xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 357d0f3cafc476578bdfa7c75e97a05b3f9ac1cd)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "Mangle.h"
22 #include "TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) {
168   switch (V) {
169   case DefaultVisibility:   return llvm::GlobalValue::DefaultVisibility;
170   case HiddenVisibility:    return llvm::GlobalValue::HiddenVisibility;
171   case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility;
172   }
173   llvm_unreachable("unknown visibility!");
174   return llvm::GlobalValue::DefaultVisibility;
175 }
176 
177 
178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
179                                         const NamedDecl *D,
180                                         bool IsForDefinition) const {
181   // Internal definitions always have default visibility.
182   if (GV->hasLocalLinkage()) {
183     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
184     return;
185   }
186 
187   // Set visibility for definitions.
188   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
189   if (LV.visibilityExplicit() ||
190       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
191     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
192 }
193 
194 /// Set the symbol visibility of type information (vtable and RTTI)
195 /// associated with the given type.
196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
197                                       const CXXRecordDecl *RD,
198                                       bool IsForRTTI,
199                                       bool IsForDefinition) const {
200   setGlobalVisibility(GV, RD, IsForDefinition);
201 
202   if (!CodeGenOpts.HiddenWeakVTables)
203     return;
204 
205   // We want to drop the visibility to hidden for weak type symbols.
206   // This isn't possible if there might be unresolved references
207   // elsewhere that rely on this symbol being visible.
208 
209   // This should be kept roughly in sync with setThunkVisibility
210   // in CGVTables.cpp.
211 
212   // Preconditions.
213   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
214       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
215     return;
216 
217   // Don't override an explicit visibility attribute.
218   if (RD->hasAttr<VisibilityAttr>())
219     return;
220 
221   switch (RD->getTemplateSpecializationKind()) {
222   // We have to disable the optimization if this is an EI definition
223   // because there might be EI declarations in other shared objects.
224   case TSK_ExplicitInstantiationDefinition:
225   case TSK_ExplicitInstantiationDeclaration:
226     return;
227 
228   // Every use of a non-template class's type information has to emit it.
229   case TSK_Undeclared:
230     break;
231 
232   // In theory, implicit instantiations can ignore the possibility of
233   // an explicit instantiation declaration because there necessarily
234   // must be an EI definition somewhere with default visibility.  In
235   // practice, it's possible to have an explicit instantiation for
236   // an arbitrary template class, and linkers aren't necessarily able
237   // to deal with mixed-visibility symbols.
238   case TSK_ExplicitSpecialization:
239   case TSK_ImplicitInstantiation:
240     if (!CodeGenOpts.HiddenWeakTemplateVTables)
241       return;
242     break;
243   }
244 
245   // If there's a key function, there may be translation units
246   // that don't have the key function's definition.  But ignore
247   // this if we're emitting RTTI under -fno-rtti.
248   if (!IsForRTTI || Features.RTTI)
249     if (Context.getKeyFunction(RD))
250       return;
251 
252   // Otherwise, drop the visibility to hidden.
253   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
254 }
255 
256 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
257   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
258 
259   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
260   if (!Str.empty())
261     return Str;
262 
263   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
264     IdentifierInfo *II = ND->getIdentifier();
265     assert(II && "Attempt to mangle unnamed decl.");
266 
267     Str = II->getName();
268     return Str;
269   }
270 
271   llvm::SmallString<256> Buffer;
272   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
273     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
274   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
275     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
276   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
277     getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
278   else
279     getCXXABI().getMangleContext().mangleName(ND, Buffer);
280 
281   // Allocate space for the mangled name.
282   size_t Length = Buffer.size();
283   char *Name = MangledNamesAllocator.Allocate<char>(Length);
284   std::copy(Buffer.begin(), Buffer.end(), Name);
285 
286   Str = llvm::StringRef(Name, Length);
287 
288   return Str;
289 }
290 
291 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
292                                    const BlockDecl *BD) {
293   getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
294 }
295 
296 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
297   return getModule().getNamedValue(Name);
298 }
299 
300 /// AddGlobalCtor - Add a function to the list that will be called before
301 /// main() runs.
302 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
303   // FIXME: Type coercion of void()* types.
304   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
305 }
306 
307 /// AddGlobalDtor - Add a function to the list that will be called
308 /// when the module is unloaded.
309 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
310   // FIXME: Type coercion of void()* types.
311   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
312 }
313 
314 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
315   // Ctor function type is void()*.
316   llvm::FunctionType* CtorFTy =
317     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
318                             std::vector<const llvm::Type*>(),
319                             false);
320   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
321 
322   // Get the type of a ctor entry, { i32, void ()* }.
323   llvm::StructType* CtorStructTy =
324     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
325                           llvm::PointerType::getUnqual(CtorFTy), NULL);
326 
327   // Construct the constructor and destructor arrays.
328   std::vector<llvm::Constant*> Ctors;
329   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
330     std::vector<llvm::Constant*> S;
331     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
332                 I->second, false));
333     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
334     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
335   }
336 
337   if (!Ctors.empty()) {
338     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
339     new llvm::GlobalVariable(TheModule, AT, false,
340                              llvm::GlobalValue::AppendingLinkage,
341                              llvm::ConstantArray::get(AT, Ctors),
342                              GlobalName);
343   }
344 }
345 
346 void CodeGenModule::EmitAnnotations() {
347   if (Annotations.empty())
348     return;
349 
350   // Create a new global variable for the ConstantStruct in the Module.
351   llvm::Constant *Array =
352   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
353                                                 Annotations.size()),
354                            Annotations);
355   llvm::GlobalValue *gv =
356   new llvm::GlobalVariable(TheModule, Array->getType(), false,
357                            llvm::GlobalValue::AppendingLinkage, Array,
358                            "llvm.global.annotations");
359   gv->setSection("llvm.metadata");
360 }
361 
362 llvm::GlobalValue::LinkageTypes
363 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
364   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
365 
366   if (Linkage == GVA_Internal)
367     return llvm::Function::InternalLinkage;
368 
369   if (D->hasAttr<DLLExportAttr>())
370     return llvm::Function::DLLExportLinkage;
371 
372   if (D->hasAttr<WeakAttr>())
373     return llvm::Function::WeakAnyLinkage;
374 
375   // In C99 mode, 'inline' functions are guaranteed to have a strong
376   // definition somewhere else, so we can use available_externally linkage.
377   if (Linkage == GVA_C99Inline)
378     return llvm::Function::AvailableExternallyLinkage;
379 
380   // In C++, the compiler has to emit a definition in every translation unit
381   // that references the function.  We should use linkonce_odr because
382   // a) if all references in this translation unit are optimized away, we
383   // don't need to codegen it.  b) if the function persists, it needs to be
384   // merged with other definitions. c) C++ has the ODR, so we know the
385   // definition is dependable.
386   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
387     return llvm::Function::LinkOnceODRLinkage;
388 
389   // An explicit instantiation of a template has weak linkage, since
390   // explicit instantiations can occur in multiple translation units
391   // and must all be equivalent. However, we are not allowed to
392   // throw away these explicit instantiations.
393   if (Linkage == GVA_ExplicitTemplateInstantiation)
394     return llvm::Function::WeakODRLinkage;
395 
396   // Otherwise, we have strong external linkage.
397   assert(Linkage == GVA_StrongExternal);
398   return llvm::Function::ExternalLinkage;
399 }
400 
401 
402 /// SetFunctionDefinitionAttributes - Set attributes for a global.
403 ///
404 /// FIXME: This is currently only done for aliases and functions, but not for
405 /// variables (these details are set in EmitGlobalVarDefinition for variables).
