1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 78 llvm::Module &M, const llvm::DataLayout &TD, 79 DiagnosticsEngine &diags, 80 CoverageSourceInfo *CoverageInfo) 81 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 82 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 83 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 84 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 85 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 86 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 87 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 88 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 89 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 90 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 91 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 92 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 93 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 auto ReaderOrErr = 145 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 146 if (std::error_code EC = ReaderOrErr.getError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile: %0"); 149 getDiags().Report(DiagID) << EC.message(); 150 } else 151 PGOReader = std::move(ReaderOrErr.get()); 152 } 153 154 // If coverage mapping generation is enabled, create the 155 // CoverageMappingModuleGen object. 156 if (CodeGenOpts.CoverageMapping) 157 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 158 } 159 160 CodeGenModule::~CodeGenModule() { 161 delete ObjCRuntime; 162 delete OpenCLRuntime; 163 delete OpenMPRuntime; 164 delete CUDARuntime; 165 delete TheTargetCodeGenInfo; 166 delete TBAA; 167 delete DebugInfo; 168 delete ARCData; 169 delete RRData; 170 } 171 172 void CodeGenModule::createObjCRuntime() { 173 // This is just isGNUFamily(), but we want to force implementors of 174 // new ABIs to decide how best to do this. 175 switch (LangOpts.ObjCRuntime.getKind()) { 176 case ObjCRuntime::GNUstep: 177 case ObjCRuntime::GCC: 178 case ObjCRuntime::ObjFW: 179 ObjCRuntime = CreateGNUObjCRuntime(*this); 180 return; 181 182 case ObjCRuntime::FragileMacOSX: 183 case ObjCRuntime::MacOSX: 184 case ObjCRuntime::iOS: 185 ObjCRuntime = CreateMacObjCRuntime(*this); 186 return; 187 } 188 llvm_unreachable("bad runtime kind"); 189 } 190 191 void CodeGenModule::createOpenCLRuntime() { 192 OpenCLRuntime = new CGOpenCLRuntime(*this); 193 } 194 195 void CodeGenModule::createOpenMPRuntime() { 196 OpenMPRuntime = new CGOpenMPRuntime(*this); 197 } 198 199 void CodeGenModule::createCUDARuntime() { 200 CUDARuntime = CreateNVCUDARuntime(*this); 201 } 202 203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 204 Replacements[Name] = C; 205 } 206 207 void CodeGenModule::applyReplacements() { 208 for (ReplacementsTy::iterator I = Replacements.begin(), 209 E = Replacements.end(); 210 I != E; ++I) { 211 StringRef MangledName = I->first(); 212 llvm::Constant *Replacement = I->second; 213 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 214 if (!Entry) 215 continue; 216 auto *OldF = cast<llvm::Function>(Entry); 217 auto *NewF = dyn_cast<llvm::Function>(Replacement); 218 if (!NewF) { 219 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 220 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 221 } else { 222 auto *CE = cast<llvm::ConstantExpr>(Replacement); 223 assert(CE->getOpcode() == llvm::Instruction::BitCast || 224 CE->getOpcode() == llvm::Instruction::GetElementPtr); 225 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 226 } 227 } 228 229 // Replace old with new, but keep the old order. 230 OldF->replaceAllUsesWith(Replacement); 231 if (NewF) { 232 NewF->removeFromParent(); 233 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 234 } 235 OldF->eraseFromParent(); 236 } 237 } 238 239 // This is only used in aliases that we created and we know they have a 240 // linear structure. 241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 242 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 243 const llvm::Constant *C = &GA; 244 for (;;) { 245 C = C->stripPointerCasts(); 246 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 247 return GO; 248 // stripPointerCasts will not walk over weak aliases. 249 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 250 if (!GA2) 251 return nullptr; 252 if (!Visited.insert(GA2).second) 253 return nullptr; 254 C = GA2->getAliasee(); 255 } 256 } 257 258 void CodeGenModule::checkAliases() { 259 // Check if the constructed aliases are well formed. It is really unfortunate 260 // that we have to do this in CodeGen, but we only construct mangled names 261 // and aliases during codegen. 262 bool Error = false; 263 DiagnosticsEngine &Diags = getDiags(); 264 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 265 E = Aliases.end(); I != E; ++I) { 266 const GlobalDecl &GD = *I; 267 const auto *D = cast<ValueDecl>(GD.getDecl()); 268 const AliasAttr *AA = D->getAttr<AliasAttr>(); 269 StringRef MangledName = getMangledName(GD); 270 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 271 auto *Alias = cast<llvm::GlobalAlias>(Entry); 272 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 273 if (!GV) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 276 } else if (GV->isDeclaration()) { 277 Error = true; 278 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 279 } 280 281 llvm::Constant *Aliasee = Alias->getAliasee(); 282 llvm::GlobalValue *AliaseeGV; 283 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 284 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 285 else 286 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 287 288 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 289 StringRef AliasSection = SA->getName(); 290 if (AliasSection != AliaseeGV->getSection()) 291 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 292 << AliasSection; 293 } 294 295 // We have to handle alias to weak aliases in here. LLVM itself disallows 296 // this since the object semantics would not match the IL one. For 297 // compatibility with gcc we implement it by just pointing the alias 298 // to its aliasee's aliasee. We also warn, since the user is probably 299 // expecting the link to be weak. 300 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 301 if (GA->mayBeOverridden()) { 302 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 303 << GV->getName() << GA->getName(); 304 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 305 GA->getAliasee(), Alias->getType()); 306 Alias->setAliasee(Aliasee); 307 } 308 } 309 } 310 if (!Error) 311 return; 312 313 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 314 E = Aliases.end(); I != E; ++I) { 315 const GlobalDecl &GD = *I; 316 StringRef MangledName = getMangledName(GD); 317 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 318 auto *Alias = cast<llvm::GlobalAlias>(Entry); 319 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 320 Alias->eraseFromParent(); 321 } 322 } 323 324 void CodeGenModule::clear() { 325 DeferredDeclsToEmit.clear(); 326 if (OpenMPRuntime) 327 OpenMPRuntime->clear(); 328 } 329 330 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 331 StringRef MainFile) { 332 if (!hasDiagnostics()) 333 return; 334 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 335 if (MainFile.empty()) 336 MainFile = "<stdin>"; 337 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 338 } else 339 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 340 << Mismatched; 341 } 342 343 void CodeGenModule::Release() { 344 EmitDeferred(); 345 applyReplacements(); 346 checkAliases(); 347 EmitCXXGlobalInitFunc(); 348 EmitCXXGlobalDtorFunc(); 349 EmitCXXThreadLocalInitFunc(); 350 if (ObjCRuntime) 351 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 352 AddGlobalCtor(ObjCInitFunction); 353 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 354 CUDARuntime) { 355 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 356 AddGlobalCtor(CudaCtorFunction); 357 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 358 AddGlobalDtor(CudaDtorFunction); 359 } 360 if (PGOReader && PGOStats.hasDiagnostics()) 361 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 362 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 363 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 364 EmitGlobalAnnotations(); 365 EmitStaticExternCAliases(); 366 EmitDeferredUnusedCoverageMappings(); 367 if (CoverageMapping) 368 CoverageMapping->emit(); 369 emitLLVMUsed(); 370 371 if (CodeGenOpts.Autolink && 372 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 373 EmitModuleLinkOptions(); 374 } 375 if (CodeGenOpts.DwarfVersion) 376 // We actually want the latest version when there are conflicts. 377 // We can change from Warning to Latest if such mode is supported. 378 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 379 CodeGenOpts.DwarfVersion); 380 if (DebugInfo) 381 // We support a single version in the linked module. The LLVM 382 // parser will drop debug info with a different version number 383 // (and warn about it, too). 384 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 385 llvm::DEBUG_METADATA_VERSION); 386 387 // We need to record the widths of enums and wchar_t, so that we can generate 388 // the correct build attributes in the ARM backend. 389 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 390 if ( Arch == llvm::Triple::arm 391 || Arch == llvm::Triple::armeb 392 || Arch == llvm::Triple::thumb 393 || Arch == llvm::Triple::thumbeb) { 394 // Width of wchar_t in bytes 395 uint64_t WCharWidth = 396 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 397 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 398 399 // The minimum width of an enum in bytes 400 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 401 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 402 } 403 404 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 405 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 406 switch (PLevel) { 407 case 0: break; 408 case 1: PL = llvm::PICLevel::Small; break; 409 case 2: PL = llvm::PICLevel::Large; break; 410 default: llvm_unreachable("Invalid PIC Level"); 411 } 412 413 getModule().setPICLevel(PL); 414 } 415 416 SimplifyPersonality(); 417 418 if (getCodeGenOpts().EmitDeclMetadata) 419 EmitDeclMetadata(); 420 421 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 422 EmitCoverageFile(); 423 424 if (DebugInfo) 425 DebugInfo->finalize(); 426 427 EmitVersionIdentMetadata(); 428 429 EmitTargetMetadata(); 430 } 431 432 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 433 // Make sure that this type is translated. 434 Types.UpdateCompletedType(TD); 435 } 436 437 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 438 if (!TBAA) 439 return nullptr; 440 return TBAA->getTBAAInfo(QTy); 441 } 442 443 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 444 if (!TBAA) 445 return nullptr; 446 return TBAA->getTBAAInfoForVTablePtr(); 447 } 448 449 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 450 if (!TBAA) 451 return nullptr; 452 return TBAA->getTBAAStructInfo(QTy); 453 } 454 455 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 456 if (!TBAA) 457 return nullptr; 458 return TBAA->getTBAAStructTypeInfo(QTy); 459 } 460 461 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 462 llvm::MDNode *AccessN, 463 uint64_t O) { 464 if (!TBAA) 465 return nullptr; 466 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 467 } 468 469 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 470 /// and struct-path aware TBAA, the tag has the same format: 471 /// base type, access type and offset. 472 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 473 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 474 llvm::MDNode *TBAAInfo, 475 bool ConvertTypeToTag) { 476 if (ConvertTypeToTag && TBAA) 477 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 478 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 479 else 480 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 481 } 482 483 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 484 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 485 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 486 } 487 488 /// ErrorUnsupported - Print out an error that codegen doesn't support the 489 /// specified stmt yet. 490 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 491 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 492 "cannot compile this %0 yet"); 493 std::string Msg = Type; 494 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 495 << Msg << S->getSourceRange(); 496 } 497 498 /// ErrorUnsupported - Print out an error that codegen doesn't support the 499 /// specified decl yet. 500 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 501 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 502 "cannot compile this %0 yet"); 503 std::string Msg = Type; 504 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 505 } 506 507 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 508 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 509 } 510 511 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 512 const NamedDecl *D) const { 513 // Internal definitions always have default visibility. 514 if (GV->hasLocalLinkage()) { 515 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 516 return; 517 } 518 519 // Set visibility for definitions. 520 LinkageInfo LV = D->getLinkageAndVisibility(); 521 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 522 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 523 } 524 525 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 526 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 527 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 528 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 529 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 530 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 531 } 532 533 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 534 CodeGenOptions::TLSModel M) { 535 switch (M) { 536 case CodeGenOptions::GeneralDynamicTLSModel: 537 return llvm::GlobalVariable::GeneralDynamicTLSModel; 538 case CodeGenOptions::LocalDynamicTLSModel: 539 return llvm::GlobalVariable::LocalDynamicTLSModel; 540 case CodeGenOptions::InitialExecTLSModel: 541 return llvm::GlobalVariable::InitialExecTLSModel; 542 case CodeGenOptions::LocalExecTLSModel: 543 return llvm::GlobalVariable::LocalExecTLSModel; 544 } 545 llvm_unreachable("Invalid TLS model!"); 546 } 547 548 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 549 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 550 551 llvm::GlobalValue::ThreadLocalMode TLM; 552 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 553 554 // Override the TLS model if it is explicitly specified. 555 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 556 TLM = GetLLVMTLSModel(Attr->getModel()); 557 } 558 559 GV->setThreadLocalMode(TLM); 560 } 561 562 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 563 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 564 if (!FoundStr.empty()) 565 return FoundStr; 566 567 const auto *ND = cast<NamedDecl>(GD.getDecl()); 568 SmallString<256> Buffer; 569 StringRef Str; 570 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 571 llvm::raw_svector_ostream Out(Buffer); 572 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 573 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 574 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 575 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 576 else 577 getCXXABI().getMangleContext().mangleName(ND, Out); 578 Str = Out.str(); 579 } else { 580 IdentifierInfo *II = ND->getIdentifier(); 581 assert(II && "Attempt to mangle unnamed decl."); 582 Str = II->getName(); 583 } 584 585 // Keep the first result in the case of a mangling collision. 