xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 3204b152b53e539304f9da2aff100876aeefa856)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "CoverageMappingGen.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericMIPS:
68   case TargetCXXABI::GenericItanium:
69     return CreateItaniumCXXABI(CGM);
70   case TargetCXXABI::Microsoft:
71     return CreateMicrosoftCXXABI(CGM);
72   }
73 
74   llvm_unreachable("invalid C++ ABI kind");
75 }
76 
77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
78                              llvm::Module &M, const llvm::DataLayout &TD,
79                              DiagnosticsEngine &diags,
80                              CoverageSourceInfo *CoverageInfo)
81     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
82       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
83       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
84       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
85       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
86       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
87       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
88       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
89       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
90       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
91       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
92       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
93       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
94 
95   // Initialize the type cache.
96   llvm::LLVMContext &LLVMContext = M.getContext();
97   VoidTy = llvm::Type::getVoidTy(LLVMContext);
98   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
100   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
101   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
102   FloatTy = llvm::Type::getFloatTy(LLVMContext);
103   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
104   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
105   PointerAlignInBytes =
106   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
107   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
108   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
109   Int8PtrTy = Int8Ty->getPointerTo(0);
110   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
111 
112   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
113   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     auto ReaderOrErr =
145         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
146     if (std::error_code EC = ReaderOrErr.getError()) {
147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148                                               "Could not read profile: %0");
149       getDiags().Report(DiagID) << EC.message();
150     } else
151       PGOReader = std::move(ReaderOrErr.get());
152   }
153 
154   // If coverage mapping generation is enabled, create the
155   // CoverageMappingModuleGen object.
156   if (CodeGenOpts.CoverageMapping)
157     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
158 }
159 
160 CodeGenModule::~CodeGenModule() {
161   delete ObjCRuntime;
162   delete OpenCLRuntime;
163   delete OpenMPRuntime;
164   delete CUDARuntime;
165   delete TheTargetCodeGenInfo;
166   delete TBAA;
167   delete DebugInfo;
168   delete ARCData;
169   delete RRData;
170 }
171 
172 void CodeGenModule::createObjCRuntime() {
173   // This is just isGNUFamily(), but we want to force implementors of
174   // new ABIs to decide how best to do this.
175   switch (LangOpts.ObjCRuntime.getKind()) {
176   case ObjCRuntime::GNUstep:
177   case ObjCRuntime::GCC:
178   case ObjCRuntime::ObjFW:
179     ObjCRuntime = CreateGNUObjCRuntime(*this);
180     return;
181 
182   case ObjCRuntime::FragileMacOSX:
183   case ObjCRuntime::MacOSX:
184   case ObjCRuntime::iOS:
185     ObjCRuntime = CreateMacObjCRuntime(*this);
186     return;
187   }
188   llvm_unreachable("bad runtime kind");
189 }
190 
191 void CodeGenModule::createOpenCLRuntime() {
192   OpenCLRuntime = new CGOpenCLRuntime(*this);
193 }
194 
195 void CodeGenModule::createOpenMPRuntime() {
196   OpenMPRuntime = new CGOpenMPRuntime(*this);
197 }
198 
199 void CodeGenModule::createCUDARuntime() {
200   CUDARuntime = CreateNVCUDARuntime(*this);
201 }
202 
203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
204   Replacements[Name] = C;
205 }
206 
207 void CodeGenModule::applyReplacements() {
208   for (ReplacementsTy::iterator I = Replacements.begin(),
209                                 E = Replacements.end();
210        I != E; ++I) {
211     StringRef MangledName = I->first();
212     llvm::Constant *Replacement = I->second;
213     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
214     if (!Entry)
215       continue;
216     auto *OldF = cast<llvm::Function>(Entry);
217     auto *NewF = dyn_cast<llvm::Function>(Replacement);
218     if (!NewF) {
219       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
220         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
221       } else {
222         auto *CE = cast<llvm::ConstantExpr>(Replacement);
223         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
224                CE->getOpcode() == llvm::Instruction::GetElementPtr);
225         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
226       }
227     }
228 
229     // Replace old with new, but keep the old order.
230     OldF->replaceAllUsesWith(Replacement);
231     if (NewF) {
232       NewF->removeFromParent();
233       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
234     }
235     OldF->eraseFromParent();
236   }
237 }
238 
239 // This is only used in aliases that we created and we know they have a
240 // linear structure.
241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
242   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
243   const llvm::Constant *C = &GA;
244   for (;;) {
245     C = C->stripPointerCasts();
246     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
247       return GO;
248     // stripPointerCasts will not walk over weak aliases.
249     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
250     if (!GA2)
251       return nullptr;
252     if (!Visited.insert(GA2).second)
253       return nullptr;
254     C = GA2->getAliasee();
255   }
256 }
257 
258 void CodeGenModule::checkAliases() {
259   // Check if the constructed aliases are well formed. It is really unfortunate
260   // that we have to do this in CodeGen, but we only construct mangled names
261   // and aliases during codegen.
262   bool Error = false;
263   DiagnosticsEngine &Diags = getDiags();
264   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
265          E = Aliases.end(); I != E; ++I) {
266     const GlobalDecl &GD = *I;
267     const auto *D = cast<ValueDecl>(GD.getDecl());
268     const AliasAttr *AA = D->getAttr<AliasAttr>();
269     StringRef MangledName = getMangledName(GD);
270     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
271     auto *Alias = cast<llvm::GlobalAlias>(Entry);
272     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
273     if (!GV) {
274       Error = true;
275       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
276     } else if (GV->isDeclaration()) {
277       Error = true;
278       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
279     }
280 
281     llvm::Constant *Aliasee = Alias->getAliasee();
282     llvm::GlobalValue *AliaseeGV;
283     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
284       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
285     else
286       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
287 
288     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
289       StringRef AliasSection = SA->getName();
290       if (AliasSection != AliaseeGV->getSection())
291         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
292             << AliasSection;
293     }
294 
295     // We have to handle alias to weak aliases in here. LLVM itself disallows
296     // this since the object semantics would not match the IL one. For
297     // compatibility with gcc we implement it by just pointing the alias
298     // to its aliasee's aliasee. We also warn, since the user is probably
299     // expecting the link to be weak.
300     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
301       if (GA->mayBeOverridden()) {
302         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
303             << GV->getName() << GA->getName();
304         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
305             GA->getAliasee(), Alias->getType());
306         Alias->setAliasee(Aliasee);
307       }
308     }
309   }
310   if (!Error)
311     return;
312 
313   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
314          E = Aliases.end(); I != E; ++I) {
315     const GlobalDecl &GD = *I;
316     StringRef MangledName = getMangledName(GD);
317     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
318     auto *Alias = cast<llvm::GlobalAlias>(Entry);
319     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
320     Alias->eraseFromParent();
321   }
322 }
323 
324 void CodeGenModule::clear() {
325   DeferredDeclsToEmit.clear();
326   if (OpenMPRuntime)
327     OpenMPRuntime->clear();
328 }
329 
330 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
331                                        StringRef MainFile) {
332   if (!hasDiagnostics())
333     return;
334   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
335     if (MainFile.empty())
336       MainFile = "<stdin>";
337     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
338   } else
339     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
340                                                       << Mismatched;
341 }
342 
343 void CodeGenModule::Release() {
344   EmitDeferred();
345   applyReplacements();
346   checkAliases();
347   EmitCXXGlobalInitFunc();
348   EmitCXXGlobalDtorFunc();
349   EmitCXXThreadLocalInitFunc();
350   if (ObjCRuntime)
351     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
352       AddGlobalCtor(ObjCInitFunction);
353   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
354       CUDARuntime) {
355     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
356       AddGlobalCtor(CudaCtorFunction);
357     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
358       AddGlobalDtor(CudaDtorFunction);
359   }
360   if (PGOReader && PGOStats.hasDiagnostics())
361     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
362   EmitCtorList(GlobalCtors, "llvm.global_ctors");
363   EmitCtorList(GlobalDtors, "llvm.global_dtors");
364   EmitGlobalAnnotations();
365   EmitStaticExternCAliases();
366   EmitDeferredUnusedCoverageMappings();
367   if (CoverageMapping)
368     CoverageMapping->emit();
369   emitLLVMUsed();
370 
371   if (CodeGenOpts.Autolink &&
372       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
373     EmitModuleLinkOptions();
374   }
375   if (CodeGenOpts.DwarfVersion)
376     // We actually want the latest version when there are conflicts.
377     // We can change from Warning to Latest if such mode is supported.
378     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
379                               CodeGenOpts.DwarfVersion);
380   if (DebugInfo)
381     // We support a single version in the linked module. The LLVM
382     // parser will drop debug info with a different version number
383     // (and warn about it, too).
384     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
385                               llvm::DEBUG_METADATA_VERSION);
386 
387   // We need to record the widths of enums and wchar_t, so that we can generate
388   // the correct build attributes in the ARM backend.
389   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
390   if (   Arch == llvm::Triple::arm
391       || Arch == llvm::Triple::armeb
392       || Arch == llvm::Triple::thumb
393       || Arch == llvm::Triple::thumbeb) {
394     // Width of wchar_t in bytes
395     uint64_t WCharWidth =
396         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
397     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
398 
399     // The minimum width of an enum in bytes
400     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
401     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
402   }
403 
404   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
405     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
406     switch (PLevel) {
407     case 0: break;
408     case 1: PL = llvm::PICLevel::Small; break;
409     case 2: PL = llvm::PICLevel::Large; break;
410     default: llvm_unreachable("Invalid PIC Level");
411     }
412 
413     getModule().setPICLevel(PL);
414   }
415 
416   SimplifyPersonality();
417 
418   if (getCodeGenOpts().EmitDeclMetadata)
419     EmitDeclMetadata();
420 
421   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
422     EmitCoverageFile();
423 
424   if (DebugInfo)
425     DebugInfo->finalize();
426 
427   EmitVersionIdentMetadata();
428 
429   EmitTargetMetadata();
430 }
431 
432 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
433   // Make sure that this type is translated.
434   Types.UpdateCompletedType(TD);
435 }
436 
437 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
438   if (!TBAA)
439     return nullptr;
440   return TBAA->getTBAAInfo(QTy);
441 }
442 
443 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
444   if (!TBAA)
445     return nullptr;
446   return TBAA->getTBAAInfoForVTablePtr();
447 }
448 
449 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
450   if (!TBAA)
451     return nullptr;
452   return TBAA->getTBAAStructInfo(QTy);
453 }
454 
455 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
456   if (!TBAA)
457     return nullptr;
458   return TBAA->getTBAAStructTypeInfo(QTy);
459 }
460 
461 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
462                                                   llvm::MDNode *AccessN,
463                                                   uint64_t O) {
464   if (!TBAA)
465     return nullptr;
466   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
467 }
468 
469 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
470 /// and struct-path aware TBAA, the tag has the same format:
471 /// base type, access type and offset.
472 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
473 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
474                                         llvm::MDNode *TBAAInfo,
475                                         bool ConvertTypeToTag) {
476   if (ConvertTypeToTag && TBAA)
477     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
478                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
479   else
480     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
481 }
482 
483 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
484   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
485   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
486 }
487 
488 /// ErrorUnsupported - Print out an error that codegen doesn't support the
489 /// specified stmt yet.
490 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
491   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
492                                                "cannot compile this %0 yet");
493   std::string Msg = Type;
494   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
495     << Msg << S->getSourceRange();
496 }
497 
498 /// ErrorUnsupported - Print out an error that codegen doesn't support the
499 /// specified decl yet.
500 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
501   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
502                                                "cannot compile this %0 yet");
503   std::string Msg = Type;
504   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
505 }
506 
507 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
508   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
509 }
510 
511 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
512                                         const NamedDecl *D) const {
513   // Internal definitions always have default visibility.
514   if (GV->hasLocalLinkage()) {
515     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
516     return;
517   }
518 
519   // Set visibility for definitions.
520   LinkageInfo LV = D->getLinkageAndVisibility();
521   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
522     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
523 }
524 
525 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
526   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
527       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
528       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
529       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
530       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
531 }
532 
533 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
534     CodeGenOptions::TLSModel M) {
535   switch (M) {
536   case CodeGenOptions::GeneralDynamicTLSModel:
537     return llvm::GlobalVariable::GeneralDynamicTLSModel;
538   case CodeGenOptions::LocalDynamicTLSModel:
539     return llvm::GlobalVariable::LocalDynamicTLSModel;
540   case CodeGenOptions::InitialExecTLSModel:
541     return llvm::GlobalVariable::InitialExecTLSModel;
542   case CodeGenOptions::LocalExecTLSModel:
543     return llvm::GlobalVariable::LocalExecTLSModel;
544   }
545   llvm_unreachable("Invalid TLS model!");
546 }
547 
548 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
549   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
550 
551   llvm::GlobalValue::ThreadLocalMode TLM;
552   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
553 
554   // Override the TLS model if it is explicitly specified.
555   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
556     TLM = GetLLVMTLSModel(Attr->getModel());
557   }
558 
559   GV->setThreadLocalMode(TLM);
560 }
561 
562 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
563   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
564   if (!FoundStr.empty())
565     return FoundStr;
566 
567   const auto *ND = cast<NamedDecl>(GD.getDecl());
568   SmallString<256> Buffer;
569   StringRef Str;
570   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
571     llvm::raw_svector_ostream Out(Buffer);
572     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
573       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
574     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
575       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
576     else
577       getCXXABI().getMangleContext().mangleName(ND, Out);
578     Str = Out.str();
579   } else {
580     IdentifierInfo *II = ND->getIdentifier();
581     assert(II && "Attempt to mangle unnamed decl.");
582     Str = II->getName();
583   }
584 
585   // Keep the first result in the case of a mangling collision.
