1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 SizeSizeInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, 117 C.getTargetInfo().getMaxPointerWidth()); 118 Int8PtrTy = Int8Ty->getPointerTo(0); 119 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 120 AllocaInt8PtrTy = Int8Ty->getPointerTo( 121 M.getDataLayout().getAllocaAddrSpace()); 122 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 123 124 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 125 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 211 break; 212 } 213 } 214 215 void CodeGenModule::createCUDARuntime() { 216 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 217 } 218 219 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 220 Replacements[Name] = C; 221 } 222 223 void CodeGenModule::applyReplacements() { 224 for (auto &I : Replacements) { 225 StringRef MangledName = I.first(); 226 llvm::Constant *Replacement = I.second; 227 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 228 if (!Entry) 229 continue; 230 auto *OldF = cast<llvm::Function>(Entry); 231 auto *NewF = dyn_cast<llvm::Function>(Replacement); 232 if (!NewF) { 233 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 234 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 235 } else { 236 auto *CE = cast<llvm::ConstantExpr>(Replacement); 237 assert(CE->getOpcode() == llvm::Instruction::BitCast || 238 CE->getOpcode() == llvm::Instruction::GetElementPtr); 239 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 240 } 241 } 242 243 // Replace old with new, but keep the old order. 244 OldF->replaceAllUsesWith(Replacement); 245 if (NewF) { 246 NewF->removeFromParent(); 247 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 248 NewF); 249 } 250 OldF->eraseFromParent(); 251 } 252 } 253 254 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 255 GlobalValReplacements.push_back(std::make_pair(GV, C)); 256 } 257 258 void CodeGenModule::applyGlobalValReplacements() { 259 for (auto &I : GlobalValReplacements) { 260 llvm::GlobalValue *GV = I.first; 261 llvm::Constant *C = I.second; 262 263 GV->replaceAllUsesWith(C); 264 GV->eraseFromParent(); 265 } 266 } 267 268 // This is only used in aliases that we created and we know they have a 269 // linear structure. 270 static const llvm::GlobalObject *getAliasedGlobal( 271 const llvm::GlobalIndirectSymbol &GIS) { 272 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 273 const llvm::Constant *C = &GIS; 274 for (;;) { 275 C = C->stripPointerCasts(); 276 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 277 return GO; 278 // stripPointerCasts will not walk over weak aliases. 279 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 280 if (!GIS2) 281 return nullptr; 282 if (!Visited.insert(GIS2).second) 283 return nullptr; 284 C = GIS2->getIndirectSymbol(); 285 } 286 } 287 288 void CodeGenModule::checkAliases() { 289 // Check if the constructed aliases are well formed. It is really unfortunate 290 // that we have to do this in CodeGen, but we only construct mangled names 291 // and aliases during codegen. 292 bool Error = false; 293 DiagnosticsEngine &Diags = getDiags(); 294 for (const GlobalDecl &GD : Aliases) { 295 const auto *D = cast<ValueDecl>(GD.getDecl()); 296 SourceLocation Location; 297 bool IsIFunc = D->hasAttr<IFuncAttr>(); 298 if (const Attr *A = D->getDefiningAttr()) 299 Location = A->getLocation(); 300 else 301 llvm_unreachable("Not an alias or ifunc?"); 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 305 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 306 if (!GV) { 307 Error = true; 308 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 309 } else if (GV->isDeclaration()) { 310 Error = true; 311 Diags.Report(Location, diag::err_alias_to_undefined) 312 << IsIFunc << IsIFunc; 313 } else if (IsIFunc) { 314 // Check resolver function type. 315 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 316 GV->getType()->getPointerElementType()); 317 assert(FTy); 318 if (!FTy->getReturnType()->isPointerTy()) 319 Diags.Report(Location, diag::err_ifunc_resolver_return); 320 if (FTy->getNumParams()) 321 Diags.Report(Location, diag::err_ifunc_resolver_params); 322 } 323 324 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 325 llvm::GlobalValue *AliaseeGV; 326 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 327 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 328 else 329 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 330 331 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 332 StringRef AliasSection = SA->getName(); 333 if (AliasSection != AliaseeGV->getSection()) 334 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 335 << AliasSection << IsIFunc << IsIFunc; 336 } 337 338 // We have to handle alias to weak aliases in here. LLVM itself disallows 339 // this since the object semantics would not match the IL one. For 340 // compatibility with gcc we implement it by just pointing the alias 341 // to its aliasee's aliasee. We also warn, since the user is probably 342 // expecting the link to be weak. 343 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 344 if (GA->isInterposable()) { 345 Diags.Report(Location, diag::warn_alias_to_weak_alias) 346 << GV->getName() << GA->getName() << IsIFunc; 347 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 348 GA->getIndirectSymbol(), Alias->getType()); 349 Alias->setIndirectSymbol(Aliasee); 350 } 351 } 352 } 353 if (!Error) 354 return; 355 356 for (const GlobalDecl &GD : Aliases) { 357 StringRef MangledName = getMangledName(GD); 358 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 359 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 360 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 361 Alias->eraseFromParent(); 362 } 363 } 364 365 void CodeGenModule::clear() { 366 DeferredDeclsToEmit.clear(); 367 if (OpenMPRuntime) 368 OpenMPRuntime->clear(); 369 } 370 371 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 372 StringRef MainFile) { 373 if (!hasDiagnostics()) 374 return; 375 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 376 if (MainFile.empty()) 377 MainFile = "<stdin>"; 378 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 379 } else { 380 if (Mismatched > 0) 381 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 382 383 if (Missing > 0) 384 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 385 } 386 } 387 388 void CodeGenModule::Release() { 389 EmitDeferred(); 390 EmitVTablesOpportunistically(); 391 applyGlobalValReplacements(); 392 applyReplacements(); 393 checkAliases(); 394 EmitCXXGlobalInitFunc(); 395 EmitCXXGlobalDtorFunc(); 396 EmitCXXThreadLocalInitFunc(); 397 if (ObjCRuntime) 398 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 399 AddGlobalCtor(ObjCInitFunction); 400 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 401 CUDARuntime) { 402 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 403 AddGlobalCtor(CudaCtorFunction); 404 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 405 AddGlobalDtor(CudaDtorFunction); 406 } 407 if (OpenMPRuntime) 408 if (llvm::Function *OpenMPRegistrationFunction = 409 OpenMPRuntime->emitRegistrationFunction()) { 410 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 411 OpenMPRegistrationFunction : nullptr; 412 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 413 } 414 if (PGOReader) { 415 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 416 if (PGOStats.hasDiagnostics()) 417 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 418 } 419 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 420 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 421 EmitGlobalAnnotations(); 422 EmitStaticExternCAliases(); 423 EmitDeferredUnusedCoverageMappings(); 424 if (CoverageMapping) 425 CoverageMapping->emit(); 426 if (CodeGenOpts.SanitizeCfiCrossDso) { 427 CodeGenFunction(*this).EmitCfiCheckFail(); 428 CodeGenFunction(*this).EmitCfiCheckStub(); 429 } 430 emitAtAvailableLinkGuard(); 431 emitLLVMUsed(); 432 if (SanStats) 433 SanStats->finish(); 434 435 if (CodeGenOpts.Autolink && 436 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 437 EmitModuleLinkOptions(); 438 } 439 440 // Record mregparm value now so it is visible through rest of codegen. 441 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 442 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 443 CodeGenOpts.NumRegisterParameters); 444 445 if (CodeGenOpts.DwarfVersion) { 446 // We actually want the latest version when there are conflicts. 447 // We can change from Warning to Latest if such mode is supported. 448 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 449 CodeGenOpts.DwarfVersion); 450 } 451 if (CodeGenOpts.EmitCodeView) { 452 // Indicate that we want CodeView in the metadata. 453 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 454 } 455 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 456 // We don't support LTO with 2 with different StrictVTablePointers 457 // FIXME: we could support it by stripping all the information introduced 458 // by StrictVTablePointers. 459 460 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 461 462 llvm::Metadata *Ops[2] = { 463 llvm::MDString::get(VMContext, "StrictVTablePointers"), 464 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 465 llvm::Type::getInt32Ty(VMContext), 1))}; 466 467 getModule().addModuleFlag(llvm::Module::Require, 468 "StrictVTablePointersRequirement", 469 llvm::MDNode::get(VMContext, Ops)); 470 } 471 if (DebugInfo) 472 // We support a single version in the linked module. The LLVM 473 // parser will drop debug info with a different version number 474 // (and warn about it, too). 475 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 476 llvm::DEBUG_METADATA_VERSION); 477 478 // We need to record the widths of enums and wchar_t, so that we can generate 479 // the correct build attributes in the ARM backend. wchar_size is also used by 480 // TargetLibraryInfo. 481 uint64_t WCharWidth = 482 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 483 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 484 485 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 486 if ( Arch == llvm::Triple::arm 487 || Arch == llvm::Triple::armeb 488 || Arch == llvm::Triple::thumb 489 || Arch == llvm::Triple::thumbeb) { 490 // The minimum width of an enum in bytes 491 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 492 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 493 } 494 495 if (CodeGenOpts.SanitizeCfiCrossDso) { 496 // Indicate that we want cross-DSO control flow integrity checks. 497 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 498 } 499 500 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 501 // Indicate whether __nvvm_reflect should be configured to flush denormal 502 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 503 // property.) 504 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 505 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 506 } 507 508 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 509 if (LangOpts.OpenCL) { 510 EmitOpenCLMetadata(); 511 // Emit SPIR version. 512 if (getTriple().getArch() == llvm::Triple::spir || 513 getTriple().getArch() == llvm::Triple::spir64) { 514 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 515 // opencl.spir.version named metadata. 516 llvm::Metadata *SPIRVerElts[] = { 517 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 518 Int32Ty, LangOpts.OpenCLVersion / 100)), 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 521 llvm::NamedMDNode *SPIRVerMD = 522 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 523 llvm::LLVMContext &Ctx = TheModule.getContext(); 524 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 525 } 526 } 527 528 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 529 assert(PLevel < 3 && "Invalid PIC Level"); 530 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 531 if (Context.getLangOpts().PIE) 532 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 533 } 534 535 SimplifyPersonality(); 536 537 if (getCodeGenOpts().EmitDeclMetadata) 538 EmitDeclMetadata(); 539 540 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 541 EmitCoverageFile(); 542 543 if (DebugInfo) 544 DebugInfo->finalize(); 545 546 EmitVersionIdentMetadata(); 547 548 EmitTargetMetadata(); 549 } 550 551 void CodeGenModule::EmitOpenCLMetadata() { 552 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 553 // opencl.ocl.version named metadata node. 554 llvm::Metadata *OCLVerElts[] = { 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 Int32Ty, LangOpts.OpenCLVersion / 100)), 557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 558 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 559 llvm::NamedMDNode *OCLVerMD = 560 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 561 llvm::LLVMContext &Ctx = TheModule.getContext(); 562 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 563 } 564 565 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 566 // Make sure that this type is translated. 567 Types.UpdateCompletedType(TD); 568 } 569 570 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 571 // Make sure that this type is translated. 572 Types.RefreshTypeCacheForClass(RD); 573 } 574 575 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 576 if (!TBAA) 577 return nullptr; 578 return TBAA->getTypeInfo(QTy); 579 } 580 581 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 582 return TBAAAccessInfo(getTBAATypeInfo(AccessType)); 583 } 584 585 TBAAAccessInfo CodeGenModule::getTBAAVTablePtrAccessInfo() { 586 if (!TBAA) 587 return TBAAAccessInfo(); 588 return TBAA->getVTablePtrAccessInfo(); 589 } 590 591 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 592 if (!TBAA) 593 return nullptr; 594 return TBAA->getTBAAStructInfo(QTy); 595 } 596 597 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 598 if (!TBAA) 599 return nullptr; 600 return TBAA->getBaseTypeInfo(QTy); 601 } 602 603 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 604 if (!TBAA) 605 return nullptr; 606 return TBAA->getAccessTagInfo(Info); 607 } 608 609 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 610 TBAAAccessInfo TargetInfo) { 611 if (!TBAA) 612 return TBAAAccessInfo(); 613 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 614 } 615 616 TBAAAccessInfo 617 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 618 TBAAAccessInfo InfoB) { 619 if (!TBAA) 620 return TBAAAccessInfo(); 621 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 622 } 623 624 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 625 TBAAAccessInfo TBAAInfo) { 626 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 627 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 628 } 629 630 void CodeGenModule::DecorateInstructionWithInvariantGroup( 631 llvm::Instruction *I, const CXXRecordDecl *RD) { 632 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 633 llvm::MDNode::get(getLLVMContext(), {})); 634 } 635 636 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 637 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 638 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 639 } 640 641 /// ErrorUnsupported - Print out an error that codegen doesn't support the 642 /// specified stmt yet. 643 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 644 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 645 "cannot compile this %0 yet"); 646 std::string Msg = Type; 647 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 648 << Msg << S->getSourceRange(); 649 } 650 651 /// ErrorUnsupported - Print out an error that codegen doesn't support the 652 /// specified decl yet. 653 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 654 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 655 "cannot compile this %0 yet"); 656 std::string Msg = Type; 657 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 658 } 659 660 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 661 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 662 } 663 664 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 665 const NamedDecl *D) const { 666 // Internal definitions always have default visibility. 667 if (GV->hasLocalLinkage()) { 668 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 669 return; 670 } 671 672 // Set visibility for definitions. 673 LinkageInfo LV = D->getLinkageAndVisibility(); 674 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 675 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 676 } 677 678 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 679 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 680 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 681 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 682 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 683 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 684 } 685 686 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 687 CodeGenOptions::TLSModel M) { 688 switch (M) { 689 case CodeGenOptions::GeneralDynamicTLSModel: 690 return llvm::GlobalVariable::GeneralDynamicTLSModel; 691 case CodeGenOptions::LocalDynamicTLSModel: 692 return llvm::GlobalVariable::LocalDynamicTLSModel; 693 case CodeGenOptions::InitialExecTLSModel: 694 return llvm::GlobalVariable::InitialExecTLSModel; 695 case CodeGenOptions::LocalExecTLSModel: 696 return llvm::GlobalVariable::LocalExecTLSModel; 697 } 698 llvm_unreachable("Invalid TLS model!"); 699 } 700 701 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 702 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 703 704 llvm::GlobalValue::ThreadLocalMode TLM; 705 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 706 707 // Override the TLS model if it is explicitly specified. 708 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 709 TLM = GetLLVMTLSModel(Attr->getModel()); 710 } 711 712 GV->setThreadLocalMode(TLM); 713 } 714 715 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 716 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 717 718 // Some ABIs don't have constructor variants. Make sure that base and 719 // complete constructors get mangled the same. 720 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 721 if (!getTarget().getCXXABI().hasConstructorVariants()) { 722 CXXCtorType OrigCtorType = GD.getCtorType(); 723 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 724 if (OrigCtorType == Ctor_Base) 725 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 726 } 727 } 728 729 auto FoundName = MangledDeclNames.find(CanonicalGD); 730 if (FoundName != MangledDeclNames.end()) 731 return FoundName->second; 732 733 const auto *ND = cast<NamedDecl>(GD.getDecl()); 734 SmallString<256> Buffer; 735 StringRef Str; 736 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 737 llvm::raw_svector_ostream Out(Buffer); 738 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 739 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 740 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 741 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 742 else 743 getCXXABI().getMangleContext().mangleName(ND, Out); 744 Str = Out.str(); 745 } else { 746 IdentifierInfo *II = ND->getIdentifier(); 747 assert(II && "Attempt to mangle unnamed decl."); 748 const auto *FD = dyn_cast<FunctionDecl>(ND); 749 750 if (FD && 751 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 752 llvm::raw_svector_ostream Out(Buffer); 753 Out << "__regcall3__" << II->getName(); 754 Str = Out.str(); 755 } else { 756 Str = II->getName(); 757 } 758 } 759 760 // Keep the first result in the case of a mangling collision. 761 auto Result = Manglings.insert(std::make_pair(Str, GD)); 762 return MangledDeclNames[CanonicalGD] = Result.first->first(); 763 } 764 765 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 766 const BlockDecl *BD) { 767 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 768 const Decl *D = GD.getDecl(); 769 770 SmallString<256> Buffer; 771 llvm::raw_svector_ostream Out(Buffer); 772 if (!D) 773 MangleCtx.mangleGlobalBlock(BD, 774 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 775 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 776 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 777 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 778 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 779 else 780 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 781 782 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 783 return Result.first->first(); 784 } 785 786 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 787 return getModule().getNamedValue(Name); 788 } 789 790 /// AddGlobalCtor - Add a function to the list that will be called before 791 /// main() runs. 792 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 793 llvm::Constant *AssociatedData) { 794 // FIXME: Type coercion of void()* types. 