586 auto Result = Manglings.insert(std::make_pair(Str, GD)); 587 return FoundStr = Result.first->first(); 588 } 589 590 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 591 const BlockDecl *BD) { 592 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 593 const Decl *D = GD.getDecl(); 594 595 SmallString<256> Buffer; 596 llvm::raw_svector_ostream Out(Buffer); 597 if (!D) 598 MangleCtx.mangleGlobalBlock(BD, 599 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 600 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 601 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 602 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 603 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 604 else 605 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 606 607 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 608 return Result.first->first(); 609 } 610 611 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 612 return getModule().getNamedValue(Name); 613 } 614 615 /// AddGlobalCtor - Add a function to the list that will be called before 616 /// main() runs. 617 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 618 llvm::Constant *AssociatedData) { 619 // FIXME: Type coercion of void()* types. 620 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 621 } 622 623 /// AddGlobalDtor - Add a function to the list that will be called 624 /// when the module is unloaded. 625 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 626 // FIXME: Type coercion of void()* types. 627 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 628 } 629 630 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 631 // Ctor function type is void()*. 632 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 633 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 634 635 // Get the type of a ctor entry, { i32, void ()*, i8* }. 636 llvm::StructType *CtorStructTy = llvm::StructType::get( 637 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 638 639 // Construct the constructor and destructor arrays. 640 SmallVector<llvm::Constant*, 8> Ctors; 641 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 642 llvm::Constant *S[] = { 643 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 644 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 645 (I->AssociatedData 646 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 647 : llvm::Constant::getNullValue(VoidPtrTy)) 648 }; 649 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 650 } 651 652 if (!Ctors.empty()) { 653 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 654 new llvm::GlobalVariable(TheModule, AT, false, 655 llvm::GlobalValue::AppendingLinkage, 656 llvm::ConstantArray::get(AT, Ctors), 657 GlobalName); 658 } 659 } 660 661 llvm::GlobalValue::LinkageTypes 662 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 663 const auto *D = cast<FunctionDecl>(GD.getDecl()); 664 665 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 666 667 if (isa<CXXDestructorDecl>(D) && 668 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 669 GD.getDtorType())) { 670 // Destructor variants in the Microsoft C++ ABI are always internal or 671 // linkonce_odr thunks emitted on an as-needed basis. 672 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 673 : llvm::GlobalValue::LinkOnceODRLinkage; 674 } 675 676 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 677 } 678 679 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 680 llvm::Function *F) { 681 setNonAliasAttributes(D, F); 682 } 683 684 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 685 const CGFunctionInfo &Info, 686 llvm::Function *F) { 687 unsigned CallingConv; 688 AttributeListType AttributeList; 689 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 690 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 691 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 692 } 693 694 /// Determines whether the language options require us to model 695 /// unwind exceptions. We treat -fexceptions as mandating this 696 /// except under the fragile ObjC ABI with only ObjC exceptions 697 /// enabled. This means, for example, that C with -fexceptions 698 /// enables this. 699 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 700 // If exceptions are completely disabled, obviously this is false. 701 if (!LangOpts.Exceptions) return false; 702 703 // If C++ exceptions are enabled, this is true. 704 if (LangOpts.CXXExceptions) return true; 705 706 // If ObjC exceptions are enabled, this depends on the ABI. 707 if (LangOpts.ObjCExceptions) { 708 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 709 } 710 711 return true; 712 } 713 714 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 715 llvm::Function *F) { 716 llvm::AttrBuilder B; 717 718 if (CodeGenOpts.UnwindTables) 719 B.addAttribute(llvm::Attribute::UWTable); 720 721 if (!hasUnwindExceptions(LangOpts)) 722 B.addAttribute(llvm::Attribute::NoUnwind); 723 724 if (D->hasAttr<NakedAttr>()) { 725 // Naked implies noinline: we should not be inlining such functions. 726 B.addAttribute(llvm::Attribute::Naked); 727 B.addAttribute(llvm::Attribute::NoInline); 728 } else if (D->hasAttr<NoDuplicateAttr>()) { 729 B.addAttribute(llvm::Attribute::NoDuplicate); 730 } else if (D->hasAttr<NoInlineAttr>()) { 731 B.addAttribute(llvm::Attribute::NoInline); 732 } else if (D->hasAttr<AlwaysInlineAttr>() && 733 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 734 llvm::Attribute::NoInline)) { 735 // (noinline wins over always_inline, and we can't specify both in IR) 736 B.addAttribute(llvm::Attribute::AlwaysInline); 737 } 738 739 if (D->hasAttr<ColdAttr>()) { 740 if (!D->hasAttr<OptimizeNoneAttr>()) 741 B.addAttribute(llvm::Attribute::OptimizeForSize); 742 B.addAttribute(llvm::Attribute::Cold); 743 } 744 745 if (D->hasAttr<MinSizeAttr>()) 746 B.addAttribute(llvm::Attribute::MinSize); 747 748 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 749 B.addAttribute(llvm::Attribute::StackProtect); 750 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 751 B.addAttribute(llvm::Attribute::StackProtectStrong); 752 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 753 B.addAttribute(llvm::Attribute::StackProtectReq); 754 755 F->addAttributes(llvm::AttributeSet::FunctionIndex, 756 llvm::AttributeSet::get( 757 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 758 759 if (D->hasAttr<OptimizeNoneAttr>()) { 760 // OptimizeNone implies noinline; we should not be inlining such functions. 761 F->addFnAttr(llvm::Attribute::OptimizeNone); 762 F->addFnAttr(llvm::Attribute::NoInline); 763 764 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 765 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 766 "OptimizeNone and OptimizeForSize on same function!"); 767 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 768 "OptimizeNone and MinSize on same function!"); 769 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 770 "OptimizeNone and AlwaysInline on same function!"); 771 772 // Attribute 'inlinehint' has no effect on 'optnone' functions. 773 // Explicitly remove it from the set of function attributes. 774 F->removeFnAttr(llvm::Attribute::InlineHint); 775 } 776 777 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 778 F->setUnnamedAddr(true); 779 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 780 if (MD->isVirtual()) 781 F->setUnnamedAddr(true); 782 783 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 784 if (alignment) 785 F->setAlignment(alignment); 786 787 // C++ ABI requires 2-byte alignment for member functions. 788 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 789 F->setAlignment(2); 790 } 791 792 void CodeGenModule::SetCommonAttributes(const Decl *D, 793 llvm::GlobalValue *GV) { 794 if (const auto *ND = dyn_cast<NamedDecl>(D)) 795 setGlobalVisibility(GV, ND); 796 else 797 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 798 799 if (D->hasAttr<UsedAttr>()) 800 addUsedGlobal(GV); 801 } 802 803 void CodeGenModule::setAliasAttributes(const Decl *D, 804 llvm::GlobalValue *GV) { 805 SetCommonAttributes(D, GV); 806 807 // Process the dllexport attribute based on whether the original definition 808 // (not necessarily the aliasee) was exported. 809 if (D->hasAttr<DLLExportAttr>()) 810 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 811 } 812 813 void CodeGenModule::setNonAliasAttributes(const Decl *D, 814 llvm::GlobalObject *GO) { 815 SetCommonAttributes(D, GO); 816 817 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 818 GO->setSection(SA->getName()); 819 820 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 821 } 822 823 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 824 llvm::Function *F, 825 const CGFunctionInfo &FI) { 826 SetLLVMFunctionAttributes(D, FI, F); 827 SetLLVMFunctionAttributesForDefinition(D, F); 828 829 F->setLinkage(llvm::Function::InternalLinkage); 830 831 setNonAliasAttributes(D, F); 832 } 833 834 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 835 const NamedDecl *ND) { 836 // Set linkage and visibility in case we never see a definition. 837 LinkageInfo LV = ND->getLinkageAndVisibility(); 838 if (LV.getLinkage() != ExternalLinkage) { 839 // Don't set internal linkage on declarations. 840 } else { 841 if (ND->hasAttr<DLLImportAttr>()) { 842 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 843 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 844 } else if (ND->hasAttr<DLLExportAttr>()) { 845 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 846 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 847 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 848 // "extern_weak" is overloaded in LLVM; we probably should have 849 // separate linkage types for this. 850 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 851 } 852 853 // Set visibility on a declaration only if it's explicit. 854 if (LV.isVisibilityExplicit()) 855 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 856 } 857 } 858 859 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 860 bool IsIncompleteFunction, 861 bool IsThunk) { 862 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 863 // If this is an intrinsic function, set the function's attributes 864 // to the intrinsic's attributes. 865 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 866 return; 867 } 868 869 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 870 871 if (!IsIncompleteFunction) 872 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 873 874 // Add the Returned attribute for "this", except for iOS 5 and earlier 875 // where substantial code, including the libstdc++ dylib, was compiled with 876 // GCC and does not actually return "this". 877 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 878 !(getTarget().getTriple().isiOS() && 879 getTarget().getTriple().isOSVersionLT(6))) { 880 assert(!F->arg_empty() && 881 F->arg_begin()->getType() 882 ->canLosslesslyBitCastTo(F->getReturnType()) && 883 "unexpected this return"); 884 F->addAttribute(1, llvm::Attribute::Returned); 885 } 886 887 // Only a few attributes are set on declarations; these may later be 888 // overridden by a definition. 889 890 setLinkageAndVisibilityForGV(F, FD); 891 892 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 893 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 894 // Don't dllexport/import destructor thunks. 895 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 896 } 897 } 898 899 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 900 F->setSection(SA->getName()); 901 902 // A replaceable global allocation function does not act like a builtin by 903 // default, only if it is invoked by a new-expression or delete-expression. 904 if (FD->isReplaceableGlobalAllocationFunction()) 905 F->addAttribute(llvm::AttributeSet::FunctionIndex, 906 llvm::Attribute::NoBuiltin); 907 } 908 909 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 910 assert(!GV->isDeclaration() && 911 "Only globals with definition can force usage."); 912 LLVMUsed.push_back(GV); 913 } 914 915 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 916 assert(!GV->isDeclaration() && 917 "Only globals with definition can force usage."); 918 LLVMCompilerUsed.push_back(GV); 919 } 920 921 static void emitUsed(CodeGenModule &CGM, StringRef Name, 922 std::vector<llvm::WeakVH> &List) { 923 // Don't create llvm.used if there is no need. 924 if (List.empty()) 925 return; 926 927 // Convert List to what ConstantArray needs. 928 SmallVector<llvm::Constant*, 8> UsedArray; 929 UsedArray.resize(List.size()); 930 for (unsigned i = 0, e = List.size(); i != e; ++i) { 931 UsedArray[i] = 932 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 933 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 934 } 935 936 if (UsedArray.empty()) 937 return; 938 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 939 940 auto *GV = new llvm::GlobalVariable( 941 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 942 llvm::ConstantArray::get(ATy, UsedArray), Name); 943 944 GV->setSection("llvm.metadata"); 945 } 946 947 void CodeGenModule::emitLLVMUsed() { 948 emitUsed(*this, "llvm.used", LLVMUsed); 949 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 950 } 951 952 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 953 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 954 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 955 } 956 957 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 958 llvm::SmallString<32> Opt; 959 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 960 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 961 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 962 } 963 964 void CodeGenModule::AddDependentLib(StringRef Lib) { 965 llvm::SmallString<24> Opt; 966 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 967 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 968 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 969 } 970 971 /// \brief Add link options implied by the given module, including modules 972 /// it depends on, using a postorder walk. 973 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 974 SmallVectorImpl<llvm::Metadata *> &Metadata, 975 llvm::SmallPtrSet<Module *, 16> &Visited) { 976 // Import this module's parent. 977 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 978 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 979 } 980 981 // Import this module's dependencies. 982 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 983 if (Visited.insert(Mod->Imports[I - 1]).second) 984 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 985 } 986 987 // Add linker options to link against the libraries/frameworks 988 // described by this module. 989 llvm::LLVMContext &Context = CGM.getLLVMContext(); 990 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 991 // Link against a framework. Frameworks are currently Darwin only, so we 992 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 993 if (Mod->LinkLibraries[I-1].IsFramework) { 994 llvm::Metadata *Args[2] = { 995 llvm::MDString::get(Context, "-framework"), 996 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 997 998 Metadata.push_back(llvm::MDNode::get(Context, Args)); 999 continue; 1000 } 1001 1002 // Link against a library. 1003 llvm::SmallString<24> Opt; 1004 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1005 Mod->LinkLibraries[I-1].Library, Opt); 1006 auto *OptString = llvm::MDString::get(Context, Opt); 1007 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1008 } 1009 } 1010 1011 void CodeGenModule::EmitModuleLinkOptions() { 1012 // Collect the set of all of the modules we want to visit to emit link 1013 // options, which is essentially the imported modules and all of their 1014 // non-explicit child modules. 1015 llvm::SetVector<clang::Module *> LinkModules; 1016 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1017 SmallVector<clang::Module *, 16> Stack; 1018 1019 // Seed the stack with imported modules. 1020 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1021 MEnd = ImportedModules.end(); 1022 M != MEnd; ++M) { 1023 if (Visited.insert(*M).second) 1024 Stack.push_back(*M); 1025 } 1026 1027 // Find all of the modules to import, making a little effort to prune 1028 // non-leaf modules. 