1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) { 168 switch (V) { 169 case DefaultVisibility: return llvm::GlobalValue::DefaultVisibility; 170 case HiddenVisibility: return llvm::GlobalValue::HiddenVisibility; 171 case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility; 172 } 173 llvm_unreachable("unknown visibility!"); 174 return llvm::GlobalValue::DefaultVisibility; 175 } 176 177 178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 179 const NamedDecl *D, 180 bool IsForDefinition) const { 181 // Internal definitions always have default visibility. 182 if (GV->hasLocalLinkage()) { 183 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 184 return; 185 } 186 187 // Set visibility for definitions. 188 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 189 if (LV.visibilityExplicit() || 190 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 191 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 192 } 193 194 /// Set the symbol visibility of type information (vtable and RTTI) 195 /// associated with the given type. 196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 197 const CXXRecordDecl *RD, 198 bool IsForRTTI, 199 bool IsForDefinition) const { 200 setGlobalVisibility(GV, RD, IsForDefinition); 201 202 if (!CodeGenOpts.HiddenWeakVTables) 203 return; 204 205 // We want to drop the visibility to hidden for weak type symbols. 206 // This isn't possible if there might be unresolved references 207 // elsewhere that rely on this symbol being visible. 208 209 // This should be kept roughly in sync with setThunkVisibility 210 // in CGVTables.cpp. 211 212 // Preconditions. 213 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 214 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 215 return; 216 217 // Don't override an explicit visibility attribute. 218 if (RD->hasAttr<VisibilityAttr>()) 219 return; 220 221 switch (RD->getTemplateSpecializationKind()) { 222 // We have to disable the optimization if this is an EI definition 223 // because there might be EI declarations in other shared objects. 224 case TSK_ExplicitInstantiationDefinition: 225 case TSK_ExplicitInstantiationDeclaration: 226 return; 227 228 // Every use of a non-template class's type information has to emit it. 229 case TSK_Undeclared: 230 break; 231 232 // In theory, implicit instantiations can ignore the possibility of 233 // an explicit instantiation declaration because there necessarily 234 // must be an EI definition somewhere with default visibility. In 235 // practice, it's possible to have an explicit instantiation for 236 // an arbitrary template class, and linkers aren't necessarily able 237 // to deal with mixed-visibility symbols. 238 case TSK_ExplicitSpecialization: 239 case TSK_ImplicitInstantiation: 240 if (!CodeGenOpts.HiddenWeakTemplateVTables) 241 return; 242 break; 243 } 244 245 // If there's a key function, there may be translation units 246 // that don't have the key function's definition. But ignore 247 // this if we're emitting RTTI under -fno-rtti. 248 if (!IsForRTTI || Features.RTTI) 249 if (Context.getKeyFunction(RD)) 250 return; 251 252 // Otherwise, drop the visibility to hidden. 253 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 254 GV->setUnnamedAddr(true); 255 } 256 257 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 258 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 259 260 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 261 if (!Str.empty()) 262 return Str; 263 264 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 265 IdentifierInfo *II = ND->getIdentifier(); 266 assert(II && "Attempt to mangle unnamed decl."); 267 268 Str = II->getName(); 269 return Str; 270 } 271 272 llvm::SmallString<256> Buffer; 273 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 274 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 275 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 276 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 277 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 278 getCXXABI().getMangleContext().mangleBlock(BD, Buffer); 279 else 280 getCXXABI().getMangleContext().mangleName(ND, Buffer); 281 282 // Allocate space for the mangled name. 283 size_t Length = Buffer.size(); 284 char *Name = MangledNamesAllocator.Allocate<char>(Length); 285 std::copy(Buffer.begin(), Buffer.end(), Name); 286 287 Str = llvm::StringRef(Name, Length); 288 289 return Str; 290 } 291 292 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 293 const BlockDecl *BD) { 294 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 295 const Decl *D = GD.getDecl(); 296 if (D == 0) 297 MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer()); 298 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 299 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer()); 300 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 301 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer()); 302 else 303 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer()); 304 } 305 306 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 307 return getModule().getNamedValue(Name); 308 } 309 310 /// AddGlobalCtor - Add a function to the list that will be called before 311 /// main() runs. 312 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 313 // FIXME: Type coercion of void()* types. 314 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 315 } 316 317 /// AddGlobalDtor - Add a function to the list that will be called 318 /// when the module is unloaded. 319 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 320 // FIXME: Type coercion of void()* types. 321 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 322 } 323 324 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 325 // Ctor function type is void()*. 326 llvm::FunctionType* CtorFTy = 327 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 328 std::vector<const llvm::Type*>(), 329 false); 330 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 331 332 // Get the type of a ctor entry, { i32, void ()* }. 333 llvm::StructType* CtorStructTy = 334 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 335 llvm::PointerType::getUnqual(CtorFTy), NULL); 336 337 // Construct the constructor and destructor arrays. 338 std::vector<llvm::Constant*> Ctors; 339 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 340 std::vector<llvm::Constant*> S; 341 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 342 I->second, false)); 343 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 344 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 345 } 346 347 if (!Ctors.empty()) { 348 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 349 new llvm::GlobalVariable(TheModule, AT, false, 350 llvm::GlobalValue::AppendingLinkage, 351 llvm::ConstantArray::get(AT, Ctors), 352 GlobalName); 353 } 354 } 355 356 void CodeGenModule::EmitAnnotations() { 357 if (Annotations.empty()) 358 return; 359 360 // Create a new global variable for the ConstantStruct in the Module. 