586   auto Result = Manglings.insert(std::make_pair(Str, GD));
587   return FoundStr = Result.first->first();
588 }
589 
590 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
591                                              const BlockDecl *BD) {
592   MangleContext &MangleCtx = getCXXABI().getMangleContext();
593   const Decl *D = GD.getDecl();
594 
595   SmallString<256> Buffer;
596   llvm::raw_svector_ostream Out(Buffer);
597   if (!D)
598     MangleCtx.mangleGlobalBlock(BD,
599       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
600   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
601     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
602   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
603     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
604   else
605     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
606 
607   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
608   return Result.first->first();
609 }
610 
611 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
612   return getModule().getNamedValue(Name);
613 }
614 
615 /// AddGlobalCtor - Add a function to the list that will be called before
616 /// main() runs.
617 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
618                                   llvm::Constant *AssociatedData) {
619   // FIXME: Type coercion of void()* types.
620   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
621 }
622 
623 /// AddGlobalDtor - Add a function to the list that will be called
624 /// when the module is unloaded.
625 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
626   // FIXME: Type coercion of void()* types.
627   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
628 }
629 
630 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
631   // Ctor function type is void()*.
632   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
633   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
634 
635   // Get the type of a ctor entry, { i32, void ()*, i8* }.
636   llvm::StructType *CtorStructTy = llvm::StructType::get(
637       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
638 
639   // Construct the constructor and destructor arrays.
640   SmallVector<llvm::Constant*, 8> Ctors;
641   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
642     llvm::Constant *S[] = {
643       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
644       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
645       (I->AssociatedData
646            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
647            : llvm::Constant::getNullValue(VoidPtrTy))
648     };
649     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
650   }
651 
652   if (!Ctors.empty()) {
653     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
654     new llvm::GlobalVariable(TheModule, AT, false,
655                              llvm::GlobalValue::AppendingLinkage,
656                              llvm::ConstantArray::get(AT, Ctors),
657                              GlobalName);
658   }
659 }
660 
661 llvm::GlobalValue::LinkageTypes
662 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
663   const auto *D = cast<FunctionDecl>(GD.getDecl());
664 
665   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
666 
667   if (isa<CXXDestructorDecl>(D) &&
668       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
669                                          GD.getDtorType())) {
670     // Destructor variants in the Microsoft C++ ABI are always internal or
671     // linkonce_odr thunks emitted on an as-needed basis.
672     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
673                                    : llvm::GlobalValue::LinkOnceODRLinkage;
674   }
675 
676   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
677 }
678 
679 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
680   const auto *FD = cast<FunctionDecl>(GD.getDecl());
681 
682   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
683     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
684       // Don't dllexport/import destructor thunks.
685       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
686       return;
687     }
688   }
689 
690   if (FD->hasAttr<DLLImportAttr>())
691     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
692   else if (FD->hasAttr<DLLExportAttr>())
693     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
694   else
695     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
696 }
697 
698 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
699                                                     llvm::Function *F) {
700   setNonAliasAttributes(D, F);
701 }
702 
703 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
704                                               const CGFunctionInfo &Info,
705                                               llvm::Function *F) {
706   unsigned CallingConv;
707   AttributeListType AttributeList;
708   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
709   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
710   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
711 }
712 
713 /// Determines whether the language options require us to model
714 /// unwind exceptions.  We treat -fexceptions as mandating this
715 /// except under the fragile ObjC ABI with only ObjC exceptions
716 /// enabled.  This means, for example, that C with -fexceptions
717 /// enables this.
718 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
719   // If exceptions are completely disabled, obviously this is false.
720   if (!LangOpts.Exceptions) return false;
721 
722   // If C++ exceptions are enabled, this is true.
723   if (LangOpts.CXXExceptions) return true;
724 
725   // If ObjC exceptions are enabled, this depends on the ABI.
726   if (LangOpts.ObjCExceptions) {
727     return LangOpts.ObjCRuntime.hasUnwindExceptions();
728   }
729 
730   return true;
731 }
732 
733 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
734                                                            llvm::Function *F) {
735   llvm::AttrBuilder B;
736 
737   if (CodeGenOpts.UnwindTables)
738     B.addAttribute(llvm::Attribute::UWTable);
739 
740   if (!hasUnwindExceptions(LangOpts))
741     B.addAttribute(llvm::Attribute::NoUnwind);
742 
743   if (D->hasAttr<NakedAttr>()) {
744     // Naked implies noinline: we should not be inlining such functions.
745     B.addAttribute(llvm::Attribute::Naked);
746     B.addAttribute(llvm::Attribute::NoInline);
747   } else if (D->hasAttr<NoDuplicateAttr>()) {
748     B.addAttribute(llvm::Attribute::NoDuplicate);
749   } else if (D->hasAttr<NoInlineAttr>()) {
750     B.addAttribute(llvm::Attribute::NoInline);
751   } else if (D->hasAttr<AlwaysInlineAttr>() &&
752              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
753                                               llvm::Attribute::NoInline)) {
754     // (noinline wins over always_inline, and we can't specify both in IR)
755     B.addAttribute(llvm::Attribute::AlwaysInline);
756   }
757 
758   if (D->hasAttr<ColdAttr>()) {
759     if (!D->hasAttr<OptimizeNoneAttr>())
760       B.addAttribute(llvm::Attribute::OptimizeForSize);
761     B.addAttribute(llvm::Attribute::Cold);
762   }
763 
764   if (D->hasAttr<MinSizeAttr>())
765     B.addAttribute(llvm::Attribute::MinSize);
766 
767   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
768     B.addAttribute(llvm::Attribute::StackProtect);
769   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
770     B.addAttribute(llvm::Attribute::StackProtectStrong);
771   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
772     B.addAttribute(llvm::Attribute::StackProtectReq);
773 
774   F->addAttributes(llvm::AttributeSet::FunctionIndex,
775                    llvm::AttributeSet::get(
776                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
777 
778   if (D->hasAttr<OptimizeNoneAttr>()) {
779     // OptimizeNone implies noinline; we should not be inlining such functions.
780     F->addFnAttr(llvm::Attribute::OptimizeNone);
781     F->addFnAttr(llvm::Attribute::NoInline);
782 
783     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
784     assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
785            "OptimizeNone and OptimizeForSize on same function!");
786     assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
787            "OptimizeNone and MinSize on same function!");
788     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
789            "OptimizeNone and AlwaysInline on same function!");
790 
791     // Attribute 'inlinehint' has no effect on 'optnone' functions.
792     // Explicitly remove it from the set of function attributes.
793     F->removeFnAttr(llvm::Attribute::InlineHint);
794   }
795 
796   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
797     F->setUnnamedAddr(true);
798   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
799     if (MD->isVirtual())
800       F->setUnnamedAddr(true);
801 
802   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
803   if (alignment)
804     F->setAlignment(alignment);
805 
806   // C++ ABI requires 2-byte alignment for member functions.
807   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
808     F->setAlignment(2);
809 }
810 
811 void CodeGenModule::SetCommonAttributes(const Decl *D,
812                                         llvm::GlobalValue *GV) {
813   if (const auto *ND = dyn_cast<NamedDecl>(D))
814     setGlobalVisibility(GV, ND);
815   else
816     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
817 
818   if (D->hasAttr<UsedAttr>())
819     addUsedGlobal(GV);
820 }
821 
822 void CodeGenModule::setAliasAttributes(const Decl *D,
823                                        llvm::GlobalValue *GV) {
824   SetCommonAttributes(D, GV);
825 
826   // Process the dllexport attribute based on whether the original definition
827   // (not necessarily the aliasee) was exported.
828   if (D->hasAttr<DLLExportAttr>())
829     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
830 }
831 
832 void CodeGenModule::setNonAliasAttributes(const Decl *D,
833                                           llvm::GlobalObject *GO) {
834   SetCommonAttributes(D, GO);
835 
836   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
837     GO->setSection(SA->getName());
838 
839   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
840 }
841 
842 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
843                                                   llvm::Function *F,
844                                                   const CGFunctionInfo &FI) {
845   SetLLVMFunctionAttributes(D, FI, F);
846   SetLLVMFunctionAttributesForDefinition(D, F);
847 
848   F->setLinkage(llvm::Function::InternalLinkage);
849 
850   setNonAliasAttributes(D, F);
851 }
852 
853 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
854                                          const NamedDecl *ND) {
855   // Set linkage and visibility in case we never see a definition.
856   LinkageInfo LV = ND->getLinkageAndVisibility();
857   if (LV.getLinkage() != ExternalLinkage) {
858     // Don't set internal linkage on declarations.
859   } else {
860     if (ND->hasAttr<DLLImportAttr>()) {
861       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
862       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
863     } else if (ND->hasAttr<DLLExportAttr>()) {
864       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
865       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
866     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
867       // "extern_weak" is overloaded in LLVM; we probably should have
868       // separate linkage types for this.
869       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
870     }
871 
872     // Set visibility on a declaration only if it's explicit.
873     if (LV.isVisibilityExplicit())
874       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
875   }
876 }
877 
878 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
879                                           bool IsIncompleteFunction,
880                                           bool IsThunk) {
881   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
882     // If this is an intrinsic function, set the function's attributes
883     // to the intrinsic's attributes.
884     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
885     return;
886   }
887 
888   const auto *FD = cast<FunctionDecl>(GD.getDecl());
889 
890   if (!IsIncompleteFunction)
891     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
892 
893   // Add the Returned attribute for "this", except for iOS 5 and earlier
894   // where substantial code, including the libstdc++ dylib, was compiled with
895   // GCC and does not actually return "this".
896   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
897       !(getTarget().getTriple().isiOS() &&
898         getTarget().getTriple().isOSVersionLT(6))) {
899     assert(!F->arg_empty() &&
900            F->arg_begin()->getType()
901              ->canLosslesslyBitCastTo(F->getReturnType()) &&
902            "unexpected this return");
903     F->addAttribute(1, llvm::Attribute::Returned);
904   }
905 
906   // Only a few attributes are set on declarations; these may later be
907   // overridden by a definition.
908 
909   setLinkageAndVisibilityForGV(F, FD);
910 
911   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
912     F->setSection(SA->getName());
913 
914   // A replaceable global allocation function does not act like a builtin by
915   // default, only if it is invoked by a new-expression or delete-expression.
916   if (FD->isReplaceableGlobalAllocationFunction())
917     F->addAttribute(llvm::AttributeSet::FunctionIndex,
918                     llvm::Attribute::NoBuiltin);
919 }
920 
921 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
922   assert(!GV->isDeclaration() &&
923          "Only globals with definition can force usage.");
924   LLVMUsed.emplace_back(GV);
925 }
926 
927 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
928   assert(!GV->isDeclaration() &&
929          "Only globals with definition can force usage.");
930   LLVMCompilerUsed.emplace_back(GV);
931 }
932 
933 static void emitUsed(CodeGenModule &CGM, StringRef Name,
934                      std::vector<llvm::WeakVH> &List) {
935   // Don't create llvm.used if there is no need.
936   if (List.empty())
937     return;
938 
939   // Convert List to what ConstantArray needs.
940   SmallVector<llvm::Constant*, 8> UsedArray;
941   UsedArray.resize(List.size());
942   for (unsigned i = 0, e = List.size(); i != e; ++i) {
943     UsedArray[i] =
944         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
945             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
946   }
947 
948   if (UsedArray.empty())
949     return;
950   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
951 
952   auto *GV = new llvm::GlobalVariable(
953       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
954       llvm::ConstantArray::get(ATy, UsedArray), Name);
955 
956   GV->setSection("llvm.metadata");
957 }
958 
959 void CodeGenModule::emitLLVMUsed() {
960   emitUsed(*this, "llvm.used", LLVMUsed);
961   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
962 }
963 
964 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
965   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
966   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
967 }
968 
969 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
970   llvm::SmallString<32> Opt;
971   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
972   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
973   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
974 }
975 
976 void CodeGenModule::AddDependentLib(StringRef Lib) {
977   llvm::SmallString<24> Opt;
978   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
979   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
980   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
981 }
982 
983 /// \brief Add link options implied by the given module, including modules
984 /// it depends on, using a postorder walk.
985 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
986                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
987                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
988   // Import this module's parent.
989   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
990     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
991   }
992 
993   // Import this module's dependencies.
994   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
995     if (Visited.insert(Mod->Imports[I - 1]).second)
996       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
997   }
998 
999   // Add linker options to link against the libraries/frameworks
1000   // described by this module.
1001   llvm::LLVMContext &Context = CGM.getLLVMContext();
1002   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1003     // Link against a framework.  Frameworks are currently Darwin only, so we
1004     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1005     if (Mod->LinkLibraries[I-1].IsFramework) {
1006       llvm::Metadata *Args[2] = {
1007           llvm::MDString::get(Context, "-framework"),
1008           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1009 
1010       Metadata.push_back(llvm::MDNode::get(Context, Args));
1011       continue;
1012     }
1013 
1014     // Link against a library.
1015     llvm::SmallString<24> Opt;
1016     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1017       Mod->LinkLibraries[I-1].Library, Opt);
1018     auto *OptString = llvm::MDString::get(Context, Opt);
1019     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1020   }
1021 }
1022 
1023 void CodeGenModule::EmitModuleLinkOptions() {
1024   // Collect the set of all of the modules we want to visit to emit link
1025   // options, which is essentially the imported modules and all of their
1026   // non-explicit child modules.
1027   llvm::SetVector<clang::Module *> LinkModules;
1028   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1029   SmallVector<clang::Module *, 16> Stack;
1030 
1031   // Seed the stack with imported modules.
1032   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1033                                                MEnd = ImportedModules.end();
1034        M != MEnd; ++M) {
1035     if (Visited.insert(*M).second)
1036       Stack.push_back(*M);
1037   }
1038 
1039   // Find all of the modules to import, making a little effort to prune
1040   // non-leaf modules.
1041   while (!Stack.empty()) {
1042     clang::Module *Mod = Stack.pop_back_val();
1043 
1044     bool AnyChildren = false;
1045 
1046     // Visit the submodules of this module.