1029 while (!Stack.empty()) { 1030 clang::Module *Mod = Stack.pop_back_val(); 1031 1032 bool AnyChildren = false; 1033 1034 // Visit the submodules of this module. 1035 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1036 SubEnd = Mod->submodule_end(); 1037 Sub != SubEnd; ++Sub) { 1038 // Skip explicit children; they need to be explicitly imported to be 1039 // linked against. 1040 if ((*Sub)->IsExplicit) 1041 continue; 1042 1043 if (Visited.insert(*Sub).second) { 1044 Stack.push_back(*Sub); 1045 AnyChildren = true; 1046 } 1047 } 1048 1049 // We didn't find any children, so add this module to the list of 1050 // modules to link against. 1051 if (!AnyChildren) { 1052 LinkModules.insert(Mod); 1053 } 1054 } 1055 1056 // Add link options for all of the imported modules in reverse topological 1057 // order. We don't do anything to try to order import link flags with respect 1058 // to linker options inserted by things like #pragma comment(). 1059 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1060 Visited.clear(); 1061 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1062 MEnd = LinkModules.end(); 1063 M != MEnd; ++M) { 1064 if (Visited.insert(*M).second) 1065 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1066 } 1067 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1068 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1069 1070 // Add the linker options metadata flag. 1071 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1072 llvm::MDNode::get(getLLVMContext(), 1073 LinkerOptionsMetadata)); 1074 } 1075 1076 void CodeGenModule::EmitDeferred() { 1077 // Emit code for any potentially referenced deferred decls. Since a 1078 // previously unused static decl may become used during the generation of code 1079 // for a static function, iterate until no changes are made. 1080 1081 if (!DeferredVTables.empty()) { 1082 EmitDeferredVTables(); 1083 1084 // Emitting a v-table doesn't directly cause more v-tables to 1085 // become deferred, although it can cause functions to be 1086 // emitted that then need those v-tables. 1087 assert(DeferredVTables.empty()); 1088 } 1089 1090 // Stop if we're out of both deferred v-tables and deferred declarations. 1091 if (DeferredDeclsToEmit.empty()) 1092 return; 1093 1094 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1095 // work, it will not interfere with this. 1096 std::vector<DeferredGlobal> CurDeclsToEmit; 1097 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1098 1099 for (DeferredGlobal &G : CurDeclsToEmit) { 1100 GlobalDecl D = G.GD; 1101 llvm::GlobalValue *GV = G.GV; 1102 G.GV = nullptr; 1103 1104 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1105 if (!GV) 1106 GV = GetGlobalValue(getMangledName(D)); 1107 1108 // Check to see if we've already emitted this. This is necessary 1109 // for a couple of reasons: first, decls can end up in the 1110 // deferred-decls queue multiple times, and second, decls can end 1111 // up with definitions in unusual ways (e.g. by an extern inline 1112 // function acquiring a strong function redefinition). Just 1113 // ignore these cases. 1114 if (GV && !GV->isDeclaration()) 1115 continue; 1116 1117 // Otherwise, emit the definition and move on to the next one. 1118 EmitGlobalDefinition(D, GV); 1119 1120 // If we found out that we need to emit more decls, do that recursively. 1121 // This has the advantage that the decls are emitted in a DFS and related 1122 // ones are close together, which is convenient for testing. 1123 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1124 EmitDeferred(); 1125 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1126 } 1127 } 1128 } 1129 1130 void CodeGenModule::EmitGlobalAnnotations() { 1131 if (Annotations.empty()) 1132 return; 1133 1134 // Create a new global variable for the ConstantStruct in the Module. 1135 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1136 Annotations[0]->getType(), Annotations.size()), Annotations); 1137 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1138 llvm::GlobalValue::AppendingLinkage, 1139 Array, "llvm.global.annotations"); 1140 gv->setSection(AnnotationSection); 1141 } 1142 1143 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1144 llvm::Constant *&AStr = AnnotationStrings[Str]; 1145 if (AStr) 1146 return AStr; 1147 1148 // Not found yet, create a new global. 1149 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1150 auto *gv = 1151 new llvm::GlobalVariable(getModule(), s->getType(), true, 1152 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1153 gv->setSection(AnnotationSection); 1154 gv->setUnnamedAddr(true); 1155 AStr = gv; 1156 return gv; 1157 } 1158 1159 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1160 SourceManager &SM = getContext().getSourceManager(); 1161 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1162 if (PLoc.isValid()) 1163 return EmitAnnotationString(PLoc.getFilename()); 1164 return EmitAnnotationString(SM.getBufferName(Loc)); 1165 } 1166 1167 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1168 SourceManager &SM = getContext().getSourceManager(); 1169 PresumedLoc PLoc = SM.getPresumedLoc(L); 1170 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1171 SM.getExpansionLineNumber(L); 1172 return llvm::ConstantInt::get(Int32Ty, LineNo); 1173 } 1174 1175 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1176 const AnnotateAttr *AA, 1177 SourceLocation L) { 1178 // Get the globals for file name, annotation, and the line number. 1179 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1180 *UnitGV = EmitAnnotationUnit(L), 1181 *LineNoCst = EmitAnnotationLineNo(L); 1182 1183 // Create the ConstantStruct for the global annotation. 1184 llvm::Constant *Fields[4] = { 1185 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1186 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1187 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1188 LineNoCst 1189 }; 1190 return llvm::ConstantStruct::getAnon(Fields); 1191 } 1192 1193 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1194 llvm::GlobalValue *GV) { 1195 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1196 // Get the struct elements for these annotations. 1197 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1198 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1199 } 1200 1201 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1202 SourceLocation Loc) const { 1203 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1204 // Blacklist by function name. 1205 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1206 return true; 1207 // Blacklist by location. 1208 if (!Loc.isInvalid()) 1209 return SanitizerBL.isBlacklistedLocation(Loc); 1210 // If location is unknown, this may be a compiler-generated function. Assume 1211 // it's located in the main file. 1212 auto &SM = Context.getSourceManager(); 1213 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1214 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1215 } 1216 return false; 1217 } 1218 1219 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1220 SourceLocation Loc, QualType Ty, 1221 StringRef Category) const { 1222 // For now globals can be blacklisted only in ASan. 1223 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1224 return false; 1225 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1226 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1227 return true; 1228 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1229 return true; 1230 // Check global type. 1231 if (!Ty.isNull()) { 1232 // Drill down the array types: if global variable of a fixed type is 1233 // blacklisted, we also don't instrument arrays of them. 1234 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1235 Ty = AT->getElementType(); 1236 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1237 // We allow to blacklist only record types (classes, structs etc.) 1238 if (Ty->isRecordType()) { 1239 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1240 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1241 return true; 1242 } 1243 } 1244 return false; 1245 } 1246 1247 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1248 // Never defer when EmitAllDecls is specified. 1249 if (LangOpts.EmitAllDecls) 1250 return true; 1251 1252 return getContext().DeclMustBeEmitted(Global); 1253 } 1254 1255 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1256 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1257 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1258 // Implicit template instantiations may change linkage if they are later 1259 // explicitly instantiated, so they should not be emitted eagerly. 1260 return false; 1261 1262 return true; 1263 } 1264 1265 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1266 const CXXUuidofExpr* E) { 1267 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1268 // well-formed. 1269 StringRef Uuid = E->getUuidAsStringRef(Context); 1270 std::string Name = "_GUID_" + Uuid.lower(); 1271 std::replace(Name.begin(), Name.end(), '-', '_'); 1272 1273 // Look for an existing global. 1274 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1275 return GV; 1276 1277 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1278 assert(Init && "failed to initialize as constant"); 1279 1280 auto *GV = new llvm::GlobalVariable( 1281 getModule(), Init->getType(), 1282 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1283 if (supportsCOMDAT()) 1284 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1285 return GV; 1286 } 1287 1288 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1289 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1290 assert(AA && "No alias?"); 1291 1292 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1293 1294 // See if there is already something with the target's name in the module. 1295 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1296 if (Entry) { 1297 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1298 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1299 } 1300 1301 llvm::Constant *Aliasee; 1302 if (isa<llvm::FunctionType>(DeclTy)) 1303 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1304 GlobalDecl(cast<FunctionDecl>(VD)), 1305 /*ForVTable=*/false); 1306 else 1307 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1308 llvm::PointerType::getUnqual(DeclTy), 1309 nullptr); 1310 1311 auto *F = cast<llvm::GlobalValue>(Aliasee); 1312 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1313 WeakRefReferences.insert(F); 1314 1315 return Aliasee; 1316 } 1317 1318 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1319 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1320 1321 // Weak references don't produce any output by themselves. 1322 if (Global->hasAttr<WeakRefAttr>()) 1323 return; 1324 1325 // If this is an alias definition (which otherwise looks like a declaration) 1326 // emit it now. 1327 if (Global->hasAttr<AliasAttr>()) 1328 return EmitAliasDefinition(GD); 1329 1330 // If this is CUDA, be selective about which declarations we emit. 1331 if (LangOpts.CUDA) { 1332 if (LangOpts.CUDAIsDevice) { 1333 if (!Global->hasAttr<CUDADeviceAttr>() && 1334 !Global->hasAttr<CUDAGlobalAttr>() && 1335 !Global->hasAttr<CUDAConstantAttr>() && 1336 !Global->hasAttr<CUDASharedAttr>()) 1337 return; 1338 } else { 1339 if (!Global->hasAttr<CUDAHostAttr>() && ( 1340 Global->hasAttr<CUDADeviceAttr>() || 1341 Global->hasAttr<CUDAConstantAttr>() || 1342 Global->hasAttr<CUDASharedAttr>())) 1343 return; 1344 } 1345 } 1346 1347 // Ignore declarations, they will be emitted on their first use. 1348 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1349 // Forward declarations are emitted lazily on first use. 1350 if (!FD->doesThisDeclarationHaveABody()) { 1351 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1352 return; 1353 1354 StringRef MangledName = getMangledName(GD); 1355 1356 // Compute the function info and LLVM type. 1357 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1358 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1359 1360 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1361 /*DontDefer=*/false); 1362 return; 1363 } 1364 } else { 1365 const auto *VD = cast<VarDecl>(Global); 1366 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1367 1368 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1369 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1370 return; 1371 } 1372 1373 // Defer code generation to first use when possible, e.g. if this is an inline 1374 // function. If the global must always be emitted, do it eagerly if possible 1375 // to benefit from cache locality. 1376 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1377 // Emit the definition if it can't be deferred. 1378 EmitGlobalDefinition(GD); 1379 return; 1380 } 1381 1382 // If we're deferring emission of a C++ variable with an 1383 // initializer, remember the order in which it appeared in the file. 1384 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1385 cast<VarDecl>(Global)->hasInit()) { 1386 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1387 CXXGlobalInits.push_back(nullptr); 1388 } 1389 1390 StringRef MangledName = getMangledName(GD); 1391 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1392 // The value has already been used and should therefore be emitted. 1393 addDeferredDeclToEmit(GV, GD); 1394 } else if (MustBeEmitted(Global)) { 1395 // The value must be emitted, but cannot be emitted eagerly. 1396 assert(!MayBeEmittedEagerly(Global)); 1397 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1398 } else { 1399 // Otherwise, remember that we saw a deferred decl with this name. The 1400 // first use of the mangled name will cause it to move into 1401 // DeferredDeclsToEmit. 1402 DeferredDecls[MangledName] = GD; 1403 } 1404 } 1405 1406 namespace { 1407 struct FunctionIsDirectlyRecursive : 1408 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1409 const StringRef Name; 1410 const Builtin::Context &BI; 1411 bool Result; 1412 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1413 Name(N), BI(C), Result(false) { 1414 } 1415 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1416 1417 bool TraverseCallExpr(CallExpr *E) { 1418 const FunctionDecl *FD = E->getDirectCallee(); 1419 if (!FD) 1420 return true; 1421 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1422 if (Attr && Name == Attr->getLabel()) { 1423 Result = true; 1424 return false; 1425 } 1426 unsigned BuiltinID = FD->getBuiltinID(); 1427 if (!BuiltinID) 1428 return true; 1429 StringRef BuiltinName = BI.GetName(BuiltinID); 1430 if (BuiltinName.startswith("__builtin_") && 1431 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1432 Result = true; 1433 return false; 1434 } 1435 return true; 1436 } 1437 }; 1438 } 1439 1440 // isTriviallyRecursive - Check if this function calls another 1441 // decl that, because of the asm attribute or the other decl being a builtin, 1442 // ends up pointing to itself. 1443 bool 1444 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1445 StringRef Name; 1446 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1447 // asm labels are a special kind of mangling we have to support. 1448 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1449 if (!Attr) 1450 return false; 1451 Name = Attr->getLabel(); 1452 } else { 1453 Name = FD->getName(); 1454 } 1455 1456 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1457 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1458 return Walker.Result; 1459 } 1460 1461 bool 1462 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1463 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1464 return true; 1465 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1466 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1467 return false; 1468 // PR9614. Avoid cases where the source code is lying to us. An available 1469 // externally function should have an equivalent function somewhere else, 1470 // but a function that calls itself is clearly not equivalent to the real 1471 // implementation. 