xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 33a6ce18373ffd1457ebd54e930b6f02fe4c39c1)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
57 #include "llvm/IR/AttributeMask.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/ProfileSummary.h"
64 #include "llvm/ProfileData/InstrProfReader.h"
65 #include "llvm/ProfileData/SampleProf.h"
66 #include "llvm/Support/CRC.h"
67 #include "llvm/Support/CodeGen.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/ConvertUTF.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/RISCVISAInfo.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/Triple.h"
75 #include "llvm/TargetParser/X86TargetParser.h"
76 #include <optional>
77 
78 using namespace clang;
79 using namespace CodeGen;
80 
81 static llvm::cl::opt<bool> LimitedCoverage(
82     "limited-coverage-experimental", llvm::cl::Hidden,
83     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
84 
85 static const char AnnotationSection[] = "llvm.metadata";
86 
87 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
88   switch (CGM.getContext().getCXXABIKind()) {
89   case TargetCXXABI::AppleARM64:
90   case TargetCXXABI::Fuchsia:
91   case TargetCXXABI::GenericAArch64:
92   case TargetCXXABI::GenericARM:
93   case TargetCXXABI::iOS:
94   case TargetCXXABI::WatchOS:
95   case TargetCXXABI::GenericMIPS:
96   case TargetCXXABI::GenericItanium:
97   case TargetCXXABI::WebAssembly:
98   case TargetCXXABI::XL:
99     return CreateItaniumCXXABI(CGM);
100   case TargetCXXABI::Microsoft:
101     return CreateMicrosoftCXXABI(CGM);
102   }
103 
104   llvm_unreachable("invalid C++ ABI kind");
105 }
106 
107 static std::unique_ptr<TargetCodeGenInfo>
108 createTargetCodeGenInfo(CodeGenModule &CGM) {
109   const TargetInfo &Target = CGM.getTarget();
110   const llvm::Triple &Triple = Target.getTriple();
111   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
112 
113   switch (Triple.getArch()) {
114   default:
115     return createDefaultTargetCodeGenInfo(CGM);
116 
117   case llvm::Triple::le32:
118     return createPNaClTargetCodeGenInfo(CGM);
119   case llvm::Triple::m68k:
120     return createM68kTargetCodeGenInfo(CGM);
121   case llvm::Triple::mips:
122   case llvm::Triple::mipsel:
123     if (Triple.getOS() == llvm::Triple::NaCl)
124       return createPNaClTargetCodeGenInfo(CGM);
125     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
126 
127   case llvm::Triple::mips64:
128   case llvm::Triple::mips64el:
129     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
130 
131   case llvm::Triple::avr: {
132     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
133     // on avrtiny. For passing return value, R18~R25 are used on avr, and
134     // R22~R25 are used on avrtiny.
135     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
136     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
137     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
138   }
139 
140   case llvm::Triple::aarch64:
141   case llvm::Triple::aarch64_32:
142   case llvm::Triple::aarch64_be: {
143     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
144     if (Target.getABI() == "darwinpcs")
145       Kind = AArch64ABIKind::DarwinPCS;
146     else if (Triple.isOSWindows())
147       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
148 
149     return createAArch64TargetCodeGenInfo(CGM, Kind);
150   }
151 
152   case llvm::Triple::wasm32:
153   case llvm::Triple::wasm64: {
154     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
155     if (Target.getABI() == "experimental-mv")
156       Kind = WebAssemblyABIKind::ExperimentalMV;
157     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
158   }
159 
160   case llvm::Triple::arm:
161   case llvm::Triple::armeb:
162   case llvm::Triple::thumb:
163   case llvm::Triple::thumbeb: {
164     if (Triple.getOS() == llvm::Triple::Win32)
165       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
166 
167     ARMABIKind Kind = ARMABIKind::AAPCS;
168     StringRef ABIStr = Target.getABI();
169     if (ABIStr == "apcs-gnu")
170       Kind = ARMABIKind::APCS;
171     else if (ABIStr == "aapcs16")
172       Kind = ARMABIKind::AAPCS16_VFP;
173     else if (CodeGenOpts.FloatABI == "hard" ||
174              (CodeGenOpts.FloatABI != "soft" &&
175               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
176                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
177                Triple.getEnvironment() == llvm::Triple::EABIHF)))
178       Kind = ARMABIKind::AAPCS_VFP;
179 
180     return createARMTargetCodeGenInfo(CGM, Kind);
181   }
182 
183   case llvm::Triple::ppc: {
184     if (Triple.isOSAIX())
185       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
186 
187     bool IsSoftFloat =
188         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
189     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
190   }
191   case llvm::Triple::ppcle: {
192     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppc64:
196     if (Triple.isOSAIX())
197       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
198 
199     if (Triple.isOSBinFormatELF()) {
200       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
201       if (Target.getABI() == "elfv2")
202         Kind = PPC64_SVR4_ABIKind::ELFv2;
203       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
204 
205       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
206     }
207     return createPPC64TargetCodeGenInfo(CGM);
208   case llvm::Triple::ppc64le: {
209     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
210     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
211     if (Target.getABI() == "elfv1")
212       Kind = PPC64_SVR4_ABIKind::ELFv1;
213     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
214 
215     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
216   }
217 
218   case llvm::Triple::nvptx:
219   case llvm::Triple::nvptx64:
220     return createNVPTXTargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::msp430:
223     return createMSP430TargetCodeGenInfo(CGM);
224 
225   case llvm::Triple::riscv32:
226   case llvm::Triple::riscv64: {
227     StringRef ABIStr = Target.getABI();
228     unsigned XLen = Target.getPointerWidth(LangAS::Default);
229     unsigned ABIFLen = 0;
230     if (ABIStr.ends_with("f"))
231       ABIFLen = 32;
232     else if (ABIStr.ends_with("d"))
233       ABIFLen = 64;
234     bool EABI = ABIStr.ends_with("e");
235     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
236   }
237 
238   case llvm::Triple::systemz: {
239     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
240     bool HasVector = !SoftFloat && Target.getABI() == "vector";
241     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
242   }
243 
244   case llvm::Triple::tce:
245   case llvm::Triple::tcele:
246     return createTCETargetCodeGenInfo(CGM);
247 
248   case llvm::Triple::x86: {
249     bool IsDarwinVectorABI = Triple.isOSDarwin();
250     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
251 
252     if (Triple.getOS() == llvm::Triple::Win32) {
253       return createWinX86_32TargetCodeGenInfo(
254           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255           CodeGenOpts.NumRegisterParameters);
256     }
257     return createX86_32TargetCodeGenInfo(
258         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
260   }
261 
262   case llvm::Triple::x86_64: {
263     StringRef ABI = Target.getABI();
264     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
265                                : ABI == "avx"  ? X86AVXABILevel::AVX
266                                                : X86AVXABILevel::None);
267 
268     switch (Triple.getOS()) {
269     case llvm::Triple::Win32:
270       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
271     default:
272       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
273     }
274   }
275   case llvm::Triple::hexagon:
276     return createHexagonTargetCodeGenInfo(CGM);
277   case llvm::Triple::lanai:
278     return createLanaiTargetCodeGenInfo(CGM);
279   case llvm::Triple::r600:
280     return createAMDGPUTargetCodeGenInfo(CGM);
281   case llvm::Triple::amdgcn:
282     return createAMDGPUTargetCodeGenInfo(CGM);
283   case llvm::Triple::sparc:
284     return createSparcV8TargetCodeGenInfo(CGM);
285   case llvm::Triple::sparcv9:
286     return createSparcV9TargetCodeGenInfo(CGM);
287   case llvm::Triple::xcore:
288     return createXCoreTargetCodeGenInfo(CGM);
289   case llvm::Triple::arc:
290     return createARCTargetCodeGenInfo(CGM);
291   case llvm::Triple::spir:
292   case llvm::Triple::spir64:
293     return createCommonSPIRTargetCodeGenInfo(CGM);
294   case llvm::Triple::spirv32:
295   case llvm::Triple::spirv64:
296     return createSPIRVTargetCodeGenInfo(CGM);
297   case llvm::Triple::ve:
298     return createVETargetCodeGenInfo(CGM);
299   case llvm::Triple::csky: {
300     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
301     bool hasFP64 =
302         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
303     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
304                                             : hasFP64   ? 64
305                                                         : 32);
306   }
307   case llvm::Triple::bpfeb:
308   case llvm::Triple::bpfel:
309     return createBPFTargetCodeGenInfo(CGM);
310   case llvm::Triple::loongarch32:
311   case llvm::Triple::loongarch64: {
312     StringRef ABIStr = Target.getABI();
313     unsigned ABIFRLen = 0;
314     if (ABIStr.ends_with("f"))
315       ABIFRLen = 32;
316     else if (ABIStr.ends_with("d"))
317       ABIFRLen = 64;
318     return createLoongArchTargetCodeGenInfo(
319         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
320   }
321   }
322 }
323 
324 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
325   if (!TheTargetCodeGenInfo)
326     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
327   return *TheTargetCodeGenInfo;
328 }
329 
330 CodeGenModule::CodeGenModule(ASTContext &C,
331                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
332                              const HeaderSearchOptions &HSO,
333                              const PreprocessorOptions &PPO,
334                              const CodeGenOptions &CGO, llvm::Module &M,
335                              DiagnosticsEngine &diags,
336                              CoverageSourceInfo *CoverageInfo)
337     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
338       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
339       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
340       VMContext(M.getContext()), Types(*this), VTables(*this),
341       SanitizerMD(new SanitizerMetadata(*this)) {
342 
343   // Initialize the type cache.
344   llvm::LLVMContext &LLVMContext = M.getContext();
345   VoidTy = llvm::Type::getVoidTy(LLVMContext);
346   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
347   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
348   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
349   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
350   HalfTy = llvm::Type::getHalfTy(LLVMContext);
351   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
352   FloatTy = llvm::Type::getFloatTy(LLVMContext);
353   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
354   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
355   PointerAlignInBytes =
356       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
357           .getQuantity();
358   SizeSizeInBytes =
359     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
360   IntAlignInBytes =
361     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
362   CharTy =
363     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
364   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
365   IntPtrTy = llvm::IntegerType::get(LLVMContext,
366     C.getTargetInfo().getMaxPointerWidth());
367   Int8PtrTy = llvm::PointerType::get(LLVMContext, 0);
368   const llvm::DataLayout &DL = M.getDataLayout();
369   AllocaInt8PtrTy =
370       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
371   GlobalsInt8PtrTy =
372       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
373   ConstGlobalsPtrTy = llvm::PointerType::get(
374       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
375   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
376 
377   // Build C++20 Module initializers.
378   // TODO: Add Microsoft here once we know the mangling required for the
379   // initializers.
380   CXX20ModuleInits =
381       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
382                                        ItaniumMangleContext::MK_Itanium;
383 
384   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
385 
386   if (LangOpts.ObjC)
387     createObjCRuntime();
388   if (LangOpts.OpenCL)
389     createOpenCLRuntime();
390   if (LangOpts.OpenMP)
391     createOpenMPRuntime();
392   if (LangOpts.CUDA)
393     createCUDARuntime();
394   if (LangOpts.HLSL)
395     createHLSLRuntime();
396 
397   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
398   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
399       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
400     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
401                                getCXXABI().getMangleContext()));
402 
403   // If debug info or coverage generation is enabled, create the CGDebugInfo
404   // object.
405   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
406       CodeGenOpts.CoverageNotesFile.size() ||
407       CodeGenOpts.CoverageDataFile.size())
408     DebugInfo.reset(new CGDebugInfo(*this));
409 
410   Block.GlobalUniqueCount = 0;
411 
412   if (C.getLangOpts().ObjC)
413     ObjCData.reset(new ObjCEntrypoints());
414 
415   if (CodeGenOpts.hasProfileClangUse()) {
416     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
417         CodeGenOpts.ProfileInstrumentUsePath, *FS,
418         CodeGenOpts.ProfileRemappingFile);
419     // We're checking for profile read errors in CompilerInvocation, so if
420     // there was an error it should've already been caught. If it hasn't been
421     // somehow, trip an assertion.
422     assert(ReaderOrErr);
423     PGOReader = std::move(ReaderOrErr.get());
424   }
425 
426   // If coverage mapping generation is enabled, create the
427   // CoverageMappingModuleGen object.
428   if (CodeGenOpts.CoverageMapping)
429     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
430 
431   // Generate the module name hash here if needed.
432   if (CodeGenOpts.UniqueInternalLinkageNames &&
433       !getModule().getSourceFileName().empty()) {
434     std::string Path = getModule().getSourceFileName();
435     // Check if a path substitution is needed from the MacroPrefixMap.
436     for (const auto &Entry : LangOpts.MacroPrefixMap)
437       if (Path.rfind(Entry.first, 0) != std::string::npos) {
438         Path = Entry.second + Path.substr(Entry.first.size());
439         break;
440       }
441     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
442   }
443 }
444 
445 CodeGenModule::~CodeGenModule() {}
446 
447 void CodeGenModule::createObjCRuntime() {
448   // This is just isGNUFamily(), but we want to force implementors of
449   // new ABIs to decide how best to do this.
450   switch (LangOpts.ObjCRuntime.getKind()) {
451   case ObjCRuntime::GNUstep:
452   case ObjCRuntime::GCC:
453   case ObjCRuntime::ObjFW:
454     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
455     return;
456 
457   case ObjCRuntime::FragileMacOSX:
458   case ObjCRuntime::MacOSX:
459   case ObjCRuntime::iOS:
460   case ObjCRuntime::WatchOS:
461     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
462     return;
463   }
464   llvm_unreachable("bad runtime kind");
465 }
466 
467 void CodeGenModule::createOpenCLRuntime() {
468   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
469 }
470 
471 void CodeGenModule::createOpenMPRuntime() {
472   // Select a specialized code generation class based on the target, if any.
473   // If it does not exist use the default implementation.
474   switch (getTriple().getArch()) {
475   case llvm::Triple::nvptx:
476   case llvm::Triple::nvptx64:
477   case llvm::Triple::amdgcn:
478     assert(getLangOpts().OpenMPIsTargetDevice &&
479            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
480     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
481     break;
482   default:
483     if (LangOpts.OpenMPSimd)
484       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
485     else
486       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
487     break;
488   }
489 }
490 
491 void CodeGenModule::createCUDARuntime() {
492   CUDARuntime.reset(CreateNVCUDARuntime(*this));
493 }
494 
495 void CodeGenModule::createHLSLRuntime() {
496   HLSLRuntime.reset(new CGHLSLRuntime(*this));
497 }
498 
499 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
500   Replacements[Name] = C;
501 }
502 
503 void CodeGenModule::applyReplacements() {
504   for (auto &I : Replacements) {
505     StringRef MangledName = I.first;
506     llvm::Constant *Replacement = I.second;
507     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
508     if (!Entry)
509       continue;
510     auto *OldF = cast<llvm::Function>(Entry);
511     auto *NewF = dyn_cast<llvm::Function>(Replacement);
512     if (!NewF) {
513       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
514         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
515       } else {
516         auto *CE = cast<llvm::ConstantExpr>(Replacement);
517         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
518                CE->getOpcode() == llvm::Instruction::GetElementPtr);
519         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
520       }
521     }
522 
523     // Replace old with new, but keep the old order.
524     OldF->replaceAllUsesWith(Replacement);
525     if (NewF) {
526       NewF->removeFromParent();
527       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
528                                                        NewF);
529     }
530     OldF->eraseFromParent();
531   }
532 }
533 
534 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
535   GlobalValReplacements.push_back(std::make_pair(GV, C));
536 }
537 
538 void CodeGenModule::applyGlobalValReplacements() {
539   for (auto &I : GlobalValReplacements) {
540     llvm::GlobalValue *GV = I.first;
541     llvm::Constant *C = I.second;
542 
543     GV->replaceAllUsesWith(C);
544     GV->eraseFromParent();
545   }
546 }
547 
548 // This is only used in aliases that we created and we know they have a
549 // linear structure.
550 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
551   const llvm::Constant *C;
552   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
553     C = GA->getAliasee();
554   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
555     C = GI->getResolver();
556   else
557     return GV;
558 
559   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
560   if (!AliaseeGV)
561     return nullptr;
562 
563   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
564   if (FinalGV == GV)
565     return nullptr;
566 
567   return FinalGV;
568 }
569 
570 static bool checkAliasedGlobal(
571     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
572     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
573     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
574     SourceRange AliasRange) {
575   GV = getAliasedGlobal(Alias);
576   if (!GV) {
577     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
578     return false;
579   }
580 
581   if (GV->hasCommonLinkage()) {
582     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
583     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
584       Diags.Report(Location, diag::err_alias_to_common);
585       return false;
586     }
587   }
588 
589   if (GV->isDeclaration()) {
590     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
591     Diags.Report(Location, diag::note_alias_requires_mangled_name)
592         << IsIFunc << IsIFunc;
593     // Provide a note if the given function is not found and exists as a
594     // mangled name.
595     for (const auto &[Decl, Name] : MangledDeclNames) {
596       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
597         if (ND->getName() == GV->getName()) {
598           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
599               << Name
600               << FixItHint::CreateReplacement(
601                      AliasRange,
602                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
603                          .str());
604         }
605       }
606     }
607     return false;
608   }
609 
610   if (IsIFunc) {
611     // Check resolver function type.
612     const auto *F = dyn_cast<llvm::Function>(GV);
613     if (!F) {
614       Diags.Report(Location, diag::err_alias_to_undefined)
615           << IsIFunc << IsIFunc;
616       return false;
617     }
618 
619     llvm::FunctionType *FTy = F->getFunctionType();
620     if (!FTy->getReturnType()->isPointerTy()) {
621       Diags.Report(Location, diag::err_ifunc_resolver_return);
622       return false;
623     }
624   }
625 
626   return true;
627 }
628 
629 void CodeGenModule::checkAliases() {
630   // Check if the constructed aliases are well formed. It is really unfortunate
631   // that we have to do this in CodeGen, but we only construct mangled names
632   // and aliases during codegen.
633   bool Error = false;
634   DiagnosticsEngine &Diags = getDiags();
635   for (const GlobalDecl &GD : Aliases) {
636     const auto *D = cast<ValueDecl>(GD.getDecl());
637     SourceLocation Location;
638     SourceRange Range;
639     bool IsIFunc = D->hasAttr<IFuncAttr>();
640     if (const Attr *A = D->getDefiningAttr()) {
641       Location = A->getLocation();
642       Range = A->getRange();
643     } else
644       llvm_unreachable("Not an alias or ifunc?");
645 
646     StringRef MangledName = getMangledName(GD);
647     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
648     const llvm::GlobalValue *GV = nullptr;
649     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
650                             MangledDeclNames, Range)) {
651       Error = true;
652       continue;
653     }
654 
655     llvm::Constant *Aliasee =
656         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
657                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
658 
659     llvm::GlobalValue *AliaseeGV;
660     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
661       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
662     else
663       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
664 
665     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
666       StringRef AliasSection = SA->getName();
667       if (AliasSection != AliaseeGV->getSection())
668         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
669             << AliasSection << IsIFunc << IsIFunc;
670     }
671 
672     // We have to handle alias to weak aliases in here. LLVM itself disallows
673     // this since the object semantics would not match the IL one. For
674     // compatibility with gcc we implement it by just pointing the alias
675     // to its aliasee's aliasee. We also warn, since the user is probably
676     // expecting the link to be weak.
677     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
678       if (GA->isInterposable()) {
679         Diags.Report(Location, diag::warn_alias_to_weak_alias)
680             << GV->getName() << GA->getName() << IsIFunc;
681         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
682             GA->getAliasee(), Alias->getType());
683 
684         if (IsIFunc)
685           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
686         else
687           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
688       }
689     }
690   }
691   if (!Error)
692     return;
693 
694   for (const GlobalDecl &GD : Aliases) {
695     StringRef MangledName = getMangledName(GD);
696     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
697     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
698     Alias->eraseFromParent();
699   }
700 }
701 
702 void CodeGenModule::clear() {
703   DeferredDeclsToEmit.clear();
704   EmittedDeferredDecls.clear();
705   DeferredAnnotations.clear();
706   if (OpenMPRuntime)
707     OpenMPRuntime->clear();
708 }
709 
710 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
711                                        StringRef MainFile) {
712   if (!hasDiagnostics())
713     return;
714   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
715     if (MainFile.empty())
716       MainFile = "<stdin>";
717     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
718   } else {
719     if (Mismatched > 0)
720       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
721 
722     if (Missing > 0)
723       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
724   }
725 }
726 
727 static std::optional<llvm::GlobalValue::VisibilityTypes>
728 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
729   // Map to LLVM visibility.
730   switch (K) {
731   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
732     return std::nullopt;
733   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
734     return llvm::GlobalValue::DefaultVisibility;
735   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
736     return llvm::GlobalValue::HiddenVisibility;
737   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
738     return llvm::GlobalValue::ProtectedVisibility;
739   }
740   llvm_unreachable("unknown option value!");
741 }
742 
743 void setLLVMVisibility(llvm::GlobalValue &GV,
744                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
745   if (!V)
746     return;
747 
748   // Reset DSO locality before setting the visibility. This removes
749   // any effects that visibility options and annotations may have
750   // had on the DSO locality. Setting the visibility will implicitly set
751   // appropriate globals to DSO Local; however, this will be pessimistic
752   // w.r.t. to the normal compiler IRGen.
753   GV.setDSOLocal(false);
754   GV.setVisibility(*V);
755 }
756 
757 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
758                                              llvm::Module &M) {
759   if (!LO.VisibilityFromDLLStorageClass)
760     return;
761 
762   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
763       getLLVMVisibility(LO.getDLLExportVisibility());
764 
765   std::optional<llvm::GlobalValue::VisibilityTypes>
766       NoDLLStorageClassVisibility =
767           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
768 
769   std::optional<llvm::GlobalValue::VisibilityTypes>
770       ExternDeclDLLImportVisibility =
771           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
772 
773   std::optional<llvm::GlobalValue::VisibilityTypes>
774       ExternDeclNoDLLStorageClassVisibility =
775           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
776 
777   for (llvm::GlobalValue &GV : M.global_values()) {
778     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
779       continue;
780 
781     if (GV.isDeclarationForLinker())
782       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
783                                     llvm::GlobalValue::DLLImportStorageClass
784                                 ? ExternDeclDLLImportVisibility
785                                 : ExternDeclNoDLLStorageClassVisibility);
786     else
787       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
788                                     llvm::GlobalValue::DLLExportStorageClass
789                                 ? DLLExportVisibility
790                                 : NoDLLStorageClassVisibility);
791 
792     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
793   }
794 }
795 
796 static bool isStackProtectorOn(const LangOptions &LangOpts,
797                                const llvm::Triple &Triple,
798                                clang::LangOptions::StackProtectorMode Mode) {
799   if (Triple.isAMDGPU() || Triple.isNVPTX())
800     return false;
801   return LangOpts.getStackProtector() == Mode;
802 }
803 
804 void CodeGenModule::Release() {
805   Module *Primary = getContext().getCurrentNamedModule();
806   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
807     EmitModuleInitializers(Primary);
808   EmitDeferred();
809   DeferredDecls.insert(EmittedDeferredDecls.begin(),
810                        EmittedDeferredDecls.end());
811   EmittedDeferredDecls.clear();
812   EmitVTablesOpportunistically();
813   applyGlobalValReplacements();
814   applyReplacements();
815   emitMultiVersionFunctions();
816 
817   if (Context.getLangOpts().IncrementalExtensions &&
818       GlobalTopLevelStmtBlockInFlight.first) {
819     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
820     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
821     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
822   }
823 
824   // Module implementations are initialized the same way as a regular TU that
825   // imports one or more modules.
826   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
827     EmitCXXModuleInitFunc(Primary);
828   else
829     EmitCXXGlobalInitFunc();
830   EmitCXXGlobalCleanUpFunc();
831   registerGlobalDtorsWithAtExit();
832   EmitCXXThreadLocalInitFunc();
833   if (ObjCRuntime)
834     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
835       AddGlobalCtor(ObjCInitFunction);
836   if (Context.getLangOpts().CUDA && CUDARuntime) {
837     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
838       AddGlobalCtor(CudaCtorFunction);
839   }
840   if (OpenMPRuntime) {
841     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
842     OpenMPRuntime->clear();
843   }
844   if (PGOReader) {
845     getModule().setProfileSummary(
846         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
847         llvm::ProfileSummary::PSK_Instr);
848     if (PGOStats.hasDiagnostics())
849       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
850   }
851   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
852     return L.LexOrder < R.LexOrder;
853   });
854   EmitCtorList(GlobalCtors, "llvm.global_ctors");
855   EmitCtorList(GlobalDtors, "llvm.global_dtors");
856   EmitGlobalAnnotations();
857   EmitStaticExternCAliases();
858   checkAliases();
859   EmitDeferredUnusedCoverageMappings();
860   CodeGenPGO(*this).setValueProfilingFlag(getModule());
861   if (CoverageMapping)
862     CoverageMapping->emit();
863   if (CodeGenOpts.SanitizeCfiCrossDso) {
864     CodeGenFunction(*this).EmitCfiCheckFail();
865     CodeGenFunction(*this).EmitCfiCheckStub();
866   }
867   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
868     finalizeKCFITypes();
869   emitAtAvailableLinkGuard();
870   if (Context.getTargetInfo().getTriple().isWasm())
871     EmitMainVoidAlias();
872 
873   if (getTriple().isAMDGPU()) {
874     // Emit amdgpu_code_object_version module flag, which is code object version
875     // times 100.
876     if (getTarget().getTargetOpts().CodeObjectVersion !=
877         llvm::CodeObjectVersionKind::COV_None) {
878       getModule().addModuleFlag(llvm::Module::Error,
879                                 "amdgpu_code_object_version",
880                                 getTarget().getTargetOpts().CodeObjectVersion);
881     }
882 
883     // Currently, "-mprintf-kind" option is only supported for HIP
884     if (LangOpts.HIP) {
885       auto *MDStr = llvm::MDString::get(
886           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
887                              TargetOptions::AMDGPUPrintfKind::Hostcall)
888                                 ? "hostcall"
889                                 : "buffered");
890       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
891                                 MDStr);
892     }
893   }
894 
895   // Emit a global array containing all external kernels or device variables
896   // used by host functions and mark it as used for CUDA/HIP. This is necessary
897   // to get kernels or device variables in archives linked in even if these
898   // kernels or device variables are only used in host functions.
899   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
900     SmallVector<llvm::Constant *, 8> UsedArray;
901     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
902       GlobalDecl GD;
903       if (auto *FD = dyn_cast<FunctionDecl>(D))
904         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
905       else
906         GD = GlobalDecl(D);
907       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
908           GetAddrOfGlobal(GD), Int8PtrTy));
909     }
910 
911     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
912 
913     auto *GV = new llvm::GlobalVariable(
914         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
915         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
916     addCompilerUsedGlobal(GV);
917   }
918   if (LangOpts.HIP) {
919     // Emit a unique ID so that host and device binaries from the same
920     // compilation unit can be associated.
921     auto *GV = new llvm::GlobalVariable(
922         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
923         llvm::Constant::getNullValue(Int8Ty),
924         "__hip_cuid_" + getContext().getCUIDHash());
925     addCompilerUsedGlobal(GV);
926   }
927   emitLLVMUsed();
928   if (SanStats)
929     SanStats->finish();
930 
931   if (CodeGenOpts.Autolink &&
932       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
933     EmitModuleLinkOptions();
934   }
935 
936   // On ELF we pass the dependent library specifiers directly to the linker
937   // without manipulating them. This is in contrast to other platforms where
938   // they are mapped to a specific linker option by the compiler. This
939   // difference is a result of the greater variety of ELF linkers and the fact
940   // that ELF linkers tend to handle libraries in a more complicated fashion
941   // than on other platforms. This forces us to defer handling the dependent
942   // libs to the linker.
943   //
944   // CUDA/HIP device and host libraries are different. Currently there is no
945   // way to differentiate dependent libraries for host or device. Existing
946   // usage of #pragma comment(lib, *) is intended for host libraries on
947   // Windows. Therefore emit llvm.dependent-libraries only for host.
948   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
949     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
950     for (auto *MD : ELFDependentLibraries)
951       NMD->addOperand(MD);
952   }
953 
954   // Record mregparm value now so it is visible through rest of codegen.
955   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
956     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
957                               CodeGenOpts.NumRegisterParameters);
958 
959   if (CodeGenOpts.DwarfVersion) {
960     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
961                               CodeGenOpts.DwarfVersion);
962   }
963 
964   if (CodeGenOpts.Dwarf64)
965     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
966 
967   if (Context.getLangOpts().SemanticInterposition)
968     // Require various optimization to respect semantic interposition.
969     getModule().setSemanticInterposition(true);
970 
971   if (CodeGenOpts.EmitCodeView) {
972     // Indicate that we want CodeView in the metadata.
973     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
974   }
975   if (CodeGenOpts.CodeViewGHash) {
976     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
977   }
978   if (CodeGenOpts.ControlFlowGuard) {
979     // Function ID tables and checks for Control Flow Guard (cfguard=2).
980     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
981   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
982     // Function ID tables for Control Flow Guard (cfguard=1).
983     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
984   }
985   if (CodeGenOpts.EHContGuard) {
986     // Function ID tables for EH Continuation Guard.
987     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
988   }
989   if (Context.getLangOpts().Kernel) {
990     // Note if we are compiling with /kernel.
991     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
992   }
993   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
994     // We don't support LTO with 2 with different StrictVTablePointers
995     // FIXME: we could support it by stripping all the information introduced
996     // by StrictVTablePointers.
997 
998     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
999 
1000     llvm::Metadata *Ops[2] = {
1001               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1002               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1003                   llvm::Type::getInt32Ty(VMContext), 1))};
1004 
1005     getModule().addModuleFlag(llvm::Module::Require,
1006                               "StrictVTablePointersRequirement",
1007                               llvm::MDNode::get(VMContext, Ops));
1008   }
1009   if (getModuleDebugInfo())
1010     // We support a single version in the linked module. The LLVM
1011     // parser will drop debug info with a different version number
1012     // (and warn about it, too).
