1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), 54 NSConstantStringClassRef(0), 55 VMContext(M.getContext()) { 56 57 if (!Features.ObjC1) 58 Runtime = 0; 59 else if (!Features.NeXTRuntime) 60 Runtime = CreateGNUObjCRuntime(*this); 61 else if (Features.ObjCNonFragileABI) 62 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 63 else 64 Runtime = CreateMacObjCRuntime(*this); 65 66 if (!Features.CPlusPlus) 67 ABI = 0; 68 else createCXXABI(); 69 70 // If debug info generation is enabled, create the CGDebugInfo object. 71 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 72 } 73 74 CodeGenModule::~CodeGenModule() { 75 delete Runtime; 76 delete ABI; 77 delete DebugInfo; 78 } 79 80 void CodeGenModule::createObjCRuntime() { 81 if (!Features.NeXTRuntime) 82 Runtime = CreateGNUObjCRuntime(*this); 83 else if (Features.ObjCNonFragileABI) 84 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 85 else 86 Runtime = CreateMacObjCRuntime(*this); 87 } 88 89 void CodeGenModule::createCXXABI() { 90 if (Context.Target.getCXXABI() == "microsoft") 91 ABI = CreateMicrosoftCXXABI(*this); 92 else 93 ABI = CreateItaniumCXXABI(*this); 94 } 95 96 void CodeGenModule::Release() { 97 EmitDeferred(); 98 EmitCXXGlobalInitFunc(); 99 EmitCXXGlobalDtorFunc(); 100 if (Runtime) 101 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 102 AddGlobalCtor(ObjCInitFunction); 103 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 104 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 105 EmitAnnotations(); 106 EmitLLVMUsed(); 107 } 108 109 bool CodeGenModule::isTargetDarwin() const { 110 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 111 } 112 113 /// ErrorUnsupported - Print out an error that codegen doesn't support the 114 /// specified stmt yet. 115 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 116 bool OmitOnError) { 117 if (OmitOnError && getDiags().hasErrorOccurred()) 118 return; 119 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 120 "cannot compile this %0 yet"); 121 std::string Msg = Type; 122 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 123 << Msg << S->getSourceRange(); 124 } 125 126 /// ErrorUnsupported - Print out an error that codegen doesn't support the 127 /// specified decl yet. 128 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 129 bool OmitOnError) { 130 if (OmitOnError && getDiags().hasErrorOccurred()) 131 return; 132 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 133 "cannot compile this %0 yet"); 134 std::string Msg = Type; 135 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 136 } 137 138 LangOptions::VisibilityMode 139 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 140 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 141 if (VD->getStorageClass() == VarDecl::PrivateExtern) 142 return LangOptions::Hidden; 143 144 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 145 switch (attr->getVisibility()) { 146 default: assert(0 && "Unknown visibility!"); 147 case VisibilityAttr::DefaultVisibility: 148 return LangOptions::Default; 149 case VisibilityAttr::HiddenVisibility: 150 return LangOptions::Hidden; 151 case VisibilityAttr::ProtectedVisibility: 152 return LangOptions::Protected; 153 } 154 } 155 156 if (getLangOptions().CPlusPlus) { 157 // Entities subject to an explicit instantiation declaration get default 158 // visibility. 159 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 160 if (Function->getTemplateSpecializationKind() 161 == TSK_ExplicitInstantiationDeclaration) 162 return LangOptions::Default; 163 } else if (const ClassTemplateSpecializationDecl *ClassSpec 164 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 165 if (ClassSpec->getSpecializationKind() 166 == TSK_ExplicitInstantiationDeclaration) 167 return LangOptions::Default; 168 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 169 if (Record->getTemplateSpecializationKind() 170 == TSK_ExplicitInstantiationDeclaration) 171 return LangOptions::Default; 172 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 173 if (Var->isStaticDataMember() && 174 (Var->getTemplateSpecializationKind() 175 == TSK_ExplicitInstantiationDeclaration)) 176 return LangOptions::Default; 177 } 178 179 // If -fvisibility-inlines-hidden was provided, then inline C++ member 180 // functions get "hidden" visibility by default. 181 if (getLangOptions().InlineVisibilityHidden) 182 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 183 if (Method->isInlined()) 184 return LangOptions::Hidden; 185 } 186 187 // This decl should have the same visibility as its parent. 188 if (const DeclContext *DC = D->getDeclContext()) 189 return getDeclVisibilityMode(cast<Decl>(DC)); 190 191 return getLangOptions().getVisibilityMode(); 192 } 193 194 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 195 const Decl *D) const { 196 // Internal definitions always have default visibility. 197 if (GV->hasLocalLinkage()) { 198 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 199 return; 200 } 201 202 switch (getDeclVisibilityMode(D)) { 203 default: assert(0 && "Unknown visibility!"); 204 case LangOptions::Default: 205 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 206 case LangOptions::Hidden: 207 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 208 case LangOptions::Protected: 209 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 210 } 211 } 212 213 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 214 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 215 216 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 217 if (!Str.empty()) 218 return Str; 219 220 if (!getMangleContext().shouldMangleDeclName(ND)) { 221 IdentifierInfo *II = ND->getIdentifier(); 222 assert(II && "Attempt to mangle unnamed decl."); 223 224 Str = II->getName(); 225 return Str; 226 } 227 228 llvm::SmallString<256> Buffer; 229 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 230 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 231 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 232 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 233 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 234 getMangleContext().mangleBlock(BD, Buffer); 235 else 236 getMangleContext().mangleName(ND, Buffer); 237 238 // Allocate space for the mangled name. 239 size_t Length = Buffer.size(); 240 char *Name = MangledNamesAllocator.Allocate<char>(Length); 241 std::copy(Buffer.begin(), Buffer.end(), Name); 242 243 Str = llvm::StringRef(Name, Length); 244 245 return Str; 246 } 247 248 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) { 249 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 250 251 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 252 return getMangleContext().mangleCXXCtor(D, GD.getCtorType(), 253 Buffer.getBuffer()); 254 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 255 return getMangleContext().mangleCXXDtor(D, GD.getDtorType(), 256 Buffer.getBuffer()); 257 258 if (!getMangleContext().shouldMangleDeclName(ND)) { 259 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 260 Buffer.setString(ND->getNameAsCString()); 261 return; 262 } 263 264 getMangleContext().mangleName(ND, Buffer.getBuffer()); 265 } 266 267 void CodeGenModule::getMangledName(MangleBuffer &Buffer, const BlockDecl *BD) { 268 getMangleContext().mangleBlock(BD, Buffer.getBuffer()); 269 } 270 271 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 272 return getModule().getNamedValue(Name); 273 } 274 275 /// AddGlobalCtor - Add a function to the list that will be called before 276 /// main() runs. 277 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 278 // FIXME: Type coercion of void()* types. 279 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 280 } 281 282 /// AddGlobalDtor - Add a function to the list that will be called 283 /// when the module is unloaded. 284 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 285 // FIXME: Type coercion of void()* types. 286 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 287 } 288 289 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 290 // Ctor function type is void()*. 291 llvm::FunctionType* CtorFTy = 292 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 293 std::vector<const llvm::Type*>(), 294 false); 295 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 296 297 // Get the type of a ctor entry, { i32, void ()* }. 298 llvm::StructType* CtorStructTy = 299 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 300 llvm::PointerType::getUnqual(CtorFTy), NULL); 301 302 // Construct the constructor and destructor arrays. 