llvm::GlobalValue::InternalLinkage;
1627     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1628     // does make plain ascii ones writable.
1629     isConstant = true;
1630   } else {
1631     Linkage = llvm::GlobalValue::PrivateLinkage;
1632     isConstant = !Features.WritableStrings;
1633   }
1634 
1635   llvm::GlobalVariable *GV =
1636     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1637                              ".str");
1638   if (isUTF16) {
1639     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1640     GV->setAlignment(Align.getQuantity());
1641   }
1642   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1643 
1644   // String length.
1645   Ty = getTypes().ConvertType(getContext().LongTy);
1646   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1647 
1648   // The struct.
1649   C = llvm::ConstantStruct::get(STy, Fields);
1650   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1651                                 llvm::GlobalVariable::PrivateLinkage, C,
1652                                 "_unnamed_cfstring_");
1653   if (const char *Sect = getContext().Target.getCFStringSection())
1654     GV->setSection(Sect);
1655   Entry.setValue(GV);
1656 
1657   return GV;
1658 }
1659 
1660 llvm::Constant *
1661 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1662   unsigned StringLength = 0;
1663   bool isUTF16 = false;
1664   llvm::StringMapEntry<llvm::Constant*> &Entry =
1665     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1666                              getTargetData().isLittleEndian(),
1667                              isUTF16, StringLength);
1668 
1669   if (llvm::Constant *C = Entry.getValue())
1670     return C;
1671 
1672   llvm::Constant *Zero =
1673   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1674   llvm::Constant *Zeros[] = { Zero, Zero };
1675 
1676   // If we don't already have it, get _NSConstantStringClassReference.
1677   if (!NSConstantStringClassRef) {
1678     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1679     Ty = llvm::ArrayType::get(Ty, 0);
1680     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1681                                         Features.ObjCNonFragileABI ?
1682                                         "OBJC_CLASS_$_NSConstantString" :
1683                                         "_NSConstantStringClassReference");
1684     // Decay array -> ptr
1685     NSConstantStringClassRef =
1686       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1687   }
1688 
1689   QualType NSTy = getContext().getNSConstantStringType();
1690 
1691   const llvm::StructType *STy =
1692   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1693 
1694   std::vector<llvm::Constant*> Fields(3);
1695 
1696   // Class pointer.
1697   Fields[0] = NSConstantStringClassRef;
1698 
1699   // String pointer.
1700   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1701 
1702   llvm::GlobalValue::LinkageTypes Linkage;
1703   bool isConstant;
1704   if (isUTF16) {
1705     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1706     Linkage = llvm::GlobalValue::InternalLinkage;
1707     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1708     // does make plain ascii ones writable.
1709     isConstant = true;
1710   } else {
1711     Linkage = llvm::GlobalValue::PrivateLinkage;
1712     isConstant = !Features.WritableStrings;
1713   }
1714 
1715   llvm::GlobalVariable *GV =
1716   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1717                            ".str");
1718   if (isUTF16) {
1719     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1720     GV->setAlignment(Align.getQuantity());
1721   }
1722   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1723 
1724   // String length.
1725   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1726   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1727 
1728   // The struct.
1729   C = llvm::ConstantStruct::get(STy, Fields);
1730   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1731                                 llvm::GlobalVariable::PrivateLinkage, C,
1732                                 "_unnamed_nsstring_");
1733   // FIXME. Fix section.
1734   if (const char *Sect =
1735         Features.ObjCNonFragileABI
1736           ? getContext().Target.getNSStringNonFragileABISection()
1737           : getContext().Target.getNSStringSection())
1738     GV->setSection(Sect);
1739   Entry.setValue(GV);
1740 
1741   return GV;
1742 }
1743 
1744 /// GetStringForStringLiteral - Return the appropriate bytes for a
1745 /// string literal, properly padded to match the literal type.
1746 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1747   const char *StrData = E->getStrData();
1748   unsigned Len = E->getByteLength();
1749 
1750   const ConstantArrayType *CAT =
1751     getContext().getAsConstantArrayType(E->getType());
1752   assert(CAT && "String isn't pointer or array!");
1753 
1754   // Resize the string to the right size.
1755   std::string Str(StrData, StrData+Len);
1756   uint64_t RealLen = CAT->getSize().getZExtValue();
1757 
1758   if (E->isWide())
1759     RealLen *= getContext().Target.getWCharWidth()/8;
1760 
1761   Str.resize(RealLen, '\0');
1762 
1763   return Str;
1764 }
1765 
1766 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1767 /// constant array for the given string literal.
1768 llvm::Constant *
1769 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1770   // FIXME: This can be more efficient.
1771   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1772   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1773   if (S->isWide()) {
1774     llvm::Type *DestTy =
1775         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1776     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1777   }
1778   return C;
1779 }
1780 
1781 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1782 /// array for the given ObjCEncodeExpr node.