795 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 796 } 797 798 /// AddGlobalDtor - Add a function to the list that will be called 799 /// when the module is unloaded. 800 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 801 // FIXME: Type coercion of void()* types. 802 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 803 } 804 805 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 806 if (Fns.empty()) return; 807 808 // Ctor function type is void()*. 809 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 810 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 811 812 // Get the type of a ctor entry, { i32, void ()*, i8* }. 813 llvm::StructType *CtorStructTy = llvm::StructType::get( 814 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 815 816 // Construct the constructor and destructor arrays. 817 ConstantInitBuilder builder(*this); 818 auto ctors = builder.beginArray(CtorStructTy); 819 for (const auto &I : Fns) { 820 auto ctor = ctors.beginStruct(CtorStructTy); 821 ctor.addInt(Int32Ty, I.Priority); 822 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 823 if (I.AssociatedData) 824 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 825 else 826 ctor.addNullPointer(VoidPtrTy); 827 ctor.finishAndAddTo(ctors); 828 } 829 830 auto list = 831 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 832 /*constant*/ false, 833 llvm::GlobalValue::AppendingLinkage); 834 835 // The LTO linker doesn't seem to like it when we set an alignment 836 // on appending variables. Take it off as a workaround. 837 list->setAlignment(0); 838 839 Fns.clear(); 840 } 841 842 llvm::GlobalValue::LinkageTypes 843 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 844 const auto *D = cast<FunctionDecl>(GD.getDecl()); 845 846 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 847 848 if (isa<CXXDestructorDecl>(D) && 849 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 850 GD.getDtorType())) { 851 // Destructor variants in the Microsoft C++ ABI are always internal or 852 // linkonce_odr thunks emitted on an as-needed basis. 853 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 854 : llvm::GlobalValue::LinkOnceODRLinkage; 855 } 856 857 if (isa<CXXConstructorDecl>(D) && 858 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 859 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 860 // Our approach to inheriting constructors is fundamentally different from 861 // that used by the MS ABI, so keep our inheriting constructor thunks 862 // internal rather than trying to pick an unambiguous mangling for them. 863 return llvm::GlobalValue::InternalLinkage; 864 } 865 866 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 867 } 868 869 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 870 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 871 872 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 873 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 874 // Don't dllexport/import destructor thunks. 875 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 876 return; 877 } 878 } 879 880 if (FD->hasAttr<DLLImportAttr>()) 881 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 882 else if (FD->hasAttr<DLLExportAttr>()) 883 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 884 else 885 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 886 } 887 888 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 889 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 890 if (!MDS) return nullptr; 891 892 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 893 } 894 895 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 896 llvm::Function *F) { 897 setNonAliasAttributes(D, F); 898 } 899 900 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 901 const CGFunctionInfo &Info, 902 llvm::Function *F) { 903 unsigned CallingConv; 904 llvm::AttributeList PAL; 905 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 906 F->setAttributes(PAL); 907 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 908 } 909 910 /// Determines whether the language options require us to model 911 /// unwind exceptions. We treat -fexceptions as mandating this 912 /// except under the fragile ObjC ABI with only ObjC exceptions 913 /// enabled. This means, for example, that C with -fexceptions 914 /// enables this. 915 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 916 // If exceptions are completely disabled, obviously this is false. 917 if (!LangOpts.Exceptions) return false; 918 919 // If C++ exceptions are enabled, this is true. 920 if (LangOpts.CXXExceptions) return true; 921 922 // If ObjC exceptions are enabled, this depends on the ABI. 923 if (LangOpts.ObjCExceptions) { 924 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 925 } 926 927 return true; 928 } 929 930 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 931 llvm::Function *F) { 932 llvm::AttrBuilder B; 933 934 if (CodeGenOpts.UnwindTables) 935 B.addAttribute(llvm::Attribute::UWTable); 936 937 if (!hasUnwindExceptions(LangOpts)) 938 B.addAttribute(llvm::Attribute::NoUnwind); 939 940 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 941 B.addAttribute(llvm::Attribute::StackProtect); 942 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 943 B.addAttribute(llvm::Attribute::StackProtectStrong); 944 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 945 B.addAttribute(llvm::Attribute::StackProtectReq); 946 947 if (!D) { 948 // If we don't have a declaration to control inlining, the function isn't 949 // explicitly marked as alwaysinline for semantic reasons, and inlining is 950 // disabled, mark the function as noinline. 951 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 952 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 953 B.addAttribute(llvm::Attribute::NoInline); 954 955 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 956 return; 957 } 958 959 // Track whether we need to add the optnone LLVM attribute, 960 // starting with the default for this optimization level. 961 bool ShouldAddOptNone = 962 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 963 // We can't add optnone in the following cases, it won't pass the verifier. 964 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 965 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 966 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 967 968 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 969 B.addAttribute(llvm::Attribute::OptimizeNone); 970 971 // OptimizeNone implies noinline; we should not be inlining such functions. 972 B.addAttribute(llvm::Attribute::NoInline); 973 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 974 "OptimizeNone and AlwaysInline on same function!"); 975 976 // We still need to handle naked functions even though optnone subsumes 977 // much of their semantics. 978 if (D->hasAttr<NakedAttr>()) 979 B.addAttribute(llvm::Attribute::Naked); 980 981 // OptimizeNone wins over OptimizeForSize and MinSize. 982 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 983 F->removeFnAttr(llvm::Attribute::MinSize); 984 } else if (D->hasAttr<NakedAttr>()) { 985 // Naked implies noinline: we should not be inlining such functions. 986 B.addAttribute(llvm::Attribute::Naked); 987 B.addAttribute(llvm::Attribute::NoInline); 988 } else if (D->hasAttr<NoDuplicateAttr>()) { 989 B.addAttribute(llvm::Attribute::NoDuplicate); 990 } else if (D->hasAttr<NoInlineAttr>()) { 991 B.addAttribute(llvm::Attribute::NoInline); 992 } else if (D->hasAttr<AlwaysInlineAttr>() && 993 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 994 // (noinline wins over always_inline, and we can't specify both in IR) 995 B.addAttribute(llvm::Attribute::AlwaysInline); 996 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 997 // If we're not inlining, then force everything that isn't always_inline to 998 // carry an explicit noinline attribute. 999 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1000 B.addAttribute(llvm::Attribute::NoInline); 1001 } else { 1002 // Otherwise, propagate the inline hint attribute and potentially use its 1003 // absence to mark things as noinline. 1004 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1005 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1006 return Redecl->isInlineSpecified(); 1007 })) { 1008 B.addAttribute(llvm::Attribute::InlineHint); 1009 } else if (CodeGenOpts.getInlining() == 1010 CodeGenOptions::OnlyHintInlining && 1011 !FD->isInlined() && 1012 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1013 B.addAttribute(llvm::Attribute::NoInline); 1014 } 1015 } 1016 } 1017 1018 // Add other optimization related attributes if we are optimizing this 1019 // function. 1020 if (!D->hasAttr<OptimizeNoneAttr>()) { 1021 if (D->hasAttr<ColdAttr>()) { 1022 if (!ShouldAddOptNone) 1023 B.addAttribute(llvm::Attribute::OptimizeForSize); 1024 B.addAttribute(llvm::Attribute::Cold); 1025 } 1026 1027 if (D->hasAttr<MinSizeAttr>()) 1028 B.addAttribute(llvm::Attribute::MinSize); 1029 } 1030 1031 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1032 1033 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1034 if (alignment) 1035 F->setAlignment(alignment); 1036 1037 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1038 // reserve a bit for differentiating between virtual and non-virtual member 1039 // functions. If the current target's C++ ABI requires this and this is a 1040 // member function, set its alignment accordingly. 1041 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1042 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1043 F->setAlignment(2); 1044 } 1045 1046 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1047 if (CodeGenOpts.SanitizeCfiCrossDso) 1048 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1049 CreateFunctionTypeMetadata(FD, F); 1050 } 1051 1052 void CodeGenModule::SetCommonAttributes(const Decl *D, 1053 llvm::GlobalValue *GV) { 1054 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1055 setGlobalVisibility(GV, ND); 1056 else 1057 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1058 1059 if (D && D->hasAttr<UsedAttr>()) 1060 addUsedGlobal(GV); 1061 } 1062 1063 void CodeGenModule::setAliasAttributes(const Decl *D, 1064 llvm::GlobalValue *GV) { 1065 SetCommonAttributes(D, GV); 1066 1067 // Process the dllexport attribute based on whether the original definition 1068 // (not necessarily the aliasee) was exported. 1069 if (D->hasAttr<DLLExportAttr>()) 1070 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1071 } 1072 1073 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1074 llvm::GlobalObject *GO) { 1075 SetCommonAttributes(D, GO); 1076 1077 if (D) { 1078 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1079 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1080 GV->addAttribute("bss-section", SA->getName()); 1081 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1082 GV->addAttribute("data-section", SA->getName()); 1083 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1084 GV->addAttribute("rodata-section", SA->getName()); 1085 } 1086 1087 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1088 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1089 if (!D->getAttr<SectionAttr>()) 1090 F->addFnAttr("implicit-section-name", SA->getName()); 1091 } 1092 1093 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1094 GO->setSection(SA->getName()); 1095 } 1096 1097 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1098 } 1099 1100 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1101 llvm::Function *F, 1102 const CGFunctionInfo &FI) { 1103 SetLLVMFunctionAttributes(D, FI, F); 1104 SetLLVMFunctionAttributesForDefinition(D, F); 1105 1106 F->setLinkage(llvm::Function::InternalLinkage); 1107 1108 setNonAliasAttributes(D, F); 1109 } 1110 1111 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1112 const NamedDecl *ND) { 1113 // Set linkage and visibility in case we never see a definition. 1114 LinkageInfo LV = ND->getLinkageAndVisibility(); 1115 if (!isExternallyVisible(LV.getLinkage())) { 1116 // Don't set internal linkage on declarations. 1117 } else { 1118 if (ND->hasAttr<DLLImportAttr>()) { 1119 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1120 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1121 } else if (ND->hasAttr<DLLExportAttr>()) { 1122 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1123 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1124 // "extern_weak" is overloaded in LLVM; we probably should have 1125 // separate linkage types for this. 1126 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1127 } 1128 1129 // Set visibility on a declaration only if it's explicit. 1130 if (LV.isVisibilityExplicit()) 1131 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1132 } 1133 } 1134 1135 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1136 llvm::Function *F) { 1137 // Only if we are checking indirect calls. 1138 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1139 return; 1140 1141 // Non-static class methods are handled via vtable pointer checks elsewhere. 1142 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1143 return; 1144 1145 // Additionally, if building with cross-DSO support... 1146 if (CodeGenOpts.SanitizeCfiCrossDso) { 1147 // Skip available_externally functions. They won't be codegen'ed in the 1148 // current module anyway. 1149 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1150 return; 1151 } 1152 1153 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1154 F->addTypeMetadata(0, MD); 1155 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1156 1157 // Emit a hash-based bit set entry for cross-DSO calls. 1158 if (CodeGenOpts.SanitizeCfiCrossDso) 1159 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1160 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1161 } 1162 1163 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1164 bool IsIncompleteFunction, 1165 bool IsThunk, 1166 ForDefinition_t IsForDefinition) { 1167 1168 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1169 // If this is an intrinsic function, set the function's attributes 1170 // to the intrinsic's attributes. 1171 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1172 return; 1173 } 1174 1175 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1176 1177 if (!IsIncompleteFunction) { 1178 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1179 // Setup target-specific attributes. 1180 if (!IsForDefinition) 1181 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1182 NotForDefinition); 1183 } 1184 1185 // Add the Returned attribute for "this", except for iOS 5 and earlier 1186 // where substantial code, including the libstdc++ dylib, was compiled with 1187 // GCC and does not actually return "this". 1188 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1189 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1190 assert(!F->arg_empty() && 1191 F->arg_begin()->getType() 1192 ->canLosslesslyBitCastTo(F->getReturnType()) && 1193 "unexpected this return"); 1194 F->addAttribute(1, llvm::Attribute::Returned); 1195 } 1196 1197 // Only a few attributes are set on declarations; these may later be 1198 // overridden by a definition. 1199 1200 setLinkageAndVisibilityForGV(F, FD); 1201 1202 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1203 F->addFnAttr("implicit-section-name"); 1204 } 1205 1206 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1207 F->setSection(SA->getName()); 1208 1209 if (FD->isReplaceableGlobalAllocationFunction()) { 1210 // A replaceable global allocation function does not act like a builtin by 1211 // default, only if it is invoked by a new-expression or delete-expression. 1212 F->addAttribute(llvm::AttributeList::FunctionIndex, 1213 llvm::Attribute::NoBuiltin); 1214 1215 // A sane operator new returns a non-aliasing pointer. 1216 // FIXME: Also add NonNull attribute to the return value 1217 // for the non-nothrow forms? 1218 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1219 if (getCodeGenOpts().AssumeSaneOperatorNew && 1220 (Kind == OO_New || Kind == OO_Array_New)) 1221 F->addAttribute(llvm::AttributeList::ReturnIndex, 1222 llvm::Attribute::NoAlias); 1223 } 1224 1225 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1226 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1227 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1228 if (MD->isVirtual()) 1229 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1230 1231 // Don't emit entries for function declarations in the cross-DSO mode. This 1232 // is handled with better precision by the receiving DSO. 1233 if (!CodeGenOpts.SanitizeCfiCrossDso) 1234 CreateFunctionTypeMetadata(FD, F); 1235 } 1236 1237 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1238 assert(!GV->isDeclaration() && 1239 "Only globals with definition can force usage."); 1240 LLVMUsed.emplace_back(GV); 1241 } 1242 1243 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1244 assert(!GV->isDeclaration() && 1245 "Only globals with definition can force usage."); 1246 LLVMCompilerUsed.emplace_back(GV); 1247 } 1248 1249 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1250 std::vector<llvm::WeakTrackingVH> &List) { 1251 // Don't create llvm.used if there is no need. 1252 if (List.empty()) 1253 return; 1254 1255 // Convert List to what ConstantArray needs. 1256 SmallVector<llvm::Constant*, 8> UsedArray; 1257 UsedArray.resize(List.size()); 1258 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1259 UsedArray[i] = 1260 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1261 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1262 } 1263 1264 if (UsedArray.empty()) 1265 return; 1266 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1267 1268 auto *GV = new llvm::GlobalVariable( 1269 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1270 llvm::ConstantArray::get(ATy, UsedArray), Name); 1271 1272 GV->setSection("llvm.metadata"); 1273 } 1274 1275 void CodeGenModule::emitLLVMUsed() { 1276 emitUsed(*this, "llvm.used", LLVMUsed); 1277 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1278 } 1279 1280 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1281 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1282 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1283 } 1284 1285 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1286 llvm::SmallString<32> Opt; 1287 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1288 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1289 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1290 } 1291 1292 void CodeGenModule::AddDependentLib(StringRef Lib) { 1293 llvm::SmallString<24> Opt; 1294 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1295 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1296 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1297 } 1298 1299 /// \brief Add link options implied by the given module, including modules 1300 /// it depends on, using a postorder walk. 1301 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1302 SmallVectorImpl<llvm::MDNode *> &Metadata, 1303 llvm::SmallPtrSet<Module *, 16> &Visited) { 1304 // Import this module's parent. 1305 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1306 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1307 } 1308 1309 // Import this module's dependencies. 1310 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1311 if (Visited.insert(Mod->Imports[I - 1]).second) 1312 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1313 } 1314 1315 // Add linker options to link against the libraries/frameworks 1316 // described by this module. 1317 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1318 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1319 // Link against a framework. Frameworks are currently Darwin only, so we 1320 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1321 if (Mod->LinkLibraries[I-1].IsFramework) { 1322 llvm::Metadata *Args[2] = { 1323 llvm::MDString::get(Context, "-framework"), 1324 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1325 1326 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1327 continue; 1328 } 1329 1330 // Link against a library. 