xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 319963434cab037c9fabf7d631816d3eaf5bfc1d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info generation is enabled, create the CGDebugInfo object.
84   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
85 
86   Block.GlobalUniqueCount = 0;
87 
88   // Initialize the type cache.
89   llvm::LLVMContext &LLVMContext = M.getContext();
90   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
91   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
92   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
93   PointerWidthInBits = C.Target.getPointerWidth(0);
94   PointerAlignInBytes =
95     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
96   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
97   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
98   Int8PtrTy = Int8Ty->getPointerTo(0);
99   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
100 }
101 
102 CodeGenModule::~CodeGenModule() {
103   delete Runtime;
104   delete &ABI;
105   delete TBAA;
106   delete DebugInfo;
107 }
108 
109 void CodeGenModule::createObjCRuntime() {
110   if (!Features.NeXTRuntime)
111     Runtime = CreateGNUObjCRuntime(*this);
112   else
113     Runtime = CreateMacObjCRuntime(*this);
114 }
115 
116 void CodeGenModule::Release() {
117   EmitDeferred();
118   EmitCXXGlobalInitFunc();
119   EmitCXXGlobalDtorFunc();
120   if (Runtime)
121     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
122       AddGlobalCtor(ObjCInitFunction);
123   EmitCtorList(GlobalCtors, "llvm.global_ctors");
124   EmitCtorList(GlobalDtors, "llvm.global_dtors");
125   EmitAnnotations();
126   EmitLLVMUsed();
127 
128   SimplifyPersonality();
129 
130   if (getCodeGenOpts().EmitDeclMetadata)
131     EmitDeclMetadata();
132 }
133 
134 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
135   // Make sure that this type is translated.
136   Types.UpdateCompletedType(TD);
137   if (DebugInfo)
138     DebugInfo->UpdateCompletedType(TD);
139 }
140 
141 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
142   if (!TBAA)
143     return 0;
144   return TBAA->getTBAAInfo(QTy);
145 }
146 
147 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
148                                         llvm::MDNode *TBAAInfo) {
149   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
150 }
151 
152 bool CodeGenModule::isTargetDarwin() const {
153   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
154 }
155 
156 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
157   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
158   getDiags().Report(Context.getFullLoc(loc), diagID);
159 }
160 
161 /// ErrorUnsupported - Print out an error that codegen doesn't support the
162 /// specified stmt yet.
163 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
164                                      bool OmitOnError) {
165   if (OmitOnError && getDiags().hasErrorOccurred())
166     return;
167   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
168                                                "cannot compile this %0 yet");
169   std::string Msg = Type;
170   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
171     << Msg << S->getSourceRange();
172 }
173 
174 /// ErrorUnsupported - Print out an error that codegen doesn't support the
175 /// specified decl yet.
176 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
177                                      bool OmitOnError) {
178   if (OmitOnError && getDiags().hasErrorOccurred())
179     return;
180   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
181                                                "cannot compile this %0 yet");
182   std::string Msg = Type;
183   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
184 }
185 
186 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
187                                         const NamedDecl *D) const {
188   // Internal definitions always have default visibility.
189   if (GV->hasLocalLinkage()) {
190     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
191     return;
192   }
193 
194   // Set visibility for definitions.
195   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
196   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
197     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
198 }
199 
200 /// Set the symbol visibility of type information (vtable and RTTI)
201 /// associated with the given type.
202 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
203                                       const CXXRecordDecl *RD,
204                                       TypeVisibilityKind TVK) const {
205   setGlobalVisibility(GV, RD);
206 
207   if (!CodeGenOpts.HiddenWeakVTables)
208     return;
209 
210   // We never want to drop the visibility for RTTI names.
211   if (TVK == TVK_ForRTTIName)
212     return;
213 
214   // We want to drop the visibility to hidden for weak type symbols.
215   // This isn't possible if there might be unresolved references
216   // elsewhere that rely on this symbol being visible.
217 
218   // This should be kept roughly in sync with setThunkVisibility
219   // in CGVTables.cpp.
220 
221   // Preconditions.
222   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
223       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
224     return;
225 
226   // Don't override an explicit visibility attribute.
227   if (RD->getExplicitVisibility())
228     return;
229 
230   switch (RD->getTemplateSpecializationKind()) {
231   // We have to disable the optimization if this is an EI definition
232   // because there might be EI declarations in other shared objects.
233   case TSK_ExplicitInstantiationDefinition:
234   case TSK_ExplicitInstantiationDeclaration:
235     return;
236 
237   // Every use of a non-template class's type information has to emit it.
238   case TSK_Undeclared:
239     break;
240 
241   // In theory, implicit instantiations can ignore the possibility of
242   // an explicit instantiation declaration because there necessarily
243   // must be an EI definition somewhere with default visibility.  In
244   // practice, it's possible to have an explicit instantiation for
245   // an arbitrary template class, and linkers aren't necessarily able
246   // to deal with mixed-visibility symbols.
247   case TSK_ExplicitSpecialization:
248   case TSK_ImplicitInstantiation:
249     if (!CodeGenOpts.HiddenWeakTemplateVTables)
250       return;
251     break;
252   }
253 
254   // If there's a key function, there may be translation units
255   // that don't have the key function's definition.  But ignore
256   // this if we're emitting RTTI under -fno-rtti.
257   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
258     if (Context.getKeyFunction(RD))
259       return;
260   }
261 
262   // Otherwise, drop the visibility to hidden.
263   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
264   GV->setUnnamedAddr(true);
265 }
266 
267 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
268   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
269 
270   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
271   if (!Str.empty())
272     return Str;
273 
274   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
275     IdentifierInfo *II = ND->getIdentifier();
276     assert(II && "Attempt to mangle unnamed decl.");
277 
278     Str = II->getName();
279     return Str;
280   }
281 
282   llvm::SmallString<256> Buffer;
283   llvm::raw_svector_ostream Out(Buffer);
284   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
285     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
286   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
287     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
288   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
289     getCXXABI().getMangleContext().mangleBlock(BD, Out);
290   else
291     getCXXABI().getMangleContext().mangleName(ND, Out);
292 
293   // Allocate space for the mangled name.
294   Out.flush();
295   size_t Length = Buffer.size();
296   char *Name = MangledNamesAllocator.Allocate<char>(Length);
297   std::copy(Buffer.begin(), Buffer.end(), Name);
298 
299   Str = llvm::StringRef(Name, Length);
300 
301   return Str;
302 }
303 
304 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
305                                         const BlockDecl *BD) {
306   MangleContext &MangleCtx = getCXXABI().getMangleContext();
307   const Decl *D = GD.getDecl();
308   llvm::raw_svector_ostream Out(Buffer.getBuffer());
309   if (D == 0)
310     MangleCtx.mangleGlobalBlock(BD, Out);
311   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
312     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
313   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
314     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
315   else
316     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
317 }
318 
319 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
320   return getModule().getNamedValue(Name);
321 }
322 
323 /// AddGlobalCtor - Add a function to the list that will be called before
324 /// main() runs.
325 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
326   // FIXME: Type coercion of void()* types.
327   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
328 }
329 
330 /// AddGlobalDtor - Add a function to the list that will be called
331 /// when the module is unloaded.
332 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
333   // FIXME: Type coercion of void()* types.
334   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
335 }
336 
337 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
338   // Ctor function type is void()*.
339   llvm::FunctionType* CtorFTy =
340     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
341   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
342 
343   // Get the type of a ctor entry, { i32, void ()* }.
344   llvm::StructType* CtorStructTy =
345     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
346                           llvm::PointerType::getUnqual(CtorFTy), NULL);
347 
348   // Construct the constructor and destructor arrays.
349   std::vector<llvm::Constant*> Ctors;
350   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
351     std::vector<llvm::Constant*> S;
352     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
353                 I->second, false));
354     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
355     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
356   }
357 
358   if (!Ctors.empty()) {
359     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
360     new llvm::GlobalVariable(TheModule, AT, false,
361                              llvm::GlobalValue::AppendingLinkage,
362                              llvm::ConstantArray::get(AT, Ctors),
363                              GlobalName);
364   }
365 }
366 
367 void CodeGenModule::EmitAnnotations() {
368   if (Annotations.empty())
369     return;
370 
371   // Create a new global variable for the ConstantStruct in the Module.
372   llvm::Constant *Array =
373   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
374                                                 Annotations.size()),
375                            Annotations);
376   llvm::GlobalValue *gv =
377   new llvm::GlobalVariable(TheModule, Array->getType(), false,
378                            llvm::GlobalValue::AppendingLinkage, Array,
379                            "llvm.global.annotations");
380   gv->setSection("llvm.metadata");
381 }
382 
383 llvm::GlobalValue::LinkageTypes
384 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
385   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
386 
387   if (Linkage == GVA_Internal)
388     return llvm::Function::InternalLinkage;
389 
390   if (D->hasAttr<DLLExportAttr>())
391     return llvm::Function::DLLExportLinkage;
392 
393   if (D->hasAttr<WeakAttr>())
394     return llvm::Function::WeakAnyLinkage;
395 
396   // In C99 mode, 'inline' functions are guaranteed to have a strong
397   // definition somewhere else, so we can use available_externally linkage.