406 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
407                                                     llvm::GlobalValue *GV) {
408   SetCommonAttributes(D, GV);
409 }
410 
411 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
412                                               const CGFunctionInfo &Info,
413                                               llvm::Function *F) {
414   unsigned CallingConv;
415   AttributeListType AttributeList;
416   ConstructAttributeList(Info, D, AttributeList, CallingConv);
417   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
418                                           AttributeList.size()));
419   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
420 }
421 
422 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
423                                                            llvm::Function *F) {
424   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
425     F->addFnAttr(llvm::Attribute::NoUnwind);
426 
427   if (D->hasAttr<AlwaysInlineAttr>())
428     F->addFnAttr(llvm::Attribute::AlwaysInline);
429 
430   if (D->hasAttr<NakedAttr>())
431     F->addFnAttr(llvm::Attribute::Naked);
432 
433   if (D->hasAttr<NoInlineAttr>())
434     F->addFnAttr(llvm::Attribute::NoInline);
435 
436   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
437     F->addFnAttr(llvm::Attribute::StackProtect);
438   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
439     F->addFnAttr(llvm::Attribute::StackProtectReq);
440 
441   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
442   if (alignment)
443     F->setAlignment(alignment);
444 
445   // C++ ABI requires 2-byte alignment for member functions.
446   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
447     F->setAlignment(2);
448 }
449 
450 void CodeGenModule::SetCommonAttributes(const Decl *D,
451                                         llvm::GlobalValue *GV) {
452   if (isa<NamedDecl>(D))
453     setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true);
454   else
455     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
456 
457   if (D->hasAttr<UsedAttr>())
458     AddUsedGlobal(GV);
459 
460   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
461     GV->setSection(SA->getName());
462 
463   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
464 }
465 
466 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
467                                                   llvm::Function *F,
468                                                   const CGFunctionInfo &FI) {
469   SetLLVMFunctionAttributes(D, FI, F);
470   SetLLVMFunctionAttributesForDefinition(D, F);
471 
472   F->setLinkage(llvm::Function::InternalLinkage);
473 
474   SetCommonAttributes(D, F);
475 }
476 
477 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
478                                           llvm::Function *F,
479                                           bool IsIncompleteFunction) {
480   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
481 
482   if (!IsIncompleteFunction)
483     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
484 
485   // Only a few attributes are set on declarations; these may later be
486   // overridden by a definition.
487 
488   if (FD->hasAttr<DLLImportAttr>()) {
489     F->setLinkage(llvm::Function::DLLImportLinkage);
490   } else if (FD->hasAttr<WeakAttr>() ||
491              FD->hasAttr<WeakImportAttr>()) {
492     // "extern_weak" is overloaded in LLVM; we probably should have
493     // separate linkage types for this.
494     F->setLinkage(llvm::Function::ExternalWeakLinkage);
495   } else {
496     F->setLinkage(llvm::Function::ExternalLinkage);
497 
498     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
499     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
500       F->setVisibility(GetLLVMVisibility(LV.visibility()));
501     }
502   }
503 
504   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
505     F->setSection(SA->getName());
506 }
507 
508 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
509   assert(!GV->isDeclaration() &&
510          "Only globals with definition can force usage.");
511   LLVMUsed.push_back(GV);
512 }
513 
514 void CodeGenModule::EmitLLVMUsed() {
515   // Don't create llvm.used if there is no need.
516   if (LLVMUsed.empty())
517     return;
518 
519   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
520 
521   // Convert LLVMUsed to what ConstantArray needs.
522   std::vector<llvm::Constant*> UsedArray;
523   UsedArray.resize(LLVMUsed.size());
524   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
525     UsedArray[i] =
526      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
527                                       i8PTy);
528   }
529 
530   if (UsedArray.empty())
531     return;
532   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
533 
534   llvm::GlobalVariable *GV =
535     new llvm::GlobalVariable(getModule(), ATy, false,
536                              llvm::GlobalValue::AppendingLinkage,
537                              llvm::ConstantArray::get(ATy, UsedArray),
538                              "llvm.used");
539 
540   GV->setSection("llvm.metadata");
541 }
542 
543 void CodeGenModule::EmitDeferred() {
544   // Emit code for any potentially referenced deferred decls.  Since a
545   // previously unused static decl may become used during the generation of code
546   // for a static function, iterate until no  changes are made.
547 
548   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
549     if (!DeferredVTables.empty()) {
550       const CXXRecordDecl *RD = DeferredVTables.back();
551       DeferredVTables.pop_back();
552       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
553       continue;
554     }
555 
556     GlobalDecl D = DeferredDeclsToEmit.back();
557     DeferredDeclsToEmit.pop_back();
558 
559     // Check to see if we've already emitted this.  This is necessary
560     // for a couple of reasons: first, decls can end up in the
561     // deferred-decls queue multiple times, and second, decls can end
562     // up with definitions in unusual ways (e.g. by an extern inline
563     // function acquiring a strong function redefinition).  Just
564     // ignore these cases.
565     //
566     // TODO: That said, looking this up multiple times is very wasteful.
567     llvm::StringRef Name = getMangledName(D);
568     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
569     assert(CGRef && "Deferred decl wasn't referenced?");
570 
571     if (!CGRef->isDeclaration())
572       continue;
573 
574     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
575     // purposes an alias counts as a definition.
576     if (isa<llvm::GlobalAlias>(CGRef))
577       continue;
578 
579     // Otherwise, emit the definition and move on to the next one.
580     EmitGlobalDefinition(D);
581   }
582 }
583 
584 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
585 /// annotation information for a given GlobalValue.  The annotation struct is
586 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
587 /// GlobalValue being annotated.  The second field is the constant string
588 /// created from the AnnotateAttr's annotation.  The third field is a constant
589 /// string containing the name of the translation unit.  The fourth field is
590 /// the line number in the file of the annotated value declaration.
591 ///
592 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
593 ///        appears to.
594 ///
595 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
596                                                 const AnnotateAttr *AA,
597                                                 unsigned LineNo) {
598   llvm::Module *M = &getModule();
599 
600   // get [N x i8] constants for the annotation string, and the filename string
601   // which are the 2nd and 3rd elements of the global annotation structure.
602   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
603   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
604                                                   AA->getAnnotation(), true);
605   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
606                                                   M->getModuleIdentifier(),
607                                                   true);
608 
609   // Get the two global values corresponding to the ConstantArrays we just
610   // created to hold the bytes of the strings.
611   llvm::GlobalValue *annoGV =
612     new llvm::GlobalVariable(*M, anno->getType(), false,
613                              llvm::GlobalValue::PrivateLinkage, anno,
614                              GV->getName());
615   // translation unit name string, emitted into the llvm.metadata section.
616   llvm::GlobalValue *unitGV =
617     new llvm::GlobalVariable(*M, unit->getType(), false,
618                              llvm::GlobalValue::PrivateLinkage, unit,
619                              ".str");
620 
621   // Create the ConstantStruct for the global annotation.
622   llvm::Constant *Fields[4] = {
623     llvm::ConstantExpr::getBitCast(GV, SBP),
624     llvm::ConstantExpr::getBitCast(annoGV, SBP),
625     llvm::ConstantExpr::getBitCast(unitGV, SBP),
626     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
627   };
628   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
629 }
630 
631 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
632   // Never defer when EmitAllDecls is specified.
633   if (Features.EmitAllDecls)
634     return false;
635 
636   return !getContext().DeclMustBeEmitted(Global);
637 }
638 
639 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
640   const AliasAttr *AA = VD->getAttr<AliasAttr>();
641   assert(AA && "No alias?");
642 
643   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
644 
645   // See if there is already something with the target's name in the module.
646   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
647 
648   llvm::Constant *Aliasee;
649   if (isa<llvm::FunctionType>(DeclTy))
650     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
651   else
652     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
653                                     llvm::PointerType::getUnqual(DeclTy), 0);
654   if (!Entry) {
655     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
656     F->setLinkage(llvm::Function::ExternalWeakLinkage);
657     WeakRefReferences.insert(F);
658   }
659 
660   return Aliasee;
661 }
662 
663 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
664   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
665 
666   // Weak references don't produce any output by themselves.
667   if (Global->hasAttr<WeakRefAttr>())
668     return;
669 
670   // If this is an alias definition (which otherwise looks like a declaration)
671   // emit it now.
