1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/Target/TargetData.h" 37 #include "llvm/Support/ErrorHandling.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 42 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 43 llvm::Module &M, const llvm::TargetData &TD, 44 Diagnostic &diags) 45 : BlockModule(C, M, TD, Types, *this), Context(C), 46 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 47 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 48 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 49 MangleCtx(C), VtableInfo(*this), Runtime(0), 50 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 51 VMContext(M.getContext()) { 52 53 if (!Features.ObjC1) 54 Runtime = 0; 55 else if (!Features.NeXTRuntime) 56 Runtime = CreateGNUObjCRuntime(*this); 57 else if (Features.ObjCNonFragileABI) 58 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 59 else 60 Runtime = CreateMacObjCRuntime(*this); 61 62 // If debug info generation is enabled, create the CGDebugInfo object. 63 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 64 } 65 66 CodeGenModule::~CodeGenModule() { 67 delete Runtime; 68 delete DebugInfo; 69 } 70 71 void CodeGenModule::createObjCRuntime() { 72 if (!Features.NeXTRuntime) 73 Runtime = CreateGNUObjCRuntime(*this); 74 else if (Features.ObjCNonFragileABI) 75 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 76 else 77 Runtime = CreateMacObjCRuntime(*this); 78 } 79 80 void CodeGenModule::Release() { 81 EmitDeferred(); 82 EmitCXXGlobalInitFunc(); 83 if (Runtime) 84 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 85 AddGlobalCtor(ObjCInitFunction); 86 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 87 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 88 EmitAnnotations(); 89 EmitLLVMUsed(); 90 } 91 92 /// ErrorUnsupported - Print out an error that codegen doesn't support the 93 /// specified stmt yet. 94 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 95 bool OmitOnError) { 96 if (OmitOnError && getDiags().hasErrorOccurred()) 97 return; 98 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 99 "cannot compile this %0 yet"); 100 std::string Msg = Type; 101 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 102 << Msg << S->getSourceRange(); 103 } 104 105 /// ErrorUnsupported - Print out an error that codegen doesn't support the 106 /// specified decl yet. 107 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 108 bool OmitOnError) { 109 if (OmitOnError && getDiags().hasErrorOccurred()) 110 return; 111 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 112 "cannot compile this %0 yet"); 113 std::string Msg = Type; 114 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 115 } 116 117 LangOptions::VisibilityMode 118 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 119 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 120 if (VD->getStorageClass() == VarDecl::PrivateExtern) 121 return LangOptions::Hidden; 122 123 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 124 switch (attr->getVisibility()) { 125 default: assert(0 && "Unknown visibility!"); 126 case VisibilityAttr::DefaultVisibility: 127 return LangOptions::Default; 128 case VisibilityAttr::HiddenVisibility: 129 return LangOptions::Hidden; 130 case VisibilityAttr::ProtectedVisibility: 131 return LangOptions::Protected; 132 } 133 } 134 135 // This decl should have the same visibility as its parent. 136 if (const DeclContext *DC = D->getDeclContext()) 137 return getDeclVisibilityMode(cast<Decl>(DC)); 138 139 return getLangOptions().getVisibilityMode(); 140 } 141 142 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 143 const Decl *D) const { 144 // Internal definitions always have default visibility. 145 if (GV->hasLocalLinkage()) { 146 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 147 return; 148 } 149 150 switch (getDeclVisibilityMode(D)) { 151 default: assert(0 && "Unknown visibility!"); 152 case LangOptions::Default: 153 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 154 case LangOptions::Hidden: 155 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 156 case LangOptions::Protected: 157 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 158 } 159 } 160 161 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 162 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 163 164 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 165 return getMangledCXXCtorName(D, GD.getCtorType()); 166 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 167 return getMangledCXXDtorName(D, GD.getDtorType()); 168 169 return getMangledName(ND); 170 } 171 172 /// \brief Retrieves the mangled name for the given declaration. 173 /// 174 /// If the given declaration requires a mangled name, returns an 175 /// const char* containing the mangled name. Otherwise, returns 176 /// the unmangled name. 177 /// 178 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 179 if (!getMangleContext().shouldMangleDeclName(ND)) { 180 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 181 return ND->getNameAsCString(); 182 } 183 184 llvm::SmallString<256> Name; 185 getMangleContext().mangleName(ND, Name); 186 Name += '\0'; 187 return UniqueMangledName(Name.begin(), Name.end()); 188 } 189 190 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 191 const char *NameEnd) { 192 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 193 194 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 195 } 196 197 /// AddGlobalCtor - Add a function to the list that will be called before 198 /// main() runs. 199 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 200 // FIXME: Type coercion of void()* types. 201 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 202 } 203 204 /// AddGlobalDtor - Add a function to the list that will be called 205 /// when the module is unloaded. 206 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 207 // FIXME: Type coercion of void()* types. 208 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 209 } 210 211 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 212 // Ctor function type is void()*. 213 llvm::FunctionType* CtorFTy = 214 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 215 std::vector<const llvm::Type*>(), 216 false); 217 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 218 219 // Get the type of a ctor entry, { i32, void ()* }. 220 llvm::StructType* CtorStructTy = 221 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 222 llvm::PointerType::getUnqual(CtorFTy), NULL); 223 224 // Construct the constructor and destructor arrays. 225 std::vector<llvm::Constant*> Ctors; 226 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 227 std::vector<llvm::Constant*> S; 228 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 229 I->second, false)); 230 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 231 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 232 } 233 234 if (!Ctors.empty()) { 235 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 236 new llvm::GlobalVariable(TheModule, AT, false, 237 llvm::GlobalValue::AppendingLinkage, 238 llvm::ConstantArray::get(AT, Ctors), 239 GlobalName); 240 } 241 } 242 243 void CodeGenModule::EmitAnnotations() { 244 if (Annotations.empty()) 245 return; 246 247 // Create a new global variable for the ConstantStruct in the Module. 