361 llvm::Constant *Array = 362 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 363 Annotations.size()), 364 Annotations); 365 llvm::GlobalValue *gv = 366 new llvm::GlobalVariable(TheModule, Array->getType(), false, 367 llvm::GlobalValue::AppendingLinkage, Array, 368 "llvm.global.annotations"); 369 gv->setSection("llvm.metadata"); 370 } 371 372 llvm::GlobalValue::LinkageTypes 373 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 374 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 375 376 if (Linkage == GVA_Internal) 377 return llvm::Function::InternalLinkage; 378 379 if (D->hasAttr<DLLExportAttr>()) 380 return llvm::Function::DLLExportLinkage; 381 382 if (D->hasAttr<WeakAttr>()) 383 return llvm::Function::WeakAnyLinkage; 384 385 // In C99 mode, 'inline' functions are guaranteed to have a strong 386 // definition somewhere else, so we can use available_externally linkage. 387 if (Linkage == GVA_C99Inline) 388 return llvm::Function::AvailableExternallyLinkage; 389 390 // In C++, the compiler has to emit a definition in every translation unit 391 // that references the function. We should use linkonce_odr because 392 // a) if all references in this translation unit are optimized away, we 393 // don't need to codegen it. b) if the function persists, it needs to be 394 // merged with other definitions. c) C++ has the ODR, so we know the 395 // definition is dependable. 396 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 397 return llvm::Function::LinkOnceODRLinkage; 398 399 // An explicit instantiation of a template has weak linkage, since 400 // explicit instantiations can occur in multiple translation units 401 // and must all be equivalent. However, we are not allowed to 402 // throw away these explicit instantiations. 403 if (Linkage == GVA_ExplicitTemplateInstantiation) 404 return llvm::Function::WeakODRLinkage; 405 406 // Otherwise, we have strong external linkage. 407 assert(Linkage == GVA_StrongExternal); 408 return llvm::Function::ExternalLinkage; 409 } 410 411 412 /// SetFunctionDefinitionAttributes - Set attributes for a global. 413 /// 414 /// FIXME: This is currently only done for aliases and functions, but not for 415 /// variables (these details are set in EmitGlobalVarDefinition for variables). 416 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 417 llvm::GlobalValue *GV) { 418 SetCommonAttributes(D, GV); 419 } 420 421 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 422 const CGFunctionInfo &Info, 423 llvm::Function *F) { 424 unsigned CallingConv; 425 AttributeListType AttributeList; 426 ConstructAttributeList(Info, D, AttributeList, CallingConv); 427 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 428 AttributeList.size())); 429 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 430 } 431 432 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 433 llvm::Function *F) { 434 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 435 F->addFnAttr(llvm::Attribute::NoUnwind); 436 437 if (D->hasAttr<AlwaysInlineAttr>()) 438 F->addFnAttr(llvm::Attribute::AlwaysInline); 439 440 if (D->hasAttr<NakedAttr>()) 441 F->addFnAttr(llvm::Attribute::Naked); 442 443 if (D->hasAttr<NoInlineAttr>()) 444 F->addFnAttr(llvm::Attribute::NoInline); 445 446 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 447 F->setUnnamedAddr(true); 448 449 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 450 F->addFnAttr(llvm::Attribute::StackProtect); 451 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 452 F->addFnAttr(llvm::Attribute::StackProtectReq); 453 454 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 455 if (alignment) 456 F->setAlignment(alignment); 457 458 // C++ ABI requires 2-byte alignment for member functions. 459 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 460 F->setAlignment(2); 461 } 462 463 void CodeGenModule::SetCommonAttributes(const Decl *D, 464 llvm::GlobalValue *GV) { 465 if (isa<NamedDecl>(D)) 466 setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true); 467 else 468 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 469 470 if (D->hasAttr<UsedAttr>()) 471 AddUsedGlobal(GV); 472 473 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 474 GV->setSection(SA->getName()); 475 476 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 477 } 478 479 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 480 llvm::Function *F, 481 const CGFunctionInfo &FI) { 482 SetLLVMFunctionAttributes(D, FI, F); 483 SetLLVMFunctionAttributesForDefinition(D, F); 484 485 F->setLinkage(llvm::Function::InternalLinkage); 486 487 SetCommonAttributes(D, F); 488 } 489 490 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 491 llvm::Function *F, 492 bool IsIncompleteFunction) { 493 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 494 495 if (!IsIncompleteFunction) 496 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 497 498 // Only a few attributes are set on declarations; these may later be 499 // overridden by a definition. 500 501 if (FD->hasAttr<DLLImportAttr>()) { 502 F->setLinkage(llvm::Function::DLLImportLinkage); 503 } else if (FD->hasAttr<WeakAttr>() || 504 FD->hasAttr<WeakImportAttr>()) { 505 // "extern_weak" is overloaded in LLVM; we probably should have 506 // separate linkage types for this. 507 F->setLinkage(llvm::Function::ExternalWeakLinkage); 508 } else { 509 F->setLinkage(llvm::Function::ExternalLinkage); 510 511 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 512 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 513 F->setVisibility(GetLLVMVisibility(LV.visibility())); 514 } 515 } 516 517 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 518 F->setSection(SA->getName()); 519 } 520 521 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 522 assert(!GV->isDeclaration() && 523 "Only globals with definition can force usage."); 524 LLVMUsed.push_back(GV); 525 } 526 527 void CodeGenModule::EmitLLVMUsed() { 528 // Don't create llvm.used if there is no need. 529 if (LLVMUsed.empty()) 530 return; 531 532 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 533 534 // Convert LLVMUsed to what ConstantArray needs. 