672   if (Global->hasAttr<AliasAttr>())
673     return EmitAliasDefinition(GD);
674 
675   // Ignore declarations, they will be emitted on their first use.
676   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
677     if (FD->getIdentifier()) {
678       llvm::StringRef Name = FD->getName();
679       if (Name == "_Block_object_assign") {
680         BlockObjectAssignDecl = FD;
681       } else if (Name == "_Block_object_dispose") {
682         BlockObjectDisposeDecl = FD;
683       }
684     }
685 
686     // Forward declarations are emitted lazily on first use.
687     if (!FD->isThisDeclarationADefinition())
688       return;
689   } else {
690     const VarDecl *VD = cast<VarDecl>(Global);
691     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
692 
693     if (VD->getIdentifier()) {
694       llvm::StringRef Name = VD->getName();
695       if (Name == "_NSConcreteGlobalBlock") {
696         NSConcreteGlobalBlockDecl = VD;
697       } else if (Name == "_NSConcreteStackBlock") {
698         NSConcreteStackBlockDecl = VD;
699       }
700     }
701 
702 
703     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
704       return;
705   }
706 
707   // Defer code generation when possible if this is a static definition, inline
708   // function etc.  These we only want to emit if they are used.
709   if (!MayDeferGeneration(Global)) {
710     // Emit the definition if it can't be deferred.
711     EmitGlobalDefinition(GD);
712     return;
713   }
714 
715   // If we're deferring emission of a C++ variable with an
716   // initializer, remember the order in which it appeared in the file.
717   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
718       cast<VarDecl>(Global)->hasInit()) {
719     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
720     CXXGlobalInits.push_back(0);
721   }
722 
723   // If the value has already been used, add it directly to the
724   // DeferredDeclsToEmit list.
725   llvm::StringRef MangledName = getMangledName(GD);
726   if (GetGlobalValue(MangledName))
727     DeferredDeclsToEmit.push_back(GD);
728   else {
729     // Otherwise, remember that we saw a deferred decl with this name.  The
730     // first use of the mangled name will cause it to move into
731     // DeferredDeclsToEmit.
732     DeferredDecls[MangledName] = GD;
733   }
734 }
735 
736 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
737   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
738 
739   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
740                                  Context.getSourceManager(),
741                                  "Generating code for declaration");
742 
743   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
744     // At -O0, don't generate IR for functions with available_externally
745     // linkage.
746     if (CodeGenOpts.OptimizationLevel == 0 &&
747         !Function->hasAttr<AlwaysInlineAttr>() &&
748         getFunctionLinkage(Function)
749                                   == llvm::Function::AvailableExternallyLinkage)
750       return;
751 
752     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
753       if (Method->isVirtual())
754         getVTables().EmitThunks(GD);
755 
756       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
757         return EmitCXXConstructor(CD, GD.getCtorType());
758 
759       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
760         return EmitCXXDestructor(DD, GD.getDtorType());
761     }
762 
763     return EmitGlobalFunctionDefinition(GD);
764   }
765 
766   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
767     return EmitGlobalVarDefinition(VD);
768 
769   assert(0 && "Invalid argument to EmitGlobalDefinition()");
770 }
771 
772 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
773 /// module, create and return an llvm Function with the specified type. If there
774 /// is something in the module with the specified name, return it potentially
775 /// bitcasted to the right type.
776 ///
777 /// If D is non-null, it specifies a decl that correspond to this.  This is used
778 /// to set the attributes on the function when it is first created.
779 llvm::Constant *
780 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
781                                        const llvm::Type *Ty,
782                                        GlobalDecl D) {
783   // Lookup the entry, lazily creating it if necessary.
784   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
785   if (Entry) {
786     if (WeakRefReferences.count(Entry)) {
787       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
788       if (FD && !FD->hasAttr<WeakAttr>())
789         Entry->setLinkage(llvm::Function::ExternalLinkage);
790 
791       WeakRefReferences.erase(Entry);
792     }
793 
794     if (Entry->getType()->getElementType() == Ty)
795       return Entry;
796 
797     // Make sure the result is of the correct type.
798     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
799     return llvm::ConstantExpr::getBitCast(Entry, PTy);
800   }
801 
802   // This function doesn't have a complete type (for example, the return
803   // type is an incomplete struct). Use a fake type instead, and make
804   // sure not to try to set attributes.
805   bool IsIncompleteFunction = false;
806 
807   const llvm::FunctionType *FTy;
808   if (isa<llvm::FunctionType>(Ty)) {
809     FTy = cast<llvm::FunctionType>(Ty);
810   } else {
811     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
812                                   std::vector<const llvm::Type*>(), false);
813     IsIncompleteFunction = true;
814   }
815 
816   llvm::Function *F = llvm::Function::Create(FTy,
817                                              llvm::Function::ExternalLinkage,
818                                              MangledName, &getModule());
819   assert(F->getName() == MangledName && "name was uniqued!");
820   if (D.getDecl())
821     SetFunctionAttributes(D, F, IsIncompleteFunction);
822 
823   // This is the first use or definition of a mangled name.  If there is a
824   // deferred decl with this name, remember that we need to emit it at the end
825   // of the file.
826   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
827   if (DDI != DeferredDecls.end()) {
828     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
829     // list, and remove it from DeferredDecls (since we don't need it anymore).
830     DeferredDeclsToEmit.push_back(DDI->second);
831     DeferredDecls.erase(DDI);
832 
833   // Otherwise, there are cases we have to worry about where we're
834   // using a declaration for which we must emit a definition but where
835   // we might not find a top-level definition:
836   //   - member functions defined inline in their classes
837   //   - friend functions defined inline in some class
838   //   - special member functions with implicit definitions
839   // If we ever change our AST traversal to walk into class methods,
840   // this will be unnecessary.
841   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
842     // Look for a declaration that's lexically in a record.
843     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
844     do {
845       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
846         if (FD->isImplicit()) {
847           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
848           DeferredDeclsToEmit.push_back(D);
849           break;
850         } else if (FD->isThisDeclarationADefinition()) {
851           DeferredDeclsToEmit.push_back(D);
852           break;
853         }
854       }
855       FD = FD->getPreviousDeclaration();
856     } while (FD);
857   }
858 
859   // Make sure the result is of the requested type.
860   if (!IsIncompleteFunction) {
861     assert(F->getType()->getElementType() == Ty);
862     return F;
863   }
864 
865   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
866   return llvm::ConstantExpr::getBitCast(F, PTy);
867 }
868 
869 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
870 /// non-null, then this function will use the specified type if it has to
871 /// create it (this occurs when we see a definition of the function).
872 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
873                                                  const llvm::Type *Ty) {
874   // If there was no specific requested type, just convert it now.
875   if (!Ty)
876     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
877 
878   llvm::StringRef MangledName = getMangledName(GD);
879   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
880 }
881 
882 /// CreateRuntimeFunction - Create a new runtime function with the specified
883 /// type and name.
884 llvm::Constant *
885 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
886                                      llvm::StringRef Name) {
887   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
888 }
889 
890 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
891   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
892     return false;
893   if (Context.getLangOptions().CPlusPlus &&
894       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
895     // FIXME: We should do something fancier here!
896     return false;
897   }
898   return true;
899 }
900 
901 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
902 /// create and return an llvm GlobalVariable with the specified type.  If there
903 /// is something in the module with the specified name, return it potentially
904 /// bitcasted to the right type.
905 ///
906 /// If D is non-null, it specifies a decl that correspond to this.  This is used
907 /// to set the attributes on the global when it is first created.
908 llvm::Constant *
909 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
910                                      const llvm::PointerType *Ty,
911                                      const VarDecl *D) {
912   // Lookup the entry, lazily creating it if necessary.
913   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
914   if (Entry) {
915     if (WeakRefReferences.count(Entry)) {
916       if (D && !D->hasAttr<WeakAttr>())
917         Entry->setLinkage(llvm::Function::ExternalLinkage);
918 
919       WeakRefReferences.erase(Entry);
920     }
921 
922     if (Entry->getType() == Ty)
923       return Entry;
924 
925     // Make sure the result is of the correct type.
