xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 301e23305d03cfb4004f845a1d9dfdc5e5931fd8)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::Fuchsia:
80   case TargetCXXABI::GenericAArch64:
81   case TargetCXXABI::GenericARM:
82   case TargetCXXABI::iOS:
83   case TargetCXXABI::iOS64:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 void CodeGenModule::Release() {
405   EmitDeferred();
406   EmitVTablesOpportunistically();
407   applyGlobalValReplacements();
408   applyReplacements();
409   checkAliases();
410   emitMultiVersionFunctions();
411   EmitCXXGlobalInitFunc();
412   EmitCXXGlobalCleanUpFunc();
413   registerGlobalDtorsWithAtExit();
414   EmitCXXThreadLocalInitFunc();
415   if (ObjCRuntime)
416     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
417       AddGlobalCtor(ObjCInitFunction);
418   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
419       CUDARuntime) {
420     if (llvm::Function *CudaCtorFunction =
421             CUDARuntime->makeModuleCtorFunction())
422       AddGlobalCtor(CudaCtorFunction);
423   }
424   if (OpenMPRuntime) {
425     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
426             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
427       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
428     }
429     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
430     OpenMPRuntime->clear();
431   }
432   if (PGOReader) {
433     getModule().setProfileSummary(
434         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
435         llvm::ProfileSummary::PSK_Instr);
436     if (PGOStats.hasDiagnostics())
437       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
438   }
439   EmitCtorList(GlobalCtors, "llvm.global_ctors");
440   EmitCtorList(GlobalDtors, "llvm.global_dtors");
441   EmitGlobalAnnotations();
442   EmitStaticExternCAliases();
443   EmitDeferredUnusedCoverageMappings();
444   if (CoverageMapping)
445     CoverageMapping->emit();
446   if (CodeGenOpts.SanitizeCfiCrossDso) {
447     CodeGenFunction(*this).EmitCfiCheckFail();
448     CodeGenFunction(*this).EmitCfiCheckStub();
449   }
450   emitAtAvailableLinkGuard();
451   if (Context.getTargetInfo().getTriple().isWasm() &&
452       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
453     EmitMainVoidAlias();
454   }
455   emitLLVMUsed();
456   if (SanStats)
457     SanStats->finish();
458 
459   if (CodeGenOpts.Autolink &&
460       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
461     EmitModuleLinkOptions();
462   }
463 
464   // On ELF we pass the dependent library specifiers directly to the linker
465   // without manipulating them. This is in contrast to other platforms where
466   // they are mapped to a specific linker option by the compiler. This
467   // difference is a result of the greater variety of ELF linkers and the fact
468   // that ELF linkers tend to handle libraries in a more complicated fashion
469   // than on other platforms. This forces us to defer handling the dependent
470   // libs to the linker.
471   //
472   // CUDA/HIP device and host libraries are different. Currently there is no
473   // way to differentiate dependent libraries for host or device. Existing
474   // usage of #pragma comment(lib, *) is intended for host libraries on
475   // Windows. Therefore emit llvm.dependent-libraries only for host.
476   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
477     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
478     for (auto *MD : ELFDependentLibraries)
479       NMD->addOperand(MD);
480   }
481 
482   // Record mregparm value now so it is visible through rest of codegen.
483   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
484     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
485                               CodeGenOpts.NumRegisterParameters);
486 
487   if (CodeGenOpts.DwarfVersion) {
488     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
489                               CodeGenOpts.DwarfVersion);
490   }
491 
492   if (Context.getLangOpts().SemanticInterposition)
493     // Require various optimization to respect semantic interposition.
494     getModule().setSemanticInterposition(1);
495   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
496     // Allow dso_local on applicable targets.
497     getModule().setSemanticInterposition(0);
498 
499   if (CodeGenOpts.EmitCodeView) {
500     // Indicate that we want CodeView in the metadata.
501     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
502   }
503   if (CodeGenOpts.CodeViewGHash) {
504     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
505   }
506   if (CodeGenOpts.ControlFlowGuard) {
507     // Function ID tables and checks for Control Flow Guard (cfguard=2).
508     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
509   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
510     // Function ID tables for Control Flow Guard (cfguard=1).
511     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
512   }
513   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
514     // We don't support LTO with 2 with different StrictVTablePointers
515     // FIXME: we could support it by stripping all the information introduced
516     // by StrictVTablePointers.
517 
518     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
519 
520     llvm::Metadata *Ops[2] = {
521               llvm::MDString::get(VMContext, "StrictVTablePointers"),
522               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
523                   llvm::Type::getInt32Ty(VMContext), 1))};
524 
525     getModule().addModuleFlag(llvm::Module::Require,
526                               "StrictVTablePointersRequirement",
527                               llvm::MDNode::get(VMContext, Ops));
528   }
529   if (getModuleDebugInfo())
530     // We support a single version in the linked module. The LLVM
531     // parser will drop debug info with a different version number
532     // (and warn about it, too).
533     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
534                               llvm::DEBUG_METADATA_VERSION);
535 
536   // We need to record the widths of enums and wchar_t, so that we can generate
537   // the correct build attributes in the ARM backend. wchar_size is also used by
538   // TargetLibraryInfo.
539   uint64_t WCharWidth =
540       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
541   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
542 
543   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
544   if (   Arch == llvm::Triple::arm
545       || Arch == llvm::Triple::armeb
546       || Arch == llvm::Triple::thumb
547       || Arch == llvm::Triple::thumbeb) {
548     // The minimum width of an enum in bytes
549     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
550     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
551   }
552 
553   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
554     StringRef ABIStr = Target.getABI();
555     llvm::LLVMContext &Ctx = TheModule.getContext();
556     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
557                               llvm::MDString::get(Ctx, ABIStr));
558   }
559 
560   if (CodeGenOpts.SanitizeCfiCrossDso) {
561     // Indicate that we want cross-DSO control flow integrity checks.
562     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
563   }
564 
565   if (CodeGenOpts.WholeProgramVTables) {
566     // Indicate whether VFE was enabled for this module, so that the
567     // vcall_visibility metadata added under whole program vtables is handled
568     // appropriately in the optimizer.
569     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
570                               CodeGenOpts.VirtualFunctionElimination);
571   }
572 
573   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
574     getModule().addModuleFlag(llvm::Module::Override,
575                               "CFI Canonical Jump Tables",
576                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
577   }
578 
579   if (CodeGenOpts.CFProtectionReturn &&
580       Target.checkCFProtectionReturnSupported(getDiags())) {
581     // Indicate that we want to instrument return control flow protection.
582     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
583                               1);
584   }
585 
586   if (CodeGenOpts.CFProtectionBranch &&
587       Target.checkCFProtectionBranchSupported(getDiags())) {
588     // Indicate that we want to instrument branch control flow protection.
589     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
590                               1);
591   }
592 
593   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
594     // Indicate whether __nvvm_reflect should be configured to flush denormal
595     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
596     // property.)
597     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
598                               CodeGenOpts.FP32DenormalMode.Output !=
599                                   llvm::DenormalMode::IEEE);
600   }
601 
602   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
603   if (LangOpts.OpenCL) {
604     EmitOpenCLMetadata();
605     // Emit SPIR version.
606     if (getTriple().isSPIR()) {
607       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
608       // opencl.spir.version named metadata.
609       // C++ is backwards compatible with OpenCL v2.0.
610       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
611       llvm::Metadata *SPIRVerElts[] = {
612           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
613               Int32Ty, Version / 100)),
614           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
615               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
616       llvm::NamedMDNode *SPIRVerMD =
617           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
618       llvm::LLVMContext &Ctx = TheModule.getContext();
619       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
620     }
621   }
622 
623   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
624     assert(PLevel < 3 && "Invalid PIC Level");
625     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
626     if (Context.getLangOpts().PIE)
627       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
628   }
629 
630   if (getCodeGenOpts().CodeModel.size() > 0) {
631     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
632                   .Case("tiny", llvm::CodeModel::Tiny)
633                   .Case("small", llvm::CodeModel::Small)
634                   .Case("kernel", llvm::CodeModel::Kernel)
635                   .Case("medium", llvm::CodeModel::Medium)
636                   .Case("large", llvm::CodeModel::Large)
637                   .Default(~0u);
638     if (CM != ~0u) {
639       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
640       getModule().setCodeModel(codeModel);
641     }
642   }
643 
644   if (CodeGenOpts.NoPLT)
645     getModule().setRtLibUseGOT();
646 
647   SimplifyPersonality();
648 
649   if (getCodeGenOpts().EmitDeclMetadata)
650     EmitDeclMetadata();
651 
652   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
653     EmitCoverageFile();
654 
655   if (CGDebugInfo *DI = getModuleDebugInfo())
656     DI->finalize();
657 
658   if (getCodeGenOpts().EmitVersionIdentMetadata)
659     EmitVersionIdentMetadata();
660 
661   if (!getCodeGenOpts().RecordCommandLine.empty())
662     EmitCommandLineMetadata();
663 
664   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
665 
666   EmitBackendOptionsMetadata(getCodeGenOpts());
667 }
668 
669 void CodeGenModule::EmitOpenCLMetadata() {
670   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
671   // opencl.ocl.version named metadata node.
672   // C++ is backwards compatible with OpenCL v2.0.
673   // FIXME: We might need to add CXX version at some point too?
674   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
675   llvm::Metadata *OCLVerElts[] = {
676       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
677           Int32Ty, Version / 100)),
678       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679           Int32Ty, (Version % 100) / 10))};
680   llvm::NamedMDNode *OCLVerMD =
681       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
682   llvm::LLVMContext &Ctx = TheModule.getContext();
683   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
684 }
685 
686 void CodeGenModule::EmitBackendOptionsMetadata(
687     const CodeGenOptions CodeGenOpts) {
688   switch (getTriple().getArch()) {
689   default:
690     break;
691   case llvm::Triple::riscv32:
692   case llvm::Triple::riscv64:
693     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
694                               CodeGenOpts.SmallDataLimit);
695     break;
696   }
697 }
698 
699 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
700   // Make sure that this type is translated.
701   Types.UpdateCompletedType(TD);
702 }
703 
704 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
705   // Make sure that this type is translated.
706   Types.RefreshTypeCacheForClass(RD);
707 }
708 
709 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
710   if (!TBAA)
711     return nullptr;
712   return TBAA->getTypeInfo(QTy);
713 }
714 
715 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
716   if (!TBAA)
717     return TBAAAccessInfo();
718   if (getLangOpts().CUDAIsDevice) {
719     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
720     // access info.
721     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
722       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
723           nullptr)
724         return TBAAAccessInfo();
725     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
726       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
727           nullptr)
728         return TBAAAccessInfo();
729     }
730   }
731   return TBAA->getAccessInfo(AccessType);
732 }
733 
734 TBAAAccessInfo
735 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
736   if (!TBAA)
737     return TBAAAccessInfo();
738   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
739 }
740 
741 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
742   if (!TBAA)
743     return nullptr;
744   return TBAA->getTBAAStructInfo(QTy);
745 }
746 
747 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
748   if (!TBAA)
749     return nullptr;
750   return TBAA->getBaseTypeInfo(QTy);
751 }
752 
753 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
754   if (!TBAA)
755     return nullptr;
756   return TBAA->getAccessTagInfo(Info);
757 }
758 
759 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
760                                                    TBAAAccessInfo TargetInfo) {
761   if (!TBAA)
762     return TBAAAccessInfo();
763   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
764 }
765 
766 TBAAAccessInfo
767 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
768                                                    TBAAAccessInfo InfoB) {
769   if (!TBAA)
770     return TBAAAccessInfo();
771   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
772 }
773 
774 TBAAAccessInfo
775 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
776                                               TBAAAccessInfo SrcInfo) {
777   if (!TBAA)
778     return TBAAAccessInfo();
779   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
780 }
781 
782 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
783                                                 TBAAAccessInfo TBAAInfo) {
784   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
785     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
786 }
787 
788 void CodeGenModule::DecorateInstructionWithInvariantGroup(
789     llvm::Instruction *I, const CXXRecordDecl *RD) {
790   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
791                  llvm::MDNode::get(getLLVMContext(), {}));
792 }
793 
794 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
795   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
796   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
797 }
798 
799 /// ErrorUnsupported - Print out an error that codegen doesn't support the
800 /// specified stmt yet.
801 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
802   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
803                                                "cannot compile this %0 yet");
804   std::string Msg = Type;
805   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
806       << Msg << S->getSourceRange();
807 }
808 
809 /// ErrorUnsupported - Print out an error that codegen doesn't support the
810 /// specified decl yet.
811 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
812   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
813                                                "cannot compile this %0 yet");
814   std::string Msg = Type;
815   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
816 }
817 
818 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
819   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
820 }
821 
822 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
823                                         const NamedDecl *D) const {
824   if (GV->hasDLLImportStorageClass())
825     return;
826   // Internal definitions always have default visibility.
827   if (GV->hasLocalLinkage()) {
828     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
829     return;
830   }
831   if (!D)
832     return;
833   // Set visibility for definitions, and for declarations if requested globally
834   // or set explicitly.
835   LinkageInfo LV = D->getLinkageAndVisibility();
836   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
837       !GV->isDeclarationForLinker())
838     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
839 }
840 
841 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
842                                  llvm::GlobalValue *GV) {
843   if (GV->hasLocalLinkage())
844     return true;
845 
846   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
847     return true;
848 
849   // DLLImport explicitly marks the GV as external.
850   if (GV->hasDLLImportStorageClass())
851     return false;
852 
853   const llvm::Triple &TT = CGM.getTriple();
854   if (TT.isWindowsGNUEnvironment()) {
855     // In MinGW, variables without DLLImport can still be automatically
856     // imported from a DLL by the linker; don't mark variables that
857     // potentially could come from another DLL as DSO local.
858     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
859         !GV->isThreadLocal())
860       return false;
861   }
862 
863   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
864   // remain unresolved in the link, they can be resolved to zero, which is
865   // outside the current DSO.
866   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
867     return false;
868 
869   // Every other GV is local on COFF.
870   // Make an exception for windows OS in the triple: Some firmware builds use
871   // *-win32-macho triples. This (accidentally?) produced windows relocations
872   // without GOT tables in older clang versions; Keep this behaviour.
873   // FIXME: even thread local variables?
874   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
875     return true;
876 
877   // Only handle COFF and ELF for now.
878   if (!TT.isOSBinFormatELF())
879     return false;
880 
881   // If this is not an executable, don't assume anything is local.
882   const auto &CGOpts = CGM.getCodeGenOpts();
883   llvm::Reloc::Model RM = CGOpts.RelocationModel;
884   const auto &LOpts = CGM.getLangOpts();
885   if (RM != llvm::Reloc::Static && !LOpts.PIE)
886     return false;
887 
888   // A definition cannot be preempted from an executable.
889   if (!GV->isDeclarationForLinker())
890     return true;
891 
892   // Most PIC code sequences that assume that a symbol is local cannot produce a
893   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
894   // depended, it seems worth it to handle it here.
895   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
896     return false;
897 
898   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
899   llvm::Triple::ArchType Arch = TT.getArch();
900   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
901       Arch == llvm::Triple::ppc64le)
902     return false;
903 
904   // If we can use copy relocations we can assume it is local.
905   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
906     if (!Var->isThreadLocal() &&
907         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
908       return true;
909 
910   // If we can use a plt entry as the symbol address we can assume it
911   // is local.
912   // FIXME: This should work for PIE, but the gold linker doesn't support it.
913   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
914     return true;
915 
916   // Otherwise don't assume it is local.
917   return false;
918 }
919 
920 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
921   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
922 }
923 
924 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
925                                           GlobalDecl GD) const {
926   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
927   // C++ destructors have a few C++ ABI specific special cases.
928   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
929     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
930     return;
931   }
932   setDLLImportDLLExport(GV, D);
933 }
934 
935 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
936                                           const NamedDecl *D) const {
937   if (D && D->isExternallyVisible()) {
938     if (D->hasAttr<DLLImportAttr>())
939       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
940     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
941       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
942   }
943 }
944 
945 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
946                                     GlobalDecl GD) const {
947   setDLLImportDLLExport(GV, GD);
948   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
949 }
950 
951 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
952                                     const NamedDecl *D) const {
953   setDLLImportDLLExport(GV, D);
954   setGVPropertiesAux(GV, D);
955 }
956 
957 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
958                                        const NamedDecl *D) const {
959   setGlobalVisibility(GV, D);
960   setDSOLocal(GV);
961   GV->setPartition(CodeGenOpts.SymbolPartition);
962 }
963 
964 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
965   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
966       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
967       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
968       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
969       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
970 }
971 
972 llvm::GlobalVariable::ThreadLocalMode
973 CodeGenModule::GetDefaultLLVMTLSModel() const {
974   switch (CodeGenOpts.getDefaultTLSModel()) {
975   case CodeGenOptions::GeneralDynamicTLSModel:
976     return llvm::GlobalVariable::GeneralDynamicTLSModel;
977   case CodeGenOptions::LocalDynamicTLSModel:
978     return llvm::GlobalVariable::LocalDynamicTLSModel;
979   case CodeGenOptions::InitialExecTLSModel:
980     return llvm::GlobalVariable::InitialExecTLSModel;
981   case CodeGenOptions::LocalExecTLSModel:
982     return llvm::GlobalVariable::LocalExecTLSModel;
983   }
984   llvm_unreachable("Invalid TLS model!");
985 }
986 
987 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
988   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
989 
990   llvm::GlobalValue::ThreadLocalMode TLM;
991   TLM = GetDefaultLLVMTLSModel();
992 
993   // Override the TLS model if it is explicitly specified.
994   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
995     TLM = GetLLVMTLSModel(Attr->getModel());
996   }
997 
998   GV->setThreadLocalMode(TLM);
999 }
1000 
1001 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1002                                           StringRef Name) {
1003   const TargetInfo &Target = CGM.getTarget();
1004   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1005 }
1006 
1007 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1008                                                  const CPUSpecificAttr *Attr,
1009                                                  unsigned CPUIndex,
1010                                                  raw_ostream &Out) {
1011   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1012   // supported.
1013   if (Attr)
1014     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1015   else if (CGM.getTarget().supportsIFunc())
1016     Out << ".resolver";
1017 }
1018 
1019 static void AppendTargetMangling(const CodeGenModule &CGM,
1020                                  const TargetAttr *Attr, raw_ostream &Out) {
1021   if (Attr->isDefaultVersion())
1022     return;
1023 
1024   Out << '.';
1025   const TargetInfo &Target = CGM.getTarget();
1026   ParsedTargetAttr Info =
1027       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1028         // Multiversioning doesn't allow "no-${feature}", so we can
1029         // only have "+" prefixes here.
1030         assert(LHS.startswith("+") && RHS.startswith("+") &&
1031                "Features should always have a prefix.");
1032         return Target.multiVersionSortPriority(LHS.substr(1)) >
1033                Target.multiVersionSortPriority(RHS.substr(1));
1034       });
1035 
1036   bool IsFirst = true;
1037 
1038   if (!Info.Architecture.empty()) {
1039     IsFirst = false;
1040     Out << "arch_" << Info.Architecture;
1041   }
1042 
1043   for (StringRef Feat : Info.Features) {
1044     if (!IsFirst)
1045       Out << '_';
1046     IsFirst = false;
1047     Out << Feat.substr(1);
1048   }
1049 }
1050 
1051 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1052                                       const NamedDecl *ND,
1053                                       bool OmitMultiVersionMangling = false) {
1054   SmallString<256> Buffer;
1055   llvm::raw_svector_ostream Out(Buffer);
1056   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1057   if (MC.shouldMangleDeclName(ND))
1058     MC.mangleName(GD.getWithDecl(ND), Out);
1059   else {
1060     IdentifierInfo *II = ND->getIdentifier();
1061     assert(II && "Attempt to mangle unnamed decl.");
1062     const auto *FD = dyn_cast<FunctionDecl>(ND);
1063 
1064     if (FD &&
1065         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1066       Out << "__regcall3__" << II->getName();
1067     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1068                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1069       Out << "__device_stub__" << II->getName();
1070     } else {
1071       Out << II->getName();
1072     }
1073   }
1074 
1075   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1076     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1077       switch (FD->getMultiVersionKind()) {
1078       case MultiVersionKind::CPUDispatch:
1079       case MultiVersionKind::CPUSpecific:
1080         AppendCPUSpecificCPUDispatchMangling(CGM,
1081                                              FD->getAttr<CPUSpecificAttr>(),
1082                                              GD.getMultiVersionIndex(), Out);
1083         break;
1084       case MultiVersionKind::Target:
1085         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1086         break;
1087       case MultiVersionKind::None:
1088         llvm_unreachable("None multiversion type isn't valid here");
1089       }
1090     }
1091 
1092   return std::string(Out.str());
1093 }
1094 
1095 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1096                                             const FunctionDecl *FD) {
1097   if (!FD->isMultiVersion())
1098     return;
1099 
1100   // Get the name of what this would be without the 'target' attribute.  This
1101   // allows us to lookup the version that was emitted when this wasn't a
1102   // multiversion function.
1103   std::string NonTargetName =
1104       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1105   GlobalDecl OtherGD;
1106   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1107     assert(OtherGD.getCanonicalDecl()
1108                .getDecl()
1109                ->getAsFunction()
1110                ->isMultiVersion() &&
1111            "Other GD should now be a multiversioned function");
1112     // OtherFD is the version of this function that was mangled BEFORE
1113     // becoming a MultiVersion function.  It potentially needs to be updated.
1114     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1115                                       .getDecl()
1116                                       ->getAsFunction()
1117                                       ->getMostRecentDecl();
1118     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1119     // This is so that if the initial version was already the 'default'
1120     // version, we don't try to update it.
1121     if (OtherName != NonTargetName) {
1122       // Remove instead of erase, since others may have stored the StringRef
1123       // to this.
1124       const auto ExistingRecord = Manglings.find(NonTargetName);
1125       if (ExistingRecord != std::end(Manglings))
1126         Manglings.remove(&(*ExistingRecord));
1127       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1128       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1129       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1130         Entry->setName(OtherName);
1131     }
1132   }
1133 }
1134 
1135 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1136   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1137 
1138   // Some ABIs don't have constructor variants.  Make sure that base and
1139   // complete constructors get mangled the same.