535 std::vector<llvm::Constant*> UsedArray; 536 UsedArray.resize(LLVMUsed.size()); 537 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 538 UsedArray[i] = 539 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 540 i8PTy); 541 } 542 543 if (UsedArray.empty()) 544 return; 545 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 546 547 llvm::GlobalVariable *GV = 548 new llvm::GlobalVariable(getModule(), ATy, false, 549 llvm::GlobalValue::AppendingLinkage, 550 llvm::ConstantArray::get(ATy, UsedArray), 551 "llvm.used"); 552 553 GV->setSection("llvm.metadata"); 554 } 555 556 void CodeGenModule::EmitDeferred() { 557 // Emit code for any potentially referenced deferred decls. Since a 558 // previously unused static decl may become used during the generation of code 559 // for a static function, iterate until no changes are made. 560 561 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 562 if (!DeferredVTables.empty()) { 563 const CXXRecordDecl *RD = DeferredVTables.back(); 564 DeferredVTables.pop_back(); 565 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 566 continue; 567 } 568 569 GlobalDecl D = DeferredDeclsToEmit.back(); 570 DeferredDeclsToEmit.pop_back(); 571 572 // Check to see if we've already emitted this. This is necessary 573 // for a couple of reasons: first, decls can end up in the 574 // deferred-decls queue multiple times, and second, decls can end 575 // up with definitions in unusual ways (e.g. by an extern inline 576 // function acquiring a strong function redefinition). Just 577 // ignore these cases. 578 // 579 // TODO: That said, looking this up multiple times is very wasteful. 580 llvm::StringRef Name = getMangledName(D); 581 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 582 assert(CGRef && "Deferred decl wasn't referenced?"); 583 584 if (!CGRef->isDeclaration()) 585 continue; 586 587 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 588 // purposes an alias counts as a definition. 589 if (isa<llvm::GlobalAlias>(CGRef)) 590 continue; 591 592 // Otherwise, emit the definition and move on to the next one. 593 EmitGlobalDefinition(D); 594 } 595 } 596 597 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 598 /// annotation information for a given GlobalValue. The annotation struct is 599 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 600 /// GlobalValue being annotated. The second field is the constant string 601 /// created from the AnnotateAttr's annotation. The third field is a constant 602 /// string containing the name of the translation unit. The fourth field is 603 /// the line number in the file of the annotated value declaration. 604 /// 605 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 606 /// appears to. 607 /// 608 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 609 const AnnotateAttr *AA, 610 unsigned LineNo) { 611 llvm::Module *M = &getModule(); 612 613 // get [N x i8] constants for the annotation string, and the filename string 614 // which are the 2nd and 3rd elements of the global annotation structure. 615 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 616 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 617 AA->getAnnotation(), true); 618 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 619 M->getModuleIdentifier(), 620 true); 621 622 // Get the two global values corresponding to the ConstantArrays we just 623 // created to hold the bytes of the strings. 624 llvm::GlobalValue *annoGV = 625 new llvm::GlobalVariable(*M, anno->getType(), false, 626 llvm::GlobalValue::PrivateLinkage, anno, 627 GV->getName()); 628 // translation unit name string, emitted into the llvm.metadata section. 629 llvm::GlobalValue *unitGV = 630 new llvm::GlobalVariable(*M, unit->getType(), false, 631 llvm::GlobalValue::PrivateLinkage, unit, 632 ".str"); 633 unitGV->setUnnamedAddr(true); 634 635 // Create the ConstantStruct for the global annotation. 636 llvm::Constant *Fields[4] = { 637 llvm::ConstantExpr::getBitCast(GV, SBP), 638 llvm::ConstantExpr::getBitCast(annoGV, SBP), 639 llvm::ConstantExpr::getBitCast(unitGV, SBP), 640 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 641 }; 642 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 643 } 644 645 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 646 // Never defer when EmitAllDecls is specified. 647 if (Features.EmitAllDecls) 648 return false; 649 650 return !getContext().DeclMustBeEmitted(Global); 651 } 652 653 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 654 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 655 assert(AA && "No alias?"); 656 657 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 658 659 // See if there is already something with the target's name in the module. 660 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 661 662 llvm::Constant *Aliasee; 663 if (isa<llvm::FunctionType>(DeclTy)) 664 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 665 else 666 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 667 llvm::PointerType::getUnqual(DeclTy), 0); 668 if (!Entry) { 669 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 670 F->setLinkage(llvm::Function::ExternalWeakLinkage); 671 WeakRefReferences.insert(F); 672 } 673 674 return Aliasee; 675 } 676 677 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 678 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 679 680 // Weak references don't produce any output by themselves. 681 if (Global->hasAttr<WeakRefAttr>()) 682 return; 683 684 // If this is an alias definition (which otherwise looks like a declaration) 685 // emit it now. 686 if (Global->hasAttr<AliasAttr>()) 687 return EmitAliasDefinition(GD); 688 689 // Ignore declarations, they will be emitted on their first use. 690 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 691 if (FD->getIdentifier()) { 692 llvm::StringRef Name = FD->getName(); 693 if (Name == "_Block_object_assign") { 694 BlockObjectAssignDecl = FD; 695 } else if (Name == "_Block_object_dispose") { 696 BlockObjectDisposeDecl = FD; 697 } 698 } 699 700 // Forward declarations are emitted lazily on first use. 701 if (!FD->isThisDeclarationADefinition()) 702 return; 703 } else { 704 const VarDecl *VD = cast<VarDecl>(Global); 705 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 706 707 if (VD->getIdentifier()) { 708 llvm::StringRef Name = VD->getName(); 709 if (Name == "_NSConcreteGlobalBlock") { 710 NSConcreteGlobalBlockDecl = VD; 711 } else if (Name == "_NSConcreteStackBlock") { 712 NSConcreteStackBlockDecl = VD; 713 } 714 } 715 716 717 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 718 return; 719 } 720 721 // Defer code generation when possible if this is a static definition, inline 722 // function etc. These we only want to emit if they are used. 723 if (!MayDeferGeneration(Global)) { 724 // Emit the definition if it can't be deferred. 725 EmitGlobalDefinition(GD); 726 return; 727 } 728 729 // If we're deferring emission of a C++ variable with an 730 // initializer, remember the order in which it appeared in the file. 731 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 732 cast<VarDecl>(Global)->hasInit()) { 733 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 734 CXXGlobalInits.push_back(0); 735 } 736 737 // If the value has already been used, add it directly to the 738 // DeferredDeclsToEmit list. 739 llvm::StringRef MangledName = getMangledName(GD); 740 if (GetGlobalValue(MangledName)) 741 DeferredDeclsToEmit.push_back(GD); 742 else { 743 // Otherwise, remember that we saw a deferred decl with this name. The 744 // first use of the mangled name will cause it to move into 745 // DeferredDeclsToEmit. 