1047     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1048                                         SubEnd = Mod->submodule_end();
1049          Sub != SubEnd; ++Sub) {
1050       // Skip explicit children; they need to be explicitly imported to be
1051       // linked against.
1052       if ((*Sub)->IsExplicit)
1053         continue;
1054 
1055       if (Visited.insert(*Sub).second) {
1056         Stack.push_back(*Sub);
1057         AnyChildren = true;
1058       }
1059     }
1060 
1061     // We didn't find any children, so add this module to the list of
1062     // modules to link against.
1063     if (!AnyChildren) {
1064       LinkModules.insert(Mod);
1065     }
1066   }
1067 
1068   // Add link options for all of the imported modules in reverse topological
1069   // order.  We don't do anything to try to order import link flags with respect
1070   // to linker options inserted by things like #pragma comment().
1071   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1072   Visited.clear();
1073   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1074                                                MEnd = LinkModules.end();
1075        M != MEnd; ++M) {
1076     if (Visited.insert(*M).second)
1077       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1078   }
1079   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1080   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1081 
1082   // Add the linker options metadata flag.
1083   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1084                             llvm::MDNode::get(getLLVMContext(),
1085                                               LinkerOptionsMetadata));
1086 }
1087 
1088 void CodeGenModule::EmitDeferred() {
1089   // Emit code for any potentially referenced deferred decls.  Since a
1090   // previously unused static decl may become used during the generation of code
1091   // for a static function, iterate until no changes are made.
1092 
1093   if (!DeferredVTables.empty()) {
1094     EmitDeferredVTables();
1095 
1096     // Emitting a v-table doesn't directly cause more v-tables to
1097     // become deferred, although it can cause functions to be
1098     // emitted that then need those v-tables.
1099     assert(DeferredVTables.empty());
1100   }
1101 
1102   // Stop if we're out of both deferred v-tables and deferred declarations.
1103   if (DeferredDeclsToEmit.empty())
1104     return;
1105 
1106   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1107   // work, it will not interfere with this.
1108   std::vector<DeferredGlobal> CurDeclsToEmit;
1109   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1110 
1111   for (DeferredGlobal &G : CurDeclsToEmit) {
1112     GlobalDecl D = G.GD;
1113     llvm::GlobalValue *GV = G.GV;
1114     G.GV = nullptr;
1115 
1116     assert(!GV || GV == GetGlobalValue(getMangledName(D)));
1117     if (!GV)
1118       GV = GetGlobalValue(getMangledName(D));
1119 
1120     // Check to see if we've already emitted this.  This is necessary
1121     // for a couple of reasons: first, decls can end up in the
1122     // deferred-decls queue multiple times, and second, decls can end
1123     // up with definitions in unusual ways (e.g. by an extern inline
1124     // function acquiring a strong function redefinition).  Just
1125     // ignore these cases.
1126     if (GV && !GV->isDeclaration())
1127       continue;
1128 
1129     // Otherwise, emit the definition and move on to the next one.
1130     EmitGlobalDefinition(D, GV);
1131 
1132     // If we found out that we need to emit more decls, do that recursively.
1133     // This has the advantage that the decls are emitted in a DFS and related
1134     // ones are close together, which is convenient for testing.
1135     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1136       EmitDeferred();
1137       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1138     }
1139   }
1140 }
1141 
1142 void CodeGenModule::EmitGlobalAnnotations() {
1143   if (Annotations.empty())
1144     return;
1145 
1146   // Create a new global variable for the ConstantStruct in the Module.
1147   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1148     Annotations[0]->getType(), Annotations.size()), Annotations);
1149   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1150                                       llvm::GlobalValue::AppendingLinkage,
1151                                       Array, "llvm.global.annotations");
1152   gv->setSection(AnnotationSection);
1153 }
1154 
1155 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1156   llvm::Constant *&AStr = AnnotationStrings[Str];
1157   if (AStr)
1158     return AStr;
1159 
1160   // Not found yet, create a new global.
1161   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1162   auto *gv =
1163       new llvm::GlobalVariable(getModule(), s->getType(), true,
1164                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1165   gv->setSection(AnnotationSection);
1166   gv->setUnnamedAddr(true);
1167   AStr = gv;
1168   return gv;
1169 }
1170 
1171 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1172   SourceManager &SM = getContext().getSourceManager();
1173   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1174   if (PLoc.isValid())
1175     return EmitAnnotationString(PLoc.getFilename());
1176   return EmitAnnotationString(SM.getBufferName(Loc));
1177 }
1178 
1179 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1180   SourceManager &SM = getContext().getSourceManager();
1181   PresumedLoc PLoc = SM.getPresumedLoc(L);
1182   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1183     SM.getExpansionLineNumber(L);
1184   return llvm::ConstantInt::get(Int32Ty, LineNo);
1185 }
1186 
1187 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1188                                                 const AnnotateAttr *AA,
1189                                                 SourceLocation L) {
1190   // Get the globals for file name, annotation, and the line number.
1191   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1192                  *UnitGV = EmitAnnotationUnit(L),
1193                  *LineNoCst = EmitAnnotationLineNo(L);
1194 
1195   // Create the ConstantStruct for the global annotation.
1196   llvm::Constant *Fields[4] = {
1197     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1198     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1199     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1200     LineNoCst
1201   };
1202   return llvm::ConstantStruct::getAnon(Fields);
1203 }
1204 
1205 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1206                                          llvm::GlobalValue *GV) {
1207   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1208   // Get the struct elements for these annotations.
1209   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1210     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1211 }
1212 
1213 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1214                                            SourceLocation Loc) const {
1215   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1216   // Blacklist by function name.
1217   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1218     return true;
1219   // Blacklist by location.
1220   if (!Loc.isInvalid())
1221     return SanitizerBL.isBlacklistedLocation(Loc);
1222   // If location is unknown, this may be a compiler-generated function. Assume
1223   // it's located in the main file.
1224   auto &SM = Context.getSourceManager();
1225   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1226     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1227   }
1228   return false;
1229 }
1230 
1231 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1232                                            SourceLocation Loc, QualType Ty,
1233                                            StringRef Category) const {
1234   // For now globals can be blacklisted only in ASan.
1235   if (!LangOpts.Sanitize.has(SanitizerKind::Address))
1236     return false;
1237   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1238   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1239     return true;
1240   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1241     return true;
1242   // Check global type.
1243   if (!Ty.isNull()) {
1244     // Drill down the array types: if global variable of a fixed type is
1245     // blacklisted, we also don't instrument arrays of them.
1246     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1247       Ty = AT->getElementType();
1248     Ty = Ty.getCanonicalType().getUnqualifiedType();
1249     // We allow to blacklist only record types (classes, structs etc.)
1250     if (Ty->isRecordType()) {
1251       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1252       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1253         return true;
1254     }
1255   }
1256   return false;
1257 }
1258 
1259 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1260   // Never defer when EmitAllDecls is specified.
1261   if (LangOpts.EmitAllDecls)
1262     return true;
1263 
1264   return getContext().DeclMustBeEmitted(Global);
1265 }
1266 
1267 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1268   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1269     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1270       // Implicit template instantiations may change linkage if they are later
1271       // explicitly instantiated, so they should not be emitted eagerly.
1272       return false;
1273 
1274   return true;
1275 }
1276 
1277 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1278     const CXXUuidofExpr* E) {
1279   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1280   // well-formed.
1281   StringRef Uuid = E->getUuidAsStringRef(Context);
1282   std::string Name = "_GUID_" + Uuid.lower();
1283   std::replace(Name.begin(), Name.end(), '-', '_');
1284 
1285   // Look for an existing global.
1286   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1287     return GV;
1288 
1289   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1290   assert(Init && "failed to initialize as constant");
1291 
1292   auto *GV = new llvm::GlobalVariable(
1293       getModule(), Init->getType(),
1294       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1295   if (supportsCOMDAT())
1296     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1297   return GV;
1298 }
1299 
1300 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1301   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1302   assert(AA && "No alias?");
1303 
1304   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1305 
1306   // See if there is already something with the target's name in the module.
1307   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1308   if (Entry) {
1309     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1310     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1311   }
1312 
1313   llvm::Constant *Aliasee;
1314   if (isa<llvm::FunctionType>(DeclTy))
1315     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1316                                       GlobalDecl(cast<FunctionDecl>(VD)),
1317                                       /*ForVTable=*/false);
1318   else
1319     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1320                                     llvm::PointerType::getUnqual(DeclTy),
1321                                     nullptr);
1322 
1323   auto *F = cast<llvm::GlobalValue>(Aliasee);
1324   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1325   WeakRefReferences.insert(F);
1326 
1327   return Aliasee;
1328 }
1329 
1330 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1331   const auto *Global = cast<ValueDecl>(GD.getDecl());
1332 
1333   // Weak references don't produce any output by themselves.
1334   if (Global->hasAttr<WeakRefAttr>())
1335     return;
1336 
1337   // If this is an alias definition (which otherwise looks like a declaration)
1338   // emit it now.
1339   if (Global->hasAttr<AliasAttr>())
1340     return EmitAliasDefinition(GD);
1341 
1342   // If this is CUDA, be selective about which declarations we emit.
1343   if (LangOpts.CUDA) {
1344     if (LangOpts.CUDAIsDevice) {
1345       if (!Global->hasAttr<CUDADeviceAttr>() &&
1346           !Global->hasAttr<CUDAGlobalAttr>() &&
1347           !Global->hasAttr<CUDAConstantAttr>() &&
1348           !Global->hasAttr<CUDASharedAttr>())
1349         return;
1350     } else {
1351       if (!Global->hasAttr<CUDAHostAttr>() && (
1352             Global->hasAttr<CUDADeviceAttr>() ||
1353             Global->hasAttr<CUDAConstantAttr>() ||
1354             Global->hasAttr<CUDASharedAttr>()))
1355         return;
1356     }
1357   }
1358 
1359   // Ignore declarations, they will be emitted on their first use.
1360   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1361     // Forward declarations are emitted lazily on first use.
1362     if (!FD->doesThisDeclarationHaveABody()) {
1363       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1364         return;
1365 
1366       StringRef MangledName = getMangledName(GD);
1367 
1368       // Compute the function info and LLVM type.
1369       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1370       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1371 
1372       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1373                               /*DontDefer=*/false);
1374       return;
1375     }
1376   } else {
1377     const auto *VD = cast<VarDecl>(Global);
1378     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1379 
1380     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1381         !Context.isMSStaticDataMemberInlineDefinition(VD))
1382       return;
1383   }
1384 
1385   // Defer code generation to first use when possible, e.g. if this is an inline
1386   // function. If the global must always be emitted, do it eagerly if possible
1387   // to benefit from cache locality.
1388   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1389     // Emit the definition if it can't be deferred.
1390     EmitGlobalDefinition(GD);
1391     return;
1392   }
1393 
1394   // If we're deferring emission of a C++ variable with an
1395   // initializer, remember the order in which it appeared in the file.
1396   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1397       cast<VarDecl>(Global)->hasInit()) {
1398     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1399     CXXGlobalInits.push_back(nullptr);
1400   }
1401 
1402   StringRef MangledName = getMangledName(GD);
1403   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1404     // The value has already been used and should therefore be emitted.
1405     addDeferredDeclToEmit(GV, GD);
1406   } else if (MustBeEmitted(Global)) {
1407     // The value must be emitted, but cannot be emitted eagerly.
1408     assert(!MayBeEmittedEagerly(Global));
1409     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1410   } else {
1411     // Otherwise, remember that we saw a deferred decl with this name.  The
1412     // first use of the mangled name will cause it to move into
1413     // DeferredDeclsToEmit.
1414     DeferredDecls[MangledName] = GD;
1415   }
1416 }
1417 
1418 namespace {
1419   struct FunctionIsDirectlyRecursive :
1420     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1421     const StringRef Name;
1422     const Builtin::Context &BI;
1423     bool Result;
1424     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1425       Name(N), BI(C), Result(false) {
1426     }
1427     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1428 
1429     bool TraverseCallExpr(CallExpr *E) {
1430       const FunctionDecl *FD = E->getDirectCallee();
1431       if (!FD)
1432         return true;
1433       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1434       if (Attr && Name == Attr->getLabel()) {
1435         Result = true;
1436         return false;
1437       }
1438       unsigned BuiltinID = FD->getBuiltinID();
1439       if (!BuiltinID)
1440         return true;
1441       StringRef BuiltinName = BI.GetName(BuiltinID);
1442       if (BuiltinName.startswith("__builtin_") &&
1443           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1444         Result = true;
1445         return false;
1446       }
1447       return true;
1448     }
1449   };
1450 }
1451 
1452 // isTriviallyRecursive - Check if this function calls another
1453 // decl that, because of the asm attribute or the other decl being a builtin,
1454 // ends up pointing to itself.
1455 bool
1456 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1457   StringRef Name;
1458   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1459     // asm labels are a special kind of mangling we have to support.
1460     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1461     if (!Attr)
1462       return false;
1463     Name = Attr->getLabel();
1464   } else {
1465     Name = FD->getName();
1466   }
1467 
1468   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1469   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1470   return Walker.Result;
1471 }
1472 
1473 bool
1474 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1475   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1476     return true;
1477   const auto *F = cast<FunctionDecl>(GD.getDecl());
1478   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1479     return false;
1480   // PR9614. Avoid cases where the source code is lying to us. An available
1481   // externally function should have an equivalent function somewhere else,
1482   // but a function that calls itself is clearly not equivalent to the real
1483   // implementation.
1484   // This happens in glibc's btowc and in some configure checks.
1485   return !isTriviallyRecursive(F);
1486 }
1487 
1488 /// If the type for the method's class was generated by
1489 /// CGDebugInfo::createContextChain(), the cache contains only a
1490 /// limited DIType without any declarations. Since EmitFunctionStart()
1491 /// needs to find the canonical declaration for each method, we need
1492 /// to construct the complete type prior to emitting the method.