398   if (Linkage == GVA_C99Inline)
399     return llvm::Function::AvailableExternallyLinkage;
400 
401   // In C++, the compiler has to emit a definition in every translation unit
402   // that references the function.  We should use linkonce_odr because
403   // a) if all references in this translation unit are optimized away, we
404   // don't need to codegen it.  b) if the function persists, it needs to be
405   // merged with other definitions. c) C++ has the ODR, so we know the
406   // definition is dependable.
407   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
408     return !Context.getLangOptions().AppleKext
409              ? llvm::Function::LinkOnceODRLinkage
410              : llvm::Function::InternalLinkage;
411 
412   // An explicit instantiation of a template has weak linkage, since
413   // explicit instantiations can occur in multiple translation units
414   // and must all be equivalent. However, we are not allowed to
415   // throw away these explicit instantiations.
416   if (Linkage == GVA_ExplicitTemplateInstantiation)
417     return !Context.getLangOptions().AppleKext
418              ? llvm::Function::WeakODRLinkage
419              : llvm::Function::InternalLinkage;
420 
421   // Otherwise, we have strong external linkage.
422   assert(Linkage == GVA_StrongExternal);
423   return llvm::Function::ExternalLinkage;
424 }
425 
426 
427 /// SetFunctionDefinitionAttributes - Set attributes for a global.
428 ///
429 /// FIXME: This is currently only done for aliases and functions, but not for
430 /// variables (these details are set in EmitGlobalVarDefinition for variables).
431 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
432                                                     llvm::GlobalValue *GV) {
433   SetCommonAttributes(D, GV);
434 }
435 
436 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
437                                               const CGFunctionInfo &Info,
438                                               llvm::Function *F) {
439   unsigned CallingConv;
440   AttributeListType AttributeList;
441   ConstructAttributeList(Info, D, AttributeList, CallingConv);
442   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
443                                           AttributeList.size()));
444   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
445 }
446 
447 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
448                                                            llvm::Function *F) {
449   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
450     F->addFnAttr(llvm::Attribute::NoUnwind);
451 
452   if (D->hasAttr<AlwaysInlineAttr>())
453     F->addFnAttr(llvm::Attribute::AlwaysInline);
454 
455   if (D->hasAttr<NakedAttr>())
456     F->addFnAttr(llvm::Attribute::Naked);
457 
458   if (D->hasAttr<NoInlineAttr>())
459     F->addFnAttr(llvm::Attribute::NoInline);
460 
461   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
462     F->setUnnamedAddr(true);
463 
464   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
465     F->addFnAttr(llvm::Attribute::StackProtect);
466   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
467     F->addFnAttr(llvm::Attribute::StackProtectReq);
468 
469   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
470   if (alignment)
471     F->setAlignment(alignment);
472 
473   // C++ ABI requires 2-byte alignment for member functions.
474   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
475     F->setAlignment(2);
476 }
477 
478 void CodeGenModule::SetCommonAttributes(const Decl *D,
479                                         llvm::GlobalValue *GV) {
480   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
481     setGlobalVisibility(GV, ND);
482   else
483     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
484 
485   if (D->hasAttr<UsedAttr>())
486     AddUsedGlobal(GV);
487 
488   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
489     GV->setSection(SA->getName());
490 
491   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
492 }
493 
494 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
495                                                   llvm::Function *F,
496                                                   const CGFunctionInfo &FI) {
497   SetLLVMFunctionAttributes(D, FI, F);
498   SetLLVMFunctionAttributesForDefinition(D, F);
499 
500   F->setLinkage(llvm::Function::InternalLinkage);
501 
502   SetCommonAttributes(D, F);
503 }
504 
505 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
506                                           llvm::Function *F,
507                                           bool IsIncompleteFunction) {
508   if (unsigned IID = F->getIntrinsicID()) {
509     // If this is an intrinsic function, set the function's attributes
510     // to the intrinsic's attributes.
511     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
512     return;
513   }
514 
515   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
516 
517   if (!IsIncompleteFunction)
518     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
519 
520   // Only a few attributes are set on declarations; these may later be
521   // overridden by a definition.
522 
523   if (FD->hasAttr<DLLImportAttr>()) {
524     F->setLinkage(llvm::Function::DLLImportLinkage);
525   } else if (FD->hasAttr<WeakAttr>() ||
526              FD->isWeakImported()) {
527     // "extern_weak" is overloaded in LLVM; we probably should have
528     // separate linkage types for this.
529     F->setLinkage(llvm::Function::ExternalWeakLinkage);
530   } else {
531     F->setLinkage(llvm::Function::ExternalLinkage);
532 
533     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
534     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
535       F->setVisibility(GetLLVMVisibility(LV.visibility()));
536     }
537   }
538 
539   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
540     F->setSection(SA->getName());
541 }
542 
543 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
544   assert(!GV->isDeclaration() &&
545          "Only globals with definition can force usage.");
546   LLVMUsed.push_back(GV);
547 }
548 
549 void CodeGenModule::EmitLLVMUsed() {
550   // Don't create llvm.used if there is no need.
551   if (LLVMUsed.empty())
552     return;
553 
554   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
555 
556   // Convert LLVMUsed to what ConstantArray needs.
557   std::vector<llvm::Constant*> UsedArray;
558   UsedArray.resize(LLVMUsed.size());
559   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
560     UsedArray[i] =
561      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
562                                       i8PTy);
563   }
564 
565   if (UsedArray.empty())
566     return;
567   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
568 
569   llvm::GlobalVariable *GV =
570     new llvm::GlobalVariable(getModule(), ATy, false,
571                              llvm::GlobalValue::AppendingLinkage,
572                              llvm::ConstantArray::get(ATy, UsedArray),
573                              "llvm.used");
574 
575   GV->setSection("llvm.metadata");
576 }
577 
578 void CodeGenModule::EmitDeferred() {
579   // Emit code for any potentially referenced deferred decls.  Since a
580   // previously unused static decl may become used during the generation of code
581   // for a static function, iterate until no  changes are made.
582 
583   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
584     if (!DeferredVTables.empty()) {
585       const CXXRecordDecl *RD = DeferredVTables.back();
586       DeferredVTables.pop_back();
587       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
588       continue;
589     }
590 
591     GlobalDecl D = DeferredDeclsToEmit.back();
592     DeferredDeclsToEmit.pop_back();
593 
594     // Check to see if we've already emitted this.  This is necessary
595     // for a couple of reasons: first, decls can end up in the
596     // deferred-decls queue multiple times, and second, decls can end
597     // up with definitions in unusual ways (e.g. by an extern inline
598     // function acquiring a strong function redefinition).  Just
599     // ignore these cases.
600     //
601     // TODO: That said, looking this up multiple times is very wasteful.
602     llvm::StringRef Name = getMangledName(D);
603     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
604     assert(CGRef && "Deferred decl wasn't referenced?");
605 
606     if (!CGRef->isDeclaration())
607       continue;
608 
609     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
610     // purposes an alias counts as a definition.
611     if (isa<llvm::GlobalAlias>(CGRef))
612       continue;
613 
614     // Otherwise, emit the definition and move on to the next one.
615     EmitGlobalDefinition(D);
616   }
617 }
618 
619 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
620 /// annotation information for a given GlobalValue.  The annotation struct is
621 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
622 /// GlobalValue being annotated.  The second field is the constant string
623 /// created from the AnnotateAttr's annotation.  The third field is a constant
624 /// string containing the name of the translation unit.  The fourth field is
625 /// the line number in the file of the annotated value declaration.
626 ///
627 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
628 ///        appears to.
629 ///
630 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
631                                                 const AnnotateAttr *AA,
632                                                 unsigned LineNo) {
633   llvm::Module *M = &getModule();
634 
635   // get [N x i8] constants for the annotation string, and the filename string
636   // which are the 2nd and 3rd elements of the global annotation structure.
637   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
638   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
639                                                   AA->getAnnotation(), true);
640   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
641                                                   M->getModuleIdentifier(),
642                                                   true);
643 
644   // Get the two global values corresponding to the ConstantArrays we just
645   // created to hold the bytes of the strings.
646   llvm::GlobalValue *annoGV =
647     new llvm::GlobalVariable(*M, anno->getType(), false,
648                              llvm::GlobalValue::PrivateLinkage, anno,
649                              GV->getName());
650   // translation unit name string, emitted into the llvm.metadata section.
651   llvm::GlobalValue *unitGV =
652     new llvm::GlobalVariable(*M, unit->getType(), false,
653                              llvm::GlobalValue::PrivateLinkage, unit,
654                              ".str");
655   unitGV->setUnnamedAddr(true);
656 
657   // Create the ConstantStruct for the global annotation.