746 DeferredDecls[MangledName] = GD; 747 } 748 } 749 750 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 751 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 752 753 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 754 Context.getSourceManager(), 755 "Generating code for declaration"); 756 757 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 758 // At -O0, don't generate IR for functions with available_externally 759 // linkage. 760 if (CodeGenOpts.OptimizationLevel == 0 && 761 !Function->hasAttr<AlwaysInlineAttr>() && 762 getFunctionLinkage(Function) 763 == llvm::Function::AvailableExternallyLinkage) 764 return; 765 766 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 767 if (Method->isVirtual()) 768 getVTables().EmitThunks(GD); 769 770 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 771 return EmitCXXConstructor(CD, GD.getCtorType()); 772 773 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 774 return EmitCXXDestructor(DD, GD.getDtorType()); 775 } 776 777 return EmitGlobalFunctionDefinition(GD); 778 } 779 780 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 781 return EmitGlobalVarDefinition(VD); 782 783 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 784 } 785 786 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 787 /// module, create and return an llvm Function with the specified type. If there 788 /// is something in the module with the specified name, return it potentially 789 /// bitcasted to the right type. 790 /// 791 /// If D is non-null, it specifies a decl that correspond to this. This is used 792 /// to set the attributes on the function when it is first created. 793 llvm::Constant * 794 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 795 const llvm::Type *Ty, 796 GlobalDecl D) { 797 // Lookup the entry, lazily creating it if necessary. 798 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 799 if (Entry) { 800 if (WeakRefReferences.count(Entry)) { 801 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 802 if (FD && !FD->hasAttr<WeakAttr>()) 803 Entry->setLinkage(llvm::Function::ExternalLinkage); 804 805 WeakRefReferences.erase(Entry); 806 } 807 808 if (Entry->getType()->getElementType() == Ty) 809 return Entry; 810 811 // Make sure the result is of the correct type. 812 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 813 return llvm::ConstantExpr::getBitCast(Entry, PTy); 814 } 815 816 // This function doesn't have a complete type (for example, the return 817 // type is an incomplete struct). Use a fake type instead, and make 818 // sure not to try to set attributes. 819 bool IsIncompleteFunction = false; 820 821 const llvm::FunctionType *FTy; 822 if (isa<llvm::FunctionType>(Ty)) { 823 FTy = cast<llvm::FunctionType>(Ty); 824 } else { 825 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 826 std::vector<const llvm::Type*>(), false); 827 IsIncompleteFunction = true; 828 } 829 830 llvm::Function *F = llvm::Function::Create(FTy, 831 llvm::Function::ExternalLinkage, 832 MangledName, &getModule()); 833 assert(F->getName() == MangledName && "name was uniqued!"); 834 if (D.getDecl()) 835 SetFunctionAttributes(D, F, IsIncompleteFunction); 836 837 // This is the first use or definition of a mangled name. If there is a 838 // deferred decl with this name, remember that we need to emit it at the end 839 // of the file. 840 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 841 if (DDI != DeferredDecls.end()) { 842 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 843 // list, and remove it from DeferredDecls (since we don't need it anymore). 844 DeferredDeclsToEmit.push_back(DDI->second); 845 DeferredDecls.erase(DDI); 846 847 // Otherwise, there are cases we have to worry about where we're 848 // using a declaration for which we must emit a definition but where 849 // we might not find a top-level definition: 850 // - member functions defined inline in their classes 851 // - friend functions defined inline in some class 852 // - special member functions with implicit definitions 853 // If we ever change our AST traversal to walk into class methods, 854 // this will be unnecessary. 855 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 856 // Look for a declaration that's lexically in a record. 857 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 858 do { 859 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 860 if (FD->isImplicit()) { 861 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 862 DeferredDeclsToEmit.push_back(D); 863 break; 864 } else if (FD->isThisDeclarationADefinition()) { 865 DeferredDeclsToEmit.push_back(D); 866 break; 867 } 868 } 869 FD = FD->getPreviousDeclaration(); 870 } while (FD); 871 } 872 873 // Make sure the result is of the requested type. 874 if (!IsIncompleteFunction) { 875 assert(F->getType()->getElementType() == Ty); 876 return F; 877 } 878 879 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 880 return llvm::ConstantExpr::getBitCast(F, PTy); 881 } 882 883 /// GetAddrOfFunction - Return the address of the given function. If Ty is 884 /// non-null, then this function will use the specified type if it has to 885 /// create it (this occurs when we see a definition of the function). 886 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 887 const llvm::Type *Ty) { 888 // If there was no specific requested type, just convert it now. 889 if (!Ty) 890 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 891 892 llvm::StringRef MangledName = getMangledName(GD); 893 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 894 } 895 896 /// CreateRuntimeFunction - Create a new runtime function with the specified 897 /// type and name. 898 llvm::Constant * 899 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 900 llvm::StringRef Name) { 901 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 902 } 903 904 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 905 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 906 return false; 907 if (Context.getLangOptions().CPlusPlus && 908 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 909 // FIXME: We should do something fancier here! 910 return false; 911 } 912 return true; 913 } 914 915 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 916 /// create and return an llvm GlobalVariable with the specified type. If there 917 /// is something in the module with the specified name, return it potentially 918 /// bitcasted to the right type. 919 /// 920 /// If D is non-null, it specifies a decl that correspond to this. This is used 921 /// to set the attributes on the global when it is first created. 922 llvm::Constant * 923 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 924 const llvm::PointerType *Ty, 925 const VarDecl *D) { 926 // Lookup the entry, lazily creating it if necessary. 