248 llvm::Constant *Array = 249 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 250 Annotations.size()), 251 Annotations); 252 llvm::GlobalValue *gv = 253 new llvm::GlobalVariable(TheModule, Array->getType(), false, 254 llvm::GlobalValue::AppendingLinkage, Array, 255 "llvm.global.annotations"); 256 gv->setSection("llvm.metadata"); 257 } 258 259 static CodeGenModule::GVALinkage 260 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 261 const LangOptions &Features) { 262 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 263 264 Linkage L = FD->getLinkage(); 265 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 266 FD->getType()->getLinkage() == UniqueExternalLinkage) 267 L = UniqueExternalLinkage; 268 269 switch (L) { 270 case NoLinkage: 271 case InternalLinkage: 272 case UniqueExternalLinkage: 273 return CodeGenModule::GVA_Internal; 274 275 case ExternalLinkage: 276 switch (FD->getTemplateSpecializationKind()) { 277 case TSK_Undeclared: 278 case TSK_ExplicitSpecialization: 279 External = CodeGenModule::GVA_StrongExternal; 280 break; 281 282 case TSK_ExplicitInstantiationDefinition: 283 // FIXME: explicit instantiation definitions should use weak linkage 284 return CodeGenModule::GVA_StrongExternal; 285 286 case TSK_ExplicitInstantiationDeclaration: 287 case TSK_ImplicitInstantiation: 288 External = CodeGenModule::GVA_TemplateInstantiation; 289 break; 290 } 291 } 292 293 if (!FD->isInlined()) 294 return External; 295 296 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 297 // GNU or C99 inline semantics. Determine whether this symbol should be 298 // externally visible. 299 if (FD->isInlineDefinitionExternallyVisible()) 300 return External; 301 302 // C99 inline semantics, where the symbol is not externally visible. 303 return CodeGenModule::GVA_C99Inline; 304 } 305 306 // C++0x [temp.explicit]p9: 307 // [ Note: The intent is that an inline function that is the subject of 308 // an explicit instantiation declaration will still be implicitly 309 // instantiated when used so that the body can be considered for 310 // inlining, but that no out-of-line copy of the inline function would be 311 // generated in the translation unit. -- end note ] 312 if (FD->getTemplateSpecializationKind() 313 == TSK_ExplicitInstantiationDeclaration) 314 return CodeGenModule::GVA_C99Inline; 315 316 return CodeGenModule::GVA_CXXInline; 317 } 318 319 llvm::GlobalValue::LinkageTypes 320 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 321 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 322 323 if (Linkage == GVA_Internal) { 324 return llvm::Function::InternalLinkage; 325 } else if (D->hasAttr<DLLExportAttr>()) { 326 return llvm::Function::DLLExportLinkage; 327 } else if (D->hasAttr<WeakAttr>()) { 328 return llvm::Function::WeakAnyLinkage; 329 } else if (Linkage == GVA_C99Inline) { 330 // In C99 mode, 'inline' functions are guaranteed to have a strong 331 // definition somewhere else, so we can use available_externally linkage. 332 return llvm::Function::AvailableExternallyLinkage; 333 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 334 // In C++, the compiler has to emit a definition in every translation unit 335 // that references the function. We should use linkonce_odr because 336 // a) if all references in this translation unit are optimized away, we 337 // don't need to codegen it. b) if the function persists, it needs to be 338 // merged with other definitions. c) C++ has the ODR, so we know the 339 // definition is dependable. 340 return llvm::Function::LinkOnceODRLinkage; 341 } else { 342 assert(Linkage == GVA_StrongExternal); 343 // Otherwise, we have strong external linkage. 344 return llvm::Function::ExternalLinkage; 345 } 346 } 347 348 349 /// SetFunctionDefinitionAttributes - Set attributes for a global. 350 /// 351 /// FIXME: This is currently only done for aliases and functions, but not for 352 /// variables (these details are set in EmitGlobalVarDefinition for variables). 353 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 354 llvm::GlobalValue *GV) { 355 GV->setLinkage(getFunctionLinkage(D)); 356 SetCommonAttributes(D, GV); 357 } 358 359 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 360 const CGFunctionInfo &Info, 361 llvm::Function *F) { 362 unsigned CallingConv; 363 AttributeListType AttributeList; 364 ConstructAttributeList(Info, D, AttributeList, CallingConv); 365 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 366 AttributeList.size())); 367 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 368 } 369 370 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 371 llvm::Function *F) { 372 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 373 F->addFnAttr(llvm::Attribute::NoUnwind); 374 375 if (D->hasAttr<AlwaysInlineAttr>()) 376 F->addFnAttr(llvm::Attribute::AlwaysInline); 377 378 if (D->hasAttr<NoInlineAttr>()) 379 F->addFnAttr(llvm::Attribute::NoInline); 380 381 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 382 F->addFnAttr(llvm::Attribute::StackProtect); 383 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 384 F->addFnAttr(llvm::Attribute::StackProtectReq); 385 386 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 387 unsigned width = Context.Target.getCharWidth(); 388 F->setAlignment(AA->getAlignment() / width); 389 while ((AA = AA->getNext<AlignedAttr>())) 390 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 391 } 392 // C++ ABI requires 2-byte alignment for member functions. 393 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 394 F->setAlignment(2); 395 } 396 397 void CodeGenModule::SetCommonAttributes(const Decl *D, 398 llvm::GlobalValue *GV) { 399 setGlobalVisibility(GV, D); 400 401 if (D->hasAttr<UsedAttr>()) 402 AddUsedGlobal(GV); 403 404 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 405 GV->setSection(SA->getName()); 406 407 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 408 } 409 410 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 411 llvm::Function *F, 412 const CGFunctionInfo &FI) { 413 SetLLVMFunctionAttributes(D, FI, F); 414 SetLLVMFunctionAttributesForDefinition(D, F); 415 416 F->setLinkage(llvm::Function::InternalLinkage); 417 418 SetCommonAttributes(D, F); 419 } 420 421 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 422 llvm::Function *F, 423 bool IsIncompleteFunction) { 424 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 425 426 if (!IsIncompleteFunction) 427 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 428 429 // Only a few attributes are set on declarations; these may later be 430 // overridden by a definition. 431 432 if (FD->hasAttr<DLLImportAttr>()) { 433 F->setLinkage(llvm::Function::DLLImportLinkage); 434 } else if (FD->hasAttr<WeakAttr>() || 435 FD->hasAttr<WeakImportAttr>()) { 436 // "extern_weak" is overloaded in LLVM; we probably should have 437 // separate linkage types for this. 438 F->setLinkage(llvm::Function::ExternalWeakLinkage); 439 } else { 440 F->setLinkage(llvm::Function::ExternalLinkage); 441 } 442 443 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 444 F->setSection(SA->getName()); 445 } 446 447 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 448 assert(!GV->isDeclaration() && 449 "Only globals with definition can force usage."); 450 LLVMUsed.push_back(GV); 451 } 452 453 void CodeGenModule::EmitLLVMUsed() { 454 // Don't create llvm.used if there is no need. 455 if (LLVMUsed.empty()) 456 return; 457 458 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 459 460 // Convert LLVMUsed to what ConstantArray needs. 461 std::vector<llvm::Constant*> UsedArray; 462 UsedArray.resize(LLVMUsed.size()); 463 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 464 UsedArray[i] = 465 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 466 i8PTy); 467 } 468 469 if (UsedArray.empty()) 470 return; 471 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 472 473 llvm::GlobalVariable *GV = 474 new llvm::GlobalVariable(getModule(), ATy, false, 475 llvm::GlobalValue::AppendingLinkage, 476 llvm::ConstantArray::get(ATy, UsedArray), 477 "llvm.used"); 478 479 GV->setSection("llvm.metadata"); 480 } 481 482 void CodeGenModule::EmitDeferred() { 483 // Emit code for any potentially referenced deferred decls. Since a 484 // previously unused static decl may become used during the generation of code 485 // for a static function, iterate until no changes are made. 486 while (!DeferredDeclsToEmit.empty()) { 487 GlobalDecl D = DeferredDeclsToEmit.back(); 488 DeferredDeclsToEmit.pop_back(); 489 490 // The mangled name for the decl must have been emitted in GlobalDeclMap. 