1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), 54 NSConstantStringClassRef(0), 55 VMContext(M.getContext()) { 56 57 if (!Features.ObjC1) 58 Runtime = 0; 59 else if (!Features.NeXTRuntime) 60 Runtime = CreateGNUObjCRuntime(*this); 61 else if (Features.ObjCNonFragileABI) 62 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 63 else 64 Runtime = CreateMacObjCRuntime(*this); 65 66 if (!Features.CPlusPlus) 67 ABI = 0; 68 else createCXXABI(); 69 70 // If debug info generation is enabled, create the CGDebugInfo object. 71 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 72 } 73 74 CodeGenModule::~CodeGenModule() { 75 delete Runtime; 76 delete ABI; 77 delete DebugInfo; 78 } 79 80 void CodeGenModule::createObjCRuntime() { 81 if (!Features.NeXTRuntime) 82 Runtime = CreateGNUObjCRuntime(*this); 83 else if (Features.ObjCNonFragileABI) 84 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 85 else 86 Runtime = CreateMacObjCRuntime(*this); 87 } 88 89 void CodeGenModule::createCXXABI() { 90 if (Context.Target.getCXXABI() == "microsoft") 91 ABI = CreateMicrosoftCXXABI(*this); 92 else 93 ABI = CreateItaniumCXXABI(*this); 94 } 95 96 void CodeGenModule::Release() { 97 EmitDeferred(); 98 EmitCXXGlobalInitFunc(); 99 EmitCXXGlobalDtorFunc(); 100 if (Runtime) 101 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 102 AddGlobalCtor(ObjCInitFunction); 103 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 104 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 105 EmitAnnotations(); 106 EmitLLVMUsed(); 107 108 if (getCodeGenOpts().EmitDeclMetadata) 109 EmitDeclMetadata(); 110 } 111 112 bool CodeGenModule::isTargetDarwin() const { 113 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 114 } 115 116 /// ErrorUnsupported - Print out an error that codegen doesn't support the 117 /// specified stmt yet. 118 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 119 bool OmitOnError) { 120 if (OmitOnError && getDiags().hasErrorOccurred()) 121 return; 122 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 123 "cannot compile this %0 yet"); 124 std::string Msg = Type; 125 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 126 << Msg << S->getSourceRange(); 127 } 128 129 /// ErrorUnsupported - Print out an error that codegen doesn't support the 130 /// specified decl yet. 131 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 132 bool OmitOnError) { 133 if (OmitOnError && getDiags().hasErrorOccurred()) 134 return; 135 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 136 "cannot compile this %0 yet"); 137 std::string Msg = Type; 138 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 139 } 140 141 LangOptions::VisibilityMode 142 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 143 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 144 if (VD->getStorageClass() == VarDecl::PrivateExtern) 145 return LangOptions::Hidden; 146 147 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 148 switch (attr->getVisibility()) { 149 default: assert(0 && "Unknown visibility!"); 150 case VisibilityAttr::DefaultVisibility: 151 return LangOptions::Default; 152 case VisibilityAttr::HiddenVisibility: 153 return LangOptions::Hidden; 154 case VisibilityAttr::ProtectedVisibility: 155 return LangOptions::Protected; 156 } 157 } 158 159 if (getLangOptions().CPlusPlus) { 160 // Entities subject to an explicit instantiation declaration get default 161 // visibility. 162 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 163 if (Function->getTemplateSpecializationKind() 164 == TSK_ExplicitInstantiationDeclaration) 165 return LangOptions::Default; 166 } else if (const ClassTemplateSpecializationDecl *ClassSpec 167 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 168 if (ClassSpec->getSpecializationKind() 169 == TSK_ExplicitInstantiationDeclaration) 170 return LangOptions::Default; 171 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 172 if (Record->getTemplateSpecializationKind() 173 == TSK_ExplicitInstantiationDeclaration) 174 return LangOptions::Default; 175 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 176 if (Var->isStaticDataMember() && 177 (Var->getTemplateSpecializationKind() 178 == TSK_ExplicitInstantiationDeclaration)) 179 return LangOptions::Default; 180 } 181 182 // If -fvisibility-inlines-hidden was provided, then inline C++ member 183 // functions get "hidden" visibility by default. 184 if (getLangOptions().InlineVisibilityHidden) 185 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 186 if (Method->isInlined()) 187 return LangOptions::Hidden; 188 } 189 190 // This decl should have the same visibility as its parent. 191 if (const DeclContext *DC = D->getDeclContext()) 192 return getDeclVisibilityMode(cast<Decl>(DC)); 193 194 return getLangOptions().getVisibilityMode(); 195 } 196 197 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 198 const Decl *D) const { 199 // Internal definitions always have default visibility. 200 if (GV->hasLocalLinkage()) { 201 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 202 return; 203 } 204 205 switch (getDeclVisibilityMode(D)) { 206 default: assert(0 && "Unknown visibility!"); 207 case LangOptions::Default: 208 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 209 case LangOptions::Hidden: 210 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 211 case LangOptions::Protected: 212 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 213 } 214 } 215 216 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 217 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 218 219 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 220 if (!Str.empty()) 221 return Str; 222 223 if (!getMangleContext().shouldMangleDeclName(ND)) { 224 IdentifierInfo *II = ND->getIdentifier(); 225 assert(II && "Attempt to mangle unnamed decl."); 226 227 Str = II->getName(); 228 return Str; 229 } 230 231 llvm::SmallString<256> Buffer; 232 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 233 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 234 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 235 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 236 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 237 getMangleContext().mangleBlock(GD, BD, Buffer); 238 else 239 getMangleContext().mangleName(ND, Buffer); 240 241 // Allocate space for the mangled name. 242 size_t Length = Buffer.size(); 243 char *Name = MangledNamesAllocator.Allocate<char>(Length); 244 std::copy(Buffer.begin(), Buffer.end(), Name); 245 246 Str = llvm::StringRef(Name, Length); 247 248 return Str; 249 } 250 251 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 252 const BlockDecl *BD) { 253 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 254 } 255 256 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 257 return getModule().getNamedValue(Name); 258 } 259 260 /// AddGlobalCtor - Add a function to the list that will be called before 261 /// main() runs. 262 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 263 // FIXME: Type coercion of void()* types. 264 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 265 } 266 267 /// AddGlobalDtor - Add a function to the list that will be called 268 /// when the module is unloaded. 269 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 270 // FIXME: Type coercion of void()* types. 271 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 272 } 273 274 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 275 // Ctor function type is void()*. 276 llvm::FunctionType* CtorFTy = 277 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 278 std::vector<const llvm::Type*>(), 279 false); 280 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 281 282 // Get the type of a ctor entry, { i32, void ()* }. 283 llvm::StructType* CtorStructTy = 284 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 285 llvm::PointerType::getUnqual(CtorFTy), NULL); 286 287 // Construct the constructor and destructor arrays. 288 std::vector<llvm::Constant*> Ctors; 289 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 290 std::vector<llvm::Constant*> S; 291 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 292 I->second, false)); 293 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 294 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 295 } 296 297 if (!Ctors.empty()) { 298 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 299 new llvm::GlobalVariable(TheModule, AT, false, 300 llvm::GlobalValue::AppendingLinkage, 301 llvm::ConstantArray::get(AT, Ctors), 302 GlobalName); 303 } 304 } 305 306 void CodeGenModule::EmitAnnotations() { 307 if (Annotations.empty()) 308 return; 309 310 // Create a new global variable for the ConstantStruct in the Module. 