658   llvm::Constant *Fields[4] = {
659     llvm::ConstantExpr::getBitCast(GV, SBP),
660     llvm::ConstantExpr::getBitCast(annoGV, SBP),
661     llvm::ConstantExpr::getBitCast(unitGV, SBP),
662     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
663   };
664   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
665 }
666 
667 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
668   // Never defer when EmitAllDecls is specified.
669   if (Features.EmitAllDecls)
670     return false;
671 
672   return !getContext().DeclMustBeEmitted(Global);
673 }
674 
675 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
676   const AliasAttr *AA = VD->getAttr<AliasAttr>();
677   assert(AA && "No alias?");
678 
679   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
680 
681   // See if there is already something with the target's name in the module.
682   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
683 
684   llvm::Constant *Aliasee;
685   if (isa<llvm::FunctionType>(DeclTy))
686     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
687                                       /*ForVTable=*/false);
688   else
689     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
690                                     llvm::PointerType::getUnqual(DeclTy), 0);
691   if (!Entry) {
692     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
693     F->setLinkage(llvm::Function::ExternalWeakLinkage);
694     WeakRefReferences.insert(F);
695   }
696 
697   return Aliasee;
698 }
699 
700 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
701   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
702 
703   // Weak references don't produce any output by themselves.
704   if (Global->hasAttr<WeakRefAttr>())
705     return;
706 
707   // If this is an alias definition (which otherwise looks like a declaration)
708   // emit it now.
709   if (Global->hasAttr<AliasAttr>())
710     return EmitAliasDefinition(GD);
711 
712   // Ignore declarations, they will be emitted on their first use.
713   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
714     if (FD->getIdentifier()) {
715       llvm::StringRef Name = FD->getName();
716       if (Name == "_Block_object_assign") {
717         BlockObjectAssignDecl = FD;
718       } else if (Name == "_Block_object_dispose") {
719         BlockObjectDisposeDecl = FD;
720       }
721     }
722 
723     // Forward declarations are emitted lazily on first use.
724     if (!FD->isThisDeclarationADefinition())
725       return;
726   } else {
727     const VarDecl *VD = cast<VarDecl>(Global);
728     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
729 
730     if (VD->getIdentifier()) {
731       llvm::StringRef Name = VD->getName();
732       if (Name == "_NSConcreteGlobalBlock") {
733         NSConcreteGlobalBlockDecl = VD;
734       } else if (Name == "_NSConcreteStackBlock") {
735         NSConcreteStackBlockDecl = VD;
736       }
737     }
738 
739 
740     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
741       return;
742   }
743 
744   // Defer code generation when possible if this is a static definition, inline
745   // function etc.  These we only want to emit if they are used.
746   if (!MayDeferGeneration(Global)) {
747     // Emit the definition if it can't be deferred.
748     EmitGlobalDefinition(GD);
749     return;
750   }
751 
752   // If we're deferring emission of a C++ variable with an
753   // initializer, remember the order in which it appeared in the file.
754   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
755       cast<VarDecl>(Global)->hasInit()) {
756     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
757     CXXGlobalInits.push_back(0);
758   }
759 
760   // If the value has already been used, add it directly to the
761   // DeferredDeclsToEmit list.
762   llvm::StringRef MangledName = getMangledName(GD);
763   if (GetGlobalValue(MangledName))
764     DeferredDeclsToEmit.push_back(GD);
765   else {
766     // Otherwise, remember that we saw a deferred decl with this name.  The
767     // first use of the mangled name will cause it to move into
768     // DeferredDeclsToEmit.
769     DeferredDecls[MangledName] = GD;
770   }
771 }
772 
773 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
774   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
775 
776   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
777                                  Context.getSourceManager(),
778                                  "Generating code for declaration");
779 
780   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
781     // At -O0, don't generate IR for functions with available_externally
782     // linkage.
783     if (CodeGenOpts.OptimizationLevel == 0 &&
784         !Function->hasAttr<AlwaysInlineAttr>() &&
785         getFunctionLinkage(Function)
786                                   == llvm::Function::AvailableExternallyLinkage)
787       return;
788 
789     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
790       if (Method->isVirtual())
791         getVTables().EmitThunks(GD);
792 
793       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
794         return EmitCXXConstructor(CD, GD.getCtorType());
795 
796       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
797         return EmitCXXDestructor(DD, GD.getDtorType());
798     }
799 
800     return EmitGlobalFunctionDefinition(GD);
801   }
802 
803   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
804     return EmitGlobalVarDefinition(VD);
805 
806   assert(0 && "Invalid argument to EmitGlobalDefinition()");
807 }
808 
809 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
810 /// module, create and return an llvm Function with the specified type. If there
811 /// is something in the module with the specified name, return it potentially
812 /// bitcasted to the right type.
813 ///
814 /// If D is non-null, it specifies a decl that correspond to this.  This is used
815 /// to set the attributes on the function when it is first created.
816 llvm::Constant *
817 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
818                                        const llvm::Type *Ty,
819                                        GlobalDecl D, bool ForVTable) {
820   // Lookup the entry, lazily creating it if necessary.
821   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
822   if (Entry) {
823     if (WeakRefReferences.count(Entry)) {
824       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
825       if (FD && !FD->hasAttr<WeakAttr>())
826         Entry->setLinkage(llvm::Function::ExternalLinkage);
827 
828       WeakRefReferences.erase(Entry);
829     }
830 
831     if (Entry->getType()->getElementType() == Ty)
832       return Entry;
833 
834     // Make sure the result is of the correct type.
835     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
836     return llvm::ConstantExpr::getBitCast(Entry, PTy);
837   }
838 
839   // This function doesn't have a complete type (for example, the return
840   // type is an incomplete struct). Use a fake type instead, and make
841   // sure not to try to set attributes.
842   bool IsIncompleteFunction = false;
843 
844   const llvm::FunctionType *FTy;
845   if (isa<llvm::FunctionType>(Ty)) {
846     FTy = cast<llvm::FunctionType>(Ty);
847   } else {
848     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
849     IsIncompleteFunction = true;
850   }
851 
852   llvm::Function *F = llvm::Function::Create(FTy,
853                                              llvm::Function::ExternalLinkage,
854                                              MangledName, &getModule());
855   assert(F->getName() == MangledName && "name was uniqued!");
856   if (D.getDecl())
857     SetFunctionAttributes(D, F, IsIncompleteFunction);
858 
859   // This is the first use or definition of a mangled name.  If there is a
860   // deferred decl with this name, remember that we need to emit it at the end
861   // of the file.
862   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
863   if (DDI != DeferredDecls.end()) {
864     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
865     // list, and remove it from DeferredDecls (since we don't need it anymore).
866     DeferredDeclsToEmit.push_back(DDI->second);
867     DeferredDecls.erase(DDI);
868 
869   // Otherwise, there are cases we have to worry about where we're
870   // using a declaration for which we must emit a definition but where
871   // we might not find a top-level definition:
872   //   - member functions defined inline in their classes
873   //   - friend functions defined inline in some class
874   //   - special member functions with implicit definitions
875   // If we ever change our AST traversal to walk into class methods,
876   // this will be unnecessary.
877   //
878   // We also don't emit a definition for a function if it's going to be an entry
879   // in a vtable, unless it's already marked as used.
880   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
881     // Look for a declaration that's lexically in a record.
882     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
883     do {
884       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
885         if (FD->isImplicit() && !ForVTable) {
886           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
887           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
888           break;
889         } else if (FD->isThisDeclarationADefinition()) {
890           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
891           break;
892         }
893       }
894       FD = FD->getPreviousDeclaration();
895     } while (FD);
896   }
897 
898   // Make sure the result is of the requested type.
899   if (!IsIncompleteFunction) {
900     assert(F->getType()->getElementType() == Ty);
901     return F;
902   }
903 
904   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
905   return llvm::ConstantExpr::getBitCast(F, PTy);
906 }
907 
908 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
909 /// non-null, then this function will use the specified type if it has to
910 /// create it (this occurs when we see a definition of the function).
911 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
912                                                  const llvm::Type *Ty,
913                                                  bool ForVTable) {
914   // If there was no specific requested type, just convert it now.
915   if (!Ty)
916     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
917 
918   llvm::StringRef MangledName = getMangledName(GD);
919   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
920 }
921 
922 /// CreateRuntimeFunction - Create a new runtime function with the specified
923 /// type and name.
924 llvm::Constant *
925 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
926                                      llvm::StringRef Name) {
927   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
928 }
929 
930 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
931   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
932     return false;
933   if (Context.getLangOptions().CPlusPlus &&
934       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
935     // FIXME: We should do something fancier here!
936     return false;
937   }
938   return true;
939 }
940 
941 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
942 /// create and return an llvm GlobalVariable with the specified type.  If there
943 /// is something in the module with the specified name, return it potentially
944 /// bitcasted to the right type.
945 ///
946 /// If D is non-null, it specifies a decl that correspond to this.  This is used
947 /// to set the attributes on the global when it is first created.
948 llvm::Constant *
949 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
950                                      const llvm::PointerType *Ty,
951                                      const VarDecl *D,
952                                      bool UnnamedAddr) {
953   // Lookup the entry, lazily creating it if necessary.