491 // Look it up to see if it was defined with a stronger definition (e.g. an 492 // extern inline function with a strong function redefinition). If so, 493 // just ignore the deferred decl. 494 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 495 assert(CGRef && "Deferred decl wasn't referenced?"); 496 497 if (!CGRef->isDeclaration()) 498 continue; 499 500 // Otherwise, emit the definition and move on to the next one. 501 EmitGlobalDefinition(D); 502 } 503 } 504 505 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 506 /// annotation information for a given GlobalValue. The annotation struct is 507 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 508 /// GlobalValue being annotated. The second field is the constant string 509 /// created from the AnnotateAttr's annotation. The third field is a constant 510 /// string containing the name of the translation unit. The fourth field is 511 /// the line number in the file of the annotated value declaration. 512 /// 513 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 514 /// appears to. 515 /// 516 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 517 const AnnotateAttr *AA, 518 unsigned LineNo) { 519 llvm::Module *M = &getModule(); 520 521 // get [N x i8] constants for the annotation string, and the filename string 522 // which are the 2nd and 3rd elements of the global annotation structure. 523 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 524 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 525 AA->getAnnotation(), true); 526 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 527 M->getModuleIdentifier(), 528 true); 529 530 // Get the two global values corresponding to the ConstantArrays we just 531 // created to hold the bytes of the strings. 532 llvm::GlobalValue *annoGV = 533 new llvm::GlobalVariable(*M, anno->getType(), false, 534 llvm::GlobalValue::PrivateLinkage, anno, 535 GV->getName()); 536 // translation unit name string, emitted into the llvm.metadata section. 537 llvm::GlobalValue *unitGV = 538 new llvm::GlobalVariable(*M, unit->getType(), false, 539 llvm::GlobalValue::PrivateLinkage, unit, 540 ".str"); 541 542 // Create the ConstantStruct for the global annotation. 543 llvm::Constant *Fields[4] = { 544 llvm::ConstantExpr::getBitCast(GV, SBP), 545 llvm::ConstantExpr::getBitCast(annoGV, SBP), 546 llvm::ConstantExpr::getBitCast(unitGV, SBP), 547 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 548 }; 549 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 550 } 551 552 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 553 // Never defer when EmitAllDecls is specified or the decl has 554 // attribute used. 555 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 556 return false; 557 558 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 559 // Constructors and destructors should never be deferred. 560 if (FD->hasAttr<ConstructorAttr>() || 561 FD->hasAttr<DestructorAttr>()) 562 return false; 563 564 // The key function for a class must never be deferred. 565 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 566 const CXXRecordDecl *RD = MD->getParent(); 567 if (MD->isOutOfLine() && RD->isDynamicClass()) { 568 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 569 if (KeyFunction && 570 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 571 return false; 572 } 573 } 574 575 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 576 577 // static, static inline, always_inline, and extern inline functions can 578 // always be deferred. Normal inline functions can be deferred in C99/C++. 579 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 580 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 581 return true; 582 return false; 583 } 584 585 const VarDecl *VD = cast<VarDecl>(Global); 586 assert(VD->isFileVarDecl() && "Invalid decl"); 587 588 // We never want to defer structs that have non-trivial constructors or 589 // destructors. 590 591 // FIXME: Handle references. 592 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 593 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 594 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 595 return false; 596 } 597 } 598 599 // Static data may be deferred, but out-of-line static data members 600 // cannot be. 601 Linkage L = VD->getLinkage(); 602 if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && 603 VD->getType()->getLinkage() == UniqueExternalLinkage) 604 L = UniqueExternalLinkage; 605 606 switch (L) { 607 case NoLinkage: 608 case InternalLinkage: 609 case UniqueExternalLinkage: 610 // Initializer has side effects? 611 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 612 return false; 613 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 614 615 case ExternalLinkage: 616 break; 617 } 618 619 return false; 620 } 621 622 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 623 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 624 assert(AA && "No alias?"); 625 626 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 627 628 // Unique the name through the identifier table. 629 const char *AliaseeName = 630 getContext().Idents.get(AA->getAliasee()).getNameStart(); 631 632 // See if there is already something with the target's name in the module. 633 llvm::GlobalValue *Entry = GlobalDeclMap[AliaseeName]; 634 635 llvm::Constant *Aliasee; 636 if (isa<llvm::FunctionType>(DeclTy)) 637 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 638 else 639 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 640 llvm::PointerType::getUnqual(DeclTy), 0); 641 if (!Entry) { 642 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 643 F->setLinkage(llvm::Function::ExternalWeakLinkage); 644 WeakRefReferences.insert(F); 645 } 646 647 return Aliasee; 648 } 649 650 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 651 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 652 653 // Weak references don't produce any output by themselves. 654 if (Global->hasAttr<WeakRefAttr>()) 655 return; 656 657 // If this is an alias definition (which otherwise looks like a declaration) 658 // emit it now. 659 if (Global->hasAttr<AliasAttr>()) 660 return EmitAliasDefinition(Global); 661 662 // Ignore declarations, they will be emitted on their first use. 663 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 664 // Forward declarations are emitted lazily on first use. 665 if (!FD->isThisDeclarationADefinition()) 666 return; 667 } else { 668 const VarDecl *VD = cast<VarDecl>(Global); 669 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 670 671 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 672 return; 673 } 674 675 // Defer code generation when possible if this is a static definition, inline 676 // function etc. These we only want to emit if they are used. 677 if (MayDeferGeneration(Global)) { 678 // If the value has already been used, add it directly to the 679 // DeferredDeclsToEmit list. 680 const char *MangledName = getMangledName(GD); 681 if (GlobalDeclMap.count(MangledName)) 682 DeferredDeclsToEmit.push_back(GD); 683 else { 684 // Otherwise, remember that we saw a deferred decl with this name. The 685 // first use of the mangled name will cause it to move into 686 // DeferredDeclsToEmit. 687 DeferredDecls[MangledName] = GD; 688 } 689 return; 690 } 691 692 // Otherwise emit the definition. 693 EmitGlobalDefinition(GD); 694 } 695 696 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 697 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 698 699 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 700 Context.getSourceManager(), 701 "Generating code for declaration"); 702 703 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 704 getVtableInfo().MaybeEmitVtable(GD); 705 if (MD->isVirtual() && MD->isOutOfLine() && 706 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 707 if (isa<CXXDestructorDecl>(D)) { 708 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 709 GD.getDtorType()); 710 BuildThunksForVirtual(CanonGD); 711 } else { 712 BuildThunksForVirtual(MD->getCanonicalDecl()); 713 } 714 } 715 } 716 717 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 718 EmitCXXConstructor(CD, GD.getCtorType()); 719 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 720 EmitCXXDestructor(DD, GD.getDtorType()); 721 else if (isa<FunctionDecl>(D)) 722 EmitGlobalFunctionDefinition(GD); 723 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 724 EmitGlobalVarDefinition(VD); 725 else { 726 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 727 } 728 } 729 730 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 731 /// module, create and return an llvm Function with the specified type. If there 732 /// is something in the module with the specified name, return it potentially 733 /// bitcasted to the right type. 734 /// 735 /// If D is non-null, it specifies a decl that correspond to this. This is used 736 /// to set the attributes on the function when it is first created. 