311 llvm::Constant *Array = 312 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 313 Annotations.size()), 314 Annotations); 315 llvm::GlobalValue *gv = 316 new llvm::GlobalVariable(TheModule, Array->getType(), false, 317 llvm::GlobalValue::AppendingLinkage, Array, 318 "llvm.global.annotations"); 319 gv->setSection("llvm.metadata"); 320 } 321 322 static CodeGenModule::GVALinkage 323 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 324 const LangOptions &Features) { 325 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 326 327 Linkage L = FD->getLinkage(); 328 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 329 FD->getType()->getLinkage() == UniqueExternalLinkage) 330 L = UniqueExternalLinkage; 331 332 switch (L) { 333 case NoLinkage: 334 case InternalLinkage: 335 case UniqueExternalLinkage: 336 return CodeGenModule::GVA_Internal; 337 338 case ExternalLinkage: 339 switch (FD->getTemplateSpecializationKind()) { 340 case TSK_Undeclared: 341 case TSK_ExplicitSpecialization: 342 External = CodeGenModule::GVA_StrongExternal; 343 break; 344 345 case TSK_ExplicitInstantiationDefinition: 346 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 347 348 case TSK_ExplicitInstantiationDeclaration: 349 case TSK_ImplicitInstantiation: 350 External = CodeGenModule::GVA_TemplateInstantiation; 351 break; 352 } 353 } 354 355 if (!FD->isInlined()) 356 return External; 357 358 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 359 // GNU or C99 inline semantics. Determine whether this symbol should be 360 // externally visible. 361 if (FD->isInlineDefinitionExternallyVisible()) 362 return External; 363 364 // C99 inline semantics, where the symbol is not externally visible. 365 return CodeGenModule::GVA_C99Inline; 366 } 367 368 // C++0x [temp.explicit]p9: 369 // [ Note: The intent is that an inline function that is the subject of 370 // an explicit instantiation declaration will still be implicitly 371 // instantiated when used so that the body can be considered for 372 // inlining, but that no out-of-line copy of the inline function would be 373 // generated in the translation unit. -- end note ] 374 if (FD->getTemplateSpecializationKind() 375 == TSK_ExplicitInstantiationDeclaration) 376 return CodeGenModule::GVA_C99Inline; 377 378 return CodeGenModule::GVA_CXXInline; 379 } 380 381 llvm::GlobalValue::LinkageTypes 382 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 383 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 384 385 if (Linkage == GVA_Internal) 386 return llvm::Function::InternalLinkage; 387 388 if (D->hasAttr<DLLExportAttr>()) 389 return llvm::Function::DLLExportLinkage; 390 391 if (D->hasAttr<WeakAttr>()) 392 return llvm::Function::WeakAnyLinkage; 393 394 // In C99 mode, 'inline' functions are guaranteed to have a strong 395 // definition somewhere else, so we can use available_externally linkage. 396 if (Linkage == GVA_C99Inline) 397 return llvm::Function::AvailableExternallyLinkage; 398 399 // In C++, the compiler has to emit a definition in every translation unit 400 // that references the function. We should use linkonce_odr because 401 // a) if all references in this translation unit are optimized away, we 402 // don't need to codegen it. b) if the function persists, it needs to be 403 // merged with other definitions. c) C++ has the ODR, so we know the 404 // definition is dependable. 405 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 406 return llvm::Function::LinkOnceODRLinkage; 407 408 // An explicit instantiation of a template has weak linkage, since 409 // explicit instantiations can occur in multiple translation units 410 // and must all be equivalent. However, we are not allowed to 411 // throw away these explicit instantiations. 412 if (Linkage == GVA_ExplicitTemplateInstantiation) 413 return llvm::Function::WeakODRLinkage; 414 415 // Otherwise, we have strong external linkage. 416 assert(Linkage == GVA_StrongExternal); 417 return llvm::Function::ExternalLinkage; 418 } 419 420 421 /// SetFunctionDefinitionAttributes - Set attributes for a global. 422 /// 423 /// FIXME: This is currently only done for aliases and functions, but not for 424 /// variables (these details are set in EmitGlobalVarDefinition for variables). 425 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 426 llvm::GlobalValue *GV) { 427 SetCommonAttributes(D, GV); 428 } 429 430 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 431 const CGFunctionInfo &Info, 432 llvm::Function *F) { 433 unsigned CallingConv; 434 AttributeListType AttributeList; 435 ConstructAttributeList(Info, D, AttributeList, CallingConv); 436 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 437 AttributeList.size())); 438 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 442 llvm::Function *F) { 443 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 444 F->addFnAttr(llvm::Attribute::NoUnwind); 445 446 if (D->hasAttr<AlwaysInlineAttr>()) 447 F->addFnAttr(llvm::Attribute::AlwaysInline); 448 449 if (D->hasAttr<NoInlineAttr>()) 450 F->addFnAttr(llvm::Attribute::NoInline); 451 452 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 453 F->addFnAttr(llvm::Attribute::StackProtect); 454 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 455 F->addFnAttr(llvm::Attribute::StackProtectReq); 456 457 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 458 unsigned width = Context.Target.getCharWidth(); 459 F->setAlignment(AA->getAlignment() / width); 460 while ((AA = AA->getNext<AlignedAttr>())) 461 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 462 } 463 // C++ ABI requires 2-byte alignment for member functions. 464 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 465 F->setAlignment(2); 466 } 467 468 void CodeGenModule::SetCommonAttributes(const Decl *D, 469 llvm::GlobalValue *GV) { 470 setGlobalVisibility(GV, D); 471 472 if (D->hasAttr<UsedAttr>()) 473 AddUsedGlobal(GV); 474 475 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 476 GV->setSection(SA->getName()); 477 478 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 479 } 480 481 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 482 llvm::Function *F, 483 const CGFunctionInfo &FI) { 484 SetLLVMFunctionAttributes(D, FI, F); 485 SetLLVMFunctionAttributesForDefinition(D, F); 486 487 F->setLinkage(llvm::Function::InternalLinkage); 488 489 SetCommonAttributes(D, F); 490 } 491 492 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 493 llvm::Function *F, 494 bool IsIncompleteFunction) { 495 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 496 497 if (!IsIncompleteFunction) 498 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 499 500 // Only a few attributes are set on declarations; these may later be 501 // overridden by a definition. 502 503 if (FD->hasAttr<DLLImportAttr>()) { 504 F->setLinkage(llvm::Function::DLLImportLinkage); 505 } else if (FD->hasAttr<WeakAttr>() || 506 FD->hasAttr<WeakImportAttr>()) { 507 // "extern_weak" is overloaded in LLVM; we probably should have 508 // separate linkage types for this. 509 F->setLinkage(llvm::Function::ExternalWeakLinkage); 510 } else { 511 F->setLinkage(llvm::Function::ExternalLinkage); 512 } 513 514 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 515 F->setSection(SA->getName()); 516 } 517 518 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 519 assert(!GV->isDeclaration() && 520 "Only globals with definition can force usage."); 521 LLVMUsed.push_back(GV); 522 } 523 524 void CodeGenModule::EmitLLVMUsed() { 525 // Don't create llvm.used if there is no need. 526 if (LLVMUsed.empty()) 527 return; 528 529 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 530 531 // Convert LLVMUsed to what ConstantArray needs. 532 std::vector<llvm::Constant*> UsedArray; 533 UsedArray.resize(LLVMUsed.size()); 534 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 535 UsedArray[i] = 536 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 537 i8PTy); 538 } 539 540 if (UsedArray.empty()) 541 return; 542 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 543 544 llvm::GlobalVariable *GV = 545 new llvm::GlobalVariable(getModule(), ATy, false, 546 llvm::GlobalValue::AppendingLinkage, 547 llvm::ConstantArray::get(ATy, UsedArray), 548 "llvm.used"); 549 550 GV->setSection("llvm.metadata"); 551 } 552 553 void CodeGenModule::EmitDeferred() { 554 // Emit code for any potentially referenced deferred decls. Since a 555 // previously unused static decl may become used during the generation of code 556 // for a static function, iterate until no changes are made. 557 558 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 559 if (!DeferredVTables.empty()) { 560 const CXXRecordDecl *RD = DeferredVTables.back(); 561 DeferredVTables.pop_back(); 562 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 563 continue; 564 } 565 566 GlobalDecl D = DeferredDeclsToEmit.back(); 567 DeferredDeclsToEmit.pop_back(); 568 569 // Check to see if we've already emitted this. This is necessary 570 // for a couple of reasons: first, decls can end up in the 571 // deferred-decls queue multiple times, and second, decls can end 572 // up with definitions in unusual ways (e.g. by an extern inline 573 // function acquiring a strong function redefinition). Just 574 // ignore these cases. 575 // 576 // TODO: That said, looking this up multiple times is very wasteful. 577 llvm::StringRef Name = getMangledName(D); 578 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 579 assert(CGRef && "Deferred decl wasn't referenced?"); 580 581 if (!CGRef->isDeclaration()) 582 continue; 583 584 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 585 // purposes an alias counts as a definition. 