954   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
955   if (Entry) {
956     if (WeakRefReferences.count(Entry)) {
957       if (D && !D->hasAttr<WeakAttr>())
958         Entry->setLinkage(llvm::Function::ExternalLinkage);
959 
960       WeakRefReferences.erase(Entry);
961     }
962 
963     if (UnnamedAddr)
964       Entry->setUnnamedAddr(true);
965 
966     if (Entry->getType() == Ty)
967       return Entry;
968 
969     // Make sure the result is of the correct type.
970     return llvm::ConstantExpr::getBitCast(Entry, Ty);
971   }
972 
973   // This is the first use or definition of a mangled name.  If there is a
974   // deferred decl with this name, remember that we need to emit it at the end
975   // of the file.
976   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
977   if (DDI != DeferredDecls.end()) {
978     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
979     // list, and remove it from DeferredDecls (since we don't need it anymore).
980     DeferredDeclsToEmit.push_back(DDI->second);
981     DeferredDecls.erase(DDI);
982   }
983 
984   llvm::GlobalVariable *GV =
985     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
986                              llvm::GlobalValue::ExternalLinkage,
987                              0, MangledName, 0,
988                              false, Ty->getAddressSpace());
989 
990   // Handle things which are present even on external declarations.
991   if (D) {
992     // FIXME: This code is overly simple and should be merged with other global
993     // handling.
994     GV->setConstant(DeclIsConstantGlobal(Context, D));
995 
996     // Set linkage and visibility in case we never see a definition.
997     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
998     if (LV.linkage() != ExternalLinkage) {
999       // Don't set internal linkage on declarations.
1000     } else {
1001       if (D->hasAttr<DLLImportAttr>())
1002         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1003       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1004         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1005 
1006       // Set visibility on a declaration only if it's explicit.
1007       if (LV.visibilityExplicit())
1008         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1009     }
1010 
1011     GV->setThreadLocal(D->isThreadSpecified());
1012   }
1013 
1014   return GV;
1015 }
1016 
1017 
1018 llvm::GlobalVariable *
1019 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1020                                       const llvm::Type *Ty,
1021                                       llvm::GlobalValue::LinkageTypes Linkage) {
1022   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1023   llvm::GlobalVariable *OldGV = 0;
1024 
1025 
1026   if (GV) {
1027     // Check if the variable has the right type.
1028     if (GV->getType()->getElementType() == Ty)
1029       return GV;
1030 
1031     // Because C++ name mangling, the only way we can end up with an already
1032     // existing global with the same name is if it has been declared extern "C".
1033       assert(GV->isDeclaration() && "Declaration has wrong type!");
1034     OldGV = GV;
1035   }
1036 
1037   // Create a new variable.
1038   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1039                                 Linkage, 0, Name);
1040 
1041   if (OldGV) {
1042     // Replace occurrences of the old variable if needed.
1043     GV->takeName(OldGV);
1044 
1045     if (!OldGV->use_empty()) {
1046       llvm::Constant *NewPtrForOldDecl =
1047       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1048       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1049     }
1050 
1051     OldGV->eraseFromParent();
1052   }
1053 
1054   return GV;
1055 }
1056 
1057 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1058 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1059 /// then it will be greated with the specified type instead of whatever the
1060 /// normal requested type would be.
1061 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1062                                                   const llvm::Type *Ty) {
1063   assert(D->hasGlobalStorage() && "Not a global variable");
1064   QualType ASTTy = D->getType();
1065   if (Ty == 0)
1066     Ty = getTypes().ConvertTypeForMem(ASTTy);
1067 
1068   const llvm::PointerType *PTy =
1069     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1070 
1071   llvm::StringRef MangledName = getMangledName(D);
1072   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1073 }
1074 
1075 /// getAddrOfUnknownAnyDecl - Return an llvm::Constant for the address
1076 /// of a global which was declared with unknown type.  It is possible
1077 /// for a VarDecl to end up getting resolved to have function type,
1078 /// which complicates this substantially; on the other hand, these are
1079 /// always external references, which does simplify the logic a lot.
1080 llvm::Constant *
1081 CodeGenModule::getAddrOfUnknownAnyDecl(const NamedDecl *decl, QualType type) {
1082   GlobalDecl global;
1083 
1084   // FunctionDecls will always end up with function types, but
1085   // VarDecls can end up with them too.
1086   if (isa<FunctionDecl>(decl))
1087     global = GlobalDecl(cast<FunctionDecl>(decl));
1088   else
1089     global = GlobalDecl(cast<VarDecl>(decl));
1090   llvm::StringRef mangledName = getMangledName(global);
1091 
1092   const llvm::Type *ty = getTypes().ConvertTypeForMem(type);
1093   const llvm::PointerType *pty =
1094     llvm::PointerType::get(ty, getContext().getTargetAddressSpace(type));
1095 
1096 
1097   // Check for an existing global value with this name.
1098   llvm::GlobalValue *entry = GetGlobalValue(mangledName);
1099   if (entry)
1100     return llvm::ConstantExpr::getBitCast(entry, pty);
1101 
1102   // If we're creating something with function type, go ahead and
1103   // create a function.
1104   if (const llvm::FunctionType *fnty = dyn_cast<llvm::FunctionType>(ty)) {
1105     llvm::Function *fn = llvm::Function::Create(fnty,
1106                                                 llvm::Function::ExternalLinkage,
1107                                                 mangledName, &getModule());
1108     return fn;
1109 
1110   // Otherwise, make a global variable.
1111   } else {
1112     llvm::GlobalVariable *var
1113       = new llvm::GlobalVariable(getModule(), ty, false,
1114                                  llvm::GlobalValue::ExternalLinkage,
1115                                  0, mangledName, 0,
1116                                  false, pty->getAddressSpace());
1117     if (isa<VarDecl>(decl) && cast<VarDecl>(decl)->isThreadSpecified())
1118       var->setThreadLocal(true);
1119     return var;
1120   }
1121 }
1122 
1123 /// CreateRuntimeVariable - Create a new runtime global variable with the
1124 /// specified type and name.
1125 llvm::Constant *
1126 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1127                                      llvm::StringRef Name) {
1128   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1129                                true);
1130 }
1131 
1132 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1133   assert(!D->getInit() && "Cannot emit definite definitions here!");
1134 
1135   if (MayDeferGeneration(D)) {
1136     // If we have not seen a reference to this variable yet, place it
1137     // into the deferred declarations table to be emitted if needed
1138     // later.
1139     llvm::StringRef MangledName = getMangledName(D);
1140     if (!GetGlobalValue(MangledName)) {
1141       DeferredDecls[MangledName] = D;
1142       return;
1143     }
1144   }
1145 
1146   // The tentative definition is the only definition.
1147   EmitGlobalVarDefinition(D);
1148 }
1149 
1150 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1151   if (DefinitionRequired)
1152     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1153 }
1154 
1155 llvm::GlobalVariable::LinkageTypes
1156 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1157   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1158     return llvm::GlobalVariable::InternalLinkage;
1159 
1160   if (const CXXMethodDecl *KeyFunction
1161                                     = RD->getASTContext().getKeyFunction(RD)) {
1162     // If this class has a key function, use that to determine the linkage of
1163     // the vtable.
1164     const FunctionDecl *Def = 0;
1165     if (KeyFunction->hasBody(Def))
1166       KeyFunction = cast<CXXMethodDecl>(Def);
1167 
1168     switch (KeyFunction->getTemplateSpecializationKind()) {
1169       case TSK_Undeclared:
1170       case TSK_ExplicitSpecialization:
1171         // When compiling with optimizations turned on, we emit all vtables,
1172         // even if the key function is not defined in the current translation
1173         // unit. If this is the case, use available_externally linkage.
1174         if (!Def && CodeGenOpts.OptimizationLevel)
1175           return llvm::GlobalVariable::AvailableExternallyLinkage;
1176 
1177         if (KeyFunction->isInlined())
1178           return !Context.getLangOptions().AppleKext ?
1179                    llvm::GlobalVariable::LinkOnceODRLinkage :
1180                    llvm::Function::InternalLinkage;
1181 
1182         return llvm::GlobalVariable::ExternalLinkage;
1183 
1184       case TSK_ImplicitInstantiation:
1185         return !Context.getLangOptions().AppleKext ?
1186                  llvm::GlobalVariable::LinkOnceODRLinkage :
1187                  llvm::Function::InternalLinkage;
1188 
1189       case TSK_ExplicitInstantiationDefinition:
1190         return !Context.getLangOptions().AppleKext ?
1191                  llvm::GlobalVariable::WeakODRLinkage :
1192                  llvm::Function::InternalLinkage;
1193 
1194       case TSK_ExplicitInstantiationDeclaration:
1195         // FIXME: Use available_externally linkage. However, this currently
1196         // breaks LLVM's build due to undefined symbols.
1197         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1198         return !Context.getLangOptions().AppleKext ?