1331 llvm::SmallString<24> Opt; 1332 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1333 Mod->LinkLibraries[I-1].Library, Opt); 1334 auto *OptString = llvm::MDString::get(Context, Opt); 1335 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1336 } 1337 } 1338 1339 void CodeGenModule::EmitModuleLinkOptions() { 1340 // Collect the set of all of the modules we want to visit to emit link 1341 // options, which is essentially the imported modules and all of their 1342 // non-explicit child modules. 1343 llvm::SetVector<clang::Module *> LinkModules; 1344 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1345 SmallVector<clang::Module *, 16> Stack; 1346 1347 // Seed the stack with imported modules. 1348 for (Module *M : ImportedModules) { 1349 // Do not add any link flags when an implementation TU of a module imports 1350 // a header of that same module. 1351 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1352 !getLangOpts().isCompilingModule()) 1353 continue; 1354 if (Visited.insert(M).second) 1355 Stack.push_back(M); 1356 } 1357 1358 // Find all of the modules to import, making a little effort to prune 1359 // non-leaf modules. 1360 while (!Stack.empty()) { 1361 clang::Module *Mod = Stack.pop_back_val(); 1362 1363 bool AnyChildren = false; 1364 1365 // Visit the submodules of this module. 1366 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1367 SubEnd = Mod->submodule_end(); 1368 Sub != SubEnd; ++Sub) { 1369 // Skip explicit children; they need to be explicitly imported to be 1370 // linked against. 1371 if ((*Sub)->IsExplicit) 1372 continue; 1373 1374 if (Visited.insert(*Sub).second) { 1375 Stack.push_back(*Sub); 1376 AnyChildren = true; 1377 } 1378 } 1379 1380 // We didn't find any children, so add this module to the list of 1381 // modules to link against. 1382 if (!AnyChildren) { 1383 LinkModules.insert(Mod); 1384 } 1385 } 1386 1387 // Add link options for all of the imported modules in reverse topological 1388 // order. We don't do anything to try to order import link flags with respect 1389 // to linker options inserted by things like #pragma comment(). 1390 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1391 Visited.clear(); 1392 for (Module *M : LinkModules) 1393 if (Visited.insert(M).second) 1394 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1395 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1396 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1397 1398 // Add the linker options metadata flag. 1399 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1400 for (auto *MD : LinkerOptionsMetadata) 1401 NMD->addOperand(MD); 1402 } 1403 1404 void CodeGenModule::EmitDeferred() { 1405 // Emit code for any potentially referenced deferred decls. Since a 1406 // previously unused static decl may become used during the generation of code 1407 // for a static function, iterate until no changes are made. 1408 1409 if (!DeferredVTables.empty()) { 1410 EmitDeferredVTables(); 1411 1412 // Emitting a vtable doesn't directly cause more vtables to 1413 // become deferred, although it can cause functions to be 1414 // emitted that then need those vtables. 1415 assert(DeferredVTables.empty()); 1416 } 1417 1418 // Stop if we're out of both deferred vtables and deferred declarations. 1419 if (DeferredDeclsToEmit.empty()) 1420 return; 1421 1422 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1423 // work, it will not interfere with this. 1424 std::vector<GlobalDecl> CurDeclsToEmit; 1425 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1426 1427 for (GlobalDecl &D : CurDeclsToEmit) { 1428 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1429 // to get GlobalValue with exactly the type we need, not something that 1430 // might had been created for another decl with the same mangled name but 1431 // different type. 1432 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1433 GetAddrOfGlobal(D, ForDefinition)); 1434 1435 // In case of different address spaces, we may still get a cast, even with 1436 // IsForDefinition equal to true. Query mangled names table to get 1437 // GlobalValue. 1438 if (!GV) 1439 GV = GetGlobalValue(getMangledName(D)); 1440 1441 // Make sure GetGlobalValue returned non-null. 1442 assert(GV); 1443 1444 // Check to see if we've already emitted this. This is necessary 1445 // for a couple of reasons: first, decls can end up in the 1446 // deferred-decls queue multiple times, and second, decls can end 1447 // up with definitions in unusual ways (e.g. by an extern inline 1448 // function acquiring a strong function redefinition). Just 1449 // ignore these cases. 1450 if (!GV->isDeclaration()) 1451 continue; 1452 1453 // Otherwise, emit the definition and move on to the next one. 1454 EmitGlobalDefinition(D, GV); 1455 1456 // If we found out that we need to emit more decls, do that recursively. 1457 // This has the advantage that the decls are emitted in a DFS and related 1458 // ones are close together, which is convenient for testing. 1459 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1460 EmitDeferred(); 1461 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1462 } 1463 } 1464 } 1465 1466 void CodeGenModule::EmitVTablesOpportunistically() { 1467 // Try to emit external vtables as available_externally if they have emitted 1468 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1469 // is not allowed to create new references to things that need to be emitted 1470 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1471 1472 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1473 && "Only emit opportunistic vtables with optimizations"); 1474 1475 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1476 assert(getVTables().isVTableExternal(RD) && 1477 "This queue should only contain external vtables"); 1478 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1479 VTables.GenerateClassData(RD); 1480 } 1481 OpportunisticVTables.clear(); 1482 } 1483 1484 void CodeGenModule::EmitGlobalAnnotations() { 1485 if (Annotations.empty()) 1486 return; 1487 1488 // Create a new global variable for the ConstantStruct in the Module. 1489 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1490 Annotations[0]->getType(), Annotations.size()), Annotations); 1491 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1492 llvm::GlobalValue::AppendingLinkage, 1493 Array, "llvm.global.annotations"); 1494 gv->setSection(AnnotationSection); 1495 } 1496 1497 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1498 llvm::Constant *&AStr = AnnotationStrings[Str]; 1499 if (AStr) 1500 return AStr; 1501 1502 // Not found yet, create a new global. 1503 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1504 auto *gv = 1505 new llvm::GlobalVariable(getModule(), s->getType(), true, 1506 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1507 gv->setSection(AnnotationSection); 1508 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1509 AStr = gv; 1510 return gv; 1511 } 1512 1513 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1514 SourceManager &SM = getContext().getSourceManager(); 1515 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1516 if (PLoc.isValid()) 1517 return EmitAnnotationString(PLoc.getFilename()); 1518 return EmitAnnotationString(SM.getBufferName(Loc)); 1519 } 1520 1521 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1522 SourceManager &SM = getContext().getSourceManager(); 1523 PresumedLoc PLoc = SM.getPresumedLoc(L); 1524 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1525 SM.getExpansionLineNumber(L); 1526 return llvm::ConstantInt::get(Int32Ty, LineNo); 1527 } 1528 1529 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1530 const AnnotateAttr *AA, 1531 SourceLocation L) { 1532 // Get the globals for file name, annotation, and the line number. 1533 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1534 *UnitGV = EmitAnnotationUnit(L), 1535 *LineNoCst = EmitAnnotationLineNo(L); 1536 1537 // Create the ConstantStruct for the global annotation. 1538 llvm::Constant *Fields[4] = { 1539 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1540 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1541 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1542 LineNoCst 1543 }; 1544 return llvm::ConstantStruct::getAnon(Fields); 1545 } 1546 1547 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1548 llvm::GlobalValue *GV) { 1549 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1550 // Get the struct elements for these annotations. 1551 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1552 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1553 } 1554 1555 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1556 llvm::Function *Fn, 1557 SourceLocation Loc) const { 1558 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1559 // Blacklist by function name. 1560 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1561 return true; 1562 // Blacklist by location. 1563 if (Loc.isValid()) 1564 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1565 // If location is unknown, this may be a compiler-generated function. Assume 1566 // it's located in the main file. 1567 auto &SM = Context.getSourceManager(); 1568 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1569 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1570 } 1571 return false; 1572 } 1573 1574 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1575 SourceLocation Loc, QualType Ty, 1576 StringRef Category) const { 1577 // For now globals can be blacklisted only in ASan and KASan. 1578 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1579 (SanitizerKind::Address | SanitizerKind::KernelAddress); 1580 if (!EnabledAsanMask) 1581 return false; 1582 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1583 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1584 return true; 1585 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1586 return true; 1587 // Check global type. 1588 if (!Ty.isNull()) { 1589 // Drill down the array types: if global variable of a fixed type is 1590 // blacklisted, we also don't instrument arrays of them. 1591 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1592 Ty = AT->getElementType(); 1593 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1594 // We allow to blacklist only record types (classes, structs etc.) 1595 if (Ty->isRecordType()) { 1596 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1597 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1598 return true; 1599 } 1600 } 1601 return false; 1602 } 1603 1604 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1605 StringRef Category) const { 1606 if (!LangOpts.XRayInstrument) 1607 return false; 1608 const auto &XRayFilter = getContext().getXRayFilter(); 1609 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1610 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1611 if (Loc.isValid()) 1612 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1613 if (Attr == ImbueAttr::NONE) 1614 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1615 switch (Attr) { 1616 case ImbueAttr::NONE: 1617 return false; 1618 case ImbueAttr::ALWAYS: 1619 Fn->addFnAttr("function-instrument", "xray-always"); 1620 break; 1621 case ImbueAttr::ALWAYS_ARG1: 1622 Fn->addFnAttr("function-instrument", "xray-always"); 1623 Fn->addFnAttr("xray-log-args", "1"); 1624 break; 1625 case ImbueAttr::NEVER: 1626 Fn->addFnAttr("function-instrument", "xray-never"); 1627 break; 1628 } 1629 return true; 1630 } 1631 1632 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1633 // Never defer when EmitAllDecls is specified. 1634 if (LangOpts.EmitAllDecls) 1635 return true; 1636 1637 return getContext().DeclMustBeEmitted(Global); 1638 } 1639 1640 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1641 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1642 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1643 // Implicit template instantiations may change linkage if they are later 1644 // explicitly instantiated, so they should not be emitted eagerly. 1645 return false; 1646 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1647 if (Context.getInlineVariableDefinitionKind(VD) == 1648 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1649 // A definition of an inline constexpr static data member may change 1650 // linkage later if it's redeclared outside the class. 1651 return false; 1652 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1653 // codegen for global variables, because they may be marked as threadprivate. 1654 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1655 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1656 return false; 1657 1658 return true; 1659 } 1660 1661 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1662 const CXXUuidofExpr* E) { 1663 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1664 // well-formed. 1665 StringRef Uuid = E->getUuidStr(); 1666 std::string Name = "_GUID_" + Uuid.lower(); 1667 std::replace(Name.begin(), Name.end(), '-', '_'); 1668 1669 // The UUID descriptor should be pointer aligned. 1670 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1671 1672 // Look for an existing global. 1673 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1674 return ConstantAddress(GV, Alignment); 1675 1676 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1677 assert(Init && "failed to initialize as constant"); 1678 1679 auto *GV = new llvm::GlobalVariable( 1680 getModule(), Init->getType(), 1681 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1682 if (supportsCOMDAT()) 1683 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1684 return ConstantAddress(GV, Alignment); 1685 } 1686 1687 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1688 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1689 assert(AA && "No alias?"); 1690 1691 CharUnits Alignment = getContext().getDeclAlign(VD); 1692 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1693 1694 // See if there is already something with the target's name in the module. 1695 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1696 if (Entry) { 1697 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1698 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1699 return ConstantAddress(Ptr, Alignment); 1700 } 1701 1702 llvm::Constant *Aliasee; 1703 if (isa<llvm::FunctionType>(DeclTy)) 1704 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1705 GlobalDecl(cast<FunctionDecl>(VD)), 1706 /*ForVTable=*/false); 1707 else 1708 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1709 llvm::PointerType::getUnqual(DeclTy), 1710 nullptr); 1711 1712 auto *F = cast<llvm::GlobalValue>(Aliasee); 1713 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1714 WeakRefReferences.insert(F); 1715 1716 return ConstantAddress(Aliasee, Alignment); 1717 } 1718 1719 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1720 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1721 1722 // Weak references don't produce any output by themselves. 1723 if (Global->hasAttr<WeakRefAttr>()) 1724 return; 1725 1726 // If this is an alias definition (which otherwise looks like a declaration) 1727 // emit it now. 1728 if (Global->hasAttr<AliasAttr>()) 1729 return EmitAliasDefinition(GD); 1730 1731 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1732 if (Global->hasAttr<IFuncAttr>()) 1733 return emitIFuncDefinition(GD); 1734 1735 // If this is CUDA, be selective about which declarations we emit. 1736 if (LangOpts.CUDA) { 1737 if (LangOpts.CUDAIsDevice) { 1738 if (!Global->hasAttr<CUDADeviceAttr>() && 1739 !Global->hasAttr<CUDAGlobalAttr>() && 1740 !Global->hasAttr<CUDAConstantAttr>() && 1741 !Global->hasAttr<CUDASharedAttr>()) 1742 return; 1743 } else { 1744 // We need to emit host-side 'shadows' for all global 1745 // device-side variables because the CUDA runtime needs their 1746 // size and host-side address in order to provide access to 1747 // their device-side incarnations. 1748 1749 // So device-only functions are the only things we skip. 1750 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1751 Global->hasAttr<CUDADeviceAttr>()) 1752 return; 1753 1754 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1755 "Expected Variable or Function"); 1756 } 1757 } 1758 1759 if (LangOpts.OpenMP) { 1760 // If this is OpenMP device, check if it is legal to emit this global 1761 // normally. 1762 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1763 return; 1764 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1765 if (MustBeEmitted(Global)) 1766 EmitOMPDeclareReduction(DRD); 1767 return; 1768 } 1769 } 1770 1771 // Ignore declarations, they will be emitted on their first use. 1772 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1773 // Forward declarations are emitted lazily on first use. 1774 if (!FD->doesThisDeclarationHaveABody()) { 1775 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1776 return; 1777 1778 StringRef MangledName = getMangledName(GD); 1779 1780 // Compute the function info and LLVM type. 1781 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1782 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1783 1784 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1785 /*DontDefer=*/false); 1786 return; 1787 } 1788 } else { 1789 const auto *VD = cast<VarDecl>(Global); 1790 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1791 // We need to emit device-side global CUDA variables even if a 1792 // variable does not have a definition -- we still need to define 1793 // host-side shadow for it. 1794 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1795 !VD->hasDefinition() && 1796 (VD->hasAttr<CUDAConstantAttr>() || 1797 VD->hasAttr<CUDADeviceAttr>()); 1798 if (!MustEmitForCuda && 1799 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1800 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1801 // If this declaration may have caused an inline variable definition to 1802 // change linkage, make sure that it's emitted. 1803 if (Context.getInlineVariableDefinitionKind(VD) == 1804 ASTContext::InlineVariableDefinitionKind::Strong) 1805 GetAddrOfGlobalVar(VD); 1806 return; 1807 } 1808 } 1809 1810 // Defer code generation to first use when possible, e.g. if this is an inline 1811 // function. If the global must always be emitted, do it eagerly if possible 1812 // to benefit from cache locality. 1813 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1814 // Emit the definition if it can't be deferred. 1815 EmitGlobalDefinition(GD); 1816 return; 1817 } 1818 1819 // If we're deferring emission of a C++ variable with an 1820 // initializer, remember the order in which it appeared in the file. 1821 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1822 cast<VarDecl>(Global)->hasInit()) { 1823 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1824 CXXGlobalInits.push_back(nullptr); 1825 } 1826 1827 StringRef MangledName = getMangledName(GD); 1828 if (GetGlobalValue(MangledName) != nullptr) { 1829 // The value has already been used and should therefore be emitted. 1830 addDeferredDeclToEmit(GD); 1831 } else if (MustBeEmitted(Global)) { 1832 // The value must be emitted, but cannot be emitted eagerly. 1833 assert(!MayBeEmittedEagerly(Global)); 1834 addDeferredDeclToEmit(GD); 1835 } else { 1836 // Otherwise, remember that we saw a deferred decl with this name. The 1837 // first use of the mangled name will cause it to move into 1838 // DeferredDeclsToEmit. 1839 DeferredDecls[MangledName] = GD; 1840 } 1841 } 1842 1843 // Check if T is a class type with a destructor that's not dllimport. 1844 static bool HasNonDllImportDtor(QualType T) { 1845 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1846 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1847 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1848 return true; 1849 1850 return false; 1851 } 1852 1853 namespace { 1854 struct FunctionIsDirectlyRecursive : 1855 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1856 const StringRef Name; 1857 const Builtin::Context &BI; 1858 bool Result; 1859 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1860 Name(N), BI(C), Result(false) { 1861 } 1862 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1863 1864 bool TraverseCallExpr(CallExpr *E) { 1865 const FunctionDecl *FD = E->getDirectCallee(); 1866 if (!FD) 1867 return true; 1868 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1869 if (Attr && Name == Attr->getLabel()) { 1870 Result = true; 1871 return false; 1872 } 1873 unsigned BuiltinID = FD->getBuiltinID(); 1874 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1875 return true; 1876 StringRef BuiltinName = BI.getName(BuiltinID); 1877 if (BuiltinName.startswith("__builtin_") && 1878 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1879 Result = true; 1880 return false; 1881 } 1882 return true; 1883 } 1884 }; 1885 1886 // Make sure we're not referencing non-imported vars or functions. 