1140   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1141     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1142       CXXCtorType OrigCtorType = GD.getCtorType();
1143       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1144       if (OrigCtorType == Ctor_Base)
1145         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1146     }
1147   }
1148 
1149   auto FoundName = MangledDeclNames.find(CanonicalGD);
1150   if (FoundName != MangledDeclNames.end())
1151     return FoundName->second;
1152 
1153   // Keep the first result in the case of a mangling collision.
1154   const auto *ND = cast<NamedDecl>(GD.getDecl());
1155   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1156 
1157   // Ensure either we have different ABIs between host and device compilations,
1158   // says host compilation following MSVC ABI but device compilation follows
1159   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1160   // mangling should be the same after name stubbing. The later checking is
1161   // very important as the device kernel name being mangled in host-compilation
1162   // is used to resolve the device binaries to be executed. Inconsistent naming
1163   // result in undefined behavior. Even though we cannot check that naming
1164   // directly between host- and device-compilations, the host- and
1165   // device-mangling in host compilation could help catching certain ones.
1166   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1167          getLangOpts().CUDAIsDevice ||
1168          (getContext().getAuxTargetInfo() &&
1169           (getContext().getAuxTargetInfo()->getCXXABI() !=
1170            getContext().getTargetInfo().getCXXABI())) ||
1171          getCUDARuntime().getDeviceSideName(ND) ==
1172              getMangledNameImpl(
1173                  *this,
1174                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1175                  ND));
1176 
1177   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1178   return MangledDeclNames[CanonicalGD] = Result.first->first();
1179 }
1180 
1181 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1182                                              const BlockDecl *BD) {
1183   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1184   const Decl *D = GD.getDecl();
1185 
1186   SmallString<256> Buffer;
1187   llvm::raw_svector_ostream Out(Buffer);
1188   if (!D)
1189     MangleCtx.mangleGlobalBlock(BD,
1190       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1191   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1192     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1193   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1194     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1195   else
1196     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1197 
1198   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1199   return Result.first->first();
1200 }
1201 
1202 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1203   return getModule().getNamedValue(Name);
1204 }
1205 
1206 /// AddGlobalCtor - Add a function to the list that will be called before
1207 /// main() runs.
1208 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1209                                   llvm::Constant *AssociatedData) {
1210   // FIXME: Type coercion of void()* types.
1211   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1212 }
1213 
1214 /// AddGlobalDtor - Add a function to the list that will be called
1215 /// when the module is unloaded.
1216 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1217   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1218     if (getCXXABI().useSinitAndSterm())
1219       llvm::report_fatal_error(
1220           "register global dtors with atexit() is not supported yet");
1221     DtorsUsingAtExit[Priority].push_back(Dtor);
1222     return;
1223   }
1224 
1225   // FIXME: Type coercion of void()* types.
1226   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1227 }
1228 
1229 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1230   if (Fns.empty()) return;
1231 
1232   // Ctor function type is void()*.
1233   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1234   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1235       TheModule.getDataLayout().getProgramAddressSpace());
1236 
1237   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1238   llvm::StructType *CtorStructTy = llvm::StructType::get(
1239       Int32Ty, CtorPFTy, VoidPtrTy);
1240 
1241   // Construct the constructor and destructor arrays.
1242   ConstantInitBuilder builder(*this);
1243   auto ctors = builder.beginArray(CtorStructTy);
1244   for (const auto &I : Fns) {
1245     auto ctor = ctors.beginStruct(CtorStructTy);
1246     ctor.addInt(Int32Ty, I.Priority);
1247     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1248     if (I.AssociatedData)
1249       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1250     else
1251       ctor.addNullPointer(VoidPtrTy);
1252     ctor.finishAndAddTo(ctors);
1253   }
1254 
1255   auto list =
1256     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1257                                 /*constant*/ false,
1258                                 llvm::GlobalValue::AppendingLinkage);
1259 
1260   // The LTO linker doesn't seem to like it when we set an alignment
1261   // on appending variables.  Take it off as a workaround.
1262   list->setAlignment(llvm::None);
1263 
1264   Fns.clear();
1265 }
1266 
1267 llvm::GlobalValue::LinkageTypes
1268 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1269   const auto *D = cast<FunctionDecl>(GD.getDecl());
1270 
1271   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1272 
1273   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1274     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1275 
1276   if (isa<CXXConstructorDecl>(D) &&
1277       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1278       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1279     // Our approach to inheriting constructors is fundamentally different from
1280     // that used by the MS ABI, so keep our inheriting constructor thunks
1281     // internal rather than trying to pick an unambiguous mangling for them.
1282     return llvm::GlobalValue::InternalLinkage;
1283   }
1284 
1285   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1286 }
1287 
1288 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1289   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1290   if (!MDS) return nullptr;
1291 
1292   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1293 }
1294 
1295 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1296                                               const CGFunctionInfo &Info,
1297                                               llvm::Function *F) {
1298   unsigned CallingConv;
1299   llvm::AttributeList PAL;
1300   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1301   F->setAttributes(PAL);
1302   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1303 }
1304 
1305 static void removeImageAccessQualifier(std::string& TyName) {
1306   std::string ReadOnlyQual("__read_only");
1307   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1308   if (ReadOnlyPos != std::string::npos)
1309     // "+ 1" for the space after access qualifier.
1310     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1311   else {
1312     std::string WriteOnlyQual("__write_only");
1313     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1314     if (WriteOnlyPos != std::string::npos)
1315       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1316     else {
1317       std::string ReadWriteQual("__read_write");
1318       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1319       if (ReadWritePos != std::string::npos)
1320         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1321     }
1322   }
1323 }
1324 
1325 // Returns the address space id that should be produced to the
1326 // kernel_arg_addr_space metadata. This is always fixed to the ids
1327 // as specified in the SPIR 2.0 specification in order to differentiate
1328 // for example in clGetKernelArgInfo() implementation between the address
1329 // spaces with targets without unique mapping to the OpenCL address spaces
1330 // (basically all single AS CPUs).
1331 static unsigned ArgInfoAddressSpace(LangAS AS) {
1332   switch (AS) {
1333   case LangAS::opencl_global:
1334     return 1;
1335   case LangAS::opencl_constant:
1336     return 2;
1337   case LangAS::opencl_local:
1338     return 3;
1339   case LangAS::opencl_generic:
1340     return 4; // Not in SPIR 2.0 specs.
1341   case LangAS::opencl_global_device:
1342     return 5;
1343   case LangAS::opencl_global_host:
1344     return 6;
1345   default:
1346     return 0; // Assume private.
1347   }
1348 }
1349 
1350 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1351                                          const FunctionDecl *FD,
1352                                          CodeGenFunction *CGF) {
1353   assert(((FD && CGF) || (!FD && !CGF)) &&
1354          "Incorrect use - FD and CGF should either be both null or not!");
1355   // Create MDNodes that represent the kernel arg metadata.
1356   // Each MDNode is a list in the form of "key", N number of values which is
1357   // the same number of values as their are kernel arguments.
1358 
1359   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1360 
1361   // MDNode for the kernel argument address space qualifiers.
1362   SmallVector<llvm::Metadata *, 8> addressQuals;
1363 
1364   // MDNode for the kernel argument access qualifiers (images only).
1365   SmallVector<llvm::Metadata *, 8> accessQuals;
1366 
1367   // MDNode for the kernel argument type names.
1368   SmallVector<llvm::Metadata *, 8> argTypeNames;
1369 
1370   // MDNode for the kernel argument base type names.
1371   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1372 
1373   // MDNode for the kernel argument type qualifiers.
1374   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1375 
1376   // MDNode for the kernel argument names.
1377   SmallVector<llvm::Metadata *, 8> argNames;
1378 
1379   if (FD && CGF)
1380     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1381       const ParmVarDecl *parm = FD->getParamDecl(i);
1382       QualType ty = parm->getType();
1383       std::string typeQuals;
1384 
1385       if (ty->isPointerType()) {
1386         QualType pointeeTy = ty->getPointeeType();
1387 
1388         // Get address qualifier.
1389         addressQuals.push_back(
1390             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1391                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1392 
1393         // Get argument type name.
1394         std::string typeName =
1395             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1396 
1397         // Turn "unsigned type" to "utype"
1398         std::string::size_type pos = typeName.find("unsigned");
1399         if (pointeeTy.isCanonical() && pos != std::string::npos)
1400           typeName.erase(pos + 1, 8);
1401 
1402         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1403 
1404         std::string baseTypeName =
1405             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1406                 Policy) +
1407             "*";
1408 
1409         // Turn "unsigned type" to "utype"
1410         pos = baseTypeName.find("unsigned");
1411         if (pos != std::string::npos)
1412           baseTypeName.erase(pos + 1, 8);
1413 
1414         argBaseTypeNames.push_back(
1415             llvm::MDString::get(VMContext, baseTypeName));
1416 
1417         // Get argument type qualifiers:
1418         if (ty.isRestrictQualified())
1419           typeQuals = "restrict";
1420         if (pointeeTy.isConstQualified() ||
1421             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1422           typeQuals += typeQuals.empty() ? "const" : " const";
1423         if (pointeeTy.isVolatileQualified())
1424           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1425       } else {
1426         uint32_t AddrSpc = 0;
1427         bool isPipe = ty->isPipeType();
1428         if (ty->isImageType() || isPipe)
1429           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1430 
1431         addressQuals.push_back(
1432             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1433 
1434         // Get argument type name.
1435         std::string typeName;
1436         if (isPipe)
1437           typeName = ty.getCanonicalType()
1438                          ->castAs<PipeType>()
1439                          ->getElementType()
1440                          .getAsString(Policy);
1441         else
1442           typeName = ty.getUnqualifiedType().getAsString(Policy);
1443 
1444         // Turn "unsigned type" to "utype"
1445         std::string::size_type pos = typeName.find("unsigned");
1446         if (ty.isCanonical() && pos != std::string::npos)
1447           typeName.erase(pos + 1, 8);
1448 
1449         std::string baseTypeName;
1450         if (isPipe)
1451           baseTypeName = ty.getCanonicalType()
1452                              ->castAs<PipeType>()
1453                              ->getElementType()
1454                              .getCanonicalType()
1455                              .getAsString(Policy);
1456         else
1457           baseTypeName =
1458               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1459 
1460         // Remove access qualifiers on images
1461         // (as they are inseparable from type in clang implementation,
1462         // but OpenCL spec provides a special query to get access qualifier
1463         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1464         if (ty->isImageType()) {
1465           removeImageAccessQualifier(typeName);
1466           removeImageAccessQualifier(baseTypeName);
1467         }
1468 
1469         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1470 
1471         // Turn "unsigned type" to "utype"
1472         pos = baseTypeName.find("unsigned");
1473         if (pos != std::string::npos)
1474           baseTypeName.erase(pos + 1, 8);
1475 
1476         argBaseTypeNames.push_back(
1477             llvm::MDString::get(VMContext, baseTypeName));
1478 
1479         if (isPipe)
1480           typeQuals = "pipe";
1481       }
1482 
1483       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1484 
1485       // Get image and pipe access qualifier:
1486       if (ty->isImageType() || ty->isPipeType()) {
1487         const Decl *PDecl = parm;
1488         if (auto *TD = dyn_cast<TypedefType>(ty))
1489           PDecl = TD->getDecl();
1490         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1491         if (A && A->isWriteOnly())
1492           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1493         else if (A && A->isReadWrite())
1494           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1495         else
1496           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1497       } else
1498         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1499 
1500       // Get argument name.
1501       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1502     }
1503 
1504   Fn->setMetadata("kernel_arg_addr_space",
1505                   llvm::MDNode::get(VMContext, addressQuals));
1506   Fn->setMetadata("kernel_arg_access_qual",
1507                   llvm::MDNode::get(VMContext, accessQuals));
1508   Fn->setMetadata("kernel_arg_type",
1509                   llvm::MDNode::get(VMContext, argTypeNames));
1510   Fn->setMetadata("kernel_arg_base_type",
1511                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1512   Fn->setMetadata("kernel_arg_type_qual",
1513                   llvm::MDNode::get(VMContext, argTypeQuals));
1514   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1515     Fn->setMetadata("kernel_arg_name",
1516                     llvm::MDNode::get(VMContext, argNames));
1517 }
1518 
1519 /// Determines whether the language options require us to model
1520 /// unwind exceptions.  We treat -fexceptions as mandating this
1521 /// except under the fragile ObjC ABI with only ObjC exceptions
1522 /// enabled.  This means, for example, that C with -fexceptions
1523 /// enables this.
1524 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1525   // If exceptions are completely disabled, obviously this is false.
1526   if (!LangOpts.Exceptions) return false;
1527 
1528   // If C++ exceptions are enabled, this is true.
1529   if (LangOpts.CXXExceptions) return true;
1530 
1531   // If ObjC exceptions are enabled, this depends on the ABI.
1532   if (LangOpts.ObjCExceptions) {
1533     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1534   }
1535 
1536   return true;
1537 }
1538 
1539 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1540                                                       const CXXMethodDecl *MD) {
1541   // Check that the type metadata can ever actually be used by a call.
1542   if (!CGM.getCodeGenOpts().LTOUnit ||
1543       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1544     return false;
1545 
1546   // Only functions whose address can be taken with a member function pointer
1547   // need this sort of type metadata.
1548   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1549          !isa<CXXDestructorDecl>(MD);
1550 }
1551 
1552 std::vector<const CXXRecordDecl *>
1553 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1554   llvm::SetVector<const CXXRecordDecl *> MostBases;
1555 
1556   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1557   CollectMostBases = [&](const CXXRecordDecl *RD) {
1558     if (RD->getNumBases() == 0)
1559       MostBases.insert(RD);
1560     for (const CXXBaseSpecifier &B : RD->bases())
1561       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1562   };
1563   CollectMostBases(RD);
1564   return MostBases.takeVector();
1565 }
1566 
1567 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1568                                                            llvm::Function *F) {
1569   llvm::AttrBuilder B;
1570 
1571   if (CodeGenOpts.UnwindTables)
1572     B.addAttribute(llvm::Attribute::UWTable);
1573 
1574   if (CodeGenOpts.StackClashProtector)
1575     B.addAttribute("probe-stack", "inline-asm");
1576 
1577   if (!hasUnwindExceptions(LangOpts))
1578     B.addAttribute(llvm::Attribute::NoUnwind);
1579 
1580   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1581     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1582       B.addAttribute(llvm::Attribute::StackProtect);
1583     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1584       B.addAttribute(llvm::Attribute::StackProtectStrong);
1585     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1586       B.addAttribute(llvm::Attribute::StackProtectReq);
1587   }
1588 
1589   if (!D) {
1590     // If we don't have a declaration to control inlining, the function isn't
1591     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1592     // disabled, mark the function as noinline.
1593     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1594         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1595       B.addAttribute(llvm::Attribute::NoInline);
1596 
1597     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1598     return;
1599   }
1600 
1601   // Track whether we need to add the optnone LLVM attribute,
1602   // starting with the default for this optimization level.
1603   bool ShouldAddOptNone =
1604       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1605   // We can't add optnone in the following cases, it won't pass the verifier.
1606   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1607   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1608 
1609   // Add optnone, but do so only if the function isn't always_inline.
1610   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1611       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1612     B.addAttribute(llvm::Attribute::OptimizeNone);
1613 
1614     // OptimizeNone implies noinline; we should not be inlining such functions.
1615     B.addAttribute(llvm::Attribute::NoInline);
1616 
1617     // We still need to handle naked functions even though optnone subsumes
1618     // much of their semantics.
1619     if (D->hasAttr<NakedAttr>())
1620       B.addAttribute(llvm::Attribute::Naked);
1621 
1622     // OptimizeNone wins over OptimizeForSize and MinSize.
1623     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1624     F->removeFnAttr(llvm::Attribute::MinSize);
1625   } else if (D->hasAttr<NakedAttr>()) {
1626     // Naked implies noinline: we should not be inlining such functions.
1627     B.addAttribute(llvm::Attribute::Naked);
1628     B.addAttribute(llvm::Attribute::NoInline);
1629   } else if (D->hasAttr<NoDuplicateAttr>()) {
1630     B.addAttribute(llvm::Attribute::NoDuplicate);
1631   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1632     // Add noinline if the function isn't always_inline.
1633     B.addAttribute(llvm::Attribute::NoInline);
1634   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1635              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1636     // (noinline wins over always_inline, and we can't specify both in IR)
1637     B.addAttribute(llvm::Attribute::AlwaysInline);
1638   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1639     // If we're not inlining, then force everything that isn't always_inline to
1640     // carry an explicit noinline attribute.
1641     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1642       B.addAttribute(llvm::Attribute::NoInline);
1643   } else {
1644     // Otherwise, propagate the inline hint attribute and potentially use its
1645     // absence to mark things as noinline.
1646     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1647       // Search function and template pattern redeclarations for inline.
1648       auto CheckForInline = [](const FunctionDecl *FD) {
1649         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1650           return Redecl->isInlineSpecified();
1651         };
1652         if (any_of(FD->redecls(), CheckRedeclForInline))
1653           return true;
1654         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1655         if (!Pattern)
1656           return false;
1657         return any_of(Pattern->redecls(), CheckRedeclForInline);
1658       };
1659       if (CheckForInline(FD)) {
1660         B.addAttribute(llvm::Attribute::InlineHint);
1661       } else if (CodeGenOpts.getInlining() ==
1662                      CodeGenOptions::OnlyHintInlining &&
1663                  !FD->isInlined() &&
1664                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1665         B.addAttribute(llvm::Attribute::NoInline);
1666       }
1667     }
1668   }
1669 
1670   // Add other optimization related attributes if we are optimizing this
1671   // function.
1672   if (!D->hasAttr<OptimizeNoneAttr>()) {
1673     if (D->hasAttr<ColdAttr>()) {
1674       if (!ShouldAddOptNone)
1675         B.addAttribute(llvm::Attribute::OptimizeForSize);
1676       B.addAttribute(llvm::Attribute::Cold);
1677     }
1678 
1679     if (D->hasAttr<MinSizeAttr>())
1680       B.addAttribute(llvm::Attribute::MinSize);
1681   }
1682 
1683   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1684 
1685   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1686   if (alignment)
1687     F->setAlignment(llvm::Align(alignment));
1688 
1689   if (!D->hasAttr<AlignedAttr>())
1690     if (LangOpts.FunctionAlignment)
1691       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1692 
1693   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1694   // reserve a bit for differentiating between virtual and non-virtual member
1695   // functions. If the current target's C++ ABI requires this and this is a
1696   // member function, set its alignment accordingly.
1697   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1698     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1699       F->setAlignment(llvm::Align(2));
1700   }
1701 
1702   // In the cross-dso CFI mode with canonical jump tables, we want !type
1703   // attributes on definitions only.
1704   if (CodeGenOpts.SanitizeCfiCrossDso &&
1705       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1706     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1707       // Skip available_externally functions. They won't be codegen'ed in the
1708       // current module anyway.
1709       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1710         CreateFunctionTypeMetadataForIcall(FD, F);
1711     }
1712   }
1713 
1714   // Emit type metadata on member functions for member function pointer checks.
1715   // These are only ever necessary on definitions; we're guaranteed that the
1716   // definition will be present in the LTO unit as a result of LTO visibility.
1717   auto *MD = dyn_cast<CXXMethodDecl>(D);
1718   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1719     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1720       llvm::Metadata *Id =
1721           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1722               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1723       F->addTypeMetadata(0, Id);
1724     }
1725   }
1726 }
1727 
1728 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1729   const Decl *D = GD.getDecl();
1730   if (dyn_cast_or_null<NamedDecl>(D))
1731     setGVProperties(GV, GD);
1732   else
1733     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1734 
1735   if (D && D->hasAttr<UsedAttr>())
1736     addUsedGlobal(GV);
1737 
1738   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1739     const auto *VD = cast<VarDecl>(D);
1740     if (VD->getType().isConstQualified() &&
1741         VD->getStorageDuration() == SD_Static)
1742       addUsedGlobal(GV);
1743   }
1744 }
1745 
1746 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1747                                                 llvm::AttrBuilder &Attrs) {
1748   // Add target-cpu and target-features attributes to functions. If
1749   // we have a decl for the function and it has a target attribute then
1750   // parse that and add it to the feature set.
1751   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1752   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1753   std::vector<std::string> Features;
1754   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1755   FD = FD ? FD->getMostRecentDecl() : FD;
1756   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1757   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1758   bool AddedAttr = false;
1759   if (TD || SD) {
1760     llvm::StringMap<bool> FeatureMap;
1761     getContext().getFunctionFeatureMap(FeatureMap, GD);
1762 
1763     // Produce the canonical string for this set of features.
1764     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1765       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1766 
1767     // Now add the target-cpu and target-features to the function.
1768     // While we populated the feature map above, we still need to
1769     // get and parse the target attribute so we can get the cpu for
1770     // the function.
1771     if (TD) {
1772       ParsedTargetAttr ParsedAttr = TD->parse();
1773       if (!ParsedAttr.Architecture.empty() &&
1774           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1775         TargetCPU = ParsedAttr.Architecture;
1776         TuneCPU = ""; // Clear the tune CPU.
1777       }
1778       if (!ParsedAttr.Tune.empty() &&
1779           getTarget().isValidCPUName(ParsedAttr.Tune))
1780         TuneCPU = ParsedAttr.Tune;
1781     }
1782   } else {
1783     // Otherwise just add the existing target cpu and target features to the
1784     // function.
1785     Features = getTarget().getTargetOpts().Features;
1786   }
1787 
1788   if (!TargetCPU.empty()) {
1789     Attrs.addAttribute("target-cpu", TargetCPU);
1790     AddedAttr = true;
1791   }
1792   if (!TuneCPU.empty()) {
1793     Attrs.addAttribute("tune-cpu", TuneCPU);
1794     AddedAttr = true;
1795   }
1796   if (!Features.empty()) {
1797     llvm::sort(Features);
1798     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1799     AddedAttr = true;
1800   }
1801 
1802   return AddedAttr;
1803 }
1804 
1805 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1806                                           llvm::GlobalObject *GO) {
1807   const Decl *D = GD.getDecl();
1808   SetCommonAttributes(GD, GO);
1809 
1810   if (D) {
1811     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1812       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1813         GV->addAttribute("bss-section", SA->getName());
1814       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1815         GV->addAttribute("data-section", SA->getName());
1816       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1817         GV->addAttribute("rodata-section", SA->getName());
1818       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1819         GV->addAttribute("relro-section", SA->getName());
1820     }
1821 
1822     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1823       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1824         if (!D->getAttr<SectionAttr>())
1825           F->addFnAttr("implicit-section-name", SA->getName());
1826 
1827       llvm::AttrBuilder Attrs;
1828       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1829         // We know that GetCPUAndFeaturesAttributes will always have the
1830         // newest set, since it has the newest possible FunctionDecl, so the
1831         // new ones should replace the old.