1199                  llvm::GlobalVariable::LinkOnceODRLinkage :
1200                  llvm::Function::InternalLinkage;
1201     }
1202   }
1203 
1204   if (Context.getLangOptions().AppleKext)
1205     return llvm::Function::InternalLinkage;
1206 
1207   switch (RD->getTemplateSpecializationKind()) {
1208   case TSK_Undeclared:
1209   case TSK_ExplicitSpecialization:
1210   case TSK_ImplicitInstantiation:
1211     // FIXME: Use available_externally linkage. However, this currently
1212     // breaks LLVM's build due to undefined symbols.
1213     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1214   case TSK_ExplicitInstantiationDeclaration:
1215     return llvm::GlobalVariable::LinkOnceODRLinkage;
1216 
1217   case TSK_ExplicitInstantiationDefinition:
1218       return llvm::GlobalVariable::WeakODRLinkage;
1219   }
1220 
1221   // Silence GCC warning.
1222   return llvm::GlobalVariable::LinkOnceODRLinkage;
1223 }
1224 
1225 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1226     return Context.toCharUnitsFromBits(
1227       TheTargetData.getTypeStoreSizeInBits(Ty));
1228 }
1229 
1230 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1231   llvm::Constant *Init = 0;
1232   QualType ASTTy = D->getType();
1233   bool NonConstInit = false;
1234 
1235   const Expr *InitExpr = D->getAnyInitializer();
1236 
1237   if (!InitExpr) {
1238     // This is a tentative definition; tentative definitions are
1239     // implicitly initialized with { 0 }.
1240     //
1241     // Note that tentative definitions are only emitted at the end of
1242     // a translation unit, so they should never have incomplete
1243     // type. In addition, EmitTentativeDefinition makes sure that we
1244     // never attempt to emit a tentative definition if a real one
1245     // exists. A use may still exists, however, so we still may need
1246     // to do a RAUW.
1247     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1248     Init = EmitNullConstant(D->getType());
1249   } else {
1250     Init = EmitConstantExpr(InitExpr, D->getType());
1251     if (!Init) {
1252       QualType T = InitExpr->getType();
1253       if (D->getType()->isReferenceType())
1254         T = D->getType();
1255 
1256       if (getLangOptions().CPlusPlus) {
1257         Init = EmitNullConstant(T);
1258         NonConstInit = true;
1259       } else {
1260         ErrorUnsupported(D, "static initializer");
1261         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1262       }
1263     } else {
1264       // We don't need an initializer, so remove the entry for the delayed
1265       // initializer position (just in case this entry was delayed).
1266       if (getLangOptions().CPlusPlus)
1267         DelayedCXXInitPosition.erase(D);
1268     }
1269   }
1270 
1271   const llvm::Type* InitType = Init->getType();
1272   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1273 
1274   // Strip off a bitcast if we got one back.
1275   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1276     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1277            // all zero index gep.
1278            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1279     Entry = CE->getOperand(0);
1280   }
1281 
1282   // Entry is now either a Function or GlobalVariable.
1283   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1284 
1285   // We have a definition after a declaration with the wrong type.
1286   // We must make a new GlobalVariable* and update everything that used OldGV
1287   // (a declaration or tentative definition) with the new GlobalVariable*
1288   // (which will be a definition).
1289   //
1290   // This happens if there is a prototype for a global (e.g.
1291   // "extern int x[];") and then a definition of a different type (e.g.
1292   // "int x[10];"). This also happens when an initializer has a different type
1293   // from the type of the global (this happens with unions).
1294   if (GV == 0 ||
1295       GV->getType()->getElementType() != InitType ||
1296       GV->getType()->getAddressSpace() !=
1297         getContext().getTargetAddressSpace(ASTTy)) {
1298 
1299     // Move the old entry aside so that we'll create a new one.
1300     Entry->setName(llvm::StringRef());
1301 
1302     // Make a new global with the correct type, this is now guaranteed to work.
1303     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1304 
1305     // Replace all uses of the old global with the new global
1306     llvm::Constant *NewPtrForOldDecl =
1307         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1308     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1309 
1310     // Erase the old global, since it is no longer used.
1311     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1312   }
1313 
1314   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1315     SourceManager &SM = Context.getSourceManager();
1316     AddAnnotation(EmitAnnotateAttr(GV, AA,
1317                               SM.getInstantiationLineNumber(D->getLocation())));
1318   }
1319 
1320   GV->setInitializer(Init);
1321 
1322   // If it is safe to mark the global 'constant', do so now.
1323   GV->setConstant(false);
1324   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1325     GV->setConstant(true);
1326 
1327   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1328 
1329   // Set the llvm linkage type as appropriate.
1330   llvm::GlobalValue::LinkageTypes Linkage =
1331     GetLLVMLinkageVarDefinition(D, GV);
1332   GV->setLinkage(Linkage);
1333   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1334     // common vars aren't constant even if declared const.
1335     GV->setConstant(false);
1336 
1337   SetCommonAttributes(D, GV);
1338 
1339   // Emit the initializer function if necessary.
1340   if (NonConstInit)
1341     EmitCXXGlobalVarDeclInitFunc(D, GV);
1342 
1343   // Emit global variable debug information.
1344   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1345     DI->setLocation(D->getLocation());
1346     DI->EmitGlobalVariable(GV, D);
1347   }
1348 }
1349 
1350 llvm::GlobalValue::LinkageTypes
1351 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1352                                            llvm::GlobalVariable *GV) {
1353   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1354   if (Linkage == GVA_Internal)
1355     return llvm::Function::InternalLinkage;
1356   else if (D->hasAttr<DLLImportAttr>())
1357     return llvm::Function::DLLImportLinkage;
1358   else if (D->hasAttr<DLLExportAttr>())
1359     return llvm::Function::DLLExportLinkage;
1360   else if (D->hasAttr<WeakAttr>()) {
1361     if (GV->isConstant())
1362       return llvm::GlobalVariable::WeakODRLinkage;
1363     else
1364       return llvm::GlobalVariable::WeakAnyLinkage;
1365   } else if (Linkage == GVA_TemplateInstantiation ||
1366              Linkage == GVA_ExplicitTemplateInstantiation)
1367     // FIXME: It seems like we can provide more specific linkage here
1368     // (LinkOnceODR, WeakODR).
1369     return llvm::GlobalVariable::WeakAnyLinkage;
1370   else if (!getLangOptions().CPlusPlus &&
1371            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1372              D->getAttr<CommonAttr>()) &&
1373            !D->hasExternalStorage() && !D->getInit() &&
1374            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1375     // Thread local vars aren't considered common linkage.
1376     return llvm::GlobalVariable::CommonLinkage;
1377   }
1378   return llvm::GlobalVariable::ExternalLinkage;
1379 }
1380 
1381 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1382 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1383 /// existing call uses of the old function in the module, this adjusts them to
1384 /// call the new function directly.
1385 ///
1386 /// This is not just a cleanup: the always_inline pass requires direct calls to
1387 /// functions to be able to inline them.  If there is a bitcast in the way, it
1388 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1389 /// run at -O0.
1390 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1391                                                       llvm::Function *NewFn) {
1392   // If we're redefining a global as a function, don't transform it.
1393   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1394   if (OldFn == 0) return;
1395 
1396   const llvm::Type *NewRetTy = NewFn->getReturnType();
1397   llvm::SmallVector<llvm::Value*, 4> ArgList;
1398 
1399   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1400        UI != E; ) {
1401     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1402     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1403     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1404     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1405     llvm::CallSite CS(CI);
1406     if (!CI || !CS.isCallee(I)) continue;
1407 
1408     // If the return types don't match exactly, and if the call isn't dead, then
1409     // we can't transform this call.
1410     if (CI->getType() != NewRetTy && !CI->use_empty())
1411       continue;
1412 
1413     // If the function was passed too few arguments, don't transform.  If extra
1414     // arguments were passed, we silently drop them.  If any of the types
1415     // mismatch, we don't transform.
1416     unsigned ArgNo = 0;
1417     bool DontTransform = false;
1418     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1419          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1420       if (CS.arg_size() == ArgNo ||
1421           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1422         DontTransform = true;
1423         break;
1424       }
1425     }
1426     if (DontTransform)
1427       continue;
1428 
1429     // Okay, we can transform this.  Create the new call instruction and copy
1430     // over the required information.
1431     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1432     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1433                                                      ArgList.end(), "", CI);
1434     ArgList.clear();
1435     if (!NewCall->getType()->isVoidTy())
1436       NewCall->takeName(CI);
1437     NewCall->setAttributes(CI->getAttributes());
1438     NewCall->setCallingConv(CI->getCallingConv());
1439 
1440     // Finally, remove the old call, replacing any uses with the new one.
1441     if (!CI->use_empty())
1442       CI->replaceAllUsesWith(NewCall);
1443 
1444     // Copy debug location attached to CI.
1445     if (!CI->getDebugLoc().isUnknown())
1446       NewCall->setDebugLoc(CI->getDebugLoc());
1447     CI->eraseFromParent();
1448   }
1449 }
1450 
1451 
1452 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1453   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1454 
1455   // Compute the function info and LLVM type.