303 std::vector<llvm::Constant*> Ctors; 304 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 305 std::vector<llvm::Constant*> S; 306 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 307 I->second, false)); 308 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 309 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 310 } 311 312 if (!Ctors.empty()) { 313 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 314 new llvm::GlobalVariable(TheModule, AT, false, 315 llvm::GlobalValue::AppendingLinkage, 316 llvm::ConstantArray::get(AT, Ctors), 317 GlobalName); 318 } 319 } 320 321 void CodeGenModule::EmitAnnotations() { 322 if (Annotations.empty()) 323 return; 324 325 // Create a new global variable for the ConstantStruct in the Module. 326 llvm::Constant *Array = 327 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 328 Annotations.size()), 329 Annotations); 330 llvm::GlobalValue *gv = 331 new llvm::GlobalVariable(TheModule, Array->getType(), false, 332 llvm::GlobalValue::AppendingLinkage, Array, 333 "llvm.global.annotations"); 334 gv->setSection("llvm.metadata"); 335 } 336 337 static CodeGenModule::GVALinkage 338 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 339 const LangOptions &Features) { 340 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 341 342 Linkage L = FD->getLinkage(); 343 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 344 FD->getType()->getLinkage() == UniqueExternalLinkage) 345 L = UniqueExternalLinkage; 346 347 switch (L) { 348 case NoLinkage: 349 case InternalLinkage: 350 case UniqueExternalLinkage: 351 return CodeGenModule::GVA_Internal; 352 353 case ExternalLinkage: 354 switch (FD->getTemplateSpecializationKind()) { 355 case TSK_Undeclared: 356 case TSK_ExplicitSpecialization: 357 External = CodeGenModule::GVA_StrongExternal; 358 break; 359 360 case TSK_ExplicitInstantiationDefinition: 361 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 362 363 case TSK_ExplicitInstantiationDeclaration: 364 case TSK_ImplicitInstantiation: 365 External = CodeGenModule::GVA_TemplateInstantiation; 366 break; 367 } 368 } 369 370 if (!FD->isInlined()) 371 return External; 372 373 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 374 // GNU or C99 inline semantics. Determine whether this symbol should be 375 // externally visible. 376 if (FD->isInlineDefinitionExternallyVisible()) 377 return External; 378 379 // C99 inline semantics, where the symbol is not externally visible. 380 return CodeGenModule::GVA_C99Inline; 381 } 382 383 // C++0x [temp.explicit]p9: 384 // [ Note: The intent is that an inline function that is the subject of 385 // an explicit instantiation declaration will still be implicitly 386 // instantiated when used so that the body can be considered for 387 // inlining, but that no out-of-line copy of the inline function would be 388 // generated in the translation unit. -- end note ] 389 if (FD->getTemplateSpecializationKind() 390 == TSK_ExplicitInstantiationDeclaration) 391 return CodeGenModule::GVA_C99Inline; 392 393 return CodeGenModule::GVA_CXXInline; 394 } 395 396 llvm::GlobalValue::LinkageTypes 397 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 398 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 399 400 if (Linkage == GVA_Internal) { 401 return llvm::Function::InternalLinkage; 402 } else if (D->hasAttr<DLLExportAttr>()) { 403 return llvm::Function::DLLExportLinkage; 404 } else if (D->hasAttr<WeakAttr>()) { 405 return llvm::Function::WeakAnyLinkage; 406 } else if (Linkage == GVA_C99Inline) { 407 // In C99 mode, 'inline' functions are guaranteed to have a strong 408 // definition somewhere else, so we can use available_externally linkage. 409 return llvm::Function::AvailableExternallyLinkage; 410 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 411 // In C++, the compiler has to emit a definition in every translation unit 412 // that references the function. We should use linkonce_odr because 413 // a) if all references in this translation unit are optimized away, we 414 // don't need to codegen it. b) if the function persists, it needs to be 415 // merged with other definitions. c) C++ has the ODR, so we know the 416 // definition is dependable. 417 return llvm::Function::LinkOnceODRLinkage; 418 } else if (Linkage == GVA_ExplicitTemplateInstantiation) { 419 // An explicit instantiation of a template has weak linkage, since 420 // explicit instantiations can occur in multiple translation units 421 // and must all be equivalent. However, we are not allowed to 422 // throw away these explicit instantiations. 423 return llvm::Function::WeakODRLinkage; 424 } else { 425 assert(Linkage == GVA_StrongExternal); 426 // Otherwise, we have strong external linkage. 427 return llvm::Function::ExternalLinkage; 428 } 429 } 430 431 432 /// SetFunctionDefinitionAttributes - Set attributes for a global. 433 /// 434 /// FIXME: This is currently only done for aliases and functions, but not for 435 /// variables (these details are set in EmitGlobalVarDefinition for variables). 436 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 437 llvm::GlobalValue *GV) { 438 SetCommonAttributes(D, GV); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 442 const CGFunctionInfo &Info, 443 llvm::Function *F) { 444 unsigned CallingConv; 445 AttributeListType AttributeList; 446 ConstructAttributeList(Info, D, AttributeList, CallingConv); 447 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 448 AttributeList.size())); 449 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 450 } 451 452 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 453 llvm::Function *F) { 454 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 455 F->addFnAttr(llvm::Attribute::NoUnwind); 456 457 if (D->hasAttr<AlwaysInlineAttr>()) 458 F->addFnAttr(llvm::Attribute::AlwaysInline); 459 460 if (D->hasAttr<NoInlineAttr>()) 461 F->addFnAttr(llvm::Attribute::NoInline); 462 463 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 464 F->addFnAttr(llvm::Attribute::StackProtect); 465 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 466 F->addFnAttr(llvm::Attribute::StackProtectReq); 467 468 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 469 unsigned width = Context.Target.getCharWidth(); 470 F->setAlignment(AA->getAlignment() / width); 471 while ((AA = AA->getNext<AlignedAttr>())) 472 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 473 } 474 // C++ ABI requires 2-byte alignment for member functions. 475 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 476 F->setAlignment(2); 477 } 478 479 void CodeGenModule::SetCommonAttributes(const Decl *D, 480 llvm::GlobalValue *GV) { 481 setGlobalVisibility(GV, D); 482 483 if (D->hasAttr<UsedAttr>()) 484 AddUsedGlobal(GV); 485 486 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 487 GV->setSection(SA->getName()); 488 489 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 490 } 491 492 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 493 llvm::Function *F, 494 const CGFunctionInfo &FI) { 495 SetLLVMFunctionAttributes(D, FI, F); 496 SetLLVMFunctionAttributesForDefinition(D, F); 497 498 F->setLinkage(llvm::Function::InternalLinkage); 499 500 SetCommonAttributes(D, F); 501 } 502 503 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 504 llvm::Function *F, 505 bool IsIncompleteFunction) { 506 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 507 508 if (!IsIncompleteFunction) 509 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 510 511 // Only a few attributes are set on declarations; these may later be 512 // overridden by a definition. 513 514 if (FD->hasAttr<DLLImportAttr>()) { 515 F->setLinkage(llvm::Function::DLLImportLinkage); 516 } else if (FD->hasAttr<WeakAttr>() || 517 FD->hasAttr<WeakImportAttr>()) { 518 // "extern_weak" is overloaded in LLVM; we probably should have 519 // separate linkage types for this. 520 F->setLinkage(llvm::Function::ExternalWeakLinkage); 521 } else { 522 F->setLinkage(llvm::Function::ExternalLinkage); 523 } 524 525 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 526 F->setSection(SA->getName()); 527 } 528 529 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 530 assert(!GV->isDeclaration() && 531 "Only globals with definition can force usage."); 532 LLVMUsed.push_back(GV); 533 } 534 535 void CodeGenModule::EmitLLVMUsed() { 536 // Don't create llvm.used if there is no need. 537 if (LLVMUsed.empty()) 538 return; 539 540 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 541 542 // Convert LLVMUsed to what ConstantArray needs. 