1013     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1014                               llvm::DEBUG_METADATA_VERSION);
1015 
1016   // We need to record the widths of enums and wchar_t, so that we can generate
1017   // the correct build attributes in the ARM backend. wchar_size is also used by
1018   // TargetLibraryInfo.
1019   uint64_t WCharWidth =
1020       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1021   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1022 
1023   if (getTriple().isOSzOS()) {
1024     getModule().addModuleFlag(llvm::Module::Warning,
1025                               "zos_product_major_version",
1026                               uint32_t(CLANG_VERSION_MAJOR));
1027     getModule().addModuleFlag(llvm::Module::Warning,
1028                               "zos_product_minor_version",
1029                               uint32_t(CLANG_VERSION_MINOR));
1030     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1031                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1032     std::string ProductId = getClangVendor() + "clang";
1033     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1034                               llvm::MDString::get(VMContext, ProductId));
1035 
1036     // Record the language because we need it for the PPA2.
1037     StringRef lang_str = languageToString(
1038         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1039     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1040                               llvm::MDString::get(VMContext, lang_str));
1041 
1042     time_t TT = PreprocessorOpts.SourceDateEpoch
1043                     ? *PreprocessorOpts.SourceDateEpoch
1044                     : std::time(nullptr);
1045     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1046                               static_cast<uint64_t>(TT));
1047 
1048     // Multiple modes will be supported here.
1049     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1050                               llvm::MDString::get(VMContext, "ascii"));
1051   }
1052 
1053   llvm::Triple T = Context.getTargetInfo().getTriple();
1054   if (T.isARM() || T.isThumb()) {
1055     // The minimum width of an enum in bytes
1056     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1057     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1058   }
1059 
1060   if (T.isRISCV()) {
1061     StringRef ABIStr = Target.getABI();
1062     llvm::LLVMContext &Ctx = TheModule.getContext();
1063     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1064                               llvm::MDString::get(Ctx, ABIStr));
1065 
1066     // Add the canonical ISA string as metadata so the backend can set the ELF
1067     // attributes correctly. We use AppendUnique so LTO will keep all of the
1068     // unique ISA strings that were linked together.
1069     const std::vector<std::string> &Features =
1070         getTarget().getTargetOpts().Features;
1071     auto ParseResult =
1072         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1073     if (!errorToBool(ParseResult.takeError()))
1074       getModule().addModuleFlag(
1075           llvm::Module::AppendUnique, "riscv-isa",
1076           llvm::MDNode::get(
1077               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1078   }
1079 
1080   if (CodeGenOpts.SanitizeCfiCrossDso) {
1081     // Indicate that we want cross-DSO control flow integrity checks.
1082     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1083   }
1084 
1085   if (CodeGenOpts.WholeProgramVTables) {
1086     // Indicate whether VFE was enabled for this module, so that the
1087     // vcall_visibility metadata added under whole program vtables is handled
1088     // appropriately in the optimizer.
1089     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1090                               CodeGenOpts.VirtualFunctionElimination);
1091   }
1092 
1093   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1094     getModule().addModuleFlag(llvm::Module::Override,
1095                               "CFI Canonical Jump Tables",
1096                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1097   }
1098 
1099   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1100     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1101     // KCFI assumes patchable-function-prefix is the same for all indirectly
1102     // called functions. Store the expected offset for code generation.
1103     if (CodeGenOpts.PatchableFunctionEntryOffset)
1104       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1105                                 CodeGenOpts.PatchableFunctionEntryOffset);
1106   }
1107 
1108   if (CodeGenOpts.CFProtectionReturn &&
1109       Target.checkCFProtectionReturnSupported(getDiags())) {
1110     // Indicate that we want to instrument return control flow protection.
1111     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1112                               1);
1113   }
1114 
1115   if (CodeGenOpts.CFProtectionBranch &&
1116       Target.checkCFProtectionBranchSupported(getDiags())) {
1117     // Indicate that we want to instrument branch control flow protection.
1118     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1119                               1);
1120   }
1121 
1122   if (CodeGenOpts.FunctionReturnThunks)
1123     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1124 
1125   if (CodeGenOpts.IndirectBranchCSPrefix)
1126     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1127 
1128   // Add module metadata for return address signing (ignoring
1129   // non-leaf/all) and stack tagging. These are actually turned on by function
1130   // attributes, but we use module metadata to emit build attributes. This is
1131   // needed for LTO, where the function attributes are inside bitcode
1132   // serialised into a global variable by the time build attributes are
1133   // emitted, so we can't access them. LTO objects could be compiled with
1134   // different flags therefore module flags are set to "Min" behavior to achieve
1135   // the same end result of the normal build where e.g BTI is off if any object
1136   // doesn't support it.
1137   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1138       LangOpts.getSignReturnAddressScope() !=
1139           LangOptions::SignReturnAddressScopeKind::None)
1140     getModule().addModuleFlag(llvm::Module::Override,
1141                               "sign-return-address-buildattr", 1);
1142   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1143     getModule().addModuleFlag(llvm::Module::Override,
1144                               "tag-stack-memory-buildattr", 1);
1145 
1146   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1147     if (LangOpts.BranchTargetEnforcement)
1148       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1149                                 1);
1150     if (LangOpts.BranchProtectionPAuthLR)
1151       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1152                                 1);
1153     if (LangOpts.GuardedControlStack)
1154       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1155     if (LangOpts.hasSignReturnAddress())
1156       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1157     if (LangOpts.isSignReturnAddressScopeAll())
1158       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1159                                 1);
1160     if (!LangOpts.isSignReturnAddressWithAKey())
1161       getModule().addModuleFlag(llvm::Module::Min,
1162                                 "sign-return-address-with-bkey", 1);
1163   }
1164 
1165   if (CodeGenOpts.StackClashProtector)
1166     getModule().addModuleFlag(
1167         llvm::Module::Override, "probe-stack",
1168         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1169 
1170   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1171     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1172                               CodeGenOpts.StackProbeSize);
1173 
1174   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1175     llvm::LLVMContext &Ctx = TheModule.getContext();
1176     getModule().addModuleFlag(
1177         llvm::Module::Error, "MemProfProfileFilename",
1178         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1179   }
1180 
1181   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1182     // Indicate whether __nvvm_reflect should be configured to flush denormal
1183     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1184     // property.)
1185     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1186                               CodeGenOpts.FP32DenormalMode.Output !=
1187                                   llvm::DenormalMode::IEEE);
1188   }
1189 
1190   if (LangOpts.EHAsynch)
1191     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1192 
1193   // Indicate whether this Module was compiled with -fopenmp
1194   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1195     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1196   if (getLangOpts().OpenMPIsTargetDevice)
1197     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1198                               LangOpts.OpenMP);
1199 
1200   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1201   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1202     EmitOpenCLMetadata();
1203     // Emit SPIR version.
1204     if (getTriple().isSPIR()) {
1205       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1206       // opencl.spir.version named metadata.
1207       // C++ for OpenCL has a distinct mapping for version compatibility with
1208       // OpenCL.
1209       auto Version = LangOpts.getOpenCLCompatibleVersion();
1210       llvm::Metadata *SPIRVerElts[] = {
1211           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1212               Int32Ty, Version / 100)),
1213           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1214               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1215       llvm::NamedMDNode *SPIRVerMD =
1216           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1217       llvm::LLVMContext &Ctx = TheModule.getContext();
1218       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1219     }
1220   }
1221 
1222   // HLSL related end of code gen work items.
1223   if (LangOpts.HLSL)
1224     getHLSLRuntime().finishCodeGen();
1225 
1226   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1227     assert(PLevel < 3 && "Invalid PIC Level");
1228     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1229     if (Context.getLangOpts().PIE)
1230       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1231   }
1232 
1233   if (getCodeGenOpts().CodeModel.size() > 0) {
1234     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1235                   .Case("tiny", llvm::CodeModel::Tiny)
1236                   .Case("small", llvm::CodeModel::Small)
1237                   .Case("kernel", llvm::CodeModel::Kernel)
1238                   .Case("medium", llvm::CodeModel::Medium)
1239                   .Case("large", llvm::CodeModel::Large)
1240                   .Default(~0u);
1241     if (CM != ~0u) {
1242       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1243       getModule().setCodeModel(codeModel);
1244 
1245       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1246           Context.getTargetInfo().getTriple().getArch() ==
1247               llvm::Triple::x86_64) {
1248         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1249       }
1250     }
1251   }
1252 
1253   if (CodeGenOpts.NoPLT)
1254     getModule().setRtLibUseGOT();
1255   if (getTriple().isOSBinFormatELF() &&
1256       CodeGenOpts.DirectAccessExternalData !=
1257           getModule().getDirectAccessExternalData()) {
1258     getModule().setDirectAccessExternalData(
1259         CodeGenOpts.DirectAccessExternalData);
1260   }
1261   if (CodeGenOpts.UnwindTables)
1262     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1263 
1264   switch (CodeGenOpts.getFramePointer()) {
1265   case CodeGenOptions::FramePointerKind::None:
1266     // 0 ("none") is the default.
1267     break;
1268   case CodeGenOptions::FramePointerKind::NonLeaf:
1269     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1270     break;
1271   case CodeGenOptions::FramePointerKind::All:
1272     getModule().setFramePointer(llvm::FramePointerKind::All);
1273     break;
1274   }
1275 
1276   SimplifyPersonality();
1277 
1278   if (getCodeGenOpts().EmitDeclMetadata)
1279     EmitDeclMetadata();
1280 
1281   if (getCodeGenOpts().CoverageNotesFile.size() ||
1282       getCodeGenOpts().CoverageDataFile.size())
1283     EmitCoverageFile();
1284 
1285   if (CGDebugInfo *DI = getModuleDebugInfo())
1286     DI->finalize();
1287 
1288   if (getCodeGenOpts().EmitVersionIdentMetadata)
1289     EmitVersionIdentMetadata();
1290 
1291   if (!getCodeGenOpts().RecordCommandLine.empty())
1292     EmitCommandLineMetadata();
1293 
1294   if (!getCodeGenOpts().StackProtectorGuard.empty())
1295     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1296   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1297     getModule().setStackProtectorGuardReg(
1298         getCodeGenOpts().StackProtectorGuardReg);
1299   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1300     getModule().setStackProtectorGuardSymbol(
1301         getCodeGenOpts().StackProtectorGuardSymbol);
1302   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1303     getModule().setStackProtectorGuardOffset(
1304         getCodeGenOpts().StackProtectorGuardOffset);
1305   if (getCodeGenOpts().StackAlignment)
1306     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1307   if (getCodeGenOpts().SkipRaxSetup)
1308     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1309   if (getLangOpts().RegCall4)
1310     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1311 
1312   if (getContext().getTargetInfo().getMaxTLSAlign())
1313     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1314                               getContext().getTargetInfo().getMaxTLSAlign());
1315 
1316   getTargetCodeGenInfo().emitTargetGlobals(*this);
1317 
1318   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1319 
1320   EmitBackendOptionsMetadata(getCodeGenOpts());
1321 
1322   // If there is device offloading code embed it in the host now.
1323   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1324 
1325   // Set visibility from DLL storage class
1326   // We do this at the end of LLVM IR generation; after any operation
1327   // that might affect the DLL storage class or the visibility, and
1328   // before anything that might act on these.
1329   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1330 }
1331 
1332 void CodeGenModule::EmitOpenCLMetadata() {
1333   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1334   // opencl.ocl.version named metadata node.
1335   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1336   auto Version = LangOpts.getOpenCLCompatibleVersion();
1337   llvm::Metadata *OCLVerElts[] = {
1338       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1339           Int32Ty, Version / 100)),
1340       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1341           Int32Ty, (Version % 100) / 10))};
1342   llvm::NamedMDNode *OCLVerMD =
1343       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1344   llvm::LLVMContext &Ctx = TheModule.getContext();
1345   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1346 }
1347 
1348 void CodeGenModule::EmitBackendOptionsMetadata(
1349     const CodeGenOptions &CodeGenOpts) {
1350   if (getTriple().isRISCV()) {
1351     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1352                               CodeGenOpts.SmallDataLimit);
1353   }
1354 }
1355 
1356 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1357   // Make sure that this type is translated.
1358   Types.UpdateCompletedType(TD);
1359 }
1360 
1361 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1362   // Make sure that this type is translated.
1363   Types.RefreshTypeCacheForClass(RD);
1364 }
1365 
1366 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1367   if (!TBAA)
1368     return nullptr;
1369   return TBAA->getTypeInfo(QTy);
1370 }
1371 
1372 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1373   if (!TBAA)
1374     return TBAAAccessInfo();
1375   if (getLangOpts().CUDAIsDevice) {
1376     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1377     // access info.
1378     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1379       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1380           nullptr)
1381         return TBAAAccessInfo();
1382     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1383       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1384           nullptr)
1385         return TBAAAccessInfo();
1386     }
1387   }
1388   return TBAA->getAccessInfo(AccessType);
1389 }
1390 
1391 TBAAAccessInfo
1392 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1393   if (!TBAA)
1394     return TBAAAccessInfo();
1395   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1396 }
1397 
1398 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1399   if (!TBAA)
1400     return nullptr;
1401   return TBAA->getTBAAStructInfo(QTy);
1402 }
1403 
1404 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1405   if (!TBAA)
1406     return nullptr;
1407   return TBAA->getBaseTypeInfo(QTy);
1408 }
1409 
1410 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1411   if (!TBAA)
1412     return nullptr;
1413   return TBAA->getAccessTagInfo(Info);
1414 }
1415 
1416 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1417                                                    TBAAAccessInfo TargetInfo) {
1418   if (!TBAA)
1419     return TBAAAccessInfo();
1420   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1421 }
1422 
1423 TBAAAccessInfo
1424 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1425                                                    TBAAAccessInfo InfoB) {
1426   if (!TBAA)
1427     return TBAAAccessInfo();
1428   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1429 }
1430 
1431 TBAAAccessInfo
1432 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1433                                               TBAAAccessInfo SrcInfo) {
1434   if (!TBAA)
1435     return TBAAAccessInfo();
1436   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1437 }
1438 
1439 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1440                                                 TBAAAccessInfo TBAAInfo) {
1441   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1442     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1443 }
1444 
1445 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1446     llvm::Instruction *I, const CXXRecordDecl *RD) {
1447   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1448                  llvm::MDNode::get(getLLVMContext(), {}));
1449 }
1450 
1451 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1452   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1453   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1454 }
1455 
1456 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1457 /// specified stmt yet.
1458 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1459   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1460                                                "cannot compile this %0 yet");
1461   std::string Msg = Type;
1462   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1463       << Msg << S->getSourceRange();
1464 }
1465 
1466 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1467 /// specified decl yet.
1468 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1469   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1470                                                "cannot compile this %0 yet");
1471   std::string Msg = Type;
1472   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1473 }
1474 
1475 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1476   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1477 }
1478 
1479 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1480                                         const NamedDecl *D) const {
1481   // Internal definitions always have default visibility.
1482   if (GV->hasLocalLinkage()) {
1483     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1484     return;
1485   }
1486   if (!D)
1487     return;
1488 
1489   // Set visibility for definitions, and for declarations if requested globally
1490   // or set explicitly.
1491   LinkageInfo LV = D->getLinkageAndVisibility();
1492 
1493   // OpenMP declare target variables must be visible to the host so they can
1494   // be registered. We require protected visibility unless the variable has
1495   // the DT_nohost modifier and does not need to be registered.
1496   if (Context.getLangOpts().OpenMP &&
1497       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1498       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1499       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1500           OMPDeclareTargetDeclAttr::DT_NoHost &&
1501       LV.getVisibility() == HiddenVisibility) {
1502     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1503     return;
1504   }
1505 
1506   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1507     // Reject incompatible dlllstorage and visibility annotations.
1508     if (!LV.isVisibilityExplicit())
1509       return;
1510     if (GV->hasDLLExportStorageClass()) {
1511       if (LV.getVisibility() == HiddenVisibility)
1512         getDiags().Report(D->getLocation(),
1513                           diag::err_hidden_visibility_dllexport);
1514     } else if (LV.getVisibility() != DefaultVisibility) {
1515       getDiags().Report(D->getLocation(),
1516                         diag::err_non_default_visibility_dllimport);
1517     }
1518     return;
1519   }
1520 
1521   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1522       !GV->isDeclarationForLinker())
1523     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1524 }
1525 
1526 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1527                                  llvm::GlobalValue *GV) {
1528   if (GV->hasLocalLinkage())
1529     return true;
1530 
1531   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1532     return true;
1533 
1534   // DLLImport explicitly marks the GV as external.
1535   if (GV->hasDLLImportStorageClass())
1536     return false;
1537 
1538   const llvm::Triple &TT = CGM.getTriple();
1539   const auto &CGOpts = CGM.getCodeGenOpts();
1540   if (TT.isWindowsGNUEnvironment()) {
1541     // In MinGW, variables without DLLImport can still be automatically
1542     // imported from a DLL by the linker; don't mark variables that
1543     // potentially could come from another DLL as DSO local.
1544 
1545     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1546     // (and this actually happens in the public interface of libstdc++), so
1547     // such variables can't be marked as DSO local. (Native TLS variables
1548     // can't be dllimported at all, though.)
1549     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1550         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1551         CGOpts.AutoImport)
1552       return false;
1553   }
1554 
1555   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1556   // remain unresolved in the link, they can be resolved to zero, which is
1557   // outside the current DSO.
1558   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1559     return false;
1560 
1561   // Every other GV is local on COFF.
1562   // Make an exception for windows OS in the triple: Some firmware builds use
1563   // *-win32-macho triples. This (accidentally?) produced windows relocations
1564   // without GOT tables in older clang versions; Keep this behaviour.
1565   // FIXME: even thread local variables?
1566   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1567     return true;
1568 
1569   // Only handle COFF and ELF for now.
1570   if (!TT.isOSBinFormatELF())
1571     return false;
1572 
1573   // If this is not an executable, don't assume anything is local.
1574   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1575   const auto &LOpts = CGM.getLangOpts();
1576   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1577     // On ELF, if -fno-semantic-interposition is specified and the target
1578     // supports local aliases, there will be neither CC1
1579     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1580     // dso_local on the function if using a local alias is preferable (can avoid
1581     // PLT indirection).
1582     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1583       return false;
1584     return !(CGM.getLangOpts().SemanticInterposition ||
1585              CGM.getLangOpts().HalfNoSemanticInterposition);
1586   }
1587 
1588   // A definition cannot be preempted from an executable.
1589   if (!GV->isDeclarationForLinker())
1590     return true;
1591 
1592   // Most PIC code sequences that assume that a symbol is local cannot produce a
1593   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1594   // depended, it seems worth it to handle it here.
1595   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1596     return false;
1597 
1598   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1599   if (TT.isPPC64())
1600     return false;
1601 
1602   if (CGOpts.DirectAccessExternalData) {
1603     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1604     // for non-thread-local variables. If the symbol is not defined in the
1605     // executable, a copy relocation will be needed at link time. dso_local is
1606     // excluded for thread-local variables because they generally don't support
1607     // copy relocations.
1608     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1609       if (!Var->isThreadLocal())
1610         return true;
1611 
1612     // -fno-pic sets dso_local on a function declaration to allow direct
1613     // accesses when taking its address (similar to a data symbol). If the
1614     // function is not defined in the executable, a canonical PLT entry will be
1615     // needed at link time. -fno-direct-access-external-data can avoid the
1616     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1617     // it could just cause trouble without providing perceptible benefits.
1618     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1619       return true;
1620   }
1621 
1622   // If we can use copy relocations we can assume it is local.
1623 
1624   // Otherwise don't assume it is local.
1625   return false;
1626 }
1627 
1628 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1629   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1630 }
1631 
1632 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1633                                           GlobalDecl GD) const {
1634   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1635   // C++ destructors have a few C++ ABI specific special cases.
1636   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1637     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1638     return;
1639   }
1640   setDLLImportDLLExport(GV, D);
1641 }
1642 
1643 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1644                                           const NamedDecl *D) const {
1645   if (D && D->isExternallyVisible()) {
1646     if (D->hasAttr<DLLImportAttr>())
1647       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1648     else if ((D->hasAttr<DLLExportAttr>() ||
1649               shouldMapVisibilityToDLLExport(D)) &&
1650              !GV->isDeclarationForLinker())
1651       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1652   }
1653 }
1654 
1655 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1656                                     GlobalDecl GD) const {
1657   setDLLImportDLLExport(GV, GD);
1658   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1659 }
1660 
1661 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1662                                     const NamedDecl *D) const {
1663   setDLLImportDLLExport(GV, D);
1664   setGVPropertiesAux(GV, D);
1665 }
1666 
1667 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1668                                        const NamedDecl *D) const {
1669   setGlobalVisibility(GV, D);
1670   setDSOLocal(GV);
1671   GV->setPartition(CodeGenOpts.SymbolPartition);
1672 }
1673 
1674 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1675   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1676       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1677       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1678       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1679       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1680 }
1681 
1682 llvm::GlobalVariable::ThreadLocalMode
1683 CodeGenModule::GetDefaultLLVMTLSModel() const {
1684   switch (CodeGenOpts.getDefaultTLSModel()) {
1685   case CodeGenOptions::GeneralDynamicTLSModel:
1686     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1687   case CodeGenOptions::LocalDynamicTLSModel:
1688     return llvm::GlobalVariable::LocalDynamicTLSModel;
1689   case CodeGenOptions::InitialExecTLSModel:
1690     return llvm::GlobalVariable::InitialExecTLSModel;
1691   case CodeGenOptions::LocalExecTLSModel:
1692     return llvm::GlobalVariable::LocalExecTLSModel;
1693   }
1694   llvm_unreachable("Invalid TLS model!");
1695 }
1696 
1697 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1698   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1699 
1700   llvm::GlobalValue::ThreadLocalMode TLM;
1701   TLM = GetDefaultLLVMTLSModel();
1702 
1703   // Override the TLS model if it is explicitly specified.
1704   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1705     TLM = GetLLVMTLSModel(Attr->getModel());
1706   }
1707 
1708   GV->setThreadLocalMode(TLM);
1709 }
1710 
1711 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1712                                           StringRef Name) {
1713   const TargetInfo &Target = CGM.getTarget();
1714   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1715 }
1716 
1717 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1718                                                  const CPUSpecificAttr *Attr,
1719                                                  unsigned CPUIndex,
1720                                                  raw_ostream &Out) {
1721   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1722   // supported.
1723   if (Attr)
1724     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1725   else if (CGM.getTarget().supportsIFunc())
1726     Out << ".resolver";
1727 }
1728 
1729 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1730                                         const TargetVersionAttr *Attr,
1731                                         raw_ostream &Out) {
1732   if (Attr->isDefaultVersion()) {
1733     Out << ".default";
1734     return;
1735   }
1736   Out << "._";
1737   const TargetInfo &TI = CGM.getTarget();
1738   llvm::SmallVector<StringRef, 8> Feats;
1739   Attr->getFeatures(Feats);
1740   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1741     return TI.multiVersionSortPriority(FeatL) <
1742            TI.multiVersionSortPriority(FeatR);
1743   });
1744   for (const auto &Feat : Feats) {
1745     Out << 'M';
1746     Out << Feat;
1747   }
1748 }
1749 
1750 static void AppendTargetMangling(const CodeGenModule &CGM,
1751                                  const TargetAttr *Attr, raw_ostream &Out) {
1752   if (Attr->isDefaultVersion())
1753     return;
1754 
1755   Out << '.';
1756   const TargetInfo &Target = CGM.getTarget();
1757   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1758   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1759     // Multiversioning doesn't allow "no-${feature}", so we can
1760     // only have "+" prefixes here.
1761     assert(LHS.starts_with("+") && RHS.starts_with("+") &&
1762            "Features should always have a prefix.");
1763     return Target.multiVersionSortPriority(LHS.substr(1)) >
1764            Target.multiVersionSortPriority(RHS.substr(1));
1765   });
1766 
1767   bool IsFirst = true;
1768 
1769   if (!Info.CPU.empty()) {
1770     IsFirst = false;
1771     Out << "arch_" << Info.CPU;
1772   }
1773 
1774   for (StringRef Feat : Info.Features) {
1775     if (!IsFirst)
1776       Out << '_';
1777     IsFirst = false;
1778     Out << Feat.substr(1);
1779   }
1780 }
1781 
1782 // Returns true if GD is a function decl with internal linkage and
1783 // needs a unique suffix after the mangled name.
1784 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1785                                         CodeGenModule &CGM) {
1786   const Decl *D = GD.getDecl();
1787   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1788          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1789 }
1790 
1791 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1792                                        const TargetClonesAttr *Attr,
1793                                        unsigned VersionIndex,
1794                                        raw_ostream &Out) {
1795   const TargetInfo &TI = CGM.getTarget();
1796   if (TI.getTriple().isAArch64()) {
1797     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1798     if (FeatureStr == "default") {
1799       Out << ".default";
1800       return;
1801     }
1802     Out << "._";
1803     SmallVector<StringRef, 8> Features;
1804     FeatureStr.split(Features, "+");
1805     llvm::stable_sort(Features,
1806                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1807                         return TI.multiVersionSortPriority(FeatL) <
1808                                TI.multiVersionSortPriority(FeatR);
1809                       });
1810     for (auto &Feat : Features) {
1811       Out << 'M';
1812       Out << Feat;
1813     }
1814   } else {
1815     Out << '.';
1816     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1817     if (FeatureStr.starts_with("arch="))
1818       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1819     else
1820       Out << FeatureStr;
1821 
1822     Out << '.' << Attr->getMangledIndex(VersionIndex);
1823   }
1824 }
1825 
1826 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1827                                       const NamedDecl *ND,
1828                                       bool OmitMultiVersionMangling = false) {
1829   SmallString<256> Buffer;
1830   llvm::raw_svector_ostream Out(Buffer);
1831   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1832   if (!CGM.getModuleNameHash().empty())
1833     MC.needsUniqueInternalLinkageNames();
1834   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1835   if (ShouldMangle)
1836     MC.mangleName(GD.getWithDecl(ND), Out);
1837   else {
1838     IdentifierInfo *II = ND->getIdentifier();
1839     assert(II && "Attempt to mangle unnamed decl.");
1840     const auto *FD = dyn_cast<FunctionDecl>(ND);
1841 
1842     if (FD &&
1843         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1844       if (CGM.getLangOpts().RegCall4)
1845         Out << "__regcall4__" << II->getName();
1846       else
1847         Out << "__regcall3__" << II->getName();
1848     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1849                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1850       Out << "__device_stub__" << II->getName();
1851     } else {
1852       Out << II->getName();
1853     }
1854   }
1855 
1856   // Check if the module name hash should be appended for internal linkage
1857   // symbols.   This should come before multi-version target suffixes are
1858   // appended. This is to keep the name and module hash suffix of the
1859   // internal linkage function together.  The unique suffix should only be
1860   // added when name mangling is done to make sure that the final name can
1861   // be properly demangled.  For example, for C functions without prototypes,
1862   // name mangling is not done and the unique suffix should not be appeneded
1863   // then.
1864   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1865     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1866            "Hash computed when not explicitly requested");
1867     Out << CGM.getModuleNameHash();
1868   }
1869 
1870   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1871     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1872       switch (FD->getMultiVersionKind()) {
1873       case MultiVersionKind::CPUDispatch:
1874       case MultiVersionKind::CPUSpecific:
1875         AppendCPUSpecificCPUDispatchMangling(CGM,
1876                                              FD->getAttr<CPUSpecificAttr>(),
1877                                              GD.getMultiVersionIndex(), Out);
1878         break;
1879       case MultiVersionKind::Target:
1880         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1881         break;
1882       case MultiVersionKind::TargetVersion:
1883         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1884         break;
1885       case MultiVersionKind::TargetClones:
1886         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1887                                    GD.getMultiVersionIndex(), Out);
1888         break;
1889       case MultiVersionKind::None:
1890         llvm_unreachable("None multiversion type isn't valid here");
1891       }
1892     }
1893 
1894   // Make unique name for device side static file-scope variable for HIP.
1895   if (CGM.getContext().shouldExternalize(ND) &&
1896       CGM.getLangOpts().GPURelocatableDeviceCode &&
1897       CGM.getLangOpts().CUDAIsDevice)
1898     CGM.printPostfixForExternalizedDecl(Out, ND);
1899 
1900   return std::string(Out.str());
1901 }
1902 
1903 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1904                                             const FunctionDecl *FD,
1905                                             StringRef &CurName) {
1906   if (!FD->isMultiVersion())
1907     return;
1908 
1909   // Get the name of what this would be without the 'target' attribute.  This
1910   // allows us to lookup the version that was emitted when this wasn't a
1911   // multiversion function.
1912   std::string NonTargetName =
1913       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1914   GlobalDecl OtherGD;
1915   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1916     assert(OtherGD.getCanonicalDecl()
1917                .getDecl()
1918                ->getAsFunction()
1919                ->isMultiVersion() &&
1920            "Other GD should now be a multiversioned function");
1921     // OtherFD is the version of this function that was mangled BEFORE
1922     // becoming a MultiVersion function.  It potentially needs to be updated.
1923     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1924                                       .getDecl()
1925                                       ->getAsFunction()
1926                                       ->getMostRecentDecl();
1927     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1928     // This is so that if the initial version was already the 'default'
1929     // version, we don't try to update it.
1930     if (OtherName != NonTargetName) {
1931       // Remove instead of erase, since others may have stored the StringRef
1932       // to this.
1933       const auto ExistingRecord = Manglings.find(NonTargetName);
1934       if (ExistingRecord != std::end(Manglings))
1935         Manglings.remove(&(*ExistingRecord));
1936       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1937       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1938           Result.first->first();
1939       // If this is the current decl is being created, make sure we update the name.