926     return llvm::ConstantExpr::getBitCast(Entry, Ty);
927   }
928 
929   // This is the first use or definition of a mangled name.  If there is a
930   // deferred decl with this name, remember that we need to emit it at the end
931   // of the file.
932   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
933   if (DDI != DeferredDecls.end()) {
934     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
935     // list, and remove it from DeferredDecls (since we don't need it anymore).
936     DeferredDeclsToEmit.push_back(DDI->second);
937     DeferredDecls.erase(DDI);
938   }
939 
940   llvm::GlobalVariable *GV =
941     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
942                              llvm::GlobalValue::ExternalLinkage,
943                              0, MangledName, 0,
944                              false, Ty->getAddressSpace());
945 
946   // Handle things which are present even on external declarations.
947   if (D) {
948     // FIXME: This code is overly simple and should be merged with other global
949     // handling.
950     GV->setConstant(DeclIsConstantGlobal(Context, D));
951 
952     // Set linkage and visibility in case we never see a definition.
953     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
954     if (LV.linkage() != ExternalLinkage) {
955       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
956     } else {
957       if (D->hasAttr<DLLImportAttr>())
958         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
959       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
960         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
961 
962       // Set visibility on a declaration only if it's explicit.
963       if (LV.visibilityExplicit())
964         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
965     }
966 
967     GV->setThreadLocal(D->isThreadSpecified());
968   }
969 
970   return GV;
971 }
972 
973 
974 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
975 /// given global variable.  If Ty is non-null and if the global doesn't exist,
976 /// then it will be greated with the specified type instead of whatever the
977 /// normal requested type would be.
978 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
979                                                   const llvm::Type *Ty) {
980   assert(D->hasGlobalStorage() && "Not a global variable");
981   QualType ASTTy = D->getType();
982   if (Ty == 0)
983     Ty = getTypes().ConvertTypeForMem(ASTTy);
984 
985   const llvm::PointerType *PTy =
986     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
987 
988   llvm::StringRef MangledName = getMangledName(D);
989   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
990 }
991 
992 /// CreateRuntimeVariable - Create a new runtime global variable with the
993 /// specified type and name.
994 llvm::Constant *
995 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
996                                      llvm::StringRef Name) {
997   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
998 }
999 
1000 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1001   assert(!D->getInit() && "Cannot emit definite definitions here!");
1002 
1003   if (MayDeferGeneration(D)) {
1004     // If we have not seen a reference to this variable yet, place it
1005     // into the deferred declarations table to be emitted if needed
1006     // later.
1007     llvm::StringRef MangledName = getMangledName(D);
1008     if (!GetGlobalValue(MangledName)) {
1009       DeferredDecls[MangledName] = D;
1010       return;
1011     }
1012   }
1013 
1014   // The tentative definition is the only definition.
1015   EmitGlobalVarDefinition(D);
1016 }
1017 
1018 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1019   if (DefinitionRequired)
1020     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1021 }
1022 
1023 llvm::GlobalVariable::LinkageTypes
1024 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1025   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1026     return llvm::GlobalVariable::InternalLinkage;
1027 
1028   if (const CXXMethodDecl *KeyFunction
1029                                     = RD->getASTContext().getKeyFunction(RD)) {
1030     // If this class has a key function, use that to determine the linkage of
1031     // the vtable.
1032     const FunctionDecl *Def = 0;
1033     if (KeyFunction->hasBody(Def))
1034       KeyFunction = cast<CXXMethodDecl>(Def);
1035 
1036     switch (KeyFunction->getTemplateSpecializationKind()) {
1037       case TSK_Undeclared:
1038       case TSK_ExplicitSpecialization:
1039         if (KeyFunction->isInlined())
1040           return llvm::GlobalVariable::WeakODRLinkage;
1041 
1042         return llvm::GlobalVariable::ExternalLinkage;
1043 
1044       case TSK_ImplicitInstantiation:
1045       case TSK_ExplicitInstantiationDefinition:
1046         return llvm::GlobalVariable::WeakODRLinkage;
1047 
1048       case TSK_ExplicitInstantiationDeclaration:
1049         // FIXME: Use available_externally linkage. However, this currently
1050         // breaks LLVM's build due to undefined symbols.
1051         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1052         return llvm::GlobalVariable::WeakODRLinkage;
1053     }
1054   }
1055 
1056   switch (RD->getTemplateSpecializationKind()) {
1057   case TSK_Undeclared:
1058   case TSK_ExplicitSpecialization:
1059   case TSK_ImplicitInstantiation:
1060   case TSK_ExplicitInstantiationDefinition:
1061     return llvm::GlobalVariable::WeakODRLinkage;
1062 
1063   case TSK_ExplicitInstantiationDeclaration:
1064     // FIXME: Use available_externally linkage. However, this currently
1065     // breaks LLVM's build due to undefined symbols.
1066     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1067     return llvm::GlobalVariable::WeakODRLinkage;
1068   }
1069 
1070   // Silence GCC warning.
1071   return llvm::GlobalVariable::WeakODRLinkage;
1072 }
1073 
1074 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1075     return CharUnits::fromQuantity(
1076       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1077 }
1078 
1079 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1080   llvm::Constant *Init = 0;
1081   QualType ASTTy = D->getType();
1082   bool NonConstInit = false;
1083 
1084   const Expr *InitExpr = D->getAnyInitializer();
1085 
1086   if (!InitExpr) {
1087     // This is a tentative definition; tentative definitions are
1088     // implicitly initialized with { 0 }.
1089     //
1090     // Note that tentative definitions are only emitted at the end of
1091     // a translation unit, so they should never have incomplete
1092     // type. In addition, EmitTentativeDefinition makes sure that we
1093     // never attempt to emit a tentative definition if a real one
1094     // exists. A use may still exists, however, so we still may need
1095     // to do a RAUW.
1096     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1097     Init = EmitNullConstant(D->getType());
1098   } else {
1099     Init = EmitConstantExpr(InitExpr, D->getType());
1100     if (!Init) {
1101       QualType T = InitExpr->getType();
1102       if (D->getType()->isReferenceType())
1103         T = D->getType();
1104 
1105       if (getLangOptions().CPlusPlus) {
1106         Init = EmitNullConstant(T);
1107         NonConstInit = true;
1108       } else {
1109         ErrorUnsupported(D, "static initializer");
1110         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1111       }
1112     } else {
1113       // We don't need an initializer, so remove the entry for the delayed
1114       // initializer position (just in case this entry was delayed).
1115       if (getLangOptions().CPlusPlus)
1116         DelayedCXXInitPosition.erase(D);
1117     }
1118   }
1119 
1120   const llvm::Type* InitType = Init->getType();
1121   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1122 
1123   // Strip off a bitcast if we got one back.
1124   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1125     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1126            // all zero index gep.
1127            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1128     Entry = CE->getOperand(0);
1129   }
1130 
1131   // Entry is now either a Function or GlobalVariable.
1132   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1133 
1134   // We have a definition after a declaration with the wrong type.
1135   // We must make a new GlobalVariable* and update everything that used OldGV
1136   // (a declaration or tentative definition) with the new GlobalVariable*
1137   // (which will be a definition).
1138   //
1139   // This happens if there is a prototype for a global (e.g.
1140   // "extern int x[];") and then a definition of a different type (e.g.
1141   // "int x[10];"). This also happens when an initializer has a different type
1142   // from the type of the global (this happens with unions).
1143   if (GV == 0 ||
1144       GV->getType()->getElementType() != InitType ||
1145       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1146 
1147     // Move the old entry aside so that we'll create a new one.
1148     Entry->setName(llvm::StringRef());
1149 
1150     // Make a new global with the correct type, this is now guaranteed to work.
1151     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1152 
1153     // Replace all uses of the old global with the new global
1154     llvm::Constant *NewPtrForOldDecl =
1155         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1156     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1157 
1158     // Erase the old global, since it is no longer used.