1493 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1494   if (!D->isInstance())
1495     return;
1496 
1497   if (CGDebugInfo *DI = getModuleDebugInfo())
1498     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1499       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1500       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1501     }
1502 }
1503 
1504 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1505   const auto *D = cast<ValueDecl>(GD.getDecl());
1506 
1507   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1508                                  Context.getSourceManager(),
1509                                  "Generating code for declaration");
1510 
1511   if (isa<FunctionDecl>(D)) {
1512     // At -O0, don't generate IR for functions with available_externally
1513     // linkage.
1514     if (!shouldEmitFunction(GD))
1515       return;
1516 
1517     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1518       CompleteDIClassType(Method);
1519       // Make sure to emit the definition(s) before we emit the thunks.
1520       // This is necessary for the generation of certain thunks.
1521       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1522         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1523       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1524         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1525       else
1526         EmitGlobalFunctionDefinition(GD, GV);
1527 
1528       if (Method->isVirtual())
1529         getVTables().EmitThunks(GD);
1530 
1531       return;
1532     }
1533 
1534     return EmitGlobalFunctionDefinition(GD, GV);
1535   }
1536 
1537   if (const auto *VD = dyn_cast<VarDecl>(D))
1538     return EmitGlobalVarDefinition(VD);
1539 
1540   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1541 }
1542 
1543 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1544 /// module, create and return an llvm Function with the specified type. If there
1545 /// is something in the module with the specified name, return it potentially
1546 /// bitcasted to the right type.
1547 ///
1548 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1549 /// to set the attributes on the function when it is first created.
1550 llvm::Constant *
1551 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1552                                        llvm::Type *Ty,
1553                                        GlobalDecl GD, bool ForVTable,
1554                                        bool DontDefer, bool IsThunk,
1555                                        llvm::AttributeSet ExtraAttrs) {
1556   const Decl *D = GD.getDecl();
1557 
1558   // Lookup the entry, lazily creating it if necessary.
1559   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1560   if (Entry) {
1561     if (WeakRefReferences.erase(Entry)) {
1562       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1563       if (FD && !FD->hasAttr<WeakAttr>())
1564         Entry->setLinkage(llvm::Function::ExternalLinkage);
1565     }
1566 
1567     // Handle dropped DLL attributes.
1568     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1569       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1570 
1571     if (Entry->getType()->getElementType() == Ty)
1572       return Entry;
1573 
1574     // Make sure the result is of the correct type.
1575     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1576   }
1577 
1578   // This function doesn't have a complete type (for example, the return
1579   // type is an incomplete struct). Use a fake type instead, and make
1580   // sure not to try to set attributes.
1581   bool IsIncompleteFunction = false;
1582 
1583   llvm::FunctionType *FTy;
1584   if (isa<llvm::FunctionType>(Ty)) {
1585     FTy = cast<llvm::FunctionType>(Ty);
1586   } else {
1587     FTy = llvm::FunctionType::get(VoidTy, false);
1588     IsIncompleteFunction = true;
1589   }
1590 
1591   llvm::Function *F = llvm::Function::Create(FTy,
1592                                              llvm::Function::ExternalLinkage,
1593                                              MangledName, &getModule());
1594   assert(F->getName() == MangledName && "name was uniqued!");
1595   if (D)
1596     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1597   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1598     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1599     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1600                      llvm::AttributeSet::get(VMContext,
1601                                              llvm::AttributeSet::FunctionIndex,
1602                                              B));
1603   }
1604 
1605   if (!DontDefer) {
1606     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1607     // each other bottoming out with the base dtor.  Therefore we emit non-base
1608     // dtors on usage, even if there is no dtor definition in the TU.
1609     if (D && isa<CXXDestructorDecl>(D) &&
1610         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1611                                            GD.getDtorType()))
1612       addDeferredDeclToEmit(F, GD);
1613 
1614     // This is the first use or definition of a mangled name.  If there is a
1615     // deferred decl with this name, remember that we need to emit it at the end
1616     // of the file.
1617     auto DDI = DeferredDecls.find(MangledName);
1618     if (DDI != DeferredDecls.end()) {
1619       // Move the potentially referenced deferred decl to the
1620       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1621       // don't need it anymore).
1622       addDeferredDeclToEmit(F, DDI->second);
1623       DeferredDecls.erase(DDI);
1624 
1625       // Otherwise, there are cases we have to worry about where we're
1626       // using a declaration for which we must emit a definition but where
1627       // we might not find a top-level definition:
1628       //   - member functions defined inline in their classes
1629       //   - friend functions defined inline in some class
1630       //   - special member functions with implicit definitions
1631       // If we ever change our AST traversal to walk into class methods,
1632       // this will be unnecessary.
1633       //
1634       // We also don't emit a definition for a function if it's going to be an
1635       // entry in a vtable, unless it's already marked as used.
1636     } else if (getLangOpts().CPlusPlus && D) {
1637       // Look for a declaration that's lexically in a record.
1638       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1639            FD = FD->getPreviousDecl()) {
1640         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1641           if (FD->doesThisDeclarationHaveABody()) {
1642             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1643             break;
1644           }
1645         }
1646       }
1647     }
1648   }
1649 
1650   // Make sure the result is of the requested type.
1651   if (!IsIncompleteFunction) {
1652     assert(F->getType()->getElementType() == Ty);
1653     return F;
1654   }
1655 
1656   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1657   return llvm::ConstantExpr::getBitCast(F, PTy);
1658 }
1659 
1660 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1661 /// non-null, then this function will use the specified type if it has to
1662 /// create it (this occurs when we see a definition of the function).
1663 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1664                                                  llvm::Type *Ty,
1665                                                  bool ForVTable,
1666                                                  bool DontDefer) {
1667   // If there was no specific requested type, just convert it now.
1668   if (!Ty)
1669     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1670 
1671   StringRef MangledName = getMangledName(GD);
1672   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1673 }
1674 
1675 /// CreateRuntimeFunction - Create a new runtime function with the specified
1676 /// type and name.
1677 llvm::Constant *
1678 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1679                                      StringRef Name,
1680                                      llvm::AttributeSet ExtraAttrs) {
1681   llvm::Constant *C =
1682       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1683                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1684   if (auto *F = dyn_cast<llvm::Function>(C))
1685     if (F->empty())
1686       F->setCallingConv(getRuntimeCC());
1687   return C;
1688 }
1689 
1690 /// CreateBuiltinFunction - Create a new builtin function with the specified
1691 /// type and name.
1692 llvm::Constant *
1693 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1694                                      StringRef Name,
1695                                      llvm::AttributeSet ExtraAttrs) {
1696   llvm::Constant *C =
1697       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1698                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1699   if (auto *F = dyn_cast<llvm::Function>(C))
1700     if (F->empty())
1701       F->setCallingConv(getBuiltinCC());
1702   return C;
1703 }
1704 
1705 /// isTypeConstant - Determine whether an object of this type can be emitted
1706 /// as a constant.
1707 ///
1708 /// If ExcludeCtor is true, the duration when the object's constructor runs
1709 /// will not be considered. The caller will need to verify that the object is
1710 /// not written to during its construction.
1711 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1712   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1713     return false;
1714 
1715   if (Context.getLangOpts().CPlusPlus) {
1716     if (const CXXRecordDecl *Record
1717           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1718       return ExcludeCtor && !Record->hasMutableFields() &&
1719              Record->hasTrivialDestructor();
1720   }
1721 
1722   return true;
1723 }
1724 
1725 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1726 /// create and return an llvm GlobalVariable with the specified type.  If there
1727 /// is something in the module with the specified name, return it potentially
1728 /// bitcasted to the right type.
1729 ///
1730 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1731 /// to set the attributes on the global when it is first created.
1732 llvm::Constant *
1733 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1734                                      llvm::PointerType *Ty,
1735                                      const VarDecl *D) {
1736   // Lookup the entry, lazily creating it if necessary.
1737   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1738   if (Entry) {
1739     if (WeakRefReferences.erase(Entry)) {
1740       if (D && !D->hasAttr<WeakAttr>())
1741         Entry->setLinkage(llvm::Function::ExternalLinkage);
1742     }
1743 
1744     // Handle dropped DLL attributes.
1745     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1746       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1747 
1748     if (Entry->getType() == Ty)
1749       return Entry;
1750 
1751     // Make sure the result is of the correct type.
1752     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1753       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1754 
1755     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1756   }
1757 
1758   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1759   auto *GV = new llvm::GlobalVariable(
1760       getModule(), Ty->getElementType(), false,
1761       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1762       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1763 
1764   // This is the first use or definition of a mangled name.  If there is a
1765   // deferred decl with this name, remember that we need to emit it at the end
1766   // of the file.
1767   auto DDI = DeferredDecls.find(MangledName);
1768   if (DDI != DeferredDecls.end()) {
1769     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1770     // list, and remove it from DeferredDecls (since we don't need it anymore).
1771     addDeferredDeclToEmit(GV, DDI->second);
1772     DeferredDecls.erase(DDI);
1773   }
1774 
1775   // Handle things which are present even on external declarations.
1776   if (D) {
1777     // FIXME: This code is overly simple and should be merged with other global
1778     // handling.
1779     GV->setConstant(isTypeConstant(D->getType(), false));
1780 
1781     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1782 
1783     setLinkageAndVisibilityForGV(GV, D);
1784 
1785     if (D->getTLSKind()) {
1786       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1787         CXXThreadLocals.push_back(std::make_pair(D, GV));
1788       setTLSMode(GV, *D);
1789     }
1790 
1791     // If required by the ABI, treat declarations of static data members with
1792     // inline initializers as definitions.
1793     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1794       EmitGlobalVarDefinition(D);
1795     }
1796 
1797     // Handle XCore specific ABI requirements.
1798     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1799         D->getLanguageLinkage() == CLanguageLinkage &&
1800         D->getType().isConstant(Context) &&
1801         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1802       GV->setSection(".cp.rodata");
1803   }
1804 
1805   if (AddrSpace != Ty->getAddressSpace())
1806     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1807 
1808   return GV;
1809 }
1810 
1811 
1812 llvm::GlobalVariable *
1813 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1814                                       llvm::Type *Ty,
1815                                       llvm::GlobalValue::LinkageTypes Linkage) {
1816   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1817   llvm::GlobalVariable *OldGV = nullptr;
1818 
1819   if (GV) {
1820     // Check if the variable has the right type.
1821     if (GV->getType()->getElementType() == Ty)
1822       return GV;
1823 
1824     // Because C++ name mangling, the only way we can end up with an already
1825     // existing global with the same name is if it has been declared extern "C".
1826     assert(GV->isDeclaration() && "Declaration has wrong type!");
1827     OldGV = GV;
1828   }
1829 
1830   // Create a new variable.
1831   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1832                                 Linkage, nullptr, Name);
1833 
1834   if (OldGV) {
1835     // Replace occurrences of the old variable if needed.
1836     GV->takeName(OldGV);
1837 
1838     if (!OldGV->use_empty()) {
1839       llvm::Constant *NewPtrForOldDecl =
1840       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1841       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1842     }
1843 
1844     OldGV->eraseFromParent();
1845   }
1846 
1847   if (supportsCOMDAT() && GV->isWeakForLinker() &&
1848       !GV->hasAvailableExternallyLinkage())
1849     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1850 
1851   return GV;
1852 }
1853 
1854 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1855 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1856 /// then it will be created with the specified type instead of whatever the
1857 /// normal requested type would be.
1858 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1859                                                   llvm::Type *Ty) {
1860   assert(D->hasGlobalStorage() && "Not a global variable");
1861   QualType ASTTy = D->getType();
1862   if (!Ty)
1863     Ty = getTypes().ConvertTypeForMem(ASTTy);
1864 
1865   llvm::PointerType *PTy =
1866     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1867 
1868   StringRef MangledName = getMangledName(D);
1869   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1870 }
1871 
1872 /// CreateRuntimeVariable - Create a new runtime global variable with the
1873 /// specified type and name.
1874 llvm::Constant *
1875 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1876                                      StringRef Name) {
1877   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1878 }
1879 
1880 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1881   assert(!D->getInit() && "Cannot emit definite definitions here!");
1882 
1883   if (!MustBeEmitted(D)) {
1884     // If we have not seen a reference to this variable yet, place it
1885     // into the deferred declarations table to be emitted if needed
1886     // later.
1887     StringRef MangledName = getMangledName(D);
1888     if (!GetGlobalValue(MangledName)) {
1889       DeferredDecls[MangledName] = D;
1890       return;
1891     }
1892   }
1893 
1894   // The tentative definition is the only definition.
1895   EmitGlobalVarDefinition(D);
1896 }
1897 
1898 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1899     return Context.toCharUnitsFromBits(
1900       TheDataLayout.getTypeStoreSizeInBits(Ty));
1901 }
1902 
1903 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1904                                                  unsigned AddrSpace) {
1905   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
1906     if (D->hasAttr<CUDAConstantAttr>())
1907       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1908     else if (D->hasAttr<CUDASharedAttr>())
1909       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1910     else
1911       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1912   }
1913 
1914   return AddrSpace;
1915 }
1916 
1917 template<typename SomeDecl>
1918 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1919                                                llvm::GlobalValue *GV) {
1920   if (!getLangOpts().CPlusPlus)
1921     return;
1922 
1923   // Must have 'used' attribute, or else inline assembly can't rely on
1924   // the name existing.
1925   if (!D->template hasAttr<UsedAttr>())
1926     return;
1927 
1928   // Must have internal linkage and an ordinary name.
1929   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1930     return;
1931 
1932   // Must be in an extern "C" context. Entities declared directly within
1933   // a record are not extern "C" even if the record is in such a context.
1934   const SomeDecl *First = D->getFirstDecl();
1935   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1936     return;
1937 
1938   // OK, this is an internal linkage entity inside an extern "C" linkage
1939   // specification. Make a note of that so we can give it the "expected"
1940   // mangled name if nothing else is using that name.