543 std::vector<llvm::Constant*> UsedArray; 544 UsedArray.resize(LLVMUsed.size()); 545 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 546 UsedArray[i] = 547 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 548 i8PTy); 549 } 550 551 if (UsedArray.empty()) 552 return; 553 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 554 555 llvm::GlobalVariable *GV = 556 new llvm::GlobalVariable(getModule(), ATy, false, 557 llvm::GlobalValue::AppendingLinkage, 558 llvm::ConstantArray::get(ATy, UsedArray), 559 "llvm.used"); 560 561 GV->setSection("llvm.metadata"); 562 } 563 564 void CodeGenModule::EmitDeferred() { 565 // Emit code for any potentially referenced deferred decls. Since a 566 // previously unused static decl may become used during the generation of code 567 // for a static function, iterate until no changes are made. 568 569 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 570 if (!DeferredVTables.empty()) { 571 const CXXRecordDecl *RD = DeferredVTables.back(); 572 DeferredVTables.pop_back(); 573 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 574 continue; 575 } 576 577 GlobalDecl D = DeferredDeclsToEmit.back(); 578 DeferredDeclsToEmit.pop_back(); 579 580 // Check to see if we've already emitted this. This is necessary 581 // for a couple of reasons: first, decls can end up in the 582 // deferred-decls queue multiple times, and second, decls can end 583 // up with definitions in unusual ways (e.g. by an extern inline 584 // function acquiring a strong function redefinition). Just 585 // ignore these cases. 586 // 587 // TODO: That said, looking this up multiple times is very wasteful. 588 MangleBuffer Name; 589 getMangledName(Name, D); 590 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 591 assert(CGRef && "Deferred decl wasn't referenced?"); 592 593 if (!CGRef->isDeclaration()) 594 continue; 595 596 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 597 // purposes an alias counts as a definition. 598 if (isa<llvm::GlobalAlias>(CGRef)) 599 continue; 600 601 // Otherwise, emit the definition and move on to the next one. 602 EmitGlobalDefinition(D); 603 } 604 } 605 606 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 607 /// annotation information for a given GlobalValue. The annotation struct is 608 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 609 /// GlobalValue being annotated. The second field is the constant string 610 /// created from the AnnotateAttr's annotation. The third field is a constant 611 /// string containing the name of the translation unit. The fourth field is 612 /// the line number in the file of the annotated value declaration. 613 /// 614 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 615 /// appears to. 616 /// 617 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 618 const AnnotateAttr *AA, 619 unsigned LineNo) { 620 llvm::Module *M = &getModule(); 621 622 // get [N x i8] constants for the annotation string, and the filename string 623 // which are the 2nd and 3rd elements of the global annotation structure. 624 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 625 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 626 AA->getAnnotation(), true); 627 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 628 M->getModuleIdentifier(), 629 true); 630 631 // Get the two global values corresponding to the ConstantArrays we just 632 // created to hold the bytes of the strings. 633 llvm::GlobalValue *annoGV = 634 new llvm::GlobalVariable(*M, anno->getType(), false, 635 llvm::GlobalValue::PrivateLinkage, anno, 636 GV->getName()); 637 // translation unit name string, emitted into the llvm.metadata section. 638 llvm::GlobalValue *unitGV = 639 new llvm::GlobalVariable(*M, unit->getType(), false, 640 llvm::GlobalValue::PrivateLinkage, unit, 641 ".str"); 642 643 // Create the ConstantStruct for the global annotation. 644 llvm::Constant *Fields[4] = { 645 llvm::ConstantExpr::getBitCast(GV, SBP), 646 llvm::ConstantExpr::getBitCast(annoGV, SBP), 647 llvm::ConstantExpr::getBitCast(unitGV, SBP), 648 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 649 }; 650 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 651 } 652 653 static CodeGenModule::GVALinkage 654 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 655 // If this is a static data member, compute the kind of template 656 // specialization. Otherwise, this variable is not part of a 657 // template. 658 TemplateSpecializationKind TSK = TSK_Undeclared; 659 if (VD->isStaticDataMember()) 660 TSK = VD->getTemplateSpecializationKind(); 661 662 Linkage L = VD->getLinkage(); 663 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 664 VD->getType()->getLinkage() == UniqueExternalLinkage) 665 L = UniqueExternalLinkage; 666 667 switch (L) { 668 case NoLinkage: 669 case InternalLinkage: 670 case UniqueExternalLinkage: 671 return CodeGenModule::GVA_Internal; 672 673 case ExternalLinkage: 674 switch (TSK) { 675 case TSK_Undeclared: 676 case TSK_ExplicitSpecialization: 677 return CodeGenModule::GVA_StrongExternal; 678 679 case TSK_ExplicitInstantiationDeclaration: 680 llvm_unreachable("Variable should not be instantiated"); 681 // Fall through to treat this like any other instantiation. 682 683 case TSK_ExplicitInstantiationDefinition: 684 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 685 686 case TSK_ImplicitInstantiation: 687 return CodeGenModule::GVA_TemplateInstantiation; 688 } 689 } 690 691 return CodeGenModule::GVA_StrongExternal; 692 } 693 694 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 695 // Never defer when EmitAllDecls is specified or the decl has 696 // attribute used. 697 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 698 return false; 699 700 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 701 // Constructors and destructors should never be deferred. 702 if (FD->hasAttr<ConstructorAttr>() || 703 FD->hasAttr<DestructorAttr>()) 704 return false; 705 706 // The key function for a class must never be deferred. 707 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 708 const CXXRecordDecl *RD = MD->getParent(); 709 if (MD->isOutOfLine() && RD->isDynamicClass()) { 710 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 711 if (KeyFunction && 712 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 713 return false; 714 } 715 } 716 717 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 718 719 // static, static inline, always_inline, and extern inline functions can 720 // always be deferred. Normal inline functions can be deferred in C99/C++. 721 // Implicit template instantiations can also be deferred in C++. 722 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 723 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 724 return true; 725 return false; 726 } 727 728 const VarDecl *VD = cast<VarDecl>(Global); 729 assert(VD->isFileVarDecl() && "Invalid decl"); 730 731 // We never want to defer structs that have non-trivial constructors or 732 // destructors. 733 734 // FIXME: Handle references. 735 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 736 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 737 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 738 return false; 739 } 740 } 741 742 GVALinkage L = GetLinkageForVariable(getContext(), VD); 743 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 744 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 745 return true; 746 } 747 748 return false; 749 } 750 751 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 752 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 753 assert(AA && "No alias?"); 754 755 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 756 757 // See if there is already something with the target's name in the module. 758 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 759 760 llvm::Constant *Aliasee; 761 if (isa<llvm::FunctionType>(DeclTy)) 762 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 763 else 764 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 765 llvm::PointerType::getUnqual(DeclTy), 0); 766 if (!Entry) { 767 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 768 F->setLinkage(llvm::Function::ExternalWeakLinkage); 769 WeakRefReferences.insert(F); 770 } 771 772 return Aliasee; 773 } 774 775 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 776 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 777 778 // Weak references don't produce any output by themselves. 779 if (Global->hasAttr<WeakRefAttr>()) 780 return; 781 782 // If this is an alias definition (which otherwise looks like a declaration) 783 // emit it now. 784 if (Global->hasAttr<AliasAttr>()) 785 return EmitAliasDefinition(GD); 786 787 // Ignore declarations, they will be emitted on their first use. 788 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 789 // Forward declarations are emitted lazily on first use. 790 if (!FD->isThisDeclarationADefinition()) 791 return; 792 } else { 793 const VarDecl *VD = cast<VarDecl>(Global); 794 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 795 796 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 797 return; 798 } 799 800 // Defer code generation when possible if this is a static definition, inline 801 // function etc. These we only want to emit if they are used. 802 if (!MayDeferGeneration(Global)) { 803 // Emit the definition if it can't be deferred. 804 EmitGlobalDefinition(GD); 805 return; 806 } 807 808 // If the value has already been used, add it directly to the 809 // DeferredDeclsToEmit list. 810 MangleBuffer MangledName; 811 getMangledName(MangledName, GD); 812 if (GetGlobalValue(MangledName)) 813 DeferredDeclsToEmit.push_back(GD); 814 else { 815 // Otherwise, remember that we saw a deferred decl with this name. The 816 // first use of the mangled name will cause it to move into 817 // DeferredDeclsToEmit. 