586 if (isa<llvm::GlobalAlias>(CGRef)) 587 continue; 588 589 // Otherwise, emit the definition and move on to the next one. 590 EmitGlobalDefinition(D); 591 } 592 } 593 594 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 595 /// annotation information for a given GlobalValue. The annotation struct is 596 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 597 /// GlobalValue being annotated. The second field is the constant string 598 /// created from the AnnotateAttr's annotation. The third field is a constant 599 /// string containing the name of the translation unit. The fourth field is 600 /// the line number in the file of the annotated value declaration. 601 /// 602 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 603 /// appears to. 604 /// 605 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 606 const AnnotateAttr *AA, 607 unsigned LineNo) { 608 llvm::Module *M = &getModule(); 609 610 // get [N x i8] constants for the annotation string, and the filename string 611 // which are the 2nd and 3rd elements of the global annotation structure. 612 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 613 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 614 AA->getAnnotation(), true); 615 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 616 M->getModuleIdentifier(), 617 true); 618 619 // Get the two global values corresponding to the ConstantArrays we just 620 // created to hold the bytes of the strings. 621 llvm::GlobalValue *annoGV = 622 new llvm::GlobalVariable(*M, anno->getType(), false, 623 llvm::GlobalValue::PrivateLinkage, anno, 624 GV->getName()); 625 // translation unit name string, emitted into the llvm.metadata section. 626 llvm::GlobalValue *unitGV = 627 new llvm::GlobalVariable(*M, unit->getType(), false, 628 llvm::GlobalValue::PrivateLinkage, unit, 629 ".str"); 630 631 // Create the ConstantStruct for the global annotation. 632 llvm::Constant *Fields[4] = { 633 llvm::ConstantExpr::getBitCast(GV, SBP), 634 llvm::ConstantExpr::getBitCast(annoGV, SBP), 635 llvm::ConstantExpr::getBitCast(unitGV, SBP), 636 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 637 }; 638 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 639 } 640 641 static CodeGenModule::GVALinkage 642 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 643 // If this is a static data member, compute the kind of template 644 // specialization. Otherwise, this variable is not part of a 645 // template. 646 TemplateSpecializationKind TSK = TSK_Undeclared; 647 if (VD->isStaticDataMember()) 648 TSK = VD->getTemplateSpecializationKind(); 649 650 Linkage L = VD->getLinkage(); 651 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 652 VD->getType()->getLinkage() == UniqueExternalLinkage) 653 L = UniqueExternalLinkage; 654 655 switch (L) { 656 case NoLinkage: 657 case InternalLinkage: 658 case UniqueExternalLinkage: 659 return CodeGenModule::GVA_Internal; 660 661 case ExternalLinkage: 662 switch (TSK) { 663 case TSK_Undeclared: 664 case TSK_ExplicitSpecialization: 665 return CodeGenModule::GVA_StrongExternal; 666 667 case TSK_ExplicitInstantiationDeclaration: 668 llvm_unreachable("Variable should not be instantiated"); 669 // Fall through to treat this like any other instantiation. 670 671 case TSK_ExplicitInstantiationDefinition: 672 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 673 674 case TSK_ImplicitInstantiation: 675 return CodeGenModule::GVA_TemplateInstantiation; 676 } 677 } 678 679 return CodeGenModule::GVA_StrongExternal; 680 } 681 682 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 683 // Never defer when EmitAllDecls is specified or the decl has 684 // attribute used. 685 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 686 return false; 687 688 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 689 // Constructors and destructors should never be deferred. 690 if (FD->hasAttr<ConstructorAttr>() || 691 FD->hasAttr<DestructorAttr>()) 692 return false; 693 694 // The key function for a class must never be deferred. 695 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 696 const CXXRecordDecl *RD = MD->getParent(); 697 if (MD->isOutOfLine() && RD->isDynamicClass()) { 698 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 699 if (KeyFunction && 700 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 701 return false; 702 } 703 } 704 705 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 706 707 // static, static inline, always_inline, and extern inline functions can 708 // always be deferred. Normal inline functions can be deferred in C99/C++. 709 // Implicit template instantiations can also be deferred in C++. 710 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 711 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 712 return true; 713 return false; 714 } 715 716 const VarDecl *VD = cast<VarDecl>(Global); 717 assert(VD->isFileVarDecl() && "Invalid decl"); 718 719 // We never want to defer structs that have non-trivial constructors or 720 // destructors. 721 722 // FIXME: Handle references. 723 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 724 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 725 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 726 return false; 727 } 728 } 729 730 GVALinkage L = GetLinkageForVariable(getContext(), VD); 731 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 732 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 733 return true; 734 } 735 736 return false; 737 } 738 739 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 740 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 741 assert(AA && "No alias?"); 742 743 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 744 745 // See if there is already something with the target's name in the module. 746 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 747 748 llvm::Constant *Aliasee; 749 if (isa<llvm::FunctionType>(DeclTy)) 750 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 751 else 752 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 753 llvm::PointerType::getUnqual(DeclTy), 0); 754 if (!Entry) { 755 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 756 F->setLinkage(llvm::Function::ExternalWeakLinkage); 757 WeakRefReferences.insert(F); 758 } 759 760 return Aliasee; 761 } 762 763 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 764 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 765 766 // Weak references don't produce any output by themselves. 767 if (Global->hasAttr<WeakRefAttr>()) 768 return; 769 770 // If this is an alias definition (which otherwise looks like a declaration) 771 // emit it now. 772 if (Global->hasAttr<AliasAttr>()) 773 return EmitAliasDefinition(GD); 774 775 // Ignore declarations, they will be emitted on their first use. 776 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 777 // Forward declarations are emitted lazily on first use. 778 if (!FD->isThisDeclarationADefinition()) 779 return; 780 } else { 781 const VarDecl *VD = cast<VarDecl>(Global); 782 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 783 784 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 785 return; 786 } 787 788 // Defer code generation when possible if this is a static definition, inline 789 // function etc. These we only want to emit if they are used. 790 if (!MayDeferGeneration(Global)) { 791 // Emit the definition if it can't be deferred. 792 EmitGlobalDefinition(GD); 793 return; 794 } 795 796 // If the value has already been used, add it directly to the 797 // DeferredDeclsToEmit list. 798 llvm::StringRef MangledName = getMangledName(GD); 799 if (GetGlobalValue(MangledName)) 800 DeferredDeclsToEmit.push_back(GD); 801 else { 802 // Otherwise, remember that we saw a deferred decl with this name. The 803 // first use of the mangled name will cause it to move into 804 // DeferredDeclsToEmit. 805 DeferredDecls[MangledName] = GD; 806 } 807 } 808 809 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 810 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 811 812 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 813 Context.getSourceManager(), 814 "Generating code for declaration"); 815 816 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 817 if (Method->isVirtual()) 818 getVTables().EmitThunks(GD); 819 820 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 821 return EmitCXXConstructor(CD, GD.getCtorType()); 822 823 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 824 return EmitCXXDestructor(DD, GD.getDtorType()); 825 826 if (isa<FunctionDecl>(D)) 827 return EmitGlobalFunctionDefinition(GD); 828 829 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 830 return EmitGlobalVarDefinition(VD); 831 832 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 833 } 834 835 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 836 /// module, create and return an llvm Function with the specified type. If there 837 /// is something in the module with the specified name, return it potentially 838 /// bitcasted to the right type. 839 /// 840 /// If D is non-null, it specifies a decl that correspond to this. This is used 841 /// to set the attributes on the function when it is first created. 