1832         llvm::AttrBuilder RemoveAttrs;
1833         RemoveAttrs.addAttribute("target-cpu");
1834         RemoveAttrs.addAttribute("target-features");
1835         RemoveAttrs.addAttribute("tune-cpu");
1836         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1837         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1838       }
1839     }
1840 
1841     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1842       GO->setSection(CSA->getName());
1843     else if (const auto *SA = D->getAttr<SectionAttr>())
1844       GO->setSection(SA->getName());
1845   }
1846 
1847   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1848 }
1849 
1850 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1851                                                   llvm::Function *F,
1852                                                   const CGFunctionInfo &FI) {
1853   const Decl *D = GD.getDecl();
1854   SetLLVMFunctionAttributes(GD, FI, F);
1855   SetLLVMFunctionAttributesForDefinition(D, F);
1856 
1857   F->setLinkage(llvm::Function::InternalLinkage);
1858 
1859   setNonAliasAttributes(GD, F);
1860 }
1861 
1862 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1863   // Set linkage and visibility in case we never see a definition.
1864   LinkageInfo LV = ND->getLinkageAndVisibility();
1865   // Don't set internal linkage on declarations.
1866   // "extern_weak" is overloaded in LLVM; we probably should have
1867   // separate linkage types for this.
1868   if (isExternallyVisible(LV.getLinkage()) &&
1869       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1870     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1871 }
1872 
1873 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1874                                                        llvm::Function *F) {
1875   // Only if we are checking indirect calls.
1876   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1877     return;
1878 
1879   // Non-static class methods are handled via vtable or member function pointer
1880   // checks elsewhere.
1881   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1882     return;
1883 
1884   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1885   F->addTypeMetadata(0, MD);
1886   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1887 
1888   // Emit a hash-based bit set entry for cross-DSO calls.
1889   if (CodeGenOpts.SanitizeCfiCrossDso)
1890     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1891       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1892 }
1893 
1894 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1895                                           bool IsIncompleteFunction,
1896                                           bool IsThunk) {
1897 
1898   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1899     // If this is an intrinsic function, set the function's attributes
1900     // to the intrinsic's attributes.
1901     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1902     return;
1903   }
1904 
1905   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1906 
1907   if (!IsIncompleteFunction)
1908     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1909 
1910   // Add the Returned attribute for "this", except for iOS 5 and earlier
1911   // where substantial code, including the libstdc++ dylib, was compiled with
1912   // GCC and does not actually return "this".
1913   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1914       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1915     assert(!F->arg_empty() &&
1916            F->arg_begin()->getType()
1917              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1918            "unexpected this return");
1919     F->addAttribute(1, llvm::Attribute::Returned);
1920   }
1921 
1922   // Only a few attributes are set on declarations; these may later be
1923   // overridden by a definition.
1924 
1925   setLinkageForGV(F, FD);
1926   setGVProperties(F, FD);
1927 
1928   // Setup target-specific attributes.
1929   if (!IsIncompleteFunction && F->isDeclaration())
1930     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1931 
1932   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1933     F->setSection(CSA->getName());
1934   else if (const auto *SA = FD->getAttr<SectionAttr>())
1935      F->setSection(SA->getName());
1936 
1937   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1938   if (FD->isInlineBuiltinDeclaration()) {
1939     const FunctionDecl *FDBody;
1940     bool HasBody = FD->hasBody(FDBody);
1941     (void)HasBody;
1942     assert(HasBody && "Inline builtin declarations should always have an "
1943                       "available body!");
1944     if (shouldEmitFunction(FDBody))
1945       F->addAttribute(llvm::AttributeList::FunctionIndex,
1946                       llvm::Attribute::NoBuiltin);
1947   }
1948 
1949   if (FD->isReplaceableGlobalAllocationFunction()) {
1950     // A replaceable global allocation function does not act like a builtin by
1951     // default, only if it is invoked by a new-expression or delete-expression.
1952     F->addAttribute(llvm::AttributeList::FunctionIndex,
1953                     llvm::Attribute::NoBuiltin);
1954   }
1955 
1956   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1957     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1958   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1959     if (MD->isVirtual())
1960       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1961 
1962   // Don't emit entries for function declarations in the cross-DSO mode. This
1963   // is handled with better precision by the receiving DSO. But if jump tables
1964   // are non-canonical then we need type metadata in order to produce the local
1965   // jump table.
1966   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1967       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1968     CreateFunctionTypeMetadataForIcall(FD, F);
1969 
1970   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1971     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1972 
1973   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1974     // Annotate the callback behavior as metadata:
1975     //  - The callback callee (as argument number).
1976     //  - The callback payloads (as argument numbers).
1977     llvm::LLVMContext &Ctx = F->getContext();
1978     llvm::MDBuilder MDB(Ctx);
1979 
1980     // The payload indices are all but the first one in the encoding. The first
1981     // identifies the callback callee.
1982     int CalleeIdx = *CB->encoding_begin();
1983     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1984     F->addMetadata(llvm::LLVMContext::MD_callback,
1985                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1986                                                CalleeIdx, PayloadIndices,
1987                                                /* VarArgsArePassed */ false)}));
1988   }
1989 }
1990 
1991 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1992   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
1993          "Only globals with definition can force usage.");
1994   LLVMUsed.emplace_back(GV);
1995 }
1996 
1997 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1998   assert(!GV->isDeclaration() &&
1999          "Only globals with definition can force usage.");
2000   LLVMCompilerUsed.emplace_back(GV);
2001 }
2002 
2003 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2004                      std::vector<llvm::WeakTrackingVH> &List) {
2005   // Don't create llvm.used if there is no need.
2006   if (List.empty())
2007     return;
2008 
2009   // Convert List to what ConstantArray needs.
2010   SmallVector<llvm::Constant*, 8> UsedArray;
2011   UsedArray.resize(List.size());
2012   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2013     UsedArray[i] =
2014         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2015             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2016   }
2017 
2018   if (UsedArray.empty())
2019     return;
2020   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2021 
2022   auto *GV = new llvm::GlobalVariable(
2023       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2024       llvm::ConstantArray::get(ATy, UsedArray), Name);
2025 
2026   GV->setSection("llvm.metadata");
2027 }
2028 
2029 void CodeGenModule::emitLLVMUsed() {
2030   emitUsed(*this, "llvm.used", LLVMUsed);
2031   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2032 }
2033 
2034 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2035   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2036   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2037 }
2038 
2039 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2040   llvm::SmallString<32> Opt;
2041   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2042   if (Opt.empty())
2043     return;
2044   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2045   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2046 }
2047 
2048 void CodeGenModule::AddDependentLib(StringRef Lib) {
2049   auto &C = getLLVMContext();
2050   if (getTarget().getTriple().isOSBinFormatELF()) {
2051       ELFDependentLibraries.push_back(
2052         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2053     return;
2054   }
2055 
2056   llvm::SmallString<24> Opt;
2057   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2058   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2059   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2060 }
2061 
2062 /// Add link options implied by the given module, including modules
2063 /// it depends on, using a postorder walk.
2064 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2065                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2066                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2067   // Import this module's parent.
2068   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2069     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2070   }
2071 
2072   // Import this module's dependencies.
2073   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2074     if (Visited.insert(Mod->Imports[I - 1]).second)
2075       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2076   }
2077 
2078   // Add linker options to link against the libraries/frameworks
2079   // described by this module.
2080   llvm::LLVMContext &Context = CGM.getLLVMContext();
2081   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2082 
2083   // For modules that use export_as for linking, use that module
2084   // name instead.
2085   if (Mod->UseExportAsModuleLinkName)
2086     return;
2087 
2088   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2089     // Link against a framework.  Frameworks are currently Darwin only, so we
2090     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2091     if (Mod->LinkLibraries[I-1].IsFramework) {
2092       llvm::Metadata *Args[2] = {
2093           llvm::MDString::get(Context, "-framework"),
2094           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2095 
2096       Metadata.push_back(llvm::MDNode::get(Context, Args));
2097       continue;
2098     }
2099 
2100     // Link against a library.
2101     if (IsELF) {
2102       llvm::Metadata *Args[2] = {
2103           llvm::MDString::get(Context, "lib"),
2104           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2105       };
2106       Metadata.push_back(llvm::MDNode::get(Context, Args));
2107     } else {
2108       llvm::SmallString<24> Opt;
2109       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2110           Mod->LinkLibraries[I - 1].Library, Opt);
2111       auto *OptString = llvm::MDString::get(Context, Opt);
2112       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2113     }
2114   }
2115 }
2116 
2117 void CodeGenModule::EmitModuleLinkOptions() {
2118   // Collect the set of all of the modules we want to visit to emit link
2119   // options, which is essentially the imported modules and all of their
2120   // non-explicit child modules.
2121   llvm::SetVector<clang::Module *> LinkModules;
2122   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2123   SmallVector<clang::Module *, 16> Stack;
2124 
2125   // Seed the stack with imported modules.
2126   for (Module *M : ImportedModules) {
2127     // Do not add any link flags when an implementation TU of a module imports
2128     // a header of that same module.
2129     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2130         !getLangOpts().isCompilingModule())
2131       continue;
2132     if (Visited.insert(M).second)
2133       Stack.push_back(M);
2134   }
2135 
2136   // Find all of the modules to import, making a little effort to prune
2137   // non-leaf modules.
2138   while (!Stack.empty()) {
2139     clang::Module *Mod = Stack.pop_back_val();
2140 
2141     bool AnyChildren = false;
2142 
2143     // Visit the submodules of this module.
2144     for (const auto &SM : Mod->submodules()) {
2145       // Skip explicit children; they need to be explicitly imported to be
2146       // linked against.
2147       if (SM->IsExplicit)
2148         continue;
2149 
2150       if (Visited.insert(SM).second) {
2151         Stack.push_back(SM);
2152         AnyChildren = true;
2153       }
2154     }
2155 
2156     // We didn't find any children, so add this module to the list of
2157     // modules to link against.
2158     if (!AnyChildren) {
2159       LinkModules.insert(Mod);
2160     }
2161   }
2162 
2163   // Add link options for all of the imported modules in reverse topological
2164   // order.  We don't do anything to try to order import link flags with respect
2165   // to linker options inserted by things like #pragma comment().
2166   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2167   Visited.clear();
2168   for (Module *M : LinkModules)
2169     if (Visited.insert(M).second)
2170       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2171   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2172   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2173 
2174   // Add the linker options metadata flag.
2175   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2176   for (auto *MD : LinkerOptionsMetadata)
2177     NMD->addOperand(MD);
2178 }
2179 
2180 void CodeGenModule::EmitDeferred() {
2181   // Emit deferred declare target declarations.
2182   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2183     getOpenMPRuntime().emitDeferredTargetDecls();
2184 
2185   // Emit code for any potentially referenced deferred decls.  Since a
2186   // previously unused static decl may become used during the generation of code
2187   // for a static function, iterate until no changes are made.
2188 
2189   if (!DeferredVTables.empty()) {
2190     EmitDeferredVTables();
2191 
2192     // Emitting a vtable doesn't directly cause more vtables to
2193     // become deferred, although it can cause functions to be
2194     // emitted that then need those vtables.
2195     assert(DeferredVTables.empty());
2196   }
2197 
2198   // Emit CUDA/HIP static device variables referenced by host code only.
2199   if (getLangOpts().CUDA)
2200     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2201       DeferredDeclsToEmit.push_back(V);
2202 
2203   // Stop if we're out of both deferred vtables and deferred declarations.
2204   if (DeferredDeclsToEmit.empty())
2205     return;
2206 
2207   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2208   // work, it will not interfere with this.
2209   std::vector<GlobalDecl> CurDeclsToEmit;
2210   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2211 
2212   for (GlobalDecl &D : CurDeclsToEmit) {
2213     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2214     // to get GlobalValue with exactly the type we need, not something that
2215     // might had been created for another decl with the same mangled name but
2216     // different type.
2217     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2218         GetAddrOfGlobal(D, ForDefinition));
2219 
2220     // In case of different address spaces, we may still get a cast, even with
2221     // IsForDefinition equal to true. Query mangled names table to get
2222     // GlobalValue.
2223     if (!GV)
2224       GV = GetGlobalValue(getMangledName(D));
2225 
2226     // Make sure GetGlobalValue returned non-null.
2227     assert(GV);
2228 
2229     // Check to see if we've already emitted this.  This is necessary
2230     // for a couple of reasons: first, decls can end up in the
2231     // deferred-decls queue multiple times, and second, decls can end
2232     // up with definitions in unusual ways (e.g. by an extern inline
2233     // function acquiring a strong function redefinition).  Just
2234     // ignore these cases.
2235     if (!GV->isDeclaration())
2236       continue;
2237 
2238     // If this is OpenMP, check if it is legal to emit this global normally.
2239     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2240       continue;
2241 
2242     // Otherwise, emit the definition and move on to the next one.
2243     EmitGlobalDefinition(D, GV);
2244 
2245     // If we found out that we need to emit more decls, do that recursively.
2246     // This has the advantage that the decls are emitted in a DFS and related
2247     // ones are close together, which is convenient for testing.
2248     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2249       EmitDeferred();
2250       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2251     }
2252   }
2253 }
2254 
2255 void CodeGenModule::EmitVTablesOpportunistically() {
2256   // Try to emit external vtables as available_externally if they have emitted
2257   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2258   // is not allowed to create new references to things that need to be emitted
2259   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2260 
2261   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2262          && "Only emit opportunistic vtables with optimizations");
2263 
2264   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2265     assert(getVTables().isVTableExternal(RD) &&
2266            "This queue should only contain external vtables");
2267     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2268       VTables.GenerateClassData(RD);
2269   }
2270   OpportunisticVTables.clear();
2271 }
2272 
2273 void CodeGenModule::EmitGlobalAnnotations() {
2274   if (Annotations.empty())
2275     return;
2276 
2277   // Create a new global variable for the ConstantStruct in the Module.
2278   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2279     Annotations[0]->getType(), Annotations.size()), Annotations);
2280   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2281                                       llvm::GlobalValue::AppendingLinkage,
2282                                       Array, "llvm.global.annotations");
2283   gv->setSection(AnnotationSection);
2284 }
2285 
2286 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2287   llvm::Constant *&AStr = AnnotationStrings[Str];
2288   if (AStr)
2289     return AStr;
2290 
2291   // Not found yet, create a new global.
2292   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2293   auto *gv =
2294       new llvm::GlobalVariable(getModule(), s->getType(), true,
2295                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2296   gv->setSection(AnnotationSection);
2297   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2298   AStr = gv;
2299   return gv;
2300 }
2301 
2302 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2303   SourceManager &SM = getContext().getSourceManager();
2304   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2305   if (PLoc.isValid())
2306     return EmitAnnotationString(PLoc.getFilename());
2307   return EmitAnnotationString(SM.getBufferName(Loc));
2308 }
2309 
2310 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2311   SourceManager &SM = getContext().getSourceManager();
2312   PresumedLoc PLoc = SM.getPresumedLoc(L);
2313   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2314     SM.getExpansionLineNumber(L);
2315   return llvm::ConstantInt::get(Int32Ty, LineNo);
2316 }
2317 
2318 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2319                                                 const AnnotateAttr *AA,
2320                                                 SourceLocation L) {
2321   // Get the globals for file name, annotation, and the line number.
2322   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2323                  *UnitGV = EmitAnnotationUnit(L),
2324                  *LineNoCst = EmitAnnotationLineNo(L);
2325 
2326   llvm::Constant *ASZeroGV = GV;
2327   if (GV->getAddressSpace() != 0) {
2328     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2329                    GV, GV->getValueType()->getPointerTo(0));
2330   }
2331 
2332   // Create the ConstantStruct for the global annotation.
2333   llvm::Constant *Fields[4] = {
2334     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2335     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2336     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2337     LineNoCst
2338   };
2339   return llvm::ConstantStruct::getAnon(Fields);
2340 }
2341 
2342 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2343                                          llvm::GlobalValue *GV) {
2344   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2345   // Get the struct elements for these annotations.
2346   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2347     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2348 }
2349 
2350 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2351                                            llvm::Function *Fn,
2352                                            SourceLocation Loc) const {
2353   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2354   // Blacklist by function name.
2355   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2356     return true;
2357   // Blacklist by location.
2358   if (Loc.isValid())
2359     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2360   // If location is unknown, this may be a compiler-generated function. Assume
2361   // it's located in the main file.
2362   auto &SM = Context.getSourceManager();
2363   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2364     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2365   }
2366   return false;
2367 }
2368 
2369 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2370                                            SourceLocation Loc, QualType Ty,
2371                                            StringRef Category) const {
2372   // For now globals can be blacklisted only in ASan and KASan.
2373   const SanitizerMask EnabledAsanMask =
2374       LangOpts.Sanitize.Mask &
2375       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2376        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2377        SanitizerKind::MemTag);
2378   if (!EnabledAsanMask)
2379     return false;
2380   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2381   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2382     return true;
2383   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2384     return true;
2385   // Check global type.
2386   if (!Ty.isNull()) {
2387     // Drill down the array types: if global variable of a fixed type is
2388     // blacklisted, we also don't instrument arrays of them.
2389     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2390       Ty = AT->getElementType();
2391     Ty = Ty.getCanonicalType().getUnqualifiedType();
2392     // We allow to blacklist only record types (classes, structs etc.)
2393     if (Ty->isRecordType()) {
2394       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2395       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2396         return true;
2397     }
2398   }
2399   return false;
2400 }
2401 
2402 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2403                                    StringRef Category) const {
2404   const auto &XRayFilter = getContext().getXRayFilter();
2405   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2406   auto Attr = ImbueAttr::NONE;
2407   if (Loc.isValid())
2408     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2409   if (Attr == ImbueAttr::NONE)
2410     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2411   switch (Attr) {
2412   case ImbueAttr::NONE:
2413     return false;
2414   case ImbueAttr::ALWAYS:
2415     Fn->addFnAttr("function-instrument", "xray-always");
2416     break;
2417   case ImbueAttr::ALWAYS_ARG1:
2418     Fn->addFnAttr("function-instrument", "xray-always");
2419     Fn->addFnAttr("xray-log-args", "1");
2420     break;
2421   case ImbueAttr::NEVER:
2422     Fn->addFnAttr("function-instrument", "xray-never");
2423     break;
2424   }
2425   return true;
2426 }
2427 
2428 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2429   // Never defer when EmitAllDecls is specified.
2430   if (LangOpts.EmitAllDecls)
2431     return true;
2432 
2433   if (CodeGenOpts.KeepStaticConsts) {
2434     const auto *VD = dyn_cast<VarDecl>(Global);
2435     if (VD && VD->getType().isConstQualified() &&
2436         VD->getStorageDuration() == SD_Static)
2437       return true;
2438   }
2439 
2440   return getContext().DeclMustBeEmitted(Global);
2441 }
2442 
2443 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2444   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2445     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2446       // Implicit template instantiations may change linkage if they are later
2447       // explicitly instantiated, so they should not be emitted eagerly.
2448       return false;
2449     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2450     // not emit them eagerly unless we sure that the function must be emitted on
2451     // the host.
2452     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2453         !LangOpts.OpenMPIsDevice &&
2454         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2455         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2456       return false;
2457   }
2458   if (const auto *VD = dyn_cast<VarDecl>(Global))
2459     if (Context.getInlineVariableDefinitionKind(VD) ==
2460         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2461       // A definition of an inline constexpr static data member may change
2462       // linkage later if it's redeclared outside the class.
2463       return false;
2464   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2465   // codegen for global variables, because they may be marked as threadprivate.
2466   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2467       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2468       !isTypeConstant(Global->getType(), false) &&
2469       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2470     return false;
2471 
2472   return true;
2473 }
2474 
2475 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2476   StringRef Name = getMangledName(GD);
2477 
2478   // The UUID descriptor should be pointer aligned.
2479   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2480 
2481   // Look for an existing global.
2482   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2483     return ConstantAddress(GV, Alignment);
2484 
2485   ConstantEmitter Emitter(*this);
2486   llvm::Constant *Init;
2487 
2488   APValue &V = GD->getAsAPValue();
2489   if (!V.isAbsent()) {
2490     // If possible, emit the APValue version of the initializer. In particular,
2491     // this gets the type of the constant right.
2492     Init = Emitter.emitForInitializer(
2493         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2494   } else {
2495     // As a fallback, directly construct the constant.
2496     // FIXME: This may get padding wrong under esoteric struct layout rules.
2497     // MSVC appears to create a complete type 'struct __s_GUID' that it
2498     // presumably uses to represent these constants.
2499     MSGuidDecl::Parts Parts = GD->getParts();
2500     llvm::Constant *Fields[4] = {
2501         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2502         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2503         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2504         llvm::ConstantDataArray::getRaw(
2505             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2506             Int8Ty)};
2507     Init = llvm::ConstantStruct::getAnon(Fields);
2508   }
2509 
2510   auto *GV = new llvm::GlobalVariable(
2511       getModule(), Init->getType(),
2512       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2513   if (supportsCOMDAT())
2514     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2515   setDSOLocal(GV);
2516 
2517   llvm::Constant *Addr = GV;
2518   if (!V.isAbsent()) {
2519     Emitter.finalize(GV);
2520   } else {
2521     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2522     Addr = llvm::ConstantExpr::getBitCast(
2523         GV, Ty->getPointerTo(GV->getAddressSpace()));
2524   }
2525   return ConstantAddress(Addr, Alignment);
2526 }
2527 
2528 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2529   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2530   assert(AA && "No alias?");
2531 
2532   CharUnits Alignment = getContext().getDeclAlign(VD);
2533   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2534 
2535   // See if there is already something with the target's name in the module.