1159     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1160   }
1161 
1162   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1163     SourceManager &SM = Context.getSourceManager();
1164     AddAnnotation(EmitAnnotateAttr(GV, AA,
1165                               SM.getInstantiationLineNumber(D->getLocation())));
1166   }
1167 
1168   GV->setInitializer(Init);
1169 
1170   // If it is safe to mark the global 'constant', do so now.
1171   GV->setConstant(false);
1172   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1173     GV->setConstant(true);
1174 
1175   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1176 
1177   // Set the llvm linkage type as appropriate.
1178   llvm::GlobalValue::LinkageTypes Linkage =
1179     GetLLVMLinkageVarDefinition(D, GV);
1180   GV->setLinkage(Linkage);
1181   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1182     // common vars aren't constant even if declared const.
1183     GV->setConstant(false);
1184 
1185   SetCommonAttributes(D, GV);
1186 
1187   // Emit the initializer function if necessary.
1188   if (NonConstInit)
1189     EmitCXXGlobalVarDeclInitFunc(D, GV);
1190 
1191   // Emit global variable debug information.
1192   if (CGDebugInfo *DI = getDebugInfo()) {
1193     DI->setLocation(D->getLocation());
1194     DI->EmitGlobalVariable(GV, D);
1195   }
1196 }
1197 
1198 llvm::GlobalValue::LinkageTypes
1199 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1200                                            llvm::GlobalVariable *GV) {
1201   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1202   if (Linkage == GVA_Internal)
1203     return llvm::Function::InternalLinkage;
1204   else if (D->hasAttr<DLLImportAttr>())
1205     return llvm::Function::DLLImportLinkage;
1206   else if (D->hasAttr<DLLExportAttr>())
1207     return llvm::Function::DLLExportLinkage;
1208   else if (D->hasAttr<WeakAttr>()) {
1209     if (GV->isConstant())
1210       return llvm::GlobalVariable::WeakODRLinkage;
1211     else
1212       return llvm::GlobalVariable::WeakAnyLinkage;
1213   } else if (Linkage == GVA_TemplateInstantiation ||
1214              Linkage == GVA_ExplicitTemplateInstantiation)
1215     // FIXME: It seems like we can provide more specific linkage here
1216     // (LinkOnceODR, WeakODR).
1217     return llvm::GlobalVariable::WeakAnyLinkage;
1218   else if (!getLangOptions().CPlusPlus &&
1219            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1220              D->getAttr<CommonAttr>()) &&
1221            !D->hasExternalStorage() && !D->getInit() &&
1222            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1223     // Thread local vars aren't considered common linkage.
1224     return llvm::GlobalVariable::CommonLinkage;
1225   }
1226   return llvm::GlobalVariable::ExternalLinkage;
1227 }
1228 
1229 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1230 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1231 /// existing call uses of the old function in the module, this adjusts them to
1232 /// call the new function directly.
1233 ///
1234 /// This is not just a cleanup: the always_inline pass requires direct calls to
1235 /// functions to be able to inline them.  If there is a bitcast in the way, it
1236 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1237 /// run at -O0.
1238 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1239                                                       llvm::Function *NewFn) {
1240   // If we're redefining a global as a function, don't transform it.
1241   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1242   if (OldFn == 0) return;
1243 
1244   const llvm::Type *NewRetTy = NewFn->getReturnType();
1245   llvm::SmallVector<llvm::Value*, 4> ArgList;
1246 
1247   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1248        UI != E; ) {
1249     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1250     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1251     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1252     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1253     llvm::CallSite CS(CI);
1254     if (!CI || !CS.isCallee(I)) continue;
1255 
1256     // If the return types don't match exactly, and if the call isn't dead, then
1257     // we can't transform this call.
1258     if (CI->getType() != NewRetTy && !CI->use_empty())
1259       continue;
1260 
1261     // If the function was passed too few arguments, don't transform.  If extra
1262     // arguments were passed, we silently drop them.  If any of the types
1263     // mismatch, we don't transform.
1264     unsigned ArgNo = 0;
1265     bool DontTransform = false;
1266     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1267          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1268       if (CS.arg_size() == ArgNo ||
1269           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1270         DontTransform = true;
1271         break;
1272       }
1273     }
1274     if (DontTransform)
1275       continue;
1276 
1277     // Okay, we can transform this.  Create the new call instruction and copy
1278     // over the required information.
1279     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1280     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1281                                                      ArgList.end(), "", CI);
1282     ArgList.clear();
1283     if (!NewCall->getType()->isVoidTy())
1284       NewCall->takeName(CI);
1285     NewCall->setAttributes(CI->getAttributes());
1286     NewCall->setCallingConv(CI->getCallingConv());
1287 
1288     // Finally, remove the old call, replacing any uses with the new one.
1289     if (!CI->use_empty())
1290       CI->replaceAllUsesWith(NewCall);
1291 
1292     // Copy debug location attached to CI.
1293     if (!CI->getDebugLoc().isUnknown())
1294       NewCall->setDebugLoc(CI->getDebugLoc());
1295     CI->eraseFromParent();
1296   }
1297 }
1298 
1299 
1300 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1301   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1302   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1303   getCXXABI().getMangleContext().mangleInitDiscriminator();
1304   // Get or create the prototype for the function.
1305   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1306 
1307   // Strip off a bitcast if we got one back.
1308   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1309     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1310     Entry = CE->getOperand(0);
1311   }
1312 
1313 
1314   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1315     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1316 
1317     // If the types mismatch then we have to rewrite the definition.
1318     assert(OldFn->isDeclaration() &&
1319            "Shouldn't replace non-declaration");
1320 
1321     // F is the Function* for the one with the wrong type, we must make a new
1322     // Function* and update everything that used F (a declaration) with the new
1323     // Function* (which will be a definition).
1324     //
1325     // This happens if there is a prototype for a function
1326     // (e.g. "int f()") and then a definition of a different type
1327     // (e.g. "int f(int x)").  Move the old function aside so that it
1328     // doesn't interfere with GetAddrOfFunction.
1329     OldFn->setName(llvm::StringRef());
1330     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1331 
1332     // If this is an implementation of a function without a prototype, try to
1333     // replace any existing uses of the function (which may be calls) with uses
1334     // of the new function
1335     if (D->getType()->isFunctionNoProtoType()) {
1336       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1337       OldFn->removeDeadConstantUsers();
1338     }
1339 
1340     // Replace uses of F with the Function we will endow with a body.
1341     if (!Entry->use_empty()) {
1342       llvm::Constant *NewPtrForOldDecl =
1343         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1344       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1345     }
1346 
1347     // Ok, delete the old function now, which is dead.
1348     OldFn->eraseFromParent();
1349 
1350     Entry = NewFn;
1351   }
1352 
1353   // We need to set linkage and visibility on the function before
1354   // generating code for it because various parts of IR generation
1355   // want to propagate this information down (e.g. to local static
1356   // declarations).
1357   llvm::Function *Fn = cast<llvm::Function>(Entry);
1358   setFunctionLinkage(D, Fn);
1359 
1360   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1361   setGlobalVisibility(Fn, D, /*ForDef*/ true);
1362 
1363   CodeGenFunction(*this).GenerateCode(D, Fn);
1364 
1365   SetFunctionDefinitionAttributes(D, Fn);
1366   SetLLVMFunctionAttributesForDefinition(D, Fn);
1367 
1368   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1369     AddGlobalCtor(Fn, CA->getPriority());
1370   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1371     AddGlobalDtor(Fn, DA->getPriority());
1372 }
1373 
1374 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1375   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1376   const AliasAttr *AA = D->getAttr<AliasAttr>();
1377   assert(AA && "Not an alias?");
1378 
1379   llvm::StringRef MangledName = getMangledName(GD);
1380 
1381   // If there is a definition in the module, then it wins over the alias.
1382   // This is dubious, but allow it to be safe.  Just ignore the alias.
1383   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1384   if (Entry && !Entry->isDeclaration())
1385     return;
1386 
1387   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1388 
1389   // Create a reference to the named value.  This ensures that it is emitted
1390   // if a deferred decl.