842 llvm::Constant * 843 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 844 const llvm::Type *Ty, 845 GlobalDecl D) { 846 // Lookup the entry, lazily creating it if necessary. 847 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 848 if (Entry) { 849 if (WeakRefReferences.count(Entry)) { 850 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 851 if (FD && !FD->hasAttr<WeakAttr>()) 852 Entry->setLinkage(llvm::Function::ExternalLinkage); 853 854 WeakRefReferences.erase(Entry); 855 } 856 857 if (Entry->getType()->getElementType() == Ty) 858 return Entry; 859 860 // Make sure the result is of the correct type. 861 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 862 return llvm::ConstantExpr::getBitCast(Entry, PTy); 863 } 864 865 // This function doesn't have a complete type (for example, the return 866 // type is an incomplete struct). Use a fake type instead, and make 867 // sure not to try to set attributes. 868 bool IsIncompleteFunction = false; 869 870 const llvm::FunctionType *FTy; 871 if (isa<llvm::FunctionType>(Ty)) { 872 FTy = cast<llvm::FunctionType>(Ty); 873 } else { 874 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 875 std::vector<const llvm::Type*>(), false); 876 IsIncompleteFunction = true; 877 } 878 879 llvm::Function *F = llvm::Function::Create(FTy, 880 llvm::Function::ExternalLinkage, 881 MangledName, &getModule()); 882 assert(F->getName() == MangledName && "name was uniqued!"); 883 if (D.getDecl()) 884 SetFunctionAttributes(D, F, IsIncompleteFunction); 885 886 // This is the first use or definition of a mangled name. If there is a 887 // deferred decl with this name, remember that we need to emit it at the end 888 // of the file. 889 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 890 if (DDI != DeferredDecls.end()) { 891 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 892 // list, and remove it from DeferredDecls (since we don't need it anymore). 893 DeferredDeclsToEmit.push_back(DDI->second); 894 DeferredDecls.erase(DDI); 895 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 896 // If this the first reference to a C++ inline function in a class, queue up 897 // the deferred function body for emission. These are not seen as 898 // top-level declarations. 899 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 900 DeferredDeclsToEmit.push_back(D); 901 // A called constructor which has no definition or declaration need be 902 // synthesized. 903 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 904 if (CD->isImplicit()) { 905 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 906 DeferredDeclsToEmit.push_back(D); 907 } 908 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 909 if (DD->isImplicit()) { 910 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 911 DeferredDeclsToEmit.push_back(D); 912 } 913 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 914 if (MD->isCopyAssignment() && MD->isImplicit()) { 915 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 916 DeferredDeclsToEmit.push_back(D); 917 } 918 } 919 } 920 921 // Make sure the result is of the requested type. 922 if (!IsIncompleteFunction) { 923 assert(F->getType()->getElementType() == Ty); 924 return F; 925 } 926 927 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 928 return llvm::ConstantExpr::getBitCast(F, PTy); 929 } 930 931 /// GetAddrOfFunction - Return the address of the given function. If Ty is 932 /// non-null, then this function will use the specified type if it has to 933 /// create it (this occurs when we see a definition of the function). 934 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 935 const llvm::Type *Ty) { 936 // If there was no specific requested type, just convert it now. 937 if (!Ty) 938 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 939 940 llvm::StringRef MangledName = getMangledName(GD); 941 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 942 } 943 944 /// CreateRuntimeFunction - Create a new runtime function with the specified 945 /// type and name. 946 llvm::Constant * 947 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 948 llvm::StringRef Name) { 949 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 950 } 951 952 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 953 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 954 return false; 955 if (Context.getLangOptions().CPlusPlus && 956 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 957 // FIXME: We should do something fancier here! 958 return false; 959 } 960 return true; 961 } 962 963 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 964 /// create and return an llvm GlobalVariable with the specified type. If there 965 /// is something in the module with the specified name, return it potentially 966 /// bitcasted to the right type. 967 /// 968 /// If D is non-null, it specifies a decl that correspond to this. This is used 969 /// to set the attributes on the global when it is first created. 970 llvm::Constant * 971 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 972 const llvm::PointerType *Ty, 973 const VarDecl *D) { 974 // Lookup the entry, lazily creating it if necessary. 975 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 976 if (Entry) { 977 if (WeakRefReferences.count(Entry)) { 978 if (D && !D->hasAttr<WeakAttr>()) 979 Entry->setLinkage(llvm::Function::ExternalLinkage); 980 981 WeakRefReferences.erase(Entry); 982 } 983 984 if (Entry->getType() == Ty) 985 return Entry; 986 987 // Make sure the result is of the correct type. 988 return llvm::ConstantExpr::getBitCast(Entry, Ty); 989 } 990 991 // This is the first use or definition of a mangled name. If there is a 992 // deferred decl with this name, remember that we need to emit it at the end 993 // of the file. 994 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 995 if (DDI != DeferredDecls.end()) { 996 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 997 // list, and remove it from DeferredDecls (since we don't need it anymore). 998 DeferredDeclsToEmit.push_back(DDI->second); 999 DeferredDecls.erase(DDI); 1000 } 1001 1002 llvm::GlobalVariable *GV = 1003 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1004 llvm::GlobalValue::ExternalLinkage, 1005 0, MangledName, 0, 1006 false, Ty->getAddressSpace()); 1007 1008 // Handle things which are present even on external declarations. 1009 if (D) { 1010 // FIXME: This code is overly simple and should be merged with other global 1011 // handling. 1012 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1013 1014 // FIXME: Merge with other attribute handling code. 1015 if (D->getStorageClass() == VarDecl::PrivateExtern) 1016 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1017 1018 if (D->hasAttr<WeakAttr>() || 1019 D->hasAttr<WeakImportAttr>()) 1020 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1021 1022 GV->setThreadLocal(D->isThreadSpecified()); 1023 } 1024 1025 return GV; 1026 } 1027 1028 1029 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1030 /// given global variable. If Ty is non-null and if the global doesn't exist, 1031 /// then it will be greated with the specified type instead of whatever the 1032 /// normal requested type would be. 1033 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1034 const llvm::Type *Ty) { 1035 assert(D->hasGlobalStorage() && "Not a global variable"); 1036 QualType ASTTy = D->getType(); 1037 if (Ty == 0) 1038 Ty = getTypes().ConvertTypeForMem(ASTTy); 1039 1040 const llvm::PointerType *PTy = 1041 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1042 1043 llvm::StringRef MangledName = getMangledName(D); 1044 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1045 } 1046 1047 /// CreateRuntimeVariable - Create a new runtime global variable with the 1048 /// specified type and name. 1049 llvm::Constant * 1050 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1051 llvm::StringRef Name) { 1052 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1053 } 1054 1055 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1056 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1057 1058 if (MayDeferGeneration(D)) { 1059 // If we have not seen a reference to this variable yet, place it 1060 // into the deferred declarations table to be emitted if needed 1061 // later. 1062 llvm::StringRef MangledName = getMangledName(D); 1063 if (!GetGlobalValue(MangledName)) { 1064 DeferredDecls[MangledName] = D; 1065 return; 1066 } 1067 } 1068 1069 // The tentative definition is the only definition. 1070 EmitGlobalVarDefinition(D); 1071 } 1072 1073 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1074 if (DefinitionRequired) 1075 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1076 } 1077 1078 llvm::GlobalVariable::LinkageTypes 1079 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1080 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1081 return llvm::GlobalVariable::InternalLinkage; 1082 1083 if (const CXXMethodDecl *KeyFunction 1084 = RD->getASTContext().getKeyFunction(RD)) { 1085 // If this class has a key function, use that to determine the linkage of 1086 // the vtable. 