1941   std::pair<StaticExternCMap::iterator, bool> R =
1942       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1943 
1944   // If we have multiple internal linkage entities with the same name
1945   // in extern "C" regions, none of them gets that name.
1946   if (!R.second)
1947     R.first->second = nullptr;
1948 }
1949 
1950 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
1951   if (!CGM.supportsCOMDAT())
1952     return false;
1953 
1954   if (D.hasAttr<SelectAnyAttr>())
1955     return true;
1956 
1957   GVALinkage Linkage;
1958   if (auto *VD = dyn_cast<VarDecl>(&D))
1959     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
1960   else
1961     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
1962 
1963   switch (Linkage) {
1964   case GVA_Internal:
1965   case GVA_AvailableExternally:
1966   case GVA_StrongExternal:
1967     return false;
1968   case GVA_DiscardableODR:
1969   case GVA_StrongODR:
1970     return true;
1971   }
1972   llvm_unreachable("No such linkage");
1973 }
1974 
1975 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
1976                                           llvm::GlobalObject &GO) {
1977   if (!shouldBeInCOMDAT(*this, D))
1978     return;
1979   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
1980 }
1981 
1982 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1983   llvm::Constant *Init = nullptr;
1984   QualType ASTTy = D->getType();
1985   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1986   bool NeedsGlobalCtor = false;
1987   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1988 
1989   const VarDecl *InitDecl;
1990   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1991 
1992   if (!InitExpr) {
1993     // This is a tentative definition; tentative definitions are
1994     // implicitly initialized with { 0 }.
1995     //
1996     // Note that tentative definitions are only emitted at the end of
1997     // a translation unit, so they should never have incomplete
1998     // type. In addition, EmitTentativeDefinition makes sure that we
1999     // never attempt to emit a tentative definition if a real one
2000     // exists. A use may still exists, however, so we still may need
2001     // to do a RAUW.
2002     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2003     Init = EmitNullConstant(D->getType());
2004   } else {
2005     initializedGlobalDecl = GlobalDecl(D);
2006     Init = EmitConstantInit(*InitDecl);
2007 
2008     if (!Init) {
2009       QualType T = InitExpr->getType();
2010       if (D->getType()->isReferenceType())
2011         T = D->getType();
2012 
2013       if (getLangOpts().CPlusPlus) {
2014         Init = EmitNullConstant(T);
2015         NeedsGlobalCtor = true;
2016       } else {
2017         ErrorUnsupported(D, "static initializer");
2018         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2019       }
2020     } else {
2021       // We don't need an initializer, so remove the entry for the delayed
2022       // initializer position (just in case this entry was delayed) if we
2023       // also don't need to register a destructor.
2024       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2025         DelayedCXXInitPosition.erase(D);
2026     }
2027   }
2028 
2029   llvm::Type* InitType = Init->getType();
2030   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2031 
2032   // Strip off a bitcast if we got one back.
2033   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2034     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2035            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2036            // All zero index gep.
2037            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2038     Entry = CE->getOperand(0);
2039   }
2040 
2041   // Entry is now either a Function or GlobalVariable.
2042   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2043 
2044   // We have a definition after a declaration with the wrong type.
2045   // We must make a new GlobalVariable* and update everything that used OldGV
2046   // (a declaration or tentative definition) with the new GlobalVariable*
2047   // (which will be a definition).
2048   //
2049   // This happens if there is a prototype for a global (e.g.
2050   // "extern int x[];") and then a definition of a different type (e.g.
2051   // "int x[10];"). This also happens when an initializer has a different type
2052   // from the type of the global (this happens with unions).
2053   if (!GV ||
2054       GV->getType()->getElementType() != InitType ||
2055       GV->getType()->getAddressSpace() !=
2056        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2057 
2058     // Move the old entry aside so that we'll create a new one.
2059     Entry->setName(StringRef());
2060 
2061     // Make a new global with the correct type, this is now guaranteed to work.
2062     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2063 
2064     // Replace all uses of the old global with the new global
2065     llvm::Constant *NewPtrForOldDecl =
2066         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2067     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2068 
2069     // Erase the old global, since it is no longer used.
2070     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2071   }
2072 
2073   MaybeHandleStaticInExternC(D, GV);
2074 
2075   if (D->hasAttr<AnnotateAttr>())
2076     AddGlobalAnnotations(D, GV);
2077 
2078   GV->setInitializer(Init);
2079 
2080   // If it is safe to mark the global 'constant', do so now.
2081   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2082                   isTypeConstant(D->getType(), true));
2083 
2084   // If it is in a read-only section, mark it 'constant'.
2085   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2086     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2087     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2088       GV->setConstant(true);
2089   }
2090 
2091   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2092 
2093   // Set the llvm linkage type as appropriate.
2094   llvm::GlobalValue::LinkageTypes Linkage =
2095       getLLVMLinkageVarDefinition(D, GV->isConstant());
2096 
2097   // On Darwin, the backing variable for a C++11 thread_local variable always
2098   // has internal linkage; all accesses should just be calls to the
2099   // Itanium-specified entry point, which has the normal linkage of the
2100   // variable.
2101   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2102       Context.getTargetInfo().getTriple().isMacOSX())
2103     Linkage = llvm::GlobalValue::InternalLinkage;
2104 
2105   GV->setLinkage(Linkage);
2106   if (D->hasAttr<DLLImportAttr>())
2107     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2108   else if (D->hasAttr<DLLExportAttr>())
2109     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2110   else
2111     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2112 
2113   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2114     // common vars aren't constant even if declared const.
2115     GV->setConstant(false);
2116 
2117   setNonAliasAttributes(D, GV);
2118 
2119   if (D->getTLSKind() && !GV->isThreadLocal()) {
2120     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2121       CXXThreadLocals.push_back(std::make_pair(D, GV));
2122     setTLSMode(GV, *D);
2123   }
2124 
2125   maybeSetTrivialComdat(*D, *GV);
2126 
2127   // Emit the initializer function if necessary.
2128   if (NeedsGlobalCtor || NeedsGlobalDtor)
2129     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2130 
2131   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2132 
2133   // Emit global variable debug information.
2134   if (CGDebugInfo *DI = getModuleDebugInfo())
2135     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2136       DI->EmitGlobalVariable(GV, D);
2137 }
2138 
2139 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2140                                       CodeGenModule &CGM, const VarDecl *D,
2141                                       bool NoCommon) {
2142   // Don't give variables common linkage if -fno-common was specified unless it
2143   // was overridden by a NoCommon attribute.
2144   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2145     return true;
2146 
2147   // C11 6.9.2/2:
2148   //   A declaration of an identifier for an object that has file scope without
2149   //   an initializer, and without a storage-class specifier or with the
2150   //   storage-class specifier static, constitutes a tentative definition.
2151   if (D->getInit() || D->hasExternalStorage())
2152     return true;
2153 
2154   // A variable cannot be both common and exist in a section.
2155   if (D->hasAttr<SectionAttr>())
2156     return true;
2157 
2158   // Thread local vars aren't considered common linkage.
2159   if (D->getTLSKind())
2160     return true;
2161 
2162   // Tentative definitions marked with WeakImportAttr are true definitions.
2163   if (D->hasAttr<WeakImportAttr>())
2164     return true;
2165 
2166   // A variable cannot be both common and exist in a comdat.
2167   if (shouldBeInCOMDAT(CGM, *D))
2168     return true;
2169 
2170   // Declarations with a required alignment do not have common linakge in MSVC
2171   // mode.
2172   if (Context.getLangOpts().MSVCCompat) {
2173     if (D->hasAttr<AlignedAttr>())
2174       return true;
2175     QualType VarType = D->getType();
2176     if (Context.isAlignmentRequired(VarType))
2177       return true;
2178 
2179     if (const auto *RT = VarType->getAs<RecordType>()) {
2180       const RecordDecl *RD = RT->getDecl();
2181       for (const FieldDecl *FD : RD->fields()) {
2182         if (FD->isBitField())
2183           continue;
2184         if (FD->hasAttr<AlignedAttr>())
2185           return true;
2186         if (Context.isAlignmentRequired(FD->getType()))
2187           return true;
2188       }
2189     }
2190   }
2191 
2192   return false;
2193 }
2194 
2195 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2196     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2197   if (Linkage == GVA_Internal)
2198     return llvm::Function::InternalLinkage;
2199 
2200   if (D->hasAttr<WeakAttr>()) {
2201     if (IsConstantVariable)
2202       return llvm::GlobalVariable::WeakODRLinkage;
2203     else
2204       return llvm::GlobalVariable::WeakAnyLinkage;
2205   }
2206 
2207   // We are guaranteed to have a strong definition somewhere else,
2208   // so we can use available_externally linkage.
2209   if (Linkage == GVA_AvailableExternally)
2210     return llvm::Function::AvailableExternallyLinkage;
2211 
2212   // Note that Apple's kernel linker doesn't support symbol
2213   // coalescing, so we need to avoid linkonce and weak linkages there.
2214   // Normally, this means we just map to internal, but for explicit
2215   // instantiations we'll map to external.
2216 
2217   // In C++, the compiler has to emit a definition in every translation unit
2218   // that references the function.  We should use linkonce_odr because
2219   // a) if all references in this translation unit are optimized away, we
2220   // don't need to codegen it.  b) if the function persists, it needs to be
2221   // merged with other definitions. c) C++ has the ODR, so we know the
2222   // definition is dependable.
2223   if (Linkage == GVA_DiscardableODR)
2224     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2225                                             : llvm::Function::InternalLinkage;
2226 
2227   // An explicit instantiation of a template has weak linkage, since
2228   // explicit instantiations can occur in multiple translation units
2229   // and must all be equivalent. However, we are not allowed to
2230   // throw away these explicit instantiations.
2231   if (Linkage == GVA_StrongODR)
2232     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2233                                             : llvm::Function::ExternalLinkage;
2234 
2235   // C++ doesn't have tentative definitions and thus cannot have common
2236   // linkage.
2237   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2238       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2239                                  CodeGenOpts.NoCommon))
2240     return llvm::GlobalVariable::CommonLinkage;
2241 
2242   // selectany symbols are externally visible, so use weak instead of
2243   // linkonce.  MSVC optimizes away references to const selectany globals, so
2244   // all definitions should be the same and ODR linkage should be used.
2245   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2246   if (D->hasAttr<SelectAnyAttr>())
2247     return llvm::GlobalVariable::WeakODRLinkage;
2248 
2249   // Otherwise, we have strong external linkage.
2250   assert(Linkage == GVA_StrongExternal);
2251   return llvm::GlobalVariable::ExternalLinkage;
2252 }
2253 
2254 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2255     const VarDecl *VD, bool IsConstant) {
2256   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2257   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2258 }
2259 
2260 /// Replace the uses of a function that was declared with a non-proto type.
2261 /// We want to silently drop extra arguments from call sites
2262 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2263                                           llvm::Function *newFn) {
2264   // Fast path.
2265   if (old->use_empty()) return;
2266 
2267   llvm::Type *newRetTy = newFn->getReturnType();
2268   SmallVector<llvm::Value*, 4> newArgs;
2269 
2270   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2271          ui != ue; ) {
2272     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2273     llvm::User *user = use->getUser();
2274 
2275     // Recognize and replace uses of bitcasts.  Most calls to
2276     // unprototyped functions will use bitcasts.
2277     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2278       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2279         replaceUsesOfNonProtoConstant(bitcast, newFn);
2280       continue;
2281     }
2282 
2283     // Recognize calls to the function.
2284     llvm::CallSite callSite(user);
2285     if (!callSite) continue;
2286     if (!callSite.isCallee(&*use)) continue;
2287 
2288     // If the return types don't match exactly, then we can't
2289     // transform this call unless it's dead.
2290     if (callSite->getType() != newRetTy && !callSite->use_empty())
2291       continue;
2292 
2293     // Get the call site's attribute list.
2294     SmallVector<llvm::AttributeSet, 8> newAttrs;
2295     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2296 
2297     // Collect any return attributes from the call.
2298     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2299       newAttrs.push_back(
2300         llvm::AttributeSet::get(newFn->getContext(),
2301                                 oldAttrs.getRetAttributes()));
2302 
2303     // If the function was passed too few arguments, don't transform.
2304     unsigned newNumArgs = newFn->arg_size();
2305     if (callSite.arg_size() < newNumArgs) continue;
2306 
2307     // If extra arguments were passed, we silently drop them.
2308     // If any of the types mismatch, we don't transform.
2309     unsigned argNo = 0;
2310     bool dontTransform = false;
2311     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2312            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2313       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2314         dontTransform = true;
2315         break;
2316       }
2317 
2318       // Add any parameter attributes.
2319       if (oldAttrs.hasAttributes(argNo + 1))
2320         newAttrs.
2321           push_back(llvm::
2322                     AttributeSet::get(newFn->getContext(),
2323                                       oldAttrs.getParamAttributes(argNo + 1)));
2324     }
2325     if (dontTransform)
2326       continue;
2327 
2328     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2329       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2330                                                  oldAttrs.getFnAttributes()));
2331 
2332     // Okay, we can transform this.  Create the new call instruction and copy
2333     // over the required information.
2334     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2335 
2336     llvm::CallSite newCall;
2337     if (callSite.isCall()) {
2338       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2339                                        callSite.getInstruction());
2340     } else {
2341       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2342       newCall = llvm::InvokeInst::Create(newFn,
2343                                          oldInvoke->getNormalDest(),
2344                                          oldInvoke->getUnwindDest(),
2345                                          newArgs, "",
2346                                          callSite.getInstruction());
2347     }
2348     newArgs.clear(); // for the next iteration
2349 
2350     if (!newCall->getType()->isVoidTy())
2351       newCall->takeName(callSite.getInstruction());
2352     newCall.setAttributes(
2353                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2354     newCall.setCallingConv(callSite.getCallingConv());
2355 
2356     // Finally, remove the old call, replacing any uses with the new one.