1940       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1941         CurName = OtherNameRef;
1942       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1943         Entry->setName(OtherName);
1944     }
1945   }
1946 }
1947 
1948 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1949   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1950 
1951   // Some ABIs don't have constructor variants.  Make sure that base and
1952   // complete constructors get mangled the same.
1953   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1954     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1955       CXXCtorType OrigCtorType = GD.getCtorType();
1956       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1957       if (OrigCtorType == Ctor_Base)
1958         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1959     }
1960   }
1961 
1962   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1963   // static device variable depends on whether the variable is referenced by
1964   // a host or device host function. Therefore the mangled name cannot be
1965   // cached.
1966   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1967     auto FoundName = MangledDeclNames.find(CanonicalGD);
1968     if (FoundName != MangledDeclNames.end())
1969       return FoundName->second;
1970   }
1971 
1972   // Keep the first result in the case of a mangling collision.
1973   const auto *ND = cast<NamedDecl>(GD.getDecl());
1974   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1975 
1976   // Ensure either we have different ABIs between host and device compilations,
1977   // says host compilation following MSVC ABI but device compilation follows
1978   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1979   // mangling should be the same after name stubbing. The later checking is
1980   // very important as the device kernel name being mangled in host-compilation
1981   // is used to resolve the device binaries to be executed. Inconsistent naming
1982   // result in undefined behavior. Even though we cannot check that naming
1983   // directly between host- and device-compilations, the host- and
1984   // device-mangling in host compilation could help catching certain ones.
1985   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1986          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1987          (getContext().getAuxTargetInfo() &&
1988           (getContext().getAuxTargetInfo()->getCXXABI() !=
1989            getContext().getTargetInfo().getCXXABI())) ||
1990          getCUDARuntime().getDeviceSideName(ND) ==
1991              getMangledNameImpl(
1992                  *this,
1993                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1994                  ND));
1995 
1996   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1997   return MangledDeclNames[CanonicalGD] = Result.first->first();
1998 }
1999 
2000 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2001                                              const BlockDecl *BD) {
2002   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2003   const Decl *D = GD.getDecl();
2004 
2005   SmallString<256> Buffer;
2006   llvm::raw_svector_ostream Out(Buffer);
2007   if (!D)
2008     MangleCtx.mangleGlobalBlock(BD,
2009       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2010   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2011     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2012   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2013     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2014   else
2015     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2016 
2017   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2018   return Result.first->first();
2019 }
2020 
2021 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2022   auto it = MangledDeclNames.begin();
2023   while (it != MangledDeclNames.end()) {
2024     if (it->second == Name)
2025       return it->first;
2026     it++;
2027   }
2028   return GlobalDecl();
2029 }
2030 
2031 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2032   return getModule().getNamedValue(Name);
2033 }
2034 
2035 /// AddGlobalCtor - Add a function to the list that will be called before
2036 /// main() runs.
2037 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2038                                   unsigned LexOrder,
2039                                   llvm::Constant *AssociatedData) {
2040   // FIXME: Type coercion of void()* types.
2041   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2042 }
2043 
2044 /// AddGlobalDtor - Add a function to the list that will be called
2045 /// when the module is unloaded.
2046 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2047                                   bool IsDtorAttrFunc) {
2048   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2049       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2050     DtorsUsingAtExit[Priority].push_back(Dtor);
2051     return;
2052   }
2053 
2054   // FIXME: Type coercion of void()* types.
2055   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2056 }
2057 
2058 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2059   if (Fns.empty()) return;
2060 
2061   // Ctor function type is void()*.
2062   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2063   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2064       TheModule.getDataLayout().getProgramAddressSpace());
2065 
2066   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2067   llvm::StructType *CtorStructTy = llvm::StructType::get(
2068       Int32Ty, CtorPFTy, VoidPtrTy);
2069 
2070   // Construct the constructor and destructor arrays.
2071   ConstantInitBuilder builder(*this);
2072   auto ctors = builder.beginArray(CtorStructTy);
2073   for (const auto &I : Fns) {
2074     auto ctor = ctors.beginStruct(CtorStructTy);
2075     ctor.addInt(Int32Ty, I.Priority);
2076     ctor.add(I.Initializer);
2077     if (I.AssociatedData)
2078       ctor.add(I.AssociatedData);
2079     else
2080       ctor.addNullPointer(VoidPtrTy);
2081     ctor.finishAndAddTo(ctors);
2082   }
2083 
2084   auto list =
2085     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2086                                 /*constant*/ false,
2087                                 llvm::GlobalValue::AppendingLinkage);
2088 
2089   // The LTO linker doesn't seem to like it when we set an alignment
2090   // on appending variables.  Take it off as a workaround.
2091   list->setAlignment(std::nullopt);
2092 
2093   Fns.clear();
2094 }
2095 
2096 llvm::GlobalValue::LinkageTypes
2097 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2098   const auto *D = cast<FunctionDecl>(GD.getDecl());
2099 
2100   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2101 
2102   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2103     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2104 
2105   return getLLVMLinkageForDeclarator(D, Linkage);
2106 }
2107 
2108 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2109   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2110   if (!MDS) return nullptr;
2111 
2112   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2113 }
2114 
2115 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2116   if (auto *FnType = T->getAs<FunctionProtoType>())
2117     T = getContext().getFunctionType(
2118         FnType->getReturnType(), FnType->getParamTypes(),
2119         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2120 
2121   std::string OutName;
2122   llvm::raw_string_ostream Out(OutName);
2123   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2124       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2125 
2126   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2127     Out << ".normalized";
2128 
2129   return llvm::ConstantInt::get(Int32Ty,
2130                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2131 }
2132 
2133 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2134                                               const CGFunctionInfo &Info,
2135                                               llvm::Function *F, bool IsThunk) {
2136   unsigned CallingConv;
2137   llvm::AttributeList PAL;
2138   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2139                          /*AttrOnCallSite=*/false, IsThunk);
2140   F->setAttributes(PAL);
2141   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2142 }
2143 
2144 static void removeImageAccessQualifier(std::string& TyName) {
2145   std::string ReadOnlyQual("__read_only");
2146   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2147   if (ReadOnlyPos != std::string::npos)
2148     // "+ 1" for the space after access qualifier.
2149     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2150   else {
2151     std::string WriteOnlyQual("__write_only");
2152     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2153     if (WriteOnlyPos != std::string::npos)
2154       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2155     else {
2156       std::string ReadWriteQual("__read_write");
2157       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2158       if (ReadWritePos != std::string::npos)
2159         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2160     }
2161   }
2162 }
2163 
2164 // Returns the address space id that should be produced to the
2165 // kernel_arg_addr_space metadata. This is always fixed to the ids
2166 // as specified in the SPIR 2.0 specification in order to differentiate
2167 // for example in clGetKernelArgInfo() implementation between the address
2168 // spaces with targets without unique mapping to the OpenCL address spaces
2169 // (basically all single AS CPUs).
2170 static unsigned ArgInfoAddressSpace(LangAS AS) {
2171   switch (AS) {
2172   case LangAS::opencl_global:
2173     return 1;
2174   case LangAS::opencl_constant:
2175     return 2;
2176   case LangAS::opencl_local:
2177     return 3;
2178   case LangAS::opencl_generic:
2179     return 4; // Not in SPIR 2.0 specs.
2180   case LangAS::opencl_global_device:
2181     return 5;
2182   case LangAS::opencl_global_host:
2183     return 6;
2184   default:
2185     return 0; // Assume private.
2186   }
2187 }
2188 
2189 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2190                                          const FunctionDecl *FD,
2191                                          CodeGenFunction *CGF) {
2192   assert(((FD && CGF) || (!FD && !CGF)) &&
2193          "Incorrect use - FD and CGF should either be both null or not!");
2194   // Create MDNodes that represent the kernel arg metadata.
2195   // Each MDNode is a list in the form of "key", N number of values which is
2196   // the same number of values as their are kernel arguments.
2197 
2198   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2199 
2200   // MDNode for the kernel argument address space qualifiers.
2201   SmallVector<llvm::Metadata *, 8> addressQuals;
2202 
2203   // MDNode for the kernel argument access qualifiers (images only).
2204   SmallVector<llvm::Metadata *, 8> accessQuals;
2205 
2206   // MDNode for the kernel argument type names.
2207   SmallVector<llvm::Metadata *, 8> argTypeNames;
2208 
2209   // MDNode for the kernel argument base type names.
2210   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2211 
2212   // MDNode for the kernel argument type qualifiers.
2213   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2214 
2215   // MDNode for the kernel argument names.
2216   SmallVector<llvm::Metadata *, 8> argNames;
2217 
2218   if (FD && CGF)
2219     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2220       const ParmVarDecl *parm = FD->getParamDecl(i);
2221       // Get argument name.
2222       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2223 
2224       if (!getLangOpts().OpenCL)
2225         continue;
2226       QualType ty = parm->getType();
2227       std::string typeQuals;
2228 
2229       // Get image and pipe access qualifier:
2230       if (ty->isImageType() || ty->isPipeType()) {
2231         const Decl *PDecl = parm;
2232         if (const auto *TD = ty->getAs<TypedefType>())
2233           PDecl = TD->getDecl();
2234         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2235         if (A && A->isWriteOnly())
2236           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2237         else if (A && A->isReadWrite())
2238           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2239         else
2240           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2241       } else
2242         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2243 
2244       auto getTypeSpelling = [&](QualType Ty) {
2245         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2246 
2247         if (Ty.isCanonical()) {
2248           StringRef typeNameRef = typeName;
2249           // Turn "unsigned type" to "utype"
2250           if (typeNameRef.consume_front("unsigned "))
2251             return std::string("u") + typeNameRef.str();
2252           if (typeNameRef.consume_front("signed "))
2253             return typeNameRef.str();
2254         }
2255 
2256         return typeName;
2257       };
2258 
2259       if (ty->isPointerType()) {
2260         QualType pointeeTy = ty->getPointeeType();
2261 
2262         // Get address qualifier.
2263         addressQuals.push_back(
2264             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2265                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2266 
2267         // Get argument type name.
2268         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2269         std::string baseTypeName =
2270             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2271         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2272         argBaseTypeNames.push_back(
2273             llvm::MDString::get(VMContext, baseTypeName));
2274 
2275         // Get argument type qualifiers:
2276         if (ty.isRestrictQualified())
2277           typeQuals = "restrict";
2278         if (pointeeTy.isConstQualified() ||
2279             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2280           typeQuals += typeQuals.empty() ? "const" : " const";
2281         if (pointeeTy.isVolatileQualified())
2282           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2283       } else {
2284         uint32_t AddrSpc = 0;
2285         bool isPipe = ty->isPipeType();
2286         if (ty->isImageType() || isPipe)
2287           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2288 
2289         addressQuals.push_back(
2290             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2291 
2292         // Get argument type name.
2293         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2294         std::string typeName = getTypeSpelling(ty);
2295         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2296 
2297         // Remove access qualifiers on images
2298         // (as they are inseparable from type in clang implementation,
2299         // but OpenCL spec provides a special query to get access qualifier
2300         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2301         if (ty->isImageType()) {
2302           removeImageAccessQualifier(typeName);
2303           removeImageAccessQualifier(baseTypeName);
2304         }
2305 
2306         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2307         argBaseTypeNames.push_back(
2308             llvm::MDString::get(VMContext, baseTypeName));
2309 
2310         if (isPipe)
2311           typeQuals = "pipe";
2312       }
2313       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2314     }
2315 
2316   if (getLangOpts().OpenCL) {
2317     Fn->setMetadata("kernel_arg_addr_space",
2318                     llvm::MDNode::get(VMContext, addressQuals));
2319     Fn->setMetadata("kernel_arg_access_qual",
2320                     llvm::MDNode::get(VMContext, accessQuals));
2321     Fn->setMetadata("kernel_arg_type",
2322                     llvm::MDNode::get(VMContext, argTypeNames));
2323     Fn->setMetadata("kernel_arg_base_type",
2324                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2325     Fn->setMetadata("kernel_arg_type_qual",
2326                     llvm::MDNode::get(VMContext, argTypeQuals));
2327   }
2328   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2329       getCodeGenOpts().HIPSaveKernelArgName)
2330     Fn->setMetadata("kernel_arg_name",
2331                     llvm::MDNode::get(VMContext, argNames));
2332 }
2333 
2334 /// Determines whether the language options require us to model
2335 /// unwind exceptions.  We treat -fexceptions as mandating this
2336 /// except under the fragile ObjC ABI with only ObjC exceptions
2337 /// enabled.  This means, for example, that C with -fexceptions
2338 /// enables this.
2339 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2340   // If exceptions are completely disabled, obviously this is false.
2341   if (!LangOpts.Exceptions) return false;
2342 
2343   // If C++ exceptions are enabled, this is true.
2344   if (LangOpts.CXXExceptions) return true;
2345 
2346   // If ObjC exceptions are enabled, this depends on the ABI.
2347   if (LangOpts.ObjCExceptions) {
2348     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2349   }
2350 
2351   return true;
2352 }
2353 
2354 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2355                                                       const CXXMethodDecl *MD) {
2356   // Check that the type metadata can ever actually be used by a call.
2357   if (!CGM.getCodeGenOpts().LTOUnit ||
2358       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2359     return false;
2360 
2361   // Only functions whose address can be taken with a member function pointer
2362   // need this sort of type metadata.
2363   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2364          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2365 }
2366 
2367 SmallVector<const CXXRecordDecl *, 0>
2368 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2369   llvm::SetVector<const CXXRecordDecl *> MostBases;
2370 
2371   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2372   CollectMostBases = [&](const CXXRecordDecl *RD) {
2373     if (RD->getNumBases() == 0)
2374       MostBases.insert(RD);
2375     for (const CXXBaseSpecifier &B : RD->bases())
2376       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2377   };
2378   CollectMostBases(RD);
2379   return MostBases.takeVector();
2380 }
2381 
2382 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2383                                                            llvm::Function *F) {
2384   llvm::AttrBuilder B(F->getContext());
2385 
2386   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2387     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2388 
2389   if (CodeGenOpts.StackClashProtector)
2390     B.addAttribute("probe-stack", "inline-asm");
2391 
2392   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2393     B.addAttribute("stack-probe-size",
2394                    std::to_string(CodeGenOpts.StackProbeSize));
2395 
2396   if (!hasUnwindExceptions(LangOpts))
2397     B.addAttribute(llvm::Attribute::NoUnwind);
2398 
2399   if (D && D->hasAttr<NoStackProtectorAttr>())
2400     ; // Do nothing.
2401   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2402            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2403     B.addAttribute(llvm::Attribute::StackProtectStrong);
2404   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2405     B.addAttribute(llvm::Attribute::StackProtect);
2406   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2407     B.addAttribute(llvm::Attribute::StackProtectStrong);
2408   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2409     B.addAttribute(llvm::Attribute::StackProtectReq);
2410 
2411   if (!D) {
2412     // If we don't have a declaration to control inlining, the function isn't
2413     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2414     // disabled, mark the function as noinline.
2415     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2416         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2417       B.addAttribute(llvm::Attribute::NoInline);
2418 
2419     F->addFnAttrs(B);
2420     return;
2421   }
2422 
2423   // Handle SME attributes that apply to function definitions,
2424   // rather than to function prototypes.
2425   if (D->hasAttr<ArmLocallyStreamingAttr>())
2426     B.addAttribute("aarch64_pstate_sm_body");
2427 
2428   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2429     if (Attr->isNewZA())
2430       B.addAttribute("aarch64_new_za");
2431     if (Attr->isNewZT0())
2432       B.addAttribute("aarch64_new_zt0");
2433   }
2434 
2435   // Track whether we need to add the optnone LLVM attribute,
2436   // starting with the default for this optimization level.
2437   bool ShouldAddOptNone =
2438       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2439   // We can't add optnone in the following cases, it won't pass the verifier.
2440   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2441   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2442 
2443   // Add optnone, but do so only if the function isn't always_inline.
2444   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2445       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2446     B.addAttribute(llvm::Attribute::OptimizeNone);
2447 
2448     // OptimizeNone implies noinline; we should not be inlining such functions.
2449     B.addAttribute(llvm::Attribute::NoInline);
2450 
2451     // We still need to handle naked functions even though optnone subsumes
2452     // much of their semantics.
2453     if (D->hasAttr<NakedAttr>())
2454       B.addAttribute(llvm::Attribute::Naked);
2455 
2456     // OptimizeNone wins over OptimizeForSize and MinSize.
2457     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2458     F->removeFnAttr(llvm::Attribute::MinSize);
2459   } else if (D->hasAttr<NakedAttr>()) {
2460     // Naked implies noinline: we should not be inlining such functions.
2461     B.addAttribute(llvm::Attribute::Naked);
2462     B.addAttribute(llvm::Attribute::NoInline);
2463   } else if (D->hasAttr<NoDuplicateAttr>()) {
2464     B.addAttribute(llvm::Attribute::NoDuplicate);
2465   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2466     // Add noinline if the function isn't always_inline.
2467     B.addAttribute(llvm::Attribute::NoInline);
2468   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2469              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2470     // (noinline wins over always_inline, and we can't specify both in IR)
2471     B.addAttribute(llvm::Attribute::AlwaysInline);
2472   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2473     // If we're not inlining, then force everything that isn't always_inline to
2474     // carry an explicit noinline attribute.
2475     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2476       B.addAttribute(llvm::Attribute::NoInline);
2477   } else {
2478     // Otherwise, propagate the inline hint attribute and potentially use its
2479     // absence to mark things as noinline.
2480     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2481       // Search function and template pattern redeclarations for inline.
2482       auto CheckForInline = [](const FunctionDecl *FD) {
2483         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2484           return Redecl->isInlineSpecified();
2485         };
2486         if (any_of(FD->redecls(), CheckRedeclForInline))
2487           return true;
2488         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2489         if (!Pattern)
2490           return false;
2491         return any_of(Pattern->redecls(), CheckRedeclForInline);
2492       };
2493       if (CheckForInline(FD)) {
2494         B.addAttribute(llvm::Attribute::InlineHint);
2495       } else if (CodeGenOpts.getInlining() ==
2496                      CodeGenOptions::OnlyHintInlining &&
2497                  !FD->isInlined() &&
2498                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2499         B.addAttribute(llvm::Attribute::NoInline);
2500       }
2501     }
2502   }
2503 
2504   // Add other optimization related attributes if we are optimizing this
2505   // function.
2506   if (!D->hasAttr<OptimizeNoneAttr>()) {
2507     if (D->hasAttr<ColdAttr>()) {
2508       if (!ShouldAddOptNone)
2509         B.addAttribute(llvm::Attribute::OptimizeForSize);
2510       B.addAttribute(llvm::Attribute::Cold);
2511     }
2512     if (D->hasAttr<HotAttr>())
2513       B.addAttribute(llvm::Attribute::Hot);
2514     if (D->hasAttr<MinSizeAttr>())
2515       B.addAttribute(llvm::Attribute::MinSize);
2516   }
2517 
2518   F->addFnAttrs(B);
2519 
2520   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2521   if (alignment)
2522     F->setAlignment(llvm::Align(alignment));
2523 
2524   if (!D->hasAttr<AlignedAttr>())
2525     if (LangOpts.FunctionAlignment)
2526       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2527 
2528   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2529   // reserve a bit for differentiating between virtual and non-virtual member
2530   // functions. If the current target's C++ ABI requires this and this is a
2531   // member function, set its alignment accordingly.
2532   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2533     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2534       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2535   }
2536 
2537   // In the cross-dso CFI mode with canonical jump tables, we want !type
2538   // attributes on definitions only.
2539   if (CodeGenOpts.SanitizeCfiCrossDso &&
2540       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2541     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2542       // Skip available_externally functions. They won't be codegen'ed in the
2543       // current module anyway.
2544       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2545         CreateFunctionTypeMetadataForIcall(FD, F);
2546     }
2547   }
2548 
2549   // Emit type metadata on member functions for member function pointer checks.
2550   // These are only ever necessary on definitions; we're guaranteed that the
2551   // definition will be present in the LTO unit as a result of LTO visibility.
2552   auto *MD = dyn_cast<CXXMethodDecl>(D);
2553   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2554     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2555       llvm::Metadata *Id =
2556           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2557               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2558       F->addTypeMetadata(0, Id);
2559     }
2560   }
2561 }
2562 
2563 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2564   const Decl *D = GD.getDecl();
2565   if (isa_and_nonnull<NamedDecl>(D))
2566     setGVProperties(GV, GD);
2567   else
2568     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2569 
2570   if (D && D->hasAttr<UsedAttr>())
2571     addUsedOrCompilerUsedGlobal(GV);
2572 
2573   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2574       VD &&
2575       ((CodeGenOpts.KeepPersistentStorageVariables &&
2576         (VD->getStorageDuration() == SD_Static ||
2577          VD->getStorageDuration() == SD_Thread)) ||
2578        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2579         VD->getType().isConstQualified())))
2580     addUsedOrCompilerUsedGlobal(GV);
2581 }
2582 
2583 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2584                                                 llvm::AttrBuilder &Attrs,
2585                                                 bool SetTargetFeatures) {
2586   // Add target-cpu and target-features attributes to functions. If
2587   // we have a decl for the function and it has a target attribute then
2588   // parse that and add it to the feature set.
2589   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2590   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2591   std::vector<std::string> Features;
2592   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2593   FD = FD ? FD->getMostRecentDecl() : FD;
2594   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2595   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2596   assert((!TD || !TV) && "both target_version and target specified");
2597   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2598   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2599   bool AddedAttr = false;
2600   if (TD || TV || SD || TC) {
2601     llvm::StringMap<bool> FeatureMap;
2602     getContext().getFunctionFeatureMap(FeatureMap, GD);
2603 
2604     // Produce the canonical string for this set of features.
2605     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2606       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2607 
2608     // Now add the target-cpu and target-features to the function.
2609     // While we populated the feature map above, we still need to
2610     // get and parse the target attribute so we can get the cpu for
2611     // the function.
2612     if (TD) {
2613       ParsedTargetAttr ParsedAttr =
2614           Target.parseTargetAttr(TD->getFeaturesStr());
2615       if (!ParsedAttr.CPU.empty() &&
2616           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2617         TargetCPU = ParsedAttr.CPU;
2618         TuneCPU = ""; // Clear the tune CPU.
2619       }
2620       if (!ParsedAttr.Tune.empty() &&
2621           getTarget().isValidCPUName(ParsedAttr.Tune))
2622         TuneCPU = ParsedAttr.Tune;
2623     }
2624 
2625     if (SD) {
2626       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2627       // favor this processor.
2628       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2629     }
2630   } else {
2631     // Otherwise just add the existing target cpu and target features to the
2632     // function.
2633     Features = getTarget().getTargetOpts().Features;
2634   }
2635 
2636   if (!TargetCPU.empty()) {
2637     Attrs.addAttribute("target-cpu", TargetCPU);
2638     AddedAttr = true;
2639   }
2640   if (!TuneCPU.empty()) {
2641     Attrs.addAttribute("tune-cpu", TuneCPU);
2642     AddedAttr = true;
2643   }
2644   if (!Features.empty() && SetTargetFeatures) {
2645     llvm::erase_if(Features, [&](const std::string& F) {
2646        return getTarget().isReadOnlyFeature(F.substr(1));
2647     });
2648     llvm::sort(Features);
2649     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2650     AddedAttr = true;
2651   }
2652 
2653   return AddedAttr;
2654 }
2655 
2656 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2657                                           llvm::GlobalObject *GO) {
2658   const Decl *D = GD.getDecl();
2659   SetCommonAttributes(GD, GO);
2660 
2661   if (D) {
2662     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2663       if (D->hasAttr<RetainAttr>())
2664         addUsedGlobal(GV);
2665       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2666         GV->addAttribute("bss-section", SA->getName());
2667       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2668         GV->addAttribute("data-section", SA->getName());
2669       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2670         GV->addAttribute("rodata-section", SA->getName());
2671       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2672         GV->addAttribute("relro-section", SA->getName());
2673     }
2674 
2675     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2676       if (D->hasAttr<RetainAttr>())
2677         addUsedGlobal(F);
2678       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2679         if (!D->getAttr<SectionAttr>())
2680           F->addFnAttr("implicit-section-name", SA->getName());
2681 
2682       llvm::AttrBuilder Attrs(F->getContext());
2683       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2684         // We know that GetCPUAndFeaturesAttributes will always have the
2685         // newest set, since it has the newest possible FunctionDecl, so the
2686         // new ones should replace the old.
2687         llvm::AttributeMask RemoveAttrs;
2688         RemoveAttrs.addAttribute("target-cpu");
2689         RemoveAttrs.addAttribute("target-features");
2690         RemoveAttrs.addAttribute("tune-cpu");
2691         F->removeFnAttrs(RemoveAttrs);
2692         F->addFnAttrs(Attrs);
2693       }
2694     }
2695 
2696     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2697       GO->setSection(CSA->getName());
2698     else if (const auto *SA = D->getAttr<SectionAttr>())
2699       GO->setSection(SA->getName());
2700   }
2701 
2702   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2703 }
2704 
2705 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2706                                                   llvm::Function *F,
2707                                                   const CGFunctionInfo &FI) {
2708   const Decl *D = GD.getDecl();
2709   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2710   SetLLVMFunctionAttributesForDefinition(D, F);
2711 
2712   F->setLinkage(llvm::Function::InternalLinkage);
2713 
2714   setNonAliasAttributes(GD, F);
2715 }
2716 
2717 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2718   // Set linkage and visibility in case we never see a definition.
2719   LinkageInfo LV = ND->getLinkageAndVisibility();
2720   // Don't set internal linkage on declarations.
2721   // "extern_weak" is overloaded in LLVM; we probably should have
2722   // separate linkage types for this.
2723   if (isExternallyVisible(LV.getLinkage()) &&
2724       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2725     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2726 }
2727 
2728 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2729                                                        llvm::Function *F) {
2730   // Only if we are checking indirect calls.
2731   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2732     return;
2733 
2734   // Non-static class methods are handled via vtable or member function pointer
2735   // checks elsewhere.
2736   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2737     return;
2738 
2739   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2740   F->addTypeMetadata(0, MD);
2741   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2742 
2743   // Emit a hash-based bit set entry for cross-DSO calls.
2744   if (CodeGenOpts.SanitizeCfiCrossDso)
2745     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2746       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2747 }
2748 
2749 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2750   llvm::LLVMContext &Ctx = F->getContext();
2751   llvm::MDBuilder MDB(Ctx);
2752   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2753                  llvm::MDNode::get(
2754                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2755 }
2756 
2757 static bool allowKCFIIdentifier(StringRef Name) {
2758   // KCFI type identifier constants are only necessary for external assembly
2759   // functions, which means it's safe to skip unusual names. Subset of
2760   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2761   return llvm::all_of(Name, [](const char &C) {
2762     return llvm::isAlnum(C) || C == '_' || C == '.';
2763   });
2764 }
2765 
2766 void CodeGenModule::finalizeKCFITypes() {
2767   llvm::Module &M = getModule();
2768   for (auto &F : M.functions()) {
2769     // Remove KCFI type metadata from non-address-taken local functions.
2770     bool AddressTaken = F.hasAddressTaken();
2771     if (!AddressTaken && F.hasLocalLinkage())
2772       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2773 
2774     // Generate a constant with the expected KCFI type identifier for all
2775     // address-taken function declarations to support annotating indirectly
2776     // called assembly functions.
2777     if (!AddressTaken || !F.isDeclaration())
2778       continue;
2779 
2780     const llvm::ConstantInt *Type;
2781     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2782       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2783     else
2784       continue;
2785 
2786     StringRef Name = F.getName();
2787     if (!allowKCFIIdentifier(Name))
2788       continue;
2789 
2790     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2791                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2792                           .str();
2793     M.appendModuleInlineAsm(Asm);
2794   }
2795 }
2796 
2797 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2798                                           bool IsIncompleteFunction,
2799                                           bool IsThunk) {
2800 
2801   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2802     // If this is an intrinsic function, set the function's attributes
2803     // to the intrinsic's attributes.
2804     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2805     return;
2806   }
2807 
2808   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2809 
2810   if (!IsIncompleteFunction)
2811     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2812                               IsThunk);
2813 
2814   // Add the Returned attribute for "this", except for iOS 5 and earlier
2815   // where substantial code, including the libstdc++ dylib, was compiled with
2816   // GCC and does not actually return "this".
2817   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2818       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2819     assert(!F->arg_empty() &&
2820            F->arg_begin()->getType()
2821              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2822            "unexpected this return");
2823     F->addParamAttr(0, llvm::Attribute::Returned);
2824   }
2825 
2826   // Only a few attributes are set on declarations; these may later be
2827   // overridden by a definition.
2828 
2829   setLinkageForGV(F, FD);
2830   setGVProperties(F, FD);
2831 
2832   // Setup target-specific attributes.
2833   if (!IsIncompleteFunction && F->isDeclaration())
2834     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2835 
2836   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2837     F->setSection(CSA->getName());
2838   else if (const auto *SA = FD->getAttr<SectionAttr>())
2839      F->setSection(SA->getName());
2840 
2841   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2842     if (EA->isError())
2843       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2844     else if (EA->isWarning())
2845       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2846   }
2847 
2848   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2849   if (FD->isInlineBuiltinDeclaration()) {
2850     const FunctionDecl *FDBody;
2851     bool HasBody = FD->hasBody(FDBody);
2852     (void)HasBody;
2853     assert(HasBody && "Inline builtin declarations should always have an "
2854                       "available body!");
2855     if (shouldEmitFunction(FDBody))
2856       F->addFnAttr(llvm::Attribute::NoBuiltin);
2857   }
2858 
2859   if (FD->isReplaceableGlobalAllocationFunction()) {
2860     // A replaceable global allocation function does not act like a builtin by
2861     // default, only if it is invoked by a new-expression or delete-expression.