1456   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1457   bool variadic = false;
1458   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1459     variadic = fpt->isVariadic();
1460   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1461 
1462   // Get or create the prototype for the function.
1463   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1464 
1465   // Strip off a bitcast if we got one back.
1466   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1467     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1468     Entry = CE->getOperand(0);
1469   }
1470 
1471 
1472   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1473     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1474 
1475     // If the types mismatch then we have to rewrite the definition.
1476     assert(OldFn->isDeclaration() &&
1477            "Shouldn't replace non-declaration");
1478 
1479     // F is the Function* for the one with the wrong type, we must make a new
1480     // Function* and update everything that used F (a declaration) with the new
1481     // Function* (which will be a definition).
1482     //
1483     // This happens if there is a prototype for a function
1484     // (e.g. "int f()") and then a definition of a different type
1485     // (e.g. "int f(int x)").  Move the old function aside so that it
1486     // doesn't interfere with GetAddrOfFunction.
1487     OldFn->setName(llvm::StringRef());
1488     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1489 
1490     // If this is an implementation of a function without a prototype, try to
1491     // replace any existing uses of the function (which may be calls) with uses
1492     // of the new function
1493     if (D->getType()->isFunctionNoProtoType()) {
1494       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1495       OldFn->removeDeadConstantUsers();
1496     }
1497 
1498     // Replace uses of F with the Function we will endow with a body.
1499     if (!Entry->use_empty()) {
1500       llvm::Constant *NewPtrForOldDecl =
1501         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1502       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1503     }
1504 
1505     // Ok, delete the old function now, which is dead.
1506     OldFn->eraseFromParent();
1507 
1508     Entry = NewFn;
1509   }
1510 
1511   // We need to set linkage and visibility on the function before
1512   // generating code for it because various parts of IR generation
1513   // want to propagate this information down (e.g. to local static
1514   // declarations).
1515   llvm::Function *Fn = cast<llvm::Function>(Entry);
1516   setFunctionLinkage(D, Fn);
1517 
1518   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1519   setGlobalVisibility(Fn, D);
1520 
1521   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1522 
1523   SetFunctionDefinitionAttributes(D, Fn);
1524   SetLLVMFunctionAttributesForDefinition(D, Fn);
1525 
1526   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1527     AddGlobalCtor(Fn, CA->getPriority());
1528   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1529     AddGlobalDtor(Fn, DA->getPriority());
1530 }
1531 
1532 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1533   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1534   const AliasAttr *AA = D->getAttr<AliasAttr>();
1535   assert(AA && "Not an alias?");
1536 
1537   llvm::StringRef MangledName = getMangledName(GD);
1538 
1539   // If there is a definition in the module, then it wins over the alias.
1540   // This is dubious, but allow it to be safe.  Just ignore the alias.
1541   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1542   if (Entry && !Entry->isDeclaration())
1543     return;
1544 
1545   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1546 
1547   // Create a reference to the named value.  This ensures that it is emitted
1548   // if a deferred decl.
1549   llvm::Constant *Aliasee;
1550   if (isa<llvm::FunctionType>(DeclTy))
1551     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1552                                       /*ForVTable=*/false);
1553   else
1554     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1555                                     llvm::PointerType::getUnqual(DeclTy), 0);
1556 
1557   // Create the new alias itself, but don't set a name yet.
1558   llvm::GlobalValue *GA =
1559     new llvm::GlobalAlias(Aliasee->getType(),
1560                           llvm::Function::ExternalLinkage,
1561                           "", Aliasee, &getModule());
1562 
1563   if (Entry) {
1564     assert(Entry->isDeclaration());
1565 
1566     // If there is a declaration in the module, then we had an extern followed
1567     // by the alias, as in:
1568     //   extern int test6();
1569     //   ...
1570     //   int test6() __attribute__((alias("test7")));
1571     //
1572     // Remove it and replace uses of it with the alias.
1573     GA->takeName(Entry);
1574 
1575     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1576                                                           Entry->getType()));
1577     Entry->eraseFromParent();
1578   } else {
1579     GA->setName(MangledName);
1580   }
1581 
1582   // Set attributes which are particular to an alias; this is a
1583   // specialization of the attributes which may be set on a global
1584   // variable/function.
1585   if (D->hasAttr<DLLExportAttr>()) {
1586     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1587       // The dllexport attribute is ignored for undefined symbols.
1588       if (FD->hasBody())
1589         GA->setLinkage(llvm::Function::DLLExportLinkage);
1590     } else {
1591       GA->setLinkage(llvm::Function::DLLExportLinkage);
1592     }
1593   } else if (D->hasAttr<WeakAttr>() ||
1594              D->hasAttr<WeakRefAttr>() ||
1595              D->isWeakImported()) {
1596     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1597   }
1598 
1599   SetCommonAttributes(D, GA);
1600 }
1601 
1602 /// getBuiltinLibFunction - Given a builtin id for a function like
1603 /// "__builtin_fabsf", return a Function* for "fabsf".
1604 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1605                                                   unsigned BuiltinID) {
1606   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1607           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1608          "isn't a lib fn");
1609 
1610   // Get the name, skip over the __builtin_ prefix (if necessary).
1611   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1612   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1613     Name += 10;
1614 
1615   const llvm::FunctionType *Ty =
1616     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1617 
1618   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1619 }
1620 
1621 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1622                                             unsigned NumTys) {
1623   return llvm::Intrinsic::getDeclaration(&getModule(),
1624                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1625 }
1626 
1627 static llvm::StringMapEntry<llvm::Constant*> &
1628 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1629                          const StringLiteral *Literal,
1630                          bool TargetIsLSB,
1631                          bool &IsUTF16,
1632                          unsigned &StringLength) {
1633   llvm::StringRef String = Literal->getString();
1634   unsigned NumBytes = String.size();
1635 
1636   // Check for simple case.
1637   if (!Literal->containsNonAsciiOrNull()) {
1638     StringLength = NumBytes;
1639     return Map.GetOrCreateValue(String);
1640   }
1641 
1642   // Otherwise, convert the UTF8 literals into a byte string.
1643   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1644   const UTF8 *FromPtr = (UTF8 *)String.data();
1645   UTF16 *ToPtr = &ToBuf[0];
1646 
1647   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1648                            &ToPtr, ToPtr + NumBytes,
1649                            strictConversion);
1650 
1651   // ConvertUTF8toUTF16 returns the length in ToPtr.
1652   StringLength = ToPtr - &ToBuf[0];
1653 
1654   // Render the UTF-16 string into a byte array and convert to the target byte
1655   // order.
1656   //
1657   // FIXME: This isn't something we should need to do here.
1658   llvm::SmallString<128> AsBytes;
1659   AsBytes.reserve(StringLength * 2);
1660   for (unsigned i = 0; i != StringLength; ++i) {
1661     unsigned short Val = ToBuf[i];
1662     if (TargetIsLSB) {
1663       AsBytes.push_back(Val & 0xFF);
1664       AsBytes.push_back(Val >> 8);
1665     } else {
1666       AsBytes.push_back(Val >> 8);
1667       AsBytes.push_back(Val & 0xFF);
1668     }
1669   }
1670   // Append one extra null character, the second is automatically added by our
1671   // caller.
1672   AsBytes.push_back(0);
1673 
1674   IsUTF16 = true;
1675   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1676 }
1677 
1678 llvm::Constant *
1679 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1680   unsigned StringLength = 0;
1681   bool isUTF16 = false;
1682   llvm::StringMapEntry<llvm::Constant*> &Entry =
1683     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1684                              getTargetData().isLittleEndian(),
1685                              isUTF16, StringLength);
1686 
1687   if (llvm::Constant *C = Entry.getValue())
1688     return C;
1689 
1690   llvm::Constant *Zero =
1691       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1692   llvm::Constant *Zeros[] = { Zero, Zero };
1693 
1694   // If we don't already have it, get __CFConstantStringClassReference.
1695   if (!CFConstantStringClassRef) {
1696     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1697     Ty = llvm::ArrayType::get(Ty, 0);
1698     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1699                                            "__CFConstantStringClassReference");
1700     // Decay array -> ptr
1701     CFConstantStringClassRef =
1702       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1703   }
1704 
1705   QualType CFTy = getContext().getCFConstantStringType();
1706 
1707   const llvm::StructType *STy =
1708     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1709 
1710   std::vector<llvm::Constant*> Fields(4);
1711 
1712   // Class pointer.
1713   Fields[0] = CFConstantStringClassRef;
1714 
1715   // Flags.
1716   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1717   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1718     llvm::ConstantInt::get(Ty, 0x07C8);
1719 
1720   // String pointer.
1721   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1722 
1723   llvm::GlobalValue::LinkageTypes Linkage;
1724   bool isConstant;
1725   if (isUTF16) {
1726     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1727     Linkage = llvm::GlobalValue::InternalLinkage;
1728     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1729     // does make plain ascii ones writable.
1730     isConstant = true;
1731   } else {
1732     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1733     // when using private linkage. It is not clear if this is a bug in ld
1734     // or a reasonable new restriction.