1087 const FunctionDecl *Def = 0; 1088 if (KeyFunction->hasBody(Def)) 1089 KeyFunction = cast<CXXMethodDecl>(Def); 1090 1091 switch (KeyFunction->getTemplateSpecializationKind()) { 1092 case TSK_Undeclared: 1093 case TSK_ExplicitSpecialization: 1094 if (KeyFunction->isInlined()) 1095 return llvm::GlobalVariable::WeakODRLinkage; 1096 1097 return llvm::GlobalVariable::ExternalLinkage; 1098 1099 case TSK_ImplicitInstantiation: 1100 case TSK_ExplicitInstantiationDefinition: 1101 return llvm::GlobalVariable::WeakODRLinkage; 1102 1103 case TSK_ExplicitInstantiationDeclaration: 1104 // FIXME: Use available_externally linkage. However, this currently 1105 // breaks LLVM's build due to undefined symbols. 1106 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1107 return llvm::GlobalVariable::WeakODRLinkage; 1108 } 1109 } 1110 1111 switch (RD->getTemplateSpecializationKind()) { 1112 case TSK_Undeclared: 1113 case TSK_ExplicitSpecialization: 1114 case TSK_ImplicitInstantiation: 1115 case TSK_ExplicitInstantiationDefinition: 1116 return llvm::GlobalVariable::WeakODRLinkage; 1117 1118 case TSK_ExplicitInstantiationDeclaration: 1119 // FIXME: Use available_externally linkage. However, this currently 1120 // breaks LLVM's build due to undefined symbols. 1121 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1122 return llvm::GlobalVariable::WeakODRLinkage; 1123 } 1124 1125 // Silence GCC warning. 1126 return llvm::GlobalVariable::WeakODRLinkage; 1127 } 1128 1129 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1130 return CharUnits::fromQuantity( 1131 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1132 } 1133 1134 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1135 llvm::Constant *Init = 0; 1136 QualType ASTTy = D->getType(); 1137 bool NonConstInit = false; 1138 1139 const Expr *InitExpr = D->getAnyInitializer(); 1140 1141 if (!InitExpr) { 1142 // This is a tentative definition; tentative definitions are 1143 // implicitly initialized with { 0 }. 1144 // 1145 // Note that tentative definitions are only emitted at the end of 1146 // a translation unit, so they should never have incomplete 1147 // type. In addition, EmitTentativeDefinition makes sure that we 1148 // never attempt to emit a tentative definition if a real one 1149 // exists. A use may still exists, however, so we still may need 1150 // to do a RAUW. 1151 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1152 Init = EmitNullConstant(D->getType()); 1153 } else { 1154 Init = EmitConstantExpr(InitExpr, D->getType()); 1155 if (!Init) { 1156 QualType T = InitExpr->getType(); 1157 if (D->getType()->isReferenceType()) 1158 T = D->getType(); 1159 1160 if (getLangOptions().CPlusPlus) { 1161 EmitCXXGlobalVarDeclInitFunc(D); 1162 Init = EmitNullConstant(T); 1163 NonConstInit = true; 1164 } else { 1165 ErrorUnsupported(D, "static initializer"); 1166 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1167 } 1168 } 1169 } 1170 1171 const llvm::Type* InitType = Init->getType(); 1172 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1173 1174 // Strip off a bitcast if we got one back. 1175 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1176 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1177 // all zero index gep. 1178 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1179 Entry = CE->getOperand(0); 1180 } 1181 1182 // Entry is now either a Function or GlobalVariable. 1183 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1184 1185 // We have a definition after a declaration with the wrong type. 1186 // We must make a new GlobalVariable* and update everything that used OldGV 1187 // (a declaration or tentative definition) with the new GlobalVariable* 1188 // (which will be a definition). 1189 // 1190 // This happens if there is a prototype for a global (e.g. 1191 // "extern int x[];") and then a definition of a different type (e.g. 1192 // "int x[10];"). This also happens when an initializer has a different type 1193 // from the type of the global (this happens with unions). 1194 if (GV == 0 || 1195 GV->getType()->getElementType() != InitType || 1196 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1197 1198 // Move the old entry aside so that we'll create a new one. 1199 Entry->setName(llvm::StringRef()); 1200 1201 // Make a new global with the correct type, this is now guaranteed to work. 1202 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1203 1204 // Replace all uses of the old global with the new global 1205 llvm::Constant *NewPtrForOldDecl = 1206 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1207 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1208 1209 // Erase the old global, since it is no longer used. 1210 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1211 } 1212 1213 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1214 SourceManager &SM = Context.getSourceManager(); 1215 AddAnnotation(EmitAnnotateAttr(GV, AA, 1216 SM.getInstantiationLineNumber(D->getLocation()))); 1217 } 1218 1219 GV->setInitializer(Init); 1220 1221 // If it is safe to mark the global 'constant', do so now. 1222 GV->setConstant(false); 1223 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1224 GV->setConstant(true); 1225 1226 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1227 1228 // Set the llvm linkage type as appropriate. 1229 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1230 if (Linkage == GVA_Internal) 1231 GV->setLinkage(llvm::Function::InternalLinkage); 1232 else if (D->hasAttr<DLLImportAttr>()) 1233 GV->setLinkage(llvm::Function::DLLImportLinkage); 1234 else if (D->hasAttr<DLLExportAttr>()) 1235 GV->setLinkage(llvm::Function::DLLExportLinkage); 1236 else if (D->hasAttr<WeakAttr>()) { 1237 if (GV->isConstant()) 1238 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1239 else 1240 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1241 } else if (Linkage == GVA_TemplateInstantiation || 1242 Linkage == GVA_ExplicitTemplateInstantiation) 1243 // FIXME: It seems like we can provide more specific linkage here 1244 // (LinkOnceODR, WeakODR). 1245 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1246 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1247 !D->hasExternalStorage() && !D->getInit() && 1248 !D->getAttr<SectionAttr>()) { 1249 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1250 // common vars aren't constant even if declared const. 1251 GV->setConstant(false); 1252 } else 1253 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1254 1255 SetCommonAttributes(D, GV); 1256 1257 // Emit global variable debug information. 1258 if (CGDebugInfo *DI = getDebugInfo()) { 1259 DI->setLocation(D->getLocation()); 1260 DI->EmitGlobalVariable(GV, D); 1261 } 1262 } 1263 1264 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1265 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1266 /// existing call uses of the old function in the module, this adjusts them to 1267 /// call the new function directly. 1268 /// 1269 /// This is not just a cleanup: the always_inline pass requires direct calls to 1270 /// functions to be able to inline them. If there is a bitcast in the way, it 1271 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1272 /// run at -O0. 1273 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1274 llvm::Function *NewFn) { 1275 // If we're redefining a global as a function, don't transform it. 1276 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1277 if (OldFn == 0) return; 1278 1279 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1280 llvm::SmallVector<llvm::Value*, 4> ArgList; 1281 1282 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1283 UI != E; ) { 1284 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1285 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1286 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1287 llvm::CallSite CS(CI); 1288 if (!CI || !CS.isCallee(I)) continue; 1289 1290 // If the return types don't match exactly, and if the call isn't dead, then 1291 // we can't transform this call. 1292 if (CI->getType() != NewRetTy && !CI->use_empty()) 1293 continue; 1294 1295 // If the function was passed too few arguments, don't transform. If extra 1296 // arguments were passed, we silently drop them. If any of the types 1297 // mismatch, we don't transform. 1298 unsigned ArgNo = 0; 1299 bool DontTransform = false; 1300 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1301 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1302 if (CS.arg_size() == ArgNo || 1303 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1304 DontTransform = true; 1305 break; 1306 } 1307 } 1308 if (DontTransform) 1309 continue; 1310 1311 // Okay, we can transform this. Create the new call instruction and copy 1312 // over the required information. 