1887 struct DLLImportFunctionVisitor 1888 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1889 bool SafeToInline = true; 1890 1891 bool shouldVisitImplicitCode() const { return true; } 1892 1893 bool VisitVarDecl(VarDecl *VD) { 1894 if (VD->getTLSKind()) { 1895 // A thread-local variable cannot be imported. 1896 SafeToInline = false; 1897 return SafeToInline; 1898 } 1899 1900 // A variable definition might imply a destructor call. 1901 if (VD->isThisDeclarationADefinition()) 1902 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1903 1904 return SafeToInline; 1905 } 1906 1907 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1908 if (const auto *D = E->getTemporary()->getDestructor()) 1909 SafeToInline = D->hasAttr<DLLImportAttr>(); 1910 return SafeToInline; 1911 } 1912 1913 bool VisitDeclRefExpr(DeclRefExpr *E) { 1914 ValueDecl *VD = E->getDecl(); 1915 if (isa<FunctionDecl>(VD)) 1916 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1917 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1918 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1919 return SafeToInline; 1920 } 1921 1922 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1923 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1924 return SafeToInline; 1925 } 1926 1927 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1928 CXXMethodDecl *M = E->getMethodDecl(); 1929 if (!M) { 1930 // Call through a pointer to member function. This is safe to inline. 1931 SafeToInline = true; 1932 } else { 1933 SafeToInline = M->hasAttr<DLLImportAttr>(); 1934 } 1935 return SafeToInline; 1936 } 1937 1938 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1939 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1940 return SafeToInline; 1941 } 1942 1943 bool VisitCXXNewExpr(CXXNewExpr *E) { 1944 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1945 return SafeToInline; 1946 } 1947 }; 1948 } 1949 1950 // isTriviallyRecursive - Check if this function calls another 1951 // decl that, because of the asm attribute or the other decl being a builtin, 1952 // ends up pointing to itself. 1953 bool 1954 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1955 StringRef Name; 1956 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1957 // asm labels are a special kind of mangling we have to support. 1958 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1959 if (!Attr) 1960 return false; 1961 Name = Attr->getLabel(); 1962 } else { 1963 Name = FD->getName(); 1964 } 1965 1966 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1967 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1968 return Walker.Result; 1969 } 1970 1971 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1972 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1973 return true; 1974 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1975 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1976 return false; 1977 1978 if (F->hasAttr<DLLImportAttr>()) { 1979 // Check whether it would be safe to inline this dllimport function. 1980 DLLImportFunctionVisitor Visitor; 1981 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1982 if (!Visitor.SafeToInline) 1983 return false; 1984 1985 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1986 // Implicit destructor invocations aren't captured in the AST, so the 1987 // check above can't see them. Check for them manually here. 1988 for (const Decl *Member : Dtor->getParent()->decls()) 1989 if (isa<FieldDecl>(Member)) 1990 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1991 return false; 1992 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1993 if (HasNonDllImportDtor(B.getType())) 1994 return false; 1995 } 1996 } 1997 1998 // PR9614. Avoid cases where the source code is lying to us. An available 1999 // externally function should have an equivalent function somewhere else, 2000 // but a function that calls itself is clearly not equivalent to the real 2001 // implementation. 2002 // This happens in glibc's btowc and in some configure checks. 2003 return !isTriviallyRecursive(F); 2004 } 2005 2006 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2007 return CodeGenOpts.OptimizationLevel > 0; 2008 } 2009 2010 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2011 const auto *D = cast<ValueDecl>(GD.getDecl()); 2012 2013 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2014 Context.getSourceManager(), 2015 "Generating code for declaration"); 2016 2017 if (isa<FunctionDecl>(D)) { 2018 // At -O0, don't generate IR for functions with available_externally 2019 // linkage. 2020 if (!shouldEmitFunction(GD)) 2021 return; 2022 2023 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2024 // Make sure to emit the definition(s) before we emit the thunks. 2025 // This is necessary for the generation of certain thunks. 2026 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2027 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2028 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2029 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2030 else 2031 EmitGlobalFunctionDefinition(GD, GV); 2032 2033 if (Method->isVirtual()) 2034 getVTables().EmitThunks(GD); 2035 2036 return; 2037 } 2038 2039 return EmitGlobalFunctionDefinition(GD, GV); 2040 } 2041 2042 if (const auto *VD = dyn_cast<VarDecl>(D)) 2043 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2044 2045 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2046 } 2047 2048 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2049 llvm::Function *NewFn); 2050 2051 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2052 /// module, create and return an llvm Function with the specified type. If there 2053 /// is something in the module with the specified name, return it potentially 2054 /// bitcasted to the right type. 2055 /// 2056 /// If D is non-null, it specifies a decl that correspond to this. This is used 2057 /// to set the attributes on the function when it is first created. 2058 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2059 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2060 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2061 ForDefinition_t IsForDefinition) { 2062 const Decl *D = GD.getDecl(); 2063 2064 // Lookup the entry, lazily creating it if necessary. 2065 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2066 if (Entry) { 2067 if (WeakRefReferences.erase(Entry)) { 2068 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2069 if (FD && !FD->hasAttr<WeakAttr>()) 2070 Entry->setLinkage(llvm::Function::ExternalLinkage); 2071 } 2072 2073 // Handle dropped DLL attributes. 2074 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2075 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2076 2077 // If there are two attempts to define the same mangled name, issue an 2078 // error. 2079 if (IsForDefinition && !Entry->isDeclaration()) { 2080 GlobalDecl OtherGD; 2081 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2082 // to make sure that we issue an error only once. 2083 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2084 (GD.getCanonicalDecl().getDecl() != 2085 OtherGD.getCanonicalDecl().getDecl()) && 2086 DiagnosedConflictingDefinitions.insert(GD).second) { 2087 getDiags().Report(D->getLocation(), 2088 diag::err_duplicate_mangled_name); 2089 getDiags().Report(OtherGD.getDecl()->getLocation(), 2090 diag::note_previous_definition); 2091 } 2092 } 2093 2094 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2095 (Entry->getType()->getElementType() == Ty)) { 2096 return Entry; 2097 } 2098 2099 // Make sure the result is of the correct type. 2100 // (If function is requested for a definition, we always need to create a new 2101 // function, not just return a bitcast.) 2102 if (!IsForDefinition) 2103 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2104 } 2105 2106 // This function doesn't have a complete type (for example, the return 2107 // type is an incomplete struct). Use a fake type instead, and make 2108 // sure not to try to set attributes. 2109 bool IsIncompleteFunction = false; 2110 2111 llvm::FunctionType *FTy; 2112 if (isa<llvm::FunctionType>(Ty)) { 2113 FTy = cast<llvm::FunctionType>(Ty); 2114 } else { 2115 FTy = llvm::FunctionType::get(VoidTy, false); 2116 IsIncompleteFunction = true; 2117 } 2118 2119 llvm::Function *F = 2120 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2121 Entry ? StringRef() : MangledName, &getModule()); 2122 2123 // If we already created a function with the same mangled name (but different 2124 // type) before, take its name and add it to the list of functions to be 2125 // replaced with F at the end of CodeGen. 2126 // 2127 // This happens if there is a prototype for a function (e.g. "int f()") and 2128 // then a definition of a different type (e.g. "int f(int x)"). 2129 if (Entry) { 2130 F->takeName(Entry); 2131 2132 // This might be an implementation of a function without a prototype, in 2133 // which case, try to do special replacement of calls which match the new 2134 // prototype. The really key thing here is that we also potentially drop 2135 // arguments from the call site so as to make a direct call, which makes the 2136 // inliner happier and suppresses a number of optimizer warnings (!) about 2137 // dropping arguments. 2138 if (!Entry->use_empty()) { 2139 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2140 Entry->removeDeadConstantUsers(); 2141 } 2142 2143 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2144 F, Entry->getType()->getElementType()->getPointerTo()); 2145 addGlobalValReplacement(Entry, BC); 2146 } 2147 2148 assert(F->getName() == MangledName && "name was uniqued!"); 2149 if (D) 2150 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2151 IsForDefinition); 2152 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2153 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2154 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2155 } 2156 2157 if (!DontDefer) { 2158 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2159 // each other bottoming out with the base dtor. Therefore we emit non-base 2160 // dtors on usage, even if there is no dtor definition in the TU. 2161 if (D && isa<CXXDestructorDecl>(D) && 2162 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2163 GD.getDtorType())) 2164 addDeferredDeclToEmit(GD); 2165 2166 // This is the first use or definition of a mangled name. If there is a 2167 // deferred decl with this name, remember that we need to emit it at the end 2168 // of the file. 2169 auto DDI = DeferredDecls.find(MangledName); 2170 if (DDI != DeferredDecls.end()) { 2171 // Move the potentially referenced deferred decl to the 2172 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2173 // don't need it anymore). 2174 addDeferredDeclToEmit(DDI->second); 2175 DeferredDecls.erase(DDI); 2176 2177 // Otherwise, there are cases we have to worry about where we're 2178 // using a declaration for which we must emit a definition but where 2179 // we might not find a top-level definition: 2180 // - member functions defined inline in their classes 2181 // - friend functions defined inline in some class 2182 // - special member functions with implicit definitions 2183 // If we ever change our AST traversal to walk into class methods, 2184 // this will be unnecessary. 2185 // 2186 // We also don't emit a definition for a function if it's going to be an 2187 // entry in a vtable, unless it's already marked as used. 2188 } else if (getLangOpts().CPlusPlus && D) { 2189 // Look for a declaration that's lexically in a record. 2190 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2191 FD = FD->getPreviousDecl()) { 2192 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2193 if (FD->doesThisDeclarationHaveABody()) { 2194 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2195 break; 2196 } 2197 } 2198 } 2199 } 2200 } 2201 2202 // Make sure the result is of the requested type. 2203 if (!IsIncompleteFunction) { 2204 assert(F->getType()->getElementType() == Ty); 2205 return F; 2206 } 2207 2208 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2209 return llvm::ConstantExpr::getBitCast(F, PTy); 2210 } 2211 2212 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2213 /// non-null, then this function will use the specified type if it has to 2214 /// create it (this occurs when we see a definition of the function). 2215 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2216 llvm::Type *Ty, 2217 bool ForVTable, 2218 bool DontDefer, 2219 ForDefinition_t IsForDefinition) { 2220 // If there was no specific requested type, just convert it now. 2221 if (!Ty) { 2222 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2223 auto CanonTy = Context.getCanonicalType(FD->getType()); 2224 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2225 } 2226 2227 StringRef MangledName = getMangledName(GD); 2228 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2229 /*IsThunk=*/false, llvm::AttributeList(), 2230 IsForDefinition); 2231 } 2232 2233 static const FunctionDecl * 2234 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2235 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2236 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2237 2238 IdentifierInfo &CII = C.Idents.get(Name); 2239 for (const auto &Result : DC->lookup(&CII)) 2240 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2241 return FD; 2242 2243 if (!C.getLangOpts().CPlusPlus) 2244 return nullptr; 2245 2246 // Demangle the premangled name from getTerminateFn() 2247 IdentifierInfo &CXXII = 2248 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2249 ? C.Idents.get("terminate") 2250 : C.Idents.get(Name); 2251 2252 for (const auto &N : {"__cxxabiv1", "std"}) { 2253 IdentifierInfo &NS = C.Idents.get(N); 2254 for (const auto &Result : DC->lookup(&NS)) { 2255 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2256 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2257 for (const auto &Result : LSD->lookup(&NS)) 2258 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2259 break; 2260 2261 if (ND) 2262 for (const auto &Result : ND->lookup(&CXXII)) 2263 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2264 return FD; 2265 } 2266 } 2267 2268 return nullptr; 2269 } 2270 2271 /// CreateRuntimeFunction - Create a new runtime function with the specified 2272 /// type and name. 2273 llvm::Constant * 2274 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2275 llvm::AttributeList ExtraAttrs, 2276 bool Local) { 2277 llvm::Constant *C = 2278 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2279 /*DontDefer=*/false, /*IsThunk=*/false, 2280 ExtraAttrs); 2281 2282 if (auto *F = dyn_cast<llvm::Function>(C)) { 2283 if (F->empty()) { 2284 F->setCallingConv(getRuntimeCC()); 2285 2286 if (!Local && getTriple().isOSBinFormatCOFF() && 2287 !getCodeGenOpts().LTOVisibilityPublicStd && 2288 !getTriple().isWindowsGNUEnvironment()) { 2289 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2290 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2291 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2292 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2293 } 2294 } 2295 } 2296 } 2297 2298 return C; 2299 } 2300 2301 /// CreateBuiltinFunction - Create a new builtin function with the specified 2302 /// type and name. 2303 llvm::Constant * 2304 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2305 llvm::AttributeList ExtraAttrs) { 2306 llvm::Constant *C = 2307 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2308 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2309 if (auto *F = dyn_cast<llvm::Function>(C)) 2310 if (F->empty()) 2311 F->setCallingConv(getBuiltinCC()); 2312 return C; 2313 } 2314 2315 /// isTypeConstant - Determine whether an object of this type can be emitted 2316 /// as a constant. 2317 /// 2318 /// If ExcludeCtor is true, the duration when the object's constructor runs 2319 /// will not be considered. The caller will need to verify that the object is 2320 /// not written to during its construction. 2321 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2322 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2323 return false; 2324 2325 if (Context.getLangOpts().CPlusPlus) { 2326 if (const CXXRecordDecl *Record 2327 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2328 return ExcludeCtor && !Record->hasMutableFields() && 2329 Record->hasTrivialDestructor(); 2330 } 2331 2332 return true; 2333 } 2334 2335 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2336 /// create and return an llvm GlobalVariable with the specified type. If there 2337 /// is something in the module with the specified name, return it potentially 2338 /// bitcasted to the right type. 2339 /// 2340 /// If D is non-null, it specifies a decl that correspond to this. This is used 2341 /// to set the attributes on the global when it is first created. 2342 /// 2343 /// If IsForDefinition is true, it is guranteed that an actual global with 2344 /// type Ty will be returned, not conversion of a variable with the same 2345 /// mangled name but some other type. 2346 llvm::Constant * 2347 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2348 llvm::PointerType *Ty, 2349 const VarDecl *D, 2350 ForDefinition_t IsForDefinition) { 2351 // Lookup the entry, lazily creating it if necessary. 2352 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2353 if (Entry) { 2354 if (WeakRefReferences.erase(Entry)) { 2355 if (D && !D->hasAttr<WeakAttr>()) 2356 Entry->setLinkage(llvm::Function::ExternalLinkage); 2357 } 2358 2359 // Handle dropped DLL attributes. 2360 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2361 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2362 2363 if (Entry->getType() == Ty) 2364 return Entry; 2365 2366 // If there are two attempts to define the same mangled name, issue an 2367 // error. 2368 if (IsForDefinition && !Entry->isDeclaration()) { 2369 GlobalDecl OtherGD; 2370 const VarDecl *OtherD; 2371 2372 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2373 // to make sure that we issue an error only once. 2374 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2375 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2376 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2377 OtherD->hasInit() && 2378 DiagnosedConflictingDefinitions.insert(D).second) { 2379 getDiags().Report(D->getLocation(), 2380 diag::err_duplicate_mangled_name); 2381 getDiags().Report(OtherGD.getDecl()->getLocation(), 2382 diag::note_previous_definition); 2383 } 2384 } 2385 2386 // Make sure the result is of the correct type. 2387 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2388 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2389 2390 // (If global is requested for a definition, we always need to create a new 2391 // global, not just return a bitcast.) 2392 if (!IsForDefinition) 2393 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2394 } 2395 2396 auto AddrSpace = GetGlobalVarAddressSpace(D); 2397 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2398 2399 auto *GV = new llvm::GlobalVariable( 2400 getModule(), Ty->getElementType(), false, 2401 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2402 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2403 2404 // If we already created a global with the same mangled name (but different 2405 // type) before, take its name and remove it from its parent. 2406 if (Entry) { 2407 GV->takeName(Entry); 2408 2409 if (!Entry->use_empty()) { 2410 llvm::Constant *NewPtrForOldDecl = 2411 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2412 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2413 } 2414 2415 Entry->eraseFromParent(); 2416 } 2417 2418 // This is the first use or definition of a mangled name. If there is a 2419 // deferred decl with this name, remember that we need to emit it at the end 2420 // of the file. 2421 auto DDI = DeferredDecls.find(MangledName); 2422 if (DDI != DeferredDecls.end()) { 2423 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2424 // list, and remove it from DeferredDecls (since we don't need it anymore). 2425 addDeferredDeclToEmit(DDI->second); 2426 DeferredDecls.erase(DDI); 2427 } 2428 2429 // Handle things which are present even on external declarations. 2430 if (D) { 2431 // FIXME: This code is overly simple and should be merged with other global 2432 // handling. 