818 DeferredDecls[MangledName] = GD; 819 } 820 } 821 822 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 823 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 824 825 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 826 Context.getSourceManager(), 827 "Generating code for declaration"); 828 829 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 830 if (Method->isVirtual()) 831 getVTables().EmitThunks(GD); 832 833 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 834 return EmitCXXConstructor(CD, GD.getCtorType()); 835 836 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 837 return EmitCXXDestructor(DD, GD.getDtorType()); 838 839 if (isa<FunctionDecl>(D)) 840 return EmitGlobalFunctionDefinition(GD); 841 842 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 843 return EmitGlobalVarDefinition(VD); 844 845 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 846 } 847 848 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 849 /// module, create and return an llvm Function with the specified type. If there 850 /// is something in the module with the specified name, return it potentially 851 /// bitcasted to the right type. 852 /// 853 /// If D is non-null, it specifies a decl that correspond to this. This is used 854 /// to set the attributes on the function when it is first created. 855 llvm::Constant * 856 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 857 const llvm::Type *Ty, 858 GlobalDecl D) { 859 // Lookup the entry, lazily creating it if necessary. 860 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 861 if (Entry) { 862 if (WeakRefReferences.count(Entry)) { 863 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 864 if (FD && !FD->hasAttr<WeakAttr>()) 865 Entry->setLinkage(llvm::Function::ExternalLinkage); 866 867 WeakRefReferences.erase(Entry); 868 } 869 870 if (Entry->getType()->getElementType() == Ty) 871 return Entry; 872 873 // Make sure the result is of the correct type. 874 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 875 return llvm::ConstantExpr::getBitCast(Entry, PTy); 876 } 877 878 // This function doesn't have a complete type (for example, the return 879 // type is an incomplete struct). Use a fake type instead, and make 880 // sure not to try to set attributes. 881 bool IsIncompleteFunction = false; 882 883 const llvm::FunctionType *FTy; 884 if (isa<llvm::FunctionType>(Ty)) { 885 FTy = cast<llvm::FunctionType>(Ty); 886 } else { 887 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 888 std::vector<const llvm::Type*>(), false); 889 IsIncompleteFunction = true; 890 } 891 llvm::Function *F = llvm::Function::Create(FTy, 892 llvm::Function::ExternalLinkage, 893 MangledName, &getModule()); 894 assert(F->getName() == MangledName && "name was uniqued!"); 895 if (D.getDecl()) 896 SetFunctionAttributes(D, F, IsIncompleteFunction); 897 898 // This is the first use or definition of a mangled name. If there is a 899 // deferred decl with this name, remember that we need to emit it at the end 900 // of the file. 901 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 902 if (DDI != DeferredDecls.end()) { 903 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 904 // list, and remove it from DeferredDecls (since we don't need it anymore). 905 DeferredDeclsToEmit.push_back(DDI->second); 906 DeferredDecls.erase(DDI); 907 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 908 // If this the first reference to a C++ inline function in a class, queue up 909 // the deferred function body for emission. These are not seen as 910 // top-level declarations. 911 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 912 DeferredDeclsToEmit.push_back(D); 913 // A called constructor which has no definition or declaration need be 914 // synthesized. 915 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 916 if (CD->isImplicit()) { 917 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 918 DeferredDeclsToEmit.push_back(D); 919 } 920 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 921 if (DD->isImplicit()) { 922 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 923 DeferredDeclsToEmit.push_back(D); 924 } 925 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 926 if (MD->isCopyAssignment() && MD->isImplicit()) { 927 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 928 DeferredDeclsToEmit.push_back(D); 929 } 930 } 931 } 932 933 // Make sure the result is of the requested type. 934 if (!IsIncompleteFunction) { 935 assert(F->getType()->getElementType() == Ty); 936 return F; 937 } 938 939 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 940 return llvm::ConstantExpr::getBitCast(F, PTy); 941 } 942 943 /// GetAddrOfFunction - Return the address of the given function. If Ty is 944 /// non-null, then this function will use the specified type if it has to 945 /// create it (this occurs when we see a definition of the function). 946 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 947 const llvm::Type *Ty) { 948 // If there was no specific requested type, just convert it now. 949 if (!Ty) 950 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 951 MangleBuffer MangledName; 952 getMangledName(MangledName, GD); 953 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 954 } 955 956 /// CreateRuntimeFunction - Create a new runtime function with the specified 957 /// type and name. 958 llvm::Constant * 959 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 960 llvm::StringRef Name) { 961 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 962 } 963 964 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 965 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 966 return false; 967 if (Context.getLangOptions().CPlusPlus && 968 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 969 // FIXME: We should do something fancier here! 970 return false; 971 } 972 return true; 973 } 974 975 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 976 /// create and return an llvm GlobalVariable with the specified type. If there 977 /// is something in the module with the specified name, return it potentially 978 /// bitcasted to the right type. 979 /// 980 /// If D is non-null, it specifies a decl that correspond to this. This is used 981 /// to set the attributes on the global when it is first created. 982 llvm::Constant * 983 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 984 const llvm::PointerType *Ty, 985 const VarDecl *D) { 986 // Lookup the entry, lazily creating it if necessary. 987 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 988 if (Entry) { 989 if (WeakRefReferences.count(Entry)) { 990 if (D && !D->hasAttr<WeakAttr>()) 991 Entry->setLinkage(llvm::Function::ExternalLinkage); 992 993 WeakRefReferences.erase(Entry); 994 } 995 996 if (Entry->getType() == Ty) 997 return Entry; 998 999 // Make sure the result is of the correct type. 1000 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1001 } 1002 1003 // This is the first use or definition of a mangled name. If there is a 1004 // deferred decl with this name, remember that we need to emit it at the end 1005 // of the file. 1006 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1007 if (DDI != DeferredDecls.end()) { 1008 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1009 // list, and remove it from DeferredDecls (since we don't need it anymore). 1010 DeferredDeclsToEmit.push_back(DDI->second); 1011 DeferredDecls.erase(DDI); 1012 } 1013 1014 llvm::GlobalVariable *GV = 1015 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1016 llvm::GlobalValue::ExternalLinkage, 1017 0, MangledName, 0, 1018 false, Ty->getAddressSpace()); 1019 1020 // Handle things which are present even on external declarations. 1021 if (D) { 1022 // FIXME: This code is overly simple and should be merged with other global 1023 // handling. 1024 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1025 1026 // FIXME: Merge with other attribute handling code. 1027 if (D->getStorageClass() == VarDecl::PrivateExtern) 1028 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1029 1030 if (D->hasAttr<WeakAttr>() || 1031 D->hasAttr<WeakImportAttr>()) 1032 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1033 1034 GV->setThreadLocal(D->isThreadSpecified()); 1035 } 1036 1037 return GV; 1038 } 1039 1040 1041 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1042 /// given global variable. If Ty is non-null and if the global doesn't exist, 1043 /// then it will be greated with the specified type instead of whatever the 1044 /// normal requested type would be. 1045 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1046 const llvm::Type *Ty) { 1047 assert(D->hasGlobalStorage() && "Not a global variable"); 1048 QualType ASTTy = D->getType(); 1049 if (Ty == 0) 1050 Ty = getTypes().ConvertTypeForMem(ASTTy); 1051 1052 const llvm::PointerType *PTy = 1053 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1054 1055 MangleBuffer MangledName; 1056 getMangledName(MangledName, D); 1057 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1058 } 1059 1060 /// CreateRuntimeVariable - Create a new runtime global variable with the 1061 /// specified type and name. 1062 llvm::Constant * 1063 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1064 llvm::StringRef Name) { 1065 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1066 } 1067 1068 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1069 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1070 1071 if (MayDeferGeneration(D)) { 1072 // If we have not seen a reference to this variable yet, place it 1073 // into the deferred declarations table to be emitted if needed 1074 // later. 