737 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 738 const llvm::Type *Ty, 739 GlobalDecl D) { 740 // Lookup the entry, lazily creating it if necessary. 741 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 742 if (Entry) { 743 if (WeakRefReferences.count(Entry)) { 744 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 745 if (FD && !FD->hasAttr<WeakAttr>()) 746 Entry->setLinkage(llvm::Function::ExternalLinkage); 747 748 WeakRefReferences.erase(Entry); 749 } 750 751 if (Entry->getType()->getElementType() == Ty) 752 return Entry; 753 754 // Make sure the result is of the correct type. 755 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 756 return llvm::ConstantExpr::getBitCast(Entry, PTy); 757 } 758 759 // This function doesn't have a complete type (for example, the return 760 // type is an incomplete struct). Use a fake type instead, and make 761 // sure not to try to set attributes. 762 bool IsIncompleteFunction = false; 763 if (!isa<llvm::FunctionType>(Ty)) { 764 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 765 std::vector<const llvm::Type*>(), false); 766 IsIncompleteFunction = true; 767 } 768 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 769 llvm::Function::ExternalLinkage, 770 "", &getModule()); 771 F->setName(MangledName); 772 if (D.getDecl()) 773 SetFunctionAttributes(D, F, IsIncompleteFunction); 774 Entry = F; 775 776 // This is the first use or definition of a mangled name. If there is a 777 // deferred decl with this name, remember that we need to emit it at the end 778 // of the file. 779 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 780 DeferredDecls.find(MangledName); 781 if (DDI != DeferredDecls.end()) { 782 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 783 // list, and remove it from DeferredDecls (since we don't need it anymore). 784 DeferredDeclsToEmit.push_back(DDI->second); 785 DeferredDecls.erase(DDI); 786 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 787 // If this the first reference to a C++ inline function in a class, queue up 788 // the deferred function body for emission. These are not seen as 789 // top-level declarations. 790 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 791 DeferredDeclsToEmit.push_back(D); 792 // A called constructor which has no definition or declaration need be 793 // synthesized. 794 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 795 if (CD->isImplicit()) { 796 assert (CD->isUsed()); 797 DeferredDeclsToEmit.push_back(D); 798 } 799 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 800 if (DD->isImplicit()) { 801 assert (DD->isUsed()); 802 DeferredDeclsToEmit.push_back(D); 803 } 804 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 805 if (MD->isCopyAssignment() && MD->isImplicit()) { 806 assert (MD->isUsed()); 807 DeferredDeclsToEmit.push_back(D); 808 } 809 } 810 } 811 812 return F; 813 } 814 815 /// GetAddrOfFunction - Return the address of the given function. If Ty is 816 /// non-null, then this function will use the specified type if it has to 817 /// create it (this occurs when we see a definition of the function). 818 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 819 const llvm::Type *Ty) { 820 // If there was no specific requested type, just convert it now. 821 if (!Ty) 822 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 823 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 824 } 825 826 /// CreateRuntimeFunction - Create a new runtime function with the specified 827 /// type and name. 828 llvm::Constant * 829 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 830 const char *Name) { 831 // Convert Name to be a uniqued string from the IdentifierInfo table. 832 Name = getContext().Idents.get(Name).getNameStart(); 833 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 834 } 835 836 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 837 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 838 return false; 839 if (Context.getLangOptions().CPlusPlus && 840 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 841 // FIXME: We should do something fancier here! 842 return false; 843 } 844 return true; 845 } 846 847 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 848 /// create and return an llvm GlobalVariable with the specified type. If there 849 /// is something in the module with the specified name, return it potentially 850 /// bitcasted to the right type. 851 /// 852 /// If D is non-null, it specifies a decl that correspond to this. This is used 853 /// to set the attributes on the global when it is first created. 854 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 855 const llvm::PointerType*Ty, 856 const VarDecl *D) { 857 // Lookup the entry, lazily creating it if necessary. 858 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 859 if (Entry) { 860 if (WeakRefReferences.count(Entry)) { 861 if (D && !D->hasAttr<WeakAttr>()) 862 Entry->setLinkage(llvm::Function::ExternalLinkage); 863 864 WeakRefReferences.erase(Entry); 865 } 866 867 if (Entry->getType() == Ty) 868 return Entry; 869 870 // Make sure the result is of the correct type. 871 return llvm::ConstantExpr::getBitCast(Entry, Ty); 872 } 873 874 // This is the first use or definition of a mangled name. If there is a 875 // deferred decl with this name, remember that we need to emit it at the end 876 // of the file. 877 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 878 DeferredDecls.find(MangledName); 879 if (DDI != DeferredDecls.end()) { 880 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 881 // list, and remove it from DeferredDecls (since we don't need it anymore). 882 DeferredDeclsToEmit.push_back(DDI->second); 883 DeferredDecls.erase(DDI); 884 } 885 886 llvm::GlobalVariable *GV = 887 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 888 llvm::GlobalValue::ExternalLinkage, 889 0, "", 0, 890 false, Ty->getAddressSpace()); 891 GV->setName(MangledName); 892 893 // Handle things which are present even on external declarations. 894 if (D) { 895 // FIXME: This code is overly simple and should be merged with other global 896 // handling. 897 GV->setConstant(DeclIsConstantGlobal(Context, D)); 898 899 // FIXME: Merge with other attribute handling code. 900 if (D->getStorageClass() == VarDecl::PrivateExtern) 901 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 902 903 if (D->hasAttr<WeakAttr>() || 904 D->hasAttr<WeakImportAttr>()) 905 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 906 907 GV->setThreadLocal(D->isThreadSpecified()); 908 } 909 910 return Entry = GV; 911 } 912 913 914 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 915 /// given global variable. If Ty is non-null and if the global doesn't exist, 916 /// then it will be greated with the specified type instead of whatever the 917 /// normal requested type would be. 918 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 919 const llvm::Type *Ty) { 920 assert(D->hasGlobalStorage() && "Not a global variable"); 921 QualType ASTTy = D->getType(); 922 if (Ty == 0) 923 Ty = getTypes().ConvertTypeForMem(ASTTy); 924 925 const llvm::PointerType *PTy = 926 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 927 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 928 } 929 930 /// CreateRuntimeVariable - Create a new runtime global variable with the 931 /// specified type and name. 932 llvm::Constant * 933 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 934 const char *Name) { 935 // Convert Name to be a uniqued string from the IdentifierInfo table. 