2433 GV->setConstant(isTypeConstant(D->getType(), false)); 2434 2435 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2436 2437 setLinkageAndVisibilityForGV(GV, D); 2438 2439 if (D->getTLSKind()) { 2440 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2441 CXXThreadLocals.push_back(D); 2442 setTLSMode(GV, *D); 2443 } 2444 2445 // If required by the ABI, treat declarations of static data members with 2446 // inline initializers as definitions. 2447 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2448 EmitGlobalVarDefinition(D); 2449 } 2450 2451 // Emit section information for extern variables. 2452 if (D->hasExternalStorage()) { 2453 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2454 GV->setSection(SA->getName()); 2455 } 2456 2457 // Handle XCore specific ABI requirements. 2458 if (getTriple().getArch() == llvm::Triple::xcore && 2459 D->getLanguageLinkage() == CLanguageLinkage && 2460 D->getType().isConstant(Context) && 2461 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2462 GV->setSection(".cp.rodata"); 2463 2464 // Check if we a have a const declaration with an initializer, we may be 2465 // able to emit it as available_externally to expose it's value to the 2466 // optimizer. 2467 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2468 D->getType().isConstQualified() && !GV->hasInitializer() && 2469 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2470 const auto *Record = 2471 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2472 bool HasMutableFields = Record && Record->hasMutableFields(); 2473 if (!HasMutableFields) { 2474 const VarDecl *InitDecl; 2475 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2476 if (InitExpr) { 2477 ConstantEmitter emitter(*this); 2478 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2479 if (Init) { 2480 auto *InitType = Init->getType(); 2481 if (GV->getType()->getElementType() != InitType) { 2482 // The type of the initializer does not match the definition. 2483 // This happens when an initializer has a different type from 2484 // the type of the global (because of padding at the end of a 2485 // structure for instance). 2486 GV->setName(StringRef()); 2487 // Make a new global with the correct type, this is now guaranteed 2488 // to work. 2489 auto *NewGV = cast<llvm::GlobalVariable>( 2490 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2491 2492 // Erase the old global, since it is no longer used. 2493 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2494 GV = NewGV; 2495 } else { 2496 GV->setInitializer(Init); 2497 GV->setConstant(true); 2498 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2499 } 2500 emitter.finalize(GV); 2501 } 2502 } 2503 } 2504 } 2505 } 2506 2507 LangAS ExpectedAS = 2508 D ? D->getType().getAddressSpace() 2509 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2510 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2511 Ty->getPointerAddressSpace()); 2512 if (AddrSpace != ExpectedAS) 2513 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2514 ExpectedAS, Ty); 2515 2516 return GV; 2517 } 2518 2519 llvm::Constant * 2520 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2521 ForDefinition_t IsForDefinition) { 2522 const Decl *D = GD.getDecl(); 2523 if (isa<CXXConstructorDecl>(D)) 2524 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2525 getFromCtorType(GD.getCtorType()), 2526 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2527 /*DontDefer=*/false, IsForDefinition); 2528 else if (isa<CXXDestructorDecl>(D)) 2529 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2530 getFromDtorType(GD.getDtorType()), 2531 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2532 /*DontDefer=*/false, IsForDefinition); 2533 else if (isa<CXXMethodDecl>(D)) { 2534 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2535 cast<CXXMethodDecl>(D)); 2536 auto Ty = getTypes().GetFunctionType(*FInfo); 2537 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2538 IsForDefinition); 2539 } else if (isa<FunctionDecl>(D)) { 2540 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2541 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2542 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2543 IsForDefinition); 2544 } else 2545 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2546 IsForDefinition); 2547 } 2548 2549 llvm::GlobalVariable * 2550 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2551 llvm::Type *Ty, 2552 llvm::GlobalValue::LinkageTypes Linkage) { 2553 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2554 llvm::GlobalVariable *OldGV = nullptr; 2555 2556 if (GV) { 2557 // Check if the variable has the right type. 2558 if (GV->getType()->getElementType() == Ty) 2559 return GV; 2560 2561 // Because C++ name mangling, the only way we can end up with an already 2562 // existing global with the same name is if it has been declared extern "C". 2563 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2564 OldGV = GV; 2565 } 2566 2567 // Create a new variable. 2568 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2569 Linkage, nullptr, Name); 2570 2571 if (OldGV) { 2572 // Replace occurrences of the old variable if needed. 2573 GV->takeName(OldGV); 2574 2575 if (!OldGV->use_empty()) { 2576 llvm::Constant *NewPtrForOldDecl = 2577 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2578 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2579 } 2580 2581 OldGV->eraseFromParent(); 2582 } 2583 2584 if (supportsCOMDAT() && GV->isWeakForLinker() && 2585 !GV->hasAvailableExternallyLinkage()) 2586 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2587 2588 return GV; 2589 } 2590 2591 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2592 /// given global variable. If Ty is non-null and if the global doesn't exist, 2593 /// then it will be created with the specified type instead of whatever the 2594 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2595 /// that an actual global with type Ty will be returned, not conversion of a 2596 /// variable with the same mangled name but some other type. 2597 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2598 llvm::Type *Ty, 2599 ForDefinition_t IsForDefinition) { 2600 assert(D->hasGlobalStorage() && "Not a global variable"); 2601 QualType ASTTy = D->getType(); 2602 if (!Ty) 2603 Ty = getTypes().ConvertTypeForMem(ASTTy); 2604 2605 llvm::PointerType *PTy = 2606 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2607 2608 StringRef MangledName = getMangledName(D); 2609 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2610 } 2611 2612 /// CreateRuntimeVariable - Create a new runtime global variable with the 2613 /// specified type and name. 2614 llvm::Constant * 2615 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2616 StringRef Name) { 2617 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2618 } 2619 2620 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2621 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2622 2623 StringRef MangledName = getMangledName(D); 2624 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2625 2626 // We already have a definition, not declaration, with the same mangled name. 2627 // Emitting of declaration is not required (and actually overwrites emitted 2628 // definition). 2629 if (GV && !GV->isDeclaration()) 2630 return; 2631 2632 // If we have not seen a reference to this variable yet, place it into the 2633 // deferred declarations table to be emitted if needed later. 2634 if (!MustBeEmitted(D) && !GV) { 2635 DeferredDecls[MangledName] = D; 2636 return; 2637 } 2638 2639 // The tentative definition is the only definition. 2640 EmitGlobalVarDefinition(D); 2641 } 2642 2643 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2644 return Context.toCharUnitsFromBits( 2645 getDataLayout().getTypeStoreSizeInBits(Ty)); 2646 } 2647 2648 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2649 LangAS AddrSpace = LangAS::Default; 2650 if (LangOpts.OpenCL) { 2651 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2652 assert(AddrSpace == LangAS::opencl_global || 2653 AddrSpace == LangAS::opencl_constant || 2654 AddrSpace == LangAS::opencl_local || 2655 AddrSpace >= LangAS::FirstTargetAddressSpace); 2656 return AddrSpace; 2657 } 2658 2659 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2660 if (D && D->hasAttr<CUDAConstantAttr>()) 2661 return LangAS::cuda_constant; 2662 else if (D && D->hasAttr<CUDASharedAttr>()) 2663 return LangAS::cuda_shared; 2664 else 2665 return LangAS::cuda_device; 2666 } 2667 2668 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2669 } 2670 2671 template<typename SomeDecl> 2672 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2673 llvm::GlobalValue *GV) { 2674 if (!getLangOpts().CPlusPlus) 2675 return; 2676 2677 // Must have 'used' attribute, or else inline assembly can't rely on 2678 // the name existing. 2679 if (!D->template hasAttr<UsedAttr>()) 2680 return; 2681 2682 // Must have internal linkage and an ordinary name. 2683 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2684 return; 2685 2686 // Must be in an extern "C" context. Entities declared directly within 2687 // a record are not extern "C" even if the record is in such a context. 2688 const SomeDecl *First = D->getFirstDecl(); 2689 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2690 return; 2691 2692 // OK, this is an internal linkage entity inside an extern "C" linkage 2693 // specification. Make a note of that so we can give it the "expected" 2694 // mangled name if nothing else is using that name. 2695 std::pair<StaticExternCMap::iterator, bool> R = 2696 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2697 2698 // If we have multiple internal linkage entities with the same name 2699 // in extern "C" regions, none of them gets that name. 2700 if (!R.second) 2701 R.first->second = nullptr; 2702 } 2703 2704 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2705 if (!CGM.supportsCOMDAT()) 2706 return false; 2707 2708 if (D.hasAttr<SelectAnyAttr>()) 2709 return true; 2710 2711 GVALinkage Linkage; 2712 if (auto *VD = dyn_cast<VarDecl>(&D)) 2713 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2714 else 2715 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2716 2717 switch (Linkage) { 2718 case GVA_Internal: 2719 case GVA_AvailableExternally: 2720 case GVA_StrongExternal: 2721 return false; 2722 case GVA_DiscardableODR: 2723 case GVA_StrongODR: 2724 return true; 2725 } 2726 llvm_unreachable("No such linkage"); 2727 } 2728 2729 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2730 llvm::GlobalObject &GO) { 2731 if (!shouldBeInCOMDAT(*this, D)) 2732 return; 2733 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2734 } 2735 2736 /// Pass IsTentative as true if you want to create a tentative definition. 2737 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2738 bool IsTentative) { 2739 // OpenCL global variables of sampler type are translated to function calls, 2740 // therefore no need to be translated. 2741 QualType ASTTy = D->getType(); 2742 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2743 return; 2744 2745 llvm::Constant *Init = nullptr; 2746 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2747 bool NeedsGlobalCtor = false; 2748 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2749 2750 const VarDecl *InitDecl; 2751 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2752 2753 Optional<ConstantEmitter> emitter; 2754 2755 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2756 // as part of their declaration." Sema has already checked for 2757 // error cases, so we just need to set Init to UndefValue. 2758 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2759 D->hasAttr<CUDASharedAttr>()) 2760 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2761 else if (!InitExpr) { 2762 // This is a tentative definition; tentative definitions are 2763 // implicitly initialized with { 0 }. 2764 // 2765 // Note that tentative definitions are only emitted at the end of 2766 // a translation unit, so they should never have incomplete 2767 // type. In addition, EmitTentativeDefinition makes sure that we 2768 // never attempt to emit a tentative definition if a real one 2769 // exists. A use may still exists, however, so we still may need 2770 // to do a RAUW. 2771 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2772 Init = EmitNullConstant(D->getType()); 2773 } else { 2774 initializedGlobalDecl = GlobalDecl(D); 2775 emitter.emplace(*this); 2776 Init = emitter->tryEmitForInitializer(*InitDecl); 2777 2778 if (!Init) { 2779 QualType T = InitExpr->getType(); 2780 if (D->getType()->isReferenceType()) 2781 T = D->getType(); 2782 2783 if (getLangOpts().CPlusPlus) { 2784 Init = EmitNullConstant(T); 2785 NeedsGlobalCtor = true; 2786 } else { 2787 ErrorUnsupported(D, "static initializer"); 2788 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2789 } 2790 } else { 2791 // We don't need an initializer, so remove the entry for the delayed 2792 // initializer position (just in case this entry was delayed) if we 2793 // also don't need to register a destructor. 2794 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2795 DelayedCXXInitPosition.erase(D); 2796 } 2797 } 2798 2799 llvm::Type* InitType = Init->getType(); 2800 llvm::Constant *Entry = 2801 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2802 2803 // Strip off a bitcast if we got one back. 2804 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2805 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2806 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2807 // All zero index gep. 2808 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2809 Entry = CE->getOperand(0); 2810 } 2811 2812 // Entry is now either a Function or GlobalVariable. 2813 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2814 2815 // We have a definition after a declaration with the wrong type. 2816 // We must make a new GlobalVariable* and update everything that used OldGV 2817 // (a declaration or tentative definition) with the new GlobalVariable* 2818 // (which will be a definition). 2819 // 2820 // This happens if there is a prototype for a global (e.g. 2821 // "extern int x[];") and then a definition of a different type (e.g. 2822 // "int x[10];"). This also happens when an initializer has a different type 2823 // from the type of the global (this happens with unions). 2824 if (!GV || GV->getType()->getElementType() != InitType || 2825 GV->getType()->getAddressSpace() != 2826 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2827 2828 // Move the old entry aside so that we'll create a new one. 2829 Entry->setName(StringRef()); 2830 2831 // Make a new global with the correct type, this is now guaranteed to work. 2832 GV = cast<llvm::GlobalVariable>( 2833 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2834 2835 // Replace all uses of the old global with the new global 2836 llvm::Constant *NewPtrForOldDecl = 2837 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2838 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2839 2840 // Erase the old global, since it is no longer used. 2841 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2842 } 2843 2844 MaybeHandleStaticInExternC(D, GV); 2845 2846 if (D->hasAttr<AnnotateAttr>()) 2847 AddGlobalAnnotations(D, GV); 2848 2849 // Set the llvm linkage type as appropriate. 2850 llvm::GlobalValue::LinkageTypes Linkage = 2851 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2852 2853 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2854 // the device. [...]" 2855 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2856 // __device__, declares a variable that: [...] 2857 // Is accessible from all the threads within the grid and from the host 2858 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2859 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2860 if (GV && LangOpts.CUDA) { 2861 if (LangOpts.CUDAIsDevice) { 2862 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2863 GV->setExternallyInitialized(true); 2864 } else { 2865 // Host-side shadows of external declarations of device-side 2866 // global variables become internal definitions. These have to 2867 // be internal in order to prevent name conflicts with global 2868 // host variables with the same name in a different TUs. 2869 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2870 Linkage = llvm::GlobalValue::InternalLinkage; 2871 2872 // Shadow variables and their properties must be registered 2873 // with CUDA runtime. 2874 unsigned Flags = 0; 2875 if (!D->hasDefinition()) 2876 Flags |= CGCUDARuntime::ExternDeviceVar; 2877 if (D->hasAttr<CUDAConstantAttr>()) 2878 Flags |= CGCUDARuntime::ConstantDeviceVar; 2879 getCUDARuntime().registerDeviceVar(*GV, Flags); 2880 } else if (D->hasAttr<CUDASharedAttr>()) 2881 // __shared__ variables are odd. Shadows do get created, but 2882 // they are not registered with the CUDA runtime, so they 2883 // can't really be used to access their device-side 2884 // counterparts. It's not clear yet whether it's nvcc's bug or 2885 // a feature, but we've got to do the same for compatibility. 2886 Linkage = llvm::GlobalValue::InternalLinkage; 2887 } 2888 } 2889 2890 GV->setInitializer(Init); 2891 if (emitter) emitter->finalize(GV); 2892 2893 // If it is safe to mark the global 'constant', do so now. 2894 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2895 isTypeConstant(D->getType(), true)); 2896 2897 // If it is in a read-only section, mark it 'constant'. 2898 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2899 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2900 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2901 GV->setConstant(true); 2902 } 2903 2904 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2905 2906 2907 // On Darwin, if the normal linkage of a C++ thread_local variable is 2908 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2909 // copies within a linkage unit; otherwise, the backing variable has 2910 // internal linkage and all accesses should just be calls to the 2911 // Itanium-specified entry point, which has the normal linkage of the 2912 // variable. This is to preserve the ability to change the implementation 2913 // behind the scenes. 2914 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2915 Context.getTargetInfo().getTriple().isOSDarwin() && 2916 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2917 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2918 Linkage = llvm::GlobalValue::InternalLinkage; 2919 2920 GV->setLinkage(Linkage); 2921 if (D->hasAttr<DLLImportAttr>()) 2922 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2923 else if (D->hasAttr<DLLExportAttr>()) 2924 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2925 else 2926 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2927 2928 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2929 // common vars aren't constant even if declared const. 2930 GV->setConstant(false); 2931 // Tentative definition of global variables may be initialized with 2932 // non-zero null pointers. In this case they should have weak linkage 2933 // since common linkage must have zero initializer and must not have 2934 // explicit section therefore cannot have non-zero initial value. 2935 if (!GV->getInitializer()->isNullValue()) 2936 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2937 } 2938 2939 setNonAliasAttributes(D, GV); 2940 2941 if (D->getTLSKind() && !GV->isThreadLocal()) { 2942 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2943 CXXThreadLocals.push_back(D); 2944 setTLSMode(GV, *D); 2945 } 2946 2947 maybeSetTrivialComdat(*D, *GV); 2948 2949 // Emit the initializer function if necessary. 2950 if (NeedsGlobalCtor || NeedsGlobalDtor) 2951 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2952 2953 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2954 2955 // Emit global variable debug information. 2956 if (CGDebugInfo *DI = getModuleDebugInfo()) 2957 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2958 DI->EmitGlobalVariable(GV, D); 2959 } 2960 2961 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2962 CodeGenModule &CGM, const VarDecl *D, 2963 bool NoCommon) { 2964 // Don't give variables common linkage if -fno-common was specified unless it 2965 // was overridden by a NoCommon attribute. 2966 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2967 return true; 2968 2969 // C11 6.9.2/2: 2970 // A declaration of an identifier for an object that has file scope without 2971 // an initializer, and without a storage-class specifier or with the 2972 // storage-class specifier static, constitutes a tentative definition. 