927 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 928 if (Entry) { 929 if (WeakRefReferences.count(Entry)) { 930 if (D && !D->hasAttr<WeakAttr>()) 931 Entry->setLinkage(llvm::Function::ExternalLinkage); 932 933 WeakRefReferences.erase(Entry); 934 } 935 936 if (Entry->getType() == Ty) 937 return Entry; 938 939 // Make sure the result is of the correct type. 940 return llvm::ConstantExpr::getBitCast(Entry, Ty); 941 } 942 943 // This is the first use or definition of a mangled name. If there is a 944 // deferred decl with this name, remember that we need to emit it at the end 945 // of the file. 946 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 947 if (DDI != DeferredDecls.end()) { 948 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 949 // list, and remove it from DeferredDecls (since we don't need it anymore). 950 DeferredDeclsToEmit.push_back(DDI->second); 951 DeferredDecls.erase(DDI); 952 } 953 954 llvm::GlobalVariable *GV = 955 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 956 llvm::GlobalValue::ExternalLinkage, 957 0, MangledName, 0, 958 false, Ty->getAddressSpace()); 959 960 // Handle things which are present even on external declarations. 961 if (D) { 962 // FIXME: This code is overly simple and should be merged with other global 963 // handling. 964 GV->setConstant(DeclIsConstantGlobal(Context, D)); 965 966 // Set linkage and visibility in case we never see a definition. 967 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 968 if (LV.linkage() != ExternalLinkage) { 969 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 970 } else { 971 if (D->hasAttr<DLLImportAttr>()) 972 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 973 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 974 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 975 976 // Set visibility on a declaration only if it's explicit. 977 if (LV.visibilityExplicit()) 978 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 979 } 980 981 GV->setThreadLocal(D->isThreadSpecified()); 982 } 983 984 return GV; 985 } 986 987 988 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 989 /// given global variable. If Ty is non-null and if the global doesn't exist, 990 /// then it will be greated with the specified type instead of whatever the 991 /// normal requested type would be. 992 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 993 const llvm::Type *Ty) { 994 assert(D->hasGlobalStorage() && "Not a global variable"); 995 QualType ASTTy = D->getType(); 996 if (Ty == 0) 997 Ty = getTypes().ConvertTypeForMem(ASTTy); 998 999 const llvm::PointerType *PTy = 1000 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1001 1002 llvm::StringRef MangledName = getMangledName(D); 1003 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1004 } 1005 1006 /// CreateRuntimeVariable - Create a new runtime global variable with the 1007 /// specified type and name. 1008 llvm::Constant * 1009 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1010 llvm::StringRef Name) { 1011 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1012 } 1013 1014 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1015 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1016 1017 if (MayDeferGeneration(D)) { 1018 // If we have not seen a reference to this variable yet, place it 1019 // into the deferred declarations table to be emitted if needed 1020 // later. 1021 llvm::StringRef MangledName = getMangledName(D); 1022 if (!GetGlobalValue(MangledName)) { 1023 DeferredDecls[MangledName] = D; 1024 return; 1025 } 1026 } 1027 1028 // The tentative definition is the only definition. 1029 EmitGlobalVarDefinition(D); 1030 } 1031 1032 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1033 if (DefinitionRequired) 1034 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1035 } 1036 1037 llvm::GlobalVariable::LinkageTypes 1038 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1039 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1040 return llvm::GlobalVariable::InternalLinkage; 1041 1042 if (const CXXMethodDecl *KeyFunction 1043 = RD->getASTContext().getKeyFunction(RD)) { 1044 // If this class has a key function, use that to determine the linkage of 1045 // the vtable. 1046 const FunctionDecl *Def = 0; 1047 if (KeyFunction->hasBody(Def)) 1048 KeyFunction = cast<CXXMethodDecl>(Def); 1049 1050 switch (KeyFunction->getTemplateSpecializationKind()) { 1051 case TSK_Undeclared: 1052 case TSK_ExplicitSpecialization: 1053 if (KeyFunction->isInlined()) 1054 return llvm::GlobalVariable::WeakODRLinkage; 1055 1056 return llvm::GlobalVariable::ExternalLinkage; 1057 1058 case TSK_ImplicitInstantiation: 1059 case TSK_ExplicitInstantiationDefinition: 1060 return llvm::GlobalVariable::WeakODRLinkage; 1061 1062 case TSK_ExplicitInstantiationDeclaration: 1063 // FIXME: Use available_externally linkage. However, this currently 1064 // breaks LLVM's build due to undefined symbols. 1065 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1066 return llvm::GlobalVariable::WeakODRLinkage; 1067 } 1068 } 1069 1070 switch (RD->getTemplateSpecializationKind()) { 1071 case TSK_Undeclared: 1072 case TSK_ExplicitSpecialization: 1073 case TSK_ImplicitInstantiation: 1074 case TSK_ExplicitInstantiationDefinition: 1075 return llvm::GlobalVariable::WeakODRLinkage; 1076 1077 case TSK_ExplicitInstantiationDeclaration: 1078 // FIXME: Use available_externally linkage. However, this currently 1079 // breaks LLVM's build due to undefined symbols. 1080 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1081 return llvm::GlobalVariable::WeakODRLinkage; 1082 } 1083 1084 // Silence GCC warning. 1085 return llvm::GlobalVariable::WeakODRLinkage; 1086 } 1087 1088 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1089 return CharUnits::fromQuantity( 1090 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1091 } 1092 1093 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1094 llvm::Constant *Init = 0; 1095 QualType ASTTy = D->getType(); 1096 bool NonConstInit = false; 1097 1098 const Expr *InitExpr = D->getAnyInitializer(); 1099 1100 if (!InitExpr) { 1101 // This is a tentative definition; tentative definitions are 1102 // implicitly initialized with { 0 }. 1103 // 1104 // Note that tentative definitions are only emitted at the end of 1105 // a translation unit, so they should never have incomplete 1106 // type. In addition, EmitTentativeDefinition makes sure that we 1107 // never attempt to emit a tentative definition if a real one 1108 // exists. A use may still exists, however, so we still may need 1109 // to do a RAUW. 1110 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1111 Init = EmitNullConstant(D->getType()); 1112 } else { 1113 Init = EmitConstantExpr(InitExpr, D->getType()); 1114 if (!Init) { 1115 QualType T = InitExpr->getType(); 1116 if (D->getType()->isReferenceType()) 1117 T = D->getType(); 1118 1119 if (getLangOptions().CPlusPlus) { 1120 Init = EmitNullConstant(T); 1121 NonConstInit = true; 1122 } else { 1123 ErrorUnsupported(D, "static initializer"); 1124 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1125 } 1126 } else { 1127 // We don't need an initializer, so remove the entry for the delayed 1128 // initializer position (just in case this entry was delayed). 