1783 llvm::Constant *
1784 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1785   std::string Str;
1786   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1787 
1788   return GetAddrOfConstantCString(Str);
1789 }
1790 
1791 
1792 /// GenerateWritableString -- Creates storage for a string literal.
1793 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1794                                              bool constant,
1795                                              CodeGenModule &CGM,
1796                                              const char *GlobalName) {
1797   // Create Constant for this string literal. Don't add a '\0'.
1798   llvm::Constant *C =
1799       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1800 
1801   // Create a global variable for this string
1802   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1803                                   llvm::GlobalValue::PrivateLinkage,
1804                                   C, GlobalName);
1805 }
1806 
1807 /// GetAddrOfConstantString - Returns a pointer to a character array
1808 /// containing the literal. This contents are exactly that of the
1809 /// given string, i.e. it will not be null terminated automatically;
1810 /// see GetAddrOfConstantCString. Note that whether the result is
1811 /// actually a pointer to an LLVM constant depends on
1812 /// Feature.WriteableStrings.
1813 ///
1814 /// The result has pointer to array type.
1815 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1816                                                        const char *GlobalName) {
1817   bool IsConstant = !Features.WritableStrings;
1818 
1819   // Get the default prefix if a name wasn't specified.
1820   if (!GlobalName)
1821     GlobalName = ".str";
1822 
1823   // Don't share any string literals if strings aren't constant.
1824   if (!IsConstant)
1825     return GenerateStringLiteral(str, false, *this, GlobalName);
1826 
1827   llvm::StringMapEntry<llvm::Constant *> &Entry =
1828     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1829 
1830   if (Entry.getValue())
1831     return Entry.getValue();
1832 
1833   // Create a global variable for this.
1834   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1835   Entry.setValue(C);
1836   return C;
1837 }
1838 
1839 /// GetAddrOfConstantCString - Returns a pointer to a character
1840 /// array containing the literal and a terminating '\-'
1841 /// character. The result has pointer to array type.
1842 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1843                                                         const char *GlobalName){
1844   return GetAddrOfConstantString(str + '\0', GlobalName);
1845 }
1846 
1847 /// EmitObjCPropertyImplementations - Emit information for synthesized
1848 /// properties for an implementation.
1849 void CodeGenModule::EmitObjCPropertyImplementations(const
1850                                                     ObjCImplementationDecl *D) {
1851   for (ObjCImplementationDecl::propimpl_iterator
1852          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1853     ObjCPropertyImplDecl *PID = *i;
1854 
1855     // Dynamic is just for type-checking.
1856     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1857       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1858 
1859       // Determine which methods need to be implemented, some may have
1860       // been overridden. Note that ::isSynthesized is not the method
1861       // we want, that just indicates if the decl came from a
1862       // property. What we want to know is if the method is defined in
1863       // this implementation.
1864       if (!D->getInstanceMethod(PD->getGetterName()))
1865         CodeGenFunction(*this).GenerateObjCGetter(
1866                                  const_cast<ObjCImplementationDecl *>(D), PID);
1867       if (!PD->isReadOnly() &&
1868           !D->getInstanceMethod(PD->getSetterName()))
1869         CodeGenFunction(*this).GenerateObjCSetter(
1870                                  const_cast<ObjCImplementationDecl *>(D), PID);
1871     }
1872   }
1873 }
1874 
1875 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1876 /// for an implementation.
1877 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1878   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1879     return;
1880   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1881   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1882   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1883   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1884   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1885                                                   D->getLocation(),
1886                                                   D->getLocation(), cxxSelector,
1887                                                   getContext().VoidTy, 0,
1888                                                   DC, true, false, true,
1889                                                   ObjCMethodDecl::Required);
1890   D->addInstanceMethod(DTORMethod);
1891   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1892 
1893   II = &getContext().Idents.get(".cxx_construct");
1894   cxxSelector = getContext().Selectors.getSelector(0, &II);
1895   // The constructor returns 'self'.
1896   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1897                                                 D->getLocation(),
1898                                                 D->getLocation(), cxxSelector,
1899                                                 getContext().getObjCIdType(), 0,
1900                                                 DC, true, false, true,
1901                                                 ObjCMethodDecl::Required);
1902   D->addInstanceMethod(CTORMethod);
1903   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1904 
1905 
1906 }
1907 
1908 /// EmitNamespace - Emit all declarations in a namespace.
1909 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1910   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1911        I != E; ++I)
1912     EmitTopLevelDecl(*I);
1913 }
1914 
1915 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1916 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1917   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1918       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1919     ErrorUnsupported(LSD, "linkage spec");
1920     return;
1921   }
1922 
1923   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1924        I != E; ++I)
1925     EmitTopLevelDecl(*I);
1926 }
1927 
1928 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1929 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1930   // If an error has occurred, stop code generation, but continue
1931   // parsing and semantic analysis (to ensure all warnings and errors
1932   // are emitted).
1933   if (Diags.hasErrorOccurred())
1934     return;
1935 
1936   // Ignore dependent declarations.