2973 if (D->getInit() || D->hasExternalStorage()) 2974 return true; 2975 2976 // A variable cannot be both common and exist in a section. 2977 if (D->hasAttr<SectionAttr>()) 2978 return true; 2979 2980 // A variable cannot be both common and exist in a section. 2981 // We dont try to determine which is the right section in the front-end. 2982 // If no specialized section name is applicable, it will resort to default. 2983 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2984 D->hasAttr<PragmaClangDataSectionAttr>() || 2985 D->hasAttr<PragmaClangRodataSectionAttr>()) 2986 return true; 2987 2988 // Thread local vars aren't considered common linkage. 2989 if (D->getTLSKind()) 2990 return true; 2991 2992 // Tentative definitions marked with WeakImportAttr are true definitions. 2993 if (D->hasAttr<WeakImportAttr>()) 2994 return true; 2995 2996 // A variable cannot be both common and exist in a comdat. 2997 if (shouldBeInCOMDAT(CGM, *D)) 2998 return true; 2999 3000 // Declarations with a required alignment do not have common linkage in MSVC 3001 // mode. 3002 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3003 if (D->hasAttr<AlignedAttr>()) 3004 return true; 3005 QualType VarType = D->getType(); 3006 if (Context.isAlignmentRequired(VarType)) 3007 return true; 3008 3009 if (const auto *RT = VarType->getAs<RecordType>()) { 3010 const RecordDecl *RD = RT->getDecl(); 3011 for (const FieldDecl *FD : RD->fields()) { 3012 if (FD->isBitField()) 3013 continue; 3014 if (FD->hasAttr<AlignedAttr>()) 3015 return true; 3016 if (Context.isAlignmentRequired(FD->getType())) 3017 return true; 3018 } 3019 } 3020 } 3021 3022 return false; 3023 } 3024 3025 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3026 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3027 if (Linkage == GVA_Internal) 3028 return llvm::Function::InternalLinkage; 3029 3030 if (D->hasAttr<WeakAttr>()) { 3031 if (IsConstantVariable) 3032 return llvm::GlobalVariable::WeakODRLinkage; 3033 else 3034 return llvm::GlobalVariable::WeakAnyLinkage; 3035 } 3036 3037 // We are guaranteed to have a strong definition somewhere else, 3038 // so we can use available_externally linkage. 3039 if (Linkage == GVA_AvailableExternally) 3040 return llvm::GlobalValue::AvailableExternallyLinkage; 3041 3042 // Note that Apple's kernel linker doesn't support symbol 3043 // coalescing, so we need to avoid linkonce and weak linkages there. 3044 // Normally, this means we just map to internal, but for explicit 3045 // instantiations we'll map to external. 3046 3047 // In C++, the compiler has to emit a definition in every translation unit 3048 // that references the function. We should use linkonce_odr because 3049 // a) if all references in this translation unit are optimized away, we 3050 // don't need to codegen it. b) if the function persists, it needs to be 3051 // merged with other definitions. c) C++ has the ODR, so we know the 3052 // definition is dependable. 3053 if (Linkage == GVA_DiscardableODR) 3054 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3055 : llvm::Function::InternalLinkage; 3056 3057 // An explicit instantiation of a template has weak linkage, since 3058 // explicit instantiations can occur in multiple translation units 3059 // and must all be equivalent. However, we are not allowed to 3060 // throw away these explicit instantiations. 3061 // 3062 // We don't currently support CUDA device code spread out across multiple TUs, 3063 // so say that CUDA templates are either external (for kernels) or internal. 3064 // This lets llvm perform aggressive inter-procedural optimizations. 3065 if (Linkage == GVA_StrongODR) { 3066 if (Context.getLangOpts().AppleKext) 3067 return llvm::Function::ExternalLinkage; 3068 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3069 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3070 : llvm::Function::InternalLinkage; 3071 return llvm::Function::WeakODRLinkage; 3072 } 3073 3074 // C++ doesn't have tentative definitions and thus cannot have common 3075 // linkage. 3076 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3077 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3078 CodeGenOpts.NoCommon)) 3079 return llvm::GlobalVariable::CommonLinkage; 3080 3081 // selectany symbols are externally visible, so use weak instead of 3082 // linkonce. MSVC optimizes away references to const selectany globals, so 3083 // all definitions should be the same and ODR linkage should be used. 3084 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3085 if (D->hasAttr<SelectAnyAttr>()) 3086 return llvm::GlobalVariable::WeakODRLinkage; 3087 3088 // Otherwise, we have strong external linkage. 3089 assert(Linkage == GVA_StrongExternal); 3090 return llvm::GlobalVariable::ExternalLinkage; 3091 } 3092 3093 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3094 const VarDecl *VD, bool IsConstant) { 3095 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3096 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3097 } 3098 3099 /// Replace the uses of a function that was declared with a non-proto type. 3100 /// We want to silently drop extra arguments from call sites 3101 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3102 llvm::Function *newFn) { 3103 // Fast path. 3104 if (old->use_empty()) return; 3105 3106 llvm::Type *newRetTy = newFn->getReturnType(); 3107 SmallVector<llvm::Value*, 4> newArgs; 3108 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3109 3110 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3111 ui != ue; ) { 3112 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3113 llvm::User *user = use->getUser(); 3114 3115 // Recognize and replace uses of bitcasts. Most calls to 3116 // unprototyped functions will use bitcasts. 3117 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3118 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3119 replaceUsesOfNonProtoConstant(bitcast, newFn); 3120 continue; 3121 } 3122 3123 // Recognize calls to the function. 3124 llvm::CallSite callSite(user); 3125 if (!callSite) continue; 3126 if (!callSite.isCallee(&*use)) continue; 3127 3128 // If the return types don't match exactly, then we can't 3129 // transform this call unless it's dead. 3130 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3131 continue; 3132 3133 // Get the call site's attribute list. 3134 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3135 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3136 3137 // If the function was passed too few arguments, don't transform. 3138 unsigned newNumArgs = newFn->arg_size(); 3139 if (callSite.arg_size() < newNumArgs) continue; 3140 3141 // If extra arguments were passed, we silently drop them. 3142 // If any of the types mismatch, we don't transform. 3143 unsigned argNo = 0; 3144 bool dontTransform = false; 3145 for (llvm::Argument &A : newFn->args()) { 3146 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3147 dontTransform = true; 3148 break; 3149 } 3150 3151 // Add any parameter attributes. 3152 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3153 argNo++; 3154 } 3155 if (dontTransform) 3156 continue; 3157 3158 // Okay, we can transform this. Create the new call instruction and copy 3159 // over the required information. 3160 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3161 3162 // Copy over any operand bundles. 3163 callSite.getOperandBundlesAsDefs(newBundles); 3164 3165 llvm::CallSite newCall; 3166 if (callSite.isCall()) { 3167 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3168 callSite.getInstruction()); 3169 } else { 3170 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3171 newCall = llvm::InvokeInst::Create(newFn, 3172 oldInvoke->getNormalDest(), 3173 oldInvoke->getUnwindDest(), 3174 newArgs, newBundles, "", 3175 callSite.getInstruction()); 3176 } 3177 newArgs.clear(); // for the next iteration 3178 3179 if (!newCall->getType()->isVoidTy()) 3180 newCall->takeName(callSite.getInstruction()); 3181 newCall.setAttributes(llvm::AttributeList::get( 3182 newFn->getContext(), oldAttrs.getFnAttributes(), 3183 oldAttrs.getRetAttributes(), newArgAttrs)); 3184 newCall.setCallingConv(callSite.getCallingConv()); 3185 3186 // Finally, remove the old call, replacing any uses with the new one. 3187 if (!callSite->use_empty()) 3188 callSite->replaceAllUsesWith(newCall.getInstruction()); 3189 3190 // Copy debug location attached to CI. 3191 if (callSite->getDebugLoc()) 3192 newCall->setDebugLoc(callSite->getDebugLoc()); 3193 3194 callSite->eraseFromParent(); 3195 } 3196 } 3197 3198 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3199 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3200 /// existing call uses of the old function in the module, this adjusts them to 3201 /// call the new function directly. 3202 /// 3203 /// This is not just a cleanup: the always_inline pass requires direct calls to 3204 /// functions to be able to inline them. If there is a bitcast in the way, it 3205 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3206 /// run at -O0. 3207 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3208 llvm::Function *NewFn) { 3209 // If we're redefining a global as a function, don't transform it. 3210 if (!isa<llvm::Function>(Old)) return; 3211 3212 replaceUsesOfNonProtoConstant(Old, NewFn); 3213 } 3214 3215 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3216 auto DK = VD->isThisDeclarationADefinition(); 3217 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3218 return; 3219 3220 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3221 // If we have a definition, this might be a deferred decl. If the 3222 // instantiation is explicit, make sure we emit it at the end. 3223 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3224 GetAddrOfGlobalVar(VD); 3225 3226 EmitTopLevelDecl(VD); 3227 } 3228 3229 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3230 llvm::GlobalValue *GV) { 3231 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3232 3233 // Compute the function info and LLVM type. 3234 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3235 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3236 3237 // Get or create the prototype for the function. 3238 if (!GV || (GV->getType()->getElementType() != Ty)) 3239 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3240 /*DontDefer=*/true, 3241 ForDefinition)); 3242 3243 // Already emitted. 3244 if (!GV->isDeclaration()) 3245 return; 3246 3247 // We need to set linkage and visibility on the function before 3248 // generating code for it because various parts of IR generation 3249 // want to propagate this information down (e.g. to local static 3250 // declarations). 3251 auto *Fn = cast<llvm::Function>(GV); 3252 setFunctionLinkage(GD, Fn); 3253 setFunctionDLLStorageClass(GD, Fn); 3254 3255 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3256 setGlobalVisibility(Fn, D); 3257 3258 MaybeHandleStaticInExternC(D, Fn); 3259 3260 maybeSetTrivialComdat(*D, *Fn); 3261 3262 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3263 3264 setFunctionDefinitionAttributes(D, Fn); 3265 SetLLVMFunctionAttributesForDefinition(D, Fn); 3266 3267 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3268 AddGlobalCtor(Fn, CA->getPriority()); 3269 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3270 AddGlobalDtor(Fn, DA->getPriority()); 3271 if (D->hasAttr<AnnotateAttr>()) 3272 AddGlobalAnnotations(D, Fn); 3273 } 3274 3275 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3276 const auto *D = cast<ValueDecl>(GD.getDecl()); 3277 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3278 assert(AA && "Not an alias?"); 3279 3280 StringRef MangledName = getMangledName(GD); 3281 3282 if (AA->getAliasee() == MangledName) { 3283 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3284 return; 3285 } 3286 3287 // If there is a definition in the module, then it wins over the alias. 3288 // This is dubious, but allow it to be safe. Just ignore the alias. 3289 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3290 if (Entry && !Entry->isDeclaration()) 3291 return; 3292 3293 Aliases.push_back(GD); 3294 3295 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3296 3297 // Create a reference to the named value. This ensures that it is emitted 3298 // if a deferred decl. 3299 llvm::Constant *Aliasee; 3300 if (isa<llvm::FunctionType>(DeclTy)) 3301 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3302 /*ForVTable=*/false); 3303 else 3304 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3305 llvm::PointerType::getUnqual(DeclTy), 3306 /*D=*/nullptr); 3307 3308 // Create the new alias itself, but don't set a name yet. 3309 auto *GA = llvm::GlobalAlias::create( 3310 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3311 3312 if (Entry) { 3313 if (GA->getAliasee() == Entry) { 3314 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3315 return; 3316 } 3317 3318 assert(Entry->isDeclaration()); 3319 3320 // If there is a declaration in the module, then we had an extern followed 3321 // by the alias, as in: 3322 // extern int test6(); 3323 // ... 3324 // int test6() __attribute__((alias("test7"))); 3325 // 3326 // Remove it and replace uses of it with the alias. 3327 GA->takeName(Entry); 3328 3329 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3330 Entry->getType())); 3331 Entry->eraseFromParent(); 3332 } else { 3333 GA->setName(MangledName); 3334 } 3335 3336 // Set attributes which are particular to an alias; this is a 3337 // specialization of the attributes which may be set on a global 3338 // variable/function. 3339 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3340 D->isWeakImported()) { 3341 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3342 } 3343 3344 if (const auto *VD = dyn_cast<VarDecl>(D)) 3345 if (VD->getTLSKind()) 3346 setTLSMode(GA, *VD); 3347 3348 setAliasAttributes(D, GA); 3349 } 3350 3351 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3352 const auto *D = cast<ValueDecl>(GD.getDecl()); 3353 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3354 assert(IFA && "Not an ifunc?"); 3355 3356 StringRef MangledName = getMangledName(GD); 3357 3358 if (IFA->getResolver() == MangledName) { 3359 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3360 return; 3361 } 3362 3363 // Report an error if some definition overrides ifunc. 3364 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3365 if (Entry && !Entry->isDeclaration()) { 3366 GlobalDecl OtherGD; 3367 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3368 DiagnosedConflictingDefinitions.insert(GD).second) { 3369 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3370 Diags.Report(OtherGD.getDecl()->getLocation(), 3371 diag::note_previous_definition); 3372 } 3373 return; 3374 } 3375 3376 Aliases.push_back(GD); 3377 3378 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3379 llvm::Constant *Resolver = 3380 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3381 /*ForVTable=*/false); 3382 llvm::GlobalIFunc *GIF = 3383 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3384 "", Resolver, &getModule()); 3385 if (Entry) { 3386 if (GIF->getResolver() == Entry) { 3387 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3388 return; 3389 } 3390 assert(Entry->isDeclaration()); 3391 3392 // If there is a declaration in the module, then we had an extern followed 3393 // by the ifunc, as in: 3394 // extern int test(); 3395 // ... 3396 // int test() __attribute__((ifunc("resolver"))); 3397 // 3398 // Remove it and replace uses of it with the ifunc. 3399 GIF->takeName(Entry); 3400 3401 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3402 Entry->getType())); 3403 Entry->eraseFromParent(); 3404 } else 3405 GIF->setName(MangledName); 3406 3407 SetCommonAttributes(D, GIF); 3408 } 3409 3410 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3411 ArrayRef<llvm::Type*> Tys) { 3412 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3413 Tys); 3414 } 3415 3416 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3417 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3418 const StringLiteral *Literal, bool TargetIsLSB, 3419 bool &IsUTF16, unsigned &StringLength) { 3420 StringRef String = Literal->getString(); 3421 unsigned NumBytes = String.size(); 3422 3423 // Check for simple case. 3424 if (!Literal->containsNonAsciiOrNull()) { 3425 StringLength = NumBytes; 3426 return *Map.insert(std::make_pair(String, nullptr)).first; 3427 } 3428 3429 // Otherwise, convert the UTF8 literals into a string of shorts. 3430 IsUTF16 = true; 3431 3432 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3433 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3434 llvm::UTF16 *ToPtr = &ToBuf[0]; 3435 3436 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3437 ToPtr + NumBytes, llvm::strictConversion); 3438 3439 // ConvertUTF8toUTF16 returns the length in ToPtr. 3440 StringLength = ToPtr - &ToBuf[0]; 3441 3442 // Add an explicit null. 3443 *ToPtr = 0; 3444 return *Map.insert(std::make_pair( 3445 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3446 (StringLength + 1) * 2), 3447 nullptr)).first; 3448 } 3449 3450 ConstantAddress 3451 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3452 unsigned StringLength = 0; 3453 bool isUTF16 = false; 3454 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3455 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3456 getDataLayout().isLittleEndian(), isUTF16, 3457 StringLength); 3458 3459 if (auto *C = Entry.second) 3460 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3461 3462 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3463 llvm::Constant *Zeros[] = { Zero, Zero }; 3464 3465 // If we don't already have it, get __CFConstantStringClassReference. 3466 if (!CFConstantStringClassRef) { 3467 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3468 Ty = llvm::ArrayType::get(Ty, 0); 3469 llvm::Constant *GV = 3470 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3471 3472 if (getTriple().isOSBinFormatCOFF()) { 3473 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3474 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3475 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3476 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3477 3478 const VarDecl *VD = nullptr; 3479 for (const auto &Result : DC->lookup(&II)) 3480 if ((VD = dyn_cast<VarDecl>(Result))) 3481 break; 3482 3483 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3484 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3485 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3486 } else { 3487 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3488 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3489 } 3490 } 3491 3492 // Decay array -> ptr 3493 CFConstantStringClassRef = 3494 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3495 } 3496 3497 QualType CFTy = getContext().getCFConstantStringType(); 3498 3499 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3500 3501 ConstantInitBuilder Builder(*this); 3502 auto Fields = Builder.beginStruct(STy); 3503 3504 // Class pointer. 3505 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3506 3507 // Flags. 3508 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3509 3510 // String pointer. 3511 llvm::Constant *C = nullptr; 3512 if (isUTF16) { 3513 auto Arr = llvm::makeArrayRef( 3514 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3515 Entry.first().size() / 2); 3516 C = llvm::ConstantDataArray::get(VMContext, Arr); 3517 } else { 3518 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3519 } 3520 3521 // Note: -fwritable-strings doesn't make the backing store strings of 3522 // CFStrings writable. (See <rdar://problem/10657500>) 3523 auto *GV = 3524 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3525 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3526 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3527 // Don't enforce the target's minimum global alignment, since the only use 3528 // of the string is via this class initializer. 3529 CharUnits Align = isUTF16 3530 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3531 : getContext().getTypeAlignInChars(getContext().CharTy); 3532 GV->setAlignment(Align.getQuantity()); 3533 3534 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3535 // Without it LLVM can merge the string with a non unnamed_addr one during 3536 // LTO. Doing that changes the section it ends in, which surprises ld64. 3537 if (getTriple().isOSBinFormatMachO()) 3538 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3539 : "__TEXT,__cstring,cstring_literals"); 3540 3541 // String. 