936 Name = getContext().Idents.get(Name).getNameStart(); 937 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 938 } 939 940 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 941 assert(!D->getInit() && "Cannot emit definite definitions here!"); 942 943 if (MayDeferGeneration(D)) { 944 // If we have not seen a reference to this variable yet, place it 945 // into the deferred declarations table to be emitted if needed 946 // later. 947 const char *MangledName = getMangledName(D); 948 if (GlobalDeclMap.count(MangledName) == 0) { 949 DeferredDecls[MangledName] = D; 950 return; 951 } 952 } 953 954 // The tentative definition is the only definition. 955 EmitGlobalVarDefinition(D); 956 } 957 958 llvm::GlobalVariable::LinkageTypes 959 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) { 960 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 961 return llvm::GlobalVariable::InternalLinkage; 962 963 if (const CXXMethodDecl *KeyFunction 964 = RD->getASTContext().getKeyFunction(RD)) { 965 // If this class has a key function, use that to determine the linkage of 966 // the vtable. 967 const FunctionDecl *Def = 0; 968 if (KeyFunction->getBody(Def)) 969 KeyFunction = cast<CXXMethodDecl>(Def); 970 971 switch (KeyFunction->getTemplateSpecializationKind()) { 972 case TSK_Undeclared: 973 case TSK_ExplicitSpecialization: 974 if (KeyFunction->isInlined()) 975 return llvm::GlobalVariable::WeakODRLinkage; 976 977 return llvm::GlobalVariable::ExternalLinkage; 978 979 case TSK_ImplicitInstantiation: 980 case TSK_ExplicitInstantiationDefinition: 981 return llvm::GlobalVariable::WeakODRLinkage; 982 983 case TSK_ExplicitInstantiationDeclaration: 984 // FIXME: Use available_externally linkage. However, this currently 985 // breaks LLVM's build due to undefined symbols. 986 // return llvm::GlobalVariable::AvailableExternallyLinkage; 987 return llvm::GlobalVariable::WeakODRLinkage; 988 } 989 } 990 991 switch (RD->getTemplateSpecializationKind()) { 992 case TSK_Undeclared: 993 case TSK_ExplicitSpecialization: 994 case TSK_ImplicitInstantiation: 995 case TSK_ExplicitInstantiationDefinition: 996 return llvm::GlobalVariable::WeakODRLinkage; 997 998 case TSK_ExplicitInstantiationDeclaration: 999 // FIXME: Use available_externally linkage. However, this currently 1000 // breaks LLVM's build due to undefined symbols. 1001 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1002 return llvm::GlobalVariable::WeakODRLinkage; 1003 } 1004 1005 // Silence GCC warning. 1006 return llvm::GlobalVariable::WeakODRLinkage; 1007 } 1008 1009 static CodeGenModule::GVALinkage 1010 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 1011 // If this is a static data member, compute the kind of template 1012 // specialization. Otherwise, this variable is not part of a 1013 // template. 1014 TemplateSpecializationKind TSK = TSK_Undeclared; 1015 if (VD->isStaticDataMember()) 1016 TSK = VD->getTemplateSpecializationKind(); 1017 1018 Linkage L = VD->getLinkage(); 1019 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 1020 VD->getType()->getLinkage() == UniqueExternalLinkage) 1021 L = UniqueExternalLinkage; 1022 1023 switch (L) { 1024 case NoLinkage: 1025 case InternalLinkage: 1026 case UniqueExternalLinkage: 1027 return CodeGenModule::GVA_Internal; 1028 1029 case ExternalLinkage: 1030 switch (TSK) { 1031 case TSK_Undeclared: 1032 case TSK_ExplicitSpecialization: 1033 1034 // FIXME: ExplicitInstantiationDefinition should be weak! 1035 case TSK_ExplicitInstantiationDefinition: 1036 return CodeGenModule::GVA_StrongExternal; 1037 1038 case TSK_ExplicitInstantiationDeclaration: 1039 llvm_unreachable("Variable should not be instantiated"); 1040 // Fall through to treat this like any other instantiation. 1041 1042 case TSK_ImplicitInstantiation: 1043 return CodeGenModule::GVA_TemplateInstantiation; 1044 } 1045 } 1046 1047 return CodeGenModule::GVA_StrongExternal; 1048 } 1049 1050 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1051 return CharUnits::fromQuantity( 1052 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1053 } 1054 1055 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1056 llvm::Constant *Init = 0; 1057 QualType ASTTy = D->getType(); 1058 bool NonConstInit = false; 1059 1060 const Expr *InitExpr = D->getAnyInitializer(); 1061 1062 if (!InitExpr) { 1063 // This is a tentative definition; tentative definitions are 1064 // implicitly initialized with { 0 }. 1065 // 1066 // Note that tentative definitions are only emitted at the end of 1067 // a translation unit, so they should never have incomplete 1068 // type. In addition, EmitTentativeDefinition makes sure that we 1069 // never attempt to emit a tentative definition if a real one 1070 // exists. A use may still exists, however, so we still may need 1071 // to do a RAUW. 1072 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1073 Init = EmitNullConstant(D->getType()); 1074 } else { 1075 Init = EmitConstantExpr(InitExpr, D->getType()); 1076 1077 if (!Init) { 1078 QualType T = InitExpr->getType(); 1079 if (getLangOptions().CPlusPlus) { 1080 EmitCXXGlobalVarDeclInitFunc(D); 1081 Init = EmitNullConstant(T); 1082 NonConstInit = true; 1083 } else { 1084 ErrorUnsupported(D, "static initializer"); 1085 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1086 } 1087 } 1088 } 1089 1090 const llvm::Type* InitType = Init->getType(); 1091 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1092 1093 // Strip off a bitcast if we got one back. 1094 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1095 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1096 // all zero index gep. 1097 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1098 Entry = CE->getOperand(0); 1099 } 1100 1101 // Entry is now either a Function or GlobalVariable. 1102 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1103 1104 // We have a definition after a declaration with the wrong type. 1105 // We must make a new GlobalVariable* and update everything that used OldGV 1106 // (a declaration or tentative definition) with the new GlobalVariable* 1107 // (which will be a definition). 1108 // 1109 // This happens if there is a prototype for a global (e.g. 1110 // "extern int x[];") and then a definition of a different type (e.g. 1111 // "int x[10];"). This also happens when an initializer has a different type 1112 // from the type of the global (this happens with unions). 1113 if (GV == 0 || 1114 GV->getType()->getElementType() != InitType || 1115 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1116 1117 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1118 GlobalDeclMap.erase(getMangledName(D)); 1119 1120 // Make a new global with the correct type, this is now guaranteed to work. 1121 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1122 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1123 1124 // Replace all uses of the old global with the new global 1125 llvm::Constant *NewPtrForOldDecl = 1126 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1127 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1128 1129 // Erase the old global, since it is no longer used. 1130 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1131 } 1132 1133 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1134 SourceManager &SM = Context.getSourceManager(); 1135 AddAnnotation(EmitAnnotateAttr(GV, AA, 1136 SM.getInstantiationLineNumber(D->getLocation()))); 1137 } 1138 1139 GV->setInitializer(Init); 1140 1141 // If it is safe to mark the global 'constant', do so now. 1142 GV->setConstant(false); 1143 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1144 GV->setConstant(true); 1145 1146 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1147 1148 // Set the llvm linkage type as appropriate. 