1735     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1736     isConstant = !Features.WritableStrings;
1737   }
1738 
1739   llvm::GlobalVariable *GV =
1740     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1741                              ".str");
1742   GV->setUnnamedAddr(true);
1743   if (isUTF16) {
1744     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1745     GV->setAlignment(Align.getQuantity());
1746   }
1747   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1748 
1749   // String length.
1750   Ty = getTypes().ConvertType(getContext().LongTy);
1751   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1752 
1753   // The struct.
1754   C = llvm::ConstantStruct::get(STy, Fields);
1755   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1756                                 llvm::GlobalVariable::PrivateLinkage, C,
1757                                 "_unnamed_cfstring_");
1758   if (const char *Sect = getContext().Target.getCFStringSection())
1759     GV->setSection(Sect);
1760   Entry.setValue(GV);
1761 
1762   return GV;
1763 }
1764 
1765 llvm::Constant *
1766 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1767   unsigned StringLength = 0;
1768   bool isUTF16 = false;
1769   llvm::StringMapEntry<llvm::Constant*> &Entry =
1770     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1771                              getTargetData().isLittleEndian(),
1772                              isUTF16, StringLength);
1773 
1774   if (llvm::Constant *C = Entry.getValue())
1775     return C;
1776 
1777   llvm::Constant *Zero =
1778   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1779   llvm::Constant *Zeros[] = { Zero, Zero };
1780 
1781   // If we don't already have it, get _NSConstantStringClassReference.
1782   if (!ConstantStringClassRef) {
1783     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1784     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1785     Ty = llvm::ArrayType::get(Ty, 0);
1786     llvm::Constant *GV;
1787     if (StringClass.empty())
1788       GV = CreateRuntimeVariable(Ty,
1789                                  Features.ObjCNonFragileABI ?
1790                                  "OBJC_CLASS_$_NSConstantString" :
1791                                  "_NSConstantStringClassReference");
1792     else {
1793       std::string str;
1794       if (Features.ObjCNonFragileABI)
1795         str = "OBJC_CLASS_$_" + StringClass;
1796       else
1797         str = "_" + StringClass + "ClassReference";
1798       GV = CreateRuntimeVariable(Ty, str);
1799     }
1800     // Decay array -> ptr
1801     ConstantStringClassRef =
1802     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1803   }
1804 
1805   QualType NSTy = getContext().getNSConstantStringType();
1806 
1807   const llvm::StructType *STy =
1808   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1809 
1810   std::vector<llvm::Constant*> Fields(3);
1811 
1812   // Class pointer.
1813   Fields[0] = ConstantStringClassRef;
1814 
1815   // String pointer.
1816   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1817 
1818   llvm::GlobalValue::LinkageTypes Linkage;
1819   bool isConstant;
1820   if (isUTF16) {
1821     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1822     Linkage = llvm::GlobalValue::InternalLinkage;
1823     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1824     // does make plain ascii ones writable.
1825     isConstant = true;
1826   } else {
1827     Linkage = llvm::GlobalValue::PrivateLinkage;
1828     isConstant = !Features.WritableStrings;
1829   }
1830 
1831   llvm::GlobalVariable *GV =
1832   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1833                            ".str");
1834   GV->setUnnamedAddr(true);
1835   if (isUTF16) {
1836     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1837     GV->setAlignment(Align.getQuantity());
1838   }
1839   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1840 
1841   // String length.
1842   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1843   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1844 
1845   // The struct.
1846   C = llvm::ConstantStruct::get(STy, Fields);
1847   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1848                                 llvm::GlobalVariable::PrivateLinkage, C,
1849                                 "_unnamed_nsstring_");
1850   // FIXME. Fix section.
1851   if (const char *Sect =
1852         Features.ObjCNonFragileABI
1853           ? getContext().Target.getNSStringNonFragileABISection()
1854           : getContext().Target.getNSStringSection())
1855     GV->setSection(Sect);
1856   Entry.setValue(GV);
1857 
1858   return GV;
1859 }
1860 
1861 /// GetStringForStringLiteral - Return the appropriate bytes for a
1862 /// string literal, properly padded to match the literal type.
1863 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1864   const ASTContext &Context = getContext();
1865   const ConstantArrayType *CAT =
1866     Context.getAsConstantArrayType(E->getType());
1867   assert(CAT && "String isn't pointer or array!");
1868 
1869   // Resize the string to the right size.
1870   uint64_t RealLen = CAT->getSize().getZExtValue();
1871 
1872   if (E->isWide())
1873     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1874 
1875   std::string Str = E->getString().str();
1876   Str.resize(RealLen, '\0');
1877 
1878   return Str;
1879 }
1880 
1881 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1882 /// constant array for the given string literal.
1883 llvm::Constant *
1884 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1885   // FIXME: This can be more efficient.
1886   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1887   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1888   if (S->isWide()) {
1889     llvm::Type *DestTy =
1890         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1891     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1892   }
1893   return C;
1894 }
1895 
1896 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1897 /// array for the given ObjCEncodeExpr node.
1898 llvm::Constant *
1899 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1900   std::string Str;
1901   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1902 
1903   return GetAddrOfConstantCString(Str);
1904 }
1905 
1906 
1907 /// GenerateWritableString -- Creates storage for a string literal.
1908 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1909                                              bool constant,
1910                                              CodeGenModule &CGM,
1911                                              const char *GlobalName) {
1912   // Create Constant for this string literal. Don't add a '\0'.
1913   llvm::Constant *C =
1914       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1915 
1916   // Create a global variable for this string
1917   llvm::GlobalVariable *GV =
1918     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1919                              llvm::GlobalValue::PrivateLinkage,
1920                              C, GlobalName);
1921   GV->setUnnamedAddr(true);
1922   return GV;
1923 }
1924 
1925 /// GetAddrOfConstantString - Returns a pointer to a character array
1926 /// containing the literal. This contents are exactly that of the
1927 /// given string, i.e. it will not be null terminated automatically;
1928 /// see GetAddrOfConstantCString. Note that whether the result is
1929 /// actually a pointer to an LLVM constant depends on
1930 /// Feature.WriteableStrings.
1931 ///
1932 /// The result has pointer to array type.
1933 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1934                                                        const char *GlobalName) {
1935   bool IsConstant = !Features.WritableStrings;
1936 
1937   // Get the default prefix if a name wasn't specified.
1938   if (!GlobalName)
1939     GlobalName = ".str";
1940 
1941   // Don't share any string literals if strings aren't constant.
1942   if (!IsConstant)
1943     return GenerateStringLiteral(Str, false, *this, GlobalName);
1944 
1945   llvm::StringMapEntry<llvm::Constant *> &Entry =
1946     ConstantStringMap.GetOrCreateValue(Str);
1947 
1948   if (Entry.getValue())
1949     return Entry.getValue();
1950 
1951   // Create a global variable for this.
1952   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1953   Entry.setValue(C);
1954   return C;
1955 }
1956 
1957 /// GetAddrOfConstantCString - Returns a pointer to a character
1958 /// array containing the literal and a terminating '\0'
1959 /// character. The result has pointer to array type.
1960 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1961                                                         const char *GlobalName){
1962   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1963   return GetAddrOfConstantString(StrWithNull, GlobalName);
1964 }
1965 
1966 /// EmitObjCPropertyImplementations - Emit information for synthesized
1967 /// properties for an implementation.
1968 void CodeGenModule::EmitObjCPropertyImplementations(const
1969                                                     ObjCImplementationDecl *D) {
1970   for (ObjCImplementationDecl::propimpl_iterator
1971          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1972     ObjCPropertyImplDecl *PID = *i;
1973 
1974     // Dynamic is just for type-checking.
1975     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1976       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1977 
1978       // Determine which methods need to be implemented, some may have
1979       // been overridden. Note that ::isSynthesized is not the method
1980       // we want, that just indicates if the decl came from a
1981       // property. What we want to know is if the method is defined in
1982       // this implementation.
1983       if (!D->getInstanceMethod(PD->getGetterName()))
1984         CodeGenFunction(*this).GenerateObjCGetter(
1985                                  const_cast<ObjCImplementationDecl *>(D), PID);
1986       if (!PD->isReadOnly() &&
1987           !D->getInstanceMethod(PD->getSetterName()))
1988         CodeGenFunction(*this).GenerateObjCSetter(
1989                                  const_cast<ObjCImplementationDecl *>(D), PID);
1990     }
1991   }
1992 }
1993 
1994 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1995   ObjCInterfaceDecl *iface
1996     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1997   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1998        ivar; ivar = ivar->getNextIvar())
1999     if (ivar->getType().isDestructedType())
2000       return true;
2001 
2002   return false;
2003 }
2004 
2005 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2006 /// for an implementation.
2007 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2008   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2009   if (needsDestructMethod(D)) {
2010     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2011     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2012     ObjCMethodDecl *DTORMethod =
2013       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2014                              cxxSelector, getContext().VoidTy, 0, D, true,
2015                              false, true, false, ObjCMethodDecl::Required);
2016     D->addInstanceMethod(DTORMethod);
2017     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2018   }
2019 
2020   // If the implementation doesn't have any ivar initializers, we don't need
2021   // a .cxx_construct.