1472 // This happens in glibc's btowc and in some configure checks. 1473 return !isTriviallyRecursive(F); 1474 } 1475 1476 /// If the type for the method's class was generated by 1477 /// CGDebugInfo::createContextChain(), the cache contains only a 1478 /// limited DIType without any declarations. Since EmitFunctionStart() 1479 /// needs to find the canonical declaration for each method, we need 1480 /// to construct the complete type prior to emitting the method. 1481 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1482 if (!D->isInstance()) 1483 return; 1484 1485 if (CGDebugInfo *DI = getModuleDebugInfo()) 1486 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1487 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1488 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1489 } 1490 } 1491 1492 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1493 const auto *D = cast<ValueDecl>(GD.getDecl()); 1494 1495 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1496 Context.getSourceManager(), 1497 "Generating code for declaration"); 1498 1499 if (isa<FunctionDecl>(D)) { 1500 // At -O0, don't generate IR for functions with available_externally 1501 // linkage. 1502 if (!shouldEmitFunction(GD)) 1503 return; 1504 1505 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1506 CompleteDIClassType(Method); 1507 // Make sure to emit the definition(s) before we emit the thunks. 1508 // This is necessary for the generation of certain thunks. 1509 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1510 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1511 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1512 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1513 else 1514 EmitGlobalFunctionDefinition(GD, GV); 1515 1516 if (Method->isVirtual()) 1517 getVTables().EmitThunks(GD); 1518 1519 return; 1520 } 1521 1522 return EmitGlobalFunctionDefinition(GD, GV); 1523 } 1524 1525 if (const auto *VD = dyn_cast<VarDecl>(D)) 1526 return EmitGlobalVarDefinition(VD); 1527 1528 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1529 } 1530 1531 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1532 /// module, create and return an llvm Function with the specified type. If there 1533 /// is something in the module with the specified name, return it potentially 1534 /// bitcasted to the right type. 1535 /// 1536 /// If D is non-null, it specifies a decl that correspond to this. This is used 1537 /// to set the attributes on the function when it is first created. 1538 llvm::Constant * 1539 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1540 llvm::Type *Ty, 1541 GlobalDecl GD, bool ForVTable, 1542 bool DontDefer, bool IsThunk, 1543 llvm::AttributeSet ExtraAttrs) { 1544 const Decl *D = GD.getDecl(); 1545 1546 // Lookup the entry, lazily creating it if necessary. 1547 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1548 if (Entry) { 1549 if (WeakRefReferences.erase(Entry)) { 1550 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1551 if (FD && !FD->hasAttr<WeakAttr>()) 1552 Entry->setLinkage(llvm::Function::ExternalLinkage); 1553 } 1554 1555 // Handle dropped DLL attributes. 1556 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1557 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1558 1559 if (Entry->getType()->getElementType() == Ty) 1560 return Entry; 1561 1562 // Make sure the result is of the correct type. 1563 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1564 } 1565 1566 // This function doesn't have a complete type (for example, the return 1567 // type is an incomplete struct). Use a fake type instead, and make 1568 // sure not to try to set attributes. 1569 bool IsIncompleteFunction = false; 1570 1571 llvm::FunctionType *FTy; 1572 if (isa<llvm::FunctionType>(Ty)) { 1573 FTy = cast<llvm::FunctionType>(Ty); 1574 } else { 1575 FTy = llvm::FunctionType::get(VoidTy, false); 1576 IsIncompleteFunction = true; 1577 } 1578 1579 llvm::Function *F = llvm::Function::Create(FTy, 1580 llvm::Function::ExternalLinkage, 1581 MangledName, &getModule()); 1582 assert(F->getName() == MangledName && "name was uniqued!"); 1583 if (D) 1584 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1585 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1586 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1587 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1588 llvm::AttributeSet::get(VMContext, 1589 llvm::AttributeSet::FunctionIndex, 1590 B)); 1591 } 1592 1593 if (!DontDefer) { 1594 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1595 // each other bottoming out with the base dtor. Therefore we emit non-base 1596 // dtors on usage, even if there is no dtor definition in the TU. 1597 if (D && isa<CXXDestructorDecl>(D) && 1598 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1599 GD.getDtorType())) 1600 addDeferredDeclToEmit(F, GD); 1601 1602 // This is the first use or definition of a mangled name. If there is a 1603 // deferred decl with this name, remember that we need to emit it at the end 1604 // of the file. 1605 auto DDI = DeferredDecls.find(MangledName); 1606 if (DDI != DeferredDecls.end()) { 1607 // Move the potentially referenced deferred decl to the 1608 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1609 // don't need it anymore). 1610 addDeferredDeclToEmit(F, DDI->second); 1611 DeferredDecls.erase(DDI); 1612 1613 // Otherwise, there are cases we have to worry about where we're 1614 // using a declaration for which we must emit a definition but where 1615 // we might not find a top-level definition: 1616 // - member functions defined inline in their classes 1617 // - friend functions defined inline in some class 1618 // - special member functions with implicit definitions 1619 // If we ever change our AST traversal to walk into class methods, 1620 // this will be unnecessary. 1621 // 1622 // We also don't emit a definition for a function if it's going to be an 1623 // entry in a vtable, unless it's already marked as used. 1624 } else if (getLangOpts().CPlusPlus && D) { 1625 // Look for a declaration that's lexically in a record. 1626 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1627 FD = FD->getPreviousDecl()) { 1628 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1629 if (FD->doesThisDeclarationHaveABody()) { 1630 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1631 break; 1632 } 1633 } 1634 } 1635 } 1636 } 1637 1638 // Make sure the result is of the requested type. 1639 if (!IsIncompleteFunction) { 1640 assert(F->getType()->getElementType() == Ty); 1641 return F; 1642 } 1643 1644 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1645 return llvm::ConstantExpr::getBitCast(F, PTy); 1646 } 1647 1648 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1649 /// non-null, then this function will use the specified type if it has to 1650 /// create it (this occurs when we see a definition of the function). 1651 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1652 llvm::Type *Ty, 1653 bool ForVTable, 1654 bool DontDefer) { 1655 // If there was no specific requested type, just convert it now. 1656 if (!Ty) 1657 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1658 1659 StringRef MangledName = getMangledName(GD); 1660 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1661 } 1662 1663 /// CreateRuntimeFunction - Create a new runtime function with the specified 1664 /// type and name. 1665 llvm::Constant * 1666 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1667 StringRef Name, 1668 llvm::AttributeSet ExtraAttrs) { 1669 llvm::Constant *C = 1670 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1671 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1672 if (auto *F = dyn_cast<llvm::Function>(C)) 1673 if (F->empty()) 1674 F->setCallingConv(getRuntimeCC()); 1675 return C; 1676 } 1677 1678 /// CreateBuiltinFunction - Create a new builtin function with the specified 1679 /// type and name. 1680 llvm::Constant * 1681 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1682 StringRef Name, 1683 llvm::AttributeSet ExtraAttrs) { 1684 llvm::Constant *C = 1685 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1686 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1687 if (auto *F = dyn_cast<llvm::Function>(C)) 1688 if (F->empty()) 1689 F->setCallingConv(getBuiltinCC()); 1690 return C; 1691 } 1692 1693 /// isTypeConstant - Determine whether an object of this type can be emitted 1694 /// as a constant. 1695 /// 1696 /// If ExcludeCtor is true, the duration when the object's constructor runs 1697 /// will not be considered. The caller will need to verify that the object is 1698 /// not written to during its construction. 1699 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1700 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1701 return false; 1702 1703 if (Context.getLangOpts().CPlusPlus) { 1704 if (const CXXRecordDecl *Record 1705 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1706 return ExcludeCtor && !Record->hasMutableFields() && 1707 Record->hasTrivialDestructor(); 1708 } 1709 1710 return true; 1711 } 1712 1713 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1714 /// create and return an llvm GlobalVariable with the specified type. If there 1715 /// is something in the module with the specified name, return it potentially 1716 /// bitcasted to the right type. 1717 /// 1718 /// If D is non-null, it specifies a decl that correspond to this. This is used 1719 /// to set the attributes on the global when it is first created. 1720 llvm::Constant * 1721 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1722 llvm::PointerType *Ty, 1723 const VarDecl *D) { 1724 // Lookup the entry, lazily creating it if necessary. 1725 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1726 if (Entry) { 1727 if (WeakRefReferences.erase(Entry)) { 1728 if (D && !D->hasAttr<WeakAttr>()) 1729 Entry->setLinkage(llvm::Function::ExternalLinkage); 1730 } 1731 1732 // Handle dropped DLL attributes. 1733 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1734 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1735 1736 if (Entry->getType() == Ty) 1737 return Entry; 1738 1739 // Make sure the result is of the correct type. 1740 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1741 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1742 1743 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1744 } 1745 1746 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1747 auto *GV = new llvm::GlobalVariable( 1748 getModule(), Ty->getElementType(), false, 1749 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1750 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1751 1752 // This is the first use or definition of a mangled name. If there is a 1753 // deferred decl with this name, remember that we need to emit it at the end 1754 // of the file. 1755 auto DDI = DeferredDecls.find(MangledName); 1756 if (DDI != DeferredDecls.end()) { 1757 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1758 // list, and remove it from DeferredDecls (since we don't need it anymore). 1759 addDeferredDeclToEmit(GV, DDI->second); 1760 DeferredDecls.erase(DDI); 1761 } 1762 1763 // Handle things which are present even on external declarations. 1764 if (D) { 1765 // FIXME: This code is overly simple and should be merged with other global 1766 // handling. 1767 GV->setConstant(isTypeConstant(D->getType(), false)); 1768 1769 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1770 1771 setLinkageAndVisibilityForGV(GV, D); 1772 1773 if (D->getTLSKind()) { 1774 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1775 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1776 setTLSMode(GV, *D); 1777 } 1778 1779 // If required by the ABI, treat declarations of static data members with 1780 // inline initializers as definitions. 1781 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1782 EmitGlobalVarDefinition(D); 1783 } 1784 1785 // Handle XCore specific ABI requirements. 1786 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1787 D->getLanguageLinkage() == CLanguageLinkage && 1788 D->getType().isConstant(Context) && 1789 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1790 GV->setSection(".cp.rodata"); 1791 } 1792 1793 if (AddrSpace != Ty->getAddressSpace()) 1794 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1795 1796 return GV; 1797 } 1798 1799 1800 llvm::GlobalVariable * 1801 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1802 llvm::Type *Ty, 1803 llvm::GlobalValue::LinkageTypes Linkage) { 1804 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1805 llvm::GlobalVariable *OldGV = nullptr; 1806 1807 if (GV) { 1808 // Check if the variable has the right type. 1809 if (GV->getType()->getElementType() == Ty) 1810 return GV; 1811 1812 // Because C++ name mangling, the only way we can end up with an already 1813 // existing global with the same name is if it has been declared extern "C". 1814 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1815 OldGV = GV; 1816 } 1817 1818 // Create a new variable. 1819 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1820 Linkage, nullptr, Name); 1821 1822 if (OldGV) { 1823 // Replace occurrences of the old variable if needed. 1824 GV->takeName(OldGV); 1825 1826 if (!OldGV->use_empty()) { 1827 llvm::Constant *NewPtrForOldDecl = 1828 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1829 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1830 } 1831 1832 OldGV->eraseFromParent(); 1833 } 1834 1835 if (supportsCOMDAT() && GV->isWeakForLinker() && 1836 !GV->hasAvailableExternallyLinkage()) 1837 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1838 1839 return GV; 1840 } 1841 1842 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1843 /// given global variable. If Ty is non-null and if the global doesn't exist, 1844 /// then it will be created with the specified type instead of whatever the 1845 /// normal requested type would be. 1846 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1847 llvm::Type *Ty) { 1848 assert(D->hasGlobalStorage() && "Not a global variable"); 1849 QualType ASTTy = D->getType(); 1850 if (!Ty) 1851 Ty = getTypes().ConvertTypeForMem(ASTTy); 1852 1853 llvm::PointerType *PTy = 1854 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1855 1856 StringRef MangledName = getMangledName(D); 1857 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1858 } 1859 1860 /// CreateRuntimeVariable - Create a new runtime global variable with the 1861 /// specified type and name. 1862 llvm::Constant * 1863 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1864 StringRef Name) { 1865 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1866 } 1867 1868 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1869 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1870 1871 if (!MustBeEmitted(D)) { 1872 // If we have not seen a reference to this variable yet, place it 1873 // into the deferred declarations table to be emitted if needed 1874 // later. 1875 StringRef MangledName = getMangledName(D); 1876 if (!GetGlobalValue(MangledName)) { 1877 DeferredDecls[MangledName] = D; 1878 return; 1879 } 1880 } 1881 1882 // The tentative definition is the only definition. 1883 EmitGlobalVarDefinition(D); 1884 } 1885 1886 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1887 return Context.toCharUnitsFromBits( 1888 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1889 } 1890 1891 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1892 unsigned AddrSpace) { 1893 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 1894 if (D->hasAttr<CUDAConstantAttr>()) 1895 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1896 else if (D->hasAttr<CUDASharedAttr>()) 1897 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1898 else 1899 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1900 } 1901 1902 return AddrSpace; 1903 } 1904 1905 template<typename SomeDecl> 1906 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1907 llvm::GlobalValue *GV) { 1908 if (!getLangOpts().CPlusPlus) 1909 return; 1910 1911 // Must have 'used' attribute, or else inline assembly can't rely on 1912 // the name existing. 