1075 MangleBuffer MangledName; 1076 getMangledName(MangledName, D); 1077 if (!GetGlobalValue(MangledName)) { 1078 DeferredDecls[MangledName] = D; 1079 return; 1080 } 1081 } 1082 1083 // The tentative definition is the only definition. 1084 EmitGlobalVarDefinition(D); 1085 } 1086 1087 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1088 if (DefinitionRequired) 1089 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1090 } 1091 1092 llvm::GlobalVariable::LinkageTypes 1093 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1094 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1095 return llvm::GlobalVariable::InternalLinkage; 1096 1097 if (const CXXMethodDecl *KeyFunction 1098 = RD->getASTContext().getKeyFunction(RD)) { 1099 // If this class has a key function, use that to determine the linkage of 1100 // the vtable. 1101 const FunctionDecl *Def = 0; 1102 if (KeyFunction->getBody(Def)) 1103 KeyFunction = cast<CXXMethodDecl>(Def); 1104 1105 switch (KeyFunction->getTemplateSpecializationKind()) { 1106 case TSK_Undeclared: 1107 case TSK_ExplicitSpecialization: 1108 if (KeyFunction->isInlined()) 1109 return llvm::GlobalVariable::WeakODRLinkage; 1110 1111 return llvm::GlobalVariable::ExternalLinkage; 1112 1113 case TSK_ImplicitInstantiation: 1114 case TSK_ExplicitInstantiationDefinition: 1115 return llvm::GlobalVariable::WeakODRLinkage; 1116 1117 case TSK_ExplicitInstantiationDeclaration: 1118 // FIXME: Use available_externally linkage. However, this currently 1119 // breaks LLVM's build due to undefined symbols. 1120 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1121 return llvm::GlobalVariable::WeakODRLinkage; 1122 } 1123 } 1124 1125 switch (RD->getTemplateSpecializationKind()) { 1126 case TSK_Undeclared: 1127 case TSK_ExplicitSpecialization: 1128 case TSK_ImplicitInstantiation: 1129 case TSK_ExplicitInstantiationDefinition: 1130 return llvm::GlobalVariable::WeakODRLinkage; 1131 1132 case TSK_ExplicitInstantiationDeclaration: 1133 // FIXME: Use available_externally linkage. However, this currently 1134 // breaks LLVM's build due to undefined symbols. 1135 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1136 return llvm::GlobalVariable::WeakODRLinkage; 1137 } 1138 1139 // Silence GCC warning. 1140 return llvm::GlobalVariable::WeakODRLinkage; 1141 } 1142 1143 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1144 return CharUnits::fromQuantity( 1145 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1146 } 1147 1148 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1149 llvm::Constant *Init = 0; 1150 QualType ASTTy = D->getType(); 1151 bool NonConstInit = false; 1152 1153 const Expr *InitExpr = D->getAnyInitializer(); 1154 1155 if (!InitExpr) { 1156 // This is a tentative definition; tentative definitions are 1157 // implicitly initialized with { 0 }. 1158 // 1159 // Note that tentative definitions are only emitted at the end of 1160 // a translation unit, so they should never have incomplete 1161 // type. In addition, EmitTentativeDefinition makes sure that we 1162 // never attempt to emit a tentative definition if a real one 1163 // exists. A use may still exists, however, so we still may need 1164 // to do a RAUW. 1165 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1166 Init = EmitNullConstant(D->getType()); 1167 } else { 1168 Init = EmitConstantExpr(InitExpr, D->getType()); 1169 if (!Init) { 1170 QualType T = InitExpr->getType(); 1171 if (D->getType()->isReferenceType()) 1172 T = D->getType(); 1173 1174 if (getLangOptions().CPlusPlus) { 1175 EmitCXXGlobalVarDeclInitFunc(D); 1176 Init = EmitNullConstant(T); 1177 NonConstInit = true; 1178 } else { 1179 ErrorUnsupported(D, "static initializer"); 1180 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1181 } 1182 } 1183 } 1184 1185 const llvm::Type* InitType = Init->getType(); 1186 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1187 1188 // Strip off a bitcast if we got one back. 1189 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1190 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1191 // all zero index gep. 1192 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1193 Entry = CE->getOperand(0); 1194 } 1195 1196 // Entry is now either a Function or GlobalVariable. 1197 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1198 1199 // We have a definition after a declaration with the wrong type. 1200 // We must make a new GlobalVariable* and update everything that used OldGV 1201 // (a declaration or tentative definition) with the new GlobalVariable* 1202 // (which will be a definition). 1203 // 1204 // This happens if there is a prototype for a global (e.g. 1205 // "extern int x[];") and then a definition of a different type (e.g. 1206 // "int x[10];"). This also happens when an initializer has a different type 1207 // from the type of the global (this happens with unions). 1208 if (GV == 0 || 1209 GV->getType()->getElementType() != InitType || 1210 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1211 1212 // Move the old entry aside so that we'll create a new one. 1213 Entry->setName(llvm::StringRef()); 1214 1215 // Make a new global with the correct type, this is now guaranteed to work. 1216 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1217 1218 // Replace all uses of the old global with the new global 1219 llvm::Constant *NewPtrForOldDecl = 1220 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1221 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1222 1223 // Erase the old global, since it is no longer used. 1224 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1225 } 1226 1227 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1228 SourceManager &SM = Context.getSourceManager(); 1229 AddAnnotation(EmitAnnotateAttr(GV, AA, 1230 SM.getInstantiationLineNumber(D->getLocation()))); 1231 } 1232 1233 GV->setInitializer(Init); 1234 1235 // If it is safe to mark the global 'constant', do so now. 1236 GV->setConstant(false); 1237 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1238 GV->setConstant(true); 1239 1240 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1241 1242 // Set the llvm linkage type as appropriate. 1243 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1244 if (Linkage == GVA_Internal) 1245 GV->setLinkage(llvm::Function::InternalLinkage); 1246 else if (D->hasAttr<DLLImportAttr>()) 1247 GV->setLinkage(llvm::Function::DLLImportLinkage); 1248 else if (D->hasAttr<DLLExportAttr>()) 1249 GV->setLinkage(llvm::Function::DLLExportLinkage); 1250 else if (D->hasAttr<WeakAttr>()) { 1251 if (GV->isConstant()) 1252 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1253 else 1254 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1255 } else if (Linkage == GVA_TemplateInstantiation || 1256 Linkage == GVA_ExplicitTemplateInstantiation) 1257 // FIXME: It seems like we can provide more specific linkage here 1258 // (LinkOnceODR, WeakODR). 1259 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1260 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1261 !D->hasExternalStorage() && !D->getInit() && 1262 !D->getAttr<SectionAttr>()) { 1263 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1264 // common vars aren't constant even if declared const. 1265 GV->setConstant(false); 1266 } else 1267 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1268 1269 SetCommonAttributes(D, GV); 1270 1271 // Emit global variable debug information. 1272 if (CGDebugInfo *DI = getDebugInfo()) { 1273 DI->setLocation(D->getLocation()); 1274 DI->EmitGlobalVariable(GV, D); 1275 } 1276 } 1277 1278 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1279 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1280 /// existing call uses of the old function in the module, this adjusts them to 1281 /// call the new function directly. 1282 /// 1283 /// This is not just a cleanup: the always_inline pass requires direct calls to 1284 /// functions to be able to inline them. If there is a bitcast in the way, it 1285 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1286 /// run at -O0. 