2862     F->addFnAttr(llvm::Attribute::NoBuiltin);
2863   }
2864 
2865   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2866     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2867   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2868     if (MD->isVirtual())
2869       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2870 
2871   // Don't emit entries for function declarations in the cross-DSO mode. This
2872   // is handled with better precision by the receiving DSO. But if jump tables
2873   // are non-canonical then we need type metadata in order to produce the local
2874   // jump table.
2875   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2876       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2877     CreateFunctionTypeMetadataForIcall(FD, F);
2878 
2879   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2880     setKCFIType(FD, F);
2881 
2882   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2883     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2884 
2885   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2886     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2887 
2888   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2889     // Annotate the callback behavior as metadata:
2890     //  - The callback callee (as argument number).
2891     //  - The callback payloads (as argument numbers).
2892     llvm::LLVMContext &Ctx = F->getContext();
2893     llvm::MDBuilder MDB(Ctx);
2894 
2895     // The payload indices are all but the first one in the encoding. The first
2896     // identifies the callback callee.
2897     int CalleeIdx = *CB->encoding_begin();
2898     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2899     F->addMetadata(llvm::LLVMContext::MD_callback,
2900                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2901                                                CalleeIdx, PayloadIndices,
2902                                                /* VarArgsArePassed */ false)}));
2903   }
2904 }
2905 
2906 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2907   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2908          "Only globals with definition can force usage.");
2909   LLVMUsed.emplace_back(GV);
2910 }
2911 
2912 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2913   assert(!GV->isDeclaration() &&
2914          "Only globals with definition can force usage.");
2915   LLVMCompilerUsed.emplace_back(GV);
2916 }
2917 
2918 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2919   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2920          "Only globals with definition can force usage.");
2921   if (getTriple().isOSBinFormatELF())
2922     LLVMCompilerUsed.emplace_back(GV);
2923   else
2924     LLVMUsed.emplace_back(GV);
2925 }
2926 
2927 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2928                      std::vector<llvm::WeakTrackingVH> &List) {
2929   // Don't create llvm.used if there is no need.
2930   if (List.empty())
2931     return;
2932 
2933   // Convert List to what ConstantArray needs.
2934   SmallVector<llvm::Constant*, 8> UsedArray;
2935   UsedArray.resize(List.size());
2936   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2937     UsedArray[i] =
2938         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2939             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2940   }
2941 
2942   if (UsedArray.empty())
2943     return;
2944   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2945 
2946   auto *GV = new llvm::GlobalVariable(
2947       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2948       llvm::ConstantArray::get(ATy, UsedArray), Name);
2949 
2950   GV->setSection("llvm.metadata");
2951 }
2952 
2953 void CodeGenModule::emitLLVMUsed() {
2954   emitUsed(*this, "llvm.used", LLVMUsed);
2955   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2956 }
2957 
2958 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2959   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2960   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2961 }
2962 
2963 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2964   llvm::SmallString<32> Opt;
2965   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2966   if (Opt.empty())
2967     return;
2968   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2969   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2970 }
2971 
2972 void CodeGenModule::AddDependentLib(StringRef Lib) {
2973   auto &C = getLLVMContext();
2974   if (getTarget().getTriple().isOSBinFormatELF()) {
2975       ELFDependentLibraries.push_back(
2976         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2977     return;
2978   }
2979 
2980   llvm::SmallString<24> Opt;
2981   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2982   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2983   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2984 }
2985 
2986 /// Add link options implied by the given module, including modules
2987 /// it depends on, using a postorder walk.
2988 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2989                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2990                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2991   // Import this module's parent.
2992   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2993     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2994   }
2995 
2996   // Import this module's dependencies.
2997   for (Module *Import : llvm::reverse(Mod->Imports)) {
2998     if (Visited.insert(Import).second)
2999       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3000   }
3001 
3002   // Add linker options to link against the libraries/frameworks
3003   // described by this module.
3004   llvm::LLVMContext &Context = CGM.getLLVMContext();
3005   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3006 
3007   // For modules that use export_as for linking, use that module
3008   // name instead.
3009   if (Mod->UseExportAsModuleLinkName)
3010     return;
3011 
3012   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3013     // Link against a framework.  Frameworks are currently Darwin only, so we
3014     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3015     if (LL.IsFramework) {
3016       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3017                                  llvm::MDString::get(Context, LL.Library)};
3018 
3019       Metadata.push_back(llvm::MDNode::get(Context, Args));
3020       continue;
3021     }
3022 
3023     // Link against a library.
3024     if (IsELF) {
3025       llvm::Metadata *Args[2] = {
3026           llvm::MDString::get(Context, "lib"),
3027           llvm::MDString::get(Context, LL.Library),
3028       };
3029       Metadata.push_back(llvm::MDNode::get(Context, Args));
3030     } else {
3031       llvm::SmallString<24> Opt;
3032       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3033       auto *OptString = llvm::MDString::get(Context, Opt);
3034       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3035     }
3036   }
3037 }
3038 
3039 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3040   assert(Primary->isNamedModuleUnit() &&
3041          "We should only emit module initializers for named modules.");
3042 
3043   // Emit the initializers in the order that sub-modules appear in the
3044   // source, first Global Module Fragments, if present.
3045   if (auto GMF = Primary->getGlobalModuleFragment()) {
3046     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3047       if (isa<ImportDecl>(D))
3048         continue;
3049       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3050       EmitTopLevelDecl(D);
3051     }
3052   }
3053   // Second any associated with the module, itself.
3054   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3055     // Skip import decls, the inits for those are called explicitly.
3056     if (isa<ImportDecl>(D))
3057       continue;
3058     EmitTopLevelDecl(D);
3059   }
3060   // Third any associated with the Privat eMOdule Fragment, if present.
3061   if (auto PMF = Primary->getPrivateModuleFragment()) {
3062     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3063       // Skip import decls, the inits for those are called explicitly.
3064       if (isa<ImportDecl>(D))
3065         continue;
3066       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3067       EmitTopLevelDecl(D);
3068     }
3069   }
3070 }
3071 
3072 void CodeGenModule::EmitModuleLinkOptions() {
3073   // Collect the set of all of the modules we want to visit to emit link
3074   // options, which is essentially the imported modules and all of their
3075   // non-explicit child modules.
3076   llvm::SetVector<clang::Module *> LinkModules;
3077   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3078   SmallVector<clang::Module *, 16> Stack;
3079 
3080   // Seed the stack with imported modules.
3081   for (Module *M : ImportedModules) {
3082     // Do not add any link flags when an implementation TU of a module imports
3083     // a header of that same module.
3084     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3085         !getLangOpts().isCompilingModule())
3086       continue;
3087     if (Visited.insert(M).second)
3088       Stack.push_back(M);
3089   }
3090 
3091   // Find all of the modules to import, making a little effort to prune
3092   // non-leaf modules.
3093   while (!Stack.empty()) {
3094     clang::Module *Mod = Stack.pop_back_val();
3095 
3096     bool AnyChildren = false;
3097 
3098     // Visit the submodules of this module.
3099     for (const auto &SM : Mod->submodules()) {
3100       // Skip explicit children; they need to be explicitly imported to be
3101       // linked against.
3102       if (SM->IsExplicit)
3103         continue;
3104 
3105       if (Visited.insert(SM).second) {
3106         Stack.push_back(SM);
3107         AnyChildren = true;
3108       }
3109     }
3110 
3111     // We didn't find any children, so add this module to the list of
3112     // modules to link against.
3113     if (!AnyChildren) {
3114       LinkModules.insert(Mod);
3115     }
3116   }
3117 
3118   // Add link options for all of the imported modules in reverse topological
3119   // order.  We don't do anything to try to order import link flags with respect
3120   // to linker options inserted by things like #pragma comment().
3121   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3122   Visited.clear();
3123   for (Module *M : LinkModules)
3124     if (Visited.insert(M).second)
3125       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3126   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3127   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3128 
3129   // Add the linker options metadata flag.
3130   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3131   for (auto *MD : LinkerOptionsMetadata)
3132     NMD->addOperand(MD);
3133 }
3134 
3135 void CodeGenModule::EmitDeferred() {
3136   // Emit deferred declare target declarations.
3137   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3138     getOpenMPRuntime().emitDeferredTargetDecls();
3139 
3140   // Emit code for any potentially referenced deferred decls.  Since a
3141   // previously unused static decl may become used during the generation of code
3142   // for a static function, iterate until no changes are made.
3143 
3144   if (!DeferredVTables.empty()) {
3145     EmitDeferredVTables();
3146 
3147     // Emitting a vtable doesn't directly cause more vtables to
3148     // become deferred, although it can cause functions to be
3149     // emitted that then need those vtables.
3150     assert(DeferredVTables.empty());
3151   }
3152 
3153   // Emit CUDA/HIP static device variables referenced by host code only.
3154   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3155   // needed for further handling.
3156   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3157     llvm::append_range(DeferredDeclsToEmit,
3158                        getContext().CUDADeviceVarODRUsedByHost);
3159 
3160   // Stop if we're out of both deferred vtables and deferred declarations.
3161   if (DeferredDeclsToEmit.empty())
3162     return;
3163 
3164   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3165   // work, it will not interfere with this.
3166   std::vector<GlobalDecl> CurDeclsToEmit;
3167   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3168 
3169   for (GlobalDecl &D : CurDeclsToEmit) {
3170     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3171     // to get GlobalValue with exactly the type we need, not something that
3172     // might had been created for another decl with the same mangled name but
3173     // different type.
3174     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3175         GetAddrOfGlobal(D, ForDefinition));
3176 
3177     // In case of different address spaces, we may still get a cast, even with
3178     // IsForDefinition equal to true. Query mangled names table to get
3179     // GlobalValue.
3180     if (!GV)
3181       GV = GetGlobalValue(getMangledName(D));
3182 
3183     // Make sure GetGlobalValue returned non-null.
3184     assert(GV);
3185 
3186     // Check to see if we've already emitted this.  This is necessary
3187     // for a couple of reasons: first, decls can end up in the
3188     // deferred-decls queue multiple times, and second, decls can end
3189     // up with definitions in unusual ways (e.g. by an extern inline
3190     // function acquiring a strong function redefinition).  Just
3191     // ignore these cases.
3192     if (!GV->isDeclaration())
3193       continue;
3194 
3195     // If this is OpenMP, check if it is legal to emit this global normally.
3196     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3197       continue;
3198 
3199     // Otherwise, emit the definition and move on to the next one.
3200     EmitGlobalDefinition(D, GV);
3201 
3202     // If we found out that we need to emit more decls, do that recursively.
3203     // This has the advantage that the decls are emitted in a DFS and related
3204     // ones are close together, which is convenient for testing.
3205     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3206       EmitDeferred();
3207       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3208     }
3209   }
3210 }
3211 
3212 void CodeGenModule::EmitVTablesOpportunistically() {
3213   // Try to emit external vtables as available_externally if they have emitted
3214   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3215   // is not allowed to create new references to things that need to be emitted
3216   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3217 
3218   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3219          && "Only emit opportunistic vtables with optimizations");
3220 
3221   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3222     assert(getVTables().isVTableExternal(RD) &&
3223            "This queue should only contain external vtables");
3224     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3225       VTables.GenerateClassData(RD);
3226   }
3227   OpportunisticVTables.clear();
3228 }
3229 
3230 void CodeGenModule::EmitGlobalAnnotations() {
3231   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3232     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3233     if (GV)
3234       AddGlobalAnnotations(VD, GV);
3235   }
3236   DeferredAnnotations.clear();
3237 
3238   if (Annotations.empty())
3239     return;
3240 
3241   // Create a new global variable for the ConstantStruct in the Module.
3242   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3243     Annotations[0]->getType(), Annotations.size()), Annotations);
3244   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3245                                       llvm::GlobalValue::AppendingLinkage,
3246                                       Array, "llvm.global.annotations");
3247   gv->setSection(AnnotationSection);
3248 }
3249 
3250 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3251   llvm::Constant *&AStr = AnnotationStrings[Str];
3252   if (AStr)
3253     return AStr;
3254 
3255   // Not found yet, create a new global.
3256   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3257   auto *gv = new llvm::GlobalVariable(
3258       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3259       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3260       ConstGlobalsPtrTy->getAddressSpace());
3261   gv->setSection(AnnotationSection);
3262   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3263   AStr = gv;
3264   return gv;
3265 }
3266 
3267 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3268   SourceManager &SM = getContext().getSourceManager();
3269   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3270   if (PLoc.isValid())
3271     return EmitAnnotationString(PLoc.getFilename());
3272   return EmitAnnotationString(SM.getBufferName(Loc));
3273 }
3274 
3275 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3276   SourceManager &SM = getContext().getSourceManager();
3277   PresumedLoc PLoc = SM.getPresumedLoc(L);
3278   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3279     SM.getExpansionLineNumber(L);
3280   return llvm::ConstantInt::get(Int32Ty, LineNo);
3281 }
3282 
3283 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3284   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3285   if (Exprs.empty())
3286     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3287 
3288   llvm::FoldingSetNodeID ID;
3289   for (Expr *E : Exprs) {
3290     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3291   }
3292   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3293   if (Lookup)
3294     return Lookup;
3295 
3296   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3297   LLVMArgs.reserve(Exprs.size());
3298   ConstantEmitter ConstEmiter(*this);
3299   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3300     const auto *CE = cast<clang::ConstantExpr>(E);
3301     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3302                                     CE->getType());
3303   });
3304   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3305   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3306                                       llvm::GlobalValue::PrivateLinkage, Struct,
3307                                       ".args");
3308   GV->setSection(AnnotationSection);
3309   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3310 
3311   Lookup = GV;
3312   return GV;
3313 }
3314 
3315 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3316                                                 const AnnotateAttr *AA,
3317                                                 SourceLocation L) {
3318   // Get the globals for file name, annotation, and the line number.
3319   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3320                  *UnitGV = EmitAnnotationUnit(L),
3321                  *LineNoCst = EmitAnnotationLineNo(L),
3322                  *Args = EmitAnnotationArgs(AA);
3323 
3324   llvm::Constant *GVInGlobalsAS = GV;
3325   if (GV->getAddressSpace() !=
3326       getDataLayout().getDefaultGlobalsAddressSpace()) {
3327     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3328         GV,
3329         llvm::PointerType::get(
3330             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3331   }
3332 
3333   // Create the ConstantStruct for the global annotation.
3334   llvm::Constant *Fields[] = {
3335       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3336   };
3337   return llvm::ConstantStruct::getAnon(Fields);
3338 }
3339 
3340 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3341                                          llvm::GlobalValue *GV) {
3342   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3343   // Get the struct elements for these annotations.
3344   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3345     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3346 }
3347 
3348 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3349                                        SourceLocation Loc) const {
3350   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3351   // NoSanitize by function name.
3352   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3353     return true;
3354   // NoSanitize by location. Check "mainfile" prefix.
3355   auto &SM = Context.getSourceManager();
3356   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3357   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3358     return true;
3359 
3360   // Check "src" prefix.
3361   if (Loc.isValid())
3362     return NoSanitizeL.containsLocation(Kind, Loc);
3363   // If location is unknown, this may be a compiler-generated function. Assume
3364   // it's located in the main file.
3365   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3366 }
3367 
3368 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3369                                        llvm::GlobalVariable *GV,
3370                                        SourceLocation Loc, QualType Ty,
3371                                        StringRef Category) const {
3372   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3373   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3374     return true;
3375   auto &SM = Context.getSourceManager();
3376   if (NoSanitizeL.containsMainFile(
3377           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3378           Category))
3379     return true;
3380   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3381     return true;
3382 
3383   // Check global type.
3384   if (!Ty.isNull()) {
3385     // Drill down the array types: if global variable of a fixed type is
3386     // not sanitized, we also don't instrument arrays of them.
3387     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3388       Ty = AT->getElementType();
3389     Ty = Ty.getCanonicalType().getUnqualifiedType();
3390     // Only record types (classes, structs etc.) are ignored.
3391     if (Ty->isRecordType()) {
3392       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3393       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3394         return true;
3395     }
3396   }
3397   return false;
3398 }
3399 
3400 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3401                                    StringRef Category) const {
3402   const auto &XRayFilter = getContext().getXRayFilter();
3403   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3404   auto Attr = ImbueAttr::NONE;
3405   if (Loc.isValid())
3406     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3407   if (Attr == ImbueAttr::NONE)
3408     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3409   switch (Attr) {
3410   case ImbueAttr::NONE:
3411     return false;
3412   case ImbueAttr::ALWAYS:
3413     Fn->addFnAttr("function-instrument", "xray-always");
3414     break;
3415   case ImbueAttr::ALWAYS_ARG1:
3416     Fn->addFnAttr("function-instrument", "xray-always");
3417     Fn->addFnAttr("xray-log-args", "1");
3418     break;
3419   case ImbueAttr::NEVER:
3420     Fn->addFnAttr("function-instrument", "xray-never");
3421     break;
3422   }
3423   return true;
3424 }
3425 
3426 ProfileList::ExclusionType
3427 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3428                                               SourceLocation Loc) const {
3429   const auto &ProfileList = getContext().getProfileList();
3430   // If the profile list is empty, then instrument everything.
3431   if (ProfileList.isEmpty())
3432     return ProfileList::Allow;
3433   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3434   // First, check the function name.
3435   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3436     return *V;
3437   // Next, check the source location.
3438   if (Loc.isValid())
3439     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3440       return *V;
3441   // If location is unknown, this may be a compiler-generated function. Assume
3442   // it's located in the main file.
3443   auto &SM = Context.getSourceManager();
3444   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3445     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3446       return *V;
3447   return ProfileList.getDefault(Kind);
3448 }
3449 
3450 ProfileList::ExclusionType
3451 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3452                                                  SourceLocation Loc) const {
3453   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3454   if (V != ProfileList::Allow)
3455     return V;
3456 
3457   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3458   if (NumGroups > 1) {
3459     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3460     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3461       return ProfileList::Skip;
3462   }
3463   return ProfileList::Allow;
3464 }
3465 
3466 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3467   // Never defer when EmitAllDecls is specified.
3468   if (LangOpts.EmitAllDecls)
3469     return true;
3470 
3471   const auto *VD = dyn_cast<VarDecl>(Global);
3472   if (VD &&
3473       ((CodeGenOpts.KeepPersistentStorageVariables &&
3474         (VD->getStorageDuration() == SD_Static ||
3475          VD->getStorageDuration() == SD_Thread)) ||
3476        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3477         VD->getType().isConstQualified())))
3478     return true;
3479 
3480   return getContext().DeclMustBeEmitted(Global);
3481 }
3482 
3483 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3484   // In OpenMP 5.0 variables and function may be marked as
3485   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3486   // that they must be emitted on the host/device. To be sure we need to have
3487   // seen a declare target with an explicit mentioning of the function, we know
3488   // we have if the level of the declare target attribute is -1. Note that we
3489   // check somewhere else if we should emit this at all.
3490   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3491     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3492         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3493     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3494       return false;
3495   }
3496 
3497   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3498     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3499       // Implicit template instantiations may change linkage if they are later
3500       // explicitly instantiated, so they should not be emitted eagerly.
3501       return false;
3502   }
3503   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3504     if (Context.getInlineVariableDefinitionKind(VD) ==
3505         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3506       // A definition of an inline constexpr static data member may change
3507       // linkage later if it's redeclared outside the class.
3508       return false;
3509     if (CXX20ModuleInits && VD->getOwningModule() &&
3510         !VD->getOwningModule()->isModuleMapModule()) {
3511       // For CXX20, module-owned initializers need to be deferred, since it is
3512       // not known at this point if they will be run for the current module or
3513       // as part of the initializer for an imported one.
3514       return false;
3515     }
3516   }
3517   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3518   // codegen for global variables, because they may be marked as threadprivate.
3519   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3520       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3521       !Global->getType().isConstantStorage(getContext(), false, false) &&
3522       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3523     return false;
3524 
3525   return true;
3526 }
3527 
3528 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3529   StringRef Name = getMangledName(GD);
3530 
3531   // The UUID descriptor should be pointer aligned.
3532   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3533 
3534   // Look for an existing global.
3535   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3536     return ConstantAddress(GV, GV->getValueType(), Alignment);
3537 
3538   ConstantEmitter Emitter(*this);
3539   llvm::Constant *Init;
3540 
3541   APValue &V = GD->getAsAPValue();
3542   if (!V.isAbsent()) {
3543     // If possible, emit the APValue version of the initializer. In particular,
3544     // this gets the type of the constant right.
3545     Init = Emitter.emitForInitializer(
3546         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3547   } else {
3548     // As a fallback, directly construct the constant.
3549     // FIXME: This may get padding wrong under esoteric struct layout rules.
3550     // MSVC appears to create a complete type 'struct __s_GUID' that it
3551     // presumably uses to represent these constants.
3552     MSGuidDecl::Parts Parts = GD->getParts();
3553     llvm::Constant *Fields[4] = {
3554         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3555         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3556         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3557         llvm::ConstantDataArray::getRaw(
3558             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3559             Int8Ty)};
3560     Init = llvm::ConstantStruct::getAnon(Fields);
3561   }
3562 
3563   auto *GV = new llvm::GlobalVariable(
3564       getModule(), Init->getType(),
3565       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3566   if (supportsCOMDAT())
3567     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3568   setDSOLocal(GV);
3569 
3570   if (!V.isAbsent()) {
3571     Emitter.finalize(GV);
3572     return ConstantAddress(GV, GV->getValueType(), Alignment);
3573   }
3574 
3575   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3576   return ConstantAddress(GV, Ty, Alignment);
3577 }
3578 
3579 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3580     const UnnamedGlobalConstantDecl *GCD) {
3581   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3582 
3583   llvm::GlobalVariable **Entry = nullptr;
3584   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3585   if (*Entry)
3586     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3587 
3588   ConstantEmitter Emitter(*this);
3589   llvm::Constant *Init;
3590 
3591   const APValue &V = GCD->getValue();
3592 
3593   assert(!V.isAbsent());
3594   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3595                                     GCD->getType());
3596 
3597   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3598                                       /*isConstant=*/true,
3599                                       llvm::GlobalValue::PrivateLinkage, Init,
3600                                       ".constant");
3601   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3602   GV->setAlignment(Alignment.getAsAlign());
3603 
3604   Emitter.finalize(GV);
3605 
3606   *Entry = GV;
3607   return ConstantAddress(GV, GV->getValueType(), Alignment);
3608 }
3609 
3610 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3611     const TemplateParamObjectDecl *TPO) {
3612   StringRef Name = getMangledName(TPO);
3613   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3614 
3615   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3616     return ConstantAddress(GV, GV->getValueType(), Alignment);
3617 
3618   ConstantEmitter Emitter(*this);
3619   llvm::Constant *Init = Emitter.emitForInitializer(
3620         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3621 
3622   if (!Init) {
3623     ErrorUnsupported(TPO, "template parameter object");
3624     return ConstantAddress::invalid();
3625   }
3626 
3627   llvm::GlobalValue::LinkageTypes Linkage =
3628       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3629           ? llvm::GlobalValue::LinkOnceODRLinkage
3630           : llvm::GlobalValue::InternalLinkage;
3631   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3632                                       /*isConstant=*/true, Linkage, Init, Name);
3633   setGVProperties(GV, TPO);
3634   if (supportsCOMDAT())
3635     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3636   Emitter.finalize(GV);
3637 
3638     return ConstantAddress(GV, GV->getValueType(), Alignment);
3639 }
3640 
3641 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3642   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3643   assert(AA && "No alias?");
3644 
3645   CharUnits Alignment = getContext().getDeclAlign(VD);
3646   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3647 
3648   // See if there is already something with the target's name in the module.
3649   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3650   if (Entry)
3651     return ConstantAddress(Entry, DeclTy, Alignment);
3652 
3653   llvm::Constant *Aliasee;
3654   if (isa<llvm::FunctionType>(DeclTy))
3655     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3656                                       GlobalDecl(cast<FunctionDecl>(VD)),
3657                                       /*ForVTable=*/false);
3658   else
3659     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3660                                     nullptr);
3661 
3662   auto *F = cast<llvm::GlobalValue>(Aliasee);
3663   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3664   WeakRefReferences.insert(F);
3665 
3666   return ConstantAddress(Aliasee, DeclTy, Alignment);
3667 }
3668 
3669 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3670   if (!D)
3671     return false;
3672   if (auto *A = D->getAttr<AttrT>())
3673     return A->isImplicit();
3674   return D->isImplicit();
3675 }
3676 
3677 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3678   const auto *Global = cast<ValueDecl>(GD.getDecl());
3679 
3680   // Weak references don't produce any output by themselves.
3681   if (Global->hasAttr<WeakRefAttr>())
3682     return;
3683 
3684   // If this is an alias definition (which otherwise looks like a declaration)
3685   // emit it now.
3686   if (Global->hasAttr<AliasAttr>())
3687     return EmitAliasDefinition(GD);
3688 
3689   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3690   if (Global->hasAttr<IFuncAttr>())
3691     return emitIFuncDefinition(GD);
3692 
3693   // If this is a cpu_dispatch multiversion function, emit the resolver.
3694   if (Global->hasAttr<CPUDispatchAttr>())
3695     return emitCPUDispatchDefinition(GD);
3696 
3697   // If this is CUDA, be selective about which declarations we emit.
3698   // Non-constexpr non-lambda implicit host device functions are not emitted
3699   // unless they are used on device side.
3700   if (LangOpts.CUDA) {
3701     if (LangOpts.CUDAIsDevice) {
3702       const auto *FD = dyn_cast<FunctionDecl>(Global);
3703       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3704            (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3705             hasImplicitAttr<CUDAHostAttr>(FD) &&
3706             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3707             !isLambdaCallOperator(FD) &&
3708             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3709           !Global->hasAttr<CUDAGlobalAttr>() &&
3710           !Global->hasAttr<CUDAConstantAttr>() &&
3711           !Global->hasAttr<CUDASharedAttr>() &&
3712           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3713           !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3714           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3715             !Global->hasAttr<CUDAHostAttr>()))
3716         return;
3717     } else {
3718       // We need to emit host-side 'shadows' for all global
3719       // device-side variables because the CUDA runtime needs their
3720       // size and host-side address in order to provide access to
3721       // their device-side incarnations.
3722 
3723       // So device-only functions are the only things we skip.
3724       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3725           Global->hasAttr<CUDADeviceAttr>())
3726         return;
3727 
3728       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3729              "Expected Variable or Function");
3730     }
3731   }
3732 
3733   if (LangOpts.OpenMP) {
3734     // If this is OpenMP, check if it is legal to emit this global normally.
3735     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3736       return;
3737     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3738       if (MustBeEmitted(Global))
3739         EmitOMPDeclareReduction(DRD);
3740       return;
3741     }
3742     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3743       if (MustBeEmitted(Global))
3744         EmitOMPDeclareMapper(DMD);
3745       return;
3746     }
3747   }
3748 
3749   // Ignore declarations, they will be emitted on their first use.
3750   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3751     // Update deferred annotations with the latest declaration if the function
3752     // function was already used or defined.
3753     if (FD->hasAttr<AnnotateAttr>()) {
3754       StringRef MangledName = getMangledName(GD);
3755       if (GetGlobalValue(MangledName))
3756         DeferredAnnotations[MangledName] = FD;
3757     }
3758 
3759     // Forward declarations are emitted lazily on first use.
3760     if (!FD->doesThisDeclarationHaveABody()) {
3761       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3762         return;
3763 
3764       StringRef MangledName = getMangledName(GD);
3765 
3766       // Compute the function info and LLVM type.
3767       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3768       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3769 
3770       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3771                               /*DontDefer=*/false);
3772       return;
3773     }
3774   } else {
3775     const auto *VD = cast<VarDecl>(Global);
3776     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3777     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3778         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3779       if (LangOpts.OpenMP) {
3780         // Emit declaration of the must-be-emitted declare target variable.
3781         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3782                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3783 
3784           // If this variable has external storage and doesn't require special
3785           // link handling we defer to its canonical definition.
3786           if (VD->hasExternalStorage() &&
3787               Res != OMPDeclareTargetDeclAttr::MT_Link)
3788             return;
3789 
3790           bool UnifiedMemoryEnabled =
3791               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3792           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3793                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3794               !UnifiedMemoryEnabled) {
3795             (void)GetAddrOfGlobalVar(VD);
3796           } else {
3797             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3798                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3799                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3800                      UnifiedMemoryEnabled)) &&
3801                    "Link clause or to clause with unified memory expected.");
3802             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3803           }
3804 
3805           return;
3806         }
3807       }
3808       // If this declaration may have caused an inline variable definition to
3809       // change linkage, make sure that it's emitted.
3810       if (Context.getInlineVariableDefinitionKind(VD) ==
3811           ASTContext::InlineVariableDefinitionKind::Strong)
3812         GetAddrOfGlobalVar(VD);
3813       return;
3814     }
3815   }
3816 
3817   // Defer code generation to first use when possible, e.g. if this is an inline
3818   // function. If the global must always be emitted, do it eagerly if possible
3819   // to benefit from cache locality.
3820   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3821     // Emit the definition if it can't be deferred.
3822     EmitGlobalDefinition(GD);
3823     addEmittedDeferredDecl(GD);
3824     return;
3825   }
3826 
3827   // If we're deferring emission of a C++ variable with an
3828   // initializer, remember the order in which it appeared in the file.
3829   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3830       cast<VarDecl>(Global)->hasInit()) {
3831     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3832     CXXGlobalInits.push_back(nullptr);
3833   }
3834 
3835   StringRef MangledName = getMangledName(GD);
3836   if (GetGlobalValue(MangledName) != nullptr) {
3837     // The value has already been used and should therefore be emitted.
3838     addDeferredDeclToEmit(GD);
3839   } else if (MustBeEmitted(Global)) {
3840     // The value must be emitted, but cannot be emitted eagerly.