1391   llvm::Constant *Aliasee;
1392   if (isa<llvm::FunctionType>(DeclTy))
1393     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1394   else
1395     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1396                                     llvm::PointerType::getUnqual(DeclTy), 0);
1397 
1398   // Create the new alias itself, but don't set a name yet.
1399   llvm::GlobalValue *GA =
1400     new llvm::GlobalAlias(Aliasee->getType(),
1401                           llvm::Function::ExternalLinkage,
1402                           "", Aliasee, &getModule());
1403 
1404   if (Entry) {
1405     assert(Entry->isDeclaration());
1406 
1407     // If there is a declaration in the module, then we had an extern followed
1408     // by the alias, as in:
1409     //   extern int test6();
1410     //   ...
1411     //   int test6() __attribute__((alias("test7")));
1412     //
1413     // Remove it and replace uses of it with the alias.
1414     GA->takeName(Entry);
1415 
1416     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1417                                                           Entry->getType()));
1418     Entry->eraseFromParent();
1419   } else {
1420     GA->setName(MangledName);
1421   }
1422 
1423   // Set attributes which are particular to an alias; this is a
1424   // specialization of the attributes which may be set on a global
1425   // variable/function.
1426   if (D->hasAttr<DLLExportAttr>()) {
1427     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1428       // The dllexport attribute is ignored for undefined symbols.
1429       if (FD->hasBody())
1430         GA->setLinkage(llvm::Function::DLLExportLinkage);
1431     } else {
1432       GA->setLinkage(llvm::Function::DLLExportLinkage);
1433     }
1434   } else if (D->hasAttr<WeakAttr>() ||
1435              D->hasAttr<WeakRefAttr>() ||
1436              D->hasAttr<WeakImportAttr>()) {
1437     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1438   }
1439 
1440   SetCommonAttributes(D, GA);
1441 }
1442 
1443 /// getBuiltinLibFunction - Given a builtin id for a function like
1444 /// "__builtin_fabsf", return a Function* for "fabsf".
1445 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1446                                                   unsigned BuiltinID) {
1447   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1448           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1449          "isn't a lib fn");
1450 
1451   // Get the name, skip over the __builtin_ prefix (if necessary).
1452   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1453   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1454     Name += 10;
1455 
1456   const llvm::FunctionType *Ty =
1457     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1458 
1459   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1460 }
1461 
1462 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1463                                             unsigned NumTys) {
1464   return llvm::Intrinsic::getDeclaration(&getModule(),
1465                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1466 }
1467 
1468 
1469 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1470                                            const llvm::Type *SrcType,
1471                                            const llvm::Type *SizeType) {
1472   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1473   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1474 }
1475 
1476 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1477                                             const llvm::Type *SrcType,
1478                                             const llvm::Type *SizeType) {
1479   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1480   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1481 }
1482 
1483 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1484                                            const llvm::Type *SizeType) {
1485   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1486   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1487 }
1488 
1489 static llvm::StringMapEntry<llvm::Constant*> &
1490 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1491                          const StringLiteral *Literal,
1492                          bool TargetIsLSB,
1493                          bool &IsUTF16,
1494                          unsigned &StringLength) {
1495   llvm::StringRef String = Literal->getString();
1496   unsigned NumBytes = String.size();
1497 
1498   // Check for simple case.
1499   if (!Literal->containsNonAsciiOrNull()) {
1500     StringLength = NumBytes;
1501     return Map.GetOrCreateValue(String);
1502   }
1503 
1504   // Otherwise, convert the UTF8 literals into a byte string.
1505   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1506   const UTF8 *FromPtr = (UTF8 *)String.data();
1507   UTF16 *ToPtr = &ToBuf[0];
1508 
1509   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1510                            &ToPtr, ToPtr + NumBytes,
1511                            strictConversion);
1512 
1513   // ConvertUTF8toUTF16 returns the length in ToPtr.
1514   StringLength = ToPtr - &ToBuf[0];
1515 
1516   // Render the UTF-16 string into a byte array and convert to the target byte
1517   // order.
1518   //
1519   // FIXME: This isn't something we should need to do here.
1520   llvm::SmallString<128> AsBytes;
1521   AsBytes.reserve(StringLength * 2);
1522   for (unsigned i = 0; i != StringLength; ++i) {
1523     unsigned short Val = ToBuf[i];
1524     if (TargetIsLSB) {
1525       AsBytes.push_back(Val & 0xFF);
1526       AsBytes.push_back(Val >> 8);
1527     } else {
1528       AsBytes.push_back(Val >> 8);
1529       AsBytes.push_back(Val & 0xFF);
1530     }
1531   }
1532   // Append one extra null character, the second is automatically added by our
1533   // caller.
1534   AsBytes.push_back(0);
1535 
1536   IsUTF16 = true;
1537   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1538 }
1539 
1540 llvm::Constant *
1541 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1542   unsigned StringLength = 0;
1543   bool isUTF16 = false;
1544   llvm::StringMapEntry<llvm::Constant*> &Entry =
1545     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1546                              getTargetData().isLittleEndian(),
1547                              isUTF16, StringLength);
1548 
1549   if (llvm::Constant *C = Entry.getValue())
1550     return C;
1551 
1552   llvm::Constant *Zero =
1553       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1554   llvm::Constant *Zeros[] = { Zero, Zero };
1555 
1556   // If we don't already have it, get __CFConstantStringClassReference.
1557   if (!CFConstantStringClassRef) {
1558     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1559     Ty = llvm::ArrayType::get(Ty, 0);
1560     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1561                                            "__CFConstantStringClassReference");
1562     // Decay array -> ptr
1563     CFConstantStringClassRef =
1564       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1565   }
1566 
1567   QualType CFTy = getContext().getCFConstantStringType();
1568 
1569   const llvm::StructType *STy =
1570     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1571 
1572   std::vector<llvm::Constant*> Fields(4);
1573 
1574   // Class pointer.
1575   Fields[0] = CFConstantStringClassRef;
1576 
1577   // Flags.
1578   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1579   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1580     llvm::ConstantInt::get(Ty, 0x07C8);
1581 
1582   // String pointer.
1583   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1584 
1585   llvm::GlobalValue::LinkageTypes Linkage;
1586   bool isConstant;
1587   if (isUTF16) {
1588     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1589     Linkage = llvm::GlobalValue::InternalLinkage;
1590     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1591     // does make plain ascii ones writable.
1592     isConstant = true;
1593   } else {
1594     Linkage = llvm::GlobalValue::PrivateLinkage;
1595     isConstant = !Features.WritableStrings;
1596   }
1597 
1598   llvm::GlobalVariable *GV =
1599     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1600                              ".str");
1601   if (isUTF16) {
1602     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1603     GV->setAlignment(Align.getQuantity());
1604   }
1605   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1606 
1607   // String length.
1608   Ty = getTypes().ConvertType(getContext().LongTy);
1609   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1610 
1611   // The struct.
1612   C = llvm::ConstantStruct::get(STy, Fields);
1613   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1614                                 llvm::GlobalVariable::PrivateLinkage, C,
1615                                 "_unnamed_cfstring_");
1616   if (const char *Sect = getContext().Target.getCFStringSection())
1617     GV->setSection(Sect);
1618   Entry.setValue(GV);
1619 
1620   return GV;
1621 }
1622 
1623 llvm::Constant *
1624 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1625   unsigned StringLength = 0;
1626   bool isUTF16 = false;
1627   llvm::StringMapEntry<llvm::Constant*> &Entry =
1628     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1629                              getTargetData().isLittleEndian(),
1630                              isUTF16, StringLength);
1631 
1632   if (llvm::Constant *C = Entry.getValue())
1633     return C;
1634 
1635   llvm::Constant *Zero =
1636   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1637   llvm::Constant *Zeros[] = { Zero, Zero };
1638 
1639   // If we don't already have it, get _NSConstantStringClassReference.