2536   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2537   if (Entry) {
2538     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2539     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2540     return ConstantAddress(Ptr, Alignment);
2541   }
2542 
2543   llvm::Constant *Aliasee;
2544   if (isa<llvm::FunctionType>(DeclTy))
2545     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2546                                       GlobalDecl(cast<FunctionDecl>(VD)),
2547                                       /*ForVTable=*/false);
2548   else
2549     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2550                                     llvm::PointerType::getUnqual(DeclTy),
2551                                     nullptr);
2552 
2553   auto *F = cast<llvm::GlobalValue>(Aliasee);
2554   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2555   WeakRefReferences.insert(F);
2556 
2557   return ConstantAddress(Aliasee, Alignment);
2558 }
2559 
2560 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2561   const auto *Global = cast<ValueDecl>(GD.getDecl());
2562 
2563   // Weak references don't produce any output by themselves.
2564   if (Global->hasAttr<WeakRefAttr>())
2565     return;
2566 
2567   // If this is an alias definition (which otherwise looks like a declaration)
2568   // emit it now.
2569   if (Global->hasAttr<AliasAttr>())
2570     return EmitAliasDefinition(GD);
2571 
2572   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2573   if (Global->hasAttr<IFuncAttr>())
2574     return emitIFuncDefinition(GD);
2575 
2576   // If this is a cpu_dispatch multiversion function, emit the resolver.
2577   if (Global->hasAttr<CPUDispatchAttr>())
2578     return emitCPUDispatchDefinition(GD);
2579 
2580   // If this is CUDA, be selective about which declarations we emit.
2581   if (LangOpts.CUDA) {
2582     if (LangOpts.CUDAIsDevice) {
2583       if (!Global->hasAttr<CUDADeviceAttr>() &&
2584           !Global->hasAttr<CUDAGlobalAttr>() &&
2585           !Global->hasAttr<CUDAConstantAttr>() &&
2586           !Global->hasAttr<CUDASharedAttr>() &&
2587           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2588           !Global->getType()->isCUDADeviceBuiltinTextureType())
2589         return;
2590     } else {
2591       // We need to emit host-side 'shadows' for all global
2592       // device-side variables because the CUDA runtime needs their
2593       // size and host-side address in order to provide access to
2594       // their device-side incarnations.
2595 
2596       // So device-only functions are the only things we skip.
2597       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2598           Global->hasAttr<CUDADeviceAttr>())
2599         return;
2600 
2601       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2602              "Expected Variable or Function");
2603     }
2604   }
2605 
2606   if (LangOpts.OpenMP) {
2607     // If this is OpenMP, check if it is legal to emit this global normally.
2608     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2609       return;
2610     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2611       if (MustBeEmitted(Global))
2612         EmitOMPDeclareReduction(DRD);
2613       return;
2614     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2615       if (MustBeEmitted(Global))
2616         EmitOMPDeclareMapper(DMD);
2617       return;
2618     }
2619   }
2620 
2621   // Ignore declarations, they will be emitted on their first use.
2622   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2623     // Forward declarations are emitted lazily on first use.
2624     if (!FD->doesThisDeclarationHaveABody()) {
2625       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2626         return;
2627 
2628       StringRef MangledName = getMangledName(GD);
2629 
2630       // Compute the function info and LLVM type.
2631       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2632       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2633 
2634       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2635                               /*DontDefer=*/false);
2636       return;
2637     }
2638   } else {
2639     const auto *VD = cast<VarDecl>(Global);
2640     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2641     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2642         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2643       if (LangOpts.OpenMP) {
2644         // Emit declaration of the must-be-emitted declare target variable.
2645         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2646                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2647           bool UnifiedMemoryEnabled =
2648               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2649           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2650               !UnifiedMemoryEnabled) {
2651             (void)GetAddrOfGlobalVar(VD);
2652           } else {
2653             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2654                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2655                      UnifiedMemoryEnabled)) &&
2656                    "Link clause or to clause with unified memory expected.");
2657             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2658           }
2659 
2660           return;
2661         }
2662       }
2663       // If this declaration may have caused an inline variable definition to
2664       // change linkage, make sure that it's emitted.
2665       if (Context.getInlineVariableDefinitionKind(VD) ==
2666           ASTContext::InlineVariableDefinitionKind::Strong)
2667         GetAddrOfGlobalVar(VD);
2668       return;
2669     }
2670   }
2671 
2672   // Defer code generation to first use when possible, e.g. if this is an inline
2673   // function. If the global must always be emitted, do it eagerly if possible
2674   // to benefit from cache locality.
2675   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2676     // Emit the definition if it can't be deferred.
2677     EmitGlobalDefinition(GD);
2678     return;
2679   }
2680 
2681   // If we're deferring emission of a C++ variable with an
2682   // initializer, remember the order in which it appeared in the file.
2683   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2684       cast<VarDecl>(Global)->hasInit()) {
2685     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2686     CXXGlobalInits.push_back(nullptr);
2687   }
2688 
2689   StringRef MangledName = getMangledName(GD);
2690   if (GetGlobalValue(MangledName) != nullptr) {
2691     // The value has already been used and should therefore be emitted.
2692     addDeferredDeclToEmit(GD);
2693   } else if (MustBeEmitted(Global)) {
2694     // The value must be emitted, but cannot be emitted eagerly.
2695     assert(!MayBeEmittedEagerly(Global));
2696     addDeferredDeclToEmit(GD);
2697   } else {
2698     // Otherwise, remember that we saw a deferred decl with this name.  The
2699     // first use of the mangled name will cause it to move into
2700     // DeferredDeclsToEmit.
2701     DeferredDecls[MangledName] = GD;
2702   }
2703 }
2704 
2705 // Check if T is a class type with a destructor that's not dllimport.
2706 static bool HasNonDllImportDtor(QualType T) {
2707   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2708     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2709       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2710         return true;
2711 
2712   return false;
2713 }
2714 
2715 namespace {
2716   struct FunctionIsDirectlyRecursive
2717       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2718     const StringRef Name;
2719     const Builtin::Context &BI;
2720     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2721         : Name(N), BI(C) {}
2722 
2723     bool VisitCallExpr(const CallExpr *E) {
2724       const FunctionDecl *FD = E->getDirectCallee();
2725       if (!FD)
2726         return false;
2727       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2728       if (Attr && Name == Attr->getLabel())
2729         return true;
2730       unsigned BuiltinID = FD->getBuiltinID();
2731       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2732         return false;
2733       StringRef BuiltinName = BI.getName(BuiltinID);
2734       if (BuiltinName.startswith("__builtin_") &&
2735           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2736         return true;
2737       }
2738       return false;
2739     }
2740 
2741     bool VisitStmt(const Stmt *S) {
2742       for (const Stmt *Child : S->children())
2743         if (Child && this->Visit(Child))
2744           return true;
2745       return false;
2746     }
2747   };
2748 
2749   // Make sure we're not referencing non-imported vars or functions.
2750   struct DLLImportFunctionVisitor
2751       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2752     bool SafeToInline = true;
2753 
2754     bool shouldVisitImplicitCode() const { return true; }
2755 
2756     bool VisitVarDecl(VarDecl *VD) {
2757       if (VD->getTLSKind()) {
2758         // A thread-local variable cannot be imported.
2759         SafeToInline = false;
2760         return SafeToInline;
2761       }
2762 
2763       // A variable definition might imply a destructor call.
2764       if (VD->isThisDeclarationADefinition())
2765         SafeToInline = !HasNonDllImportDtor(VD->getType());
2766 
2767       return SafeToInline;
2768     }
2769 
2770     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2771       if (const auto *D = E->getTemporary()->getDestructor())
2772         SafeToInline = D->hasAttr<DLLImportAttr>();
2773       return SafeToInline;
2774     }
2775 
2776     bool VisitDeclRefExpr(DeclRefExpr *E) {
2777       ValueDecl *VD = E->getDecl();
2778       if (isa<FunctionDecl>(VD))
2779         SafeToInline = VD->hasAttr<DLLImportAttr>();
2780       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2781         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2782       return SafeToInline;
2783     }
2784 
2785     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2786       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2787       return SafeToInline;
2788     }
2789 
2790     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2791       CXXMethodDecl *M = E->getMethodDecl();
2792       if (!M) {
2793         // Call through a pointer to member function. This is safe to inline.
2794         SafeToInline = true;
2795       } else {
2796         SafeToInline = M->hasAttr<DLLImportAttr>();
2797       }
2798       return SafeToInline;
2799     }
2800 
2801     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2802       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2803       return SafeToInline;
2804     }
2805 
2806     bool VisitCXXNewExpr(CXXNewExpr *E) {
2807       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2808       return SafeToInline;
2809     }
2810   };
2811 }
2812 
2813 // isTriviallyRecursive - Check if this function calls another
2814 // decl that, because of the asm attribute or the other decl being a builtin,
2815 // ends up pointing to itself.
2816 bool
2817 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2818   StringRef Name;
2819   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2820     // asm labels are a special kind of mangling we have to support.
2821     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2822     if (!Attr)
2823       return false;
2824     Name = Attr->getLabel();
2825   } else {
2826     Name = FD->getName();
2827   }
2828 
2829   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2830   const Stmt *Body = FD->getBody();
2831   return Body ? Walker.Visit(Body) : false;
2832 }
2833 
2834 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2835   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2836     return true;
2837   const auto *F = cast<FunctionDecl>(GD.getDecl());
2838   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2839     return false;
2840 
2841   if (F->hasAttr<DLLImportAttr>()) {
2842     // Check whether it would be safe to inline this dllimport function.
2843     DLLImportFunctionVisitor Visitor;
2844     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2845     if (!Visitor.SafeToInline)
2846       return false;
2847 
2848     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2849       // Implicit destructor invocations aren't captured in the AST, so the
2850       // check above can't see them. Check for them manually here.
2851       for (const Decl *Member : Dtor->getParent()->decls())
2852         if (isa<FieldDecl>(Member))
2853           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2854             return false;
2855       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2856         if (HasNonDllImportDtor(B.getType()))
2857           return false;
2858     }
2859   }
2860 
2861   // PR9614. Avoid cases where the source code is lying to us. An available
2862   // externally function should have an equivalent function somewhere else,
2863   // but a function that calls itself through asm label/`__builtin_` trickery is
2864   // clearly not equivalent to the real implementation.
2865   // This happens in glibc's btowc and in some configure checks.
2866   return !isTriviallyRecursive(F);
2867 }
2868 
2869 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2870   return CodeGenOpts.OptimizationLevel > 0;
2871 }
2872 
2873 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2874                                                        llvm::GlobalValue *GV) {
2875   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2876 
2877   if (FD->isCPUSpecificMultiVersion()) {
2878     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2879     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2880       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2881     // Requires multiple emits.
2882   } else
2883     EmitGlobalFunctionDefinition(GD, GV);
2884 }
2885 
2886 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2887   const auto *D = cast<ValueDecl>(GD.getDecl());
2888 
2889   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2890                                  Context.getSourceManager(),
2891                                  "Generating code for declaration");
2892 
2893   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2894     // At -O0, don't generate IR for functions with available_externally
2895     // linkage.
2896     if (!shouldEmitFunction(GD))
2897       return;
2898 
2899     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2900       std::string Name;
2901       llvm::raw_string_ostream OS(Name);
2902       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2903                                /*Qualified=*/true);
2904       return Name;
2905     });
2906 
2907     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2908       // Make sure to emit the definition(s) before we emit the thunks.
2909       // This is necessary for the generation of certain thunks.
2910       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2911         ABI->emitCXXStructor(GD);
2912       else if (FD->isMultiVersion())
2913         EmitMultiVersionFunctionDefinition(GD, GV);
2914       else
2915         EmitGlobalFunctionDefinition(GD, GV);
2916 
2917       if (Method->isVirtual())
2918         getVTables().EmitThunks(GD);
2919 
2920       return;
2921     }
2922 
2923     if (FD->isMultiVersion())
2924       return EmitMultiVersionFunctionDefinition(GD, GV);
2925     return EmitGlobalFunctionDefinition(GD, GV);
2926   }
2927 
2928   if (const auto *VD = dyn_cast<VarDecl>(D))
2929     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2930 
2931   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2932 }
2933 
2934 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2935                                                       llvm::Function *NewFn);
2936 
2937 static unsigned
2938 TargetMVPriority(const TargetInfo &TI,
2939                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2940   unsigned Priority = 0;
2941   for (StringRef Feat : RO.Conditions.Features)
2942     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2943 
2944   if (!RO.Conditions.Architecture.empty())
2945     Priority = std::max(
2946         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2947   return Priority;
2948 }
2949 
2950 void CodeGenModule::emitMultiVersionFunctions() {
2951   for (GlobalDecl GD : MultiVersionFuncs) {
2952     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2953     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2954     getContext().forEachMultiversionedFunctionVersion(
2955         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2956           GlobalDecl CurGD{
2957               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2958           StringRef MangledName = getMangledName(CurGD);
2959           llvm::Constant *Func = GetGlobalValue(MangledName);
2960           if (!Func) {
2961             if (CurFD->isDefined()) {
2962               EmitGlobalFunctionDefinition(CurGD, nullptr);
2963               Func = GetGlobalValue(MangledName);
2964             } else {
2965               const CGFunctionInfo &FI =
2966                   getTypes().arrangeGlobalDeclaration(GD);
2967               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2968               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2969                                        /*DontDefer=*/false, ForDefinition);
2970             }
2971             assert(Func && "This should have just been created");
2972           }
2973 
2974           const auto *TA = CurFD->getAttr<TargetAttr>();
2975           llvm::SmallVector<StringRef, 8> Feats;
2976           TA->getAddedFeatures(Feats);
2977 
2978           Options.emplace_back(cast<llvm::Function>(Func),
2979                                TA->getArchitecture(), Feats);
2980         });
2981 
2982     llvm::Function *ResolverFunc;
2983     const TargetInfo &TI = getTarget();
2984 
2985     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2986       ResolverFunc = cast<llvm::Function>(
2987           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2988       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2989     } else {
2990       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2991     }
2992 
2993     if (supportsCOMDAT())
2994       ResolverFunc->setComdat(
2995           getModule().getOrInsertComdat(ResolverFunc->getName()));
2996 
2997     llvm::stable_sort(
2998         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2999                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3000           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3001         });
3002     CodeGenFunction CGF(*this);
3003     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3004   }
3005 }
3006 
3007 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3008   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3009   assert(FD && "Not a FunctionDecl?");
3010   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3011   assert(DD && "Not a cpu_dispatch Function?");
3012   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3013 
3014   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3015     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3016     DeclTy = getTypes().GetFunctionType(FInfo);
3017   }
3018 
3019   StringRef ResolverName = getMangledName(GD);
3020 
3021   llvm::Type *ResolverType;
3022   GlobalDecl ResolverGD;
3023   if (getTarget().supportsIFunc())
3024     ResolverType = llvm::FunctionType::get(
3025         llvm::PointerType::get(DeclTy,
3026                                Context.getTargetAddressSpace(FD->getType())),
3027         false);
3028   else {
3029     ResolverType = DeclTy;
3030     ResolverGD = GD;
3031   }
3032 
3033   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3034       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3035   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3036   if (supportsCOMDAT())
3037     ResolverFunc->setComdat(
3038         getModule().getOrInsertComdat(ResolverFunc->getName()));
3039 
3040   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3041   const TargetInfo &Target = getTarget();
3042   unsigned Index = 0;
3043   for (const IdentifierInfo *II : DD->cpus()) {
3044     // Get the name of the target function so we can look it up/create it.
3045     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3046                               getCPUSpecificMangling(*this, II->getName());
3047 
3048     llvm::Constant *Func = GetGlobalValue(MangledName);
3049 
3050     if (!Func) {
3051       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3052       if (ExistingDecl.getDecl() &&
3053           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3054         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3055         Func = GetGlobalValue(MangledName);
3056       } else {
3057         if (!ExistingDecl.getDecl())
3058           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3059 
3060       Func = GetOrCreateLLVMFunction(
3061           MangledName, DeclTy, ExistingDecl,
3062           /*ForVTable=*/false, /*DontDefer=*/true,
3063           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3064       }
3065     }
3066 
3067     llvm::SmallVector<StringRef, 32> Features;
3068     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3069     llvm::transform(Features, Features.begin(),
3070                     [](StringRef Str) { return Str.substr(1); });
3071     Features.erase(std::remove_if(
3072         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3073           return !Target.validateCpuSupports(Feat);
3074         }), Features.end());
3075     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3076     ++Index;
3077   }
3078 
3079   llvm::sort(
3080       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3081                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3082         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3083                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3084       });
3085 
3086   // If the list contains multiple 'default' versions, such as when it contains
3087   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3088   // always run on at least a 'pentium'). We do this by deleting the 'least
3089   // advanced' (read, lowest mangling letter).
3090   while (Options.size() > 1 &&
3091          CodeGenFunction::GetX86CpuSupportsMask(
3092              (Options.end() - 2)->Conditions.Features) == 0) {
3093     StringRef LHSName = (Options.end() - 2)->Function->getName();
3094     StringRef RHSName = (Options.end() - 1)->Function->getName();
3095     if (LHSName.compare(RHSName) < 0)
3096       Options.erase(Options.end() - 2);
3097     else
3098       Options.erase(Options.end() - 1);
3099   }
3100 
3101   CodeGenFunction CGF(*this);
3102   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3103 
3104   if (getTarget().supportsIFunc()) {
3105     std::string AliasName = getMangledNameImpl(
3106         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3107     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3108     if (!AliasFunc) {
3109       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3110           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3111           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3112       auto *GA = llvm::GlobalAlias::create(
3113          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3114       GA->setLinkage(llvm::Function::WeakODRLinkage);
3115       SetCommonAttributes(GD, GA);
3116     }
3117   }
3118 }
3119 
3120 /// If a dispatcher for the specified mangled name is not in the module, create
3121 /// and return an llvm Function with the specified type.
3122 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3123     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3124   std::string MangledName =
3125       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3126 
3127   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3128   // a separate resolver).
3129   std::string ResolverName = MangledName;
3130   if (getTarget().supportsIFunc())
3131     ResolverName += ".ifunc";
3132   else if (FD->isTargetMultiVersion())
3133     ResolverName += ".resolver";
3134 
3135   // If this already exists, just return that one.
3136   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3137     return ResolverGV;
3138 
3139   // Since this is the first time we've created this IFunc, make sure
3140   // that we put this multiversioned function into the list to be
3141   // replaced later if necessary (target multiversioning only).
3142   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3143     MultiVersionFuncs.push_back(GD);
3144 
3145   if (getTarget().supportsIFunc()) {
3146     llvm::Type *ResolverType = llvm::FunctionType::get(
3147         llvm::PointerType::get(
3148             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3149         false);
3150     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3151         MangledName + ".resolver", ResolverType, GlobalDecl{},
3152         /*ForVTable=*/false);
3153     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3154         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3155     GIF->setName(ResolverName);
3156     SetCommonAttributes(FD, GIF);
3157 
3158     return GIF;
3159   }
3160 
3161   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3162       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3163   assert(isa<llvm::GlobalValue>(Resolver) &&
3164          "Resolver should be created for the first time");
3165   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3166   return Resolver;
3167 }
3168 
3169 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3170 /// module, create and return an llvm Function with the specified type. If there
3171 /// is something in the module with the specified name, return it potentially
3172 /// bitcasted to the right type.
3173 ///
3174 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3175 /// to set the attributes on the function when it is first created.
3176 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3177     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3178     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3179     ForDefinition_t IsForDefinition) {
3180   const Decl *D = GD.getDecl();
3181 
3182   // Any attempts to use a MultiVersion function should result in retrieving
3183   // the iFunc instead. Name Mangling will handle the rest of the changes.
3184   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3185     // For the device mark the function as one that should be emitted.
3186     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3187         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3188         !DontDefer && !IsForDefinition) {
3189       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3190         GlobalDecl GDDef;
3191         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3192           GDDef = GlobalDecl(CD, GD.getCtorType());
3193         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3194           GDDef = GlobalDecl(DD, GD.getDtorType());
3195         else
3196           GDDef = GlobalDecl(FDDef);
3197         EmitGlobal(GDDef);
3198       }
3199     }
3200 
3201     if (FD->isMultiVersion()) {
3202       if (FD->hasAttr<TargetAttr>())
3203         UpdateMultiVersionNames(GD, FD);
3204       if (!IsForDefinition)
3205         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3206     }
3207   }
3208 
3209   // Lookup the entry, lazily creating it if necessary.
3210   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3211   if (Entry) {
3212     if (WeakRefReferences.erase(Entry)) {
3213       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3214       if (FD && !FD->hasAttr<WeakAttr>())
3215         Entry->setLinkage(llvm::Function::ExternalLinkage);
3216     }
3217 
3218     // Handle dropped DLL attributes.
3219     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3220       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3221       setDSOLocal(Entry);
3222     }
3223 
3224     // If there are two attempts to define the same mangled name, issue an
3225     // error.
3226     if (IsForDefinition && !Entry->isDeclaration()) {
3227       GlobalDecl OtherGD;
3228       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3229       // to make sure that we issue an error only once.
3230       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3231           (GD.getCanonicalDecl().getDecl() !=
3232            OtherGD.getCanonicalDecl().getDecl()) &&
3233           DiagnosedConflictingDefinitions.insert(GD).second) {
3234         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3235             << MangledName;
3236         getDiags().Report(OtherGD.getDecl()->getLocation(),
3237                           diag::note_previous_definition);
3238       }
3239     }
3240 
3241     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3242         (Entry->getValueType() == Ty)) {
3243       return Entry;
3244     }
3245 
3246     // Make sure the result is of the correct type.
3247     // (If function is requested for a definition, we always need to create a new
3248     // function, not just return a bitcast.)
3249     if (!IsForDefinition)
3250       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3251   }
3252 
3253   // This function doesn't have a complete type (for example, the return
3254   // type is an incomplete struct). Use a fake type instead, and make
3255   // sure not to try to set attributes.
3256   bool IsIncompleteFunction = false;
3257 
3258   llvm::FunctionType *FTy;
3259   if (isa<llvm::FunctionType>(Ty)) {
3260     FTy = cast<llvm::FunctionType>(Ty);
3261   } else {
3262     FTy = llvm::FunctionType::get(VoidTy, false);
3263     IsIncompleteFunction = true;
3264   }
3265 
3266   llvm::Function *F =
3267       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3268                              Entry ? StringRef() : MangledName, &getModule());
3269 
3270   // If we already created a function with the same mangled name (but different
3271   // type) before, take its name and add it to the list of functions to be
3272   // replaced with F at the end of CodeGen.
3273   //
3274   // This happens if there is a prototype for a function (e.g. "int f()") and
3275   // then a definition of a different type (e.g. "int f(int x)").