1913 if (!D->template hasAttr<UsedAttr>()) 1914 return; 1915 1916 // Must have internal linkage and an ordinary name. 1917 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1918 return; 1919 1920 // Must be in an extern "C" context. Entities declared directly within 1921 // a record are not extern "C" even if the record is in such a context. 1922 const SomeDecl *First = D->getFirstDecl(); 1923 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1924 return; 1925 1926 // OK, this is an internal linkage entity inside an extern "C" linkage 1927 // specification. Make a note of that so we can give it the "expected" 1928 // mangled name if nothing else is using that name. 1929 std::pair<StaticExternCMap::iterator, bool> R = 1930 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1931 1932 // If we have multiple internal linkage entities with the same name 1933 // in extern "C" regions, none of them gets that name. 1934 if (!R.second) 1935 R.first->second = nullptr; 1936 } 1937 1938 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1939 if (!CGM.supportsCOMDAT()) 1940 return false; 1941 1942 if (D.hasAttr<SelectAnyAttr>()) 1943 return true; 1944 1945 GVALinkage Linkage; 1946 if (auto *VD = dyn_cast<VarDecl>(&D)) 1947 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1948 else 1949 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1950 1951 switch (Linkage) { 1952 case GVA_Internal: 1953 case GVA_AvailableExternally: 1954 case GVA_StrongExternal: 1955 return false; 1956 case GVA_DiscardableODR: 1957 case GVA_StrongODR: 1958 return true; 1959 } 1960 llvm_unreachable("No such linkage"); 1961 } 1962 1963 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1964 llvm::GlobalObject &GO) { 1965 if (!shouldBeInCOMDAT(*this, D)) 1966 return; 1967 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1968 } 1969 1970 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1971 llvm::Constant *Init = nullptr; 1972 QualType ASTTy = D->getType(); 1973 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1974 bool NeedsGlobalCtor = false; 1975 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1976 1977 const VarDecl *InitDecl; 1978 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1979 1980 if (!InitExpr) { 1981 // This is a tentative definition; tentative definitions are 1982 // implicitly initialized with { 0 }. 1983 // 1984 // Note that tentative definitions are only emitted at the end of 1985 // a translation unit, so they should never have incomplete 1986 // type. In addition, EmitTentativeDefinition makes sure that we 1987 // never attempt to emit a tentative definition if a real one 1988 // exists. A use may still exists, however, so we still may need 1989 // to do a RAUW. 1990 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1991 Init = EmitNullConstant(D->getType()); 1992 } else { 1993 initializedGlobalDecl = GlobalDecl(D); 1994 Init = EmitConstantInit(*InitDecl); 1995 1996 if (!Init) { 1997 QualType T = InitExpr->getType(); 1998 if (D->getType()->isReferenceType()) 1999 T = D->getType(); 2000 2001 if (getLangOpts().CPlusPlus) { 2002 Init = EmitNullConstant(T); 2003 NeedsGlobalCtor = true; 2004 } else { 2005 ErrorUnsupported(D, "static initializer"); 2006 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2007 } 2008 } else { 2009 // We don't need an initializer, so remove the entry for the delayed 2010 // initializer position (just in case this entry was delayed) if we 2011 // also don't need to register a destructor. 2012 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2013 DelayedCXXInitPosition.erase(D); 2014 } 2015 } 2016 2017 llvm::Type* InitType = Init->getType(); 2018 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2019 2020 // Strip off a bitcast if we got one back. 2021 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2022 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2023 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2024 // All zero index gep. 2025 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2026 Entry = CE->getOperand(0); 2027 } 2028 2029 // Entry is now either a Function or GlobalVariable. 2030 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2031 2032 // We have a definition after a declaration with the wrong type. 2033 // We must make a new GlobalVariable* and update everything that used OldGV 2034 // (a declaration or tentative definition) with the new GlobalVariable* 2035 // (which will be a definition). 2036 // 2037 // This happens if there is a prototype for a global (e.g. 2038 // "extern int x[];") and then a definition of a different type (e.g. 2039 // "int x[10];"). This also happens when an initializer has a different type 2040 // from the type of the global (this happens with unions). 2041 if (!GV || 2042 GV->getType()->getElementType() != InitType || 2043 GV->getType()->getAddressSpace() != 2044 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2045 2046 // Move the old entry aside so that we'll create a new one. 2047 Entry->setName(StringRef()); 2048 2049 // Make a new global with the correct type, this is now guaranteed to work. 2050 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2051 2052 // Replace all uses of the old global with the new global 2053 llvm::Constant *NewPtrForOldDecl = 2054 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2055 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2056 2057 // Erase the old global, since it is no longer used. 2058 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2059 } 2060 2061 MaybeHandleStaticInExternC(D, GV); 2062 2063 if (D->hasAttr<AnnotateAttr>()) 2064 AddGlobalAnnotations(D, GV); 2065 2066 GV->setInitializer(Init); 2067 2068 // If it is safe to mark the global 'constant', do so now. 2069 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2070 isTypeConstant(D->getType(), true)); 2071 2072 // If it is in a read-only section, mark it 'constant'. 2073 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2074 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2075 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2076 GV->setConstant(true); 2077 } 2078 2079 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2080 2081 // Set the llvm linkage type as appropriate. 2082 llvm::GlobalValue::LinkageTypes Linkage = 2083 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2084 2085 // On Darwin, the backing variable for a C++11 thread_local variable always 2086 // has internal linkage; all accesses should just be calls to the 2087 // Itanium-specified entry point, which has the normal linkage of the 2088 // variable. 2089 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2090 Context.getTargetInfo().getTriple().isMacOSX()) 2091 Linkage = llvm::GlobalValue::InternalLinkage; 2092 2093 GV->setLinkage(Linkage); 2094 if (D->hasAttr<DLLImportAttr>()) 2095 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2096 else if (D->hasAttr<DLLExportAttr>()) 2097 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2098 else 2099 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2100 2101 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2102 // common vars aren't constant even if declared const. 2103 GV->setConstant(false); 2104 2105 setNonAliasAttributes(D, GV); 2106 2107 if (D->getTLSKind() && !GV->isThreadLocal()) { 2108 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2109 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2110 setTLSMode(GV, *D); 2111 } 2112 2113 maybeSetTrivialComdat(*D, *GV); 2114 2115 // Emit the initializer function if necessary. 2116 if (NeedsGlobalCtor || NeedsGlobalDtor) 2117 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2118 2119 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2120 2121 // Emit global variable debug information. 2122 if (CGDebugInfo *DI = getModuleDebugInfo()) 2123 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2124 DI->EmitGlobalVariable(GV, D); 2125 } 2126 2127 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2128 CodeGenModule &CGM, const VarDecl *D, 2129 bool NoCommon) { 2130 // Don't give variables common linkage if -fno-common was specified unless it 2131 // was overridden by a NoCommon attribute. 2132 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2133 return true; 2134 2135 // C11 6.9.2/2: 2136 // A declaration of an identifier for an object that has file scope without 2137 // an initializer, and without a storage-class specifier or with the 2138 // storage-class specifier static, constitutes a tentative definition. 2139 if (D->getInit() || D->hasExternalStorage()) 2140 return true; 2141 2142 // A variable cannot be both common and exist in a section. 2143 if (D->hasAttr<SectionAttr>()) 2144 return true; 2145 2146 // Thread local vars aren't considered common linkage. 2147 if (D->getTLSKind()) 2148 return true; 2149 2150 // Tentative definitions marked with WeakImportAttr are true definitions. 2151 if (D->hasAttr<WeakImportAttr>()) 2152 return true; 2153 2154 // A variable cannot be both common and exist in a comdat. 2155 if (shouldBeInCOMDAT(CGM, *D)) 2156 return true; 2157 2158 // Declarations with a required alignment do not have common linakge in MSVC 2159 // mode. 2160 if (Context.getLangOpts().MSVCCompat) { 2161 if (D->hasAttr<AlignedAttr>()) 2162 return true; 2163 QualType VarType = D->getType(); 2164 if (Context.isAlignmentRequired(VarType)) 2165 return true; 2166 2167 if (const auto *RT = VarType->getAs<RecordType>()) { 2168 const RecordDecl *RD = RT->getDecl(); 2169 for (const FieldDecl *FD : RD->fields()) { 2170 if (FD->isBitField()) 2171 continue; 2172 if (FD->hasAttr<AlignedAttr>()) 2173 return true; 2174 if (Context.isAlignmentRequired(FD->getType())) 2175 return true; 2176 } 2177 } 2178 } 2179 2180 return false; 2181 } 2182 2183 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2184 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2185 if (Linkage == GVA_Internal) 2186 return llvm::Function::InternalLinkage; 2187 2188 if (D->hasAttr<WeakAttr>()) { 2189 if (IsConstantVariable) 2190 return llvm::GlobalVariable::WeakODRLinkage; 2191 else 2192 return llvm::GlobalVariable::WeakAnyLinkage; 2193 } 2194 2195 // We are guaranteed to have a strong definition somewhere else, 2196 // so we can use available_externally linkage. 2197 if (Linkage == GVA_AvailableExternally) 2198 return llvm::Function::AvailableExternallyLinkage; 2199 2200 // Note that Apple's kernel linker doesn't support symbol 2201 // coalescing, so we need to avoid linkonce and weak linkages there. 2202 // Normally, this means we just map to internal, but for explicit 2203 // instantiations we'll map to external. 2204 2205 // In C++, the compiler has to emit a definition in every translation unit 2206 // that references the function. We should use linkonce_odr because 2207 // a) if all references in this translation unit are optimized away, we 2208 // don't need to codegen it. b) if the function persists, it needs to be 2209 // merged with other definitions. c) C++ has the ODR, so we know the 2210 // definition is dependable. 2211 if (Linkage == GVA_DiscardableODR) 2212 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2213 : llvm::Function::InternalLinkage; 2214 2215 // An explicit instantiation of a template has weak linkage, since 2216 // explicit instantiations can occur in multiple translation units 2217 // and must all be equivalent. However, we are not allowed to 2218 // throw away these explicit instantiations. 2219 if (Linkage == GVA_StrongODR) 2220 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2221 : llvm::Function::ExternalLinkage; 2222 2223 // C++ doesn't have tentative definitions and thus cannot have common 2224 // linkage. 2225 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2226 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2227 CodeGenOpts.NoCommon)) 2228 return llvm::GlobalVariable::CommonLinkage; 2229 2230 // selectany symbols are externally visible, so use weak instead of 2231 // linkonce. MSVC optimizes away references to const selectany globals, so 2232 // all definitions should be the same and ODR linkage should be used. 2233 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2234 if (D->hasAttr<SelectAnyAttr>()) 2235 return llvm::GlobalVariable::WeakODRLinkage; 2236 2237 // Otherwise, we have strong external linkage. 2238 assert(Linkage == GVA_StrongExternal); 2239 return llvm::GlobalVariable::ExternalLinkage; 2240 } 2241 2242 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2243 const VarDecl *VD, bool IsConstant) { 2244 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2245 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2246 } 2247 2248 /// Replace the uses of a function that was declared with a non-proto type. 2249 /// We want to silently drop extra arguments from call sites 2250 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2251 llvm::Function *newFn) { 2252 // Fast path. 2253 if (old->use_empty()) return; 2254 2255 llvm::Type *newRetTy = newFn->getReturnType(); 2256 SmallVector<llvm::Value*, 4> newArgs; 2257 2258 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2259 ui != ue; ) { 2260 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2261 llvm::User *user = use->getUser(); 2262 2263 // Recognize and replace uses of bitcasts. Most calls to 2264 // unprototyped functions will use bitcasts. 2265 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2266 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2267 replaceUsesOfNonProtoConstant(bitcast, newFn); 2268 continue; 2269 } 2270 2271 // Recognize calls to the function. 2272 llvm::CallSite callSite(user); 2273 if (!callSite) continue; 2274 if (!callSite.isCallee(&*use)) continue; 2275 2276 // If the return types don't match exactly, then we can't 2277 // transform this call unless it's dead. 2278 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2279 continue; 2280 2281 // Get the call site's attribute list. 2282 SmallVector<llvm::AttributeSet, 8> newAttrs; 2283 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2284 2285 // Collect any return attributes from the call. 2286 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2287 newAttrs.push_back( 2288 llvm::AttributeSet::get(newFn->getContext(), 2289 oldAttrs.getRetAttributes())); 2290 2291 // If the function was passed too few arguments, don't transform. 2292 unsigned newNumArgs = newFn->arg_size(); 2293 if (callSite.arg_size() < newNumArgs) continue; 2294 2295 // If extra arguments were passed, we silently drop them. 2296 // If any of the types mismatch, we don't transform. 2297 unsigned argNo = 0; 2298 bool dontTransform = false; 2299 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2300 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2301 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2302 dontTransform = true; 2303 break; 2304 } 2305 2306 // Add any parameter attributes. 2307 if (oldAttrs.hasAttributes(argNo + 1)) 2308 newAttrs. 2309 push_back(llvm:: 2310 AttributeSet::get(newFn->getContext(), 2311 oldAttrs.getParamAttributes(argNo + 1))); 2312 } 2313 if (dontTransform) 2314 continue; 2315 2316 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2317 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2318 oldAttrs.getFnAttributes())); 2319 2320 // Okay, we can transform this. Create the new call instruction and copy 2321 // over the required information. 