1640   if (!ConstantStringClassRef) {
1641     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1642     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1643     Ty = llvm::ArrayType::get(Ty, 0);
1644     llvm::Constant *GV;
1645     if (StringClass.empty())
1646       GV = CreateRuntimeVariable(Ty,
1647                                  Features.ObjCNonFragileABI ?
1648                                  "OBJC_CLASS_$_NSConstantString" :
1649                                  "_NSConstantStringClassReference");
1650     else {
1651       std::string str;
1652       if (Features.ObjCNonFragileABI)
1653         str = "OBJC_CLASS_$_" + StringClass;
1654       else
1655         str = "_" + StringClass + "ClassReference";
1656       GV = CreateRuntimeVariable(Ty, str);
1657     }
1658     // Decay array -> ptr
1659     ConstantStringClassRef =
1660     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1661   }
1662 
1663   QualType NSTy = getContext().getNSConstantStringType();
1664 
1665   const llvm::StructType *STy =
1666   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1667 
1668   std::vector<llvm::Constant*> Fields(3);
1669 
1670   // Class pointer.
1671   Fields[0] = ConstantStringClassRef;
1672 
1673   // String pointer.
1674   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1675 
1676   llvm::GlobalValue::LinkageTypes Linkage;
1677   bool isConstant;
1678   if (isUTF16) {
1679     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1680     Linkage = llvm::GlobalValue::InternalLinkage;
1681     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1682     // does make plain ascii ones writable.
1683     isConstant = true;
1684   } else {
1685     Linkage = llvm::GlobalValue::PrivateLinkage;
1686     isConstant = !Features.WritableStrings;
1687   }
1688 
1689   llvm::GlobalVariable *GV =
1690   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1691                            ".str");
1692   if (isUTF16) {
1693     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1694     GV->setAlignment(Align.getQuantity());
1695   }
1696   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1697 
1698   // String length.
1699   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1700   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1701 
1702   // The struct.
1703   C = llvm::ConstantStruct::get(STy, Fields);
1704   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1705                                 llvm::GlobalVariable::PrivateLinkage, C,
1706                                 "_unnamed_nsstring_");
1707   // FIXME. Fix section.
1708   if (const char *Sect =
1709         Features.ObjCNonFragileABI
1710           ? getContext().Target.getNSStringNonFragileABISection()
1711           : getContext().Target.getNSStringSection())
1712     GV->setSection(Sect);
1713   Entry.setValue(GV);
1714 
1715   return GV;
1716 }
1717 
1718 /// GetStringForStringLiteral - Return the appropriate bytes for a
1719 /// string literal, properly padded to match the literal type.
1720 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1721   const ConstantArrayType *CAT =
1722     getContext().getAsConstantArrayType(E->getType());
1723   assert(CAT && "String isn't pointer or array!");
1724 
1725   // Resize the string to the right size.
1726   uint64_t RealLen = CAT->getSize().getZExtValue();
1727 
1728   if (E->isWide())
1729     RealLen *= getContext().Target.getWCharWidth()/8;
1730 
1731   std::string Str = E->getString().str();
1732   Str.resize(RealLen, '\0');
1733 
1734   return Str;
1735 }
1736 
1737 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1738 /// constant array for the given string literal.
1739 llvm::Constant *
1740 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1741   // FIXME: This can be more efficient.
1742   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1743   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1744   if (S->isWide()) {
1745     llvm::Type *DestTy =
1746         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1747     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1748   }
1749   return C;
1750 }
1751 
1752 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1753 /// array for the given ObjCEncodeExpr node.
1754 llvm::Constant *
1755 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1756   std::string Str;
1757   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1758 
1759   return GetAddrOfConstantCString(Str);
1760 }
1761 
1762 
1763 /// GenerateWritableString -- Creates storage for a string literal.
1764 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1765                                              bool constant,
1766                                              CodeGenModule &CGM,
1767                                              const char *GlobalName) {
1768   // Create Constant for this string literal. Don't add a '\0'.
1769   llvm::Constant *C =
1770       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1771 
1772   // Create a global variable for this string
1773   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1774                                   llvm::GlobalValue::PrivateLinkage,
1775                                   C, GlobalName);
1776 }
1777 
1778 /// GetAddrOfConstantString - Returns a pointer to a character array
1779 /// containing the literal. This contents are exactly that of the
1780 /// given string, i.e. it will not be null terminated automatically;
1781 /// see GetAddrOfConstantCString. Note that whether the result is
1782 /// actually a pointer to an LLVM constant depends on
1783 /// Feature.WriteableStrings.
1784 ///
1785 /// The result has pointer to array type.
1786 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1787                                                        const char *GlobalName) {
1788   bool IsConstant = !Features.WritableStrings;
1789 
1790   // Get the default prefix if a name wasn't specified.
1791   if (!GlobalName)
1792     GlobalName = ".str";
1793 
1794   // Don't share any string literals if strings aren't constant.
1795   if (!IsConstant)
1796     return GenerateStringLiteral(str, false, *this, GlobalName);
1797 
1798   llvm::StringMapEntry<llvm::Constant *> &Entry =
1799     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1800 
1801   if (Entry.getValue())
1802     return Entry.getValue();
1803 
1804   // Create a global variable for this.
1805   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1806   Entry.setValue(C);
1807   return C;
1808 }
1809 
1810 /// GetAddrOfConstantCString - Returns a pointer to a character
1811 /// array containing the literal and a terminating '\-'
1812 /// character. The result has pointer to array type.
1813 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1814                                                         const char *GlobalName){
1815   return GetAddrOfConstantString(str + '\0', GlobalName);
1816 }
1817 
1818 /// EmitObjCPropertyImplementations - Emit information for synthesized
1819 /// properties for an implementation.
1820 void CodeGenModule::EmitObjCPropertyImplementations(const
1821                                                     ObjCImplementationDecl *D) {
1822   for (ObjCImplementationDecl::propimpl_iterator
1823          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1824     ObjCPropertyImplDecl *PID = *i;
1825 
1826     // Dynamic is just for type-checking.
1827     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1828       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1829 
1830       // Determine which methods need to be implemented, some may have
1831       // been overridden. Note that ::isSynthesized is not the method
1832       // we want, that just indicates if the decl came from a
1833       // property. What we want to know is if the method is defined in
1834       // this implementation.
1835       if (!D->getInstanceMethod(PD->getGetterName()))
1836         CodeGenFunction(*this).GenerateObjCGetter(
1837                                  const_cast<ObjCImplementationDecl *>(D), PID);
1838       if (!PD->isReadOnly() &&
1839           !D->getInstanceMethod(PD->getSetterName()))
1840         CodeGenFunction(*this).GenerateObjCSetter(
1841                                  const_cast<ObjCImplementationDecl *>(D), PID);
1842     }
1843   }
1844 }
1845 
1846 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1847 /// for an implementation.
1848 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1849   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1850     return;
1851   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1852   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1853   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1854   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1855   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1856                                                   D->getLocation(),
1857                                                   D->getLocation(), cxxSelector,
1858                                                   getContext().VoidTy, 0,
1859                                                   DC, true, false, true, false,
1860                                                   ObjCMethodDecl::Required);
1861   D->addInstanceMethod(DTORMethod);
1862   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1863 
1864   II = &getContext().Idents.get(".cxx_construct");
1865   cxxSelector = getContext().Selectors.getSelector(0, &II);
1866   // The constructor returns 'self'.
1867   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1868                                                 D->getLocation(),
1869                                                 D->getLocation(), cxxSelector,
1870                                                 getContext().getObjCIdType(), 0,
1871                                                 DC, true, false, true, false,
1872                                                 ObjCMethodDecl::Required);
1873   D->addInstanceMethod(CTORMethod);
1874   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1875 
1876 
1877 }
1878 
1879 /// EmitNamespace - Emit all declarations in a namespace.
1880 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1881   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1882        I != E; ++I)
1883     EmitTopLevelDecl(*I);
1884 }
1885 
1886 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1887 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1888   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1889       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1890     ErrorUnsupported(LSD, "linkage spec");
1891     return;
1892   }
1893 
1894   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1895        I != E; ++I)
1896     EmitTopLevelDecl(*I);
1897 }
1898 
1899 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1900 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1901   // If an error has occurred, stop code generation, but continue
1902   // parsing and semantic analysis (to ensure all warnings and errors
1903   // are emitted).