1149 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1150 if (Linkage == GVA_Internal) 1151 GV->setLinkage(llvm::Function::InternalLinkage); 1152 else if (D->hasAttr<DLLImportAttr>()) 1153 GV->setLinkage(llvm::Function::DLLImportLinkage); 1154 else if (D->hasAttr<DLLExportAttr>()) 1155 GV->setLinkage(llvm::Function::DLLExportLinkage); 1156 else if (D->hasAttr<WeakAttr>()) { 1157 if (GV->isConstant()) 1158 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1159 else 1160 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1161 } else if (Linkage == GVA_TemplateInstantiation) 1162 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1163 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1164 !D->hasExternalStorage() && !D->getInit() && 1165 !D->getAttr<SectionAttr>()) { 1166 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1167 // common vars aren't constant even if declared const. 1168 GV->setConstant(false); 1169 } else 1170 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1171 1172 SetCommonAttributes(D, GV); 1173 1174 // Emit global variable debug information. 1175 if (CGDebugInfo *DI = getDebugInfo()) { 1176 DI->setLocation(D->getLocation()); 1177 DI->EmitGlobalVariable(GV, D); 1178 } 1179 } 1180 1181 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1182 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1183 /// existing call uses of the old function in the module, this adjusts them to 1184 /// call the new function directly. 1185 /// 1186 /// This is not just a cleanup: the always_inline pass requires direct calls to 1187 /// functions to be able to inline them. If there is a bitcast in the way, it 1188 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1189 /// run at -O0. 1190 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1191 llvm::Function *NewFn) { 1192 // If we're redefining a global as a function, don't transform it. 1193 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1194 if (OldFn == 0) return; 1195 1196 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1197 llvm::SmallVector<llvm::Value*, 4> ArgList; 1198 1199 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1200 UI != E; ) { 1201 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1202 unsigned OpNo = UI.getOperandNo(); 1203 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1204 if (!CI || OpNo != 0) continue; 1205 1206 // If the return types don't match exactly, and if the call isn't dead, then 1207 // we can't transform this call. 1208 if (CI->getType() != NewRetTy && !CI->use_empty()) 1209 continue; 1210 1211 // If the function was passed too few arguments, don't transform. If extra 1212 // arguments were passed, we silently drop them. If any of the types 1213 // mismatch, we don't transform. 1214 unsigned ArgNo = 0; 1215 bool DontTransform = false; 1216 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1217 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1218 if (CI->getNumOperands()-1 == ArgNo || 1219 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1220 DontTransform = true; 1221 break; 1222 } 1223 } 1224 if (DontTransform) 1225 continue; 1226 1227 // Okay, we can transform this. Create the new call instruction and copy 1228 // over the required information. 1229 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1230 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1231 ArgList.end(), "", CI); 1232 ArgList.clear(); 1233 if (!NewCall->getType()->isVoidTy()) 1234 NewCall->takeName(CI); 1235 NewCall->setAttributes(CI->getAttributes()); 1236 NewCall->setCallingConv(CI->getCallingConv()); 1237 1238 // Finally, remove the old call, replacing any uses with the new one. 1239 if (!CI->use_empty()) 1240 CI->replaceAllUsesWith(NewCall); 1241 1242 // Copy any custom metadata attached with CI. 1243 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1244 NewCall->setMetadata("dbg", DbgNode); 1245 CI->eraseFromParent(); 1246 } 1247 } 1248 1249 1250 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1251 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1252 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1253 getMangleContext().mangleInitDiscriminator(); 1254 // Get or create the prototype for the function. 1255 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1256 1257 // Strip off a bitcast if we got one back. 1258 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1259 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1260 Entry = CE->getOperand(0); 1261 } 1262 1263 1264 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1265 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1266 1267 // If the types mismatch then we have to rewrite the definition. 1268 assert(OldFn->isDeclaration() && 1269 "Shouldn't replace non-declaration"); 1270 1271 // F is the Function* for the one with the wrong type, we must make a new 1272 // Function* and update everything that used F (a declaration) with the new 1273 // Function* (which will be a definition). 1274 // 1275 // This happens if there is a prototype for a function 1276 // (e.g. "int f()") and then a definition of a different type 1277 // (e.g. "int f(int x)"). Start by making a new function of the 1278 // correct type, RAUW, then steal the name. 1279 GlobalDeclMap.erase(getMangledName(D)); 1280 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1281 NewFn->takeName(OldFn); 1282 1283 // If this is an implementation of a function without a prototype, try to 1284 // replace any existing uses of the function (which may be calls) with uses 1285 // of the new function 1286 if (D->getType()->isFunctionNoProtoType()) { 1287 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1288 OldFn->removeDeadConstantUsers(); 1289 } 1290 1291 // Replace uses of F with the Function we will endow with a body. 1292 if (!Entry->use_empty()) { 1293 llvm::Constant *NewPtrForOldDecl = 1294 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1295 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1296 } 1297 1298 // Ok, delete the old function now, which is dead. 1299 OldFn->eraseFromParent(); 1300 1301 Entry = NewFn; 1302 } 1303 1304 llvm::Function *Fn = cast<llvm::Function>(Entry); 1305 1306 CodeGenFunction(*this).GenerateCode(D, Fn); 1307 1308 SetFunctionDefinitionAttributes(D, Fn); 1309 SetLLVMFunctionAttributesForDefinition(D, Fn); 1310 1311 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1312 AddGlobalCtor(Fn, CA->getPriority()); 1313 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1314 AddGlobalDtor(Fn, DA->getPriority()); 1315 } 1316 1317 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1318 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1319 assert(AA && "Not an alias?"); 1320 1321 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1322 1323 // Unique the name through the identifier table. 1324 const char *AliaseeName = 1325 getContext().Idents.get(AA->getAliasee()).getNameStart(); 1326 1327 // Create a reference to the named value. This ensures that it is emitted 1328 // if a deferred decl. 1329 llvm::Constant *Aliasee; 1330 if (isa<llvm::FunctionType>(DeclTy)) 1331 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1332 else 1333 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1334 llvm::PointerType::getUnqual(DeclTy), 0); 1335 1336 // Create the new alias itself, but don't set a name yet. 1337 llvm::GlobalValue *GA = 1338 new llvm::GlobalAlias(Aliasee->getType(), 1339 llvm::Function::ExternalLinkage, 1340 "", Aliasee, &getModule()); 1341 1342 // See if there is already something with the alias' name in the module. 1343 const char *MangledName = getMangledName(D); 1344 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1345 1346 if (Entry && !Entry->isDeclaration()) { 1347 // If there is a definition in the module, then it wins over the alias. 1348 // This is dubious, but allow it to be safe. Just ignore the alias. 1349 GA->eraseFromParent(); 1350 return; 1351 } 1352 1353 if (Entry) { 1354 // If there is a declaration in the module, then we had an extern followed 1355 // by the alias, as in: 1356 // extern int test6(); 1357 // ... 1358 // int test6() __attribute__((alias("test7"))); 1359 // 1360 // Remove it and replace uses of it with the alias. 