1313 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1314 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1315 ArgList.end(), "", CI); 1316 ArgList.clear(); 1317 if (!NewCall->getType()->isVoidTy()) 1318 NewCall->takeName(CI); 1319 NewCall->setAttributes(CI->getAttributes()); 1320 NewCall->setCallingConv(CI->getCallingConv()); 1321 1322 // Finally, remove the old call, replacing any uses with the new one. 1323 if (!CI->use_empty()) 1324 CI->replaceAllUsesWith(NewCall); 1325 1326 // Copy debug location attached to CI. 1327 if (!CI->getDebugLoc().isUnknown()) 1328 NewCall->setDebugLoc(CI->getDebugLoc()); 1329 CI->eraseFromParent(); 1330 } 1331 } 1332 1333 1334 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1335 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1336 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1337 getMangleContext().mangleInitDiscriminator(); 1338 // Get or create the prototype for the function. 1339 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1340 1341 // Strip off a bitcast if we got one back. 1342 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1343 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1344 Entry = CE->getOperand(0); 1345 } 1346 1347 1348 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1349 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1350 1351 // If the types mismatch then we have to rewrite the definition. 1352 assert(OldFn->isDeclaration() && 1353 "Shouldn't replace non-declaration"); 1354 1355 // F is the Function* for the one with the wrong type, we must make a new 1356 // Function* and update everything that used F (a declaration) with the new 1357 // Function* (which will be a definition). 1358 // 1359 // This happens if there is a prototype for a function 1360 // (e.g. "int f()") and then a definition of a different type 1361 // (e.g. "int f(int x)"). Move the old function aside so that it 1362 // doesn't interfere with GetAddrOfFunction. 1363 OldFn->setName(llvm::StringRef()); 1364 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1365 1366 // If this is an implementation of a function without a prototype, try to 1367 // replace any existing uses of the function (which may be calls) with uses 1368 // of the new function 1369 if (D->getType()->isFunctionNoProtoType()) { 1370 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1371 OldFn->removeDeadConstantUsers(); 1372 } 1373 1374 // Replace uses of F with the Function we will endow with a body. 1375 if (!Entry->use_empty()) { 1376 llvm::Constant *NewPtrForOldDecl = 1377 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1378 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1379 } 1380 1381 // Ok, delete the old function now, which is dead. 1382 OldFn->eraseFromParent(); 1383 1384 Entry = NewFn; 1385 } 1386 1387 llvm::Function *Fn = cast<llvm::Function>(Entry); 1388 setFunctionLinkage(D, Fn); 1389 1390 CodeGenFunction(*this).GenerateCode(D, Fn); 1391 1392 SetFunctionDefinitionAttributes(D, Fn); 1393 SetLLVMFunctionAttributesForDefinition(D, Fn); 1394 1395 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1396 AddGlobalCtor(Fn, CA->getPriority()); 1397 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1398 AddGlobalDtor(Fn, DA->getPriority()); 1399 } 1400 1401 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1402 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1403 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1404 assert(AA && "Not an alias?"); 1405 1406 llvm::StringRef MangledName = getMangledName(GD); 1407 1408 // If there is a definition in the module, then it wins over the alias. 1409 // This is dubious, but allow it to be safe. Just ignore the alias. 1410 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1411 if (Entry && !Entry->isDeclaration()) 1412 return; 1413 1414 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1415 1416 // Create a reference to the named value. This ensures that it is emitted 1417 // if a deferred decl. 1418 llvm::Constant *Aliasee; 1419 if (isa<llvm::FunctionType>(DeclTy)) 1420 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1421 else 1422 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1423 llvm::PointerType::getUnqual(DeclTy), 0); 1424 1425 // Create the new alias itself, but don't set a name yet. 1426 llvm::GlobalValue *GA = 1427 new llvm::GlobalAlias(Aliasee->getType(), 1428 llvm::Function::ExternalLinkage, 1429 "", Aliasee, &getModule()); 1430 1431 if (Entry) { 1432 assert(Entry->isDeclaration()); 1433 1434 // If there is a declaration in the module, then we had an extern followed 1435 // by the alias, as in: 1436 // extern int test6(); 1437 // ... 1438 // int test6() __attribute__((alias("test7"))); 1439 // 1440 // Remove it and replace uses of it with the alias. 1441 GA->takeName(Entry); 1442 1443 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1444 Entry->getType())); 1445 Entry->eraseFromParent(); 1446 } else { 1447 GA->setName(MangledName); 1448 } 1449 1450 // Set attributes which are particular to an alias; this is a 1451 // specialization of the attributes which may be set on a global 1452 // variable/function. 1453 if (D->hasAttr<DLLExportAttr>()) { 1454 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1455 // The dllexport attribute is ignored for undefined symbols. 1456 if (FD->hasBody()) 1457 GA->setLinkage(llvm::Function::DLLExportLinkage); 1458 } else { 1459 GA->setLinkage(llvm::Function::DLLExportLinkage); 1460 } 1461 } else if (D->hasAttr<WeakAttr>() || 1462 D->hasAttr<WeakRefAttr>() || 1463 D->hasAttr<WeakImportAttr>()) { 1464 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1465 } 1466 1467 SetCommonAttributes(D, GA); 1468 } 1469 1470 /// getBuiltinLibFunction - Given a builtin id for a function like 1471 /// "__builtin_fabsf", return a Function* for "fabsf". 1472 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1473 unsigned BuiltinID) { 1474 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1475 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1476 "isn't a lib fn"); 1477 1478 // Get the name, skip over the __builtin_ prefix (if necessary). 1479 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1480 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1481 Name += 10; 1482 1483 const llvm::FunctionType *Ty = 1484 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1485 1486 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1487 } 1488 1489 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1490 unsigned NumTys) { 1491 return llvm::Intrinsic::getDeclaration(&getModule(), 1492 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1493 } 1494 1495 1496 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1497 const llvm::Type *SrcType, 1498 const llvm::Type *SizeType) { 1499 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1500 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1501 } 1502 1503 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1504 const llvm::Type *SrcType, 1505 const llvm::Type *SizeType) { 1506 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1507 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1508 } 1509 1510 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1511 const llvm::Type *SizeType) { 1512 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1513 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1514 } 1515 1516 static llvm::StringMapEntry<llvm::Constant*> & 1517 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1518 const StringLiteral *Literal, 1519 bool TargetIsLSB, 1520 bool &IsUTF16, 1521 unsigned &StringLength) { 1522 unsigned NumBytes = Literal->getByteLength(); 1523 1524 // Check for simple case. 1525 if (!Literal->containsNonAsciiOrNull()) { 1526 StringLength = NumBytes; 1527 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1528 StringLength)); 1529 } 1530 1531 // Otherwise, convert the UTF8 literals into a byte string. 1532 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1533 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1534 UTF16 *ToPtr = &ToBuf[0]; 1535 1536 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1537 &ToPtr, ToPtr + NumBytes, 1538 strictConversion); 1539 1540 // Check for conversion failure. 1541 if (Result != conversionOK) { 1542 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1543 // this duplicate code. 1544 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1545 StringLength = NumBytes; 1546 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1547 StringLength)); 1548 } 1549 1550 // ConvertUTF8toUTF16 returns the length in ToPtr. 1551 StringLength = ToPtr - &ToBuf[0]; 1552 1553 // Render the UTF-16 string into a byte array and convert to the target byte 1554 // order. 1555 // 1556 // FIXME: This isn't something we should need to do here. 1557 llvm::SmallString<128> AsBytes; 1558 AsBytes.reserve(StringLength * 2); 1559 for (unsigned i = 0; i != StringLength; ++i) { 1560 unsigned short Val = ToBuf[i]; 1561 if (TargetIsLSB) { 1562 AsBytes.push_back(Val & 0xFF); 1563 AsBytes.push_back(Val >> 8); 1564 } else { 1565 AsBytes.push_back(Val >> 8); 1566 AsBytes.push_back(Val & 0xFF); 1567 } 1568 } 1569 // Append one extra null character, the second is automatically added by our 1570 // caller. 