1129 if (getLangOptions().CPlusPlus) 1130 DelayedCXXInitPosition.erase(D); 1131 } 1132 } 1133 1134 const llvm::Type* InitType = Init->getType(); 1135 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1136 1137 // Strip off a bitcast if we got one back. 1138 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1139 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1140 // all zero index gep. 1141 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1142 Entry = CE->getOperand(0); 1143 } 1144 1145 // Entry is now either a Function or GlobalVariable. 1146 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1147 1148 // We have a definition after a declaration with the wrong type. 1149 // We must make a new GlobalVariable* and update everything that used OldGV 1150 // (a declaration or tentative definition) with the new GlobalVariable* 1151 // (which will be a definition). 1152 // 1153 // This happens if there is a prototype for a global (e.g. 1154 // "extern int x[];") and then a definition of a different type (e.g. 1155 // "int x[10];"). This also happens when an initializer has a different type 1156 // from the type of the global (this happens with unions). 1157 if (GV == 0 || 1158 GV->getType()->getElementType() != InitType || 1159 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1160 1161 // Move the old entry aside so that we'll create a new one. 1162 Entry->setName(llvm::StringRef()); 1163 1164 // Make a new global with the correct type, this is now guaranteed to work. 1165 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1166 1167 // Replace all uses of the old global with the new global 1168 llvm::Constant *NewPtrForOldDecl = 1169 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1170 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1171 1172 // Erase the old global, since it is no longer used. 1173 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1174 } 1175 1176 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1177 SourceManager &SM = Context.getSourceManager(); 1178 AddAnnotation(EmitAnnotateAttr(GV, AA, 1179 SM.getInstantiationLineNumber(D->getLocation()))); 1180 } 1181 1182 GV->setInitializer(Init); 1183 1184 // If it is safe to mark the global 'constant', do so now. 1185 GV->setConstant(false); 1186 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1187 GV->setConstant(true); 1188 1189 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1190 1191 // Set the llvm linkage type as appropriate. 1192 llvm::GlobalValue::LinkageTypes Linkage = 1193 GetLLVMLinkageVarDefinition(D, GV); 1194 GV->setLinkage(Linkage); 1195 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1196 // common vars aren't constant even if declared const. 1197 GV->setConstant(false); 1198 1199 SetCommonAttributes(D, GV); 1200 1201 // Emit the initializer function if necessary. 1202 if (NonConstInit) 1203 EmitCXXGlobalVarDeclInitFunc(D, GV); 1204 1205 // Emit global variable debug information. 1206 if (CGDebugInfo *DI = getDebugInfo()) { 1207 DI->setLocation(D->getLocation()); 1208 DI->EmitGlobalVariable(GV, D); 1209 } 1210 } 1211 1212 llvm::GlobalValue::LinkageTypes 1213 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1214 llvm::GlobalVariable *GV) { 1215 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1216 if (Linkage == GVA_Internal) 1217 return llvm::Function::InternalLinkage; 1218 else if (D->hasAttr<DLLImportAttr>()) 1219 return llvm::Function::DLLImportLinkage; 1220 else if (D->hasAttr<DLLExportAttr>()) 1221 return llvm::Function::DLLExportLinkage; 1222 else if (D->hasAttr<WeakAttr>()) { 1223 if (GV->isConstant()) 1224 return llvm::GlobalVariable::WeakODRLinkage; 1225 else 1226 return llvm::GlobalVariable::WeakAnyLinkage; 1227 } else if (Linkage == GVA_TemplateInstantiation || 1228 Linkage == GVA_ExplicitTemplateInstantiation) 1229 // FIXME: It seems like we can provide more specific linkage here 1230 // (LinkOnceODR, WeakODR). 1231 return llvm::GlobalVariable::WeakAnyLinkage; 1232 else if (!getLangOptions().CPlusPlus && 1233 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1234 D->getAttr<CommonAttr>()) && 1235 !D->hasExternalStorage() && !D->getInit() && 1236 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1237 // Thread local vars aren't considered common linkage. 1238 return llvm::GlobalVariable::CommonLinkage; 1239 } 1240 return llvm::GlobalVariable::ExternalLinkage; 1241 } 1242 1243 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1244 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1245 /// existing call uses of the old function in the module, this adjusts them to 1246 /// call the new function directly. 1247 /// 1248 /// This is not just a cleanup: the always_inline pass requires direct calls to 1249 /// functions to be able to inline them. If there is a bitcast in the way, it 1250 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1251 /// run at -O0. 1252 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1253 llvm::Function *NewFn) { 1254 // If we're redefining a global as a function, don't transform it. 1255 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1256 if (OldFn == 0) return; 1257 1258 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1259 llvm::SmallVector<llvm::Value*, 4> ArgList; 1260 1261 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1262 UI != E; ) { 1263 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1264 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1265 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1266 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1267 llvm::CallSite CS(CI); 1268 if (!CI || !CS.isCallee(I)) continue; 1269 1270 // If the return types don't match exactly, and if the call isn't dead, then 1271 // we can't transform this call. 1272 if (CI->getType() != NewRetTy && !CI->use_empty()) 1273 continue; 1274 1275 // If the function was passed too few arguments, don't transform. If extra 1276 // arguments were passed, we silently drop them. If any of the types 1277 // mismatch, we don't transform. 1278 unsigned ArgNo = 0; 1279 bool DontTransform = false; 1280 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1281 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1282 if (CS.arg_size() == ArgNo || 1283 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1284 DontTransform = true; 1285 break; 1286 } 1287 } 1288 if (DontTransform) 1289 continue; 1290 1291 // Okay, we can transform this. Create the new call instruction and copy 1292 // over the required information. 