3841     assert(!MayBeEmittedEagerly(Global));
3842     addDeferredDeclToEmit(GD);
3843   } else {
3844     // Otherwise, remember that we saw a deferred decl with this name.  The
3845     // first use of the mangled name will cause it to move into
3846     // DeferredDeclsToEmit.
3847     DeferredDecls[MangledName] = GD;
3848   }
3849 }
3850 
3851 // Check if T is a class type with a destructor that's not dllimport.
3852 static bool HasNonDllImportDtor(QualType T) {
3853   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3854     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3855       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3856         return true;
3857 
3858   return false;
3859 }
3860 
3861 namespace {
3862   struct FunctionIsDirectlyRecursive
3863       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3864     const StringRef Name;
3865     const Builtin::Context &BI;
3866     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3867         : Name(N), BI(C) {}
3868 
3869     bool VisitCallExpr(const CallExpr *E) {
3870       const FunctionDecl *FD = E->getDirectCallee();
3871       if (!FD)
3872         return false;
3873       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3874       if (Attr && Name == Attr->getLabel())
3875         return true;
3876       unsigned BuiltinID = FD->getBuiltinID();
3877       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3878         return false;
3879       StringRef BuiltinName = BI.getName(BuiltinID);
3880       if (BuiltinName.starts_with("__builtin_") &&
3881           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3882         return true;
3883       }
3884       return false;
3885     }
3886 
3887     bool VisitStmt(const Stmt *S) {
3888       for (const Stmt *Child : S->children())
3889         if (Child && this->Visit(Child))
3890           return true;
3891       return false;
3892     }
3893   };
3894 
3895   // Make sure we're not referencing non-imported vars or functions.
3896   struct DLLImportFunctionVisitor
3897       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3898     bool SafeToInline = true;
3899 
3900     bool shouldVisitImplicitCode() const { return true; }
3901 
3902     bool VisitVarDecl(VarDecl *VD) {
3903       if (VD->getTLSKind()) {
3904         // A thread-local variable cannot be imported.
3905         SafeToInline = false;
3906         return SafeToInline;
3907       }
3908 
3909       // A variable definition might imply a destructor call.
3910       if (VD->isThisDeclarationADefinition())
3911         SafeToInline = !HasNonDllImportDtor(VD->getType());
3912 
3913       return SafeToInline;
3914     }
3915 
3916     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3917       if (const auto *D = E->getTemporary()->getDestructor())
3918         SafeToInline = D->hasAttr<DLLImportAttr>();
3919       return SafeToInline;
3920     }
3921 
3922     bool VisitDeclRefExpr(DeclRefExpr *E) {
3923       ValueDecl *VD = E->getDecl();
3924       if (isa<FunctionDecl>(VD))
3925         SafeToInline = VD->hasAttr<DLLImportAttr>();
3926       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3927         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3928       return SafeToInline;
3929     }
3930 
3931     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3932       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3933       return SafeToInline;
3934     }
3935 
3936     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3937       CXXMethodDecl *M = E->getMethodDecl();
3938       if (!M) {
3939         // Call through a pointer to member function. This is safe to inline.
3940         SafeToInline = true;
3941       } else {
3942         SafeToInline = M->hasAttr<DLLImportAttr>();
3943       }
3944       return SafeToInline;
3945     }
3946 
3947     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3948       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3949       return SafeToInline;
3950     }
3951 
3952     bool VisitCXXNewExpr(CXXNewExpr *E) {
3953       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3954       return SafeToInline;
3955     }
3956   };
3957 }
3958 
3959 // isTriviallyRecursive - Check if this function calls another
3960 // decl that, because of the asm attribute or the other decl being a builtin,
3961 // ends up pointing to itself.
3962 bool
3963 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3964   StringRef Name;
3965   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3966     // asm labels are a special kind of mangling we have to support.
3967     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3968     if (!Attr)
3969       return false;
3970     Name = Attr->getLabel();
3971   } else {
3972     Name = FD->getName();
3973   }
3974 
3975   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3976   const Stmt *Body = FD->getBody();
3977   return Body ? Walker.Visit(Body) : false;
3978 }
3979 
3980 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3981   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3982     return true;
3983 
3984   const auto *F = cast<FunctionDecl>(GD.getDecl());
3985   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3986     return false;
3987 
3988   // We don't import function bodies from other named module units since that
3989   // behavior may break ABI compatibility of the current unit.
3990   if (const Module *M = F->getOwningModule();
3991       M && M->getTopLevelModule()->isNamedModule() &&
3992       getContext().getCurrentNamedModule() != M->getTopLevelModule())
3993     return false;
3994 
3995   if (F->hasAttr<NoInlineAttr>())
3996     return false;
3997 
3998   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3999     // Check whether it would be safe to inline this dllimport function.
4000     DLLImportFunctionVisitor Visitor;
4001     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4002     if (!Visitor.SafeToInline)
4003       return false;
4004 
4005     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4006       // Implicit destructor invocations aren't captured in the AST, so the
4007       // check above can't see them. Check for them manually here.
4008       for (const Decl *Member : Dtor->getParent()->decls())
4009         if (isa<FieldDecl>(Member))
4010           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4011             return false;
4012       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4013         if (HasNonDllImportDtor(B.getType()))
4014           return false;
4015     }
4016   }
4017 
4018   // Inline builtins declaration must be emitted. They often are fortified
4019   // functions.
4020   if (F->isInlineBuiltinDeclaration())
4021     return true;
4022 
4023   // PR9614. Avoid cases where the source code is lying to us. An available
4024   // externally function should have an equivalent function somewhere else,
4025   // but a function that calls itself through asm label/`__builtin_` trickery is
4026   // clearly not equivalent to the real implementation.
4027   // This happens in glibc's btowc and in some configure checks.
4028   return !isTriviallyRecursive(F);
4029 }
4030 
4031 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4032   return CodeGenOpts.OptimizationLevel > 0;
4033 }
4034 
4035 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4036                                                        llvm::GlobalValue *GV) {
4037   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4038 
4039   if (FD->isCPUSpecificMultiVersion()) {
4040     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4041     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4042       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4043   } else if (FD->isTargetClonesMultiVersion()) {
4044     auto *Clone = FD->getAttr<TargetClonesAttr>();
4045     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
4046       if (Clone->isFirstOfVersion(I))
4047         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4048     // Ensure that the resolver function is also emitted.
4049     GetOrCreateMultiVersionResolver(GD);
4050   } else if (FD->hasAttr<TargetVersionAttr>()) {
4051     GetOrCreateMultiVersionResolver(GD);
4052   } else
4053     EmitGlobalFunctionDefinition(GD, GV);
4054 }
4055 
4056 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4057   const auto *D = cast<ValueDecl>(GD.getDecl());
4058 
4059   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4060                                  Context.getSourceManager(),
4061                                  "Generating code for declaration");
4062 
4063   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4064     // At -O0, don't generate IR for functions with available_externally
4065     // linkage.
4066     if (!shouldEmitFunction(GD))
4067       return;
4068 
4069     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4070       std::string Name;
4071       llvm::raw_string_ostream OS(Name);
4072       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4073                                /*Qualified=*/true);
4074       return Name;
4075     });
4076 
4077     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4078       // Make sure to emit the definition(s) before we emit the thunks.
4079       // This is necessary for the generation of certain thunks.
4080       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4081         ABI->emitCXXStructor(GD);
4082       else if (FD->isMultiVersion())
4083         EmitMultiVersionFunctionDefinition(GD, GV);
4084       else
4085         EmitGlobalFunctionDefinition(GD, GV);
4086 
4087       if (Method->isVirtual())
4088         getVTables().EmitThunks(GD);
4089 
4090       return;
4091     }
4092 
4093     if (FD->isMultiVersion())
4094       return EmitMultiVersionFunctionDefinition(GD, GV);
4095     return EmitGlobalFunctionDefinition(GD, GV);
4096   }
4097 
4098   if (const auto *VD = dyn_cast<VarDecl>(D))
4099     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4100 
4101   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4102 }
4103 
4104 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4105                                                       llvm::Function *NewFn);
4106 
4107 static unsigned
4108 TargetMVPriority(const TargetInfo &TI,
4109                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4110   unsigned Priority = 0;
4111   unsigned NumFeatures = 0;
4112   for (StringRef Feat : RO.Conditions.Features) {
4113     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4114     NumFeatures++;
4115   }
4116 
4117   if (!RO.Conditions.Architecture.empty())
4118     Priority = std::max(
4119         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4120 
4121   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4122 
4123   return Priority;
4124 }
4125 
4126 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4127 // TU can forward declare the function without causing problems.  Particularly
4128 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4129 // work with internal linkage functions, so that the same function name can be
4130 // used with internal linkage in multiple TUs.
4131 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4132                                                        GlobalDecl GD) {
4133   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4134   if (FD->getFormalLinkage() == Linkage::Internal)
4135     return llvm::GlobalValue::InternalLinkage;
4136   return llvm::GlobalValue::WeakODRLinkage;
4137 }
4138 
4139 void CodeGenModule::emitMultiVersionFunctions() {
4140   std::vector<GlobalDecl> MVFuncsToEmit;
4141   MultiVersionFuncs.swap(MVFuncsToEmit);
4142   for (GlobalDecl GD : MVFuncsToEmit) {
4143     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4144     assert(FD && "Expected a FunctionDecl");
4145 
4146     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4147     if (FD->isTargetMultiVersion()) {
4148       getContext().forEachMultiversionedFunctionVersion(
4149           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
4150             GlobalDecl CurGD{
4151                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
4152             StringRef MangledName = getMangledName(CurGD);
4153             llvm::Constant *Func = GetGlobalValue(MangledName);
4154             if (!Func) {
4155               if (CurFD->isDefined()) {
4156                 EmitGlobalFunctionDefinition(CurGD, nullptr);
4157                 Func = GetGlobalValue(MangledName);
4158               } else {
4159                 const CGFunctionInfo &FI =
4160                     getTypes().arrangeGlobalDeclaration(GD);
4161                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4162                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4163                                          /*DontDefer=*/false, ForDefinition);
4164               }
4165               assert(Func && "This should have just been created");
4166             }
4167             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
4168               const auto *TA = CurFD->getAttr<TargetAttr>();
4169               llvm::SmallVector<StringRef, 8> Feats;
4170               TA->getAddedFeatures(Feats);
4171               Options.emplace_back(cast<llvm::Function>(Func),
4172                                    TA->getArchitecture(), Feats);
4173             } else {
4174               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
4175               llvm::SmallVector<StringRef, 8> Feats;
4176               TVA->getFeatures(Feats);
4177               Options.emplace_back(cast<llvm::Function>(Func),
4178                                    /*Architecture*/ "", Feats);
4179             }
4180           });
4181     } else if (FD->isTargetClonesMultiVersion()) {
4182       const auto *TC = FD->getAttr<TargetClonesAttr>();
4183       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
4184            ++VersionIndex) {
4185         if (!TC->isFirstOfVersion(VersionIndex))
4186           continue;
4187         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4188                          VersionIndex};
4189         StringRef Version = TC->getFeatureStr(VersionIndex);
4190         StringRef MangledName = getMangledName(CurGD);
4191         llvm::Constant *Func = GetGlobalValue(MangledName);
4192         if (!Func) {
4193           if (FD->isDefined()) {
4194             EmitGlobalFunctionDefinition(CurGD, nullptr);
4195             Func = GetGlobalValue(MangledName);
4196           } else {
4197             const CGFunctionInfo &FI =
4198                 getTypes().arrangeGlobalDeclaration(CurGD);
4199             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4200             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4201                                      /*DontDefer=*/false, ForDefinition);
4202           }
4203           assert(Func && "This should have just been created");
4204         }
4205 
4206         StringRef Architecture;
4207         llvm::SmallVector<StringRef, 1> Feature;
4208 
4209         if (getTarget().getTriple().isAArch64()) {
4210           if (Version != "default") {
4211             llvm::SmallVector<StringRef, 8> VerFeats;
4212             Version.split(VerFeats, "+");
4213             for (auto &CurFeat : VerFeats)
4214               Feature.push_back(CurFeat.trim());
4215           }
4216         } else {
4217           if (Version.starts_with("arch="))
4218             Architecture = Version.drop_front(sizeof("arch=") - 1);
4219           else if (Version != "default")
4220             Feature.push_back(Version);
4221         }
4222 
4223         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4224       }
4225     } else {
4226       assert(0 && "Expected a target or target_clones multiversion function");
4227       continue;
4228     }
4229 
4230     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4231     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4232       ResolverConstant = IFunc->getResolver();
4233       if (FD->isTargetClonesMultiVersion() ||
4234           FD->isTargetVersionMultiVersion()) {
4235         const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4236         llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4237         std::string MangledName = getMangledNameImpl(
4238             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4239         // In prior versions of Clang, the mangling for ifuncs incorrectly
4240         // included an .ifunc suffix. This alias is generated for backward
4241         // compatibility. It is deprecated, and may be removed in the future.
4242         auto *Alias = llvm::GlobalAlias::create(
4243             DeclTy, 0, getMultiversionLinkage(*this, GD),
4244             MangledName + ".ifunc", IFunc, &getModule());
4245         SetCommonAttributes(FD, Alias);
4246       }
4247     }
4248     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4249 
4250     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4251 
4252     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4253       ResolverFunc->setComdat(
4254           getModule().getOrInsertComdat(ResolverFunc->getName()));
4255 
4256     const TargetInfo &TI = getTarget();
4257     llvm::stable_sort(
4258         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4259                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4260           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4261         });
4262     CodeGenFunction CGF(*this);
4263     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4264   }
4265 
4266   // Ensure that any additions to the deferred decls list caused by emitting a
4267   // variant are emitted.  This can happen when the variant itself is inline and
4268   // calls a function without linkage.
4269   if (!MVFuncsToEmit.empty())
4270     EmitDeferred();
4271 
4272   // Ensure that any additions to the multiversion funcs list from either the
4273   // deferred decls or the multiversion functions themselves are emitted.
4274   if (!MultiVersionFuncs.empty())
4275     emitMultiVersionFunctions();
4276 }
4277 
4278 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4279   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4280   assert(FD && "Not a FunctionDecl?");
4281   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4282   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4283   assert(DD && "Not a cpu_dispatch Function?");
4284 
4285   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4286   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4287 
4288   StringRef ResolverName = getMangledName(GD);
4289   UpdateMultiVersionNames(GD, FD, ResolverName);
4290 
4291   llvm::Type *ResolverType;
4292   GlobalDecl ResolverGD;
4293   if (getTarget().supportsIFunc()) {
4294     ResolverType = llvm::FunctionType::get(
4295         llvm::PointerType::get(DeclTy,
4296                                getTypes().getTargetAddressSpace(FD->getType())),
4297         false);
4298   }
4299   else {
4300     ResolverType = DeclTy;
4301     ResolverGD = GD;
4302   }
4303 
4304   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4305       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4306   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4307   if (supportsCOMDAT())
4308     ResolverFunc->setComdat(
4309         getModule().getOrInsertComdat(ResolverFunc->getName()));
4310 
4311   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4312   const TargetInfo &Target = getTarget();
4313   unsigned Index = 0;
4314   for (const IdentifierInfo *II : DD->cpus()) {
4315     // Get the name of the target function so we can look it up/create it.
4316     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4317                               getCPUSpecificMangling(*this, II->getName());
4318 
4319     llvm::Constant *Func = GetGlobalValue(MangledName);
4320 
4321     if (!Func) {
4322       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4323       if (ExistingDecl.getDecl() &&
4324           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4325         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4326         Func = GetGlobalValue(MangledName);
4327       } else {
4328         if (!ExistingDecl.getDecl())
4329           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4330 
4331       Func = GetOrCreateLLVMFunction(
4332           MangledName, DeclTy, ExistingDecl,
4333           /*ForVTable=*/false, /*DontDefer=*/true,
4334           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4335       }
4336     }
4337 
4338     llvm::SmallVector<StringRef, 32> Features;
4339     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4340     llvm::transform(Features, Features.begin(),
4341                     [](StringRef Str) { return Str.substr(1); });
4342     llvm::erase_if(Features, [&Target](StringRef Feat) {
4343       return !Target.validateCpuSupports(Feat);
4344     });
4345     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4346     ++Index;
4347   }
4348 
4349   llvm::stable_sort(
4350       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4351                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4352         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4353                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4354       });
4355 
4356   // If the list contains multiple 'default' versions, such as when it contains
4357   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4358   // always run on at least a 'pentium'). We do this by deleting the 'least
4359   // advanced' (read, lowest mangling letter).
4360   while (Options.size() > 1 &&
4361          llvm::all_of(llvm::X86::getCpuSupportsMask(
4362                           (Options.end() - 2)->Conditions.Features),
4363                       [](auto X) { return X == 0; })) {
4364     StringRef LHSName = (Options.end() - 2)->Function->getName();
4365     StringRef RHSName = (Options.end() - 1)->Function->getName();
4366     if (LHSName.compare(RHSName) < 0)
4367       Options.erase(Options.end() - 2);
4368     else
4369       Options.erase(Options.end() - 1);
4370   }
4371 
4372   CodeGenFunction CGF(*this);
4373   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4374 
4375   if (getTarget().supportsIFunc()) {
4376     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4377     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4378 
4379     // Fix up function declarations that were created for cpu_specific before
4380     // cpu_dispatch was known
4381     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4382       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4383       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4384                                            &getModule());
4385       GI->takeName(IFunc);
4386       IFunc->replaceAllUsesWith(GI);
4387       IFunc->eraseFromParent();
4388       IFunc = GI;
4389     }
4390 
4391     std::string AliasName = getMangledNameImpl(
4392         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4393     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4394     if (!AliasFunc) {
4395       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4396                                            &getModule());
4397       SetCommonAttributes(GD, GA);
4398     }
4399   }
4400 }
4401 
4402 /// If a dispatcher for the specified mangled name is not in the module, create
4403 /// and return an llvm Function with the specified type.
4404 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4405   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4406   assert(FD && "Not a FunctionDecl?");
4407 
4408   std::string MangledName =
4409       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4410 
4411   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4412   // a separate resolver).
4413   std::string ResolverName = MangledName;
4414   if (getTarget().supportsIFunc()) {
4415     switch (FD->getMultiVersionKind()) {
4416     case MultiVersionKind::None:
4417       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4418     case MultiVersionKind::Target:
4419     case MultiVersionKind::CPUSpecific:
4420     case MultiVersionKind::CPUDispatch:
4421       ResolverName += ".ifunc";
4422       break;
4423     case MultiVersionKind::TargetClones:
4424     case MultiVersionKind::TargetVersion:
4425       break;
4426     }
4427   } else if (FD->isTargetMultiVersion()) {
4428     ResolverName += ".resolver";
4429   }
4430 
4431   // If the resolver has already been created, just return it.
4432   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4433     return ResolverGV;
4434 
4435   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4436   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4437 
4438   // The resolver needs to be created. For target and target_clones, defer
4439   // creation until the end of the TU.
4440   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4441     MultiVersionFuncs.push_back(GD);
4442 
4443   // For cpu_specific, don't create an ifunc yet because we don't know if the
4444   // cpu_dispatch will be emitted in this translation unit.
4445   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4446     llvm::Type *ResolverType = llvm::FunctionType::get(
4447         llvm::PointerType::get(DeclTy,
4448                                getTypes().getTargetAddressSpace(FD->getType())),
4449         false);
4450     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4451         MangledName + ".resolver", ResolverType, GlobalDecl{},
4452         /*ForVTable=*/false);
4453     llvm::GlobalIFunc *GIF =
4454         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4455                                   "", Resolver, &getModule());
4456     GIF->setName(ResolverName);
4457     SetCommonAttributes(FD, GIF);
4458 
4459     return GIF;
4460   }
4461 
4462   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4463       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4464   assert(isa<llvm::GlobalValue>(Resolver) &&
4465          "Resolver should be created for the first time");
4466   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4467   return Resolver;
4468 }
4469 
4470 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4471 /// module, create and return an llvm Function with the specified type. If there
4472 /// is something in the module with the specified name, return it potentially
4473 /// bitcasted to the right type.
4474 ///
4475 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4476 /// to set the attributes on the function when it is first created.
4477 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4478     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4479     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4480     ForDefinition_t IsForDefinition) {
4481   const Decl *D = GD.getDecl();
4482 
4483   // Any attempts to use a MultiVersion function should result in retrieving
4484   // the iFunc instead. Name Mangling will handle the rest of the changes.
4485   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4486     // For the device mark the function as one that should be emitted.
4487     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4488         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4489         !DontDefer && !IsForDefinition) {
4490       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4491         GlobalDecl GDDef;
4492         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4493           GDDef = GlobalDecl(CD, GD.getCtorType());
4494         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4495           GDDef = GlobalDecl(DD, GD.getDtorType());
4496         else
4497           GDDef = GlobalDecl(FDDef);
4498         EmitGlobal(GDDef);
4499       }
4500     }
4501 
4502     if (FD->isMultiVersion()) {
4503       UpdateMultiVersionNames(GD, FD, MangledName);
4504       if (!IsForDefinition)
4505         return GetOrCreateMultiVersionResolver(GD);
4506     }
4507   }
4508 
4509   // Lookup the entry, lazily creating it if necessary.
4510   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4511   if (Entry) {
4512     if (WeakRefReferences.erase(Entry)) {
4513       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4514       if (FD && !FD->hasAttr<WeakAttr>())
4515         Entry->setLinkage(llvm::Function::ExternalLinkage);
4516     }
4517 
4518     // Handle dropped DLL attributes.
4519     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4520         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4521       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4522       setDSOLocal(Entry);
4523     }
4524 
4525     // If there are two attempts to define the same mangled name, issue an
4526     // error.
4527     if (IsForDefinition && !Entry->isDeclaration()) {
4528       GlobalDecl OtherGD;
4529       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4530       // to make sure that we issue an error only once.
4531       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4532           (GD.getCanonicalDecl().getDecl() !=
4533            OtherGD.getCanonicalDecl().getDecl()) &&
4534           DiagnosedConflictingDefinitions.insert(GD).second) {
4535         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4536             << MangledName;
4537         getDiags().Report(OtherGD.getDecl()->getLocation(),
4538                           diag::note_previous_definition);
4539       }
4540     }
4541 
4542     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4543         (Entry->getValueType() == Ty)) {
4544       return Entry;
4545     }
4546 
4547     // Make sure the result is of the correct type.
4548     // (If function is requested for a definition, we always need to create a new
4549     // function, not just return a bitcast.)
4550     if (!IsForDefinition)
4551       return Entry;
4552   }
4553 
4554   // This function doesn't have a complete type (for example, the return
4555   // type is an incomplete struct). Use a fake type instead, and make
4556   // sure not to try to set attributes.
4557   bool IsIncompleteFunction = false;
4558 
4559   llvm::FunctionType *FTy;
4560   if (isa<llvm::FunctionType>(Ty)) {
4561     FTy = cast<llvm::FunctionType>(Ty);
4562   } else {
4563     FTy = llvm::FunctionType::get(VoidTy, false);
4564     IsIncompleteFunction = true;
4565   }
4566 
4567   llvm::Function *F =
4568       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4569                              Entry ? StringRef() : MangledName, &getModule());
4570 
4571   // Store the declaration associated with this function so it is potentially
4572   // updated by further declarations or definitions and emitted at the end.
4573   if (D && D->hasAttr<AnnotateAttr>())
4574     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4575 
4576   // If we already created a function with the same mangled name (but different
4577   // type) before, take its name and add it to the list of functions to be
4578   // replaced with F at the end of CodeGen.
4579   //
4580   // This happens if there is a prototype for a function (e.g. "int f()") and
4581   // then a definition of a different type (e.g. "int f(int x)").
4582   if (Entry) {
4583     F->takeName(Entry);
4584 
4585     // This might be an implementation of a function without a prototype, in
4586     // which case, try to do special replacement of calls which match the new
4587     // prototype.  The really key thing here is that we also potentially drop
4588     // arguments from the call site so as to make a direct call, which makes the
4589     // inliner happier and suppresses a number of optimizer warnings (!) about
4590     // dropping arguments.
4591     if (!Entry->use_empty()) {
4592       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4593       Entry->removeDeadConstantUsers();
4594     }
4595 
4596     addGlobalValReplacement(Entry, F);
4597   }
4598 
4599   assert(F->getName() == MangledName && "name was uniqued!");
4600   if (D)
4601     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4602   if (ExtraAttrs.hasFnAttrs()) {
4603     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4604     F->addFnAttrs(B);
4605   }
4606 
4607   if (!DontDefer) {
4608     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4609     // each other bottoming out with the base dtor.  Therefore we emit non-base
4610     // dtors on usage, even if there is no dtor definition in the TU.
4611     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4612         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4613                                            GD.getDtorType()))
4614       addDeferredDeclToEmit(GD);
4615 
4616     // This is the first use or definition of a mangled name.  If there is a
4617     // deferred decl with this name, remember that we need to emit it at the end
4618     // of the file.
4619     auto DDI = DeferredDecls.find(MangledName);
4620     if (DDI != DeferredDecls.end()) {
4621       // Move the potentially referenced deferred decl to the
4622       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4623       // don't need it anymore).
4624       addDeferredDeclToEmit(DDI->second);
4625       DeferredDecls.erase(DDI);
4626 
4627       // Otherwise, there are cases we have to worry about where we're
4628       // using a declaration for which we must emit a definition but where
4629       // we might not find a top-level definition:
4630       //   - member functions defined inline in their classes
4631       //   - friend functions defined inline in some class
4632       //   - special member functions with implicit definitions
4633       // If we ever change our AST traversal to walk into class methods,
4634       // this will be unnecessary.
4635       //
4636       // We also don't emit a definition for a function if it's going to be an
4637       // entry in a vtable, unless it's already marked as used.
4638     } else if (getLangOpts().CPlusPlus && D) {
4639       // Look for a declaration that's lexically in a record.
4640       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4641            FD = FD->getPreviousDecl()) {
4642         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4643           if (FD->doesThisDeclarationHaveABody()) {
4644             addDeferredDeclToEmit(GD.getWithDecl(FD));
4645             break;
4646           }
4647         }
4648       }
4649     }
4650   }
4651 
4652   // Make sure the result is of the requested type.
4653   if (!IsIncompleteFunction) {
4654     assert(F->getFunctionType() == Ty);
4655     return F;
4656   }
4657 
4658   return F;
4659 }
4660 
4661 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4662 /// non-null, then this function will use the specified type if it has to
4663 /// create it (this occurs when we see a definition of the function).
4664 llvm::Constant *
4665 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4666                                  bool DontDefer,
4667                                  ForDefinition_t IsForDefinition) {
4668   // If there was no specific requested type, just convert it now.
4669   if (!Ty) {
4670     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4671     Ty = getTypes().ConvertType(FD->getType());
4672   }
4673 
4674   // Devirtualized destructor calls may come through here instead of via
4675   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4676   // of the complete destructor when necessary.
4677   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4678     if (getTarget().getCXXABI().isMicrosoft() &&
4679         GD.getDtorType() == Dtor_Complete &&
4680         DD->getParent()->getNumVBases() == 0)
4681       GD = GlobalDecl(DD, Dtor_Base);
4682   }
4683 
4684   StringRef MangledName = getMangledName(GD);
4685   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4686                                     /*IsThunk=*/false, llvm::AttributeList(),
4687                                     IsForDefinition);
4688   // Returns kernel handle for HIP kernel stub function.
4689   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4690       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4691     auto *Handle = getCUDARuntime().getKernelHandle(
4692         cast<llvm::Function>(F->stripPointerCasts()), GD);
4693     if (IsForDefinition)
4694       return F;
4695     return Handle;
4696   }
4697   return F;
4698 }
4699 
4700 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4701   llvm::GlobalValue *F =
4702       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4703 
4704   return llvm::NoCFIValue::get(F);
4705 }
4706 
4707 static const FunctionDecl *
4708 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4709   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4710   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4711 
4712   IdentifierInfo &CII = C.Idents.get(Name);
4713   for (const auto *Result : DC->lookup(&CII))
4714     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4715       return FD;
4716 
4717   if (!C.getLangOpts().CPlusPlus)
4718     return nullptr;
4719 
4720   // Demangle the premangled name from getTerminateFn()
4721   IdentifierInfo &CXXII =
4722       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4723           ? C.Idents.get("terminate")
4724           : C.Idents.get(Name);
4725 
4726   for (const auto &N : {"__cxxabiv1", "std"}) {
4727     IdentifierInfo &NS = C.Idents.get(N);
4728     for (const auto *Result : DC->lookup(&NS)) {
4729       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4730       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4731         for (const auto *Result : LSD->lookup(&NS))
4732           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4733             break;
4734 
4735       if (ND)
4736         for (const auto *Result : ND->lookup(&CXXII))
4737           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4738             return FD;
4739     }
4740   }
4741 
4742   return nullptr;
4743 }
4744 
4745 /// CreateRuntimeFunction - Create a new runtime function with the specified
4746 /// type and name.
4747 llvm::FunctionCallee
4748 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4749                                      llvm::AttributeList ExtraAttrs, bool Local,
4750                                      bool AssumeConvergent) {
4751   if (AssumeConvergent) {
4752     ExtraAttrs =
4753         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4754   }
4755 
4756   llvm::Constant *C =
4757       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4758                               /*DontDefer=*/false, /*IsThunk=*/false,
4759                               ExtraAttrs);
4760 
4761   if (auto *F = dyn_cast<llvm::Function>(C)) {
4762     if (F->empty()) {
4763       F->setCallingConv(getRuntimeCC());
4764 
4765       // In Windows Itanium environments, try to mark runtime functions
4766       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4767       // will link their standard library statically or dynamically. Marking
4768       // functions imported when they are not imported can cause linker errors
4769       // and warnings.