1937   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1938     return;
1939 
1940   switch (D->getKind()) {
1941   case Decl::CXXConversion:
1942   case Decl::CXXMethod:
1943   case Decl::Function:
1944     // Skip function templates
1945     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1946       return;
1947 
1948     EmitGlobal(cast<FunctionDecl>(D));
1949     break;
1950 
1951   case Decl::Var:
1952     EmitGlobal(cast<VarDecl>(D));
1953     break;
1954 
1955   // C++ Decls
1956   case Decl::Namespace:
1957     EmitNamespace(cast<NamespaceDecl>(D));
1958     break;
1959     // No code generation needed.
1960   case Decl::UsingShadow:
1961   case Decl::Using:
1962   case Decl::UsingDirective:
1963   case Decl::ClassTemplate:
1964   case Decl::FunctionTemplate:
1965   case Decl::NamespaceAlias:
1966     break;
1967   case Decl::CXXConstructor:
1968     // Skip function templates
1969     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1970       return;
1971 
1972     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1973     break;
1974   case Decl::CXXDestructor:
1975     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1976     break;
1977 
1978   case Decl::StaticAssert:
1979     // Nothing to do.
1980     break;
1981 
1982   // Objective-C Decls
1983 
1984   // Forward declarations, no (immediate) code generation.
1985   case Decl::ObjCClass:
1986   case Decl::ObjCForwardProtocol:
1987   case Decl::ObjCCategory:
1988   case Decl::ObjCInterface:
1989     break;
1990 
1991   case Decl::ObjCProtocol:
1992     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1993     break;
1994 
1995   case Decl::ObjCCategoryImpl:
1996     // Categories have properties but don't support synthesize so we
1997     // can ignore them here.
1998     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1999     break;
2000 
2001   case Decl::ObjCImplementation: {
2002     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2003     EmitObjCPropertyImplementations(OMD);
2004     EmitObjCIvarInitializations(OMD);
2005     Runtime->GenerateClass(OMD);
2006     break;
2007   }
2008   case Decl::ObjCMethod: {
2009     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2010     // If this is not a prototype, emit the body.
2011     if (OMD->getBody())
2012       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2013     break;
2014   }
2015   case Decl::ObjCCompatibleAlias:
2016     // compatibility-alias is a directive and has no code gen.
2017     break;
2018 
2019   case Decl::LinkageSpec:
2020     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2021     break;
2022 
2023   case Decl::FileScopeAsm: {
2024     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2025     llvm::StringRef AsmString = AD->getAsmString()->getString();
2026 
2027     const std::string &S = getModule().getModuleInlineAsm();
2028     if (S.empty())
2029       getModule().setModuleInlineAsm(AsmString);
2030     else
2031       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2032     break;
2033   }
2034 
2035   default:
2036     // Make sure we handled everything we should, every other kind is a
2037     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2038     // function. Need to recode Decl::Kind to do that easily.
2039     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2040   }
2041 }
2042 
2043 /// Turns the given pointer into a constant.
2044 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2045                                           const void *Ptr) {
2046   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2047   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2048   return llvm::ConstantInt::get(i64, PtrInt);
2049 }
2050 
2051 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2052                                    llvm::NamedMDNode *&GlobalMetadata,
2053                                    GlobalDecl D,
2054                                    llvm::GlobalValue *Addr) {
2055   if (!GlobalMetadata)
2056     GlobalMetadata =
2057       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2058 
2059   // TODO: should we report variant information for ctors/dtors?
2060   llvm::Value *Ops[] = {
2061     Addr,
2062     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2063   };
2064   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2065 }
2066 
2067 /// Emits metadata nodes associating all the global values in the
2068 /// current module with the Decls they came from.  This is useful for
2069 /// projects using IR gen as a subroutine.
2070 ///
2071 /// Since there's currently no way to associate an MDNode directly
2072 /// with an llvm::GlobalValue, we create a global named metadata
2073 /// with the name 'clang.global.decl.ptrs'.
2074 void CodeGenModule::EmitDeclMetadata() {
2075   llvm::NamedMDNode *GlobalMetadata = 0;
2076 
2077   // StaticLocalDeclMap
2078   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2079          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2080        I != E; ++I) {
2081     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2082     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2083   }
2084 }
2085 
2086 /// Emits metadata nodes for all the local variables in the current
2087 /// function.
2088 void CodeGenFunction::EmitDeclMetadata() {
2089   if (LocalDeclMap.empty()) return;
2090 
2091   llvm::LLVMContext &Context = getLLVMContext();
2092 
2093   // Find the unique metadata ID for this name.
2094   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2095 
2096   llvm::NamedMDNode *GlobalMetadata = 0;
2097 
2098   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2099          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2100     const Decl *D = I->first;
2101     llvm::Value *Addr = I->second;
2102 
2103     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2104       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2105       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2106     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2107       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2108       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2109     }
2110   }
2111 }
2112