2357     if (!callSite->use_empty())
2358       callSite->replaceAllUsesWith(newCall.getInstruction());
2359 
2360     // Copy debug location attached to CI.
2361     if (callSite->getDebugLoc())
2362       newCall->setDebugLoc(callSite->getDebugLoc());
2363     callSite->eraseFromParent();
2364   }
2365 }
2366 
2367 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2368 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2369 /// existing call uses of the old function in the module, this adjusts them to
2370 /// call the new function directly.
2371 ///
2372 /// This is not just a cleanup: the always_inline pass requires direct calls to
2373 /// functions to be able to inline them.  If there is a bitcast in the way, it
2374 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2375 /// run at -O0.
2376 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2377                                                       llvm::Function *NewFn) {
2378   // If we're redefining a global as a function, don't transform it.
2379   if (!isa<llvm::Function>(Old)) return;
2380 
2381   replaceUsesOfNonProtoConstant(Old, NewFn);
2382 }
2383 
2384 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2385   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2386   // If we have a definition, this might be a deferred decl. If the
2387   // instantiation is explicit, make sure we emit it at the end.
2388   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2389     GetAddrOfGlobalVar(VD);
2390 
2391   EmitTopLevelDecl(VD);
2392 }
2393 
2394 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2395                                                  llvm::GlobalValue *GV) {
2396   const auto *D = cast<FunctionDecl>(GD.getDecl());
2397 
2398   // Compute the function info and LLVM type.
2399   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2400   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2401 
2402   // Get or create the prototype for the function.
2403   if (!GV) {
2404     llvm::Constant *C =
2405         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2406 
2407     // Strip off a bitcast if we got one back.
2408     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2409       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2410       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2411     } else {
2412       GV = cast<llvm::GlobalValue>(C);
2413     }
2414   }
2415 
2416   if (!GV->isDeclaration()) {
2417     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2418     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2419     if (auto *Prev = OldGD.getDecl())
2420       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2421     return;
2422   }
2423 
2424   if (GV->getType()->getElementType() != Ty) {
2425     // If the types mismatch then we have to rewrite the definition.
2426     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2427 
2428     // F is the Function* for the one with the wrong type, we must make a new
2429     // Function* and update everything that used F (a declaration) with the new
2430     // Function* (which will be a definition).
2431     //
2432     // This happens if there is a prototype for a function
2433     // (e.g. "int f()") and then a definition of a different type
2434     // (e.g. "int f(int x)").  Move the old function aside so that it
2435     // doesn't interfere with GetAddrOfFunction.
2436     GV->setName(StringRef());
2437     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2438 
2439     // This might be an implementation of a function without a
2440     // prototype, in which case, try to do special replacement of
2441     // calls which match the new prototype.  The really key thing here
2442     // is that we also potentially drop arguments from the call site
2443     // so as to make a direct call, which makes the inliner happier
2444     // and suppresses a number of optimizer warnings (!) about
2445     // dropping arguments.
2446     if (!GV->use_empty()) {
2447       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2448       GV->removeDeadConstantUsers();
2449     }
2450 
2451     // Replace uses of F with the Function we will endow with a body.
2452     if (!GV->use_empty()) {
2453       llvm::Constant *NewPtrForOldDecl =
2454           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2455       GV->replaceAllUsesWith(NewPtrForOldDecl);
2456     }
2457 
2458     // Ok, delete the old function now, which is dead.
2459     GV->eraseFromParent();
2460 
2461     GV = NewFn;
2462   }
2463 
2464   // We need to set linkage and visibility on the function before
2465   // generating code for it because various parts of IR generation
2466   // want to propagate this information down (e.g. to local static
2467   // declarations).
2468   auto *Fn = cast<llvm::Function>(GV);
2469   setFunctionLinkage(GD, Fn);
2470   setFunctionDLLStorageClass(GD, Fn);
2471 
2472   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2473   setGlobalVisibility(Fn, D);
2474 
2475   MaybeHandleStaticInExternC(D, Fn);
2476 
2477   maybeSetTrivialComdat(*D, *Fn);
2478 
2479   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2480 
2481   setFunctionDefinitionAttributes(D, Fn);
2482   SetLLVMFunctionAttributesForDefinition(D, Fn);
2483 
2484   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2485     AddGlobalCtor(Fn, CA->getPriority());
2486   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2487     AddGlobalDtor(Fn, DA->getPriority());
2488   if (D->hasAttr<AnnotateAttr>())
2489     AddGlobalAnnotations(D, Fn);
2490 }
2491 
2492 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2493   const auto *D = cast<ValueDecl>(GD.getDecl());
2494   const AliasAttr *AA = D->getAttr<AliasAttr>();
2495   assert(AA && "Not an alias?");
2496 
2497   StringRef MangledName = getMangledName(GD);
2498 
2499   // If there is a definition in the module, then it wins over the alias.
2500   // This is dubious, but allow it to be safe.  Just ignore the alias.
2501   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2502   if (Entry && !Entry->isDeclaration())
2503     return;
2504 
2505   Aliases.push_back(GD);
2506 
2507   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2508 
2509   // Create a reference to the named value.  This ensures that it is emitted
2510   // if a deferred decl.
2511   llvm::Constant *Aliasee;
2512   if (isa<llvm::FunctionType>(DeclTy))
2513     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2514                                       /*ForVTable=*/false);
2515   else
2516     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2517                                     llvm::PointerType::getUnqual(DeclTy),
2518                                     /*D=*/nullptr);
2519 
2520   // Create the new alias itself, but don't set a name yet.
2521   auto *GA = llvm::GlobalAlias::create(
2522       cast<llvm::PointerType>(Aliasee->getType()),
2523       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2524 
2525   if (Entry) {
2526     if (GA->getAliasee() == Entry) {
2527       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2528       return;
2529     }
2530 
2531     assert(Entry->isDeclaration());
2532 
2533     // If there is a declaration in the module, then we had an extern followed
2534     // by the alias, as in:
2535     //   extern int test6();
2536     //   ...
2537     //   int test6() __attribute__((alias("test7")));
2538     //
2539     // Remove it and replace uses of it with the alias.
2540     GA->takeName(Entry);
2541 
2542     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2543                                                           Entry->getType()));
2544     Entry->eraseFromParent();
2545   } else {
2546     GA->setName(MangledName);
2547   }
2548 
2549   // Set attributes which are particular to an alias; this is a
2550   // specialization of the attributes which may be set on a global
2551   // variable/function.
2552   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2553       D->isWeakImported()) {
2554     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2555   }
2556 
2557   if (const auto *VD = dyn_cast<VarDecl>(D))
2558     if (VD->getTLSKind())
2559       setTLSMode(GA, *VD);
2560 
2561   setAliasAttributes(D, GA);
2562 }
2563 
2564 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2565                                             ArrayRef<llvm::Type*> Tys) {
2566   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2567                                          Tys);
2568 }
2569 
2570 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2571 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2572                          const StringLiteral *Literal, bool TargetIsLSB,
2573                          bool &IsUTF16, unsigned &StringLength) {
2574   StringRef String = Literal->getString();
2575   unsigned NumBytes = String.size();
2576 
2577   // Check for simple case.
2578   if (!Literal->containsNonAsciiOrNull()) {
2579     StringLength = NumBytes;
2580     return *Map.insert(std::make_pair(String, nullptr)).first;
2581   }
2582 
2583   // Otherwise, convert the UTF8 literals into a string of shorts.
2584   IsUTF16 = true;
2585 
2586   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2587   const UTF8 *FromPtr = (const UTF8 *)String.data();
2588   UTF16 *ToPtr = &ToBuf[0];
2589 
2590   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2591                            &ToPtr, ToPtr + NumBytes,
2592                            strictConversion);
2593 
2594   // ConvertUTF8toUTF16 returns the length in ToPtr.
2595   StringLength = ToPtr - &ToBuf[0];
2596 
2597   // Add an explicit null.
2598   *ToPtr = 0;
2599   return *Map.insert(std::make_pair(
2600                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2601                                    (StringLength + 1) * 2),
2602                          nullptr)).first;
2603 }
2604 
2605 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2606 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2607                        const StringLiteral *Literal, unsigned &StringLength) {
2608   StringRef String = Literal->getString();
2609   StringLength = String.size();
2610   return *Map.insert(std::make_pair(String, nullptr)).first;
2611 }
2612 
2613 llvm::Constant *
2614 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2615   unsigned StringLength = 0;
2616   bool isUTF16 = false;
2617   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2618       GetConstantCFStringEntry(CFConstantStringMap, Literal,
2619                                getDataLayout().isLittleEndian(), isUTF16,
2620                                StringLength);
2621 
2622   if (auto *C = Entry.second)
2623     return C;
2624 
2625   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2626   llvm::Constant *Zeros[] = { Zero, Zero };
2627   llvm::Value *V;
2628 
2629   // If we don't already have it, get __CFConstantStringClassReference.
2630   if (!CFConstantStringClassRef) {
2631     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2632     Ty = llvm::ArrayType::get(Ty, 0);
2633     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2634                                            "__CFConstantStringClassReference");
2635     // Decay array -> ptr
2636     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2637     CFConstantStringClassRef = V;
2638   }
2639   else
2640     V = CFConstantStringClassRef;
2641 
2642   QualType CFTy = getContext().getCFConstantStringType();
2643 
2644   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2645 
2646   llvm::Constant *Fields[4];
2647 
2648   // Class pointer.
2649   Fields[0] = cast<llvm::ConstantExpr>(V);
2650 
2651   // Flags.
2652   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2653   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2654     llvm::ConstantInt::get(Ty, 0x07C8);
2655 
2656   // String pointer.
2657   llvm::Constant *C = nullptr;
2658   if (isUTF16) {
2659     ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2660         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2661         Entry.first().size() / 2);
2662     C = llvm::ConstantDataArray::get(VMContext, Arr);
2663   } else {
2664     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2665   }
2666 
2667   // Note: -fwritable-strings doesn't make the backing store strings of
2668   // CFStrings writable. (See <rdar://problem/10657500>)
2669   auto *GV =
2670       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2671                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2672   GV->setUnnamedAddr(true);
2673   // Don't enforce the target's minimum global alignment, since the only use
2674   // of the string is via this class initializer.
2675   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2676   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2677   // that changes the section it ends in, which surprises ld64.
2678   if (isUTF16) {
2679     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2680     GV->setAlignment(Align.getQuantity());
2681     GV->setSection("__TEXT,__ustring");
2682   } else {
2683     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2684     GV->setAlignment(Align.getQuantity());
2685     GV->setSection("__TEXT,__cstring,cstring_literals");
2686   }
2687 
2688   // String.
2689   Fields[2] =
2690       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2691 
2692   if (isUTF16)
2693     // Cast the UTF16 string to the correct type.
2694     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2695 
2696   // String length.
2697   Ty = getTypes().ConvertType(getContext().LongTy);
2698   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2699 
2700   // The struct.
2701   C = llvm::ConstantStruct::get(STy, Fields);
2702   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2703                                 llvm::GlobalVariable::PrivateLinkage, C,
2704                                 "_unnamed_cfstring_");
2705   GV->setSection("__DATA,__cfstring");
2706   Entry.second = GV;
2707 
2708   return GV;
2709 }
2710 
2711 llvm::GlobalVariable *
2712 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2713   unsigned StringLength = 0;
2714   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2715       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2716 
2717   if (auto *C = Entry.second)
2718     return C;
2719 
2720   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2721   llvm::Constant *Zeros[] = { Zero, Zero };
2722   llvm::Value *V;
2723   // If we don't already have it, get _NSConstantStringClassReference.
2724   if (!ConstantStringClassRef) {
2725     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2726     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2727     llvm::Constant *GV;
2728     if (LangOpts.ObjCRuntime.isNonFragile()) {
2729       std::string str =
2730         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2731                             : "OBJC_CLASS_$_" + StringClass;
2732       GV = getObjCRuntime().GetClassGlobal(str);
2733       // Make sure the result is of the correct type.
2734       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2735       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2736       ConstantStringClassRef = V;
2737     } else {
2738       std::string str =
2739         StringClass.empty() ? "_NSConstantStringClassReference"
2740                             : "_" + StringClass + "ClassReference";
2741       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2742       GV = CreateRuntimeVariable(PTy, str);
2743       // Decay array -> ptr
2744       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
2745       ConstantStringClassRef = V;
2746     }
2747   } else
2748     V = ConstantStringClassRef;
2749 
2750   if (!NSConstantStringType) {
2751     // Construct the type for a constant NSString.
2752     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2753     D->startDefinition();
2754 
2755     QualType FieldTypes[3];
2756 
2757     // const int *isa;
2758     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2759     // const char *str;
2760     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2761     // unsigned int length;
2762     FieldTypes[2] = Context.UnsignedIntTy;
2763 
2764     // Create fields
2765     for (unsigned i = 0; i < 3; ++i) {
2766       FieldDecl *Field = FieldDecl::Create(Context, D,
2767                                            SourceLocation(),
2768                                            SourceLocation(), nullptr,
2769                                            FieldTypes[i], /*TInfo=*/nullptr,
2770                                            /*BitWidth=*/nullptr,
2771                                            /*Mutable=*/false,
2772                                            ICIS_NoInit);
2773       Field->setAccess(AS_public);
2774       D->addDecl(Field);
2775     }
2776 
2777     D->completeDefinition();
2778     QualType NSTy = Context.getTagDeclType(D);
2779     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2780   }
2781 
2782   llvm::Constant *Fields[3];
2783 
2784   // Class pointer.
2785   Fields[0] = cast<llvm::ConstantExpr>(V);
2786 
2787   // String pointer.