2322 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2323 2324 llvm::CallSite newCall; 2325 if (callSite.isCall()) { 2326 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2327 callSite.getInstruction()); 2328 } else { 2329 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2330 newCall = llvm::InvokeInst::Create(newFn, 2331 oldInvoke->getNormalDest(), 2332 oldInvoke->getUnwindDest(), 2333 newArgs, "", 2334 callSite.getInstruction()); 2335 } 2336 newArgs.clear(); // for the next iteration 2337 2338 if (!newCall->getType()->isVoidTy()) 2339 newCall->takeName(callSite.getInstruction()); 2340 newCall.setAttributes( 2341 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2342 newCall.setCallingConv(callSite.getCallingConv()); 2343 2344 // Finally, remove the old call, replacing any uses with the new one. 2345 if (!callSite->use_empty()) 2346 callSite->replaceAllUsesWith(newCall.getInstruction()); 2347 2348 // Copy debug location attached to CI. 2349 if (callSite->getDebugLoc()) 2350 newCall->setDebugLoc(callSite->getDebugLoc()); 2351 callSite->eraseFromParent(); 2352 } 2353 } 2354 2355 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2356 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2357 /// existing call uses of the old function in the module, this adjusts them to 2358 /// call the new function directly. 2359 /// 2360 /// This is not just a cleanup: the always_inline pass requires direct calls to 2361 /// functions to be able to inline them. If there is a bitcast in the way, it 2362 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2363 /// run at -O0. 2364 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2365 llvm::Function *NewFn) { 2366 // If we're redefining a global as a function, don't transform it. 2367 if (!isa<llvm::Function>(Old)) return; 2368 2369 replaceUsesOfNonProtoConstant(Old, NewFn); 2370 } 2371 2372 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2373 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2374 // If we have a definition, this might be a deferred decl. If the 2375 // instantiation is explicit, make sure we emit it at the end. 2376 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2377 GetAddrOfGlobalVar(VD); 2378 2379 EmitTopLevelDecl(VD); 2380 } 2381 2382 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2383 llvm::GlobalValue *GV) { 2384 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2385 2386 // Compute the function info and LLVM type. 2387 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2388 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2389 2390 // Get or create the prototype for the function. 2391 if (!GV) { 2392 llvm::Constant *C = 2393 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2394 2395 // Strip off a bitcast if we got one back. 2396 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2397 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2398 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2399 } else { 2400 GV = cast<llvm::GlobalValue>(C); 2401 } 2402 } 2403 2404 if (!GV->isDeclaration()) { 2405 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2406 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2407 if (auto *Prev = OldGD.getDecl()) 2408 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2409 return; 2410 } 2411 2412 if (GV->getType()->getElementType() != Ty) { 2413 // If the types mismatch then we have to rewrite the definition. 2414 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2415 2416 // F is the Function* for the one with the wrong type, we must make a new 2417 // Function* and update everything that used F (a declaration) with the new 2418 // Function* (which will be a definition). 2419 // 2420 // This happens if there is a prototype for a function 2421 // (e.g. "int f()") and then a definition of a different type 2422 // (e.g. "int f(int x)"). Move the old function aside so that it 2423 // doesn't interfere with GetAddrOfFunction. 2424 GV->setName(StringRef()); 2425 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2426 2427 // This might be an implementation of a function without a 2428 // prototype, in which case, try to do special replacement of 2429 // calls which match the new prototype. The really key thing here 2430 // is that we also potentially drop arguments from the call site 2431 // so as to make a direct call, which makes the inliner happier 2432 // and suppresses a number of optimizer warnings (!) about 2433 // dropping arguments. 2434 if (!GV->use_empty()) { 2435 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2436 GV->removeDeadConstantUsers(); 2437 } 2438 2439 // Replace uses of F with the Function we will endow with a body. 2440 if (!GV->use_empty()) { 2441 llvm::Constant *NewPtrForOldDecl = 2442 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2443 GV->replaceAllUsesWith(NewPtrForOldDecl); 2444 } 2445 2446 // Ok, delete the old function now, which is dead. 2447 GV->eraseFromParent(); 2448 2449 GV = NewFn; 2450 } 2451 2452 // We need to set linkage and visibility on the function before 2453 // generating code for it because various parts of IR generation 2454 // want to propagate this information down (e.g. to local static 2455 // declarations). 2456 auto *Fn = cast<llvm::Function>(GV); 2457 setFunctionLinkage(GD, Fn); 2458 if (D->hasAttr<DLLImportAttr>()) 2459 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2460 else if (D->hasAttr<DLLExportAttr>()) 2461 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2462 else 2463 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2464 2465 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2466 setGlobalVisibility(Fn, D); 2467 2468 MaybeHandleStaticInExternC(D, Fn); 2469 2470 maybeSetTrivialComdat(*D, *Fn); 2471 2472 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2473 2474 setFunctionDefinitionAttributes(D, Fn); 2475 SetLLVMFunctionAttributesForDefinition(D, Fn); 2476 2477 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2478 AddGlobalCtor(Fn, CA->getPriority()); 2479 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2480 AddGlobalDtor(Fn, DA->getPriority()); 2481 if (D->hasAttr<AnnotateAttr>()) 2482 AddGlobalAnnotations(D, Fn); 2483 } 2484 2485 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2486 const auto *D = cast<ValueDecl>(GD.getDecl()); 2487 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2488 assert(AA && "Not an alias?"); 2489 2490 StringRef MangledName = getMangledName(GD); 2491 2492 // If there is a definition in the module, then it wins over the alias. 2493 // This is dubious, but allow it to be safe. Just ignore the alias. 2494 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2495 if (Entry && !Entry->isDeclaration()) 2496 return; 2497 2498 Aliases.push_back(GD); 2499 2500 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2501 2502 // Create a reference to the named value. This ensures that it is emitted 2503 // if a deferred decl. 2504 llvm::Constant *Aliasee; 2505 if (isa<llvm::FunctionType>(DeclTy)) 2506 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2507 /*ForVTable=*/false); 2508 else 2509 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2510 llvm::PointerType::getUnqual(DeclTy), 2511 /*D=*/nullptr); 2512 2513 // Create the new alias itself, but don't set a name yet. 2514 auto *GA = llvm::GlobalAlias::create( 2515 cast<llvm::PointerType>(Aliasee->getType()), 2516 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2517 2518 if (Entry) { 2519 if (GA->getAliasee() == Entry) { 2520 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2521 return; 2522 } 2523 2524 assert(Entry->isDeclaration()); 2525 2526 // If there is a declaration in the module, then we had an extern followed 2527 // by the alias, as in: 2528 // extern int test6(); 2529 // ... 2530 // int test6() __attribute__((alias("test7"))); 2531 // 2532 // Remove it and replace uses of it with the alias. 2533 GA->takeName(Entry); 2534 2535 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2536 Entry->getType())); 2537 Entry->eraseFromParent(); 2538 } else { 2539 GA->setName(MangledName); 2540 } 2541 2542 // Set attributes which are particular to an alias; this is a 2543 // specialization of the attributes which may be set on a global 2544 // variable/function. 2545 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2546 D->isWeakImported()) { 2547 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2548 } 2549 2550 if (const auto *VD = dyn_cast<VarDecl>(D)) 2551 if (VD->getTLSKind()) 2552 setTLSMode(GA, *VD); 2553 2554 setAliasAttributes(D, GA); 2555 } 2556 2557 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2558 ArrayRef<llvm::Type*> Tys) { 2559 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2560 Tys); 2561 } 2562 2563 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2564 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2565 const StringLiteral *Literal, bool TargetIsLSB, 2566 bool &IsUTF16, unsigned &StringLength) { 2567 StringRef String = Literal->getString(); 2568 unsigned NumBytes = String.size(); 2569 2570 // Check for simple case. 2571 if (!Literal->containsNonAsciiOrNull()) { 2572 StringLength = NumBytes; 2573 return *Map.insert(std::make_pair(String, nullptr)).first; 2574 } 2575 2576 // Otherwise, convert the UTF8 literals into a string of shorts. 2577 IsUTF16 = true; 2578 2579 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2580 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2581 UTF16 *ToPtr = &ToBuf[0]; 2582 2583 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2584 &ToPtr, ToPtr + NumBytes, 2585 strictConversion); 2586 2587 // ConvertUTF8toUTF16 returns the length in ToPtr. 2588 StringLength = ToPtr - &ToBuf[0]; 2589 2590 // Add an explicit null. 2591 *ToPtr = 0; 2592 return *Map.insert(std::make_pair( 2593 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2594 (StringLength + 1) * 2), 2595 nullptr)).first; 2596 } 2597 2598 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2599 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2600 const StringLiteral *Literal, unsigned &StringLength) { 2601 StringRef String = Literal->getString(); 2602 StringLength = String.size(); 2603 return *Map.insert(std::make_pair(String, nullptr)).first; 2604 } 2605 2606 llvm::Constant * 2607 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2608 unsigned StringLength = 0; 2609 bool isUTF16 = false; 2610 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2611 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2612 getDataLayout().isLittleEndian(), isUTF16, 2613 StringLength); 2614 2615 if (auto *C = Entry.second) 2616 return C; 2617 2618 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2619 llvm::Constant *Zeros[] = { Zero, Zero }; 2620 llvm::Value *V; 2621 2622 // If we don't already have it, get __CFConstantStringClassReference. 2623 if (!CFConstantStringClassRef) { 2624 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2625 Ty = llvm::ArrayType::get(Ty, 0); 2626 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2627 "__CFConstantStringClassReference"); 2628 // Decay array -> ptr 2629 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2630 CFConstantStringClassRef = V; 2631 } 2632 else 2633 V = CFConstantStringClassRef; 2634 2635 QualType CFTy = getContext().getCFConstantStringType(); 2636 2637 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2638 2639 llvm::Constant *Fields[4]; 2640 2641 // Class pointer. 2642 Fields[0] = cast<llvm::ConstantExpr>(V); 2643 2644 // Flags. 2645 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2646 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2647 llvm::ConstantInt::get(Ty, 0x07C8); 2648 2649 // String pointer. 2650 llvm::Constant *C = nullptr; 2651 if (isUTF16) { 2652 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2653 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2654 Entry.first().size() / 2); 2655 C = llvm::ConstantDataArray::get(VMContext, Arr); 2656 } else { 2657 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2658 } 2659 2660 // Note: -fwritable-strings doesn't make the backing store strings of 2661 // CFStrings writable. (See <rdar://problem/10657500>) 2662 auto *GV = 2663 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2664 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2665 GV->setUnnamedAddr(true); 2666 // Don't enforce the target's minimum global alignment, since the only use 2667 // of the string is via this class initializer. 2668 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2669 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2670 // that changes the section it ends in, which surprises ld64. 2671 if (isUTF16) { 2672 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2673 GV->setAlignment(Align.getQuantity()); 2674 GV->setSection("__TEXT,__ustring"); 2675 } else { 2676 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2677 GV->setAlignment(Align.getQuantity()); 2678 GV->setSection("__TEXT,__cstring,cstring_literals"); 2679 } 2680 2681 // String. 2682 Fields[2] = 2683 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2684 2685 if (isUTF16) 2686 // Cast the UTF16 string to the correct type. 2687 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2688 2689 // String length. 2690 Ty = getTypes().ConvertType(getContext().LongTy); 2691 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2692 2693 // The struct. 2694 C = llvm::ConstantStruct::get(STy, Fields); 2695 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2696 llvm::GlobalVariable::PrivateLinkage, C, 2697 "_unnamed_cfstring_"); 2698 GV->setSection("__DATA,__cfstring"); 2699 Entry.second = GV; 2700 2701 return GV; 2702 } 2703 2704 llvm::GlobalVariable * 2705 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2706 unsigned StringLength = 0; 2707 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2708 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2709 2710 if (auto *C = Entry.second) 2711 return C; 2712 2713 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2714 llvm::Constant *Zeros[] = { Zero, Zero }; 2715 llvm::Value *V; 2716 // If we don't already have it, get _NSConstantStringClassReference. 2717 if (!ConstantStringClassRef) { 2718 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2719 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2720 llvm::Constant *GV; 2721 if (LangOpts.ObjCRuntime.isNonFragile()) { 2722 std::string str = 2723 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2724 : "OBJC_CLASS_$_" + StringClass; 2725 GV = getObjCRuntime().GetClassGlobal(str); 2726 // Make sure the result is of the correct type. 2727 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2728 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2729 ConstantStringClassRef = V; 2730 } else { 2731 std::string str = 2732 StringClass.empty() ? "_NSConstantStringClassReference" 2733 : "_" + StringClass + "ClassReference"; 2734 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2735 GV = CreateRuntimeVariable(PTy, str); 2736 // Decay array -> ptr 2737 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2738 ConstantStringClassRef = V; 2739 } 2740 } else 2741 V = ConstantStringClassRef; 2742 2743 if (!NSConstantStringType) { 2744 // Construct the type for a constant NSString. 2745 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2746 D->startDefinition(); 2747 2748 QualType FieldTypes[3]; 2749 2750 // const int *isa; 2751 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2752 // const char *str; 2753 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2754 // unsigned int length; 2755 FieldTypes[2] = Context.UnsignedIntTy; 2756 2757 // Create fields 2758 for (unsigned i = 0; i < 3; ++i) { 2759 FieldDecl *Field = FieldDecl::Create(Context, D, 2760 SourceLocation(), 2761 SourceLocation(), nullptr, 2762 FieldTypes[i], /*TInfo=*/nullptr, 2763 /*BitWidth=*/nullptr, 2764 /*Mutable=*/false, 2765 ICIS_NoInit); 2766 Field->setAccess(AS_public); 2767 D->addDecl(Field); 2768 } 2769 2770 D->completeDefinition(); 2771 QualType NSTy = Context.getTagDeclType(D); 2772 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2773 } 2774 2775 llvm::Constant *Fields[3]; 2776 2777 // Class pointer. 