3542 llvm::Constant *Str = 3543 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3544 3545 if (isUTF16) 3546 // Cast the UTF16 string to the correct type. 3547 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3548 Fields.add(Str); 3549 3550 // String length. 3551 auto Ty = getTypes().ConvertType(getContext().LongTy); 3552 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3553 3554 CharUnits Alignment = getPointerAlign(); 3555 3556 // The struct. 3557 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3558 /*isConstant=*/false, 3559 llvm::GlobalVariable::PrivateLinkage); 3560 switch (getTriple().getObjectFormat()) { 3561 case llvm::Triple::UnknownObjectFormat: 3562 llvm_unreachable("unknown file format"); 3563 case llvm::Triple::COFF: 3564 case llvm::Triple::ELF: 3565 case llvm::Triple::Wasm: 3566 GV->setSection("cfstring"); 3567 break; 3568 case llvm::Triple::MachO: 3569 GV->setSection("__DATA,__cfstring"); 3570 break; 3571 } 3572 Entry.second = GV; 3573 3574 return ConstantAddress(GV, Alignment); 3575 } 3576 3577 bool CodeGenModule::getExpressionLocationsEnabled() const { 3578 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3579 } 3580 3581 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3582 if (ObjCFastEnumerationStateType.isNull()) { 3583 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3584 D->startDefinition(); 3585 3586 QualType FieldTypes[] = { 3587 Context.UnsignedLongTy, 3588 Context.getPointerType(Context.getObjCIdType()), 3589 Context.getPointerType(Context.UnsignedLongTy), 3590 Context.getConstantArrayType(Context.UnsignedLongTy, 3591 llvm::APInt(32, 5), ArrayType::Normal, 0) 3592 }; 3593 3594 for (size_t i = 0; i < 4; ++i) { 3595 FieldDecl *Field = FieldDecl::Create(Context, 3596 D, 3597 SourceLocation(), 3598 SourceLocation(), nullptr, 3599 FieldTypes[i], /*TInfo=*/nullptr, 3600 /*BitWidth=*/nullptr, 3601 /*Mutable=*/false, 3602 ICIS_NoInit); 3603 Field->setAccess(AS_public); 3604 D->addDecl(Field); 3605 } 3606 3607 D->completeDefinition(); 3608 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3609 } 3610 3611 return ObjCFastEnumerationStateType; 3612 } 3613 3614 llvm::Constant * 3615 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3616 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3617 3618 // Don't emit it as the address of the string, emit the string data itself 3619 // as an inline array. 3620 if (E->getCharByteWidth() == 1) { 3621 SmallString<64> Str(E->getString()); 3622 3623 // Resize the string to the right size, which is indicated by its type. 3624 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3625 Str.resize(CAT->getSize().getZExtValue()); 3626 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3627 } 3628 3629 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3630 llvm::Type *ElemTy = AType->getElementType(); 3631 unsigned NumElements = AType->getNumElements(); 3632 3633 // Wide strings have either 2-byte or 4-byte elements. 3634 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3635 SmallVector<uint16_t, 32> Elements; 3636 Elements.reserve(NumElements); 3637 3638 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3639 Elements.push_back(E->getCodeUnit(i)); 3640 Elements.resize(NumElements); 3641 return llvm::ConstantDataArray::get(VMContext, Elements); 3642 } 3643 3644 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3645 SmallVector<uint32_t, 32> Elements; 3646 Elements.reserve(NumElements); 3647 3648 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3649 Elements.push_back(E->getCodeUnit(i)); 3650 Elements.resize(NumElements); 3651 return llvm::ConstantDataArray::get(VMContext, Elements); 3652 } 3653 3654 static llvm::GlobalVariable * 3655 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3656 CodeGenModule &CGM, StringRef GlobalName, 3657 CharUnits Alignment) { 3658 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3659 unsigned AddrSpace = 0; 3660 if (CGM.getLangOpts().OpenCL) 3661 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3662 3663 llvm::Module &M = CGM.getModule(); 3664 // Create a global variable for this string 3665 auto *GV = new llvm::GlobalVariable( 3666 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3667 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3668 GV->setAlignment(Alignment.getQuantity()); 3669 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3670 if (GV->isWeakForLinker()) { 3671 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3672 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3673 } 3674 3675 return GV; 3676 } 3677 3678 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3679 /// constant array for the given string literal. 3680 ConstantAddress 3681 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3682 StringRef Name) { 3683 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3684 3685 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3686 llvm::GlobalVariable **Entry = nullptr; 3687 if (!LangOpts.WritableStrings) { 3688 Entry = &ConstantStringMap[C]; 3689 if (auto GV = *Entry) { 3690 if (Alignment.getQuantity() > GV->getAlignment()) 3691 GV->setAlignment(Alignment.getQuantity()); 3692 return ConstantAddress(GV, Alignment); 3693 } 3694 } 3695 3696 SmallString<256> MangledNameBuffer; 3697 StringRef GlobalVariableName; 3698 llvm::GlobalValue::LinkageTypes LT; 3699 3700 // Mangle the string literal if the ABI allows for it. However, we cannot 3701 // do this if we are compiling with ASan or -fwritable-strings because they 3702 // rely on strings having normal linkage. 3703 if (!LangOpts.WritableStrings && 3704 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3705 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3706 llvm::raw_svector_ostream Out(MangledNameBuffer); 3707 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3708 3709 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3710 GlobalVariableName = MangledNameBuffer; 3711 } else { 3712 LT = llvm::GlobalValue::PrivateLinkage; 3713 GlobalVariableName = Name; 3714 } 3715 3716 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3717 if (Entry) 3718 *Entry = GV; 3719 3720 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3721 QualType()); 3722 return ConstantAddress(GV, Alignment); 3723 } 3724 3725 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3726 /// array for the given ObjCEncodeExpr node. 3727 ConstantAddress 3728 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3729 std::string Str; 3730 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3731 3732 return GetAddrOfConstantCString(Str); 3733 } 3734 3735 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3736 /// the literal and a terminating '\0' character. 3737 /// The result has pointer to array type. 3738 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3739 const std::string &Str, const char *GlobalName) { 3740 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3741 CharUnits Alignment = 3742 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3743 3744 llvm::Constant *C = 3745 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3746 3747 // Don't share any string literals if strings aren't constant. 3748 llvm::GlobalVariable **Entry = nullptr; 3749 if (!LangOpts.WritableStrings) { 3750 Entry = &ConstantStringMap[C]; 3751 if (auto GV = *Entry) { 3752 if (Alignment.getQuantity() > GV->getAlignment()) 3753 GV->setAlignment(Alignment.getQuantity()); 3754 return ConstantAddress(GV, Alignment); 3755 } 3756 } 3757 3758 // Get the default prefix if a name wasn't specified. 3759 if (!GlobalName) 3760 GlobalName = ".str"; 3761 // Create a global variable for this. 3762 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3763 GlobalName, Alignment); 3764 if (Entry) 3765 *Entry = GV; 3766 return ConstantAddress(GV, Alignment); 3767 } 3768 3769 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3770 const MaterializeTemporaryExpr *E, const Expr *Init) { 3771 assert((E->getStorageDuration() == SD_Static || 3772 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3773 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3774 3775 // If we're not materializing a subobject of the temporary, keep the 3776 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3777 QualType MaterializedType = Init->getType(); 3778 if (Init == E->GetTemporaryExpr()) 3779 MaterializedType = E->getType(); 3780 3781 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3782 3783 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3784 return ConstantAddress(Slot, Align); 3785 3786 // FIXME: If an externally-visible declaration extends multiple temporaries, 3787 // we need to give each temporary the same name in every translation unit (and 3788 // we also need to make the temporaries externally-visible). 3789 SmallString<256> Name; 3790 llvm::raw_svector_ostream Out(Name); 3791 getCXXABI().getMangleContext().mangleReferenceTemporary( 3792 VD, E->getManglingNumber(), Out); 3793 3794 APValue *Value = nullptr; 3795 if (E->getStorageDuration() == SD_Static) { 3796 // We might have a cached constant initializer for this temporary. Note 3797 // that this might have a different value from the value computed by 3798 // evaluating the initializer if the surrounding constant expression 3799 // modifies the temporary. 3800 Value = getContext().getMaterializedTemporaryValue(E, false); 3801 if (Value && Value->isUninit()) 3802 Value = nullptr; 3803 } 3804 3805 // Try evaluating it now, it might have a constant initializer. 3806 Expr::EvalResult EvalResult; 3807 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3808 !EvalResult.hasSideEffects()) 3809 Value = &EvalResult.Val; 3810 3811 LangAS AddrSpace = 3812 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3813 3814 Optional<ConstantEmitter> emitter; 3815 llvm::Constant *InitialValue = nullptr; 3816 bool Constant = false; 3817 llvm::Type *Type; 3818 if (Value) { 3819 // The temporary has a constant initializer, use it. 3820 emitter.emplace(*this); 3821 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3822 MaterializedType); 3823 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3824 Type = InitialValue->getType(); 3825 } else { 3826 // No initializer, the initialization will be provided when we 3827 // initialize the declaration which performed lifetime extension. 3828 Type = getTypes().ConvertTypeForMem(MaterializedType); 3829 } 3830 3831 // Create a global variable for this lifetime-extended temporary. 3832 llvm::GlobalValue::LinkageTypes Linkage = 3833 getLLVMLinkageVarDefinition(VD, Constant); 3834 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3835 const VarDecl *InitVD; 3836 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3837 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3838 // Temporaries defined inside a class get linkonce_odr linkage because the 3839 // class can be defined in multipe translation units. 3840 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3841 } else { 3842 // There is no need for this temporary to have external linkage if the 3843 // VarDecl has external linkage. 3844 Linkage = llvm::GlobalVariable::InternalLinkage; 3845 } 3846 } 3847 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3848 auto *GV = new llvm::GlobalVariable( 3849 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3850 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3851 if (emitter) emitter->finalize(GV); 3852 setGlobalVisibility(GV, VD); 3853 GV->setAlignment(Align.getQuantity()); 3854 if (supportsCOMDAT() && GV->isWeakForLinker()) 3855 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3856 if (VD->getTLSKind()) 3857 setTLSMode(GV, *VD); 3858 llvm::Constant *CV = GV; 3859 if (AddrSpace != LangAS::Default) 3860 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3861 *this, GV, AddrSpace, LangAS::Default, 3862 Type->getPointerTo( 3863 getContext().getTargetAddressSpace(LangAS::Default))); 3864 MaterializedGlobalTemporaryMap[E] = CV; 3865 return ConstantAddress(CV, Align); 3866 } 3867 3868 /// EmitObjCPropertyImplementations - Emit information for synthesized 3869 /// properties for an implementation. 3870 void CodeGenModule::EmitObjCPropertyImplementations(const 3871 ObjCImplementationDecl *D) { 3872 for (const auto *PID : D->property_impls()) { 3873 // Dynamic is just for type-checking. 3874 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3875 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3876 3877 // Determine which methods need to be implemented, some may have 3878 // been overridden. Note that ::isPropertyAccessor is not the method 3879 // we want, that just indicates if the decl came from a 3880 // property. What we want to know is if the method is defined in 3881 // this implementation. 3882 if (!D->getInstanceMethod(PD->getGetterName())) 3883 CodeGenFunction(*this).GenerateObjCGetter( 3884 const_cast<ObjCImplementationDecl *>(D), PID); 3885 if (!PD->isReadOnly() && 3886 !D->getInstanceMethod(PD->getSetterName())) 3887 CodeGenFunction(*this).GenerateObjCSetter( 3888 const_cast<ObjCImplementationDecl *>(D), PID); 3889 } 3890 } 3891 } 3892 3893 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3894 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3895 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3896 ivar; ivar = ivar->getNextIvar()) 3897 if (ivar->getType().isDestructedType()) 3898 return true; 3899 3900 return false; 3901 } 3902 3903 static bool AllTrivialInitializers(CodeGenModule &CGM, 3904 ObjCImplementationDecl *D) { 3905 CodeGenFunction CGF(CGM); 3906 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3907 E = D->init_end(); B != E; ++B) { 3908 CXXCtorInitializer *CtorInitExp = *B; 3909 Expr *Init = CtorInitExp->getInit(); 3910 if (!CGF.isTrivialInitializer(Init)) 3911 return false; 3912 } 3913 return true; 3914 } 3915 3916 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3917 /// for an implementation. 3918 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3919 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3920 if (needsDestructMethod(D)) { 3921 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3922 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3923 ObjCMethodDecl *DTORMethod = 3924 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3925 cxxSelector, getContext().VoidTy, nullptr, D, 3926 /*isInstance=*/true, /*isVariadic=*/false, 3927 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3928 /*isDefined=*/false, ObjCMethodDecl::Required); 3929 D->addInstanceMethod(DTORMethod); 3930 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3931 D->setHasDestructors(true); 3932 } 3933 3934 // If the implementation doesn't have any ivar initializers, we don't need 3935 // a .cxx_construct. 3936 if (D->getNumIvarInitializers() == 0 || 3937 AllTrivialInitializers(*this, D)) 3938 return; 3939 3940 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3941 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3942 // The constructor returns 'self'. 3943 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3944 D->getLocation(), 3945 D->getLocation(), 3946 cxxSelector, 3947 getContext().getObjCIdType(), 3948 nullptr, D, /*isInstance=*/true, 3949 /*isVariadic=*/false, 3950 /*isPropertyAccessor=*/true, 3951 /*isImplicitlyDeclared=*/true, 3952 /*isDefined=*/false, 3953 ObjCMethodDecl::Required); 3954 D->addInstanceMethod(CTORMethod); 3955 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3956 D->setHasNonZeroConstructors(true); 3957 } 3958 3959 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3960 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3961 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3962 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3963 ErrorUnsupported(LSD, "linkage spec"); 3964 return; 3965 } 3966 3967 EmitDeclContext(LSD); 3968 } 3969 3970 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3971 for (auto *I : DC->decls()) { 3972 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3973 // are themselves considered "top-level", so EmitTopLevelDecl on an 3974 // ObjCImplDecl does not recursively visit them. We need to do that in 3975 // case they're nested inside another construct (LinkageSpecDecl / 3976 // ExportDecl) that does stop them from being considered "top-level". 3977 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3978 for (auto *M : OID->methods()) 3979 EmitTopLevelDecl(M); 3980 } 3981 3982 EmitTopLevelDecl(I); 3983 } 3984 } 3985 3986 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3987 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3988 // Ignore dependent declarations. 3989 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3990 return; 3991 3992 switch (D->getKind()) { 3993 case Decl::CXXConversion: 3994 case Decl::CXXMethod: 3995 case Decl::Function: 3996 // Skip function templates 3997 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3998 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3999 return; 4000 4001 EmitGlobal(cast<FunctionDecl>(D)); 4002 // Always provide some coverage mapping 4003 // even for the functions that aren't emitted. 4004 AddDeferredUnusedCoverageMapping(D); 4005 break; 4006 4007 case Decl::CXXDeductionGuide: 4008 // Function-like, but does not result in code emission. 4009 break; 4010 4011 case Decl::Var: 4012 case Decl::Decomposition: 4013 // Skip variable templates 4014 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4015 return; 4016 LLVM_FALLTHROUGH; 4017 case Decl::VarTemplateSpecialization: 4018 EmitGlobal(cast<VarDecl>(D)); 4019 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4020 for (auto *B : DD->bindings()) 4021 if (auto *HD = B->getHoldingVar()) 4022 EmitGlobal(HD); 4023 break; 4024 4025 // Indirect fields from global anonymous structs and unions can be 4026 // ignored; only the actual variable requires IR gen support. 4027 case Decl::IndirectField: 4028 break; 4029 4030 // C++ Decls 4031 case Decl::Namespace: 4032 EmitDeclContext(cast<NamespaceDecl>(D)); 4033 break; 4034 case Decl::ClassTemplateSpecialization: { 4035 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4036 if (DebugInfo && 4037 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4038 Spec->hasDefinition()) 4039 DebugInfo->completeTemplateDefinition(*Spec); 4040 } LLVM_FALLTHROUGH; 4041 case Decl::CXXRecord: 4042 if (DebugInfo) { 4043 if (auto *ES = D->getASTContext().getExternalSource()) 4044 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4045 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4046 } 4047 // Emit any static data members, they may be definitions. 4048 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4049 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4050 EmitTopLevelDecl(I); 4051 break; 4052 // No code generation needed. 4053 case Decl::UsingShadow: 4054 case Decl::ClassTemplate: 4055 case Decl::VarTemplate: 4056 case Decl::VarTemplatePartialSpecialization: 4057 case Decl::FunctionTemplate: 4058 case Decl::TypeAliasTemplate: 4059 case Decl::Block: 4060 case Decl::Empty: 4061 break; 4062 case Decl::Using: // using X; [C++] 4063 if (CGDebugInfo *DI = getModuleDebugInfo()) 4064 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4065 return; 4066 case Decl::NamespaceAlias: 4067 if (CGDebugInfo *DI = getModuleDebugInfo()) 4068 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4069 return; 4070 case Decl::UsingDirective: // using namespace X; [C++] 4071 if (CGDebugInfo *DI = getModuleDebugInfo()) 4072 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4073 return; 4074 case Decl::CXXConstructor: 4075 // Skip function templates 4076 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4077 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4078 return; 4079 4080 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4081 break; 4082 case Decl::CXXDestructor: 4083 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4084 return; 4085 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4086 break; 4087 4088 case Decl::StaticAssert: 4089 // Nothing to do. 4090 break; 4091 4092 // Objective-C Decls 4093 4094 // Forward declarations, no (immediate) code generation. 4095 case Decl::ObjCInterface: 4096 case Decl::ObjCCategory: 4097 break; 4098 4099 case Decl::ObjCProtocol: { 4100 auto *Proto = cast<ObjCProtocolDecl>(D); 4101 if (Proto->isThisDeclarationADefinition()) 4102 ObjCRuntime->GenerateProtocol(Proto); 4103 break; 4104 } 4105 4106 case Decl::ObjCCategoryImpl: 4107 // Categories have properties but don't support synthesize so we 4108 // can ignore them here. 4109 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4110 break; 4111 4112 case Decl::ObjCImplementation: { 4113 auto *OMD = cast<ObjCImplementationDecl>(D); 4114 EmitObjCPropertyImplementations(OMD); 4115 EmitObjCIvarInitializations(OMD); 4116 ObjCRuntime->GenerateClass(OMD); 4117 // Emit global variable debug information. 