4770       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4771           !getCodeGenOpts().LTOVisibilityPublicStd) {
4772         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4773         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4774           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4775           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4776         }
4777       }
4778       setDSOLocal(F);
4779     }
4780   }
4781 
4782   return {FTy, C};
4783 }
4784 
4785 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4786 /// create and return an llvm GlobalVariable with the specified type and address
4787 /// space. If there is something in the module with the specified name, return
4788 /// it potentially bitcasted to the right type.
4789 ///
4790 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4791 /// to set the attributes on the global when it is first created.
4792 ///
4793 /// If IsForDefinition is true, it is guaranteed that an actual global with
4794 /// type Ty will be returned, not conversion of a variable with the same
4795 /// mangled name but some other type.
4796 llvm::Constant *
4797 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4798                                      LangAS AddrSpace, const VarDecl *D,
4799                                      ForDefinition_t IsForDefinition) {
4800   // Lookup the entry, lazily creating it if necessary.
4801   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4802   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4803   if (Entry) {
4804     if (WeakRefReferences.erase(Entry)) {
4805       if (D && !D->hasAttr<WeakAttr>())
4806         Entry->setLinkage(llvm::Function::ExternalLinkage);
4807     }
4808 
4809     // Handle dropped DLL attributes.
4810     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4811         !shouldMapVisibilityToDLLExport(D))
4812       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4813 
4814     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4815       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4816 
4817     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4818       return Entry;
4819 
4820     // If there are two attempts to define the same mangled name, issue an
4821     // error.
4822     if (IsForDefinition && !Entry->isDeclaration()) {
4823       GlobalDecl OtherGD;
4824       const VarDecl *OtherD;
4825 
4826       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4827       // to make sure that we issue an error only once.
4828       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4829           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4830           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4831           OtherD->hasInit() &&
4832           DiagnosedConflictingDefinitions.insert(D).second) {
4833         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4834             << MangledName;
4835         getDiags().Report(OtherGD.getDecl()->getLocation(),
4836                           diag::note_previous_definition);
4837       }
4838     }
4839 
4840     // Make sure the result is of the correct type.
4841     if (Entry->getType()->getAddressSpace() != TargetAS)
4842       return llvm::ConstantExpr::getAddrSpaceCast(
4843           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4844 
4845     // (If global is requested for a definition, we always need to create a new
4846     // global, not just return a bitcast.)
4847     if (!IsForDefinition)
4848       return Entry;
4849   }
4850 
4851   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4852 
4853   auto *GV = new llvm::GlobalVariable(
4854       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4855       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4856       getContext().getTargetAddressSpace(DAddrSpace));
4857 
4858   // If we already created a global with the same mangled name (but different
4859   // type) before, take its name and remove it from its parent.
4860   if (Entry) {
4861     GV->takeName(Entry);
4862 
4863     if (!Entry->use_empty()) {
4864       Entry->replaceAllUsesWith(GV);
4865     }
4866 
4867     Entry->eraseFromParent();
4868   }
4869 
4870   // This is the first use or definition of a mangled name.  If there is a
4871   // deferred decl with this name, remember that we need to emit it at the end
4872   // of the file.
4873   auto DDI = DeferredDecls.find(MangledName);
4874   if (DDI != DeferredDecls.end()) {
4875     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4876     // list, and remove it from DeferredDecls (since we don't need it anymore).
4877     addDeferredDeclToEmit(DDI->second);
4878     DeferredDecls.erase(DDI);
4879   }
4880 
4881   // Handle things which are present even on external declarations.
4882   if (D) {
4883     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4884       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4885 
4886     // FIXME: This code is overly simple and should be merged with other global
4887     // handling.
4888     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4889 
4890     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4891 
4892     setLinkageForGV(GV, D);
4893 
4894     if (D->getTLSKind()) {
4895       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4896         CXXThreadLocals.push_back(D);
4897       setTLSMode(GV, *D);
4898     }
4899 
4900     setGVProperties(GV, D);
4901 
4902     // If required by the ABI, treat declarations of static data members with
4903     // inline initializers as definitions.
4904     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4905       EmitGlobalVarDefinition(D);
4906     }
4907 
4908     // Emit section information for extern variables.
4909     if (D->hasExternalStorage()) {
4910       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4911         GV->setSection(SA->getName());
4912     }
4913 
4914     // Handle XCore specific ABI requirements.
4915     if (getTriple().getArch() == llvm::Triple::xcore &&
4916         D->getLanguageLinkage() == CLanguageLinkage &&
4917         D->getType().isConstant(Context) &&
4918         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4919       GV->setSection(".cp.rodata");
4920 
4921     // Handle code model attribute
4922     if (const auto *CMA = D->getAttr<CodeModelAttr>())
4923       GV->setCodeModel(CMA->getModel());
4924 
4925     // Check if we a have a const declaration with an initializer, we may be
4926     // able to emit it as available_externally to expose it's value to the
4927     // optimizer.
4928     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4929         D->getType().isConstQualified() && !GV->hasInitializer() &&
4930         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4931       const auto *Record =
4932           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4933       bool HasMutableFields = Record && Record->hasMutableFields();
4934       if (!HasMutableFields) {
4935         const VarDecl *InitDecl;
4936         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4937         if (InitExpr) {
4938           ConstantEmitter emitter(*this);
4939           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4940           if (Init) {
4941             auto *InitType = Init->getType();
4942             if (GV->getValueType() != InitType) {
4943               // The type of the initializer does not match the definition.
4944               // This happens when an initializer has a different type from
4945               // the type of the global (because of padding at the end of a
4946               // structure for instance).
4947               GV->setName(StringRef());
4948               // Make a new global with the correct type, this is now guaranteed
4949               // to work.
4950               auto *NewGV = cast<llvm::GlobalVariable>(
4951                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4952                       ->stripPointerCasts());
4953 
4954               // Erase the old global, since it is no longer used.
4955               GV->eraseFromParent();
4956               GV = NewGV;
4957             } else {
4958               GV->setInitializer(Init);
4959               GV->setConstant(true);
4960               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4961             }
4962             emitter.finalize(GV);
4963           }
4964         }
4965       }
4966     }
4967   }
4968 
4969   if (D &&
4970       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4971     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4972     // External HIP managed variables needed to be recorded for transformation
4973     // in both device and host compilations.
4974     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4975         D->hasExternalStorage())
4976       getCUDARuntime().handleVarRegistration(D, *GV);
4977   }
4978 
4979   if (D)
4980     SanitizerMD->reportGlobal(GV, *D);
4981 
4982   LangAS ExpectedAS =
4983       D ? D->getType().getAddressSpace()
4984         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4985   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4986   if (DAddrSpace != ExpectedAS) {
4987     return getTargetCodeGenInfo().performAddrSpaceCast(
4988         *this, GV, DAddrSpace, ExpectedAS,
4989         llvm::PointerType::get(getLLVMContext(), TargetAS));
4990   }
4991 
4992   return GV;
4993 }
4994 
4995 llvm::Constant *
4996 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4997   const Decl *D = GD.getDecl();
4998 
4999   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5000     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5001                                 /*DontDefer=*/false, IsForDefinition);
5002 
5003   if (isa<CXXMethodDecl>(D)) {
5004     auto FInfo =
5005         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5006     auto Ty = getTypes().GetFunctionType(*FInfo);
5007     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5008                              IsForDefinition);
5009   }
5010 
5011   if (isa<FunctionDecl>(D)) {
5012     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5013     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5014     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5015                              IsForDefinition);
5016   }
5017 
5018   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5019 }
5020 
5021 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5022     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5023     llvm::Align Alignment) {
5024   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5025   llvm::GlobalVariable *OldGV = nullptr;
5026 
5027   if (GV) {
5028     // Check if the variable has the right type.
5029     if (GV->getValueType() == Ty)
5030       return GV;
5031 
5032     // Because C++ name mangling, the only way we can end up with an already
5033     // existing global with the same name is if it has been declared extern "C".
5034     assert(GV->isDeclaration() && "Declaration has wrong type!");
5035     OldGV = GV;
5036   }
5037 
5038   // Create a new variable.
5039   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5040                                 Linkage, nullptr, Name);
5041 
5042   if (OldGV) {
5043     // Replace occurrences of the old variable if needed.
5044     GV->takeName(OldGV);
5045 
5046     if (!OldGV->use_empty()) {
5047       OldGV->replaceAllUsesWith(GV);
5048     }
5049 
5050     OldGV->eraseFromParent();
5051   }
5052 
5053   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5054       !GV->hasAvailableExternallyLinkage())
5055     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5056 
5057   GV->setAlignment(Alignment);
5058 
5059   return GV;
5060 }
5061 
5062 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5063 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5064 /// then it will be created with the specified type instead of whatever the
5065 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5066 /// that an actual global with type Ty will be returned, not conversion of a
5067 /// variable with the same mangled name but some other type.
5068 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5069                                                   llvm::Type *Ty,
5070                                            ForDefinition_t IsForDefinition) {
5071   assert(D->hasGlobalStorage() && "Not a global variable");
5072   QualType ASTTy = D->getType();
5073   if (!Ty)
5074     Ty = getTypes().ConvertTypeForMem(ASTTy);
5075 
5076   StringRef MangledName = getMangledName(D);
5077   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5078                                IsForDefinition);
5079 }
5080 
5081 /// CreateRuntimeVariable - Create a new runtime global variable with the
5082 /// specified type and name.
5083 llvm::Constant *
5084 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5085                                      StringRef Name) {
5086   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5087                                                        : LangAS::Default;
5088   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5089   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5090   return Ret;
5091 }
5092 
5093 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5094   assert(!D->getInit() && "Cannot emit definite definitions here!");
5095 
5096   StringRef MangledName = getMangledName(D);
5097   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5098 
5099   // We already have a definition, not declaration, with the same mangled name.
5100   // Emitting of declaration is not required (and actually overwrites emitted
5101   // definition).
5102   if (GV && !GV->isDeclaration())
5103     return;
5104 
5105   // If we have not seen a reference to this variable yet, place it into the
5106   // deferred declarations table to be emitted if needed later.
5107   if (!MustBeEmitted(D) && !GV) {
5108       DeferredDecls[MangledName] = D;
5109       return;
5110   }
5111 
5112   // The tentative definition is the only definition.
5113   EmitGlobalVarDefinition(D);
5114 }
5115 
5116 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
5117   EmitExternalVarDeclaration(D);
5118 }
5119 
5120 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5121   return Context.toCharUnitsFromBits(
5122       getDataLayout().getTypeStoreSizeInBits(Ty));
5123 }
5124 
5125 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5126   if (LangOpts.OpenCL) {
5127     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5128     assert(AS == LangAS::opencl_global ||
5129            AS == LangAS::opencl_global_device ||
5130            AS == LangAS::opencl_global_host ||
5131            AS == LangAS::opencl_constant ||
5132            AS == LangAS::opencl_local ||
5133            AS >= LangAS::FirstTargetAddressSpace);
5134     return AS;
5135   }
5136 
5137   if (LangOpts.SYCLIsDevice &&
5138       (!D || D->getType().getAddressSpace() == LangAS::Default))
5139     return LangAS::sycl_global;
5140 
5141   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5142     if (D) {
5143       if (D->hasAttr<CUDAConstantAttr>())
5144         return LangAS::cuda_constant;
5145       if (D->hasAttr<CUDASharedAttr>())
5146         return LangAS::cuda_shared;
5147       if (D->hasAttr<CUDADeviceAttr>())
5148         return LangAS::cuda_device;
5149       if (D->getType().isConstQualified())
5150         return LangAS::cuda_constant;
5151     }
5152     return LangAS::cuda_device;
5153   }
5154 
5155   if (LangOpts.OpenMP) {
5156     LangAS AS;
5157     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5158       return AS;
5159   }
5160   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5161 }
5162 
5163 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5164   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5165   if (LangOpts.OpenCL)
5166     return LangAS::opencl_constant;
5167   if (LangOpts.SYCLIsDevice)
5168     return LangAS::sycl_global;
5169   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5170     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5171     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5172     // with OpVariable instructions with Generic storage class which is not
5173     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5174     // UniformConstant storage class is not viable as pointers to it may not be
5175     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5176     return LangAS::cuda_device;
5177   if (auto AS = getTarget().getConstantAddressSpace())
5178     return *AS;
5179   return LangAS::Default;
5180 }
5181 
5182 // In address space agnostic languages, string literals are in default address
5183 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5184 // emitted in constant address space in LLVM IR. To be consistent with other
5185 // parts of AST, string literal global variables in constant address space
5186 // need to be casted to default address space before being put into address
5187 // map and referenced by other part of CodeGen.
5188 // In OpenCL, string literals are in constant address space in AST, therefore
5189 // they should not be casted to default address space.
5190 static llvm::Constant *
5191 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5192                                        llvm::GlobalVariable *GV) {
5193   llvm::Constant *Cast = GV;
5194   if (!CGM.getLangOpts().OpenCL) {
5195     auto AS = CGM.GetGlobalConstantAddressSpace();
5196     if (AS != LangAS::Default)
5197       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5198           CGM, GV, AS, LangAS::Default,
5199           llvm::PointerType::get(
5200               CGM.getLLVMContext(),
5201               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5202   }
5203   return Cast;
5204 }
5205 
5206 template<typename SomeDecl>
5207 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5208                                                llvm::GlobalValue *GV) {
5209   if (!getLangOpts().CPlusPlus)
5210     return;
5211 
5212   // Must have 'used' attribute, or else inline assembly can't rely on
5213   // the name existing.
5214   if (!D->template hasAttr<UsedAttr>())
5215     return;
5216 
5217   // Must have internal linkage and an ordinary name.
5218   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5219     return;
5220 
5221   // Must be in an extern "C" context. Entities declared directly within
5222   // a record are not extern "C" even if the record is in such a context.
5223   const SomeDecl *First = D->getFirstDecl();
5224   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5225     return;
5226 
5227   // OK, this is an internal linkage entity inside an extern "C" linkage
5228   // specification. Make a note of that so we can give it the "expected"
5229   // mangled name if nothing else is using that name.
5230   std::pair<StaticExternCMap::iterator, bool> R =
5231       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5232 
5233   // If we have multiple internal linkage entities with the same name
5234   // in extern "C" regions, none of them gets that name.
5235   if (!R.second)
5236     R.first->second = nullptr;
5237 }
5238 
5239 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5240   if (!CGM.supportsCOMDAT())
5241     return false;
5242 
5243   if (D.hasAttr<SelectAnyAttr>())
5244     return true;
5245 
5246   GVALinkage Linkage;
5247   if (auto *VD = dyn_cast<VarDecl>(&D))
5248     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5249   else
5250     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5251 
5252   switch (Linkage) {
5253   case GVA_Internal:
5254   case GVA_AvailableExternally:
5255   case GVA_StrongExternal:
5256     return false;
5257   case GVA_DiscardableODR:
5258   case GVA_StrongODR:
5259     return true;
5260   }
5261   llvm_unreachable("No such linkage");
5262 }
5263 
5264 bool CodeGenModule::supportsCOMDAT() const {
5265   return getTriple().supportsCOMDAT();
5266 }
5267 
5268 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5269                                           llvm::GlobalObject &GO) {
5270   if (!shouldBeInCOMDAT(*this, D))
5271     return;
5272   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5273 }
5274 
5275 /// Pass IsTentative as true if you want to create a tentative definition.
5276 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5277                                             bool IsTentative) {
5278   // OpenCL global variables of sampler type are translated to function calls,
5279   // therefore no need to be translated.
5280   QualType ASTTy = D->getType();
5281   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5282     return;
5283 
5284   // If this is OpenMP device, check if it is legal to emit this global
5285   // normally.
5286   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5287       OpenMPRuntime->emitTargetGlobalVariable(D))
5288     return;
5289 
5290   llvm::TrackingVH<llvm::Constant> Init;
5291   bool NeedsGlobalCtor = false;
5292   // Whether the definition of the variable is available externally.
5293   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5294   // since this is the job for its original source.
5295   bool IsDefinitionAvailableExternally =
5296       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5297   bool NeedsGlobalDtor =
5298       !IsDefinitionAvailableExternally &&
5299       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5300 
5301   const VarDecl *InitDecl;
5302   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5303 
5304   std::optional<ConstantEmitter> emitter;
5305 
5306   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5307   // as part of their declaration."  Sema has already checked for
5308   // error cases, so we just need to set Init to UndefValue.
5309   bool IsCUDASharedVar =
5310       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5311   // Shadows of initialized device-side global variables are also left
5312   // undefined.
5313   // Managed Variables should be initialized on both host side and device side.
5314   bool IsCUDAShadowVar =
5315       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5316       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5317        D->hasAttr<CUDASharedAttr>());
5318   bool IsCUDADeviceShadowVar =
5319       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5320       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5321        D->getType()->isCUDADeviceBuiltinTextureType());
5322   if (getLangOpts().CUDA &&
5323       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5324     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5325   else if (D->hasAttr<LoaderUninitializedAttr>())
5326     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5327   else if (!InitExpr) {
5328     // This is a tentative definition; tentative definitions are
5329     // implicitly initialized with { 0 }.
5330     //
5331     // Note that tentative definitions are only emitted at the end of
5332     // a translation unit, so they should never have incomplete
5333     // type. In addition, EmitTentativeDefinition makes sure that we
5334     // never attempt to emit a tentative definition if a real one
5335     // exists. A use may still exists, however, so we still may need
5336     // to do a RAUW.
5337     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5338     Init = EmitNullConstant(D->getType());
5339   } else {
5340     initializedGlobalDecl = GlobalDecl(D);
5341     emitter.emplace(*this);
5342     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5343     if (!Initializer) {
5344       QualType T = InitExpr->getType();
5345       if (D->getType()->isReferenceType())
5346         T = D->getType();
5347 
5348       if (getLangOpts().CPlusPlus) {
5349         if (InitDecl->hasFlexibleArrayInit(getContext()))
5350           ErrorUnsupported(D, "flexible array initializer");
5351         Init = EmitNullConstant(T);
5352 
5353         if (!IsDefinitionAvailableExternally)
5354           NeedsGlobalCtor = true;
5355       } else {
5356         ErrorUnsupported(D, "static initializer");
5357         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5358       }
5359     } else {
5360       Init = Initializer;
5361       // We don't need an initializer, so remove the entry for the delayed
5362       // initializer position (just in case this entry was delayed) if we
5363       // also don't need to register a destructor.
5364       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5365         DelayedCXXInitPosition.erase(D);
5366 
5367 #ifndef NDEBUG
5368       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5369                           InitDecl->getFlexibleArrayInitChars(getContext());
5370       CharUnits CstSize = CharUnits::fromQuantity(
5371           getDataLayout().getTypeAllocSize(Init->getType()));
5372       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5373 #endif
5374     }
5375   }
5376 
5377   llvm::Type* InitType = Init->getType();
5378   llvm::Constant *Entry =
5379       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5380 
5381   // Strip off pointer casts if we got them.
5382   Entry = Entry->stripPointerCasts();
5383 
5384   // Entry is now either a Function or GlobalVariable.
5385   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5386 
5387   // We have a definition after a declaration with the wrong type.
5388   // We must make a new GlobalVariable* and update everything that used OldGV
5389   // (a declaration or tentative definition) with the new GlobalVariable*
5390   // (which will be a definition).
5391   //
5392   // This happens if there is a prototype for a global (e.g.
5393   // "extern int x[];") and then a definition of a different type (e.g.
5394   // "int x[10];"). This also happens when an initializer has a different type
5395   // from the type of the global (this happens with unions).
5396   if (!GV || GV->getValueType() != InitType ||
5397       GV->getType()->getAddressSpace() !=
5398           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5399 
5400     // Move the old entry aside so that we'll create a new one.
5401     Entry->setName(StringRef());
5402 
5403     // Make a new global with the correct type, this is now guaranteed to work.
5404     GV = cast<llvm::GlobalVariable>(
5405         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5406             ->stripPointerCasts());
5407 
5408     // Replace all uses of the old global with the new global
5409     llvm::Constant *NewPtrForOldDecl =
5410         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5411                                                              Entry->getType());
5412     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5413 
5414     // Erase the old global, since it is no longer used.
5415     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5416   }
5417 
5418   MaybeHandleStaticInExternC(D, GV);
5419 
5420   if (D->hasAttr<AnnotateAttr>())
5421     AddGlobalAnnotations(D, GV);
5422 
5423   // Set the llvm linkage type as appropriate.
5424   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5425 
5426   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5427   // the device. [...]"
5428   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5429   // __device__, declares a variable that: [...]
5430   // Is accessible from all the threads within the grid and from the host
5431   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5432   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5433   if (LangOpts.CUDA) {
5434     if (LangOpts.CUDAIsDevice) {
5435       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5436           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5437            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5438            D->getType()->isCUDADeviceBuiltinTextureType()))
5439         GV->setExternallyInitialized(true);
5440     } else {
5441       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5442     }
5443     getCUDARuntime().handleVarRegistration(D, *GV);
5444   }
5445 
5446   GV->setInitializer(Init);
5447   if (emitter)
5448     emitter->finalize(GV);
5449 
5450   // If it is safe to mark the global 'constant', do so now.
5451   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5452                   D->getType().isConstantStorage(getContext(), true, true));
5453 
5454   // If it is in a read-only section, mark it 'constant'.
5455   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5456     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5457     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5458       GV->setConstant(true);
5459   }
5460 
5461   CharUnits AlignVal = getContext().getDeclAlign(D);
5462   // Check for alignment specifed in an 'omp allocate' directive.
5463   if (std::optional<CharUnits> AlignValFromAllocate =
5464           getOMPAllocateAlignment(D))
5465     AlignVal = *AlignValFromAllocate;
5466   GV->setAlignment(AlignVal.getAsAlign());
5467 
5468   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5469   // function is only defined alongside the variable, not also alongside
5470   // callers. Normally, all accesses to a thread_local go through the
5471   // thread-wrapper in order to ensure initialization has occurred, underlying
5472   // variable will never be used other than the thread-wrapper, so it can be
5473   // converted to internal linkage.
5474   //
5475   // However, if the variable has the 'constinit' attribute, it _can_ be
5476   // referenced directly, without calling the thread-wrapper, so the linkage
5477   // must not be changed.
5478   //
5479   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5480   // weak or linkonce, the de-duplication semantics are important to preserve,
5481   // so we don't change the linkage.
5482   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5483       Linkage == llvm::GlobalValue::ExternalLinkage &&
5484       Context.getTargetInfo().getTriple().isOSDarwin() &&
5485       !D->hasAttr<ConstInitAttr>())
5486     Linkage = llvm::GlobalValue::InternalLinkage;
5487 
5488   GV->setLinkage(Linkage);
5489   if (D->hasAttr<DLLImportAttr>())
5490     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5491   else if (D->hasAttr<DLLExportAttr>())
5492     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5493   else
5494     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5495 
5496   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5497     // common vars aren't constant even if declared const.
5498     GV->setConstant(false);
5499     // Tentative definition of global variables may be initialized with
5500     // non-zero null pointers. In this case they should have weak linkage
5501     // since common linkage must have zero initializer and must not have
5502     // explicit section therefore cannot have non-zero initial value.
5503     if (!GV->getInitializer()->isNullValue())
5504       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5505   }
5506 
5507   setNonAliasAttributes(D, GV);
5508 
5509   if (D->getTLSKind() && !GV->isThreadLocal()) {
5510     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5511       CXXThreadLocals.push_back(D);
5512     setTLSMode(GV, *D);
5513   }
5514 
5515   maybeSetTrivialComdat(*D, *GV);
5516 
5517   // Emit the initializer function if necessary.
5518   if (NeedsGlobalCtor || NeedsGlobalDtor)
5519     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5520 
5521   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5522 
5523   // Emit global variable debug information.
5524   if (CGDebugInfo *DI = getModuleDebugInfo())
5525     if (getCodeGenOpts().hasReducedDebugInfo())
5526       DI->EmitGlobalVariable(GV, D);
5527 }
5528 
5529 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5530   if (CGDebugInfo *DI = getModuleDebugInfo())
5531     if (getCodeGenOpts().hasReducedDebugInfo()) {
5532       QualType ASTTy = D->getType();
5533       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5534       llvm::Constant *GV =
5535           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5536       DI->EmitExternalVariable(
5537           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5538     }
5539 }
5540 
5541 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5542                                       CodeGenModule &CGM, const VarDecl *D,
5543                                       bool NoCommon) {
5544   // Don't give variables common linkage if -fno-common was specified unless it
5545   // was overridden by a NoCommon attribute.
5546   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5547     return true;
5548 
5549   // C11 6.9.2/2:
5550   //   A declaration of an identifier for an object that has file scope without
5551   //   an initializer, and without a storage-class specifier or with the
5552   //   storage-class specifier static, constitutes a tentative definition.
5553   if (D->getInit() || D->hasExternalStorage())
5554     return true;
5555 
5556   // A variable cannot be both common and exist in a section.
5557   if (D->hasAttr<SectionAttr>())
5558     return true;
5559 
5560   // A variable cannot be both common and exist in a section.
5561   // We don't try to determine which is the right section in the front-end.
5562   // If no specialized section name is applicable, it will resort to default.
5563   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5564       D->hasAttr<PragmaClangDataSectionAttr>() ||
5565       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5566       D->hasAttr<PragmaClangRodataSectionAttr>())
5567     return true;
5568 
5569   // Thread local vars aren't considered common linkage.
5570   if (D->getTLSKind())
5571     return true;
5572 
5573   // Tentative definitions marked with WeakImportAttr are true definitions.
5574   if (D->hasAttr<WeakImportAttr>())
5575     return true;
5576 
5577   // A variable cannot be both common and exist in a comdat.
5578   if (shouldBeInCOMDAT(CGM, *D))
5579     return true;
5580 
5581   // Declarations with a required alignment do not have common linkage in MSVC
5582   // mode.
5583   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5584     if (D->hasAttr<AlignedAttr>())
5585       return true;
5586     QualType VarType = D->getType();
5587     if (Context.isAlignmentRequired(VarType))
5588       return true;
5589 
5590     if (const auto *RT = VarType->getAs<RecordType>()) {
5591       const RecordDecl *RD = RT->getDecl();
5592       for (const FieldDecl *FD : RD->fields()) {
5593         if (FD->isBitField())
5594           continue;
5595         if (FD->hasAttr<AlignedAttr>())
5596           return true;
5597         if (Context.isAlignmentRequired(FD->getType()))
5598           return true;
5599       }
5600     }
5601   }
5602 
5603   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5604   // common symbols, so symbols with greater alignment requirements cannot be
5605   // common.
5606   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5607   // alignments for common symbols via the aligncomm directive, so this
5608   // restriction only applies to MSVC environments.
5609   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5610       Context.getTypeAlignIfKnown(D->getType()) >
5611           Context.toBits(CharUnits::fromQuantity(32)))
5612     return true;
5613 
5614   return false;
5615 }
5616 
5617 llvm::GlobalValue::LinkageTypes
5618 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5619                                            GVALinkage Linkage) {
5620   if (Linkage == GVA_Internal)
5621     return llvm::Function::InternalLinkage;
5622 
5623   if (D->hasAttr<WeakAttr>())
5624     return llvm::GlobalVariable::WeakAnyLinkage;
5625 
5626   if (const auto *FD = D->getAsFunction())
5627     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5628       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5629 
5630   // We are guaranteed to have a strong definition somewhere else,
5631   // so we can use available_externally linkage.
5632   if (Linkage == GVA_AvailableExternally)
5633     return llvm::GlobalValue::AvailableExternallyLinkage;
5634 
5635   // Note that Apple's kernel linker doesn't support symbol
5636   // coalescing, so we need to avoid linkonce and weak linkages there.
5637   // Normally, this means we just map to internal, but for explicit
5638   // instantiations we'll map to external.
5639 
5640   // In C++, the compiler has to emit a definition in every translation unit
5641   // that references the function.  We should use linkonce_odr because
5642   // a) if all references in this translation unit are optimized away, we
5643   // don't need to codegen it.  b) if the function persists, it needs to be
5644   // merged with other definitions. c) C++ has the ODR, so we know the
5645   // definition is dependable.
5646   if (Linkage == GVA_DiscardableODR)
5647     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5648                                             : llvm::Function::InternalLinkage;
5649 
5650   // An explicit instantiation of a template has weak linkage, since
5651   // explicit instantiations can occur in multiple translation units
5652   // and must all be equivalent. However, we are not allowed to
5653   // throw away these explicit instantiations.
5654   //
5655   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5656   // so say that CUDA templates are either external (for kernels) or internal.
5657   // This lets llvm perform aggressive inter-procedural optimizations. For
5658   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5659   // therefore we need to follow the normal linkage paradigm.
5660   if (Linkage == GVA_StrongODR) {
5661     if (getLangOpts().AppleKext)
5662       return llvm::Function::ExternalLinkage;
5663     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5664         !getLangOpts().GPURelocatableDeviceCode)
5665       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5666                                           : llvm::Function::InternalLinkage;
5667     return llvm::Function::WeakODRLinkage;
5668   }
5669 
5670   // C++ doesn't have tentative definitions and thus cannot have common
5671   // linkage.
5672   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5673       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5674                                  CodeGenOpts.NoCommon))
5675     return llvm::GlobalVariable::CommonLinkage;
5676 
5677   // selectany symbols are externally visible, so use weak instead of
5678   // linkonce.  MSVC optimizes away references to const selectany globals, so
5679   // all definitions should be the same and ODR linkage should be used.
5680   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5681   if (D->hasAttr<SelectAnyAttr>())
5682     return llvm::GlobalVariable::WeakODRLinkage;
5683 
5684   // Otherwise, we have strong external linkage.
5685   assert(Linkage == GVA_StrongExternal);
5686   return llvm::GlobalVariable::ExternalLinkage;
5687 }
5688 
5689 llvm::GlobalValue::LinkageTypes
5690 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5691   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5692   return getLLVMLinkageForDeclarator(VD, Linkage);
5693 }
5694 
5695 /// Replace the uses of a function that was declared with a non-proto type.