3276   if (Entry) {
3277     F->takeName(Entry);
3278 
3279     // This might be an implementation of a function without a prototype, in
3280     // which case, try to do special replacement of calls which match the new
3281     // prototype.  The really key thing here is that we also potentially drop
3282     // arguments from the call site so as to make a direct call, which makes the
3283     // inliner happier and suppresses a number of optimizer warnings (!) about
3284     // dropping arguments.
3285     if (!Entry->use_empty()) {
3286       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3287       Entry->removeDeadConstantUsers();
3288     }
3289 
3290     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3291         F, Entry->getValueType()->getPointerTo());
3292     addGlobalValReplacement(Entry, BC);
3293   }
3294 
3295   assert(F->getName() == MangledName && "name was uniqued!");
3296   if (D)
3297     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3298   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3299     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3300     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3301   }
3302 
3303   if (!DontDefer) {
3304     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3305     // each other bottoming out with the base dtor.  Therefore we emit non-base
3306     // dtors on usage, even if there is no dtor definition in the TU.
3307     if (D && isa<CXXDestructorDecl>(D) &&
3308         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3309                                            GD.getDtorType()))
3310       addDeferredDeclToEmit(GD);
3311 
3312     // This is the first use or definition of a mangled name.  If there is a
3313     // deferred decl with this name, remember that we need to emit it at the end
3314     // of the file.
3315     auto DDI = DeferredDecls.find(MangledName);
3316     if (DDI != DeferredDecls.end()) {
3317       // Move the potentially referenced deferred decl to the
3318       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3319       // don't need it anymore).
3320       addDeferredDeclToEmit(DDI->second);
3321       DeferredDecls.erase(DDI);
3322 
3323       // Otherwise, there are cases we have to worry about where we're
3324       // using a declaration for which we must emit a definition but where
3325       // we might not find a top-level definition:
3326       //   - member functions defined inline in their classes
3327       //   - friend functions defined inline in some class
3328       //   - special member functions with implicit definitions
3329       // If we ever change our AST traversal to walk into class methods,
3330       // this will be unnecessary.
3331       //
3332       // We also don't emit a definition for a function if it's going to be an
3333       // entry in a vtable, unless it's already marked as used.
3334     } else if (getLangOpts().CPlusPlus && D) {
3335       // Look for a declaration that's lexically in a record.
3336       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3337            FD = FD->getPreviousDecl()) {
3338         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3339           if (FD->doesThisDeclarationHaveABody()) {
3340             addDeferredDeclToEmit(GD.getWithDecl(FD));
3341             break;
3342           }
3343         }
3344       }
3345     }
3346   }
3347 
3348   // Make sure the result is of the requested type.
3349   if (!IsIncompleteFunction) {
3350     assert(F->getFunctionType() == Ty);
3351     return F;
3352   }
3353 
3354   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3355   return llvm::ConstantExpr::getBitCast(F, PTy);
3356 }
3357 
3358 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3359 /// non-null, then this function will use the specified type if it has to
3360 /// create it (this occurs when we see a definition of the function).
3361 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3362                                                  llvm::Type *Ty,
3363                                                  bool ForVTable,
3364                                                  bool DontDefer,
3365                                               ForDefinition_t IsForDefinition) {
3366   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3367          "consteval function should never be emitted");
3368   // If there was no specific requested type, just convert it now.
3369   if (!Ty) {
3370     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3371     Ty = getTypes().ConvertType(FD->getType());
3372   }
3373 
3374   // Devirtualized destructor calls may come through here instead of via
3375   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3376   // of the complete destructor when necessary.
3377   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3378     if (getTarget().getCXXABI().isMicrosoft() &&
3379         GD.getDtorType() == Dtor_Complete &&
3380         DD->getParent()->getNumVBases() == 0)
3381       GD = GlobalDecl(DD, Dtor_Base);
3382   }
3383 
3384   StringRef MangledName = getMangledName(GD);
3385   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3386                                  /*IsThunk=*/false, llvm::AttributeList(),
3387                                  IsForDefinition);
3388 }
3389 
3390 static const FunctionDecl *
3391 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3392   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3393   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3394 
3395   IdentifierInfo &CII = C.Idents.get(Name);
3396   for (const auto &Result : DC->lookup(&CII))
3397     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3398       return FD;
3399 
3400   if (!C.getLangOpts().CPlusPlus)
3401     return nullptr;
3402 
3403   // Demangle the premangled name from getTerminateFn()
3404   IdentifierInfo &CXXII =
3405       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3406           ? C.Idents.get("terminate")
3407           : C.Idents.get(Name);
3408 
3409   for (const auto &N : {"__cxxabiv1", "std"}) {
3410     IdentifierInfo &NS = C.Idents.get(N);
3411     for (const auto &Result : DC->lookup(&NS)) {
3412       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3413       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3414         for (const auto &Result : LSD->lookup(&NS))
3415           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3416             break;
3417 
3418       if (ND)
3419         for (const auto &Result : ND->lookup(&CXXII))
3420           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3421             return FD;
3422     }
3423   }
3424 
3425   return nullptr;
3426 }
3427 
3428 /// CreateRuntimeFunction - Create a new runtime function with the specified
3429 /// type and name.
3430 llvm::FunctionCallee
3431 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3432                                      llvm::AttributeList ExtraAttrs, bool Local,
3433                                      bool AssumeConvergent) {
3434   if (AssumeConvergent) {
3435     ExtraAttrs =
3436         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3437                                 llvm::Attribute::Convergent);
3438   }
3439 
3440   llvm::Constant *C =
3441       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3442                               /*DontDefer=*/false, /*IsThunk=*/false,
3443                               ExtraAttrs);
3444 
3445   if (auto *F = dyn_cast<llvm::Function>(C)) {
3446     if (F->empty()) {
3447       F->setCallingConv(getRuntimeCC());
3448 
3449       // In Windows Itanium environments, try to mark runtime functions
3450       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3451       // will link their standard library statically or dynamically. Marking
3452       // functions imported when they are not imported can cause linker errors
3453       // and warnings.
3454       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3455           !getCodeGenOpts().LTOVisibilityPublicStd) {
3456         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3457         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3458           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3459           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3460         }
3461       }
3462       setDSOLocal(F);
3463     }
3464   }
3465 
3466   return {FTy, C};
3467 }
3468 
3469 /// isTypeConstant - Determine whether an object of this type can be emitted
3470 /// as a constant.
3471 ///
3472 /// If ExcludeCtor is true, the duration when the object's constructor runs
3473 /// will not be considered. The caller will need to verify that the object is
3474 /// not written to during its construction.
3475 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3476   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3477     return false;
3478 
3479   if (Context.getLangOpts().CPlusPlus) {
3480     if (const CXXRecordDecl *Record
3481           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3482       return ExcludeCtor && !Record->hasMutableFields() &&
3483              Record->hasTrivialDestructor();
3484   }
3485 
3486   return true;
3487 }
3488 
3489 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3490 /// create and return an llvm GlobalVariable with the specified type.  If there
3491 /// is something in the module with the specified name, return it potentially
3492 /// bitcasted to the right type.
3493 ///
3494 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3495 /// to set the attributes on the global when it is first created.
3496 ///
3497 /// If IsForDefinition is true, it is guaranteed that an actual global with
3498 /// type Ty will be returned, not conversion of a variable with the same
3499 /// mangled name but some other type.
3500 llvm::Constant *
3501 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3502                                      llvm::PointerType *Ty,
3503                                      const VarDecl *D,
3504                                      ForDefinition_t IsForDefinition) {
3505   // Lookup the entry, lazily creating it if necessary.
3506   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3507   if (Entry) {
3508     if (WeakRefReferences.erase(Entry)) {
3509       if (D && !D->hasAttr<WeakAttr>())
3510         Entry->setLinkage(llvm::Function::ExternalLinkage);
3511     }
3512 
3513     // Handle dropped DLL attributes.
3514     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3515       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3516 
3517     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3518       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3519 
3520     if (Entry->getType() == Ty)
3521       return Entry;
3522 
3523     // If there are two attempts to define the same mangled name, issue an
3524     // error.
3525     if (IsForDefinition && !Entry->isDeclaration()) {
3526       GlobalDecl OtherGD;
3527       const VarDecl *OtherD;
3528 
3529       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3530       // to make sure that we issue an error only once.
3531       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3532           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3533           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3534           OtherD->hasInit() &&
3535           DiagnosedConflictingDefinitions.insert(D).second) {
3536         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3537             << MangledName;
3538         getDiags().Report(OtherGD.getDecl()->getLocation(),
3539                           diag::note_previous_definition);
3540       }
3541     }
3542 
3543     // Make sure the result is of the correct type.
3544     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3545       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3546 
3547     // (If global is requested for a definition, we always need to create a new
3548     // global, not just return a bitcast.)
3549     if (!IsForDefinition)
3550       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3551   }
3552 
3553   auto AddrSpace = GetGlobalVarAddressSpace(D);
3554   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3555 
3556   auto *GV = new llvm::GlobalVariable(
3557       getModule(), Ty->getElementType(), false,
3558       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3559       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3560 
3561   // If we already created a global with the same mangled name (but different
3562   // type) before, take its name and remove it from its parent.
3563   if (Entry) {
3564     GV->takeName(Entry);
3565 
3566     if (!Entry->use_empty()) {
3567       llvm::Constant *NewPtrForOldDecl =
3568           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3569       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3570     }
3571 
3572     Entry->eraseFromParent();
3573   }
3574 
3575   // This is the first use or definition of a mangled name.  If there is a
3576   // deferred decl with this name, remember that we need to emit it at the end
3577   // of the file.
3578   auto DDI = DeferredDecls.find(MangledName);
3579   if (DDI != DeferredDecls.end()) {
3580     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3581     // list, and remove it from DeferredDecls (since we don't need it anymore).
3582     addDeferredDeclToEmit(DDI->second);
3583     DeferredDecls.erase(DDI);
3584   }
3585 
3586   // Handle things which are present even on external declarations.
3587   if (D) {
3588     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3589       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3590 
3591     // FIXME: This code is overly simple and should be merged with other global
3592     // handling.
3593     GV->setConstant(isTypeConstant(D->getType(), false));
3594 
3595     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3596 
3597     setLinkageForGV(GV, D);
3598 
3599     if (D->getTLSKind()) {
3600       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3601         CXXThreadLocals.push_back(D);
3602       setTLSMode(GV, *D);
3603     }
3604 
3605     setGVProperties(GV, D);
3606 
3607     // If required by the ABI, treat declarations of static data members with
3608     // inline initializers as definitions.
3609     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3610       EmitGlobalVarDefinition(D);
3611     }
3612 
3613     // Emit section information for extern variables.
3614     if (D->hasExternalStorage()) {
3615       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3616         GV->setSection(SA->getName());
3617     }
3618 
3619     // Handle XCore specific ABI requirements.
3620     if (getTriple().getArch() == llvm::Triple::xcore &&
3621         D->getLanguageLinkage() == CLanguageLinkage &&
3622         D->getType().isConstant(Context) &&
3623         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3624       GV->setSection(".cp.rodata");
3625 
3626     // Check if we a have a const declaration with an initializer, we may be
3627     // able to emit it as available_externally to expose it's value to the
3628     // optimizer.
3629     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3630         D->getType().isConstQualified() && !GV->hasInitializer() &&
3631         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3632       const auto *Record =
3633           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3634       bool HasMutableFields = Record && Record->hasMutableFields();
3635       if (!HasMutableFields) {
3636         const VarDecl *InitDecl;
3637         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3638         if (InitExpr) {
3639           ConstantEmitter emitter(*this);
3640           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3641           if (Init) {
3642             auto *InitType = Init->getType();
3643             if (GV->getValueType() != InitType) {
3644               // The type of the initializer does not match the definition.
3645               // This happens when an initializer has a different type from
3646               // the type of the global (because of padding at the end of a
3647               // structure for instance).
3648               GV->setName(StringRef());
3649               // Make a new global with the correct type, this is now guaranteed
3650               // to work.
3651               auto *NewGV = cast<llvm::GlobalVariable>(
3652                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3653                       ->stripPointerCasts());
3654 
3655               // Erase the old global, since it is no longer used.
3656               GV->eraseFromParent();
3657               GV = NewGV;
3658             } else {
3659               GV->setInitializer(Init);
3660               GV->setConstant(true);
3661               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3662             }
3663             emitter.finalize(GV);
3664           }
3665         }
3666       }
3667     }
3668   }
3669 
3670   if (GV->isDeclaration())
3671     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3672 
3673   LangAS ExpectedAS =
3674       D ? D->getType().getAddressSpace()
3675         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3676   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3677          Ty->getPointerAddressSpace());
3678   if (AddrSpace != ExpectedAS)
3679     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3680                                                        ExpectedAS, Ty);
3681 
3682   return GV;
3683 }
3684 
3685 llvm::Constant *
3686 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3687   const Decl *D = GD.getDecl();
3688 
3689   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3690     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3691                                 /*DontDefer=*/false, IsForDefinition);
3692 
3693   if (isa<CXXMethodDecl>(D)) {
3694     auto FInfo =
3695         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3696     auto Ty = getTypes().GetFunctionType(*FInfo);
3697     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3698                              IsForDefinition);
3699   }
3700 
3701   if (isa<FunctionDecl>(D)) {
3702     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3703     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3704     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3705                              IsForDefinition);
3706   }
3707 
3708   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3709 }
3710 
3711 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3712     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3713     unsigned Alignment) {
3714   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3715   llvm::GlobalVariable *OldGV = nullptr;
3716 
3717   if (GV) {
3718     // Check if the variable has the right type.
3719     if (GV->getValueType() == Ty)
3720       return GV;
3721 
3722     // Because C++ name mangling, the only way we can end up with an already
3723     // existing global with the same name is if it has been declared extern "C".
3724     assert(GV->isDeclaration() && "Declaration has wrong type!");
3725     OldGV = GV;
3726   }
3727 
3728   // Create a new variable.
3729   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3730                                 Linkage, nullptr, Name);
3731 
3732   if (OldGV) {
3733     // Replace occurrences of the old variable if needed.
3734     GV->takeName(OldGV);
3735 
3736     if (!OldGV->use_empty()) {
3737       llvm::Constant *NewPtrForOldDecl =
3738       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3739       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3740     }
3741 
3742     OldGV->eraseFromParent();
3743   }
3744 
3745   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3746       !GV->hasAvailableExternallyLinkage())
3747     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3748 
3749   GV->setAlignment(llvm::MaybeAlign(Alignment));
3750 
3751   return GV;
3752 }
3753 
3754 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3755 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3756 /// then it will be created with the specified type instead of whatever the
3757 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3758 /// that an actual global with type Ty will be returned, not conversion of a
3759 /// variable with the same mangled name but some other type.
3760 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3761                                                   llvm::Type *Ty,
3762                                            ForDefinition_t IsForDefinition) {
3763   assert(D->hasGlobalStorage() && "Not a global variable");
3764   QualType ASTTy = D->getType();
3765   if (!Ty)
3766     Ty = getTypes().ConvertTypeForMem(ASTTy);
3767 
3768   llvm::PointerType *PTy =
3769     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3770 
3771   StringRef MangledName = getMangledName(D);
3772   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3773 }
3774 
3775 /// CreateRuntimeVariable - Create a new runtime global variable with the
3776 /// specified type and name.
3777 llvm::Constant *
3778 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3779                                      StringRef Name) {
3780   auto PtrTy =
3781       getContext().getLangOpts().OpenCL
3782           ? llvm::PointerType::get(
3783                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3784           : llvm::PointerType::getUnqual(Ty);
3785   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3786   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3787   return Ret;
3788 }
3789 
3790 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3791   assert(!D->getInit() && "Cannot emit definite definitions here!");
3792 
3793   StringRef MangledName = getMangledName(D);
3794   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3795 
3796   // We already have a definition, not declaration, with the same mangled name.
3797   // Emitting of declaration is not required (and actually overwrites emitted
3798   // definition).
3799   if (GV && !GV->isDeclaration())
3800     return;
3801 
3802   // If we have not seen a reference to this variable yet, place it into the
3803   // deferred declarations table to be emitted if needed later.
3804   if (!MustBeEmitted(D) && !GV) {
3805       DeferredDecls[MangledName] = D;
3806       return;
3807   }
3808 
3809   // The tentative definition is the only definition.
3810   EmitGlobalVarDefinition(D);
3811 }
3812 
3813 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3814   EmitExternalVarDeclaration(D);
3815 }
3816 
3817 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3818   return Context.toCharUnitsFromBits(
3819       getDataLayout().getTypeStoreSizeInBits(Ty));
3820 }
3821 
3822 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3823   LangAS AddrSpace = LangAS::Default;
3824   if (LangOpts.OpenCL) {
3825     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3826     assert(AddrSpace == LangAS::opencl_global ||
3827            AddrSpace == LangAS::opencl_global_device ||
3828            AddrSpace == LangAS::opencl_global_host ||
3829            AddrSpace == LangAS::opencl_constant ||
3830            AddrSpace == LangAS::opencl_local ||
3831            AddrSpace >= LangAS::FirstTargetAddressSpace);
3832     return AddrSpace;
3833   }
3834 
3835   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3836     if (D && D->hasAttr<CUDAConstantAttr>())
3837       return LangAS::cuda_constant;
3838     else if (D && D->hasAttr<CUDASharedAttr>())
3839       return LangAS::cuda_shared;
3840     else if (D && D->hasAttr<CUDADeviceAttr>())
3841       return LangAS::cuda_device;
3842     else if (D && D->getType().isConstQualified())
3843       return LangAS::cuda_constant;
3844     else
3845       return LangAS::cuda_device;
3846   }
3847 
3848   if (LangOpts.OpenMP) {
3849     LangAS AS;
3850     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3851       return AS;
3852   }
3853   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3854 }
3855 
3856 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3857   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3858   if (LangOpts.OpenCL)
3859     return LangAS::opencl_constant;
3860   if (auto AS = getTarget().getConstantAddressSpace())
3861     return AS.getValue();
3862   return LangAS::Default;
3863 }
3864 
3865 // In address space agnostic languages, string literals are in default address
3866 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3867 // emitted in constant address space in LLVM IR. To be consistent with other
3868 // parts of AST, string literal global variables in constant address space
3869 // need to be casted to default address space before being put into address
3870 // map and referenced by other part of CodeGen.
3871 // In OpenCL, string literals are in constant address space in AST, therefore
3872 // they should not be casted to default address space.
3873 static llvm::Constant *
3874 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3875                                        llvm::GlobalVariable *GV) {
3876   llvm::Constant *Cast = GV;
3877   if (!CGM.getLangOpts().OpenCL) {
3878     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3879       if (AS != LangAS::Default)
3880         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3881             CGM, GV, AS.getValue(), LangAS::Default,
3882             GV->getValueType()->getPointerTo(
3883                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3884     }
3885   }
3886   return Cast;
3887 }
3888 
3889 template<typename SomeDecl>
3890 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3891                                                llvm::GlobalValue *GV) {
3892   if (!getLangOpts().CPlusPlus)
3893     return;
3894 
3895   // Must have 'used' attribute, or else inline assembly can't rely on
3896   // the name existing.
3897   if (!D->template hasAttr<UsedAttr>())
3898     return;
3899 
3900   // Must have internal linkage and an ordinary name.
3901   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3902     return;
3903 
3904   // Must be in an extern "C" context. Entities declared directly within
3905   // a record are not extern "C" even if the record is in such a context.
3906   const SomeDecl *First = D->getFirstDecl();
3907   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3908     return;
3909 
3910   // OK, this is an internal linkage entity inside an extern "C" linkage
3911   // specification. Make a note of that so we can give it the "expected"
3912   // mangled name if nothing else is using that name.
3913   std::pair<StaticExternCMap::iterator, bool> R =
3914       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3915 
3916   // If we have multiple internal linkage entities with the same name
3917   // in extern "C" regions, none of them gets that name.
3918   if (!R.second)
3919     R.first->second = nullptr;
3920 }
3921 
3922 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3923   if (!CGM.supportsCOMDAT())
3924     return false;
3925 
3926   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3927   // them being "merged" by the COMDAT Folding linker optimization.
3928   if (D.hasAttr<CUDAGlobalAttr>())
3929     return false;
3930 
3931   if (D.hasAttr<SelectAnyAttr>())
3932     return true;
3933 
3934   GVALinkage Linkage;
3935   if (auto *VD = dyn_cast<VarDecl>(&D))
3936     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3937   else
3938     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3939 
3940   switch (Linkage) {
3941   case GVA_Internal:
3942   case GVA_AvailableExternally:
3943   case GVA_StrongExternal:
3944     return false;
3945   case GVA_DiscardableODR:
3946   case GVA_StrongODR:
3947     return true;
3948   }
3949   llvm_unreachable("No such linkage");
3950 }
3951 
3952 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3953                                           llvm::GlobalObject &GO) {
3954   if (!shouldBeInCOMDAT(*this, D))
3955     return;
3956   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3957 }
3958 
3959 /// Pass IsTentative as true if you want to create a tentative definition.
3960 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3961                                             bool IsTentative) {
3962   // OpenCL global variables of sampler type are translated to function calls,
3963   // therefore no need to be translated.
3964   QualType ASTTy = D->getType();
3965   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3966     return;
3967 
3968   // If this is OpenMP device, check if it is legal to emit this global
3969   // normally.
3970   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3971       OpenMPRuntime->emitTargetGlobalVariable(D))
3972     return;
3973 
3974   llvm::Constant *Init = nullptr;
3975   bool NeedsGlobalCtor = false;
3976   bool NeedsGlobalDtor =
3977       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3978 
3979   const VarDecl *InitDecl;
3980   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3981 
3982   Optional<ConstantEmitter> emitter;
3983 
3984   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3985   // as part of their declaration."  Sema has already checked for
3986   // error cases, so we just need to set Init to UndefValue.
3987   bool IsCUDASharedVar =
3988       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3989   // Shadows of initialized device-side global variables are also left
3990   // undefined.
3991   bool IsCUDAShadowVar =
3992       !getLangOpts().CUDAIsDevice &&
3993       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3994        D->hasAttr<CUDASharedAttr>());
3995   bool IsCUDADeviceShadowVar =
3996       getLangOpts().CUDAIsDevice &&
3997       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
3998        D->getType()->isCUDADeviceBuiltinTextureType());
3999   // HIP pinned shadow of initialized host-side global variables are also
4000   // left undefined.