1287 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1288 llvm::Function *NewFn) { 1289 // If we're redefining a global as a function, don't transform it. 1290 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1291 if (OldFn == 0) return; 1292 1293 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1294 llvm::SmallVector<llvm::Value*, 4> ArgList; 1295 1296 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1297 UI != E; ) { 1298 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1299 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1300 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1301 llvm::CallSite CS(CI); 1302 if (!CI || !CS.isCallee(I)) continue; 1303 1304 // If the return types don't match exactly, and if the call isn't dead, then 1305 // we can't transform this call. 1306 if (CI->getType() != NewRetTy && !CI->use_empty()) 1307 continue; 1308 1309 // If the function was passed too few arguments, don't transform. If extra 1310 // arguments were passed, we silently drop them. If any of the types 1311 // mismatch, we don't transform. 1312 unsigned ArgNo = 0; 1313 bool DontTransform = false; 1314 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1315 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1316 if (CS.arg_size() == ArgNo || 1317 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1318 DontTransform = true; 1319 break; 1320 } 1321 } 1322 if (DontTransform) 1323 continue; 1324 1325 // Okay, we can transform this. Create the new call instruction and copy 1326 // over the required information. 1327 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1328 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1329 ArgList.end(), "", CI); 1330 ArgList.clear(); 1331 if (!NewCall->getType()->isVoidTy()) 1332 NewCall->takeName(CI); 1333 NewCall->setAttributes(CI->getAttributes()); 1334 NewCall->setCallingConv(CI->getCallingConv()); 1335 1336 // Finally, remove the old call, replacing any uses with the new one. 1337 if (!CI->use_empty()) 1338 CI->replaceAllUsesWith(NewCall); 1339 1340 // Copy debug location attached to CI. 1341 if (!CI->getDebugLoc().isUnknown()) 1342 NewCall->setDebugLoc(CI->getDebugLoc()); 1343 CI->eraseFromParent(); 1344 } 1345 } 1346 1347 1348 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1349 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1350 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1351 getMangleContext().mangleInitDiscriminator(); 1352 // Get or create the prototype for the function. 1353 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1354 1355 // Strip off a bitcast if we got one back. 1356 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1357 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1358 Entry = CE->getOperand(0); 1359 } 1360 1361 1362 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1363 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1364 1365 // If the types mismatch then we have to rewrite the definition. 1366 assert(OldFn->isDeclaration() && 1367 "Shouldn't replace non-declaration"); 1368 1369 // F is the Function* for the one with the wrong type, we must make a new 1370 // Function* and update everything that used F (a declaration) with the new 1371 // Function* (which will be a definition). 1372 // 1373 // This happens if there is a prototype for a function 1374 // (e.g. "int f()") and then a definition of a different type 1375 // (e.g. "int f(int x)"). Move the old function aside so that it 1376 // doesn't interfere with GetAddrOfFunction. 1377 OldFn->setName(llvm::StringRef()); 1378 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1379 1380 // If this is an implementation of a function without a prototype, try to 1381 // replace any existing uses of the function (which may be calls) with uses 1382 // of the new function 1383 if (D->getType()->isFunctionNoProtoType()) { 1384 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1385 OldFn->removeDeadConstantUsers(); 1386 } 1387 1388 // Replace uses of F with the Function we will endow with a body. 1389 if (!Entry->use_empty()) { 1390 llvm::Constant *NewPtrForOldDecl = 1391 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1392 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1393 } 1394 1395 // Ok, delete the old function now, which is dead. 1396 OldFn->eraseFromParent(); 1397 1398 Entry = NewFn; 1399 } 1400 1401 llvm::Function *Fn = cast<llvm::Function>(Entry); 1402 setFunctionLinkage(D, Fn); 1403 1404 CodeGenFunction(*this).GenerateCode(D, Fn); 1405 1406 SetFunctionDefinitionAttributes(D, Fn); 1407 SetLLVMFunctionAttributesForDefinition(D, Fn); 1408 1409 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1410 AddGlobalCtor(Fn, CA->getPriority()); 1411 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1412 AddGlobalDtor(Fn, DA->getPriority()); 1413 } 1414 1415 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1416 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1417 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1418 assert(AA && "Not an alias?"); 1419 1420 MangleBuffer MangledName; 1421 getMangledName(MangledName, GD); 1422 1423 // If there is a definition in the module, then it wins over the alias. 1424 // This is dubious, but allow it to be safe. Just ignore the alias. 1425 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1426 if (Entry && !Entry->isDeclaration()) 1427 return; 1428 1429 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1430 1431 // Create a reference to the named value. This ensures that it is emitted 1432 // if a deferred decl. 1433 llvm::Constant *Aliasee; 1434 if (isa<llvm::FunctionType>(DeclTy)) 1435 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1436 else 1437 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1438 llvm::PointerType::getUnqual(DeclTy), 0); 1439 1440 // Create the new alias itself, but don't set a name yet. 1441 llvm::GlobalValue *GA = 1442 new llvm::GlobalAlias(Aliasee->getType(), 1443 llvm::Function::ExternalLinkage, 1444 "", Aliasee, &getModule()); 1445 1446 if (Entry) { 1447 assert(Entry->isDeclaration()); 1448 1449 // If there is a declaration in the module, then we had an extern followed 1450 // by the alias, as in: 1451 // extern int test6(); 1452 // ... 1453 // int test6() __attribute__((alias("test7"))); 1454 // 1455 // Remove it and replace uses of it with the alias. 1456 GA->takeName(Entry); 1457 1458 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1459 Entry->getType())); 1460 Entry->eraseFromParent(); 1461 } else { 1462 GA->setName(MangledName.getString()); 1463 } 1464 1465 // Set attributes which are particular to an alias; this is a 1466 // specialization of the attributes which may be set on a global 1467 // variable/function. 1468 if (D->hasAttr<DLLExportAttr>()) { 1469 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1470 // The dllexport attribute is ignored for undefined symbols. 1471 if (FD->getBody()) 1472 GA->setLinkage(llvm::Function::DLLExportLinkage); 1473 } else { 1474 GA->setLinkage(llvm::Function::DLLExportLinkage); 1475 } 1476 } else if (D->hasAttr<WeakAttr>() || 1477 D->hasAttr<WeakRefAttr>() || 1478 D->hasAttr<WeakImportAttr>()) { 1479 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1480 } 1481 1482 SetCommonAttributes(D, GA); 1483 } 1484 1485 /// getBuiltinLibFunction - Given a builtin id for a function like 1486 /// "__builtin_fabsf", return a Function* for "fabsf". 1487 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1488 unsigned BuiltinID) { 1489 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1490 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1491 "isn't a lib fn"); 1492 1493 // Get the name, skip over the __builtin_ prefix (if necessary). 1494 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1495 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1496 Name += 10; 1497 1498 const llvm::FunctionType *Ty = 1499 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1500 1501 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1502 } 1503 1504 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1505 unsigned NumTys) { 1506 return llvm::Intrinsic::getDeclaration(&getModule(), 1507 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1508 } 1509 1510 1511 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1512 const llvm::Type *SrcType, 1513 const llvm::Type *SizeType) { 1514 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1515 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1516 } 1517 1518 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1519 const llvm::Type *SrcType, 1520 const llvm::Type *SizeType) { 1521 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1522 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1523 } 1524 1525 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1526 const llvm::Type *SizeType) { 1527 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1528 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1529 } 1530 1531 static llvm::StringMapEntry<llvm::Constant*> & 1532 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1533 const StringLiteral *Literal, 1534 bool TargetIsLSB, 1535 bool &IsUTF16, 1536 unsigned &StringLength) { 1537 unsigned NumBytes = Literal->getByteLength(); 1538 1539 // Check for simple case. 1540 if (!Literal->containsNonAsciiOrNull()) { 1541 StringLength = NumBytes; 1542 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1543 StringLength)); 1544 } 1545 1546 // Otherwise, convert the UTF8 literals into a byte string. 