2022   if (D->getNumIvarInitializers() == 0)
2023     return;
2024 
2025   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2026   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2027   // The constructor returns 'self'.
2028   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2029                                                 D->getLocation(),
2030                                                 D->getLocation(), cxxSelector,
2031                                                 getContext().getObjCIdType(), 0,
2032                                                 D, true, false, true, false,
2033                                                 ObjCMethodDecl::Required);
2034   D->addInstanceMethod(CTORMethod);
2035   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2036 }
2037 
2038 /// EmitNamespace - Emit all declarations in a namespace.
2039 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2040   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2041        I != E; ++I)
2042     EmitTopLevelDecl(*I);
2043 }
2044 
2045 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2046 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2047   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2048       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2049     ErrorUnsupported(LSD, "linkage spec");
2050     return;
2051   }
2052 
2053   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2054        I != E; ++I)
2055     EmitTopLevelDecl(*I);
2056 }
2057 
2058 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2059 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2060   // If an error has occurred, stop code generation, but continue
2061   // parsing and semantic analysis (to ensure all warnings and errors
2062   // are emitted).
2063   if (Diags.hasErrorOccurred())
2064     return;
2065 
2066   // Ignore dependent declarations.
2067   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2068     return;
2069 
2070   switch (D->getKind()) {
2071   case Decl::CXXConversion:
2072   case Decl::CXXMethod:
2073   case Decl::Function:
2074     // Skip function templates
2075     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2076       return;
2077 
2078     EmitGlobal(cast<FunctionDecl>(D));
2079     break;
2080 
2081   case Decl::Var:
2082     EmitGlobal(cast<VarDecl>(D));
2083     break;
2084 
2085   // C++ Decls
2086   case Decl::Namespace:
2087     EmitNamespace(cast<NamespaceDecl>(D));
2088     break;
2089     // No code generation needed.
2090   case Decl::UsingShadow:
2091   case Decl::Using:
2092   case Decl::UsingDirective:
2093   case Decl::ClassTemplate:
2094   case Decl::FunctionTemplate:
2095   case Decl::NamespaceAlias:
2096     break;
2097   case Decl::CXXConstructor:
2098     // Skip function templates
2099     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2100       return;
2101 
2102     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2103     break;
2104   case Decl::CXXDestructor:
2105     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2106     break;
2107 
2108   case Decl::StaticAssert:
2109     // Nothing to do.
2110     break;
2111 
2112   // Objective-C Decls
2113 
2114   // Forward declarations, no (immediate) code generation.
2115   case Decl::ObjCClass:
2116   case Decl::ObjCForwardProtocol:
2117   case Decl::ObjCInterface:
2118     break;
2119 
2120     case Decl::ObjCCategory: {
2121       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2122       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2123         Context.ResetObjCLayout(CD->getClassInterface());
2124       break;
2125     }
2126 
2127 
2128   case Decl::ObjCProtocol:
2129     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2130     break;
2131 
2132   case Decl::ObjCCategoryImpl:
2133     // Categories have properties but don't support synthesize so we
2134     // can ignore them here.
2135     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2136     break;
2137 
2138   case Decl::ObjCImplementation: {
2139     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2140     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2141       Context.ResetObjCLayout(OMD->getClassInterface());
2142     EmitObjCPropertyImplementations(OMD);
2143     EmitObjCIvarInitializations(OMD);
2144     Runtime->GenerateClass(OMD);
2145     break;
2146   }
2147   case Decl::ObjCMethod: {
2148     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2149     // If this is not a prototype, emit the body.
2150     if (OMD->getBody())
2151       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2152     break;
2153   }
2154   case Decl::ObjCCompatibleAlias:
2155     // compatibility-alias is a directive and has no code gen.
2156     break;
2157 
2158   case Decl::LinkageSpec:
2159     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2160     break;
2161 
2162   case Decl::FileScopeAsm: {
2163     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2164     llvm::StringRef AsmString = AD->getAsmString()->getString();
2165 
2166     const std::string &S = getModule().getModuleInlineAsm();
2167     if (S.empty())
2168       getModule().setModuleInlineAsm(AsmString);
2169     else
2170       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2171     break;
2172   }
2173 
2174   default:
2175     // Make sure we handled everything we should, every other kind is a
2176     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2177     // function. Need to recode Decl::Kind to do that easily.
2178     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2179   }
2180 }
2181 
2182 /// Turns the given pointer into a constant.
2183 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2184                                           const void *Ptr) {
2185   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2186   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2187   return llvm::ConstantInt::get(i64, PtrInt);
2188 }
2189 
2190 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2191                                    llvm::NamedMDNode *&GlobalMetadata,
2192                                    GlobalDecl D,
2193                                    llvm::GlobalValue *Addr) {
2194   if (!GlobalMetadata)
2195     GlobalMetadata =
2196       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2197 
2198   // TODO: should we report variant information for ctors/dtors?
2199   llvm::Value *Ops[] = {
2200     Addr,
2201     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2202   };
2203   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2204 }
2205 
2206 /// Emits metadata nodes associating all the global values in the
2207 /// current module with the Decls they came from.  This is useful for
2208 /// projects using IR gen as a subroutine.
2209 ///
2210 /// Since there's currently no way to associate an MDNode directly
2211 /// with an llvm::GlobalValue, we create a global named metadata
2212 /// with the name 'clang.global.decl.ptrs'.
2213 void CodeGenModule::EmitDeclMetadata() {
2214   llvm::NamedMDNode *GlobalMetadata = 0;
2215 
2216   // StaticLocalDeclMap
2217   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2218          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2219        I != E; ++I) {
2220     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2221     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2222   }
2223 }
2224 
2225 /// Emits metadata nodes for all the local variables in the current
2226 /// function.
2227 void CodeGenFunction::EmitDeclMetadata() {
2228   if (LocalDeclMap.empty()) return;
2229 
2230   llvm::LLVMContext &Context = getLLVMContext();
2231 
2232   // Find the unique metadata ID for this name.
2233   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2234 
2235   llvm::NamedMDNode *GlobalMetadata = 0;
2236 
2237   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2238          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2239     const Decl *D = I->first;
2240     llvm::Value *Addr = I->second;
2241 
2242     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2243       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2244       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2245     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2246       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2247       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2248     }
2249   }
2250 }
2251 
2252 ///@name Custom Runtime Function Interfaces
2253 ///@{
2254 //
2255 // FIXME: These can be eliminated once we can have clients just get the required
2256 // AST nodes from the builtin tables.
2257 
2258 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2259   if (BlockObjectDispose)
2260     return BlockObjectDispose;
2261 
2262   // If we saw an explicit decl, use that.
2263   if (BlockObjectDisposeDecl) {
2264     return BlockObjectDispose = GetAddrOfFunction(
2265       BlockObjectDisposeDecl,
2266       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2267   }
2268 
2269   // Otherwise construct the function by hand.
2270   const llvm::FunctionType *FTy;
2271   std::vector<const llvm::Type*> ArgTys;
2272   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2273   ArgTys.push_back(Int8PtrTy);
2274   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2275   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2276   return BlockObjectDispose =
2277     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2278 }
2279 
2280 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2281   if (BlockObjectAssign)
2282     return BlockObjectAssign;
2283 
2284   // If we saw an explicit decl, use that.
2285   if (BlockObjectAssignDecl) {
2286     return BlockObjectAssign = GetAddrOfFunction(
2287       BlockObjectAssignDecl,
2288       getTypes().GetFunctionType(BlockObjectAssignDecl));
2289   }
2290 
2291   // Otherwise construct the function by hand.
2292   const llvm::FunctionType *FTy;
2293   std::vector<const llvm::Type*> ArgTys;
2294   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2295   ArgTys.push_back(Int8PtrTy);
2296   ArgTys.push_back(Int8PtrTy);
2297   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2298   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2299   return BlockObjectAssign =
2300     CreateRuntimeFunction(FTy, "_Block_object_assign");
2301 }
2302 
2303 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2304   if (NSConcreteGlobalBlock)
2305     return NSConcreteGlobalBlock;
2306 
2307   // If we saw an explicit decl, use that.
2308   if (NSConcreteGlobalBlockDecl) {
2309     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2310       NSConcreteGlobalBlockDecl,
2311       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2312   }
2313 
2314   // Otherwise construct the variable by hand.
2315   return NSConcreteGlobalBlock =
2316     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2317 }
2318 
2319 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2320   if (NSConcreteStackBlock)
2321     return NSConcreteStackBlock;
2322 
2323   // If we saw an explicit decl, use that.
2324   if (NSConcreteStackBlockDecl) {
2325     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2326       NSConcreteStackBlockDecl,
2327       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2328   }
2329 
2330   // Otherwise construct the variable by hand.
2331   return NSConcreteStackBlock =
2332     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2333 }
2334 
2335 ///@}
2336