2788   llvm::Constant *C =
2789       llvm::ConstantDataArray::getString(VMContext, Entry.first());
2790 
2791   llvm::GlobalValue::LinkageTypes Linkage;
2792   bool isConstant;
2793   Linkage = llvm::GlobalValue::PrivateLinkage;
2794   isConstant = !LangOpts.WritableStrings;
2795 
2796   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2797                                       Linkage, C, ".str");
2798   GV->setUnnamedAddr(true);
2799   // Don't enforce the target's minimum global alignment, since the only use
2800   // of the string is via this class initializer.
2801   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2802   GV->setAlignment(Align.getQuantity());
2803   Fields[1] =
2804       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2805 
2806   // String length.
2807   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2808   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2809 
2810   // The struct.
2811   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2812   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2813                                 llvm::GlobalVariable::PrivateLinkage, C,
2814                                 "_unnamed_nsstring_");
2815   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2816   const char *NSStringNonFragileABISection =
2817       "__DATA,__objc_stringobj,regular,no_dead_strip";
2818   // FIXME. Fix section.
2819   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2820                      ? NSStringNonFragileABISection
2821                      : NSStringSection);
2822   Entry.second = GV;
2823 
2824   return GV;
2825 }
2826 
2827 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2828   if (ObjCFastEnumerationStateType.isNull()) {
2829     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2830     D->startDefinition();
2831 
2832     QualType FieldTypes[] = {
2833       Context.UnsignedLongTy,
2834       Context.getPointerType(Context.getObjCIdType()),
2835       Context.getPointerType(Context.UnsignedLongTy),
2836       Context.getConstantArrayType(Context.UnsignedLongTy,
2837                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2838     };
2839 
2840     for (size_t i = 0; i < 4; ++i) {
2841       FieldDecl *Field = FieldDecl::Create(Context,
2842                                            D,
2843                                            SourceLocation(),
2844                                            SourceLocation(), nullptr,
2845                                            FieldTypes[i], /*TInfo=*/nullptr,
2846                                            /*BitWidth=*/nullptr,
2847                                            /*Mutable=*/false,
2848                                            ICIS_NoInit);
2849       Field->setAccess(AS_public);
2850       D->addDecl(Field);
2851     }
2852 
2853     D->completeDefinition();
2854     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2855   }
2856 
2857   return ObjCFastEnumerationStateType;
2858 }
2859 
2860 llvm::Constant *
2861 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2862   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2863 
2864   // Don't emit it as the address of the string, emit the string data itself
2865   // as an inline array.
2866   if (E->getCharByteWidth() == 1) {
2867     SmallString<64> Str(E->getString());
2868 
2869     // Resize the string to the right size, which is indicated by its type.
2870     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2871     Str.resize(CAT->getSize().getZExtValue());
2872     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2873   }
2874 
2875   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2876   llvm::Type *ElemTy = AType->getElementType();
2877   unsigned NumElements = AType->getNumElements();
2878 
2879   // Wide strings have either 2-byte or 4-byte elements.
2880   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2881     SmallVector<uint16_t, 32> Elements;
2882     Elements.reserve(NumElements);
2883 
2884     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2885       Elements.push_back(E->getCodeUnit(i));
2886     Elements.resize(NumElements);
2887     return llvm::ConstantDataArray::get(VMContext, Elements);
2888   }
2889 
2890   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2891   SmallVector<uint32_t, 32> Elements;
2892   Elements.reserve(NumElements);
2893 
2894   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2895     Elements.push_back(E->getCodeUnit(i));
2896   Elements.resize(NumElements);
2897   return llvm::ConstantDataArray::get(VMContext, Elements);
2898 }
2899 
2900 static llvm::GlobalVariable *
2901 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2902                       CodeGenModule &CGM, StringRef GlobalName,
2903                       unsigned Alignment) {
2904   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2905   unsigned AddrSpace = 0;
2906   if (CGM.getLangOpts().OpenCL)
2907     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2908 
2909   llvm::Module &M = CGM.getModule();
2910   // Create a global variable for this string
2911   auto *GV = new llvm::GlobalVariable(
2912       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
2913       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2914   GV->setAlignment(Alignment);
2915   GV->setUnnamedAddr(true);
2916   if (GV->isWeakForLinker()) {
2917     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
2918     GV->setComdat(M.getOrInsertComdat(GV->getName()));
2919   }
2920 
2921   return GV;
2922 }
2923 
2924 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2925 /// constant array for the given string literal.
2926 llvm::GlobalVariable *
2927 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2928                                                   StringRef Name) {
2929   auto Alignment =
2930       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2931 
2932   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2933   llvm::GlobalVariable **Entry = nullptr;
2934   if (!LangOpts.WritableStrings) {
2935     Entry = &ConstantStringMap[C];
2936     if (auto GV = *Entry) {
2937       if (Alignment > GV->getAlignment())
2938         GV->setAlignment(Alignment);
2939       return GV;
2940     }
2941   }
2942 
2943   SmallString<256> MangledNameBuffer;
2944   StringRef GlobalVariableName;
2945   llvm::GlobalValue::LinkageTypes LT;
2946 
2947   // Mangle the string literal if the ABI allows for it.  However, we cannot
2948   // do this if  we are compiling with ASan or -fwritable-strings because they
2949   // rely on strings having normal linkage.
2950   if (!LangOpts.WritableStrings &&
2951       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
2952       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2953     llvm::raw_svector_ostream Out(MangledNameBuffer);
2954     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2955     Out.flush();
2956 
2957     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2958     GlobalVariableName = MangledNameBuffer;
2959   } else {
2960     LT = llvm::GlobalValue::PrivateLinkage;
2961     GlobalVariableName = Name;
2962   }
2963 
2964   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2965   if (Entry)
2966     *Entry = GV;
2967 
2968   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
2969                                   QualType());
2970   return GV;
2971 }
2972 
2973 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2974 /// array for the given ObjCEncodeExpr node.
2975 llvm::GlobalVariable *
2976 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2977   std::string Str;
2978   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2979 
2980   return GetAddrOfConstantCString(Str);
2981 }
2982 
2983 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2984 /// the literal and a terminating '\0' character.
2985 /// The result has pointer to array type.
2986 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2987     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2988   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2989   if (Alignment == 0) {
2990     Alignment = getContext()
2991                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2992                     .getQuantity();
2993   }
2994 
2995   llvm::Constant *C =
2996       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2997 
2998   // Don't share any string literals if strings aren't constant.
2999   llvm::GlobalVariable **Entry = nullptr;
3000   if (!LangOpts.WritableStrings) {
3001     Entry = &ConstantStringMap[C];
3002     if (auto GV = *Entry) {
3003       if (Alignment > GV->getAlignment())
3004         GV->setAlignment(Alignment);
3005       return GV;
3006     }
3007   }
3008 
3009   // Get the default prefix if a name wasn't specified.
3010   if (!GlobalName)
3011     GlobalName = ".str";
3012   // Create a global variable for this.
3013   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3014                                   GlobalName, Alignment);
3015   if (Entry)
3016     *Entry = GV;
3017   return GV;
3018 }
3019 
3020 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
3021     const MaterializeTemporaryExpr *E, const Expr *Init) {
3022   assert((E->getStorageDuration() == SD_Static ||
3023           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3024   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3025 
3026   // If we're not materializing a subobject of the temporary, keep the
3027   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3028   QualType MaterializedType = Init->getType();
3029   if (Init == E->GetTemporaryExpr())
3030     MaterializedType = E->getType();
3031 
3032   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
3033   if (Slot)
3034     return Slot;
3035 
3036   // FIXME: If an externally-visible declaration extends multiple temporaries,
3037   // we need to give each temporary the same name in every translation unit (and
3038   // we also need to make the temporaries externally-visible).
3039   SmallString<256> Name;
3040   llvm::raw_svector_ostream Out(Name);
3041   getCXXABI().getMangleContext().mangleReferenceTemporary(
3042       VD, E->getManglingNumber(), Out);
3043   Out.flush();
3044 
3045   APValue *Value = nullptr;
3046   if (E->getStorageDuration() == SD_Static) {
3047     // We might have a cached constant initializer for this temporary. Note
3048     // that this might have a different value from the value computed by
3049     // evaluating the initializer if the surrounding constant expression
3050     // modifies the temporary.
3051     Value = getContext().getMaterializedTemporaryValue(E, false);
3052     if (Value && Value->isUninit())
3053       Value = nullptr;
3054   }
3055 
3056   // Try evaluating it now, it might have a constant initializer.
3057   Expr::EvalResult EvalResult;
3058   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3059       !EvalResult.hasSideEffects())
3060     Value = &EvalResult.Val;
3061 
3062   llvm::Constant *InitialValue = nullptr;
3063   bool Constant = false;
3064   llvm::Type *Type;
3065   if (Value) {
3066     // The temporary has a constant initializer, use it.
3067     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3068     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3069     Type = InitialValue->getType();
3070   } else {
3071     // No initializer, the initialization will be provided when we
3072     // initialize the declaration which performed lifetime extension.
3073     Type = getTypes().ConvertTypeForMem(MaterializedType);
3074   }
3075 
3076   // Create a global variable for this lifetime-extended temporary.
3077   llvm::GlobalValue::LinkageTypes Linkage =
3078       getLLVMLinkageVarDefinition(VD, Constant);
3079   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3080     const VarDecl *InitVD;
3081     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3082         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3083       // Temporaries defined inside a class get linkonce_odr linkage because the
3084       // class can be defined in multipe translation units.
3085       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3086     } else {
3087       // There is no need for this temporary to have external linkage if the
3088       // VarDecl has external linkage.
3089       Linkage = llvm::GlobalVariable::InternalLinkage;
3090     }
3091   }
3092   unsigned AddrSpace = GetGlobalVarAddressSpace(
3093       VD, getContext().getTargetAddressSpace(MaterializedType));
3094   auto *GV = new llvm::GlobalVariable(
3095       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3096       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3097       AddrSpace);
3098   setGlobalVisibility(GV, VD);
3099   GV->setAlignment(
3100       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
3101   if (supportsCOMDAT() && GV->isWeakForLinker())
3102     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3103   if (VD->getTLSKind())
3104     setTLSMode(GV, *VD);
3105   Slot = GV;
3106   return GV;
3107 }
3108 
3109 /// EmitObjCPropertyImplementations - Emit information for synthesized
3110 /// properties for an implementation.
3111 void CodeGenModule::EmitObjCPropertyImplementations(const
3112                                                     ObjCImplementationDecl *D) {
3113   for (const auto *PID : D->property_impls()) {
3114     // Dynamic is just for type-checking.
3115     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3116       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3117 
3118       // Determine which methods need to be implemented, some may have
3119       // been overridden. Note that ::isPropertyAccessor is not the method
3120       // we want, that just indicates if the decl came from a
3121       // property. What we want to know is if the method is defined in
3122       // this implementation.
3123       if (!D->getInstanceMethod(PD->getGetterName()))
3124         CodeGenFunction(*this).GenerateObjCGetter(
3125                                  const_cast<ObjCImplementationDecl *>(D), PID);
3126       if (!PD->isReadOnly() &&
3127           !D->getInstanceMethod(PD->getSetterName()))
3128         CodeGenFunction(*this).GenerateObjCSetter(
3129                                  const_cast<ObjCImplementationDecl *>(D), PID);
3130     }
3131   }
3132 }
3133 
3134 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3135   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3136   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3137        ivar; ivar = ivar->getNextIvar())
3138     if (ivar->getType().isDestructedType())
3139       return true;
3140 
3141   return false;
3142 }
3143 
3144 static bool AllTrivialInitializers(CodeGenModule &CGM,
3145                                    ObjCImplementationDecl *D) {
3146   CodeGenFunction CGF(CGM);
3147   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3148        E = D->init_end(); B != E; ++B) {
3149     CXXCtorInitializer *CtorInitExp = *B;
3150     Expr *Init = CtorInitExp->getInit();
3151     if (!CGF.isTrivialInitializer(Init))
3152       return false;
3153   }
3154   return true;
3155 }
3156 
3157 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3158 /// for an implementation.
3159 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3160   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3161   if (needsDestructMethod(D)) {
3162     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3163     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3164     ObjCMethodDecl *DTORMethod =
3165       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3166                              cxxSelector, getContext().VoidTy, nullptr, D,
3167                              /*isInstance=*/true, /*isVariadic=*/false,
3168                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3169                              /*isDefined=*/false, ObjCMethodDecl::Required);
3170     D->addInstanceMethod(DTORMethod);
3171     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3172     D->setHasDestructors(true);
3173   }
3174 
3175   // If the implementation doesn't have any ivar initializers, we don't need
3176   // a .cxx_construct.
3177   if (D->getNumIvarInitializers() == 0 ||
3178       AllTrivialInitializers(*this, D))
3179     return;
3180 
3181   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3182   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3183   // The constructor returns 'self'.
3184   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3185                                                 D->getLocation(),
3186                                                 D->getLocation(),
3187                                                 cxxSelector,
3188                                                 getContext().getObjCIdType(),
3189                                                 nullptr, D, /*isInstance=*/true,
3190                                                 /*isVariadic=*/false,
3191                                                 /*isPropertyAccessor=*/true,
3192                                                 /*isImplicitlyDeclared=*/true,
3193                                                 /*isDefined=*/false,
3194                                                 ObjCMethodDecl::Required);
3195   D->addInstanceMethod(CTORMethod);
3196   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3197   D->setHasNonZeroConstructors(true);
3198 }
3199 
3200 /// EmitNamespace - Emit all declarations in a namespace.
3201 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3202   for (auto *I : ND->decls()) {
3203     if (const auto *VD = dyn_cast<VarDecl>(I))
3204       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3205           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3206         continue;
3207     EmitTopLevelDecl(I);
3208   }
3209 }
3210 
3211 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3212 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3213   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3214       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3215     ErrorUnsupported(LSD, "linkage spec");
3216     return;
3217   }
3218 
3219   for (auto *I : LSD->decls()) {
3220     // Meta-data for ObjC class includes references to implemented methods.
3221     // Generate class's method definitions first.