2778 Fields[0] = cast<llvm::ConstantExpr>(V); 2779 2780 // String pointer. 2781 llvm::Constant *C = 2782 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2783 2784 llvm::GlobalValue::LinkageTypes Linkage; 2785 bool isConstant; 2786 Linkage = llvm::GlobalValue::PrivateLinkage; 2787 isConstant = !LangOpts.WritableStrings; 2788 2789 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2790 Linkage, C, ".str"); 2791 GV->setUnnamedAddr(true); 2792 // Don't enforce the target's minimum global alignment, since the only use 2793 // of the string is via this class initializer. 2794 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2795 GV->setAlignment(Align.getQuantity()); 2796 Fields[1] = 2797 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2798 2799 // String length. 2800 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2801 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2802 2803 // The struct. 2804 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2805 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2806 llvm::GlobalVariable::PrivateLinkage, C, 2807 "_unnamed_nsstring_"); 2808 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2809 const char *NSStringNonFragileABISection = 2810 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2811 // FIXME. Fix section. 2812 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2813 ? NSStringNonFragileABISection 2814 : NSStringSection); 2815 Entry.second = GV; 2816 2817 return GV; 2818 } 2819 2820 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2821 if (ObjCFastEnumerationStateType.isNull()) { 2822 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2823 D->startDefinition(); 2824 2825 QualType FieldTypes[] = { 2826 Context.UnsignedLongTy, 2827 Context.getPointerType(Context.getObjCIdType()), 2828 Context.getPointerType(Context.UnsignedLongTy), 2829 Context.getConstantArrayType(Context.UnsignedLongTy, 2830 llvm::APInt(32, 5), ArrayType::Normal, 0) 2831 }; 2832 2833 for (size_t i = 0; i < 4; ++i) { 2834 FieldDecl *Field = FieldDecl::Create(Context, 2835 D, 2836 SourceLocation(), 2837 SourceLocation(), nullptr, 2838 FieldTypes[i], /*TInfo=*/nullptr, 2839 /*BitWidth=*/nullptr, 2840 /*Mutable=*/false, 2841 ICIS_NoInit); 2842 Field->setAccess(AS_public); 2843 D->addDecl(Field); 2844 } 2845 2846 D->completeDefinition(); 2847 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2848 } 2849 2850 return ObjCFastEnumerationStateType; 2851 } 2852 2853 llvm::Constant * 2854 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2855 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2856 2857 // Don't emit it as the address of the string, emit the string data itself 2858 // as an inline array. 2859 if (E->getCharByteWidth() == 1) { 2860 SmallString<64> Str(E->getString()); 2861 2862 // Resize the string to the right size, which is indicated by its type. 2863 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2864 Str.resize(CAT->getSize().getZExtValue()); 2865 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2866 } 2867 2868 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2869 llvm::Type *ElemTy = AType->getElementType(); 2870 unsigned NumElements = AType->getNumElements(); 2871 2872 // Wide strings have either 2-byte or 4-byte elements. 2873 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2874 SmallVector<uint16_t, 32> Elements; 2875 Elements.reserve(NumElements); 2876 2877 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2878 Elements.push_back(E->getCodeUnit(i)); 2879 Elements.resize(NumElements); 2880 return llvm::ConstantDataArray::get(VMContext, Elements); 2881 } 2882 2883 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2884 SmallVector<uint32_t, 32> Elements; 2885 Elements.reserve(NumElements); 2886 2887 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2888 Elements.push_back(E->getCodeUnit(i)); 2889 Elements.resize(NumElements); 2890 return llvm::ConstantDataArray::get(VMContext, Elements); 2891 } 2892 2893 static llvm::GlobalVariable * 2894 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2895 CodeGenModule &CGM, StringRef GlobalName, 2896 unsigned Alignment) { 2897 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2898 unsigned AddrSpace = 0; 2899 if (CGM.getLangOpts().OpenCL) 2900 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2901 2902 llvm::Module &M = CGM.getModule(); 2903 // Create a global variable for this string 2904 auto *GV = new llvm::GlobalVariable( 2905 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2906 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2907 GV->setAlignment(Alignment); 2908 GV->setUnnamedAddr(true); 2909 if (GV->isWeakForLinker()) { 2910 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2911 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2912 } 2913 2914 return GV; 2915 } 2916 2917 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2918 /// constant array for the given string literal. 2919 llvm::GlobalVariable * 2920 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2921 StringRef Name) { 2922 auto Alignment = 2923 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2924 2925 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2926 llvm::GlobalVariable **Entry = nullptr; 2927 if (!LangOpts.WritableStrings) { 2928 Entry = &ConstantStringMap[C]; 2929 if (auto GV = *Entry) { 2930 if (Alignment > GV->getAlignment()) 2931 GV->setAlignment(Alignment); 2932 return GV; 2933 } 2934 } 2935 2936 SmallString<256> MangledNameBuffer; 2937 StringRef GlobalVariableName; 2938 llvm::GlobalValue::LinkageTypes LT; 2939 2940 // Mangle the string literal if the ABI allows for it. However, we cannot 2941 // do this if we are compiling with ASan or -fwritable-strings because they 2942 // rely on strings having normal linkage. 2943 if (!LangOpts.WritableStrings && 2944 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2945 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2946 llvm::raw_svector_ostream Out(MangledNameBuffer); 2947 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2948 Out.flush(); 2949 2950 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2951 GlobalVariableName = MangledNameBuffer; 2952 } else { 2953 LT = llvm::GlobalValue::PrivateLinkage; 2954 GlobalVariableName = Name; 2955 } 2956 2957 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2958 if (Entry) 2959 *Entry = GV; 2960 2961 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2962 QualType()); 2963 return GV; 2964 } 2965 2966 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2967 /// array for the given ObjCEncodeExpr node. 2968 llvm::GlobalVariable * 2969 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2970 std::string Str; 2971 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2972 2973 return GetAddrOfConstantCString(Str); 2974 } 2975 2976 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2977 /// the literal and a terminating '\0' character. 2978 /// The result has pointer to array type. 2979 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2980 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2981 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2982 if (Alignment == 0) { 2983 Alignment = getContext() 2984 .getAlignOfGlobalVarInChars(getContext().CharTy) 2985 .getQuantity(); 2986 } 2987 2988 llvm::Constant *C = 2989 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2990 2991 // Don't share any string literals if strings aren't constant. 2992 llvm::GlobalVariable **Entry = nullptr; 2993 if (!LangOpts.WritableStrings) { 2994 Entry = &ConstantStringMap[C]; 2995 if (auto GV = *Entry) { 2996 if (Alignment > GV->getAlignment()) 2997 GV->setAlignment(Alignment); 2998 return GV; 2999 } 3000 } 3001 3002 // Get the default prefix if a name wasn't specified. 3003 if (!GlobalName) 3004 GlobalName = ".str"; 3005 // Create a global variable for this. 3006 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3007 GlobalName, Alignment); 3008 if (Entry) 3009 *Entry = GV; 3010 return GV; 3011 } 3012 3013 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3014 const MaterializeTemporaryExpr *E, const Expr *Init) { 3015 assert((E->getStorageDuration() == SD_Static || 3016 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3017 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3018 3019 // If we're not materializing a subobject of the temporary, keep the 3020 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3021 QualType MaterializedType = Init->getType(); 3022 if (Init == E->GetTemporaryExpr()) 3023 MaterializedType = E->getType(); 3024 3025 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 3026 if (Slot) 3027 return Slot; 3028 3029 // FIXME: If an externally-visible declaration extends multiple temporaries, 3030 // we need to give each temporary the same name in every translation unit (and 3031 // we also need to make the temporaries externally-visible). 3032 SmallString<256> Name; 3033 llvm::raw_svector_ostream Out(Name); 3034 getCXXABI().getMangleContext().mangleReferenceTemporary( 3035 VD, E->getManglingNumber(), Out); 3036 Out.flush(); 3037 3038 APValue *Value = nullptr; 3039 if (E->getStorageDuration() == SD_Static) { 3040 // We might have a cached constant initializer for this temporary. Note 3041 // that this might have a different value from the value computed by 3042 // evaluating the initializer if the surrounding constant expression 3043 // modifies the temporary. 3044 Value = getContext().getMaterializedTemporaryValue(E, false); 3045 if (Value && Value->isUninit()) 3046 Value = nullptr; 3047 } 3048 3049 // Try evaluating it now, it might have a constant initializer. 3050 Expr::EvalResult EvalResult; 3051 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3052 !EvalResult.hasSideEffects()) 3053 Value = &EvalResult.Val; 3054 3055 llvm::Constant *InitialValue = nullptr; 3056 bool Constant = false; 3057 llvm::Type *Type; 3058 if (Value) { 3059 // The temporary has a constant initializer, use it. 3060 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3061 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3062 Type = InitialValue->getType(); 3063 } else { 3064 // No initializer, the initialization will be provided when we 3065 // initialize the declaration which performed lifetime extension. 3066 Type = getTypes().ConvertTypeForMem(MaterializedType); 3067 } 3068 3069 // Create a global variable for this lifetime-extended temporary. 3070 llvm::GlobalValue::LinkageTypes Linkage = 3071 getLLVMLinkageVarDefinition(VD, Constant); 3072 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3073 const VarDecl *InitVD; 3074 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3075 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3076 // Temporaries defined inside a class get linkonce_odr linkage because the 3077 // class can be defined in multipe translation units. 3078 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3079 } else { 3080 // There is no need for this temporary to have external linkage if the 3081 // VarDecl has external linkage. 3082 Linkage = llvm::GlobalVariable::InternalLinkage; 3083 } 3084 } 3085 unsigned AddrSpace = GetGlobalVarAddressSpace( 3086 VD, getContext().getTargetAddressSpace(MaterializedType)); 3087 auto *GV = new llvm::GlobalVariable( 3088 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3089 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3090 AddrSpace); 3091 setGlobalVisibility(GV, VD); 3092 GV->setAlignment( 3093 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3094 if (supportsCOMDAT() && GV->isWeakForLinker()) 3095 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3096 if (VD->getTLSKind()) 3097 setTLSMode(GV, *VD); 3098 Slot = GV; 3099 return GV; 3100 } 3101 3102 /// EmitObjCPropertyImplementations - Emit information for synthesized 3103 /// properties for an implementation. 3104 void CodeGenModule::EmitObjCPropertyImplementations(const 3105 ObjCImplementationDecl *D) { 3106 for (const auto *PID : D->property_impls()) { 3107 // Dynamic is just for type-checking. 3108 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3109 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3110 3111 // Determine which methods need to be implemented, some may have 3112 // been overridden. Note that ::isPropertyAccessor is not the method 3113 // we want, that just indicates if the decl came from a 3114 // property. What we want to know is if the method is defined in 3115 // this implementation. 3116 if (!D->getInstanceMethod(PD->getGetterName())) 3117 CodeGenFunction(*this).GenerateObjCGetter( 3118 const_cast<ObjCImplementationDecl *>(D), PID); 3119 if (!PD->isReadOnly() && 3120 !D->getInstanceMethod(PD->getSetterName())) 3121 CodeGenFunction(*this).GenerateObjCSetter( 3122 const_cast<ObjCImplementationDecl *>(D), PID); 3123 } 3124 } 3125 } 3126 3127 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3128 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3129 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3130 ivar; ivar = ivar->getNextIvar()) 3131 if (ivar->getType().isDestructedType()) 3132 return true; 3133 3134 return false; 3135 } 3136 3137 static bool AllTrivialInitializers(CodeGenModule &CGM, 3138 ObjCImplementationDecl *D) { 3139 CodeGenFunction CGF(CGM); 3140 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3141 E = D->init_end(); B != E; ++B) { 3142 CXXCtorInitializer *CtorInitExp = *B; 3143 Expr *Init = CtorInitExp->getInit(); 3144 if (!CGF.isTrivialInitializer(Init)) 3145 return false; 3146 } 3147 return true; 3148 } 3149 3150 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3151 /// for an implementation. 3152 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3153 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3154 if (needsDestructMethod(D)) { 3155 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3156 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3157 ObjCMethodDecl *DTORMethod = 3158 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3159 cxxSelector, getContext().VoidTy, nullptr, D, 3160 /*isInstance=*/true, /*isVariadic=*/false, 3161 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3162 /*isDefined=*/false, ObjCMethodDecl::Required); 3163 D->addInstanceMethod(DTORMethod); 3164 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3165 D->setHasDestructors(true); 3166 } 3167 3168 // If the implementation doesn't have any ivar initializers, we don't need 3169 // a .cxx_construct. 3170 if (D->getNumIvarInitializers() == 0 || 3171 AllTrivialInitializers(*this, D)) 3172 return; 3173 3174 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3175 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3176 // The constructor returns 'self'. 3177 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3178 D->getLocation(), 3179 D->getLocation(), 3180 cxxSelector, 3181 getContext().getObjCIdType(), 3182 nullptr, D, /*isInstance=*/true, 3183 /*isVariadic=*/false, 3184 /*isPropertyAccessor=*/true, 3185 /*isImplicitlyDeclared=*/true, 3186 /*isDefined=*/false, 3187 ObjCMethodDecl::Required); 3188 D->addInstanceMethod(CTORMethod); 3189 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3190 D->setHasNonZeroConstructors(true); 3191 } 3192 3193 /// EmitNamespace - Emit all declarations in a namespace. 3194 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3195 for (auto *I : ND->decls()) { 3196 if (const auto *VD = dyn_cast<VarDecl>(I)) 3197 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3198 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3199 continue; 3200 EmitTopLevelDecl(I); 3201 } 3202 } 3203 3204 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3205 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3206 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3207 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3208 ErrorUnsupported(LSD, "linkage spec"); 3209 return; 3210 } 3211 3212 for (auto *I : LSD->decls()) { 3213 // Meta-data for ObjC class includes references to implemented methods. 