5696 /// We want to silently drop extra arguments from call sites
5697 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5698                                           llvm::Function *newFn) {
5699   // Fast path.
5700   if (old->use_empty()) return;
5701 
5702   llvm::Type *newRetTy = newFn->getReturnType();
5703   SmallVector<llvm::Value*, 4> newArgs;
5704 
5705   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5706          ui != ue; ) {
5707     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5708     llvm::User *user = use->getUser();
5709 
5710     // Recognize and replace uses of bitcasts.  Most calls to
5711     // unprototyped functions will use bitcasts.
5712     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5713       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5714         replaceUsesOfNonProtoConstant(bitcast, newFn);
5715       continue;
5716     }
5717 
5718     // Recognize calls to the function.
5719     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5720     if (!callSite) continue;
5721     if (!callSite->isCallee(&*use))
5722       continue;
5723 
5724     // If the return types don't match exactly, then we can't
5725     // transform this call unless it's dead.
5726     if (callSite->getType() != newRetTy && !callSite->use_empty())
5727       continue;
5728 
5729     // Get the call site's attribute list.
5730     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5731     llvm::AttributeList oldAttrs = callSite->getAttributes();
5732 
5733     // If the function was passed too few arguments, don't transform.
5734     unsigned newNumArgs = newFn->arg_size();
5735     if (callSite->arg_size() < newNumArgs)
5736       continue;
5737 
5738     // If extra arguments were passed, we silently drop them.
5739     // If any of the types mismatch, we don't transform.
5740     unsigned argNo = 0;
5741     bool dontTransform = false;
5742     for (llvm::Argument &A : newFn->args()) {
5743       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5744         dontTransform = true;
5745         break;
5746       }
5747 
5748       // Add any parameter attributes.
5749       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5750       argNo++;
5751     }
5752     if (dontTransform)
5753       continue;
5754 
5755     // Okay, we can transform this.  Create the new call instruction and copy
5756     // over the required information.
5757     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5758 
5759     // Copy over any operand bundles.
5760     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5761     callSite->getOperandBundlesAsDefs(newBundles);
5762 
5763     llvm::CallBase *newCall;
5764     if (isa<llvm::CallInst>(callSite)) {
5765       newCall =
5766           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5767     } else {
5768       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5769       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5770                                          oldInvoke->getUnwindDest(), newArgs,
5771                                          newBundles, "", callSite);
5772     }
5773     newArgs.clear(); // for the next iteration
5774 
5775     if (!newCall->getType()->isVoidTy())
5776       newCall->takeName(callSite);
5777     newCall->setAttributes(
5778         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5779                                  oldAttrs.getRetAttrs(), newArgAttrs));
5780     newCall->setCallingConv(callSite->getCallingConv());
5781 
5782     // Finally, remove the old call, replacing any uses with the new one.
5783     if (!callSite->use_empty())
5784       callSite->replaceAllUsesWith(newCall);
5785 
5786     // Copy debug location attached to CI.
5787     if (callSite->getDebugLoc())
5788       newCall->setDebugLoc(callSite->getDebugLoc());
5789 
5790     callSite->eraseFromParent();
5791   }
5792 }
5793 
5794 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5795 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5796 /// existing call uses of the old function in the module, this adjusts them to
5797 /// call the new function directly.
5798 ///
5799 /// This is not just a cleanup: the always_inline pass requires direct calls to
5800 /// functions to be able to inline them.  If there is a bitcast in the way, it
5801 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5802 /// run at -O0.
5803 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5804                                                       llvm::Function *NewFn) {
5805   // If we're redefining a global as a function, don't transform it.
5806   if (!isa<llvm::Function>(Old)) return;
5807 
5808   replaceUsesOfNonProtoConstant(Old, NewFn);
5809 }
5810 
5811 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5812   auto DK = VD->isThisDeclarationADefinition();
5813   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5814     return;
5815 
5816   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5817   // If we have a definition, this might be a deferred decl. If the
5818   // instantiation is explicit, make sure we emit it at the end.
5819   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5820     GetAddrOfGlobalVar(VD);
5821 
5822   EmitTopLevelDecl(VD);
5823 }
5824 
5825 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5826                                                  llvm::GlobalValue *GV) {
5827   const auto *D = cast<FunctionDecl>(GD.getDecl());
5828 
5829   // Compute the function info and LLVM type.
5830   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5831   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5832 
5833   // Get or create the prototype for the function.
5834   if (!GV || (GV->getValueType() != Ty))
5835     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5836                                                    /*DontDefer=*/true,
5837                                                    ForDefinition));
5838 
5839   // Already emitted.
5840   if (!GV->isDeclaration())
5841     return;
5842 
5843   // We need to set linkage and visibility on the function before
5844   // generating code for it because various parts of IR generation
5845   // want to propagate this information down (e.g. to local static
5846   // declarations).
5847   auto *Fn = cast<llvm::Function>(GV);
5848   setFunctionLinkage(GD, Fn);
5849 
5850   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5851   setGVProperties(Fn, GD);
5852 
5853   MaybeHandleStaticInExternC(D, Fn);
5854 
5855   maybeSetTrivialComdat(*D, *Fn);
5856 
5857   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5858 
5859   setNonAliasAttributes(GD, Fn);
5860   SetLLVMFunctionAttributesForDefinition(D, Fn);
5861 
5862   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5863     AddGlobalCtor(Fn, CA->getPriority());
5864   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5865     AddGlobalDtor(Fn, DA->getPriority(), true);
5866   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5867     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5868 }
5869 
5870 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5871   const auto *D = cast<ValueDecl>(GD.getDecl());
5872   const AliasAttr *AA = D->getAttr<AliasAttr>();
5873   assert(AA && "Not an alias?");
5874 
5875   StringRef MangledName = getMangledName(GD);
5876 
5877   if (AA->getAliasee() == MangledName) {
5878     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5879     return;
5880   }
5881 
5882   // If there is a definition in the module, then it wins over the alias.
5883   // This is dubious, but allow it to be safe.  Just ignore the alias.
5884   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5885   if (Entry && !Entry->isDeclaration())
5886     return;
5887 
5888   Aliases.push_back(GD);
5889 
5890   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5891 
5892   // Create a reference to the named value.  This ensures that it is emitted
5893   // if a deferred decl.
5894   llvm::Constant *Aliasee;
5895   llvm::GlobalValue::LinkageTypes LT;
5896   if (isa<llvm::FunctionType>(DeclTy)) {
5897     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5898                                       /*ForVTable=*/false);
5899     LT = getFunctionLinkage(GD);
5900   } else {
5901     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5902                                     /*D=*/nullptr);
5903     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5904       LT = getLLVMLinkageVarDefinition(VD);
5905     else
5906       LT = getFunctionLinkage(GD);
5907   }
5908 
5909   // Create the new alias itself, but don't set a name yet.
5910   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5911   auto *GA =
5912       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5913 
5914   if (Entry) {
5915     if (GA->getAliasee() == Entry) {
5916       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5917       return;
5918     }
5919 
5920     assert(Entry->isDeclaration());
5921 
5922     // If there is a declaration in the module, then we had an extern followed
5923     // by the alias, as in:
5924     //   extern int test6();
5925     //   ...
5926     //   int test6() __attribute__((alias("test7")));
5927     //
5928     // Remove it and replace uses of it with the alias.
5929     GA->takeName(Entry);
5930 
5931     Entry->replaceAllUsesWith(GA);
5932     Entry->eraseFromParent();
5933   } else {
5934     GA->setName(MangledName);
5935   }
5936 
5937   // Set attributes which are particular to an alias; this is a
5938   // specialization of the attributes which may be set on a global
5939   // variable/function.
5940   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5941       D->isWeakImported()) {
5942     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5943   }
5944 
5945   if (const auto *VD = dyn_cast<VarDecl>(D))
5946     if (VD->getTLSKind())
5947       setTLSMode(GA, *VD);
5948 
5949   SetCommonAttributes(GD, GA);
5950 
5951   // Emit global alias debug information.
5952   if (isa<VarDecl>(D))
5953     if (CGDebugInfo *DI = getModuleDebugInfo())
5954       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5955 }
5956 
5957 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5958   const auto *D = cast<ValueDecl>(GD.getDecl());
5959   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5960   assert(IFA && "Not an ifunc?");
5961 
5962   StringRef MangledName = getMangledName(GD);
5963 
5964   if (IFA->getResolver() == MangledName) {
5965     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5966     return;
5967   }
5968 
5969   // Report an error if some definition overrides ifunc.
5970   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5971   if (Entry && !Entry->isDeclaration()) {
5972     GlobalDecl OtherGD;
5973     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5974         DiagnosedConflictingDefinitions.insert(GD).second) {
5975       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5976           << MangledName;
5977       Diags.Report(OtherGD.getDecl()->getLocation(),
5978                    diag::note_previous_definition);
5979     }
5980     return;
5981   }
5982 
5983   Aliases.push_back(GD);
5984 
5985   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5986   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5987   llvm::Constant *Resolver =
5988       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5989                               /*ForVTable=*/false);
5990   llvm::GlobalIFunc *GIF =
5991       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5992                                 "", Resolver, &getModule());
5993   if (Entry) {
5994     if (GIF->getResolver() == Entry) {
5995       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5996       return;
5997     }
5998     assert(Entry->isDeclaration());
5999 
6000     // If there is a declaration in the module, then we had an extern followed
6001     // by the ifunc, as in:
6002     //   extern int test();
6003     //   ...
6004     //   int test() __attribute__((ifunc("resolver")));
6005     //
6006     // Remove it and replace uses of it with the ifunc.
6007     GIF->takeName(Entry);
6008 
6009     Entry->replaceAllUsesWith(GIF);
6010     Entry->eraseFromParent();
6011   } else
6012     GIF->setName(MangledName);
6013   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6014     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6015   }
6016   SetCommonAttributes(GD, GIF);
6017 }
6018 
6019 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6020                                             ArrayRef<llvm::Type*> Tys) {
6021   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6022                                          Tys);
6023 }
6024 
6025 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6026 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6027                          const StringLiteral *Literal, bool TargetIsLSB,
6028                          bool &IsUTF16, unsigned &StringLength) {
6029   StringRef String = Literal->getString();
6030   unsigned NumBytes = String.size();
6031 
6032   // Check for simple case.
6033   if (!Literal->containsNonAsciiOrNull()) {
6034     StringLength = NumBytes;
6035     return *Map.insert(std::make_pair(String, nullptr)).first;
6036   }
6037 
6038   // Otherwise, convert the UTF8 literals into a string of shorts.
6039   IsUTF16 = true;
6040 
6041   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6042   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6043   llvm::UTF16 *ToPtr = &ToBuf[0];
6044 
6045   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6046                                  ToPtr + NumBytes, llvm::strictConversion);
6047 
6048   // ConvertUTF8toUTF16 returns the length in ToPtr.
6049   StringLength = ToPtr - &ToBuf[0];
6050 
6051   // Add an explicit null.
6052   *ToPtr = 0;
6053   return *Map.insert(std::make_pair(
6054                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6055                                    (StringLength + 1) * 2),
6056                          nullptr)).first;
6057 }
6058 
6059 ConstantAddress
6060 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6061   unsigned StringLength = 0;
6062   bool isUTF16 = false;
6063   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6064       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6065                                getDataLayout().isLittleEndian(), isUTF16,
6066                                StringLength);
6067 
6068   if (auto *C = Entry.second)
6069     return ConstantAddress(
6070         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6071 
6072   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
6073   llvm::Constant *Zeros[] = { Zero, Zero };
6074 
6075   const ASTContext &Context = getContext();
6076   const llvm::Triple &Triple = getTriple();
6077 
6078   const auto CFRuntime = getLangOpts().CFRuntime;
6079   const bool IsSwiftABI =
6080       static_cast<unsigned>(CFRuntime) >=
6081       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6082   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6083 
6084   // If we don't already have it, get __CFConstantStringClassReference.
6085   if (!CFConstantStringClassRef) {
6086     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6087     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6088     Ty = llvm::ArrayType::get(Ty, 0);
6089 
6090     switch (CFRuntime) {
6091     default: break;
6092     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6093     case LangOptions::CoreFoundationABI::Swift5_0:
6094       CFConstantStringClassName =
6095           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6096                               : "$s10Foundation19_NSCFConstantStringCN";
6097       Ty = IntPtrTy;
6098       break;
6099     case LangOptions::CoreFoundationABI::Swift4_2:
6100       CFConstantStringClassName =
6101           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6102                               : "$S10Foundation19_NSCFConstantStringCN";
6103       Ty = IntPtrTy;
6104       break;
6105     case LangOptions::CoreFoundationABI::Swift4_1:
6106       CFConstantStringClassName =
6107           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6108                               : "__T010Foundation19_NSCFConstantStringCN";
6109       Ty = IntPtrTy;
6110       break;
6111     }
6112 
6113     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6114 
6115     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6116       llvm::GlobalValue *GV = nullptr;
6117 
6118       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6119         IdentifierInfo &II = Context.Idents.get(GV->getName());
6120         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6121         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6122 
6123         const VarDecl *VD = nullptr;
6124         for (const auto *Result : DC->lookup(&II))
6125           if ((VD = dyn_cast<VarDecl>(Result)))
6126             break;
6127 
6128         if (Triple.isOSBinFormatELF()) {
6129           if (!VD)
6130             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6131         } else {
6132           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6133           if (!VD || !VD->hasAttr<DLLExportAttr>())
6134             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6135           else
6136             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6137         }
6138 
6139         setDSOLocal(GV);
6140       }
6141     }
6142 
6143     // Decay array -> ptr
6144     CFConstantStringClassRef =
6145         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
6146                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
6147   }
6148 
6149   QualType CFTy = Context.getCFConstantStringType();
6150 
6151   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6152 
6153   ConstantInitBuilder Builder(*this);
6154   auto Fields = Builder.beginStruct(STy);
6155 
6156   // Class pointer.
6157   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6158 
6159   // Flags.
6160   if (IsSwiftABI) {
6161     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6162     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6163   } else {
6164     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6165   }
6166 
6167   // String pointer.
6168   llvm::Constant *C = nullptr;
6169   if (isUTF16) {
6170     auto Arr = llvm::ArrayRef(
6171         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6172         Entry.first().size() / 2);
6173     C = llvm::ConstantDataArray::get(VMContext, Arr);
6174   } else {
6175     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6176   }
6177 
6178   // Note: -fwritable-strings doesn't make the backing store strings of
6179   // CFStrings writable.
6180   auto *GV =
6181       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6182                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6183   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6184   // Don't enforce the target's minimum global alignment, since the only use
6185   // of the string is via this class initializer.
6186   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6187                             : Context.getTypeAlignInChars(Context.CharTy);
6188   GV->setAlignment(Align.getAsAlign());
6189 
6190   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6191   // Without it LLVM can merge the string with a non unnamed_addr one during
6192   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6193   if (Triple.isOSBinFormatMachO())
6194     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6195                            : "__TEXT,__cstring,cstring_literals");
6196   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6197   // the static linker to adjust permissions to read-only later on.
6198   else if (Triple.isOSBinFormatELF())
6199     GV->setSection(".rodata");
6200 
6201   // String.
6202   llvm::Constant *Str =
6203       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6204 
6205   Fields.add(Str);
6206 
6207   // String length.
6208   llvm::IntegerType *LengthTy =
6209       llvm::IntegerType::get(getModule().getContext(),
6210                              Context.getTargetInfo().getLongWidth());
6211   if (IsSwiftABI) {
6212     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6213         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6214       LengthTy = Int32Ty;
6215     else
6216       LengthTy = IntPtrTy;
6217   }
6218   Fields.addInt(LengthTy, StringLength);
6219 
6220   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6221   // properly aligned on 32-bit platforms.
6222   CharUnits Alignment =
6223       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6224 
6225   // The struct.
6226   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6227                                     /*isConstant=*/false,
6228                                     llvm::GlobalVariable::PrivateLinkage);
6229   GV->addAttribute("objc_arc_inert");
6230   switch (Triple.getObjectFormat()) {
6231   case llvm::Triple::UnknownObjectFormat:
6232     llvm_unreachable("unknown file format");
6233   case llvm::Triple::DXContainer:
6234   case llvm::Triple::GOFF:
6235   case llvm::Triple::SPIRV:
6236   case llvm::Triple::XCOFF:
6237     llvm_unreachable("unimplemented");
6238   case llvm::Triple::COFF:
6239   case llvm::Triple::ELF:
6240   case llvm::Triple::Wasm:
6241     GV->setSection("cfstring");
6242     break;
6243   case llvm::Triple::MachO:
6244     GV->setSection("__DATA,__cfstring");
6245     break;
6246   }
6247   Entry.second = GV;
6248 
6249   return ConstantAddress(GV, GV->getValueType(), Alignment);
6250 }
6251 
6252 bool CodeGenModule::getExpressionLocationsEnabled() const {
6253   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6254 }
6255 
6256 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6257   if (ObjCFastEnumerationStateType.isNull()) {
6258     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6259     D->startDefinition();
6260 
6261     QualType FieldTypes[] = {
6262         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6263         Context.getPointerType(Context.UnsignedLongTy),
6264         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6265                                      nullptr, ArraySizeModifier::Normal, 0)};
6266 
6267     for (size_t i = 0; i < 4; ++i) {
6268       FieldDecl *Field = FieldDecl::Create(Context,
6269                                            D,
6270                                            SourceLocation(),
6271                                            SourceLocation(), nullptr,
6272                                            FieldTypes[i], /*TInfo=*/nullptr,
6273                                            /*BitWidth=*/nullptr,
6274                                            /*Mutable=*/false,
6275                                            ICIS_NoInit);
6276       Field->setAccess(AS_public);
6277       D->addDecl(Field);
6278     }
6279 
6280     D->completeDefinition();
6281     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6282   }
6283 
6284   return ObjCFastEnumerationStateType;
6285 }
6286 
6287 llvm::Constant *
6288 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6289   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6290 
6291   // Don't emit it as the address of the string, emit the string data itself
6292   // as an inline array.
6293   if (E->getCharByteWidth() == 1) {
6294     SmallString<64> Str(E->getString());
6295 
6296     // Resize the string to the right size, which is indicated by its type.
6297     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6298     assert(CAT && "String literal not of constant array type!");
6299     Str.resize(CAT->getSize().getZExtValue());
6300     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6301   }
6302 
6303   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6304   llvm::Type *ElemTy = AType->getElementType();
6305   unsigned NumElements = AType->getNumElements();
6306 
6307   // Wide strings have either 2-byte or 4-byte elements.
6308   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6309     SmallVector<uint16_t, 32> Elements;
6310     Elements.reserve(NumElements);
6311 
6312     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6313       Elements.push_back(E->getCodeUnit(i));
6314     Elements.resize(NumElements);
6315     return llvm::ConstantDataArray::get(VMContext, Elements);
6316   }
6317 
6318   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6319   SmallVector<uint32_t, 32> Elements;
6320   Elements.reserve(NumElements);
6321 
6322   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6323     Elements.push_back(E->getCodeUnit(i));
6324   Elements.resize(NumElements);
6325   return llvm::ConstantDataArray::get(VMContext, Elements);
6326 }
6327 
6328 static llvm::GlobalVariable *
6329 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6330                       CodeGenModule &CGM, StringRef GlobalName,
6331                       CharUnits Alignment) {
6332   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6333       CGM.GetGlobalConstantAddressSpace());
6334 
6335   llvm::Module &M = CGM.getModule();
6336   // Create a global variable for this string
6337   auto *GV = new llvm::GlobalVariable(
6338       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6339       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6340   GV->setAlignment(Alignment.getAsAlign());
6341   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6342   if (GV->isWeakForLinker()) {
6343     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6344     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6345   }
6346   CGM.setDSOLocal(GV);
6347 
6348   return GV;
6349 }
6350 
6351 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6352 /// constant array for the given string literal.
6353 ConstantAddress
6354 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6355                                                   StringRef Name) {
6356   CharUnits Alignment =
6357       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6358 
6359   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6360   llvm::GlobalVariable **Entry = nullptr;
6361   if (!LangOpts.WritableStrings) {
6362     Entry = &ConstantStringMap[C];
6363     if (auto GV = *Entry) {
6364       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6365         GV->setAlignment(Alignment.getAsAlign());
6366       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6367                              GV->getValueType(), Alignment);
6368     }
6369   }
6370 
6371   SmallString<256> MangledNameBuffer;
6372   StringRef GlobalVariableName;
6373   llvm::GlobalValue::LinkageTypes LT;
6374 
6375   // Mangle the string literal if that's how the ABI merges duplicate strings.
6376   // Don't do it if they are writable, since we don't want writes in one TU to
6377   // affect strings in another.
6378   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6379       !LangOpts.WritableStrings) {
6380     llvm::raw_svector_ostream Out(MangledNameBuffer);
6381     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6382     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6383     GlobalVariableName = MangledNameBuffer;
6384   } else {
6385     LT = llvm::GlobalValue::PrivateLinkage;
6386     GlobalVariableName = Name;
6387   }
6388 
6389   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6390 
6391   CGDebugInfo *DI = getModuleDebugInfo();
6392   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6393     DI->AddStringLiteralDebugInfo(GV, S);
6394 
6395   if (Entry)
6396     *Entry = GV;
6397 
6398   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6399 
6400   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6401                          GV->getValueType(), Alignment);
6402 }
6403 
6404 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6405 /// array for the given ObjCEncodeExpr node.
6406 ConstantAddress
6407 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6408   std::string Str;
6409   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6410 
6411   return GetAddrOfConstantCString(Str);
6412 }
6413 
6414 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6415 /// the literal and a terminating '\0' character.
6416 /// The result has pointer to array type.
6417 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6418     const std::string &Str, const char *GlobalName) {
6419   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6420   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6421       getContext().CharTy, /*VD=*/nullptr);
6422 
6423   llvm::Constant *C =
6424       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6425 
6426   // Don't share any string literals if strings aren't constant.
6427   llvm::GlobalVariable **Entry = nullptr;
6428   if (!LangOpts.WritableStrings) {
6429     Entry = &ConstantStringMap[C];
6430     if (auto GV = *Entry) {
6431       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6432         GV->setAlignment(Alignment.getAsAlign());
6433       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6434                              GV->getValueType(), Alignment);
6435     }
6436   }
6437 
6438   // Get the default prefix if a name wasn't specified.
6439   if (!GlobalName)
6440     GlobalName = ".str";
6441   // Create a global variable for this.
6442   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6443                                   GlobalName, Alignment);
6444   if (Entry)
6445     *Entry = GV;
6446 
6447   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6448                          GV->getValueType(), Alignment);
6449 }
6450 
6451 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6452     const MaterializeTemporaryExpr *E, const Expr *Init) {
6453   assert((E->getStorageDuration() == SD_Static ||
6454           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6455   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6456 
6457   // If we're not materializing a subobject of the temporary, keep the
6458   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6459   QualType MaterializedType = Init->getType();
6460   if (Init == E->getSubExpr())
6461     MaterializedType = E->getType();
6462 
6463   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6464 
6465   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6466   if (!InsertResult.second) {
6467     // We've seen this before: either we already created it or we're in the
6468     // process of doing so.
6469     if (!InsertResult.first->second) {
6470       // We recursively re-entered this function, probably during emission of
6471       // the initializer. Create a placeholder. We'll clean this up in the
6472       // outer call, at the end of this function.
6473       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6474       InsertResult.first->second = new llvm::GlobalVariable(
6475           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6476           nullptr);
6477     }
6478     return ConstantAddress(InsertResult.first->second,
6479                            llvm::cast<llvm::GlobalVariable>(
6480                                InsertResult.first->second->stripPointerCasts())
6481                                ->getValueType(),
6482                            Align);
6483   }
6484 
6485   // FIXME: If an externally-visible declaration extends multiple temporaries,
6486   // we need to give each temporary the same name in every translation unit (and
6487   // we also need to make the temporaries externally-visible).
6488   SmallString<256> Name;
6489   llvm::raw_svector_ostream Out(Name);
6490   getCXXABI().getMangleContext().mangleReferenceTemporary(
6491       VD, E->getManglingNumber(), Out);
6492 
6493   APValue *Value = nullptr;
6494   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6495     // If the initializer of the extending declaration is a constant
6496     // initializer, we should have a cached constant initializer for this
6497     // temporary. Note that this might have a different value from the value
6498     // computed by evaluating the initializer if the surrounding constant
6499     // expression modifies the temporary.
6500     Value = E->getOrCreateValue(false);
6501   }
6502 
6503   // Try evaluating it now, it might have a constant initializer.
6504   Expr::EvalResult EvalResult;
6505   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6506       !EvalResult.hasSideEffects())
6507     Value = &EvalResult.Val;
6508 
6509   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6510 
6511   std::optional<ConstantEmitter> emitter;
6512   llvm::Constant *InitialValue = nullptr;
6513   bool Constant = false;
6514   llvm::Type *Type;
6515   if (Value) {
6516     // The temporary has a constant initializer, use it.
6517     emitter.emplace(*this);
6518     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6519                                                MaterializedType);
6520     Constant =
6521         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6522                                            /*ExcludeDtor*/ false);
6523     Type = InitialValue->getType();
6524   } else {
6525     // No initializer, the initialization will be provided when we
6526     // initialize the declaration which performed lifetime extension.
6527     Type = getTypes().ConvertTypeForMem(MaterializedType);
6528   }
6529 
6530   // Create a global variable for this lifetime-extended temporary.
6531   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6532   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6533     const VarDecl *InitVD;
6534     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6535         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6536       // Temporaries defined inside a class get linkonce_odr linkage because the
6537       // class can be defined in multiple translation units.
6538       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6539     } else {
6540       // There is no need for this temporary to have external linkage if the
6541       // VarDecl has external linkage.
6542       Linkage = llvm::GlobalVariable::InternalLinkage;
6543     }
6544   }
6545   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6546   auto *GV = new llvm::GlobalVariable(
6547       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6548       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6549   if (emitter) emitter->finalize(GV);
6550   // Don't assign dllimport or dllexport to local linkage globals.
6551   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6552     setGVProperties(GV, VD);
6553     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6554       // The reference temporary should never be dllexport.
6555       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6556   }
6557   GV->setAlignment(Align.getAsAlign());
6558   if (supportsCOMDAT() && GV->isWeakForLinker())
6559     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6560   if (VD->getTLSKind())
6561     setTLSMode(GV, *VD);
6562   llvm::Constant *CV = GV;
6563   if (AddrSpace != LangAS::Default)
6564     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6565         *this, GV, AddrSpace, LangAS::Default,
6566         llvm::PointerType::get(
6567             getLLVMContext(),
6568             getContext().getTargetAddressSpace(LangAS::Default)));
6569 
6570   // Update the map with the new temporary. If we created a placeholder above,
6571   // replace it with the new global now.
6572   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6573   if (Entry) {
6574     Entry->replaceAllUsesWith(CV);
6575     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6576   }
6577   Entry = CV;
6578 
6579   return ConstantAddress(CV, Type, Align);
6580 }
6581 
6582 /// EmitObjCPropertyImplementations - Emit information for synthesized
6583 /// properties for an implementation.
6584 void CodeGenModule::EmitObjCPropertyImplementations(const
6585                                                     ObjCImplementationDecl *D) {
6586   for (const auto *PID : D->property_impls()) {
6587     // Dynamic is just for type-checking.
6588     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6589       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6590 
6591       // Determine which methods need to be implemented, some may have
6592       // been overridden. Note that ::isPropertyAccessor is not the method
6593       // we want, that just indicates if the decl came from a
6594       // property. What we want to know is if the method is defined in
6595       // this implementation.
6596       auto *Getter = PID->getGetterMethodDecl();
6597       if (!Getter || Getter->isSynthesizedAccessorStub())
6598         CodeGenFunction(*this).GenerateObjCGetter(
6599             const_cast<ObjCImplementationDecl *>(D), PID);
6600       auto *Setter = PID->getSetterMethodDecl();
6601       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6602         CodeGenFunction(*this).GenerateObjCSetter(
6603                                  const_cast<ObjCImplementationDecl *>(D), PID);
6604     }
6605   }
6606 }
6607 
6608 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6609   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6610   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6611        ivar; ivar = ivar->getNextIvar())
6612     if (ivar->getType().isDestructedType())
6613       return true;
6614 
6615   return false;
6616 }
6617 
6618 static bool AllTrivialInitializers(CodeGenModule &CGM,
6619                                    ObjCImplementationDecl *D) {
6620   CodeGenFunction CGF(CGM);
6621   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6622        E = D->init_end(); B != E; ++B) {
6623     CXXCtorInitializer *CtorInitExp = *B;
6624     Expr *Init = CtorInitExp->getInit();
6625     if (!CGF.isTrivialInitializer(Init))
6626       return false;
6627   }
6628   return true;
6629 }
6630 
6631 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6632 /// for an implementation.
6633 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6634   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6635   if (needsDestructMethod(D)) {
6636     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6637     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6638     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6639         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6640         getContext().VoidTy, nullptr, D,
6641         /*isInstance=*/true, /*isVariadic=*/false,
6642         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6643         /*isImplicitlyDeclared=*/true,
6644         /*isDefined=*/false, ObjCImplementationControl::Required);
6645     D->addInstanceMethod(DTORMethod);
6646     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6647     D->setHasDestructors(true);
6648   }
6649 
6650   // If the implementation doesn't have any ivar initializers, we don't need
6651   // a .cxx_construct.
6652   if (D->getNumIvarInitializers() == 0 ||
6653       AllTrivialInitializers(*this, D))
6654     return;
6655 
6656   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6657   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6658   // The constructor returns 'self'.