1361 1362 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1363 Entry->getType())); 1364 Entry->eraseFromParent(); 1365 } 1366 1367 // Now we know that there is no conflict, set the name. 1368 Entry = GA; 1369 GA->setName(MangledName); 1370 1371 // Set attributes which are particular to an alias; this is a 1372 // specialization of the attributes which may be set on a global 1373 // variable/function. 1374 if (D->hasAttr<DLLExportAttr>()) { 1375 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1376 // The dllexport attribute is ignored for undefined symbols. 1377 if (FD->getBody()) 1378 GA->setLinkage(llvm::Function::DLLExportLinkage); 1379 } else { 1380 GA->setLinkage(llvm::Function::DLLExportLinkage); 1381 } 1382 } else if (D->hasAttr<WeakAttr>() || 1383 D->hasAttr<WeakRefAttr>() || 1384 D->hasAttr<WeakImportAttr>()) { 1385 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1386 } 1387 1388 SetCommonAttributes(D, GA); 1389 } 1390 1391 /// getBuiltinLibFunction - Given a builtin id for a function like 1392 /// "__builtin_fabsf", return a Function* for "fabsf". 1393 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1394 unsigned BuiltinID) { 1395 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1396 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1397 "isn't a lib fn"); 1398 1399 // Get the name, skip over the __builtin_ prefix (if necessary). 1400 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1401 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1402 Name += 10; 1403 1404 const llvm::FunctionType *Ty = 1405 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1406 1407 // Unique the name through the identifier table. 1408 Name = getContext().Idents.get(Name).getNameStart(); 1409 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1410 } 1411 1412 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1413 unsigned NumTys) { 1414 return llvm::Intrinsic::getDeclaration(&getModule(), 1415 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1416 } 1417 1418 llvm::Function *CodeGenModule::getMemCpyFn() { 1419 if (MemCpyFn) return MemCpyFn; 1420 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1421 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1422 } 1423 1424 llvm::Function *CodeGenModule::getMemMoveFn() { 1425 if (MemMoveFn) return MemMoveFn; 1426 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1427 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1428 } 1429 1430 llvm::Function *CodeGenModule::getMemSetFn() { 1431 if (MemSetFn) return MemSetFn; 1432 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1433 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1434 } 1435 1436 static llvm::StringMapEntry<llvm::Constant*> & 1437 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1438 const StringLiteral *Literal, 1439 bool TargetIsLSB, 1440 bool &IsUTF16, 1441 unsigned &StringLength) { 1442 unsigned NumBytes = Literal->getByteLength(); 1443 1444 // Check for simple case. 1445 if (!Literal->containsNonAsciiOrNull()) { 1446 StringLength = NumBytes; 1447 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1448 StringLength)); 1449 } 1450 1451 // Otherwise, convert the UTF8 literals into a byte string. 1452 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1453 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1454 UTF16 *ToPtr = &ToBuf[0]; 1455 1456 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1457 &ToPtr, ToPtr + NumBytes, 1458 strictConversion); 1459 1460 // Check for conversion failure. 1461 if (Result != conversionOK) { 1462 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1463 // this duplicate code. 1464 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1465 StringLength = NumBytes; 1466 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1467 StringLength)); 1468 } 1469 1470 // ConvertUTF8toUTF16 returns the length in ToPtr. 1471 StringLength = ToPtr - &ToBuf[0]; 1472 1473 // Render the UTF-16 string into a byte array and convert to the target byte 1474 // order. 1475 // 1476 // FIXME: This isn't something we should need to do here. 1477 llvm::SmallString<128> AsBytes; 1478 AsBytes.reserve(StringLength * 2); 1479 for (unsigned i = 0; i != StringLength; ++i) { 1480 unsigned short Val = ToBuf[i]; 1481 if (TargetIsLSB) { 1482 AsBytes.push_back(Val & 0xFF); 1483 AsBytes.push_back(Val >> 8); 1484 } else { 1485 AsBytes.push_back(Val >> 8); 1486 AsBytes.push_back(Val & 0xFF); 1487 } 1488 } 1489 // Append one extra null character, the second is automatically added by our 1490 // caller. 1491 AsBytes.push_back(0); 1492 1493 IsUTF16 = true; 1494 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1495 } 1496 1497 llvm::Constant * 1498 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1499 unsigned StringLength = 0; 1500 bool isUTF16 = false; 1501 llvm::StringMapEntry<llvm::Constant*> &Entry = 1502 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1503 getTargetData().isLittleEndian(), 1504 isUTF16, StringLength); 1505 1506 if (llvm::Constant *C = Entry.getValue()) 1507 return C; 1508 1509 llvm::Constant *Zero = 1510 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1511 llvm::Constant *Zeros[] = { Zero, Zero }; 1512 1513 // If we don't already have it, get __CFConstantStringClassReference. 1514 if (!CFConstantStringClassRef) { 1515 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1516 Ty = llvm::ArrayType::get(Ty, 0); 1517 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1518 "__CFConstantStringClassReference"); 1519 // Decay array -> ptr 1520 CFConstantStringClassRef = 1521 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1522 } 1523 1524 QualType CFTy = getContext().getCFConstantStringType(); 1525 1526 const llvm::StructType *STy = 1527 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1528 1529 std::vector<llvm::Constant*> Fields(4); 1530 1531 // Class pointer. 1532 Fields[0] = CFConstantStringClassRef; 1533 1534 // Flags. 1535 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1536 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1537 llvm::ConstantInt::get(Ty, 0x07C8); 1538 1539 // String pointer. 1540 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1541 1542 llvm::GlobalValue::LinkageTypes Linkage; 1543 bool isConstant; 1544 if (isUTF16) { 1545 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1546 Linkage = llvm::GlobalValue::InternalLinkage; 1547 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1548 // does make plain ascii ones writable. 1549 isConstant = true; 1550 } else { 1551 Linkage = llvm::GlobalValue::PrivateLinkage; 1552 isConstant = !Features.WritableStrings; 1553 } 1554 1555 llvm::GlobalVariable *GV = 1556 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1557 ".str"); 1558 if (isUTF16) { 1559 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1560 GV->setAlignment(Align.getQuantity()); 1561 } 1562 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1563 1564 // String length. 1565 Ty = getTypes().ConvertType(getContext().LongTy); 1566 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1567 1568 // The struct. 1569 C = llvm::ConstantStruct::get(STy, Fields); 1570 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1571 llvm::GlobalVariable::PrivateLinkage, C, 1572 "_unnamed_cfstring_"); 1573 if (const char *Sect = getContext().Target.getCFStringSection()) 1574 GV->setSection(Sect); 1575 Entry.setValue(GV); 1576 1577 return GV; 1578 } 1579 1580 /// GetStringForStringLiteral - Return the appropriate bytes for a 1581 /// string literal, properly padded to match the literal type. 1582 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1583 const char *StrData = E->getStrData(); 1584 unsigned Len = E->getByteLength(); 1585 1586 const ConstantArrayType *CAT = 1587 getContext().getAsConstantArrayType(E->getType()); 1588 assert(CAT && "String isn't pointer or array!"); 1589 1590 // Resize the string to the right size. 1591 std::string Str(StrData, StrData+Len); 1592 uint64_t RealLen = CAT->getSize().getZExtValue(); 1593 1594 if (E->isWide()) 1595 RealLen *= getContext().Target.getWCharWidth()/8; 1596 1597 Str.resize(RealLen, '\0'); 1598 1599 return Str; 1600 } 1601 1602 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1603 /// constant array for the given string literal. 