1293 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1294 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1295 ArgList.end(), "", CI); 1296 ArgList.clear(); 1297 if (!NewCall->getType()->isVoidTy()) 1298 NewCall->takeName(CI); 1299 NewCall->setAttributes(CI->getAttributes()); 1300 NewCall->setCallingConv(CI->getCallingConv()); 1301 1302 // Finally, remove the old call, replacing any uses with the new one. 1303 if (!CI->use_empty()) 1304 CI->replaceAllUsesWith(NewCall); 1305 1306 // Copy debug location attached to CI. 1307 if (!CI->getDebugLoc().isUnknown()) 1308 NewCall->setDebugLoc(CI->getDebugLoc()); 1309 CI->eraseFromParent(); 1310 } 1311 } 1312 1313 1314 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1315 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1316 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1317 // Get or create the prototype for the function. 1318 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1319 1320 // Strip off a bitcast if we got one back. 1321 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1322 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1323 Entry = CE->getOperand(0); 1324 } 1325 1326 1327 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1328 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1329 1330 // If the types mismatch then we have to rewrite the definition. 1331 assert(OldFn->isDeclaration() && 1332 "Shouldn't replace non-declaration"); 1333 1334 // F is the Function* for the one with the wrong type, we must make a new 1335 // Function* and update everything that used F (a declaration) with the new 1336 // Function* (which will be a definition). 1337 // 1338 // This happens if there is a prototype for a function 1339 // (e.g. "int f()") and then a definition of a different type 1340 // (e.g. "int f(int x)"). Move the old function aside so that it 1341 // doesn't interfere with GetAddrOfFunction. 1342 OldFn->setName(llvm::StringRef()); 1343 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1344 1345 // If this is an implementation of a function without a prototype, try to 1346 // replace any existing uses of the function (which may be calls) with uses 1347 // of the new function 1348 if (D->getType()->isFunctionNoProtoType()) { 1349 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1350 OldFn->removeDeadConstantUsers(); 1351 } 1352 1353 // Replace uses of F with the Function we will endow with a body. 1354 if (!Entry->use_empty()) { 1355 llvm::Constant *NewPtrForOldDecl = 1356 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1357 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1358 } 1359 1360 // Ok, delete the old function now, which is dead. 1361 OldFn->eraseFromParent(); 1362 1363 Entry = NewFn; 1364 } 1365 1366 // We need to set linkage and visibility on the function before 1367 // generating code for it because various parts of IR generation 1368 // want to propagate this information down (e.g. to local static 1369 // declarations). 1370 llvm::Function *Fn = cast<llvm::Function>(Entry); 1371 setFunctionLinkage(D, Fn); 1372 1373 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1374 setGlobalVisibility(Fn, D, /*ForDef*/ true); 1375 1376 CodeGenFunction(*this).GenerateCode(D, Fn); 1377 1378 SetFunctionDefinitionAttributes(D, Fn); 1379 SetLLVMFunctionAttributesForDefinition(D, Fn); 1380 1381 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1382 AddGlobalCtor(Fn, CA->getPriority()); 1383 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1384 AddGlobalDtor(Fn, DA->getPriority()); 1385 } 1386 1387 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1388 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1389 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1390 assert(AA && "Not an alias?"); 1391 1392 llvm::StringRef MangledName = getMangledName(GD); 1393 1394 // If there is a definition in the module, then it wins over the alias. 1395 // This is dubious, but allow it to be safe. Just ignore the alias. 1396 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1397 if (Entry && !Entry->isDeclaration()) 1398 return; 1399 1400 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1401 1402 // Create a reference to the named value. This ensures that it is emitted 1403 // if a deferred decl. 1404 llvm::Constant *Aliasee; 1405 if (isa<llvm::FunctionType>(DeclTy)) 1406 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1407 else 1408 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1409 llvm::PointerType::getUnqual(DeclTy), 0); 1410 1411 // Create the new alias itself, but don't set a name yet. 1412 llvm::GlobalValue *GA = 1413 new llvm::GlobalAlias(Aliasee->getType(), 1414 llvm::Function::ExternalLinkage, 1415 "", Aliasee, &getModule()); 1416 1417 if (Entry) { 1418 assert(Entry->isDeclaration()); 1419 1420 // If there is a declaration in the module, then we had an extern followed 1421 // by the alias, as in: 1422 // extern int test6(); 1423 // ... 1424 // int test6() __attribute__((alias("test7"))); 1425 // 1426 // Remove it and replace uses of it with the alias. 1427 GA->takeName(Entry); 1428 1429 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1430 Entry->getType())); 1431 Entry->eraseFromParent(); 1432 } else { 1433 GA->setName(MangledName); 1434 } 1435 1436 // Set attributes which are particular to an alias; this is a 1437 // specialization of the attributes which may be set on a global 1438 // variable/function. 1439 if (D->hasAttr<DLLExportAttr>()) { 1440 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1441 // The dllexport attribute is ignored for undefined symbols. 1442 if (FD->hasBody()) 1443 GA->setLinkage(llvm::Function::DLLExportLinkage); 1444 } else { 1445 GA->setLinkage(llvm::Function::DLLExportLinkage); 1446 } 1447 } else if (D->hasAttr<WeakAttr>() || 1448 D->hasAttr<WeakRefAttr>() || 1449 D->hasAttr<WeakImportAttr>()) { 1450 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1451 } 1452 1453 SetCommonAttributes(D, GA); 1454 } 1455 1456 /// getBuiltinLibFunction - Given a builtin id for a function like 1457 /// "__builtin_fabsf", return a Function* for "fabsf". 1458 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1459 unsigned BuiltinID) { 1460 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1461 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1462 "isn't a lib fn"); 1463 1464 // Get the name, skip over the __builtin_ prefix (if necessary). 