4118 if (CGDebugInfo *DI = getModuleDebugInfo()) 4119 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4120 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4121 OMD->getClassInterface()), OMD->getLocation()); 4122 break; 4123 } 4124 case Decl::ObjCMethod: { 4125 auto *OMD = cast<ObjCMethodDecl>(D); 4126 // If this is not a prototype, emit the body. 4127 if (OMD->getBody()) 4128 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4129 break; 4130 } 4131 case Decl::ObjCCompatibleAlias: 4132 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4133 break; 4134 4135 case Decl::PragmaComment: { 4136 const auto *PCD = cast<PragmaCommentDecl>(D); 4137 switch (PCD->getCommentKind()) { 4138 case PCK_Unknown: 4139 llvm_unreachable("unexpected pragma comment kind"); 4140 case PCK_Linker: 4141 AppendLinkerOptions(PCD->getArg()); 4142 break; 4143 case PCK_Lib: 4144 AddDependentLib(PCD->getArg()); 4145 break; 4146 case PCK_Compiler: 4147 case PCK_ExeStr: 4148 case PCK_User: 4149 break; // We ignore all of these. 4150 } 4151 break; 4152 } 4153 4154 case Decl::PragmaDetectMismatch: { 4155 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4156 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4157 break; 4158 } 4159 4160 case Decl::LinkageSpec: 4161 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4162 break; 4163 4164 case Decl::FileScopeAsm: { 4165 // File-scope asm is ignored during device-side CUDA compilation. 4166 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4167 break; 4168 // File-scope asm is ignored during device-side OpenMP compilation. 4169 if (LangOpts.OpenMPIsDevice) 4170 break; 4171 auto *AD = cast<FileScopeAsmDecl>(D); 4172 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4173 break; 4174 } 4175 4176 case Decl::Import: { 4177 auto *Import = cast<ImportDecl>(D); 4178 4179 // If we've already imported this module, we're done. 4180 if (!ImportedModules.insert(Import->getImportedModule())) 4181 break; 4182 4183 // Emit debug information for direct imports. 4184 if (!Import->getImportedOwningModule()) { 4185 if (CGDebugInfo *DI = getModuleDebugInfo()) 4186 DI->EmitImportDecl(*Import); 4187 } 4188 4189 // Find all of the submodules and emit the module initializers. 4190 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4191 SmallVector<clang::Module *, 16> Stack; 4192 Visited.insert(Import->getImportedModule()); 4193 Stack.push_back(Import->getImportedModule()); 4194 4195 while (!Stack.empty()) { 4196 clang::Module *Mod = Stack.pop_back_val(); 4197 if (!EmittedModuleInitializers.insert(Mod).second) 4198 continue; 4199 4200 for (auto *D : Context.getModuleInitializers(Mod)) 4201 EmitTopLevelDecl(D); 4202 4203 // Visit the submodules of this module. 4204 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4205 SubEnd = Mod->submodule_end(); 4206 Sub != SubEnd; ++Sub) { 4207 // Skip explicit children; they need to be explicitly imported to emit 4208 // the initializers. 4209 if ((*Sub)->IsExplicit) 4210 continue; 4211 4212 if (Visited.insert(*Sub).second) 4213 Stack.push_back(*Sub); 4214 } 4215 } 4216 break; 4217 } 4218 4219 case Decl::Export: 4220 EmitDeclContext(cast<ExportDecl>(D)); 4221 break; 4222 4223 case Decl::OMPThreadPrivate: 4224 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4225 break; 4226 4227 case Decl::OMPDeclareReduction: 4228 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4229 break; 4230 4231 default: 4232 // Make sure we handled everything we should, every other kind is a 4233 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4234 // function. Need to recode Decl::Kind to do that easily. 4235 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4236 break; 4237 } 4238 } 4239 4240 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4241 // Do we need to generate coverage mapping? 4242 if (!CodeGenOpts.CoverageMapping) 4243 return; 4244 switch (D->getKind()) { 4245 case Decl::CXXConversion: 4246 case Decl::CXXMethod: 4247 case Decl::Function: 4248 case Decl::ObjCMethod: 4249 case Decl::CXXConstructor: 4250 case Decl::CXXDestructor: { 4251 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4252 return; 4253 SourceManager &SM = getContext().getSourceManager(); 4254 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4255 return; 4256 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4257 if (I == DeferredEmptyCoverageMappingDecls.end()) 4258 DeferredEmptyCoverageMappingDecls[D] = true; 4259 break; 4260 } 4261 default: 4262 break; 4263 }; 4264 } 4265 4266 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4267 // Do we need to generate coverage mapping? 4268 if (!CodeGenOpts.CoverageMapping) 4269 return; 4270 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4271 if (Fn->isTemplateInstantiation()) 4272 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4273 } 4274 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4275 if (I == DeferredEmptyCoverageMappingDecls.end()) 4276 DeferredEmptyCoverageMappingDecls[D] = false; 4277 else 4278 I->second = false; 4279 } 4280 4281 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4282 std::vector<const Decl *> DeferredDecls; 4283 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4284 if (!I.second) 4285 continue; 4286 DeferredDecls.push_back(I.first); 4287 } 4288 // Sort the declarations by their location to make sure that the tests get a 4289 // predictable order for the coverage mapping for the unused declarations. 4290 if (CodeGenOpts.DumpCoverageMapping) 4291 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4292 [] (const Decl *LHS, const Decl *RHS) { 4293 return LHS->getLocStart() < RHS->getLocStart(); 4294 }); 4295 for (const auto *D : DeferredDecls) { 4296 switch (D->getKind()) { 4297 case Decl::CXXConversion: 4298 case Decl::CXXMethod: 4299 case Decl::Function: 4300 case Decl::ObjCMethod: { 4301 CodeGenPGO PGO(*this); 4302 GlobalDecl GD(cast<FunctionDecl>(D)); 4303 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4304 getFunctionLinkage(GD)); 4305 break; 4306 } 4307 case Decl::CXXConstructor: { 4308 CodeGenPGO PGO(*this); 4309 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4310 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4311 getFunctionLinkage(GD)); 4312 break; 4313 } 4314 case Decl::CXXDestructor: { 4315 CodeGenPGO PGO(*this); 4316 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4317 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4318 getFunctionLinkage(GD)); 4319 break; 4320 } 4321 default: 4322 break; 4323 }; 4324 } 4325 } 4326 4327 /// Turns the given pointer into a constant. 4328 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4329 const void *Ptr) { 4330 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4331 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4332 return llvm::ConstantInt::get(i64, PtrInt); 4333 } 4334 4335 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4336 llvm::NamedMDNode *&GlobalMetadata, 4337 GlobalDecl D, 4338 llvm::GlobalValue *Addr) { 4339 if (!GlobalMetadata) 4340 GlobalMetadata = 4341 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4342 4343 // TODO: should we report variant information for ctors/dtors? 4344 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4345 llvm::ConstantAsMetadata::get(GetPointerConstant( 4346 CGM.getLLVMContext(), D.getDecl()))}; 4347 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4348 } 4349 4350 /// For each function which is declared within an extern "C" region and marked 4351 /// as 'used', but has internal linkage, create an alias from the unmangled 4352 /// name to the mangled name if possible. People expect to be able to refer 4353 /// to such functions with an unmangled name from inline assembly within the 4354 /// same translation unit. 4355 void CodeGenModule::EmitStaticExternCAliases() { 4356 // Don't do anything if we're generating CUDA device code -- the NVPTX 4357 // assembly target doesn't support aliases. 4358 if (Context.getTargetInfo().getTriple().isNVPTX()) 4359 return; 4360 for (auto &I : StaticExternCValues) { 4361 IdentifierInfo *Name = I.first; 4362 llvm::GlobalValue *Val = I.second; 4363 if (Val && !getModule().getNamedValue(Name->getName())) 4364 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4365 } 4366 } 4367 4368 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4369 GlobalDecl &Result) const { 4370 auto Res = Manglings.find(MangledName); 4371 if (Res == Manglings.end()) 4372 return false; 4373 Result = Res->getValue(); 4374 return true; 4375 } 4376 4377 /// Emits metadata nodes associating all the global values in the 4378 /// current module with the Decls they came from. This is useful for 4379 /// projects using IR gen as a subroutine. 4380 /// 4381 /// Since there's currently no way to associate an MDNode directly 4382 /// with an llvm::GlobalValue, we create a global named metadata 4383 /// with the name 'clang.global.decl.ptrs'. 4384 void CodeGenModule::EmitDeclMetadata() { 4385 llvm::NamedMDNode *GlobalMetadata = nullptr; 4386 4387 for (auto &I : MangledDeclNames) { 4388 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4389 // Some mangled names don't necessarily have an associated GlobalValue 4390 // in this module, e.g. if we mangled it for DebugInfo. 4391 if (Addr) 4392 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4393 } 4394 } 4395 4396 /// Emits metadata nodes for all the local variables in the current 4397 /// function. 4398 void CodeGenFunction::EmitDeclMetadata() { 4399 if (LocalDeclMap.empty()) return; 4400 4401 llvm::LLVMContext &Context = getLLVMContext(); 4402 4403 // Find the unique metadata ID for this name. 4404 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4405 4406 llvm::NamedMDNode *GlobalMetadata = nullptr; 4407 4408 for (auto &I : LocalDeclMap) { 4409 const Decl *D = I.first; 4410 llvm::Value *Addr = I.second.getPointer(); 4411 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4412 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4413 Alloca->setMetadata( 4414 DeclPtrKind, llvm::MDNode::get( 4415 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4416 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4417 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4418 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4419 } 4420 } 4421 } 4422 4423 void CodeGenModule::EmitVersionIdentMetadata() { 4424 llvm::NamedMDNode *IdentMetadata = 4425 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4426 std::string Version = getClangFullVersion(); 4427 llvm::LLVMContext &Ctx = TheModule.getContext(); 4428 4429 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4430 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4431 } 4432 4433 void CodeGenModule::EmitTargetMetadata() { 4434 // Warning, new MangledDeclNames may be appended within this loop. 4435 // We rely on MapVector insertions adding new elements to the end 4436 // of the container. 4437 // FIXME: Move this loop into the one target that needs it, and only 4438 // loop over those declarations for which we couldn't emit the target 4439 // metadata when we emitted the declaration. 4440 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4441 auto Val = *(MangledDeclNames.begin() + I); 4442 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4443 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4444 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4445 } 4446 } 4447 4448 void CodeGenModule::EmitCoverageFile() { 4449 if (getCodeGenOpts().CoverageDataFile.empty() && 4450 getCodeGenOpts().CoverageNotesFile.empty()) 4451 return; 4452 4453 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4454 if (!CUNode) 4455 return; 4456 4457 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4458 llvm::LLVMContext &Ctx = TheModule.getContext(); 4459 auto *CoverageDataFile = 4460 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4461 auto *CoverageNotesFile = 4462 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4463 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4464 llvm::MDNode *CU = CUNode->getOperand(i); 4465 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4466 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4467 } 4468 } 4469 4470 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4471 // Sema has checked that all uuid strings are of the form 4472 // "12345678-1234-1234-1234-1234567890ab". 4473 assert(Uuid.size() == 36); 4474 for (unsigned i = 0; i < 36; ++i) { 4475 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4476 else assert(isHexDigit(Uuid[i])); 4477 } 4478 4479 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4480 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4481 4482 llvm::Constant *Field3[8]; 4483 for (unsigned Idx = 0; Idx < 8; ++Idx) 4484 Field3[Idx] = llvm::ConstantInt::get( 4485 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4486 4487 llvm::Constant *Fields[4] = { 4488 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4489 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4490 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4491 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4492 }; 4493 4494 return llvm::ConstantStruct::getAnon(Fields); 4495 } 4496 4497 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4498 bool ForEH) { 4499 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4500 // FIXME: should we even be calling this method if RTTI is disabled 4501 // and it's not for EH? 4502 if (!ForEH && !getLangOpts().RTTI) 4503 return llvm::Constant::getNullValue(Int8PtrTy); 4504 4505 if (ForEH && Ty->isObjCObjectPointerType() && 4506 LangOpts.ObjCRuntime.isGNUFamily()) 4507 return ObjCRuntime->GetEHType(Ty); 4508 4509 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4510 } 4511 4512 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4513 for (auto RefExpr : D->varlists()) { 4514 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4515 bool PerformInit = 4516 VD->getAnyInitializer() && 4517 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4518 /*ForRef=*/false); 4519 4520 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4521 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4522 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4523 CXXGlobalInits.push_back(InitFunction); 4524 } 4525 } 4526 4527 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4528 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4529 if (InternalId) 4530 return InternalId; 4531 4532 if (isExternallyVisible(T->getLinkage())) { 4533 std::string OutName; 4534 llvm::raw_string_ostream Out(OutName); 4535 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4536 4537 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4538 } else { 4539 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4540 llvm::ArrayRef<llvm::Metadata *>()); 4541 } 4542 4543 return InternalId; 4544 } 4545 4546 // Generalize pointer types to a void pointer with the qualifiers of the 4547 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4548 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4549 // 'void *'. 4550 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4551 if (!Ty->isPointerType()) 4552 return Ty; 4553 4554 return Ctx.getPointerType( 4555 QualType(Ctx.VoidTy).withCVRQualifiers( 4556 Ty->getPointeeType().getCVRQualifiers())); 4557 } 4558 4559 // Apply type generalization to a FunctionType's return and argument types 4560 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4561 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4562 SmallVector<QualType, 8> GeneralizedParams; 4563 for (auto &Param : FnType->param_types()) 4564 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4565 4566 return Ctx.getFunctionType( 4567 GeneralizeType(Ctx, FnType->getReturnType()), 4568 GeneralizedParams, FnType->getExtProtoInfo()); 4569 } 4570 4571 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4572 return Ctx.getFunctionNoProtoType( 4573 GeneralizeType(Ctx, FnType->getReturnType())); 4574 4575 llvm_unreachable("Encountered unknown FunctionType"); 4576 } 4577 4578 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4579 T = GeneralizeFunctionType(getContext(), T); 4580 4581 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4582 if (InternalId) 4583 return InternalId; 4584 4585 if (isExternallyVisible(T->getLinkage())) { 4586 std::string OutName; 4587 llvm::raw_string_ostream Out(OutName); 4588 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4589 Out << ".generalized"; 4590 4591 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4592 } else { 4593 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4594 llvm::ArrayRef<llvm::Metadata *>()); 4595 } 4596 4597 return InternalId; 4598 } 4599 4600 /// Returns whether this module needs the "all-vtables" type identifier. 4601 bool CodeGenModule::NeedAllVtablesTypeId() const { 4602 // Returns true if at least one of vtable-based CFI checkers is enabled and 4603 // is not in the trapping mode. 4604 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4605 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4606 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4607 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4608 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4609 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4610 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4611 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4612 } 4613 4614 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4615 CharUnits Offset, 4616 const CXXRecordDecl *RD) { 4617 llvm::Metadata *MD = 4618 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4619 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4620 4621 if (CodeGenOpts.SanitizeCfiCrossDso) 4622 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4623 VTable->addTypeMetadata(Offset.getQuantity(), 4624 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4625 4626 if (NeedAllVtablesTypeId()) { 4627 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4628 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4629 } 4630 } 4631 4632 // Fills in the supplied string map with the set of target features for the 4633 // passed in function. 4634 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4635 const FunctionDecl *FD) { 4636 StringRef TargetCPU = Target.getTargetOpts().CPU; 4637 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4638 // If we have a TargetAttr build up the feature map based on that. 4639 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4640 4641 ParsedAttr.Features.erase( 4642 llvm::remove_if(ParsedAttr.Features, 4643 [&](const std::string &Feat) { 4644 return !Target.isValidFeatureName( 4645 StringRef{Feat}.substr(1)); 4646 }), 4647 ParsedAttr.Features.end()); 4648 4649 // Make a copy of the features as passed on the command line into the 4650 // beginning of the additional features from the function to override. 4651 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4652 Target.getTargetOpts().FeaturesAsWritten.begin(), 4653 Target.getTargetOpts().FeaturesAsWritten.end()); 4654 4655 if (ParsedAttr.Architecture != "" && 4656 Target.isValidCPUName(ParsedAttr.Architecture)) 4657 TargetCPU = ParsedAttr.Architecture; 4658 4659 // Now populate the feature map, first with the TargetCPU which is either 4660 // the default or a new one from the target attribute string. Then we'll use 4661 // the passed in features (FeaturesAsWritten) along with the new ones from 4662 // the attribute. 4663 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4664 ParsedAttr.Features); 4665 } else { 4666 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4667 Target.getTargetOpts().Features); 4668 } 4669 } 4670 4671 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4672 if (!SanStats) 4673 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4674 4675 return *SanStats; 4676 } 4677 llvm::Value * 4678 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4679 CodeGenFunction &CGF) { 4680 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4681 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4682 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4683 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4684 "__translate_sampler_initializer"), 4685 {C}); 4686 } 4687