1547 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1548 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1549 UTF16 *ToPtr = &ToBuf[0]; 1550 1551 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1552 &ToPtr, ToPtr + NumBytes, 1553 strictConversion); 1554 1555 // Check for conversion failure. 1556 if (Result != conversionOK) { 1557 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1558 // this duplicate code. 1559 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1560 StringLength = NumBytes; 1561 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1562 StringLength)); 1563 } 1564 1565 // ConvertUTF8toUTF16 returns the length in ToPtr. 1566 StringLength = ToPtr - &ToBuf[0]; 1567 1568 // Render the UTF-16 string into a byte array and convert to the target byte 1569 // order. 1570 // 1571 // FIXME: This isn't something we should need to do here. 1572 llvm::SmallString<128> AsBytes; 1573 AsBytes.reserve(StringLength * 2); 1574 for (unsigned i = 0; i != StringLength; ++i) { 1575 unsigned short Val = ToBuf[i]; 1576 if (TargetIsLSB) { 1577 AsBytes.push_back(Val & 0xFF); 1578 AsBytes.push_back(Val >> 8); 1579 } else { 1580 AsBytes.push_back(Val >> 8); 1581 AsBytes.push_back(Val & 0xFF); 1582 } 1583 } 1584 // Append one extra null character, the second is automatically added by our 1585 // caller. 1586 AsBytes.push_back(0); 1587 1588 IsUTF16 = true; 1589 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1590 } 1591 1592 llvm::Constant * 1593 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1594 unsigned StringLength = 0; 1595 bool isUTF16 = false; 1596 llvm::StringMapEntry<llvm::Constant*> &Entry = 1597 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1598 getTargetData().isLittleEndian(), 1599 isUTF16, StringLength); 1600 1601 if (llvm::Constant *C = Entry.getValue()) 1602 return C; 1603 1604 llvm::Constant *Zero = 1605 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1606 llvm::Constant *Zeros[] = { Zero, Zero }; 1607 1608 // If we don't already have it, get __CFConstantStringClassReference. 1609 if (!CFConstantStringClassRef) { 1610 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1611 Ty = llvm::ArrayType::get(Ty, 0); 1612 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1613 "__CFConstantStringClassReference"); 1614 // Decay array -> ptr 1615 CFConstantStringClassRef = 1616 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1617 } 1618 1619 QualType CFTy = getContext().getCFConstantStringType(); 1620 1621 const llvm::StructType *STy = 1622 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1623 1624 std::vector<llvm::Constant*> Fields(4); 1625 1626 // Class pointer. 1627 Fields[0] = CFConstantStringClassRef; 1628 1629 // Flags. 1630 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1631 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1632 llvm::ConstantInt::get(Ty, 0x07C8); 1633 1634 // String pointer. 1635 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1636 1637 llvm::GlobalValue::LinkageTypes Linkage; 1638 bool isConstant; 1639 if (isUTF16) { 1640 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1641 Linkage = llvm::GlobalValue::InternalLinkage; 1642 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1643 // does make plain ascii ones writable. 1644 isConstant = true; 1645 } else { 1646 Linkage = llvm::GlobalValue::PrivateLinkage; 1647 isConstant = !Features.WritableStrings; 1648 } 1649 1650 llvm::GlobalVariable *GV = 1651 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1652 ".str"); 1653 if (isUTF16) { 1654 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1655 GV->setAlignment(Align.getQuantity()); 1656 } 1657 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1658 1659 // String length. 1660 Ty = getTypes().ConvertType(getContext().LongTy); 1661 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1662 1663 // The struct. 1664 C = llvm::ConstantStruct::get(STy, Fields); 1665 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1666 llvm::GlobalVariable::PrivateLinkage, C, 1667 "_unnamed_cfstring_"); 1668 if (const char *Sect = getContext().Target.getCFStringSection()) 1669 GV->setSection(Sect); 1670 Entry.setValue(GV); 1671 1672 return GV; 1673 } 1674 1675 llvm::Constant * 1676 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1677 unsigned StringLength = 0; 1678 bool isUTF16 = false; 1679 llvm::StringMapEntry<llvm::Constant*> &Entry = 1680 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1681 getTargetData().isLittleEndian(), 1682 isUTF16, StringLength); 1683 1684 if (llvm::Constant *C = Entry.getValue()) 1685 return C; 1686 1687 llvm::Constant *Zero = 1688 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1689 llvm::Constant *Zeros[] = { Zero, Zero }; 1690 1691 // If we don't already have it, get _NSConstantStringClassReference. 1692 if (!NSConstantStringClassRef) { 1693 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1694 Ty = llvm::ArrayType::get(Ty, 0); 1695 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1696 Features.ObjCNonFragileABI ? 1697 "OBJC_CLASS_$_NSConstantString" : 1698 "_NSConstantStringClassReference"); 1699 // Decay array -> ptr 1700 NSConstantStringClassRef = 1701 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1702 } 1703 1704 QualType NSTy = getContext().getNSConstantStringType(); 1705 1706 const llvm::StructType *STy = 1707 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1708 1709 std::vector<llvm::Constant*> Fields(3); 1710 1711 // Class pointer. 1712 Fields[0] = NSConstantStringClassRef; 1713 1714 // String pointer. 1715 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1716 1717 llvm::GlobalValue::LinkageTypes Linkage; 1718 bool isConstant; 1719 if (isUTF16) { 1720 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1721 Linkage = llvm::GlobalValue::InternalLinkage; 1722 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1723 // does make plain ascii ones writable. 1724 isConstant = true; 1725 } else { 1726 Linkage = llvm::GlobalValue::PrivateLinkage; 1727 isConstant = !Features.WritableStrings; 1728 } 1729 1730 llvm::GlobalVariable *GV = 1731 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1732 ".str"); 1733 if (isUTF16) { 1734 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1735 GV->setAlignment(Align.getQuantity()); 1736 } 1737 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1738 1739 // String length. 1740 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1741 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1742 1743 // The struct. 1744 C = llvm::ConstantStruct::get(STy, Fields); 1745 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1746 llvm::GlobalVariable::PrivateLinkage, C, 1747 "_unnamed_nsstring_"); 1748 // FIXME. Fix section. 1749 if (const char *Sect = 1750 Features.ObjCNonFragileABI 1751 ? getContext().Target.getNSStringNonFragileABISection() 1752 : getContext().Target.getNSStringSection()) 1753 GV->setSection(Sect); 1754 Entry.setValue(GV); 1755 1756 return GV; 1757 } 1758 1759 /// GetStringForStringLiteral - Return the appropriate bytes for a 1760 /// string literal, properly padded to match the literal type. 1761 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1762 const char *StrData = E->getStrData(); 1763 unsigned Len = E->getByteLength(); 1764 1765 const ConstantArrayType *CAT = 1766 getContext().getAsConstantArrayType(E->getType()); 1767 assert(CAT && "String isn't pointer or array!"); 1768 1769 // Resize the string to the right size. 1770 std::string Str(StrData, StrData+Len); 1771 uint64_t RealLen = CAT->getSize().getZExtValue(); 1772 1773 if (E->isWide()) 1774 RealLen *= getContext().Target.getWCharWidth()/8; 1775 1776 Str.resize(RealLen, '\0'); 1777 1778 return Str; 1779 } 1780 1781 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1782 /// constant array for the given string literal. 1783 llvm::Constant * 1784 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1785 // FIXME: This can be more efficient. 