3222     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3223       for (auto *M : OID->methods())
3224         EmitTopLevelDecl(M);
3225     }
3226     EmitTopLevelDecl(I);
3227   }
3228 }
3229 
3230 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3231 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3232   // Ignore dependent declarations.
3233   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3234     return;
3235 
3236   switch (D->getKind()) {
3237   case Decl::CXXConversion:
3238   case Decl::CXXMethod:
3239   case Decl::Function:
3240     // Skip function templates
3241     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3242         cast<FunctionDecl>(D)->isLateTemplateParsed())
3243       return;
3244 
3245     EmitGlobal(cast<FunctionDecl>(D));
3246     // Always provide some coverage mapping
3247     // even for the functions that aren't emitted.
3248     AddDeferredUnusedCoverageMapping(D);
3249     break;
3250 
3251   case Decl::Var:
3252     // Skip variable templates
3253     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3254       return;
3255   case Decl::VarTemplateSpecialization:
3256     EmitGlobal(cast<VarDecl>(D));
3257     break;
3258 
3259   // Indirect fields from global anonymous structs and unions can be
3260   // ignored; only the actual variable requires IR gen support.
3261   case Decl::IndirectField:
3262     break;
3263 
3264   // C++ Decls
3265   case Decl::Namespace:
3266     EmitNamespace(cast<NamespaceDecl>(D));
3267     break;
3268     // No code generation needed.
3269   case Decl::UsingShadow:
3270   case Decl::ClassTemplate:
3271   case Decl::VarTemplate:
3272   case Decl::VarTemplatePartialSpecialization:
3273   case Decl::FunctionTemplate:
3274   case Decl::TypeAliasTemplate:
3275   case Decl::Block:
3276   case Decl::Empty:
3277     break;
3278   case Decl::Using:          // using X; [C++]
3279     if (CGDebugInfo *DI = getModuleDebugInfo())
3280         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3281     return;
3282   case Decl::NamespaceAlias:
3283     if (CGDebugInfo *DI = getModuleDebugInfo())
3284         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3285     return;
3286   case Decl::UsingDirective: // using namespace X; [C++]
3287     if (CGDebugInfo *DI = getModuleDebugInfo())
3288       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3289     return;
3290   case Decl::CXXConstructor:
3291     // Skip function templates
3292     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3293         cast<FunctionDecl>(D)->isLateTemplateParsed())
3294       return;
3295 
3296     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3297     break;
3298   case Decl::CXXDestructor:
3299     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3300       return;
3301     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3302     break;
3303 
3304   case Decl::StaticAssert:
3305     // Nothing to do.
3306     break;
3307 
3308   // Objective-C Decls
3309 
3310   // Forward declarations, no (immediate) code generation.
3311   case Decl::ObjCInterface:
3312   case Decl::ObjCCategory:
3313     break;
3314 
3315   case Decl::ObjCProtocol: {
3316     auto *Proto = cast<ObjCProtocolDecl>(D);
3317     if (Proto->isThisDeclarationADefinition())
3318       ObjCRuntime->GenerateProtocol(Proto);
3319     break;
3320   }
3321 
3322   case Decl::ObjCCategoryImpl:
3323     // Categories have properties but don't support synthesize so we
3324     // can ignore them here.
3325     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3326     break;
3327 
3328   case Decl::ObjCImplementation: {
3329     auto *OMD = cast<ObjCImplementationDecl>(D);
3330     EmitObjCPropertyImplementations(OMD);
3331     EmitObjCIvarInitializations(OMD);
3332     ObjCRuntime->GenerateClass(OMD);
3333     // Emit global variable debug information.
3334     if (CGDebugInfo *DI = getModuleDebugInfo())
3335       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3336         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3337             OMD->getClassInterface()), OMD->getLocation());
3338     break;
3339   }
3340   case Decl::ObjCMethod: {
3341     auto *OMD = cast<ObjCMethodDecl>(D);
3342     // If this is not a prototype, emit the body.
3343     if (OMD->getBody())
3344       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3345     break;
3346   }
3347   case Decl::ObjCCompatibleAlias:
3348     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3349     break;
3350 
3351   case Decl::LinkageSpec:
3352     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3353     break;
3354 
3355   case Decl::FileScopeAsm: {
3356     // File-scope asm is ignored during device-side CUDA compilation.
3357     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3358       break;
3359     auto *AD = cast<FileScopeAsmDecl>(D);
3360     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3361     break;
3362   }
3363 
3364   case Decl::Import: {
3365     auto *Import = cast<ImportDecl>(D);
3366 
3367     // Ignore import declarations that come from imported modules.
3368     if (clang::Module *Owner = Import->getImportedOwningModule()) {
3369       if (getLangOpts().CurrentModule.empty() ||
3370           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3371         break;
3372     }
3373 
3374     ImportedModules.insert(Import->getImportedModule());
3375     break;
3376   }
3377 
3378   case Decl::OMPThreadPrivate:
3379     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3380     break;
3381 
3382   case Decl::ClassTemplateSpecialization: {
3383     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3384     if (DebugInfo &&
3385         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3386         Spec->hasDefinition())
3387       DebugInfo->completeTemplateDefinition(*Spec);
3388     break;
3389   }
3390 
3391   default:
3392     // Make sure we handled everything we should, every other kind is a
3393     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3394     // function. Need to recode Decl::Kind to do that easily.
3395     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3396     break;
3397   }
3398 }
3399 
3400 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3401   // Do we need to generate coverage mapping?
3402   if (!CodeGenOpts.CoverageMapping)
3403     return;
3404   switch (D->getKind()) {
3405   case Decl::CXXConversion:
3406   case Decl::CXXMethod:
3407   case Decl::Function:
3408   case Decl::ObjCMethod:
3409   case Decl::CXXConstructor:
3410   case Decl::CXXDestructor: {
3411     if (!cast<FunctionDecl>(D)->hasBody())
3412       return;
3413     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3414     if (I == DeferredEmptyCoverageMappingDecls.end())
3415       DeferredEmptyCoverageMappingDecls[D] = true;
3416     break;
3417   }
3418   default:
3419     break;
3420   };
3421 }
3422 
3423 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3424   // Do we need to generate coverage mapping?
3425   if (!CodeGenOpts.CoverageMapping)
3426     return;
3427   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3428     if (Fn->isTemplateInstantiation())
3429       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3430   }
3431   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3432   if (I == DeferredEmptyCoverageMappingDecls.end())
3433     DeferredEmptyCoverageMappingDecls[D] = false;
3434   else
3435     I->second = false;
3436 }
3437 
3438 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3439   std::vector<const Decl *> DeferredDecls;
3440   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3441     if (!I.second)
3442       continue;
3443     DeferredDecls.push_back(I.first);
3444   }
3445   // Sort the declarations by their location to make sure that the tests get a
3446   // predictable order for the coverage mapping for the unused declarations.
3447   if (CodeGenOpts.DumpCoverageMapping)
3448     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3449               [] (const Decl *LHS, const Decl *RHS) {
3450       return LHS->getLocStart() < RHS->getLocStart();
3451     });
3452   for (const auto *D : DeferredDecls) {
3453     switch (D->getKind()) {
3454     case Decl::CXXConversion:
3455     case Decl::CXXMethod:
3456     case Decl::Function:
3457     case Decl::ObjCMethod: {
3458       CodeGenPGO PGO(*this);
3459       GlobalDecl GD(cast<FunctionDecl>(D));
3460       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3461                                   getFunctionLinkage(GD));
3462       break;
3463     }
3464     case Decl::CXXConstructor: {
3465       CodeGenPGO PGO(*this);
3466       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3467       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3468                                   getFunctionLinkage(GD));
3469       break;
3470     }
3471     case Decl::CXXDestructor: {
3472       CodeGenPGO PGO(*this);
3473       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3474       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3475                                   getFunctionLinkage(GD));
3476       break;
3477     }
3478     default:
3479       break;
3480     };
3481   }
3482 }
3483 
3484 /// Turns the given pointer into a constant.
3485 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3486                                           const void *Ptr) {
3487   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3488   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3489   return llvm::ConstantInt::get(i64, PtrInt);
3490 }
3491 
3492 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3493                                    llvm::NamedMDNode *&GlobalMetadata,
3494                                    GlobalDecl D,
3495                                    llvm::GlobalValue *Addr) {
3496   if (!GlobalMetadata)
3497     GlobalMetadata =
3498       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3499 
3500   // TODO: should we report variant information for ctors/dtors?
3501   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3502                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3503                                CGM.getLLVMContext(), D.getDecl()))};
3504   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3505 }
3506 
3507 /// For each function which is declared within an extern "C" region and marked
3508 /// as 'used', but has internal linkage, create an alias from the unmangled
3509 /// name to the mangled name if possible. People expect to be able to refer
3510 /// to such functions with an unmangled name from inline assembly within the
3511 /// same translation unit.
3512 void CodeGenModule::EmitStaticExternCAliases() {
3513   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3514                                   E = StaticExternCValues.end();
3515        I != E; ++I) {
3516     IdentifierInfo *Name = I->first;
3517     llvm::GlobalValue *Val = I->second;
3518     if (Val && !getModule().getNamedValue(Name->getName()))
3519       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3520   }
3521 }
3522 
3523 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3524                                              GlobalDecl &Result) const {
3525   auto Res = Manglings.find(MangledName);
3526   if (Res == Manglings.end())
3527     return false;
3528   Result = Res->getValue();
3529   return true;
3530 }
3531 
3532 /// Emits metadata nodes associating all the global values in the
3533 /// current module with the Decls they came from.  This is useful for
3534 /// projects using IR gen as a subroutine.
3535 ///
3536 /// Since there's currently no way to associate an MDNode directly
3537 /// with an llvm::GlobalValue, we create a global named metadata
3538 /// with the name 'clang.global.decl.ptrs'.
3539 void CodeGenModule::EmitDeclMetadata() {
3540   llvm::NamedMDNode *GlobalMetadata = nullptr;
3541 
3542   // StaticLocalDeclMap
3543   for (auto &I : MangledDeclNames) {
3544     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3545     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3546   }
3547 }
3548 
3549 /// Emits metadata nodes for all the local variables in the current
3550 /// function.
3551 void CodeGenFunction::EmitDeclMetadata() {
3552   if (LocalDeclMap.empty()) return;
3553 
3554   llvm::LLVMContext &Context = getLLVMContext();
3555 
3556   // Find the unique metadata ID for this name.
3557   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3558 
3559   llvm::NamedMDNode *GlobalMetadata = nullptr;
3560 
3561   for (auto &I : LocalDeclMap) {
3562     const Decl *D = I.first;
3563     llvm::Value *Addr = I.second;
3564     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3565       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3566       Alloca->setMetadata(
3567           DeclPtrKind, llvm::MDNode::get(
3568                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3569     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3570       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3571       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3572     }
3573   }
3574 }
3575 
3576 void CodeGenModule::EmitVersionIdentMetadata() {
3577   llvm::NamedMDNode *IdentMetadata =
3578     TheModule.getOrInsertNamedMetadata("llvm.ident");
3579   std::string Version = getClangFullVersion();
3580   llvm::LLVMContext &Ctx = TheModule.getContext();
3581 
3582   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3583   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3584 }
3585 
3586 void CodeGenModule::EmitTargetMetadata() {
3587   // Warning, new MangledDeclNames may be appended within this loop.
3588   // We rely on MapVector insertions adding new elements to the end
3589   // of the container.
3590   // FIXME: Move this loop into the one target that needs it, and only
3591   // loop over those declarations for which we couldn't emit the target
3592   // metadata when we emitted the declaration.
3593   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3594     auto Val = *(MangledDeclNames.begin() + I);
3595     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3596     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3597     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3598   }
3599 }
3600 
3601 void CodeGenModule::EmitCoverageFile() {
3602   if (!getCodeGenOpts().CoverageFile.empty()) {
3603     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3604       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3605       llvm::LLVMContext &Ctx = TheModule.getContext();
3606       llvm::MDString *CoverageFile =
3607           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3608       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3609         llvm::MDNode *CU = CUNode->getOperand(i);
3610         llvm::Metadata *Elts[] = {CoverageFile, CU};
3611         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3612       }
3613     }
3614   }
3615 }
3616 
3617 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3618   // Sema has checked that all uuid strings are of the form
3619   // "12345678-1234-1234-1234-1234567890ab".
3620   assert(Uuid.size() == 36);
3621   for (unsigned i = 0; i < 36; ++i) {
3622     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3623     else                                         assert(isHexDigit(Uuid[i]));
3624   }
3625 
3626   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3627   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3628 
3629   llvm::Constant *Field3[8];
3630   for (unsigned Idx = 0; Idx < 8; ++Idx)
3631     Field3[Idx] = llvm::ConstantInt::get(
3632         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3633 
3634   llvm::Constant *Fields[4] = {
3635     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3636     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3637     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3638     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3639   };
3640 
3641   return llvm::ConstantStruct::getAnon(Fields);
3642 }
3643 
3644 llvm::Constant *
3645 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty,
3646                                             QualType CatchHandlerType) {
3647   return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType);
3648 }
3649 
3650 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3651                                                        bool ForEH) {
3652   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3653   // FIXME: should we even be calling this method if RTTI is disabled
3654   // and it's not for EH?
3655   if (!ForEH && !getLangOpts().RTTI)
3656     return llvm::Constant::getNullValue(Int8PtrTy);
3657 
3658   if (ForEH && Ty->isObjCObjectPointerType() &&
3659       LangOpts.ObjCRuntime.isGNUFamily())
3660     return ObjCRuntime->GetEHType(Ty);
3661 
3662   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3663 }
3664 
3665 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3666   for (auto RefExpr : D->varlists()) {
3667     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3668     bool PerformInit =
3669         VD->getAnyInitializer() &&
3670         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3671                                                         /*ForRef=*/false);
3672     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3673             VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit))
3674       CXXGlobalInits.push_back(InitFunction);
3675   }
3676 }
3677