4001   if (getLangOpts().CUDA &&
4002       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4003     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4004   else if (D->hasAttr<LoaderUninitializedAttr>())
4005     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4006   else if (!InitExpr) {
4007     // This is a tentative definition; tentative definitions are
4008     // implicitly initialized with { 0 }.
4009     //
4010     // Note that tentative definitions are only emitted at the end of
4011     // a translation unit, so they should never have incomplete
4012     // type. In addition, EmitTentativeDefinition makes sure that we
4013     // never attempt to emit a tentative definition if a real one
4014     // exists. A use may still exists, however, so we still may need
4015     // to do a RAUW.
4016     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4017     Init = EmitNullConstant(D->getType());
4018   } else {
4019     initializedGlobalDecl = GlobalDecl(D);
4020     emitter.emplace(*this);
4021     Init = emitter->tryEmitForInitializer(*InitDecl);
4022 
4023     if (!Init) {
4024       QualType T = InitExpr->getType();
4025       if (D->getType()->isReferenceType())
4026         T = D->getType();
4027 
4028       if (getLangOpts().CPlusPlus) {
4029         Init = EmitNullConstant(T);
4030         NeedsGlobalCtor = true;
4031       } else {
4032         ErrorUnsupported(D, "static initializer");
4033         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4034       }
4035     } else {
4036       // We don't need an initializer, so remove the entry for the delayed
4037       // initializer position (just in case this entry was delayed) if we
4038       // also don't need to register a destructor.
4039       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4040         DelayedCXXInitPosition.erase(D);
4041     }
4042   }
4043 
4044   llvm::Type* InitType = Init->getType();
4045   llvm::Constant *Entry =
4046       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4047 
4048   // Strip off pointer casts if we got them.
4049   Entry = Entry->stripPointerCasts();
4050 
4051   // Entry is now either a Function or GlobalVariable.
4052   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4053 
4054   // We have a definition after a declaration with the wrong type.
4055   // We must make a new GlobalVariable* and update everything that used OldGV
4056   // (a declaration or tentative definition) with the new GlobalVariable*
4057   // (which will be a definition).
4058   //
4059   // This happens if there is a prototype for a global (e.g.
4060   // "extern int x[];") and then a definition of a different type (e.g.
4061   // "int x[10];"). This also happens when an initializer has a different type
4062   // from the type of the global (this happens with unions).
4063   if (!GV || GV->getValueType() != InitType ||
4064       GV->getType()->getAddressSpace() !=
4065           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4066 
4067     // Move the old entry aside so that we'll create a new one.
4068     Entry->setName(StringRef());
4069 
4070     // Make a new global with the correct type, this is now guaranteed to work.
4071     GV = cast<llvm::GlobalVariable>(
4072         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4073             ->stripPointerCasts());
4074 
4075     // Replace all uses of the old global with the new global
4076     llvm::Constant *NewPtrForOldDecl =
4077         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4078     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4079 
4080     // Erase the old global, since it is no longer used.
4081     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4082   }
4083 
4084   MaybeHandleStaticInExternC(D, GV);
4085 
4086   if (D->hasAttr<AnnotateAttr>())
4087     AddGlobalAnnotations(D, GV);
4088 
4089   // Set the llvm linkage type as appropriate.
4090   llvm::GlobalValue::LinkageTypes Linkage =
4091       getLLVMLinkageVarDefinition(D, GV->isConstant());
4092 
4093   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4094   // the device. [...]"
4095   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4096   // __device__, declares a variable that: [...]
4097   // Is accessible from all the threads within the grid and from the host
4098   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4099   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4100   if (GV && LangOpts.CUDA) {
4101     if (LangOpts.CUDAIsDevice) {
4102       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4103           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4104         GV->setExternallyInitialized(true);
4105     } else {
4106       // Host-side shadows of external declarations of device-side
4107       // global variables become internal definitions. These have to
4108       // be internal in order to prevent name conflicts with global
4109       // host variables with the same name in a different TUs.
4110       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4111         Linkage = llvm::GlobalValue::InternalLinkage;
4112         // Shadow variables and their properties must be registered with CUDA
4113         // runtime. Skip Extern global variables, which will be registered in
4114         // the TU where they are defined.
4115         if (!D->hasExternalStorage())
4116           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4117                                              D->hasAttr<CUDAConstantAttr>());
4118       } else if (D->hasAttr<CUDASharedAttr>()) {
4119         // __shared__ variables are odd. Shadows do get created, but
4120         // they are not registered with the CUDA runtime, so they
4121         // can't really be used to access their device-side
4122         // counterparts. It's not clear yet whether it's nvcc's bug or
4123         // a feature, but we've got to do the same for compatibility.
4124         Linkage = llvm::GlobalValue::InternalLinkage;
4125       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4126                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4127         // Builtin surfaces and textures and their template arguments are
4128         // also registered with CUDA runtime.
4129         Linkage = llvm::GlobalValue::InternalLinkage;
4130         const ClassTemplateSpecializationDecl *TD =
4131             cast<ClassTemplateSpecializationDecl>(
4132                 D->getType()->getAs<RecordType>()->getDecl());
4133         const TemplateArgumentList &Args = TD->getTemplateArgs();
4134         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4135           assert(Args.size() == 2 &&
4136                  "Unexpected number of template arguments of CUDA device "
4137                  "builtin surface type.");
4138           auto SurfType = Args[1].getAsIntegral();
4139           if (!D->hasExternalStorage())
4140             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4141                                                 SurfType.getSExtValue());
4142         } else {
4143           assert(Args.size() == 3 &&
4144                  "Unexpected number of template arguments of CUDA device "
4145                  "builtin texture type.");
4146           auto TexType = Args[1].getAsIntegral();
4147           auto Normalized = Args[2].getAsIntegral();
4148           if (!D->hasExternalStorage())
4149             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4150                                                TexType.getSExtValue(),
4151                                                Normalized.getZExtValue());
4152         }
4153       }
4154     }
4155   }
4156 
4157   GV->setInitializer(Init);
4158   if (emitter)
4159     emitter->finalize(GV);
4160 
4161   // If it is safe to mark the global 'constant', do so now.
4162   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4163                   isTypeConstant(D->getType(), true));
4164 
4165   // If it is in a read-only section, mark it 'constant'.
4166   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4167     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4168     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4169       GV->setConstant(true);
4170   }
4171 
4172   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4173 
4174   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4175   // function is only defined alongside the variable, not also alongside
4176   // callers. Normally, all accesses to a thread_local go through the
4177   // thread-wrapper in order to ensure initialization has occurred, underlying
4178   // variable will never be used other than the thread-wrapper, so it can be
4179   // converted to internal linkage.
4180   //
4181   // However, if the variable has the 'constinit' attribute, it _can_ be
4182   // referenced directly, without calling the thread-wrapper, so the linkage
4183   // must not be changed.
4184   //
4185   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4186   // weak or linkonce, the de-duplication semantics are important to preserve,
4187   // so we don't change the linkage.
4188   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4189       Linkage == llvm::GlobalValue::ExternalLinkage &&
4190       Context.getTargetInfo().getTriple().isOSDarwin() &&
4191       !D->hasAttr<ConstInitAttr>())
4192     Linkage = llvm::GlobalValue::InternalLinkage;
4193 
4194   GV->setLinkage(Linkage);
4195   if (D->hasAttr<DLLImportAttr>())
4196     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4197   else if (D->hasAttr<DLLExportAttr>())
4198     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4199   else
4200     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4201 
4202   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4203     // common vars aren't constant even if declared const.
4204     GV->setConstant(false);
4205     // Tentative definition of global variables may be initialized with
4206     // non-zero null pointers. In this case they should have weak linkage
4207     // since common linkage must have zero initializer and must not have
4208     // explicit section therefore cannot have non-zero initial value.
4209     if (!GV->getInitializer()->isNullValue())
4210       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4211   }
4212 
4213   setNonAliasAttributes(D, GV);
4214 
4215   if (D->getTLSKind() && !GV->isThreadLocal()) {
4216     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4217       CXXThreadLocals.push_back(D);
4218     setTLSMode(GV, *D);
4219   }
4220 
4221   maybeSetTrivialComdat(*D, *GV);
4222 
4223   // Emit the initializer function if necessary.
4224   if (NeedsGlobalCtor || NeedsGlobalDtor)
4225     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4226 
4227   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4228 
4229   // Emit global variable debug information.
4230   if (CGDebugInfo *DI = getModuleDebugInfo())
4231     if (getCodeGenOpts().hasReducedDebugInfo())
4232       DI->EmitGlobalVariable(GV, D);
4233 }
4234 
4235 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4236   if (CGDebugInfo *DI = getModuleDebugInfo())
4237     if (getCodeGenOpts().hasReducedDebugInfo()) {
4238       QualType ASTTy = D->getType();
4239       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4240       llvm::PointerType *PTy =
4241           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4242       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4243       DI->EmitExternalVariable(
4244           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4245     }
4246 }
4247 
4248 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4249                                       CodeGenModule &CGM, const VarDecl *D,
4250                                       bool NoCommon) {
4251   // Don't give variables common linkage if -fno-common was specified unless it
4252   // was overridden by a NoCommon attribute.
4253   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4254     return true;
4255 
4256   // C11 6.9.2/2:
4257   //   A declaration of an identifier for an object that has file scope without
4258   //   an initializer, and without a storage-class specifier or with the
4259   //   storage-class specifier static, constitutes a tentative definition.
4260   if (D->getInit() || D->hasExternalStorage())
4261     return true;
4262 
4263   // A variable cannot be both common and exist in a section.
4264   if (D->hasAttr<SectionAttr>())
4265     return true;
4266 
4267   // A variable cannot be both common and exist in a section.
4268   // We don't try to determine which is the right section in the front-end.
4269   // If no specialized section name is applicable, it will resort to default.
4270   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4271       D->hasAttr<PragmaClangDataSectionAttr>() ||
4272       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4273       D->hasAttr<PragmaClangRodataSectionAttr>())
4274     return true;
4275 
4276   // Thread local vars aren't considered common linkage.
4277   if (D->getTLSKind())
4278     return true;
4279 
4280   // Tentative definitions marked with WeakImportAttr are true definitions.
4281   if (D->hasAttr<WeakImportAttr>())
4282     return true;
4283 
4284   // A variable cannot be both common and exist in a comdat.
4285   if (shouldBeInCOMDAT(CGM, *D))
4286     return true;
4287 
4288   // Declarations with a required alignment do not have common linkage in MSVC
4289   // mode.
4290   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4291     if (D->hasAttr<AlignedAttr>())
4292       return true;
4293     QualType VarType = D->getType();
4294     if (Context.isAlignmentRequired(VarType))
4295       return true;
4296 
4297     if (const auto *RT = VarType->getAs<RecordType>()) {
4298       const RecordDecl *RD = RT->getDecl();
4299       for (const FieldDecl *FD : RD->fields()) {
4300         if (FD->isBitField())
4301           continue;
4302         if (FD->hasAttr<AlignedAttr>())
4303           return true;
4304         if (Context.isAlignmentRequired(FD->getType()))
4305           return true;
4306       }
4307     }
4308   }
4309 
4310   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4311   // common symbols, so symbols with greater alignment requirements cannot be
4312   // common.
4313   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4314   // alignments for common symbols via the aligncomm directive, so this
4315   // restriction only applies to MSVC environments.
4316   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4317       Context.getTypeAlignIfKnown(D->getType()) >
4318           Context.toBits(CharUnits::fromQuantity(32)))
4319     return true;
4320 
4321   return false;
4322 }
4323 
4324 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4325     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4326   if (Linkage == GVA_Internal)
4327     return llvm::Function::InternalLinkage;
4328 
4329   if (D->hasAttr<WeakAttr>()) {
4330     if (IsConstantVariable)
4331       return llvm::GlobalVariable::WeakODRLinkage;
4332     else
4333       return llvm::GlobalVariable::WeakAnyLinkage;
4334   }
4335 
4336   if (const auto *FD = D->getAsFunction())
4337     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4338       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4339 
4340   // We are guaranteed to have a strong definition somewhere else,
4341   // so we can use available_externally linkage.
4342   if (Linkage == GVA_AvailableExternally)
4343     return llvm::GlobalValue::AvailableExternallyLinkage;
4344 
4345   // Note that Apple's kernel linker doesn't support symbol
4346   // coalescing, so we need to avoid linkonce and weak linkages there.
4347   // Normally, this means we just map to internal, but for explicit
4348   // instantiations we'll map to external.
4349 
4350   // In C++, the compiler has to emit a definition in every translation unit
4351   // that references the function.  We should use linkonce_odr because
4352   // a) if all references in this translation unit are optimized away, we
4353   // don't need to codegen it.  b) if the function persists, it needs to be
4354   // merged with other definitions. c) C++ has the ODR, so we know the
4355   // definition is dependable.
4356   if (Linkage == GVA_DiscardableODR)
4357     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4358                                             : llvm::Function::InternalLinkage;
4359 
4360   // An explicit instantiation of a template has weak linkage, since
4361   // explicit instantiations can occur in multiple translation units
4362   // and must all be equivalent. However, we are not allowed to
4363   // throw away these explicit instantiations.
4364   //
4365   // We don't currently support CUDA device code spread out across multiple TUs,
4366   // so say that CUDA templates are either external (for kernels) or internal.
4367   // This lets llvm perform aggressive inter-procedural optimizations.
4368   if (Linkage == GVA_StrongODR) {
4369     if (Context.getLangOpts().AppleKext)
4370       return llvm::Function::ExternalLinkage;
4371     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4372       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4373                                           : llvm::Function::InternalLinkage;
4374     return llvm::Function::WeakODRLinkage;
4375   }
4376 
4377   // C++ doesn't have tentative definitions and thus cannot have common
4378   // linkage.
4379   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4380       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4381                                  CodeGenOpts.NoCommon))
4382     return llvm::GlobalVariable::CommonLinkage;
4383 
4384   // selectany symbols are externally visible, so use weak instead of
4385   // linkonce.  MSVC optimizes away references to const selectany globals, so
4386   // all definitions should be the same and ODR linkage should be used.
4387   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4388   if (D->hasAttr<SelectAnyAttr>())
4389     return llvm::GlobalVariable::WeakODRLinkage;
4390 
4391   // Otherwise, we have strong external linkage.
4392   assert(Linkage == GVA_StrongExternal);
4393   return llvm::GlobalVariable::ExternalLinkage;
4394 }
4395 
4396 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4397     const VarDecl *VD, bool IsConstant) {
4398   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4399   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4400 }
4401 
4402 /// Replace the uses of a function that was declared with a non-proto type.
4403 /// We want to silently drop extra arguments from call sites
4404 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4405                                           llvm::Function *newFn) {
4406   // Fast path.
4407   if (old->use_empty()) return;
4408 
4409   llvm::Type *newRetTy = newFn->getReturnType();
4410   SmallVector<llvm::Value*, 4> newArgs;
4411   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4412 
4413   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4414          ui != ue; ) {
4415     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4416     llvm::User *user = use->getUser();
4417 
4418     // Recognize and replace uses of bitcasts.  Most calls to
4419     // unprototyped functions will use bitcasts.
4420     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4421       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4422         replaceUsesOfNonProtoConstant(bitcast, newFn);
4423       continue;
4424     }
4425 
4426     // Recognize calls to the function.
4427     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4428     if (!callSite) continue;
4429     if (!callSite->isCallee(&*use))
4430       continue;
4431 
4432     // If the return types don't match exactly, then we can't
4433     // transform this call unless it's dead.
4434     if (callSite->getType() != newRetTy && !callSite->use_empty())
4435       continue;
4436 
4437     // Get the call site's attribute list.
4438     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4439     llvm::AttributeList oldAttrs = callSite->getAttributes();
4440 
4441     // If the function was passed too few arguments, don't transform.
4442     unsigned newNumArgs = newFn->arg_size();
4443     if (callSite->arg_size() < newNumArgs)
4444       continue;
4445 
4446     // If extra arguments were passed, we silently drop them.
4447     // If any of the types mismatch, we don't transform.
4448     unsigned argNo = 0;
4449     bool dontTransform = false;
4450     for (llvm::Argument &A : newFn->args()) {
4451       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4452         dontTransform = true;
4453         break;
4454       }
4455 
4456       // Add any parameter attributes.
4457       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4458       argNo++;
4459     }
4460     if (dontTransform)
4461       continue;
4462 
4463     // Okay, we can transform this.  Create the new call instruction and copy
4464     // over the required information.
4465     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4466 
4467     // Copy over any operand bundles.
4468     callSite->getOperandBundlesAsDefs(newBundles);
4469 
4470     llvm::CallBase *newCall;
4471     if (dyn_cast<llvm::CallInst>(callSite)) {
4472       newCall =
4473           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4474     } else {
4475       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4476       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4477                                          oldInvoke->getUnwindDest(), newArgs,
4478                                          newBundles, "", callSite);
4479     }
4480     newArgs.clear(); // for the next iteration
4481 
4482     if (!newCall->getType()->isVoidTy())
4483       newCall->takeName(callSite);
4484     newCall->setAttributes(llvm::AttributeList::get(
4485         newFn->getContext(), oldAttrs.getFnAttributes(),
4486         oldAttrs.getRetAttributes(), newArgAttrs));
4487     newCall->setCallingConv(callSite->getCallingConv());
4488 
4489     // Finally, remove the old call, replacing any uses with the new one.
4490     if (!callSite->use_empty())
4491       callSite->replaceAllUsesWith(newCall);
4492 
4493     // Copy debug location attached to CI.
4494     if (callSite->getDebugLoc())
4495       newCall->setDebugLoc(callSite->getDebugLoc());
4496 
4497     callSite->eraseFromParent();
4498   }
4499 }
4500 
4501 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4502 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4503 /// existing call uses of the old function in the module, this adjusts them to
4504 /// call the new function directly.
4505 ///
4506 /// This is not just a cleanup: the always_inline pass requires direct calls to
4507 /// functions to be able to inline them.  If there is a bitcast in the way, it
4508 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4509 /// run at -O0.
4510 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4511                                                       llvm::Function *NewFn) {
4512   // If we're redefining a global as a function, don't transform it.
4513   if (!isa<llvm::Function>(Old)) return;
4514 
4515   replaceUsesOfNonProtoConstant(Old, NewFn);
4516 }
4517 
4518 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4519   auto DK = VD->isThisDeclarationADefinition();
4520   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4521     return;
4522 
4523   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4524   // If we have a definition, this might be a deferred decl. If the
4525   // instantiation is explicit, make sure we emit it at the end.
4526   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4527     GetAddrOfGlobalVar(VD);
4528 
4529   EmitTopLevelDecl(VD);
4530 }
4531 
4532 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4533                                                  llvm::GlobalValue *GV) {
4534   const auto *D = cast<FunctionDecl>(GD.getDecl());
4535 
4536   // Compute the function info and LLVM type.
4537   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4538   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4539 
4540   // Get or create the prototype for the function.
4541   if (!GV || (GV->getValueType() != Ty))
4542     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4543                                                    /*DontDefer=*/true,
4544                                                    ForDefinition));
4545 
4546   // Already emitted.
4547   if (!GV->isDeclaration())
4548     return;
4549 
4550   // We need to set linkage and visibility on the function before
4551   // generating code for it because various parts of IR generation
4552   // want to propagate this information down (e.g. to local static
4553   // declarations).
4554   auto *Fn = cast<llvm::Function>(GV);
4555   setFunctionLinkage(GD, Fn);
4556 
4557   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4558   setGVProperties(Fn, GD);
4559 
4560   MaybeHandleStaticInExternC(D, Fn);
4561 
4562 
4563   maybeSetTrivialComdat(*D, *Fn);
4564 
4565   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4566 
4567   setNonAliasAttributes(GD, Fn);
4568   SetLLVMFunctionAttributesForDefinition(D, Fn);
4569 
4570   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4571     AddGlobalCtor(Fn, CA->getPriority());
4572   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4573     AddGlobalDtor(Fn, DA->getPriority());
4574   if (D->hasAttr<AnnotateAttr>())
4575     AddGlobalAnnotations(D, Fn);
4576 }
4577 
4578 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4579   const auto *D = cast<ValueDecl>(GD.getDecl());
4580   const AliasAttr *AA = D->getAttr<AliasAttr>();
4581   assert(AA && "Not an alias?");
4582 
4583   StringRef MangledName = getMangledName(GD);
4584 
4585   if (AA->getAliasee() == MangledName) {
4586     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4587     return;
4588   }
4589 
4590   // If there is a definition in the module, then it wins over the alias.
4591   // This is dubious, but allow it to be safe.  Just ignore the alias.
4592   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4593   if (Entry && !Entry->isDeclaration())
4594     return;
4595 
4596   Aliases.push_back(GD);
4597 
4598   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4599 
4600   // Create a reference to the named value.  This ensures that it is emitted
4601   // if a deferred decl.
4602   llvm::Constant *Aliasee;
4603   llvm::GlobalValue::LinkageTypes LT;
4604   if (isa<llvm::FunctionType>(DeclTy)) {
4605     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4606                                       /*ForVTable=*/false);
4607     LT = getFunctionLinkage(GD);
4608   } else {
4609     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4610                                     llvm::PointerType::getUnqual(DeclTy),
4611                                     /*D=*/nullptr);
4612     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4613                                      D->getType().isConstQualified());
4614   }
4615 
4616   // Create the new alias itself, but don't set a name yet.
4617   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4618   auto *GA =
4619       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4620 
4621   if (Entry) {
4622     if (GA->getAliasee() == Entry) {
4623       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4624       return;
4625     }
4626 
4627     assert(Entry->isDeclaration());
4628 
4629     // If there is a declaration in the module, then we had an extern followed
4630     // by the alias, as in:
4631     //   extern int test6();
4632     //   ...
4633     //   int test6() __attribute__((alias("test7")));
4634     //
4635     // Remove it and replace uses of it with the alias.
4636     GA->takeName(Entry);
4637 
4638     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4639                                                           Entry->getType()));
4640     Entry->eraseFromParent();
4641   } else {
4642     GA->setName(MangledName);
4643   }
4644 
4645   // Set attributes which are particular to an alias; this is a
4646   // specialization of the attributes which may be set on a global
4647   // variable/function.