6659   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6660       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6661       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6662       /*isVariadic=*/false,
6663       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6664       /*isImplicitlyDeclared=*/true,
6665       /*isDefined=*/false, ObjCImplementationControl::Required);
6666   D->addInstanceMethod(CTORMethod);
6667   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6668   D->setHasNonZeroConstructors(true);
6669 }
6670 
6671 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6672 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6673   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6674       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6675     ErrorUnsupported(LSD, "linkage spec");
6676     return;
6677   }
6678 
6679   EmitDeclContext(LSD);
6680 }
6681 
6682 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6683   // Device code should not be at top level.
6684   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6685     return;
6686 
6687   std::unique_ptr<CodeGenFunction> &CurCGF =
6688       GlobalTopLevelStmtBlockInFlight.first;
6689 
6690   // We emitted a top-level stmt but after it there is initialization.
6691   // Stop squashing the top-level stmts into a single function.
6692   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6693     CurCGF->FinishFunction(D->getEndLoc());
6694     CurCGF = nullptr;
6695   }
6696 
6697   if (!CurCGF) {
6698     // void __stmts__N(void)
6699     // FIXME: Ask the ABI name mangler to pick a name.
6700     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6701     FunctionArgList Args;
6702     QualType RetTy = getContext().VoidTy;
6703     const CGFunctionInfo &FnInfo =
6704         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6705     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6706     llvm::Function *Fn = llvm::Function::Create(
6707         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6708 
6709     CurCGF.reset(new CodeGenFunction(*this));
6710     GlobalTopLevelStmtBlockInFlight.second = D;
6711     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6712                           D->getBeginLoc(), D->getBeginLoc());
6713     CXXGlobalInits.push_back(Fn);
6714   }
6715 
6716   CurCGF->EmitStmt(D->getStmt());
6717 }
6718 
6719 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6720   for (auto *I : DC->decls()) {
6721     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6722     // are themselves considered "top-level", so EmitTopLevelDecl on an
6723     // ObjCImplDecl does not recursively visit them. We need to do that in
6724     // case they're nested inside another construct (LinkageSpecDecl /
6725     // ExportDecl) that does stop them from being considered "top-level".
6726     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6727       for (auto *M : OID->methods())
6728         EmitTopLevelDecl(M);
6729     }
6730 
6731     EmitTopLevelDecl(I);
6732   }
6733 }
6734 
6735 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6736 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6737   // Ignore dependent declarations.
6738   if (D->isTemplated())
6739     return;
6740 
6741   // Consteval function shouldn't be emitted.
6742   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6743     return;
6744 
6745   switch (D->getKind()) {
6746   case Decl::CXXConversion:
6747   case Decl::CXXMethod:
6748   case Decl::Function:
6749     EmitGlobal(cast<FunctionDecl>(D));
6750     // Always provide some coverage mapping
6751     // even for the functions that aren't emitted.
6752     AddDeferredUnusedCoverageMapping(D);
6753     break;
6754 
6755   case Decl::CXXDeductionGuide:
6756     // Function-like, but does not result in code emission.
6757     break;
6758 
6759   case Decl::Var:
6760   case Decl::Decomposition:
6761   case Decl::VarTemplateSpecialization:
6762     EmitGlobal(cast<VarDecl>(D));
6763     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6764       for (auto *B : DD->bindings())
6765         if (auto *HD = B->getHoldingVar())
6766           EmitGlobal(HD);
6767     break;
6768 
6769   // Indirect fields from global anonymous structs and unions can be
6770   // ignored; only the actual variable requires IR gen support.
6771   case Decl::IndirectField:
6772     break;
6773 
6774   // C++ Decls
6775   case Decl::Namespace:
6776     EmitDeclContext(cast<NamespaceDecl>(D));
6777     break;
6778   case Decl::ClassTemplateSpecialization: {
6779     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6780     if (CGDebugInfo *DI = getModuleDebugInfo())
6781       if (Spec->getSpecializationKind() ==
6782               TSK_ExplicitInstantiationDefinition &&
6783           Spec->hasDefinition())
6784         DI->completeTemplateDefinition(*Spec);
6785   } [[fallthrough]];
6786   case Decl::CXXRecord: {
6787     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6788     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6789       if (CRD->hasDefinition())
6790         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6791       if (auto *ES = D->getASTContext().getExternalSource())
6792         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6793           DI->completeUnusedClass(*CRD);
6794     }
6795     // Emit any static data members, they may be definitions.
6796     for (auto *I : CRD->decls())
6797       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6798         EmitTopLevelDecl(I);
6799     break;
6800   }
6801     // No code generation needed.
6802   case Decl::UsingShadow:
6803   case Decl::ClassTemplate:
6804   case Decl::VarTemplate:
6805   case Decl::Concept:
6806   case Decl::VarTemplatePartialSpecialization:
6807   case Decl::FunctionTemplate:
6808   case Decl::TypeAliasTemplate:
6809   case Decl::Block:
6810   case Decl::Empty:
6811   case Decl::Binding:
6812     break;
6813   case Decl::Using:          // using X; [C++]
6814     if (CGDebugInfo *DI = getModuleDebugInfo())
6815         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6816     break;
6817   case Decl::UsingEnum: // using enum X; [C++]
6818     if (CGDebugInfo *DI = getModuleDebugInfo())
6819       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6820     break;
6821   case Decl::NamespaceAlias:
6822     if (CGDebugInfo *DI = getModuleDebugInfo())
6823         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6824     break;
6825   case Decl::UsingDirective: // using namespace X; [C++]
6826     if (CGDebugInfo *DI = getModuleDebugInfo())
6827       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6828     break;
6829   case Decl::CXXConstructor:
6830     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6831     break;
6832   case Decl::CXXDestructor:
6833     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6834     break;
6835 
6836   case Decl::StaticAssert:
6837     // Nothing to do.
6838     break;
6839 
6840   // Objective-C Decls
6841 
6842   // Forward declarations, no (immediate) code generation.
6843   case Decl::ObjCInterface:
6844   case Decl::ObjCCategory:
6845     break;
6846 
6847   case Decl::ObjCProtocol: {
6848     auto *Proto = cast<ObjCProtocolDecl>(D);
6849     if (Proto->isThisDeclarationADefinition())
6850       ObjCRuntime->GenerateProtocol(Proto);
6851     break;
6852   }
6853 
6854   case Decl::ObjCCategoryImpl:
6855     // Categories have properties but don't support synthesize so we
6856     // can ignore them here.
6857     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6858     break;
6859 
6860   case Decl::ObjCImplementation: {
6861     auto *OMD = cast<ObjCImplementationDecl>(D);
6862     EmitObjCPropertyImplementations(OMD);
6863     EmitObjCIvarInitializations(OMD);
6864     ObjCRuntime->GenerateClass(OMD);
6865     // Emit global variable debug information.
6866     if (CGDebugInfo *DI = getModuleDebugInfo())
6867       if (getCodeGenOpts().hasReducedDebugInfo())
6868         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6869             OMD->getClassInterface()), OMD->getLocation());
6870     break;
6871   }
6872   case Decl::ObjCMethod: {
6873     auto *OMD = cast<ObjCMethodDecl>(D);
6874     // If this is not a prototype, emit the body.
6875     if (OMD->getBody())
6876       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6877     break;
6878   }
6879   case Decl::ObjCCompatibleAlias:
6880     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6881     break;
6882 
6883   case Decl::PragmaComment: {
6884     const auto *PCD = cast<PragmaCommentDecl>(D);
6885     switch (PCD->getCommentKind()) {
6886     case PCK_Unknown:
6887       llvm_unreachable("unexpected pragma comment kind");
6888     case PCK_Linker:
6889       AppendLinkerOptions(PCD->getArg());
6890       break;
6891     case PCK_Lib:
6892         AddDependentLib(PCD->getArg());
6893       break;
6894     case PCK_Compiler:
6895     case PCK_ExeStr:
6896     case PCK_User:
6897       break; // We ignore all of these.
6898     }
6899     break;
6900   }
6901 
6902   case Decl::PragmaDetectMismatch: {
6903     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6904     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6905     break;
6906   }
6907 
6908   case Decl::LinkageSpec:
6909     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6910     break;
6911 
6912   case Decl::FileScopeAsm: {
6913     // File-scope asm is ignored during device-side CUDA compilation.
6914     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6915       break;
6916     // File-scope asm is ignored during device-side OpenMP compilation.
6917     if (LangOpts.OpenMPIsTargetDevice)
6918       break;
6919     // File-scope asm is ignored during device-side SYCL compilation.
6920     if (LangOpts.SYCLIsDevice)
6921       break;
6922     auto *AD = cast<FileScopeAsmDecl>(D);
6923     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6924     break;
6925   }
6926 
6927   case Decl::TopLevelStmt:
6928     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6929     break;
6930 
6931   case Decl::Import: {
6932     auto *Import = cast<ImportDecl>(D);
6933 
6934     // If we've already imported this module, we're done.
6935     if (!ImportedModules.insert(Import->getImportedModule()))
6936       break;
6937 
6938     // Emit debug information for direct imports.
6939     if (!Import->getImportedOwningModule()) {
6940       if (CGDebugInfo *DI = getModuleDebugInfo())
6941         DI->EmitImportDecl(*Import);
6942     }
6943 
6944     // For C++ standard modules we are done - we will call the module
6945     // initializer for imported modules, and that will likewise call those for
6946     // any imports it has.
6947     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6948         !Import->getImportedOwningModule()->isModuleMapModule())
6949       break;
6950 
6951     // For clang C++ module map modules the initializers for sub-modules are
6952     // emitted here.
6953 
6954     // Find all of the submodules and emit the module initializers.
6955     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6956     SmallVector<clang::Module *, 16> Stack;
6957     Visited.insert(Import->getImportedModule());
6958     Stack.push_back(Import->getImportedModule());
6959 
6960     while (!Stack.empty()) {
6961       clang::Module *Mod = Stack.pop_back_val();
6962       if (!EmittedModuleInitializers.insert(Mod).second)
6963         continue;
6964 
6965       for (auto *D : Context.getModuleInitializers(Mod))
6966         EmitTopLevelDecl(D);
6967 
6968       // Visit the submodules of this module.
6969       for (auto *Submodule : Mod->submodules()) {
6970         // Skip explicit children; they need to be explicitly imported to emit
6971         // the initializers.
6972         if (Submodule->IsExplicit)
6973           continue;
6974 
6975         if (Visited.insert(Submodule).second)
6976           Stack.push_back(Submodule);
6977       }
6978     }
6979     break;
6980   }
6981 
6982   case Decl::Export:
6983     EmitDeclContext(cast<ExportDecl>(D));
6984     break;
6985 
6986   case Decl::OMPThreadPrivate:
6987     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6988     break;
6989 
6990   case Decl::OMPAllocate:
6991     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6992     break;
6993 
6994   case Decl::OMPDeclareReduction:
6995     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6996     break;
6997 
6998   case Decl::OMPDeclareMapper:
6999     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7000     break;
7001 
7002   case Decl::OMPRequires:
7003     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7004     break;
7005 
7006   case Decl::Typedef:
7007   case Decl::TypeAlias: // using foo = bar; [C++11]
7008     if (CGDebugInfo *DI = getModuleDebugInfo())
7009       DI->EmitAndRetainType(
7010           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7011     break;
7012 
7013   case Decl::Record:
7014     if (CGDebugInfo *DI = getModuleDebugInfo())
7015       if (cast<RecordDecl>(D)->getDefinition())
7016         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7017     break;
7018 
7019   case Decl::Enum:
7020     if (CGDebugInfo *DI = getModuleDebugInfo())
7021       if (cast<EnumDecl>(D)->getDefinition())
7022         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7023     break;
7024 
7025   case Decl::HLSLBuffer:
7026     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7027     break;
7028 
7029   default:
7030     // Make sure we handled everything we should, every other kind is a
7031     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7032     // function. Need to recode Decl::Kind to do that easily.
7033     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7034     break;
7035   }
7036 }
7037 
7038 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7039   // Do we need to generate coverage mapping?
7040   if (!CodeGenOpts.CoverageMapping)
7041     return;
7042   switch (D->getKind()) {
7043   case Decl::CXXConversion:
7044   case Decl::CXXMethod:
7045   case Decl::Function:
7046   case Decl::ObjCMethod:
7047   case Decl::CXXConstructor:
7048   case Decl::CXXDestructor: {
7049     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7050       break;
7051     SourceManager &SM = getContext().getSourceManager();
7052     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7053       break;
7054     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7055     break;
7056   }
7057   default:
7058     break;
7059   };
7060 }
7061 
7062 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7063   // Do we need to generate coverage mapping?
7064   if (!CodeGenOpts.CoverageMapping)
7065     return;
7066   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7067     if (Fn->isTemplateInstantiation())
7068       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7069   }
7070   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7071 }
7072 
7073 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7074   // We call takeVector() here to avoid use-after-free.
7075   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7076   // we deserialize function bodies to emit coverage info for them, and that
7077   // deserializes more declarations. How should we handle that case?
7078   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7079     if (!Entry.second)
7080       continue;
7081     const Decl *D = Entry.first;
7082     switch (D->getKind()) {
7083     case Decl::CXXConversion:
7084     case Decl::CXXMethod:
7085     case Decl::Function:
7086     case Decl::ObjCMethod: {
7087       CodeGenPGO PGO(*this);
7088       GlobalDecl GD(cast<FunctionDecl>(D));
7089       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7090                                   getFunctionLinkage(GD));
7091       break;
7092     }
7093     case Decl::CXXConstructor: {
7094       CodeGenPGO PGO(*this);
7095       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7096       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7097                                   getFunctionLinkage(GD));
7098       break;
7099     }
7100     case Decl::CXXDestructor: {
7101       CodeGenPGO PGO(*this);
7102       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7103       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7104                                   getFunctionLinkage(GD));
7105       break;
7106     }
7107     default:
7108       break;
7109     };
7110   }
7111 }
7112 
7113 void CodeGenModule::EmitMainVoidAlias() {
7114   // In order to transition away from "__original_main" gracefully, emit an
7115   // alias for "main" in the no-argument case so that libc can detect when
7116   // new-style no-argument main is in used.
7117   if (llvm::Function *F = getModule().getFunction("main")) {
7118     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7119         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7120       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7121       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7122     }
7123   }
7124 }
7125 
7126 /// Turns the given pointer into a constant.
7127 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7128                                           const void *Ptr) {
7129   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7130   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7131   return llvm::ConstantInt::get(i64, PtrInt);
7132 }
7133 
7134 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7135                                    llvm::NamedMDNode *&GlobalMetadata,
7136                                    GlobalDecl D,
7137                                    llvm::GlobalValue *Addr) {
7138   if (!GlobalMetadata)
7139     GlobalMetadata =
7140       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7141 
7142   // TODO: should we report variant information for ctors/dtors?
7143   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7144                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7145                                CGM.getLLVMContext(), D.getDecl()))};
7146   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7147 }
7148 
7149 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7150                                                  llvm::GlobalValue *CppFunc) {
7151   // Store the list of ifuncs we need to replace uses in.
7152   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7153   // List of ConstantExprs that we should be able to delete when we're done
7154   // here.
7155   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7156 
7157   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7158   if (Elem == CppFunc)
7159     return false;
7160 
7161   // First make sure that all users of this are ifuncs (or ifuncs via a
7162   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7163   // later.
7164   for (llvm::User *User : Elem->users()) {
7165     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7166     // ifunc directly. In any other case, just give up, as we don't know what we
7167     // could break by changing those.
7168     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7169       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7170         return false;
7171 
7172       for (llvm::User *CEUser : ConstExpr->users()) {
7173         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7174           IFuncs.push_back(IFunc);
7175         } else {
7176           return false;
7177         }
7178       }
7179       CEs.push_back(ConstExpr);
7180     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7181       IFuncs.push_back(IFunc);
7182     } else {
7183       // This user is one we don't know how to handle, so fail redirection. This
7184       // will result in an ifunc retaining a resolver name that will ultimately
7185       // fail to be resolved to a defined function.
7186       return false;
7187     }
7188   }
7189 
7190   // Now we know this is a valid case where we can do this alias replacement, we
7191   // need to remove all of the references to Elem (and the bitcasts!) so we can
7192   // delete it.
7193   for (llvm::GlobalIFunc *IFunc : IFuncs)
7194     IFunc->setResolver(nullptr);
7195   for (llvm::ConstantExpr *ConstExpr : CEs)
7196     ConstExpr->destroyConstant();
7197 
7198   // We should now be out of uses for the 'old' version of this function, so we
7199   // can erase it as well.
7200   Elem->eraseFromParent();
7201 
7202   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7203     // The type of the resolver is always just a function-type that returns the
7204     // type of the IFunc, so create that here. If the type of the actual
7205     // resolver doesn't match, it just gets bitcast to the right thing.
7206     auto *ResolverTy =
7207         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7208     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7209         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7210     IFunc->setResolver(Resolver);
7211   }
7212   return true;
7213 }
7214 
7215 /// For each function which is declared within an extern "C" region and marked
7216 /// as 'used', but has internal linkage, create an alias from the unmangled
7217 /// name to the mangled name if possible. People expect to be able to refer
7218 /// to such functions with an unmangled name from inline assembly within the
7219 /// same translation unit.
7220 void CodeGenModule::EmitStaticExternCAliases() {
7221   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7222     return;
7223   for (auto &I : StaticExternCValues) {
7224     IdentifierInfo *Name = I.first;
7225     llvm::GlobalValue *Val = I.second;
7226 
7227     // If Val is null, that implies there were multiple declarations that each
7228     // had a claim to the unmangled name. In this case, generation of the alias
7229     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7230     if (!Val)
7231       break;
7232 
7233     llvm::GlobalValue *ExistingElem =
7234         getModule().getNamedValue(Name->getName());
7235 
7236     // If there is either not something already by this name, or we were able to
7237     // replace all uses from IFuncs, create the alias.
7238     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7239       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7240   }
7241 }
7242 
7243 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7244                                              GlobalDecl &Result) const {
7245   auto Res = Manglings.find(MangledName);
7246   if (Res == Manglings.end())
7247     return false;
7248   Result = Res->getValue();
7249   return true;
7250 }
7251 
7252 /// Emits metadata nodes associating all the global values in the
7253 /// current module with the Decls they came from.  This is useful for
7254 /// projects using IR gen as a subroutine.
7255 ///
7256 /// Since there's currently no way to associate an MDNode directly
7257 /// with an llvm::GlobalValue, we create a global named metadata
7258 /// with the name 'clang.global.decl.ptrs'.
7259 void CodeGenModule::EmitDeclMetadata() {
7260   llvm::NamedMDNode *GlobalMetadata = nullptr;
7261 
7262   for (auto &I : MangledDeclNames) {
7263     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7264     // Some mangled names don't necessarily have an associated GlobalValue
7265     // in this module, e.g. if we mangled it for DebugInfo.
7266     if (Addr)
7267       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7268   }
7269 }
7270 
7271 /// Emits metadata nodes for all the local variables in the current
7272 /// function.
7273 void CodeGenFunction::EmitDeclMetadata() {
7274   if (LocalDeclMap.empty()) return;
7275 
7276   llvm::LLVMContext &Context = getLLVMContext();
7277 
7278   // Find the unique metadata ID for this name.
7279   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7280 
7281   llvm::NamedMDNode *GlobalMetadata = nullptr;
7282 
7283   for (auto &I : LocalDeclMap) {
7284     const Decl *D = I.first;
7285     llvm::Value *Addr = I.second.getPointer();
7286     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7287       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7288       Alloca->setMetadata(
7289           DeclPtrKind, llvm::MDNode::get(
7290                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7291     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7292       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7293       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7294     }
7295   }
7296 }
7297 
7298 void CodeGenModule::EmitVersionIdentMetadata() {
7299   llvm::NamedMDNode *IdentMetadata =
7300     TheModule.getOrInsertNamedMetadata("llvm.ident");
7301   std::string Version = getClangFullVersion();
7302   llvm::LLVMContext &Ctx = TheModule.getContext();
7303 
7304   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7305   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7306 }
7307 
7308 void CodeGenModule::EmitCommandLineMetadata() {
7309   llvm::NamedMDNode *CommandLineMetadata =
7310     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7311   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7312   llvm::LLVMContext &Ctx = TheModule.getContext();
7313 
7314   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7315   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7316 }
7317 
7318 void CodeGenModule::EmitCoverageFile() {
7319   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7320   if (!CUNode)
7321     return;
7322 
7323   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7324   llvm::LLVMContext &Ctx = TheModule.getContext();
7325   auto *CoverageDataFile =
7326       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7327   auto *CoverageNotesFile =
7328       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7329   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7330     llvm::MDNode *CU = CUNode->getOperand(i);
7331     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7332     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7333   }
7334 }
7335 
7336 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7337                                                        bool ForEH) {
7338   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7339   // FIXME: should we even be calling this method if RTTI is disabled
7340   // and it's not for EH?
7341   if (!shouldEmitRTTI(ForEH))
7342     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7343 
7344   if (ForEH && Ty->isObjCObjectPointerType() &&
7345       LangOpts.ObjCRuntime.isGNUFamily())
7346     return ObjCRuntime->GetEHType(Ty);
7347 
7348   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7349 }
7350 
7351 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7352   // Do not emit threadprivates in simd-only mode.
7353   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7354     return;
7355   for (auto RefExpr : D->varlists()) {
7356     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7357     bool PerformInit =
7358         VD->getAnyInitializer() &&
7359         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7360                                                         /*ForRef=*/false);
7361 
7362     Address Addr(GetAddrOfGlobalVar(VD),
7363                  getTypes().ConvertTypeForMem(VD->getType()),
7364                  getContext().getDeclAlign(VD));
7365     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7366             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7367       CXXGlobalInits.push_back(InitFunction);
7368   }
7369 }
7370 
7371 llvm::Metadata *
7372 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7373                                             StringRef Suffix) {
7374   if (auto *FnType = T->getAs<FunctionProtoType>())
7375     T = getContext().getFunctionType(
7376         FnType->getReturnType(), FnType->getParamTypes(),
7377         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7378 
7379   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7380   if (InternalId)
7381     return InternalId;
7382 
7383   if (isExternallyVisible(T->getLinkage())) {
7384     std::string OutName;
7385     llvm::raw_string_ostream Out(OutName);
7386     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7387         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7388 
7389     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7390       Out << ".normalized";
7391 
7392     Out << Suffix;
7393 
7394     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7395   } else {
7396     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7397                                            llvm::ArrayRef<llvm::Metadata *>());
7398   }
7399 
7400   return InternalId;
7401 }
7402 
7403 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7404   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7405 }
7406 
7407 llvm::Metadata *
7408 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7409   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7410 }
7411 
7412 // Generalize pointer types to a void pointer with the qualifiers of the
7413 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7414 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7415 // 'void *'.
7416 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7417   if (!Ty->isPointerType())
7418     return Ty;
7419 
7420   return Ctx.getPointerType(
7421       QualType(Ctx.VoidTy).withCVRQualifiers(
7422           Ty->getPointeeType().getCVRQualifiers()));
7423 }
7424 
7425 // Apply type generalization to a FunctionType's return and argument types
7426 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7427   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7428     SmallVector<QualType, 8> GeneralizedParams;
7429     for (auto &Param : FnType->param_types())
7430       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7431 
7432     return Ctx.getFunctionType(
7433         GeneralizeType(Ctx, FnType->getReturnType()),
7434         GeneralizedParams, FnType->getExtProtoInfo());
7435   }
7436 
7437   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7438     return Ctx.getFunctionNoProtoType(
7439         GeneralizeType(Ctx, FnType->getReturnType()));
7440 
7441   llvm_unreachable("Encountered unknown FunctionType");
7442 }
7443 
7444 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7445   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7446                                       GeneralizedMetadataIdMap, ".generalized");
7447 }
7448 
7449 /// Returns whether this module needs the "all-vtables" type identifier.
7450 bool CodeGenModule::NeedAllVtablesTypeId() const {
7451   // Returns true if at least one of vtable-based CFI checkers is enabled and
7452   // is not in the trapping mode.
7453   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7454            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7455           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7456            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7457           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7458            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7459           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7460            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7461 }
7462 
7463 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7464                                           CharUnits Offset,
7465                                           const CXXRecordDecl *RD) {
7466   llvm::Metadata *MD =
7467       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7468   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7469 
7470   if (CodeGenOpts.SanitizeCfiCrossDso)
7471     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7472       VTable->addTypeMetadata(Offset.getQuantity(),
7473                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7474 
7475   if (NeedAllVtablesTypeId()) {
7476     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7477     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7478   }
7479 }
7480 
7481 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7482   if (!SanStats)
7483     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7484 
7485   return *SanStats;
7486 }
7487 
7488 llvm::Value *
7489 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7490                                                   CodeGenFunction &CGF) {
7491   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7492   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7493   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7494   auto *Call = CGF.EmitRuntimeCall(
7495       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7496   return Call;
7497 }
7498 
7499 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7500     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7501   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7502                                  /* forPointeeType= */ true);
7503 }
7504 
7505 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7506                                                  LValueBaseInfo *BaseInfo,
7507                                                  TBAAAccessInfo *TBAAInfo,
7508                                                  bool forPointeeType) {
7509   if (TBAAInfo)
7510     *TBAAInfo = getTBAAAccessInfo(T);
7511 
7512   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7513   // that doesn't return the information we need to compute BaseInfo.
7514 
7515   // Honor alignment typedef attributes even on incomplete types.
7516   // We also honor them straight for C++ class types, even as pointees;
7517   // there's an expressivity gap here.
7518   if (auto TT = T->getAs<TypedefType>()) {
7519     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7520       if (BaseInfo)
7521         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7522       return getContext().toCharUnitsFromBits(Align);
7523     }
7524   }
7525 
7526   bool AlignForArray = T->isArrayType();
7527 
7528   // Analyze the base element type, so we don't get confused by incomplete
7529   // array types.
7530   T = getContext().getBaseElementType(T);
7531 
7532   if (T->isIncompleteType()) {
7533     // We could try to replicate the logic from
7534     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7535     // type is incomplete, so it's impossible to test. We could try to reuse
7536     // getTypeAlignIfKnown, but that doesn't return the information we need
7537     // to set BaseInfo.  So just ignore the possibility that the alignment is
7538     // greater than one.
7539     if (BaseInfo)
7540       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7541     return CharUnits::One();
7542   }
7543 
7544   if (BaseInfo)
7545     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7546 
7547   CharUnits Alignment;
7548   const CXXRecordDecl *RD;
7549   if (T.getQualifiers().hasUnaligned()) {
7550     Alignment = CharUnits::One();
7551   } else if (forPointeeType && !AlignForArray &&
7552              (RD = T->getAsCXXRecordDecl())) {
7553     // For C++ class pointees, we don't know whether we're pointing at a
7554     // base or a complete object, so we generally need to use the
7555     // non-virtual alignment.
7556     Alignment = getClassPointerAlignment(RD);
7557   } else {
7558     Alignment = getContext().getTypeAlignInChars(T);
7559   }
7560 
7561   // Cap to the global maximum type alignment unless the alignment
7562   // was somehow explicit on the type.
7563   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7564     if (Alignment.getQuantity() > MaxAlign &&
7565         !getContext().isAlignmentRequired(T))
7566       Alignment = CharUnits::fromQuantity(MaxAlign);
7567   }
7568   return Alignment;
7569 }
7570 
7571 bool CodeGenModule::stopAutoInit() {
7572   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7573   if (StopAfter) {
7574     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7575     // used
7576     if (NumAutoVarInit >= StopAfter) {
7577       return true;
7578     }
7579     if (!NumAutoVarInit) {
7580       unsigned DiagID = getDiags().getCustomDiagID(
7581           DiagnosticsEngine::Warning,
7582           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7583           "number of times ftrivial-auto-var-init=%1 gets applied.");
7584       getDiags().Report(DiagID)
7585           << StopAfter
7586           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7587                       LangOptions::TrivialAutoVarInitKind::Zero
7588                   ? "zero"
7589                   : "pattern");
7590     }
7591     ++NumAutoVarInit;
7592   }
7593   return false;
7594 }
7595 
7596 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7597                                                     const Decl *D) const {
7598   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7599   // postfix beginning with '.' since the symbol name can be demangled.
7600   if (LangOpts.HIP)
7601     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7602   else
7603     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7604 
7605   // If the CUID is not specified we try to generate a unique postfix.
7606   if (getLangOpts().CUID.empty()) {
7607     SourceManager &SM = getContext().getSourceManager();
7608     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7609     assert(PLoc.isValid() && "Source location is expected to be valid.");
7610 
7611     // Get the hash of the user defined macros.
7612     llvm::MD5 Hash;
7613     llvm::MD5::MD5Result Result;
7614     for (const auto &Arg : PreprocessorOpts.Macros)
7615       Hash.update(Arg.first);
7616     Hash.final(Result);
7617 
7618     // Get the UniqueID for the file containing the decl.
7619     llvm::sys::fs::UniqueID ID;
7620     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7621       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7622       assert(PLoc.isValid() && "Source location is expected to be valid.");
7623       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7624         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7625             << PLoc.getFilename() << EC.message();
7626     }
7627     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7628        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7629   } else {
7630     OS << getContext().getCUIDHash();
7631   }
7632 }
7633 
7634 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7635   assert(DeferredDeclsToEmit.empty() &&
7636          "Should have emitted all decls deferred to emit.");
7637   assert(NewBuilder->DeferredDecls.empty() &&
7638          "Newly created module should not have deferred decls");
7639   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7640   assert(EmittedDeferredDecls.empty() &&
7641          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7642 
7643   assert(NewBuilder->DeferredVTables.empty() &&
7644          "Newly created module should not have deferred vtables");
7645   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7646 
7647   assert(NewBuilder->MangledDeclNames.empty() &&
7648          "Newly created module should not have mangled decl names");
7649   assert(NewBuilder->Manglings.empty() &&
7650          "Newly created module should not have manglings");
7651   NewBuilder->Manglings = std::move(Manglings);
7652 
7653   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7654 
7655   NewBuilder->TBAA = std::move(TBAA);
7656 
7657   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7658 }
7659