3214 // Generate class's method definitions first. 3215 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3216 for (auto *M : OID->methods()) 3217 EmitTopLevelDecl(M); 3218 } 3219 EmitTopLevelDecl(I); 3220 } 3221 } 3222 3223 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3224 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3225 // Ignore dependent declarations. 3226 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3227 return; 3228 3229 switch (D->getKind()) { 3230 case Decl::CXXConversion: 3231 case Decl::CXXMethod: 3232 case Decl::Function: 3233 // Skip function templates 3234 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3235 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3236 return; 3237 3238 EmitGlobal(cast<FunctionDecl>(D)); 3239 // Always provide some coverage mapping 3240 // even for the functions that aren't emitted. 3241 AddDeferredUnusedCoverageMapping(D); 3242 break; 3243 3244 case Decl::Var: 3245 // Skip variable templates 3246 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3247 return; 3248 case Decl::VarTemplateSpecialization: 3249 EmitGlobal(cast<VarDecl>(D)); 3250 break; 3251 3252 // Indirect fields from global anonymous structs and unions can be 3253 // ignored; only the actual variable requires IR gen support. 3254 case Decl::IndirectField: 3255 break; 3256 3257 // C++ Decls 3258 case Decl::Namespace: 3259 EmitNamespace(cast<NamespaceDecl>(D)); 3260 break; 3261 // No code generation needed. 3262 case Decl::UsingShadow: 3263 case Decl::ClassTemplate: 3264 case Decl::VarTemplate: 3265 case Decl::VarTemplatePartialSpecialization: 3266 case Decl::FunctionTemplate: 3267 case Decl::TypeAliasTemplate: 3268 case Decl::Block: 3269 case Decl::Empty: 3270 break; 3271 case Decl::Using: // using X; [C++] 3272 if (CGDebugInfo *DI = getModuleDebugInfo()) 3273 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3274 return; 3275 case Decl::NamespaceAlias: 3276 if (CGDebugInfo *DI = getModuleDebugInfo()) 3277 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3278 return; 3279 case Decl::UsingDirective: // using namespace X; [C++] 3280 if (CGDebugInfo *DI = getModuleDebugInfo()) 3281 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3282 return; 3283 case Decl::CXXConstructor: 3284 // Skip function templates 3285 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3286 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3287 return; 3288 3289 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3290 break; 3291 case Decl::CXXDestructor: 3292 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3293 return; 3294 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3295 break; 3296 3297 case Decl::StaticAssert: 3298 // Nothing to do. 3299 break; 3300 3301 // Objective-C Decls 3302 3303 // Forward declarations, no (immediate) code generation. 3304 case Decl::ObjCInterface: 3305 case Decl::ObjCCategory: 3306 break; 3307 3308 case Decl::ObjCProtocol: { 3309 auto *Proto = cast<ObjCProtocolDecl>(D); 3310 if (Proto->isThisDeclarationADefinition()) 3311 ObjCRuntime->GenerateProtocol(Proto); 3312 break; 3313 } 3314 3315 case Decl::ObjCCategoryImpl: 3316 // Categories have properties but don't support synthesize so we 3317 // can ignore them here. 3318 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3319 break; 3320 3321 case Decl::ObjCImplementation: { 3322 auto *OMD = cast<ObjCImplementationDecl>(D); 3323 EmitObjCPropertyImplementations(OMD); 3324 EmitObjCIvarInitializations(OMD); 3325 ObjCRuntime->GenerateClass(OMD); 3326 // Emit global variable debug information. 3327 if (CGDebugInfo *DI = getModuleDebugInfo()) 3328 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3329 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3330 OMD->getClassInterface()), OMD->getLocation()); 3331 break; 3332 } 3333 case Decl::ObjCMethod: { 3334 auto *OMD = cast<ObjCMethodDecl>(D); 3335 // If this is not a prototype, emit the body. 3336 if (OMD->getBody()) 3337 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3338 break; 3339 } 3340 case Decl::ObjCCompatibleAlias: 3341 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3342 break; 3343 3344 case Decl::LinkageSpec: 3345 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3346 break; 3347 3348 case Decl::FileScopeAsm: { 3349 // File-scope asm is ignored during device-side CUDA compilation. 3350 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3351 break; 3352 auto *AD = cast<FileScopeAsmDecl>(D); 3353 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3354 break; 3355 } 3356 3357 case Decl::Import: { 3358 auto *Import = cast<ImportDecl>(D); 3359 3360 // Ignore import declarations that come from imported modules. 3361 if (clang::Module *Owner = Import->getImportedOwningModule()) { 3362 if (getLangOpts().CurrentModule.empty() || 3363 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3364 break; 3365 } 3366 3367 ImportedModules.insert(Import->getImportedModule()); 3368 break; 3369 } 3370 3371 case Decl::OMPThreadPrivate: 3372 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3373 break; 3374 3375 case Decl::ClassTemplateSpecialization: { 3376 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3377 if (DebugInfo && 3378 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3379 Spec->hasDefinition()) 3380 DebugInfo->completeTemplateDefinition(*Spec); 3381 break; 3382 } 3383 3384 default: 3385 // Make sure we handled everything we should, every other kind is a 3386 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3387 // function. Need to recode Decl::Kind to do that easily. 3388 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3389 break; 3390 } 3391 } 3392 3393 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3394 // Do we need to generate coverage mapping? 3395 if (!CodeGenOpts.CoverageMapping) 3396 return; 3397 switch (D->getKind()) { 3398 case Decl::CXXConversion: 3399 case Decl::CXXMethod: 3400 case Decl::Function: 3401 case Decl::ObjCMethod: 3402 case Decl::CXXConstructor: 3403 case Decl::CXXDestructor: { 3404 if (!cast<FunctionDecl>(D)->hasBody()) 3405 return; 3406 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3407 if (I == DeferredEmptyCoverageMappingDecls.end()) 3408 DeferredEmptyCoverageMappingDecls[D] = true; 3409 break; 3410 } 3411 default: 3412 break; 3413 }; 3414 } 3415 3416 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3417 // Do we need to generate coverage mapping? 3418 if (!CodeGenOpts.CoverageMapping) 3419 return; 3420 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3421 if (Fn->isTemplateInstantiation()) 3422 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3423 } 3424 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3425 if (I == DeferredEmptyCoverageMappingDecls.end()) 3426 DeferredEmptyCoverageMappingDecls[D] = false; 3427 else 3428 I->second = false; 3429 } 3430 3431 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3432 std::vector<const Decl *> DeferredDecls; 3433 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3434 if (!I.second) 3435 continue; 3436 DeferredDecls.push_back(I.first); 3437 } 3438 // Sort the declarations by their location to make sure that the tests get a 3439 // predictable order for the coverage mapping for the unused declarations. 3440 if (CodeGenOpts.DumpCoverageMapping) 3441 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3442 [] (const Decl *LHS, const Decl *RHS) { 3443 return LHS->getLocStart() < RHS->getLocStart(); 3444 }); 3445 for (const auto *D : DeferredDecls) { 3446 switch (D->getKind()) { 3447 case Decl::CXXConversion: 3448 case Decl::CXXMethod: 3449 case Decl::Function: 3450 case Decl::ObjCMethod: { 3451 CodeGenPGO PGO(*this); 3452 GlobalDecl GD(cast<FunctionDecl>(D)); 3453 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3454 getFunctionLinkage(GD)); 3455 break; 3456 } 3457 case Decl::CXXConstructor: { 3458 CodeGenPGO PGO(*this); 3459 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3460 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3461 getFunctionLinkage(GD)); 3462 break; 3463 } 3464 case Decl::CXXDestructor: { 3465 CodeGenPGO PGO(*this); 3466 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3467 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3468 getFunctionLinkage(GD)); 3469 break; 3470 } 3471 default: 3472 break; 3473 }; 3474 } 3475 } 3476 3477 /// Turns the given pointer into a constant. 3478 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3479 const void *Ptr) { 3480 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3481 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3482 return llvm::ConstantInt::get(i64, PtrInt); 3483 } 3484 3485 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3486 llvm::NamedMDNode *&GlobalMetadata, 3487 GlobalDecl D, 3488 llvm::GlobalValue *Addr) { 3489 if (!GlobalMetadata) 3490 GlobalMetadata = 3491 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3492 3493 // TODO: should we report variant information for ctors/dtors? 3494 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3495 llvm::ConstantAsMetadata::get(GetPointerConstant( 3496 CGM.getLLVMContext(), D.getDecl()))}; 3497 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3498 } 3499 3500 /// For each function which is declared within an extern "C" region and marked 3501 /// as 'used', but has internal linkage, create an alias from the unmangled 3502 /// name to the mangled name if possible. People expect to be able to refer 3503 /// to such functions with an unmangled name from inline assembly within the 3504 /// same translation unit. 3505 void CodeGenModule::EmitStaticExternCAliases() { 3506 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3507 E = StaticExternCValues.end(); 3508 I != E; ++I) { 3509 IdentifierInfo *Name = I->first; 3510 llvm::GlobalValue *Val = I->second; 3511 if (Val && !getModule().getNamedValue(Name->getName())) 3512 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3513 } 3514 } 3515 3516 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3517 GlobalDecl &Result) const { 3518 auto Res = Manglings.find(MangledName); 3519 if (Res == Manglings.end()) 3520 return false; 3521 Result = Res->getValue(); 3522 return true; 3523 } 3524 3525 /// Emits metadata nodes associating all the global values in the 3526 /// current module with the Decls they came from. This is useful for 3527 /// projects using IR gen as a subroutine. 3528 /// 3529 /// Since there's currently no way to associate an MDNode directly 3530 /// with an llvm::GlobalValue, we create a global named metadata 3531 /// with the name 'clang.global.decl.ptrs'. 3532 void CodeGenModule::EmitDeclMetadata() { 3533 llvm::NamedMDNode *GlobalMetadata = nullptr; 3534 3535 // StaticLocalDeclMap 3536 for (auto &I : MangledDeclNames) { 3537 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3538 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3539 } 3540 } 3541 3542 /// Emits metadata nodes for all the local variables in the current 3543 /// function. 3544 void CodeGenFunction::EmitDeclMetadata() { 3545 if (LocalDeclMap.empty()) return; 3546 3547 llvm::LLVMContext &Context = getLLVMContext(); 3548 3549 // Find the unique metadata ID for this name. 3550 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3551 3552 llvm::NamedMDNode *GlobalMetadata = nullptr; 3553 3554 for (auto &I : LocalDeclMap) { 3555 const Decl *D = I.first; 3556 llvm::Value *Addr = I.second; 3557 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3558 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3559 Alloca->setMetadata( 3560 DeclPtrKind, llvm::MDNode::get( 3561 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3562 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3563 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3564 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3565 } 3566 } 3567 } 3568 3569 void CodeGenModule::EmitVersionIdentMetadata() { 3570 llvm::NamedMDNode *IdentMetadata = 3571 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3572 std::string Version = getClangFullVersion(); 3573 llvm::LLVMContext &Ctx = TheModule.getContext(); 3574 3575 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3576 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3577 } 3578 3579 void CodeGenModule::EmitTargetMetadata() { 3580 // Warning, new MangledDeclNames may be appended within this loop. 3581 // We rely on MapVector insertions adding new elements to the end 3582 // of the container. 3583 // FIXME: Move this loop into the one target that needs it, and only 3584 // loop over those declarations for which we couldn't emit the target 3585 // metadata when we emitted the declaration. 3586 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3587 auto Val = *(MangledDeclNames.begin() + I); 3588 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3589 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3590 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3591 } 3592 } 3593 3594 void CodeGenModule::EmitCoverageFile() { 3595 if (!getCodeGenOpts().CoverageFile.empty()) { 3596 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3597 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3598 llvm::LLVMContext &Ctx = TheModule.getContext(); 3599 llvm::MDString *CoverageFile = 3600 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3601 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3602 llvm::MDNode *CU = CUNode->getOperand(i); 3603 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3604 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3605 } 3606 } 3607 } 3608 } 3609 3610 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3611 // Sema has checked that all uuid strings are of the form 3612 // "12345678-1234-1234-1234-1234567890ab". 3613 assert(Uuid.size() == 36); 3614 for (unsigned i = 0; i < 36; ++i) { 3615 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3616 else assert(isHexDigit(Uuid[i])); 3617 } 3618 3619 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3620 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3621 3622 llvm::Constant *Field3[8]; 3623 for (unsigned Idx = 0; Idx < 8; ++Idx) 3624 Field3[Idx] = llvm::ConstantInt::get( 3625 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3626 3627 llvm::Constant *Fields[4] = { 3628 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3629 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3630 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3631 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3632 }; 3633 3634 return llvm::ConstantStruct::getAnon(Fields); 3635 } 3636 3637 llvm::Constant * 3638 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3639 QualType CatchHandlerType) { 3640 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3641 } 3642 3643 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3644 bool ForEH) { 3645 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3646 // FIXME: should we even be calling this method if RTTI is disabled 3647 // and it's not for EH? 3648 if (!ForEH && !getLangOpts().RTTI) 3649 return llvm::Constant::getNullValue(Int8PtrTy); 3650 3651 if (ForEH && Ty->isObjCObjectPointerType() && 3652 LangOpts.ObjCRuntime.isGNUFamily()) 3653 return ObjCRuntime->GetEHType(Ty); 3654 3655 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3656 } 3657 3658 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3659 for (auto RefExpr : D->varlists()) { 3660 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3661 bool PerformInit = 3662 VD->getAnyInitializer() && 3663 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3664 /*ForRef=*/false); 3665 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3666 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3667 CXXGlobalInits.push_back(InitFunction); 3668 } 3669 } 3670