4648   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4649       D->isWeakImported()) {
4650     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4651   }
4652 
4653   if (const auto *VD = dyn_cast<VarDecl>(D))
4654     if (VD->getTLSKind())
4655       setTLSMode(GA, *VD);
4656 
4657   SetCommonAttributes(GD, GA);
4658 }
4659 
4660 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4661   const auto *D = cast<ValueDecl>(GD.getDecl());
4662   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4663   assert(IFA && "Not an ifunc?");
4664 
4665   StringRef MangledName = getMangledName(GD);
4666 
4667   if (IFA->getResolver() == MangledName) {
4668     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4669     return;
4670   }
4671 
4672   // Report an error if some definition overrides ifunc.
4673   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4674   if (Entry && !Entry->isDeclaration()) {
4675     GlobalDecl OtherGD;
4676     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4677         DiagnosedConflictingDefinitions.insert(GD).second) {
4678       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4679           << MangledName;
4680       Diags.Report(OtherGD.getDecl()->getLocation(),
4681                    diag::note_previous_definition);
4682     }
4683     return;
4684   }
4685 
4686   Aliases.push_back(GD);
4687 
4688   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4689   llvm::Constant *Resolver =
4690       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4691                               /*ForVTable=*/false);
4692   llvm::GlobalIFunc *GIF =
4693       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4694                                 "", Resolver, &getModule());
4695   if (Entry) {
4696     if (GIF->getResolver() == Entry) {
4697       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4698       return;
4699     }
4700     assert(Entry->isDeclaration());
4701 
4702     // If there is a declaration in the module, then we had an extern followed
4703     // by the ifunc, as in:
4704     //   extern int test();
4705     //   ...
4706     //   int test() __attribute__((ifunc("resolver")));
4707     //
4708     // Remove it and replace uses of it with the ifunc.
4709     GIF->takeName(Entry);
4710 
4711     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4712                                                           Entry->getType()));
4713     Entry->eraseFromParent();
4714   } else
4715     GIF->setName(MangledName);
4716 
4717   SetCommonAttributes(GD, GIF);
4718 }
4719 
4720 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4721                                             ArrayRef<llvm::Type*> Tys) {
4722   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4723                                          Tys);
4724 }
4725 
4726 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4727 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4728                          const StringLiteral *Literal, bool TargetIsLSB,
4729                          bool &IsUTF16, unsigned &StringLength) {
4730   StringRef String = Literal->getString();
4731   unsigned NumBytes = String.size();
4732 
4733   // Check for simple case.
4734   if (!Literal->containsNonAsciiOrNull()) {
4735     StringLength = NumBytes;
4736     return *Map.insert(std::make_pair(String, nullptr)).first;
4737   }
4738 
4739   // Otherwise, convert the UTF8 literals into a string of shorts.
4740   IsUTF16 = true;
4741 
4742   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4743   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4744   llvm::UTF16 *ToPtr = &ToBuf[0];
4745 
4746   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4747                                  ToPtr + NumBytes, llvm::strictConversion);
4748 
4749   // ConvertUTF8toUTF16 returns the length in ToPtr.
4750   StringLength = ToPtr - &ToBuf[0];
4751 
4752   // Add an explicit null.
4753   *ToPtr = 0;
4754   return *Map.insert(std::make_pair(
4755                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4756                                    (StringLength + 1) * 2),
4757                          nullptr)).first;
4758 }
4759 
4760 ConstantAddress
4761 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4762   unsigned StringLength = 0;
4763   bool isUTF16 = false;
4764   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4765       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4766                                getDataLayout().isLittleEndian(), isUTF16,
4767                                StringLength);
4768 
4769   if (auto *C = Entry.second)
4770     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4771 
4772   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4773   llvm::Constant *Zeros[] = { Zero, Zero };
4774 
4775   const ASTContext &Context = getContext();
4776   const llvm::Triple &Triple = getTriple();
4777 
4778   const auto CFRuntime = getLangOpts().CFRuntime;
4779   const bool IsSwiftABI =
4780       static_cast<unsigned>(CFRuntime) >=
4781       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4782   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4783 
4784   // If we don't already have it, get __CFConstantStringClassReference.
4785   if (!CFConstantStringClassRef) {
4786     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4787     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4788     Ty = llvm::ArrayType::get(Ty, 0);
4789 
4790     switch (CFRuntime) {
4791     default: break;
4792     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4793     case LangOptions::CoreFoundationABI::Swift5_0:
4794       CFConstantStringClassName =
4795           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4796                               : "$s10Foundation19_NSCFConstantStringCN";
4797       Ty = IntPtrTy;
4798       break;
4799     case LangOptions::CoreFoundationABI::Swift4_2:
4800       CFConstantStringClassName =
4801           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4802                               : "$S10Foundation19_NSCFConstantStringCN";
4803       Ty = IntPtrTy;
4804       break;
4805     case LangOptions::CoreFoundationABI::Swift4_1:
4806       CFConstantStringClassName =
4807           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4808                               : "__T010Foundation19_NSCFConstantStringCN";
4809       Ty = IntPtrTy;
4810       break;
4811     }
4812 
4813     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4814 
4815     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4816       llvm::GlobalValue *GV = nullptr;
4817 
4818       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4819         IdentifierInfo &II = Context.Idents.get(GV->getName());
4820         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4821         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4822 
4823         const VarDecl *VD = nullptr;
4824         for (const auto &Result : DC->lookup(&II))
4825           if ((VD = dyn_cast<VarDecl>(Result)))
4826             break;
4827 
4828         if (Triple.isOSBinFormatELF()) {
4829           if (!VD)
4830             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4831         } else {
4832           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4833           if (!VD || !VD->hasAttr<DLLExportAttr>())
4834             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4835           else
4836             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4837         }
4838 
4839         setDSOLocal(GV);
4840       }
4841     }
4842 
4843     // Decay array -> ptr
4844     CFConstantStringClassRef =
4845         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4846                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4847   }
4848 
4849   QualType CFTy = Context.getCFConstantStringType();
4850 
4851   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4852 
4853   ConstantInitBuilder Builder(*this);
4854   auto Fields = Builder.beginStruct(STy);
4855 
4856   // Class pointer.
4857   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4858 
4859   // Flags.
4860   if (IsSwiftABI) {
4861     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4862     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4863   } else {
4864     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4865   }
4866 
4867   // String pointer.
4868   llvm::Constant *C = nullptr;
4869   if (isUTF16) {
4870     auto Arr = llvm::makeArrayRef(
4871         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4872         Entry.first().size() / 2);
4873     C = llvm::ConstantDataArray::get(VMContext, Arr);
4874   } else {
4875     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4876   }
4877 
4878   // Note: -fwritable-strings doesn't make the backing store strings of
4879   // CFStrings writable. (See <rdar://problem/10657500>)
4880   auto *GV =
4881       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4882                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4883   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4884   // Don't enforce the target's minimum global alignment, since the only use
4885   // of the string is via this class initializer.
4886   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4887                             : Context.getTypeAlignInChars(Context.CharTy);
4888   GV->setAlignment(Align.getAsAlign());
4889 
4890   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4891   // Without it LLVM can merge the string with a non unnamed_addr one during
4892   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4893   if (Triple.isOSBinFormatMachO())
4894     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4895                            : "__TEXT,__cstring,cstring_literals");
4896   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4897   // the static linker to adjust permissions to read-only later on.
4898   else if (Triple.isOSBinFormatELF())
4899     GV->setSection(".rodata");
4900 
4901   // String.
4902   llvm::Constant *Str =
4903       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4904 
4905   if (isUTF16)
4906     // Cast the UTF16 string to the correct type.
4907     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4908   Fields.add(Str);
4909 
4910   // String length.
4911   llvm::IntegerType *LengthTy =
4912       llvm::IntegerType::get(getModule().getContext(),
4913                              Context.getTargetInfo().getLongWidth());
4914   if (IsSwiftABI) {
4915     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4916         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4917       LengthTy = Int32Ty;
4918     else
4919       LengthTy = IntPtrTy;
4920   }
4921   Fields.addInt(LengthTy, StringLength);
4922 
4923   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4924   // properly aligned on 32-bit platforms.
4925   CharUnits Alignment =
4926       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4927 
4928   // The struct.
4929   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4930                                     /*isConstant=*/false,
4931                                     llvm::GlobalVariable::PrivateLinkage);
4932   GV->addAttribute("objc_arc_inert");
4933   switch (Triple.getObjectFormat()) {
4934   case llvm::Triple::UnknownObjectFormat:
4935     llvm_unreachable("unknown file format");
4936   case llvm::Triple::GOFF:
4937     llvm_unreachable("GOFF is not yet implemented");
4938   case llvm::Triple::XCOFF:
4939     llvm_unreachable("XCOFF is not yet implemented");
4940   case llvm::Triple::COFF:
4941   case llvm::Triple::ELF:
4942   case llvm::Triple::Wasm:
4943     GV->setSection("cfstring");
4944     break;
4945   case llvm::Triple::MachO:
4946     GV->setSection("__DATA,__cfstring");
4947     break;
4948   }
4949   Entry.second = GV;
4950 
4951   return ConstantAddress(GV, Alignment);
4952 }
4953 
4954 bool CodeGenModule::getExpressionLocationsEnabled() const {
4955   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4956 }
4957 
4958 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4959   if (ObjCFastEnumerationStateType.isNull()) {
4960     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4961     D->startDefinition();
4962 
4963     QualType FieldTypes[] = {
4964       Context.UnsignedLongTy,
4965       Context.getPointerType(Context.getObjCIdType()),
4966       Context.getPointerType(Context.UnsignedLongTy),
4967       Context.getConstantArrayType(Context.UnsignedLongTy,
4968                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4969     };
4970 
4971     for (size_t i = 0; i < 4; ++i) {
4972       FieldDecl *Field = FieldDecl::Create(Context,
4973                                            D,
4974                                            SourceLocation(),
4975                                            SourceLocation(), nullptr,
4976                                            FieldTypes[i], /*TInfo=*/nullptr,
4977                                            /*BitWidth=*/nullptr,
4978                                            /*Mutable=*/false,
4979                                            ICIS_NoInit);
4980       Field->setAccess(AS_public);
4981       D->addDecl(Field);
4982     }
4983 
4984     D->completeDefinition();
4985     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4986   }
4987 
4988   return ObjCFastEnumerationStateType;
4989 }
4990 
4991 llvm::Constant *
4992 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4993   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4994 
4995   // Don't emit it as the address of the string, emit the string data itself
4996   // as an inline array.
4997   if (E->getCharByteWidth() == 1) {
4998     SmallString<64> Str(E->getString());
4999 
5000     // Resize the string to the right size, which is indicated by its type.
5001     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5002     Str.resize(CAT->getSize().getZExtValue());
5003     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5004   }
5005 
5006   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5007   llvm::Type *ElemTy = AType->getElementType();
5008   unsigned NumElements = AType->getNumElements();
5009 
5010   // Wide strings have either 2-byte or 4-byte elements.
5011   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5012     SmallVector<uint16_t, 32> Elements;
5013     Elements.reserve(NumElements);
5014 
5015     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5016       Elements.push_back(E->getCodeUnit(i));
5017     Elements.resize(NumElements);
5018     return llvm::ConstantDataArray::get(VMContext, Elements);
5019   }
5020 
5021   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5022   SmallVector<uint32_t, 32> Elements;
5023   Elements.reserve(NumElements);
5024 
5025   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5026     Elements.push_back(E->getCodeUnit(i));
5027   Elements.resize(NumElements);
5028   return llvm::ConstantDataArray::get(VMContext, Elements);
5029 }
5030 
5031 static llvm::GlobalVariable *
5032 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5033                       CodeGenModule &CGM, StringRef GlobalName,
5034                       CharUnits Alignment) {
5035   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5036       CGM.getStringLiteralAddressSpace());
5037 
5038   llvm::Module &M = CGM.getModule();
5039   // Create a global variable for this string
5040   auto *GV = new llvm::GlobalVariable(
5041       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5042       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5043   GV->setAlignment(Alignment.getAsAlign());
5044   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5045   if (GV->isWeakForLinker()) {
5046     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5047     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5048   }
5049   CGM.setDSOLocal(GV);
5050 
5051   return GV;
5052 }
5053 
5054 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5055 /// constant array for the given string literal.
5056 ConstantAddress
5057 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5058                                                   StringRef Name) {
5059   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5060 
5061   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5062   llvm::GlobalVariable **Entry = nullptr;
5063   if (!LangOpts.WritableStrings) {
5064     Entry = &ConstantStringMap[C];
5065     if (auto GV = *Entry) {
5066       if (Alignment.getQuantity() > GV->getAlignment())
5067         GV->setAlignment(Alignment.getAsAlign());
5068       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5069                              Alignment);
5070     }
5071   }
5072 
5073   SmallString<256> MangledNameBuffer;
5074   StringRef GlobalVariableName;
5075   llvm::GlobalValue::LinkageTypes LT;
5076 
5077   // Mangle the string literal if that's how the ABI merges duplicate strings.
5078   // Don't do it if they are writable, since we don't want writes in one TU to
5079   // affect strings in another.
5080   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5081       !LangOpts.WritableStrings) {
5082     llvm::raw_svector_ostream Out(MangledNameBuffer);
5083     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5084     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5085     GlobalVariableName = MangledNameBuffer;
5086   } else {
5087     LT = llvm::GlobalValue::PrivateLinkage;
5088     GlobalVariableName = Name;
5089   }
5090 
5091   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5092   if (Entry)
5093     *Entry = GV;
5094 
5095   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5096                                   QualType());
5097 
5098   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5099                          Alignment);
5100 }
5101 
5102 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5103 /// array for the given ObjCEncodeExpr node.
5104 ConstantAddress
5105 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5106   std::string Str;
5107   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5108 
5109   return GetAddrOfConstantCString(Str);
5110 }
5111 
5112 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5113 /// the literal and a terminating '\0' character.
5114 /// The result has pointer to array type.
5115 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5116     const std::string &Str, const char *GlobalName) {
5117   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5118   CharUnits Alignment =
5119     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5120 
5121   llvm::Constant *C =
5122       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5123 
5124   // Don't share any string literals if strings aren't constant.
5125   llvm::GlobalVariable **Entry = nullptr;
5126   if (!LangOpts.WritableStrings) {
5127     Entry = &ConstantStringMap[C];
5128     if (auto GV = *Entry) {
5129       if (Alignment.getQuantity() > GV->getAlignment())
5130         GV->setAlignment(Alignment.getAsAlign());
5131       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5132                              Alignment);
5133     }
5134   }
5135 
5136   // Get the default prefix if a name wasn't specified.
5137   if (!GlobalName)
5138     GlobalName = ".str";
5139   // Create a global variable for this.
5140   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5141                                   GlobalName, Alignment);
5142   if (Entry)
5143     *Entry = GV;
5144 
5145   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5146                          Alignment);
5147 }
5148 
5149 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5150     const MaterializeTemporaryExpr *E, const Expr *Init) {
5151   assert((E->getStorageDuration() == SD_Static ||
5152           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5153   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5154 
5155   // If we're not materializing a subobject of the temporary, keep the
5156   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5157   QualType MaterializedType = Init->getType();
5158   if (Init == E->getSubExpr())
5159     MaterializedType = E->getType();
5160 
5161   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5162 
5163   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5164     return ConstantAddress(Slot, Align);
5165 
5166   // FIXME: If an externally-visible declaration extends multiple temporaries,
5167   // we need to give each temporary the same name in every translation unit (and
5168   // we also need to make the temporaries externally-visible).
5169   SmallString<256> Name;
5170   llvm::raw_svector_ostream Out(Name);
5171   getCXXABI().getMangleContext().mangleReferenceTemporary(
5172       VD, E->getManglingNumber(), Out);
5173 
5174   APValue *Value = nullptr;
5175   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5176     // If the initializer of the extending declaration is a constant
5177     // initializer, we should have a cached constant initializer for this
5178     // temporary. Note that this might have a different value from the value
5179     // computed by evaluating the initializer if the surrounding constant
5180     // expression modifies the temporary.
5181     Value = E->getOrCreateValue(false);
5182   }
5183 
5184   // Try evaluating it now, it might have a constant initializer.
5185   Expr::EvalResult EvalResult;
5186   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5187       !EvalResult.hasSideEffects())
5188     Value = &EvalResult.Val;
5189 
5190   LangAS AddrSpace =
5191       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5192 
5193   Optional<ConstantEmitter> emitter;
5194   llvm::Constant *InitialValue = nullptr;
5195   bool Constant = false;
5196   llvm::Type *Type;
5197   if (Value) {
5198     // The temporary has a constant initializer, use it.
5199     emitter.emplace(*this);
5200     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5201                                                MaterializedType);
5202     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5203     Type = InitialValue->getType();
5204   } else {
5205     // No initializer, the initialization will be provided when we
5206     // initialize the declaration which performed lifetime extension.
5207     Type = getTypes().ConvertTypeForMem(MaterializedType);
5208   }
5209 
5210   // Create a global variable for this lifetime-extended temporary.
5211   llvm::GlobalValue::LinkageTypes Linkage =
5212       getLLVMLinkageVarDefinition(VD, Constant);
5213   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5214     const VarDecl *InitVD;
5215     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5216         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5217       // Temporaries defined inside a class get linkonce_odr linkage because the
5218       // class can be defined in multiple translation units.
5219       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5220     } else {
5221       // There is no need for this temporary to have external linkage if the
5222       // VarDecl has external linkage.
5223       Linkage = llvm::GlobalVariable::InternalLinkage;
5224     }
5225   }
5226   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5227   auto *GV = new llvm::GlobalVariable(
5228       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5229       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5230   if (emitter) emitter->finalize(GV);
5231   setGVProperties(GV, VD);
5232   GV->setAlignment(Align.getAsAlign());
5233   if (supportsCOMDAT() && GV->isWeakForLinker())
5234     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5235   if (VD->getTLSKind())
5236     setTLSMode(GV, *VD);
5237   llvm::Constant *CV = GV;
5238   if (AddrSpace != LangAS::Default)
5239     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5240         *this, GV, AddrSpace, LangAS::Default,
5241         Type->getPointerTo(
5242             getContext().getTargetAddressSpace(LangAS::Default)));
5243   MaterializedGlobalTemporaryMap[E] = CV;
5244   return ConstantAddress(CV, Align);
5245 }
5246 
5247 /// EmitObjCPropertyImplementations - Emit information for synthesized
5248 /// properties for an implementation.
5249 void CodeGenModule::EmitObjCPropertyImplementations(const
5250                                                     ObjCImplementationDecl *D) {
5251   for (const auto *PID : D->property_impls()) {
5252     // Dynamic is just for type-checking.
5253     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5254       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5255 
5256       // Determine which methods need to be implemented, some may have
5257       // been overridden. Note that ::isPropertyAccessor is not the method
5258       // we want, that just indicates if the decl came from a
5259       // property. What we want to know is if the method is defined in
5260       // this implementation.
5261       auto *Getter = PID->getGetterMethodDecl();
5262       if (!Getter || Getter->isSynthesizedAccessorStub())
5263         CodeGenFunction(*this).GenerateObjCGetter(
5264             const_cast<ObjCImplementationDecl *>(D), PID);
5265       auto *Setter = PID->getSetterMethodDecl();
5266       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5267         CodeGenFunction(*this).GenerateObjCSetter(
5268                                  const_cast<ObjCImplementationDecl *>(D), PID);
5269     }
5270   }
5271 }
5272 
5273 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5274   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5275   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5276        ivar; ivar = ivar->getNextIvar())
5277     if (ivar->getType().isDestructedType())
5278       return true;
5279 
5280   return false;
5281 }
5282 
5283 static bool AllTrivialInitializers(CodeGenModule &CGM,
5284                                    ObjCImplementationDecl *D) {
5285   CodeGenFunction CGF(CGM);
5286   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5287        E = D->init_end(); B != E; ++B) {
5288     CXXCtorInitializer *CtorInitExp = *B;
5289     Expr *Init = CtorInitExp->getInit();
5290     if (!CGF.isTrivialInitializer(Init))
5291       return false;
5292   }
5293   return true;
5294 }
5295 
5296 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5297 /// for an implementation.
5298 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5299   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5300   if (needsDestructMethod(D)) {
5301     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5302     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5303     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5304         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5305         getContext().VoidTy, nullptr, D,
5306         /*isInstance=*/true, /*isVariadic=*/false,
5307         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5308         /*isImplicitlyDeclared=*/true,
5309         /*isDefined=*/false, ObjCMethodDecl::Required);
5310     D->addInstanceMethod(DTORMethod);
5311     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5312     D->setHasDestructors(true);
5313   }
5314 
5315   // If the implementation doesn't have any ivar initializers, we don't need
5316   // a .cxx_construct.
5317   if (D->getNumIvarInitializers() == 0 ||
5318       AllTrivialInitializers(*this, D))
5319     return;
5320 
5321   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5322   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5323   // The constructor returns 'self'.
5324   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5325       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5326       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5327       /*isVariadic=*/false,
5328       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5329       /*isImplicitlyDeclared=*/true,
5330       /*isDefined=*/false, ObjCMethodDecl::Required);
5331   D->addInstanceMethod(CTORMethod);
5332   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5333   D->setHasNonZeroConstructors(true);
5334 }
5335 
5336 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5337 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5338   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5339       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5340     ErrorUnsupported(LSD, "linkage spec");
5341     return;
5342   }
5343 
5344   EmitDeclContext(LSD);
5345 }
5346 
5347 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5348   for (auto *I : DC->decls()) {
5349     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5350     // are themselves considered "top-level", so EmitTopLevelDecl on an
5351     // ObjCImplDecl does not recursively visit them. We need to do that in
5352     // case they're nested inside another construct (LinkageSpecDecl /
5353     // ExportDecl) that does stop them from being considered "top-level".
5354     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5355       for (auto *M : OID->methods())
5356         EmitTopLevelDecl(M);
5357     }
5358 
5359     EmitTopLevelDecl(I);
5360   }
5361 }
5362 
5363 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5364 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5365   // Ignore dependent declarations.
5366   if (D->isTemplated())
5367     return;
5368 
5369   // Consteval function shouldn't be emitted.
5370   if (auto *FD = dyn_cast<FunctionDecl>(D))
5371     if (FD->isConsteval())
5372       return;
5373 
5374   switch (D->getKind()) {
5375   case Decl::CXXConversion:
5376   case Decl::CXXMethod:
5377   case Decl::Function:
5378     EmitGlobal(cast<FunctionDecl>(D));
5379     // Always provide some coverage mapping
5380     // even for the functions that aren't emitted.