1571 AsBytes.push_back(0); 1572 1573 IsUTF16 = true; 1574 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1575 } 1576 1577 llvm::Constant * 1578 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1579 unsigned StringLength = 0; 1580 bool isUTF16 = false; 1581 llvm::StringMapEntry<llvm::Constant*> &Entry = 1582 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1583 getTargetData().isLittleEndian(), 1584 isUTF16, StringLength); 1585 1586 if (llvm::Constant *C = Entry.getValue()) 1587 return C; 1588 1589 llvm::Constant *Zero = 1590 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1591 llvm::Constant *Zeros[] = { Zero, Zero }; 1592 1593 // If we don't already have it, get __CFConstantStringClassReference. 1594 if (!CFConstantStringClassRef) { 1595 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1596 Ty = llvm::ArrayType::get(Ty, 0); 1597 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1598 "__CFConstantStringClassReference"); 1599 // Decay array -> ptr 1600 CFConstantStringClassRef = 1601 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1602 } 1603 1604 QualType CFTy = getContext().getCFConstantStringType(); 1605 1606 const llvm::StructType *STy = 1607 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1608 1609 std::vector<llvm::Constant*> Fields(4); 1610 1611 // Class pointer. 1612 Fields[0] = CFConstantStringClassRef; 1613 1614 // Flags. 1615 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1616 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1617 llvm::ConstantInt::get(Ty, 0x07C8); 1618 1619 // String pointer. 1620 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1621 1622 llvm::GlobalValue::LinkageTypes Linkage; 1623 bool isConstant; 1624 if (isUTF16) { 1625 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1626 Linkage = llvm::GlobalValue::InternalLinkage; 1627 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1628 // does make plain ascii ones writable. 1629 isConstant = true; 1630 } else { 1631 Linkage = llvm::GlobalValue::PrivateLinkage; 1632 isConstant = !Features.WritableStrings; 1633 } 1634 1635 llvm::GlobalVariable *GV = 1636 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1637 ".str"); 1638 if (isUTF16) { 1639 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1640 GV->setAlignment(Align.getQuantity()); 1641 } 1642 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1643 1644 // String length. 1645 Ty = getTypes().ConvertType(getContext().LongTy); 1646 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1647 1648 // The struct. 1649 C = llvm::ConstantStruct::get(STy, Fields); 1650 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1651 llvm::GlobalVariable::PrivateLinkage, C, 1652 "_unnamed_cfstring_"); 1653 if (const char *Sect = getContext().Target.getCFStringSection()) 1654 GV->setSection(Sect); 1655 Entry.setValue(GV); 1656 1657 return GV; 1658 } 1659 1660 llvm::Constant * 1661 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1662 unsigned StringLength = 0; 1663 bool isUTF16 = false; 1664 llvm::StringMapEntry<llvm::Constant*> &Entry = 1665 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1666 getTargetData().isLittleEndian(), 1667 isUTF16, StringLength); 1668 1669 if (llvm::Constant *C = Entry.getValue()) 1670 return C; 1671 1672 llvm::Constant *Zero = 1673 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1674 llvm::Constant *Zeros[] = { Zero, Zero }; 1675 1676 // If we don't already have it, get _NSConstantStringClassReference. 1677 if (!NSConstantStringClassRef) { 1678 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1679 Ty = llvm::ArrayType::get(Ty, 0); 1680 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1681 Features.ObjCNonFragileABI ? 1682 "OBJC_CLASS_$_NSConstantString" : 1683 "_NSConstantStringClassReference"); 1684 // Decay array -> ptr 1685 NSConstantStringClassRef = 1686 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1687 } 1688 1689 QualType NSTy = getContext().getNSConstantStringType(); 1690 1691 const llvm::StructType *STy = 1692 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1693 1694 std::vector<llvm::Constant*> Fields(3); 1695 1696 // Class pointer. 1697 Fields[0] = NSConstantStringClassRef; 1698 1699 // String pointer. 1700 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1701 1702 llvm::GlobalValue::LinkageTypes Linkage; 1703 bool isConstant; 1704 if (isUTF16) { 1705 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1706 Linkage = llvm::GlobalValue::InternalLinkage; 1707 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1708 // does make plain ascii ones writable. 1709 isConstant = true; 1710 } else { 1711 Linkage = llvm::GlobalValue::PrivateLinkage; 1712 isConstant = !Features.WritableStrings; 1713 } 1714 1715 llvm::GlobalVariable *GV = 1716 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1717 ".str"); 1718 if (isUTF16) { 1719 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1720 GV->setAlignment(Align.getQuantity()); 1721 } 1722 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1723 1724 // String length. 1725 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1726 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1727 1728 // The struct. 1729 C = llvm::ConstantStruct::get(STy, Fields); 1730 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1731 llvm::GlobalVariable::PrivateLinkage, C, 1732 "_unnamed_nsstring_"); 1733 // FIXME. Fix section. 1734 if (const char *Sect = 1735 Features.ObjCNonFragileABI 1736 ? getContext().Target.getNSStringNonFragileABISection() 1737 : getContext().Target.getNSStringSection()) 1738 GV->setSection(Sect); 1739 Entry.setValue(GV); 1740 1741 return GV; 1742 } 1743 1744 /// GetStringForStringLiteral - Return the appropriate bytes for a 1745 /// string literal, properly padded to match the literal type. 1746 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1747 const char *StrData = E->getStrData(); 1748 unsigned Len = E->getByteLength(); 1749 1750 const ConstantArrayType *CAT = 1751 getContext().getAsConstantArrayType(E->getType()); 1752 assert(CAT && "String isn't pointer or array!"); 1753 1754 // Resize the string to the right size. 1755 std::string Str(StrData, StrData+Len); 1756 uint64_t RealLen = CAT->getSize().getZExtValue(); 1757 1758 if (E->isWide()) 1759 RealLen *= getContext().Target.getWCharWidth()/8; 1760 1761 Str.resize(RealLen, '\0'); 1762 1763 return Str; 1764 } 1765 1766 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1767 /// constant array for the given string literal. 1768 llvm::Constant * 1769 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1770 // FIXME: This can be more efficient. 1771 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1772 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1773 if (S->isWide()) { 1774 llvm::Type *DestTy = 1775 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1776 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1777 } 1778 return C; 1779 } 1780 1781 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1782 /// array for the given ObjCEncodeExpr node. 1783 llvm::Constant * 1784 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1785 std::string Str; 1786 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1787 1788 return GetAddrOfConstantCString(Str); 1789 } 1790 1791 1792 /// GenerateWritableString -- Creates storage for a string literal. 1793 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1794 bool constant, 1795 CodeGenModule &CGM, 1796 const char *GlobalName) { 1797 // Create Constant for this string literal. Don't add a '\0'. 1798 llvm::Constant *C = 1799 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1800 1801 // Create a global variable for this string 1802 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1803 llvm::GlobalValue::PrivateLinkage, 1804 C, GlobalName); 1805 } 1806 1807 /// GetAddrOfConstantString - Returns a pointer to a character array 1808 /// containing the literal. This contents are exactly that of the 1809 /// given string, i.e. it will not be null terminated automatically; 1810 /// see GetAddrOfConstantCString. Note that whether the result is 1811 /// actually a pointer to an LLVM constant depends on 1812 /// Feature.WriteableStrings. 1813 /// 1814 /// The result has pointer to array type. 1815 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1816 const char *GlobalName) { 1817 bool IsConstant = !Features.WritableStrings; 1818 1819 // Get the default prefix if a name wasn't specified. 1820 if (!GlobalName) 1821 GlobalName = ".str"; 1822 1823 // Don't share any string literals if strings aren't constant. 1824 if (!IsConstant) 1825 return GenerateStringLiteral(str, false, *this, GlobalName); 1826 1827 llvm::StringMapEntry<llvm::Constant *> &Entry = 1828 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1829 1830 if (Entry.getValue()) 1831 return Entry.getValue(); 1832 1833 // Create a global variable for this. 1834 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1835 Entry.setValue(C); 1836 return C; 1837 } 1838 1839 /// GetAddrOfConstantCString - Returns a pointer to a character 1840 /// array containing the literal and a terminating '\-' 1841 /// character. The result has pointer to array type. 1842 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1843 const char *GlobalName){ 1844 return GetAddrOfConstantString(str + '\0', GlobalName); 1845 } 1846 1847 /// EmitObjCPropertyImplementations - Emit information for synthesized 1848 /// properties for an implementation. 