1604 llvm::Constant * 1605 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1606 // FIXME: This can be more efficient. 1607 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1608 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1609 if (S->isWide()) { 1610 llvm::Type *DestTy = 1611 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1612 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1613 } 1614 return C; 1615 } 1616 1617 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1618 /// array for the given ObjCEncodeExpr node. 1619 llvm::Constant * 1620 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1621 std::string Str; 1622 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1623 1624 return GetAddrOfConstantCString(Str); 1625 } 1626 1627 1628 /// GenerateWritableString -- Creates storage for a string literal. 1629 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1630 bool constant, 1631 CodeGenModule &CGM, 1632 const char *GlobalName) { 1633 // Create Constant for this string literal. Don't add a '\0'. 1634 llvm::Constant *C = 1635 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1636 1637 // Create a global variable for this string 1638 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1639 llvm::GlobalValue::PrivateLinkage, 1640 C, GlobalName); 1641 } 1642 1643 /// GetAddrOfConstantString - Returns a pointer to a character array 1644 /// containing the literal. This contents are exactly that of the 1645 /// given string, i.e. it will not be null terminated automatically; 1646 /// see GetAddrOfConstantCString. Note that whether the result is 1647 /// actually a pointer to an LLVM constant depends on 1648 /// Feature.WriteableStrings. 1649 /// 1650 /// The result has pointer to array type. 1651 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1652 const char *GlobalName) { 1653 bool IsConstant = !Features.WritableStrings; 1654 1655 // Get the default prefix if a name wasn't specified. 1656 if (!GlobalName) 1657 GlobalName = ".str"; 1658 1659 // Don't share any string literals if strings aren't constant. 1660 if (!IsConstant) 1661 return GenerateStringLiteral(str, false, *this, GlobalName); 1662 1663 llvm::StringMapEntry<llvm::Constant *> &Entry = 1664 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1665 1666 if (Entry.getValue()) 1667 return Entry.getValue(); 1668 1669 // Create a global variable for this. 1670 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1671 Entry.setValue(C); 1672 return C; 1673 } 1674 1675 /// GetAddrOfConstantCString - Returns a pointer to a character 1676 /// array containing the literal and a terminating '\-' 1677 /// character. The result has pointer to array type. 1678 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1679 const char *GlobalName){ 1680 return GetAddrOfConstantString(str + '\0', GlobalName); 1681 } 1682 1683 /// EmitObjCPropertyImplementations - Emit information for synthesized 1684 /// properties for an implementation. 1685 void CodeGenModule::EmitObjCPropertyImplementations(const 1686 ObjCImplementationDecl *D) { 1687 for (ObjCImplementationDecl::propimpl_iterator 1688 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1689 ObjCPropertyImplDecl *PID = *i; 1690 1691 // Dynamic is just for type-checking. 1692 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1693 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1694 1695 // Determine which methods need to be implemented, some may have 1696 // been overridden. Note that ::isSynthesized is not the method 1697 // we want, that just indicates if the decl came from a 1698 // property. What we want to know is if the method is defined in 1699 // this implementation. 1700 if (!D->getInstanceMethod(PD->getGetterName())) 1701 CodeGenFunction(*this).GenerateObjCGetter( 1702 const_cast<ObjCImplementationDecl *>(D), PID); 1703 if (!PD->isReadOnly() && 1704 !D->getInstanceMethod(PD->getSetterName())) 1705 CodeGenFunction(*this).GenerateObjCSetter( 1706 const_cast<ObjCImplementationDecl *>(D), PID); 1707 } 1708 } 1709 } 1710 1711 /// EmitNamespace - Emit all declarations in a namespace. 1712 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1713 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1714 I != E; ++I) 1715 EmitTopLevelDecl(*I); 1716 } 1717 1718 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1719 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1720 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1721 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1722 ErrorUnsupported(LSD, "linkage spec"); 1723 return; 1724 } 1725 1726 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1727 I != E; ++I) 1728 EmitTopLevelDecl(*I); 1729 } 1730 1731 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1732 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1733 // If an error has occurred, stop code generation, but continue 1734 // parsing and semantic analysis (to ensure all warnings and errors 1735 // are emitted). 1736 if (Diags.hasErrorOccurred()) 1737 return; 1738 1739 // Ignore dependent declarations. 1740 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1741 return; 1742 1743 switch (D->getKind()) { 1744 case Decl::CXXConversion: 1745 case Decl::CXXMethod: 1746 case Decl::Function: 1747 // Skip function templates 1748 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1749 return; 1750 1751 EmitGlobal(cast<FunctionDecl>(D)); 1752 break; 1753 1754 case Decl::Var: 1755 EmitGlobal(cast<VarDecl>(D)); 1756 break; 1757 1758 // C++ Decls 1759 case Decl::Namespace: 1760 EmitNamespace(cast<NamespaceDecl>(D)); 1761 break; 1762 // No code generation needed. 1763 case Decl::UsingShadow: 1764 case Decl::Using: 1765 case Decl::UsingDirective: 1766 case Decl::ClassTemplate: 1767 case Decl::FunctionTemplate: 1768 case Decl::NamespaceAlias: 1769 break; 1770 case Decl::CXXConstructor: 1771 // Skip function templates 1772 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1773 return; 1774 1775 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1776 break; 1777 case Decl::CXXDestructor: 1778 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1779 break; 1780 1781 case Decl::StaticAssert: 1782 // Nothing to do. 1783 break; 1784 1785 // Objective-C Decls 1786 1787 // Forward declarations, no (immediate) code generation. 1788 case Decl::ObjCClass: 1789 case Decl::ObjCForwardProtocol: 1790 case Decl::ObjCCategory: 1791 case Decl::ObjCInterface: 1792 break; 1793 1794 case Decl::ObjCProtocol: 1795 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1796 break; 1797 1798 case Decl::ObjCCategoryImpl: 1799 // Categories have properties but don't support synthesize so we 1800 // can ignore them here. 1801 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1802 break; 1803 1804 case Decl::ObjCImplementation: { 1805 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1806 EmitObjCPropertyImplementations(OMD); 1807 Runtime->GenerateClass(OMD); 1808 break; 1809 } 1810 case Decl::ObjCMethod: { 1811 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1812 // If this is not a prototype, emit the body. 1813 if (OMD->getBody()) 1814 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1815 break; 1816 } 1817 case Decl::ObjCCompatibleAlias: 1818 // compatibility-alias is a directive and has no code gen. 1819 break; 1820 1821 case Decl::LinkageSpec: 1822 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1823 break; 1824 1825 case Decl::FileScopeAsm: { 1826 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1827 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1828 1829 const std::string &S = getModule().getModuleInlineAsm(); 1830 if (S.empty()) 1831 getModule().setModuleInlineAsm(AsmString); 1832 else 1833 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1834 break; 1835 } 1836 1837 default: 1838 // Make sure we handled everything we should, every other kind is a 1839 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1840 // function. Need to recode Decl::Kind to do that easily. 1841 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1842 } 1843 } 1844