1786 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1787 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1788 if (S->isWide()) { 1789 llvm::Type *DestTy = 1790 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1791 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1792 } 1793 return C; 1794 } 1795 1796 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1797 /// array for the given ObjCEncodeExpr node. 1798 llvm::Constant * 1799 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1800 std::string Str; 1801 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1802 1803 return GetAddrOfConstantCString(Str); 1804 } 1805 1806 1807 /// GenerateWritableString -- Creates storage for a string literal. 1808 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1809 bool constant, 1810 CodeGenModule &CGM, 1811 const char *GlobalName) { 1812 // Create Constant for this string literal. Don't add a '\0'. 1813 llvm::Constant *C = 1814 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1815 1816 // Create a global variable for this string 1817 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1818 llvm::GlobalValue::PrivateLinkage, 1819 C, GlobalName); 1820 } 1821 1822 /// GetAddrOfConstantString - Returns a pointer to a character array 1823 /// containing the literal. This contents are exactly that of the 1824 /// given string, i.e. it will not be null terminated automatically; 1825 /// see GetAddrOfConstantCString. Note that whether the result is 1826 /// actually a pointer to an LLVM constant depends on 1827 /// Feature.WriteableStrings. 1828 /// 1829 /// The result has pointer to array type. 1830 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1831 const char *GlobalName) { 1832 bool IsConstant = !Features.WritableStrings; 1833 1834 // Get the default prefix if a name wasn't specified. 1835 if (!GlobalName) 1836 GlobalName = ".str"; 1837 1838 // Don't share any string literals if strings aren't constant. 1839 if (!IsConstant) 1840 return GenerateStringLiteral(str, false, *this, GlobalName); 1841 1842 llvm::StringMapEntry<llvm::Constant *> &Entry = 1843 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1844 1845 if (Entry.getValue()) 1846 return Entry.getValue(); 1847 1848 // Create a global variable for this. 1849 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1850 Entry.setValue(C); 1851 return C; 1852 } 1853 1854 /// GetAddrOfConstantCString - Returns a pointer to a character 1855 /// array containing the literal and a terminating '\-' 1856 /// character. The result has pointer to array type. 1857 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1858 const char *GlobalName){ 1859 return GetAddrOfConstantString(str + '\0', GlobalName); 1860 } 1861 1862 /// EmitObjCPropertyImplementations - Emit information for synthesized 1863 /// properties for an implementation. 1864 void CodeGenModule::EmitObjCPropertyImplementations(const 1865 ObjCImplementationDecl *D) { 1866 for (ObjCImplementationDecl::propimpl_iterator 1867 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1868 ObjCPropertyImplDecl *PID = *i; 1869 1870 // Dynamic is just for type-checking. 1871 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1872 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1873 1874 // Determine which methods need to be implemented, some may have 1875 // been overridden. Note that ::isSynthesized is not the method 1876 // we want, that just indicates if the decl came from a 1877 // property. What we want to know is if the method is defined in 1878 // this implementation. 1879 if (!D->getInstanceMethod(PD->getGetterName())) 1880 CodeGenFunction(*this).GenerateObjCGetter( 1881 const_cast<ObjCImplementationDecl *>(D), PID); 1882 if (!PD->isReadOnly() && 1883 !D->getInstanceMethod(PD->getSetterName())) 1884 CodeGenFunction(*this).GenerateObjCSetter( 1885 const_cast<ObjCImplementationDecl *>(D), PID); 1886 } 1887 } 1888 } 1889 1890 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1891 /// for an implementation. 1892 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1893 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1894 return; 1895 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1896 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1897 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1898 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1899 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1900 D->getLocation(), 1901 D->getLocation(), cxxSelector, 1902 getContext().VoidTy, 0, 1903 DC, true, false, true, 1904 ObjCMethodDecl::Required); 1905 D->addInstanceMethod(DTORMethod); 1906 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1907 1908 II = &getContext().Idents.get(".cxx_construct"); 1909 cxxSelector = getContext().Selectors.getSelector(0, &II); 1910 // The constructor returns 'self'. 1911 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1912 D->getLocation(), 1913 D->getLocation(), cxxSelector, 1914 getContext().getObjCIdType(), 0, 1915 DC, true, false, true, 1916 ObjCMethodDecl::Required); 1917 D->addInstanceMethod(CTORMethod); 1918 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1919 1920 1921 } 1922 1923 /// EmitNamespace - Emit all declarations in a namespace. 1924 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1925 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1926 I != E; ++I) 1927 EmitTopLevelDecl(*I); 1928 } 1929 1930 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1931 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1932 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1933 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1934 ErrorUnsupported(LSD, "linkage spec"); 1935 return; 1936 } 1937 1938 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1939 I != E; ++I) 1940 EmitTopLevelDecl(*I); 1941 } 1942 1943 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1944 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1945 // If an error has occurred, stop code generation, but continue 1946 // parsing and semantic analysis (to ensure all warnings and errors 1947 // are emitted). 1948 if (Diags.hasErrorOccurred()) 1949 return; 1950 1951 // Ignore dependent declarations. 1952 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1953 return; 1954 1955 switch (D->getKind()) { 1956 case Decl::CXXConversion: 1957 case Decl::CXXMethod: 1958 case Decl::Function: 1959 // Skip function templates 1960 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1961 return; 1962 1963 EmitGlobal(cast<FunctionDecl>(D)); 1964 break; 1965 1966 case Decl::Var: 1967 EmitGlobal(cast<VarDecl>(D)); 1968 break; 1969 1970 // C++ Decls 1971 case Decl::Namespace: 1972 EmitNamespace(cast<NamespaceDecl>(D)); 1973 break; 1974 // No code generation needed. 1975 case Decl::UsingShadow: 1976 case Decl::Using: 1977 case Decl::UsingDirective: 1978 case Decl::ClassTemplate: 1979 case Decl::FunctionTemplate: 1980 case Decl::NamespaceAlias: 1981 break; 1982 case Decl::CXXConstructor: 1983 // Skip function templates 1984 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1985 return; 1986 1987 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1988 break; 1989 case Decl::CXXDestructor: 1990 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1991 break; 1992 1993 case Decl::StaticAssert: 1994 // Nothing to do. 1995 break; 1996 1997 // Objective-C Decls 1998 1999 // Forward declarations, no (immediate) code generation. 2000 case Decl::ObjCClass: 2001 case Decl::ObjCForwardProtocol: 2002 case Decl::ObjCCategory: 2003 case Decl::ObjCInterface: 2004 break; 2005 2006 case Decl::ObjCProtocol: 2007 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2008 break; 2009 2010 case Decl::ObjCCategoryImpl: 2011 // Categories have properties but don't support synthesize so we 2012 // can ignore them here. 2013 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2014 break; 2015 2016 case Decl::ObjCImplementation: { 2017 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2018 EmitObjCPropertyImplementations(OMD); 2019 EmitObjCIvarInitializations(OMD); 2020 Runtime->GenerateClass(OMD); 2021 break; 2022 } 2023 case Decl::ObjCMethod: { 2024 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2025 // If this is not a prototype, emit the body. 2026 if (OMD->getBody()) 2027 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2028 break; 2029 } 2030 case Decl::ObjCCompatibleAlias: 2031 // compatibility-alias is a directive and has no code gen. 2032 break; 2033 2034 case Decl::LinkageSpec: 2035 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2036 break; 2037 2038 case Decl::FileScopeAsm: { 2039 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2040 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2041 2042 const std::string &S = getModule().getModuleInlineAsm(); 2043 if (S.empty()) 2044 getModule().setModuleInlineAsm(AsmString); 2045 else 2046 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2047 break; 2048 } 2049 2050 default: 2051 // Make sure we handled everything we should, every other kind is a 2052 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2053 // function. Need to recode Decl::Kind to do that easily. 2054 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2055 } 2056 } 2057