1849 void CodeGenModule::EmitObjCPropertyImplementations(const 1850 ObjCImplementationDecl *D) { 1851 for (ObjCImplementationDecl::propimpl_iterator 1852 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1853 ObjCPropertyImplDecl *PID = *i; 1854 1855 // Dynamic is just for type-checking. 1856 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1857 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1858 1859 // Determine which methods need to be implemented, some may have 1860 // been overridden. Note that ::isSynthesized is not the method 1861 // we want, that just indicates if the decl came from a 1862 // property. What we want to know is if the method is defined in 1863 // this implementation. 1864 if (!D->getInstanceMethod(PD->getGetterName())) 1865 CodeGenFunction(*this).GenerateObjCGetter( 1866 const_cast<ObjCImplementationDecl *>(D), PID); 1867 if (!PD->isReadOnly() && 1868 !D->getInstanceMethod(PD->getSetterName())) 1869 CodeGenFunction(*this).GenerateObjCSetter( 1870 const_cast<ObjCImplementationDecl *>(D), PID); 1871 } 1872 } 1873 } 1874 1875 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1876 /// for an implementation. 1877 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1878 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1879 return; 1880 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1881 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1882 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1883 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1884 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1885 D->getLocation(), 1886 D->getLocation(), cxxSelector, 1887 getContext().VoidTy, 0, 1888 DC, true, false, true, 1889 ObjCMethodDecl::Required); 1890 D->addInstanceMethod(DTORMethod); 1891 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1892 1893 II = &getContext().Idents.get(".cxx_construct"); 1894 cxxSelector = getContext().Selectors.getSelector(0, &II); 1895 // The constructor returns 'self'. 1896 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1897 D->getLocation(), 1898 D->getLocation(), cxxSelector, 1899 getContext().getObjCIdType(), 0, 1900 DC, true, false, true, 1901 ObjCMethodDecl::Required); 1902 D->addInstanceMethod(CTORMethod); 1903 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1904 1905 1906 } 1907 1908 /// EmitNamespace - Emit all declarations in a namespace. 1909 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1910 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1911 I != E; ++I) 1912 EmitTopLevelDecl(*I); 1913 } 1914 1915 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1916 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1917 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1918 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1919 ErrorUnsupported(LSD, "linkage spec"); 1920 return; 1921 } 1922 1923 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1924 I != E; ++I) 1925 EmitTopLevelDecl(*I); 1926 } 1927 1928 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1929 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1930 // If an error has occurred, stop code generation, but continue 1931 // parsing and semantic analysis (to ensure all warnings and errors 1932 // are emitted). 1933 if (Diags.hasErrorOccurred()) 1934 return; 1935 1936 // Ignore dependent declarations. 1937 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1938 return; 1939 1940 switch (D->getKind()) { 1941 case Decl::CXXConversion: 1942 case Decl::CXXMethod: 1943 case Decl::Function: 1944 // Skip function templates 1945 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1946 return; 1947 1948 EmitGlobal(cast<FunctionDecl>(D)); 1949 break; 1950 1951 case Decl::Var: 1952 EmitGlobal(cast<VarDecl>(D)); 1953 break; 1954 1955 // C++ Decls 1956 case Decl::Namespace: 1957 EmitNamespace(cast<NamespaceDecl>(D)); 1958 break; 1959 // No code generation needed. 1960 case Decl::UsingShadow: 1961 case Decl::Using: 1962 case Decl::UsingDirective: 1963 case Decl::ClassTemplate: 1964 case Decl::FunctionTemplate: 1965 case Decl::NamespaceAlias: 1966 break; 1967 case Decl::CXXConstructor: 1968 // Skip function templates 1969 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1970 return; 1971 1972 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1973 break; 1974 case Decl::CXXDestructor: 1975 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1976 break; 1977 1978 case Decl::StaticAssert: 1979 // Nothing to do. 1980 break; 1981 1982 // Objective-C Decls 1983 1984 // Forward declarations, no (immediate) code generation. 1985 case Decl::ObjCClass: 1986 case Decl::ObjCForwardProtocol: 1987 case Decl::ObjCCategory: 1988 case Decl::ObjCInterface: 1989 break; 1990 1991 case Decl::ObjCProtocol: 1992 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1993 break; 1994 1995 case Decl::ObjCCategoryImpl: 1996 // Categories have properties but don't support synthesize so we 1997 // can ignore them here. 1998 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1999 break; 2000 2001 case Decl::ObjCImplementation: { 2002 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2003 EmitObjCPropertyImplementations(OMD); 2004 EmitObjCIvarInitializations(OMD); 2005 Runtime->GenerateClass(OMD); 2006 break; 2007 } 2008 case Decl::ObjCMethod: { 2009 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2010 // If this is not a prototype, emit the body. 2011 if (OMD->getBody()) 2012 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2013 break; 2014 } 2015 case Decl::ObjCCompatibleAlias: 2016 // compatibility-alias is a directive and has no code gen. 2017 break; 2018 2019 case Decl::LinkageSpec: 2020 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2021 break; 2022 2023 case Decl::FileScopeAsm: { 2024 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2025 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2026 2027 const std::string &S = getModule().getModuleInlineAsm(); 2028 if (S.empty()) 2029 getModule().setModuleInlineAsm(AsmString); 2030 else 2031 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2032 break; 2033 } 2034 2035 default: 2036 // Make sure we handled everything we should, every other kind is a 2037 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2038 // function. Need to recode Decl::Kind to do that easily. 2039 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2040 } 2041 } 2042 2043 /// Turns the given pointer into a constant. 2044 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2045 const void *Ptr) { 2046 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2047 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2048 return llvm::ConstantInt::get(i64, PtrInt); 2049 } 2050 2051 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2052 llvm::NamedMDNode *&GlobalMetadata, 2053 GlobalDecl D, 2054 llvm::GlobalValue *Addr) { 2055 if (!GlobalMetadata) 2056 GlobalMetadata = 2057 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2058 2059 // TODO: should we report variant information for ctors/dtors? 2060 llvm::Value *Ops[] = { 2061 Addr, 2062 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2063 }; 2064 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2065 } 2066 2067 /// Emits metadata nodes associating all the global values in the 2068 /// current module with the Decls they came from. This is useful for 2069 /// projects using IR gen as a subroutine. 2070 /// 2071 /// Since there's currently no way to associate an MDNode directly 2072 /// with an llvm::GlobalValue, we create a global named metadata 2073 /// with the name 'clang.global.decl.ptrs'. 2074 void CodeGenModule::EmitDeclMetadata() { 2075 llvm::NamedMDNode *GlobalMetadata = 0; 2076 2077 // StaticLocalDeclMap 2078 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2079 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2080 I != E; ++I) { 2081 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2082 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2083 } 2084 } 2085 2086 /// Emits metadata nodes for all the local variables in the current 2087 /// function. 2088 void CodeGenFunction::EmitDeclMetadata() { 2089 if (LocalDeclMap.empty()) return; 2090 2091 llvm::LLVMContext &Context = getLLVMContext(); 2092 2093 // Find the unique metadata ID for this name. 2094 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2095 2096 llvm::NamedMDNode *GlobalMetadata = 0; 2097 2098 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2099 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2100 const Decl *D = I->first; 2101 llvm::Value *Addr = I->second; 2102 2103 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2104 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2105 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2106 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2107 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2108 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2109 } 2110 } 2111 } 2112