1904   if (Diags.hasErrorOccurred())
1905     return;
1906 
1907   // Ignore dependent declarations.
1908   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1909     return;
1910 
1911   switch (D->getKind()) {
1912   case Decl::CXXConversion:
1913   case Decl::CXXMethod:
1914   case Decl::Function:
1915     // Skip function templates
1916     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1917       return;
1918 
1919     EmitGlobal(cast<FunctionDecl>(D));
1920     break;
1921 
1922   case Decl::Var:
1923     EmitGlobal(cast<VarDecl>(D));
1924     break;
1925 
1926   // C++ Decls
1927   case Decl::Namespace:
1928     EmitNamespace(cast<NamespaceDecl>(D));
1929     break;
1930     // No code generation needed.
1931   case Decl::UsingShadow:
1932   case Decl::Using:
1933   case Decl::UsingDirective:
1934   case Decl::ClassTemplate:
1935   case Decl::FunctionTemplate:
1936   case Decl::NamespaceAlias:
1937     break;
1938   case Decl::CXXConstructor:
1939     // Skip function templates
1940     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1941       return;
1942 
1943     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1944     break;
1945   case Decl::CXXDestructor:
1946     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1947     break;
1948 
1949   case Decl::StaticAssert:
1950     // Nothing to do.
1951     break;
1952 
1953   // Objective-C Decls
1954 
1955   // Forward declarations, no (immediate) code generation.
1956   case Decl::ObjCClass:
1957   case Decl::ObjCForwardProtocol:
1958   case Decl::ObjCInterface:
1959     break;
1960 
1961     case Decl::ObjCCategory: {
1962       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1963       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1964         Context.ResetObjCLayout(CD->getClassInterface());
1965       break;
1966     }
1967 
1968 
1969   case Decl::ObjCProtocol:
1970     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1971     break;
1972 
1973   case Decl::ObjCCategoryImpl:
1974     // Categories have properties but don't support synthesize so we
1975     // can ignore them here.
1976     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1977     break;
1978 
1979   case Decl::ObjCImplementation: {
1980     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1981     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1982       Context.ResetObjCLayout(OMD->getClassInterface());
1983     EmitObjCPropertyImplementations(OMD);
1984     EmitObjCIvarInitializations(OMD);
1985     Runtime->GenerateClass(OMD);
1986     break;
1987   }
1988   case Decl::ObjCMethod: {
1989     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1990     // If this is not a prototype, emit the body.
1991     if (OMD->getBody())
1992       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1993     break;
1994   }
1995   case Decl::ObjCCompatibleAlias:
1996     // compatibility-alias is a directive and has no code gen.
1997     break;
1998 
1999   case Decl::LinkageSpec:
2000     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2001     break;
2002 
2003   case Decl::FileScopeAsm: {
2004     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2005     llvm::StringRef AsmString = AD->getAsmString()->getString();
2006 
2007     const std::string &S = getModule().getModuleInlineAsm();
2008     if (S.empty())
2009       getModule().setModuleInlineAsm(AsmString);
2010     else
2011       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2012     break;
2013   }
2014 
2015   default:
2016     // Make sure we handled everything we should, every other kind is a
2017     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2018     // function. Need to recode Decl::Kind to do that easily.
2019     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2020   }
2021 }
2022 
2023 /// Turns the given pointer into a constant.
2024 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2025                                           const void *Ptr) {
2026   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2027   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2028   return llvm::ConstantInt::get(i64, PtrInt);
2029 }
2030 
2031 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2032                                    llvm::NamedMDNode *&GlobalMetadata,
2033                                    GlobalDecl D,
2034                                    llvm::GlobalValue *Addr) {
2035   if (!GlobalMetadata)
2036     GlobalMetadata =
2037       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2038 
2039   // TODO: should we report variant information for ctors/dtors?
2040   llvm::Value *Ops[] = {
2041     Addr,
2042     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2043   };
2044   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2045 }
2046 
2047 /// Emits metadata nodes associating all the global values in the
2048 /// current module with the Decls they came from.  This is useful for
2049 /// projects using IR gen as a subroutine.
2050 ///
2051 /// Since there's currently no way to associate an MDNode directly
2052 /// with an llvm::GlobalValue, we create a global named metadata
2053 /// with the name 'clang.global.decl.ptrs'.
2054 void CodeGenModule::EmitDeclMetadata() {
2055   llvm::NamedMDNode *GlobalMetadata = 0;
2056 
2057   // StaticLocalDeclMap
2058   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2059          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2060        I != E; ++I) {
2061     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2062     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2063   }
2064 }
2065 
2066 /// Emits metadata nodes for all the local variables in the current
2067 /// function.
2068 void CodeGenFunction::EmitDeclMetadata() {
2069   if (LocalDeclMap.empty()) return;
2070 
2071   llvm::LLVMContext &Context = getLLVMContext();
2072 
2073   // Find the unique metadata ID for this name.
2074   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2075 
2076   llvm::NamedMDNode *GlobalMetadata = 0;
2077 
2078   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2079          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2080     const Decl *D = I->first;
2081     llvm::Value *Addr = I->second;
2082 
2083     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2084       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2085       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2086     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2087       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2088       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2089     }
2090   }
2091 }
2092 
2093 ///@name Custom Runtime Function Interfaces
2094 ///@{
2095 //
2096 // FIXME: These can be eliminated once we can have clients just get the required
2097 // AST nodes from the builtin tables.
2098 
2099 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2100   if (BlockObjectDispose)
2101     return BlockObjectDispose;
2102 
2103   // If we saw an explicit decl, use that.
2104   if (BlockObjectDisposeDecl) {
2105     return BlockObjectDispose = GetAddrOfFunction(
2106       BlockObjectDisposeDecl,
2107       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2108   }
2109 
2110   // Otherwise construct the function by hand.
2111   const llvm::FunctionType *FTy;
2112   std::vector<const llvm::Type*> ArgTys;
2113   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2114   ArgTys.push_back(PtrToInt8Ty);
2115   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2116   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2117   return BlockObjectDispose =
2118     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2119 }
2120 
2121 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2122   if (BlockObjectAssign)
2123     return BlockObjectAssign;
2124 
2125   // If we saw an explicit decl, use that.
2126   if (BlockObjectAssignDecl) {
2127     return BlockObjectAssign = GetAddrOfFunction(
2128       BlockObjectAssignDecl,
2129       getTypes().GetFunctionType(BlockObjectAssignDecl));
2130   }
2131 
2132   // Otherwise construct the function by hand.
2133   const llvm::FunctionType *FTy;
2134   std::vector<const llvm::Type*> ArgTys;
2135   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2136   ArgTys.push_back(PtrToInt8Ty);
2137   ArgTys.push_back(PtrToInt8Ty);
2138   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2139   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2140   return BlockObjectAssign =
2141     CreateRuntimeFunction(FTy, "_Block_object_assign");
2142 }
2143 
2144 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2145   if (NSConcreteGlobalBlock)
2146     return NSConcreteGlobalBlock;
2147 
2148   // If we saw an explicit decl, use that.
2149   if (NSConcreteGlobalBlockDecl) {
2150     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2151       NSConcreteGlobalBlockDecl,
2152       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2153   }
2154 
2155   // Otherwise construct the variable by hand.
2156   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2157     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2158 }
2159 
2160 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2161   if (NSConcreteStackBlock)
2162     return NSConcreteStackBlock;
2163 
2164   // If we saw an explicit decl, use that.
2165   if (NSConcreteStackBlockDecl) {
2166     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2167       NSConcreteStackBlockDecl,
2168       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2169   }
2170 
2171   // Otherwise construct the variable by hand.
2172   return NSConcreteStackBlock = CreateRuntimeVariable(
2173     PtrToInt8Ty, "_NSConcreteStackBlock");
2174 }
2175 
2176 ///@}
2177