5381     AddDeferredUnusedCoverageMapping(D);
5382     break;
5383 
5384   case Decl::CXXDeductionGuide:
5385     // Function-like, but does not result in code emission.
5386     break;
5387 
5388   case Decl::Var:
5389   case Decl::Decomposition:
5390   case Decl::VarTemplateSpecialization:
5391     EmitGlobal(cast<VarDecl>(D));
5392     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5393       for (auto *B : DD->bindings())
5394         if (auto *HD = B->getHoldingVar())
5395           EmitGlobal(HD);
5396     break;
5397 
5398   // Indirect fields from global anonymous structs and unions can be
5399   // ignored; only the actual variable requires IR gen support.
5400   case Decl::IndirectField:
5401     break;
5402 
5403   // C++ Decls
5404   case Decl::Namespace:
5405     EmitDeclContext(cast<NamespaceDecl>(D));
5406     break;
5407   case Decl::ClassTemplateSpecialization: {
5408     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5409     if (CGDebugInfo *DI = getModuleDebugInfo())
5410       if (Spec->getSpecializationKind() ==
5411               TSK_ExplicitInstantiationDefinition &&
5412           Spec->hasDefinition())
5413         DI->completeTemplateDefinition(*Spec);
5414   } LLVM_FALLTHROUGH;
5415   case Decl::CXXRecord: {
5416     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5417     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5418       if (CRD->hasDefinition())
5419         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5420       if (auto *ES = D->getASTContext().getExternalSource())
5421         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5422           DI->completeUnusedClass(*CRD);
5423     }
5424     // Emit any static data members, they may be definitions.
5425     for (auto *I : CRD->decls())
5426       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5427         EmitTopLevelDecl(I);
5428     break;
5429   }
5430     // No code generation needed.
5431   case Decl::UsingShadow:
5432   case Decl::ClassTemplate:
5433   case Decl::VarTemplate:
5434   case Decl::Concept:
5435   case Decl::VarTemplatePartialSpecialization:
5436   case Decl::FunctionTemplate:
5437   case Decl::TypeAliasTemplate:
5438   case Decl::Block:
5439   case Decl::Empty:
5440   case Decl::Binding:
5441     break;
5442   case Decl::Using:          // using X; [C++]
5443     if (CGDebugInfo *DI = getModuleDebugInfo())
5444         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5445     break;
5446   case Decl::NamespaceAlias:
5447     if (CGDebugInfo *DI = getModuleDebugInfo())
5448         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5449     break;
5450   case Decl::UsingDirective: // using namespace X; [C++]
5451     if (CGDebugInfo *DI = getModuleDebugInfo())
5452       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5453     break;
5454   case Decl::CXXConstructor:
5455     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5456     break;
5457   case Decl::CXXDestructor:
5458     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5459     break;
5460 
5461   case Decl::StaticAssert:
5462     // Nothing to do.
5463     break;
5464 
5465   // Objective-C Decls
5466 
5467   // Forward declarations, no (immediate) code generation.
5468   case Decl::ObjCInterface:
5469   case Decl::ObjCCategory:
5470     break;
5471 
5472   case Decl::ObjCProtocol: {
5473     auto *Proto = cast<ObjCProtocolDecl>(D);
5474     if (Proto->isThisDeclarationADefinition())
5475       ObjCRuntime->GenerateProtocol(Proto);
5476     break;
5477   }
5478 
5479   case Decl::ObjCCategoryImpl:
5480     // Categories have properties but don't support synthesize so we
5481     // can ignore them here.
5482     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5483     break;
5484 
5485   case Decl::ObjCImplementation: {
5486     auto *OMD = cast<ObjCImplementationDecl>(D);
5487     EmitObjCPropertyImplementations(OMD);
5488     EmitObjCIvarInitializations(OMD);
5489     ObjCRuntime->GenerateClass(OMD);
5490     // Emit global variable debug information.
5491     if (CGDebugInfo *DI = getModuleDebugInfo())
5492       if (getCodeGenOpts().hasReducedDebugInfo())
5493         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5494             OMD->getClassInterface()), OMD->getLocation());
5495     break;
5496   }
5497   case Decl::ObjCMethod: {
5498     auto *OMD = cast<ObjCMethodDecl>(D);
5499     // If this is not a prototype, emit the body.
5500     if (OMD->getBody())
5501       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5502     break;
5503   }
5504   case Decl::ObjCCompatibleAlias:
5505     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5506     break;
5507 
5508   case Decl::PragmaComment: {
5509     const auto *PCD = cast<PragmaCommentDecl>(D);
5510     switch (PCD->getCommentKind()) {
5511     case PCK_Unknown:
5512       llvm_unreachable("unexpected pragma comment kind");
5513     case PCK_Linker:
5514       AppendLinkerOptions(PCD->getArg());
5515       break;
5516     case PCK_Lib:
5517         AddDependentLib(PCD->getArg());
5518       break;
5519     case PCK_Compiler:
5520     case PCK_ExeStr:
5521     case PCK_User:
5522       break; // We ignore all of these.
5523     }
5524     break;
5525   }
5526 
5527   case Decl::PragmaDetectMismatch: {
5528     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5529     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5530     break;
5531   }
5532 
5533   case Decl::LinkageSpec:
5534     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5535     break;
5536 
5537   case Decl::FileScopeAsm: {
5538     // File-scope asm is ignored during device-side CUDA compilation.
5539     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5540       break;
5541     // File-scope asm is ignored during device-side OpenMP compilation.
5542     if (LangOpts.OpenMPIsDevice)
5543       break;
5544     auto *AD = cast<FileScopeAsmDecl>(D);
5545     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5546     break;
5547   }
5548 
5549   case Decl::Import: {
5550     auto *Import = cast<ImportDecl>(D);
5551 
5552     // If we've already imported this module, we're done.
5553     if (!ImportedModules.insert(Import->getImportedModule()))
5554       break;
5555 
5556     // Emit debug information for direct imports.
5557     if (!Import->getImportedOwningModule()) {
5558       if (CGDebugInfo *DI = getModuleDebugInfo())
5559         DI->EmitImportDecl(*Import);
5560     }
5561 
5562     // Find all of the submodules and emit the module initializers.
5563     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5564     SmallVector<clang::Module *, 16> Stack;
5565     Visited.insert(Import->getImportedModule());
5566     Stack.push_back(Import->getImportedModule());
5567 
5568     while (!Stack.empty()) {
5569       clang::Module *Mod = Stack.pop_back_val();
5570       if (!EmittedModuleInitializers.insert(Mod).second)
5571         continue;
5572 
5573       for (auto *D : Context.getModuleInitializers(Mod))
5574         EmitTopLevelDecl(D);
5575 
5576       // Visit the submodules of this module.
5577       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5578                                              SubEnd = Mod->submodule_end();
5579            Sub != SubEnd; ++Sub) {
5580         // Skip explicit children; they need to be explicitly imported to emit
5581         // the initializers.
5582         if ((*Sub)->IsExplicit)
5583           continue;
5584 
5585         if (Visited.insert(*Sub).second)
5586           Stack.push_back(*Sub);
5587       }
5588     }
5589     break;
5590   }
5591 
5592   case Decl::Export:
5593     EmitDeclContext(cast<ExportDecl>(D));
5594     break;
5595 
5596   case Decl::OMPThreadPrivate:
5597     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5598     break;
5599 
5600   case Decl::OMPAllocate:
5601     break;
5602 
5603   case Decl::OMPDeclareReduction:
5604     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5605     break;
5606 
5607   case Decl::OMPDeclareMapper:
5608     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5609     break;
5610 
5611   case Decl::OMPRequires:
5612     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5613     break;
5614 
5615   case Decl::Typedef:
5616   case Decl::TypeAlias: // using foo = bar; [C++11]
5617     if (CGDebugInfo *DI = getModuleDebugInfo())
5618       DI->EmitAndRetainType(
5619           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5620     break;
5621 
5622   case Decl::Record:
5623     if (CGDebugInfo *DI = getModuleDebugInfo())
5624       if (cast<RecordDecl>(D)->getDefinition())
5625         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5626     break;
5627 
5628   case Decl::Enum:
5629     if (CGDebugInfo *DI = getModuleDebugInfo())
5630       if (cast<EnumDecl>(D)->getDefinition())
5631         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5632     break;
5633 
5634   default:
5635     // Make sure we handled everything we should, every other kind is a
5636     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5637     // function. Need to recode Decl::Kind to do that easily.
5638     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5639     break;
5640   }
5641 }
5642 
5643 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5644   // Do we need to generate coverage mapping?
5645   if (!CodeGenOpts.CoverageMapping)
5646     return;
5647   switch (D->getKind()) {
5648   case Decl::CXXConversion:
5649   case Decl::CXXMethod:
5650   case Decl::Function:
5651   case Decl::ObjCMethod:
5652   case Decl::CXXConstructor:
5653   case Decl::CXXDestructor: {
5654     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5655       break;
5656     SourceManager &SM = getContext().getSourceManager();
5657     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5658       break;
5659     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5660     if (I == DeferredEmptyCoverageMappingDecls.end())
5661       DeferredEmptyCoverageMappingDecls[D] = true;
5662     break;
5663   }
5664   default:
5665     break;
5666   };
5667 }
5668 
5669 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5670   // Do we need to generate coverage mapping?
5671   if (!CodeGenOpts.CoverageMapping)
5672     return;
5673   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5674     if (Fn->isTemplateInstantiation())
5675       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5676   }
5677   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5678   if (I == DeferredEmptyCoverageMappingDecls.end())
5679     DeferredEmptyCoverageMappingDecls[D] = false;
5680   else
5681     I->second = false;
5682 }
5683 
5684 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5685   // We call takeVector() here to avoid use-after-free.
5686   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5687   // we deserialize function bodies to emit coverage info for them, and that
5688   // deserializes more declarations. How should we handle that case?
5689   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5690     if (!Entry.second)
5691       continue;
5692     const Decl *D = Entry.first;
5693     switch (D->getKind()) {
5694     case Decl::CXXConversion:
5695     case Decl::CXXMethod:
5696     case Decl::Function:
5697     case Decl::ObjCMethod: {
5698       CodeGenPGO PGO(*this);
5699       GlobalDecl GD(cast<FunctionDecl>(D));
5700       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5701                                   getFunctionLinkage(GD));
5702       break;
5703     }
5704     case Decl::CXXConstructor: {
5705       CodeGenPGO PGO(*this);
5706       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5707       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5708                                   getFunctionLinkage(GD));
5709       break;
5710     }
5711     case Decl::CXXDestructor: {
5712       CodeGenPGO PGO(*this);
5713       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5714       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5715                                   getFunctionLinkage(GD));
5716       break;
5717     }
5718     default:
5719       break;
5720     };
5721   }
5722 }
5723 
5724 void CodeGenModule::EmitMainVoidAlias() {
5725   // In order to transition away from "__original_main" gracefully, emit an
5726   // alias for "main" in the no-argument case so that libc can detect when
5727   // new-style no-argument main is in used.
5728   if (llvm::Function *F = getModule().getFunction("main")) {
5729     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5730         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5731       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5732   }
5733 }
5734 
5735 /// Turns the given pointer into a constant.
5736 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5737                                           const void *Ptr) {
5738   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5739   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5740   return llvm::ConstantInt::get(i64, PtrInt);
5741 }
5742 
5743 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5744                                    llvm::NamedMDNode *&GlobalMetadata,
5745                                    GlobalDecl D,
5746                                    llvm::GlobalValue *Addr) {
5747   if (!GlobalMetadata)
5748     GlobalMetadata =
5749       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5750 
5751   // TODO: should we report variant information for ctors/dtors?
5752   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5753                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5754                                CGM.getLLVMContext(), D.getDecl()))};
5755   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5756 }
5757 
5758 /// For each function which is declared within an extern "C" region and marked
5759 /// as 'used', but has internal linkage, create an alias from the unmangled
5760 /// name to the mangled name if possible. People expect to be able to refer
5761 /// to such functions with an unmangled name from inline assembly within the
5762 /// same translation unit.
5763 void CodeGenModule::EmitStaticExternCAliases() {
5764   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5765     return;
5766   for (auto &I : StaticExternCValues) {
5767     IdentifierInfo *Name = I.first;
5768     llvm::GlobalValue *Val = I.second;
5769     if (Val && !getModule().getNamedValue(Name->getName()))
5770       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5771   }
5772 }
5773 
5774 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5775                                              GlobalDecl &Result) const {
5776   auto Res = Manglings.find(MangledName);
5777   if (Res == Manglings.end())
5778     return false;
5779   Result = Res->getValue();
5780   return true;
5781 }
5782 
5783 /// Emits metadata nodes associating all the global values in the
5784 /// current module with the Decls they came from.  This is useful for
5785 /// projects using IR gen as a subroutine.
5786 ///
5787 /// Since there's currently no way to associate an MDNode directly
5788 /// with an llvm::GlobalValue, we create a global named metadata
5789 /// with the name 'clang.global.decl.ptrs'.
5790 void CodeGenModule::EmitDeclMetadata() {
5791   llvm::NamedMDNode *GlobalMetadata = nullptr;
5792 
5793   for (auto &I : MangledDeclNames) {
5794     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5795     // Some mangled names don't necessarily have an associated GlobalValue
5796     // in this module, e.g. if we mangled it for DebugInfo.
5797     if (Addr)
5798       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5799   }
5800 }
5801 
5802 /// Emits metadata nodes for all the local variables in the current
5803 /// function.
5804 void CodeGenFunction::EmitDeclMetadata() {
5805   if (LocalDeclMap.empty()) return;
5806 
5807   llvm::LLVMContext &Context = getLLVMContext();
5808 
5809   // Find the unique metadata ID for this name.
5810   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5811 
5812   llvm::NamedMDNode *GlobalMetadata = nullptr;
5813 
5814   for (auto &I : LocalDeclMap) {
5815     const Decl *D = I.first;
5816     llvm::Value *Addr = I.second.getPointer();
5817     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5818       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5819       Alloca->setMetadata(
5820           DeclPtrKind, llvm::MDNode::get(
5821                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5822     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5823       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5824       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5825     }
5826   }
5827 }
5828 
5829 void CodeGenModule::EmitVersionIdentMetadata() {
5830   llvm::NamedMDNode *IdentMetadata =
5831     TheModule.getOrInsertNamedMetadata("llvm.ident");
5832   std::string Version = getClangFullVersion();
5833   llvm::LLVMContext &Ctx = TheModule.getContext();
5834 
5835   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5836   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5837 }
5838 
5839 void CodeGenModule::EmitCommandLineMetadata() {
5840   llvm::NamedMDNode *CommandLineMetadata =
5841     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5842   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5843   llvm::LLVMContext &Ctx = TheModule.getContext();
5844 
5845   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5846   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5847 }
5848 
5849 void CodeGenModule::EmitCoverageFile() {
5850   if (getCodeGenOpts().CoverageDataFile.empty() &&
5851       getCodeGenOpts().CoverageNotesFile.empty())
5852     return;
5853 
5854   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5855   if (!CUNode)
5856     return;
5857 
5858   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5859   llvm::LLVMContext &Ctx = TheModule.getContext();
5860   auto *CoverageDataFile =
5861       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5862   auto *CoverageNotesFile =
5863       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5864   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5865     llvm::MDNode *CU = CUNode->getOperand(i);
5866     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5867     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5868   }
5869 }
5870 
5871 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5872                                                        bool ForEH) {
5873   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5874   // FIXME: should we even be calling this method if RTTI is disabled
5875   // and it's not for EH?
5876   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5877       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5878        getTriple().isNVPTX()))
5879     return llvm::Constant::getNullValue(Int8PtrTy);
5880 
5881   if (ForEH && Ty->isObjCObjectPointerType() &&
5882       LangOpts.ObjCRuntime.isGNUFamily())
5883     return ObjCRuntime->GetEHType(Ty);
5884 
5885   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5886 }
5887 
5888 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5889   // Do not emit threadprivates in simd-only mode.
5890   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5891     return;
5892   for (auto RefExpr : D->varlists()) {
5893     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5894     bool PerformInit =
5895         VD->getAnyInitializer() &&
5896         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5897                                                         /*ForRef=*/false);
5898 
5899     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5900     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5901             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5902       CXXGlobalInits.push_back(InitFunction);
5903   }
5904 }
5905 
5906 llvm::Metadata *
5907 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5908                                             StringRef Suffix) {
5909   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5910   if (InternalId)
5911     return InternalId;
5912 
5913   if (isExternallyVisible(T->getLinkage())) {
5914     std::string OutName;
5915     llvm::raw_string_ostream Out(OutName);
5916     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5917     Out << Suffix;
5918 
5919     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5920   } else {
5921     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5922                                            llvm::ArrayRef<llvm::Metadata *>());
5923   }
5924 
5925   return InternalId;
5926 }
5927 
5928 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5929   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5930 }
5931 
5932 llvm::Metadata *
5933 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5934   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5935 }
5936 
5937 // Generalize pointer types to a void pointer with the qualifiers of the
5938 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5939 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5940 // 'void *'.
5941 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5942   if (!Ty->isPointerType())
5943     return Ty;
5944 
5945   return Ctx.getPointerType(
5946       QualType(Ctx.VoidTy).withCVRQualifiers(
5947           Ty->getPointeeType().getCVRQualifiers()));
5948 }
5949 
5950 // Apply type generalization to a FunctionType's return and argument types
5951 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5952   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5953     SmallVector<QualType, 8> GeneralizedParams;
5954     for (auto &Param : FnType->param_types())
5955       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5956 
5957     return Ctx.getFunctionType(
5958         GeneralizeType(Ctx, FnType->getReturnType()),
5959         GeneralizedParams, FnType->getExtProtoInfo());
5960   }
5961 
5962   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5963     return Ctx.getFunctionNoProtoType(
5964         GeneralizeType(Ctx, FnType->getReturnType()));
5965 
5966   llvm_unreachable("Encountered unknown FunctionType");
5967 }
5968 
5969 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5970   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5971                                       GeneralizedMetadataIdMap, ".generalized");
5972 }
5973 
5974 /// Returns whether this module needs the "all-vtables" type identifier.
5975 bool CodeGenModule::NeedAllVtablesTypeId() const {
5976   // Returns true if at least one of vtable-based CFI checkers is enabled and
5977   // is not in the trapping mode.
5978   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5979            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5980           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5981            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5982           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5983            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5984           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5985            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5986 }
5987 
5988 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5989                                           CharUnits Offset,
5990                                           const CXXRecordDecl *RD) {
5991   llvm::Metadata *MD =
5992       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5993   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5994 
5995   if (CodeGenOpts.SanitizeCfiCrossDso)
5996     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5997       VTable->addTypeMetadata(Offset.getQuantity(),
5998                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5999 
6000   if (NeedAllVtablesTypeId()) {
6001     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6002     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6003   }
6004 }
6005 
6006 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6007   if (!SanStats)
6008     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6009 
6010   return *SanStats;
6011 }
6012 llvm::Value *
6013 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6014                                                   CodeGenFunction &CGF) {
6015   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6016   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6017   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6018   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6019                                 "__translate_sampler_initializer"),
6020                                 {C});
6021 }
6022 
6023 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6024     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6025   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6026                                  /* forPointeeType= */ true);
6027 }
6028 
6029 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6030                                                  LValueBaseInfo *BaseInfo,
6031                                                  TBAAAccessInfo *TBAAInfo,
6032                                                  bool forPointeeType) {
6033   if (TBAAInfo)
6034     *TBAAInfo = getTBAAAccessInfo(T);
6035 
6036   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6037   // that doesn't return the information we need to compute BaseInfo.
6038 
6039   // Honor alignment typedef attributes even on incomplete types.
6040   // We also honor them straight for C++ class types, even as pointees;
6041   // there's an expressivity gap here.
6042   if (auto TT = T->getAs<TypedefType>()) {
6043     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6044       if (BaseInfo)
6045         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6046       return getContext().toCharUnitsFromBits(Align);
6047     }
6048   }
6049 
6050   bool AlignForArray = T->isArrayType();
6051 
6052   // Analyze the base element type, so we don't get confused by incomplete
6053   // array types.
6054   T = getContext().getBaseElementType(T);
6055 
6056   if (T->isIncompleteType()) {
6057     // We could try to replicate the logic from
6058     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6059     // type is incomplete, so it's impossible to test. We could try to reuse
6060     // getTypeAlignIfKnown, but that doesn't return the information we need
6061     // to set BaseInfo.  So just ignore the possibility that the alignment is
6062     // greater than one.
6063     if (BaseInfo)
6064       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6065     return CharUnits::One();
6066   }
6067 
6068   if (BaseInfo)
6069     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6070 
6071   CharUnits Alignment;
6072   // For C++ class pointees, we don't know whether we're pointing at a
6073   // base or a complete object, so we generally need to use the
6074   // non-virtual alignment.
6075   const CXXRecordDecl *RD;
6076   if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6077     Alignment = getClassPointerAlignment(RD);
6078   } else {
6079     Alignment = getContext().getTypeAlignInChars(T);
6080     if (T.getQualifiers().hasUnaligned())
6081       Alignment = CharUnits::One();
6082   }
6083 
6084   // Cap to the global maximum type alignment unless the alignment
6085   // was somehow explicit on the type.
6086   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6087     if (Alignment.getQuantity() > MaxAlign &&
6088         !getContext().isAlignmentRequired(T))
6089       Alignment = CharUnits::fromQuantity(MaxAlign);
6090   }
6091   return Alignment;
6092 }
6093 
6094 bool CodeGenModule::stopAutoInit() {
6095   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6096   if (StopAfter) {
6097     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6098     // used
6099     if (NumAutoVarInit >= StopAfter) {
6100       return true;
6101     }
6102     if (!NumAutoVarInit) {
6103       unsigned DiagID = getDiags().getCustomDiagID(
6104           DiagnosticsEngine::Warning,
6105           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6106           "number of times ftrivial-auto-var-init=%1 gets applied.");
6107       getDiags().Report(DiagID)
6108           << StopAfter
6109           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6110                       LangOptions::TrivialAutoVarInitKind::Zero
6111                   ? "zero"
6112                   : "pattern");
6113     }
6114     ++NumAutoVarInit;
6115   }
6116   return false;
6117 }
6118