1465 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1466 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1467 Name += 10; 1468 1469 const llvm::FunctionType *Ty = 1470 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1471 1472 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1473 } 1474 1475 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1476 unsigned NumTys) { 1477 return llvm::Intrinsic::getDeclaration(&getModule(), 1478 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1479 } 1480 1481 static llvm::StringMapEntry<llvm::Constant*> & 1482 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1483 const StringLiteral *Literal, 1484 bool TargetIsLSB, 1485 bool &IsUTF16, 1486 unsigned &StringLength) { 1487 llvm::StringRef String = Literal->getString(); 1488 unsigned NumBytes = String.size(); 1489 1490 // Check for simple case. 1491 if (!Literal->containsNonAsciiOrNull()) { 1492 StringLength = NumBytes; 1493 return Map.GetOrCreateValue(String); 1494 } 1495 1496 // Otherwise, convert the UTF8 literals into a byte string. 1497 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1498 const UTF8 *FromPtr = (UTF8 *)String.data(); 1499 UTF16 *ToPtr = &ToBuf[0]; 1500 1501 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1502 &ToPtr, ToPtr + NumBytes, 1503 strictConversion); 1504 1505 // ConvertUTF8toUTF16 returns the length in ToPtr. 1506 StringLength = ToPtr - &ToBuf[0]; 1507 1508 // Render the UTF-16 string into a byte array and convert to the target byte 1509 // order. 1510 // 1511 // FIXME: This isn't something we should need to do here. 1512 llvm::SmallString<128> AsBytes; 1513 AsBytes.reserve(StringLength * 2); 1514 for (unsigned i = 0; i != StringLength; ++i) { 1515 unsigned short Val = ToBuf[i]; 1516 if (TargetIsLSB) { 1517 AsBytes.push_back(Val & 0xFF); 1518 AsBytes.push_back(Val >> 8); 1519 } else { 1520 AsBytes.push_back(Val >> 8); 1521 AsBytes.push_back(Val & 0xFF); 1522 } 1523 } 1524 // Append one extra null character, the second is automatically added by our 1525 // caller. 1526 AsBytes.push_back(0); 1527 1528 IsUTF16 = true; 1529 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1530 } 1531 1532 llvm::Constant * 1533 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1534 unsigned StringLength = 0; 1535 bool isUTF16 = false; 1536 llvm::StringMapEntry<llvm::Constant*> &Entry = 1537 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1538 getTargetData().isLittleEndian(), 1539 isUTF16, StringLength); 1540 1541 if (llvm::Constant *C = Entry.getValue()) 1542 return C; 1543 1544 llvm::Constant *Zero = 1545 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1546 llvm::Constant *Zeros[] = { Zero, Zero }; 1547 1548 // If we don't already have it, get __CFConstantStringClassReference. 1549 if (!CFConstantStringClassRef) { 1550 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1551 Ty = llvm::ArrayType::get(Ty, 0); 1552 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1553 "__CFConstantStringClassReference"); 1554 // Decay array -> ptr 1555 CFConstantStringClassRef = 1556 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1557 } 1558 1559 QualType CFTy = getContext().getCFConstantStringType(); 1560 1561 const llvm::StructType *STy = 1562 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1563 1564 std::vector<llvm::Constant*> Fields(4); 1565 1566 // Class pointer. 1567 Fields[0] = CFConstantStringClassRef; 1568 1569 // Flags. 1570 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1571 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1572 llvm::ConstantInt::get(Ty, 0x07C8); 1573 1574 // String pointer. 1575 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1576 1577 llvm::GlobalValue::LinkageTypes Linkage; 1578 bool isConstant; 1579 if (isUTF16) { 1580 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1581 Linkage = llvm::GlobalValue::InternalLinkage; 1582 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1583 // does make plain ascii ones writable. 1584 isConstant = true; 1585 } else { 1586 Linkage = llvm::GlobalValue::PrivateLinkage; 1587 isConstant = !Features.WritableStrings; 1588 } 1589 1590 llvm::GlobalVariable *GV = 1591 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1592 ".str"); 1593 GV->setUnnamedAddr(true); 1594 if (isUTF16) { 1595 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1596 GV->setAlignment(Align.getQuantity()); 1597 } 1598 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1599 1600 // String length. 1601 Ty = getTypes().ConvertType(getContext().LongTy); 1602 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1603 1604 // The struct. 1605 C = llvm::ConstantStruct::get(STy, Fields); 1606 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1607 llvm::GlobalVariable::PrivateLinkage, C, 1608 "_unnamed_cfstring_"); 1609 if (const char *Sect = getContext().Target.getCFStringSection()) 1610 GV->setSection(Sect); 1611 Entry.setValue(GV); 1612 1613 return GV; 1614 } 1615 1616 llvm::Constant * 1617 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1618 unsigned StringLength = 0; 1619 bool isUTF16 = false; 1620 llvm::StringMapEntry<llvm::Constant*> &Entry = 1621 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1622 getTargetData().isLittleEndian(), 1623 isUTF16, StringLength); 1624 1625 if (llvm::Constant *C = Entry.getValue()) 1626 return C; 1627 1628 llvm::Constant *Zero = 1629 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1630 llvm::Constant *Zeros[] = { Zero, Zero }; 1631 1632 // If we don't already have it, get _NSConstantStringClassReference. 1633 if (!ConstantStringClassRef) { 1634 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1635 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1636 Ty = llvm::ArrayType::get(Ty, 0); 1637 llvm::Constant *GV; 1638 if (StringClass.empty()) 1639 GV = CreateRuntimeVariable(Ty, 1640 Features.ObjCNonFragileABI ? 1641 "OBJC_CLASS_$_NSConstantString" : 1642 "_NSConstantStringClassReference"); 1643 else { 1644 std::string str; 1645 if (Features.ObjCNonFragileABI) 1646 str = "OBJC_CLASS_$_" + StringClass; 1647 else 1648 str = "_" + StringClass + "ClassReference"; 1649 GV = CreateRuntimeVariable(Ty, str); 1650 } 1651 // Decay array -> ptr 1652 ConstantStringClassRef = 1653 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1654 } 1655 1656 QualType NSTy = getContext().getNSConstantStringType(); 1657 1658 const llvm::StructType *STy = 1659 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1660 1661 std::vector<llvm::Constant*> Fields(3); 1662 1663 // Class pointer. 1664 Fields[0] = ConstantStringClassRef; 1665 1666 // String pointer. 1667 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1668 1669 llvm::GlobalValue::LinkageTypes Linkage; 1670 bool isConstant; 1671 if (isUTF16) { 1672 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1673 Linkage = llvm::GlobalValue::InternalLinkage; 1674 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1675 // does make plain ascii ones writable. 1676 isConstant = true; 1677 } else { 1678 Linkage = llvm::GlobalValue::PrivateLinkage; 1679 isConstant = !Features.WritableStrings; 1680 } 1681 1682 llvm::GlobalVariable *GV = 1683 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1684 ".str"); 1685 GV->setUnnamedAddr(true); 1686 if (isUTF16) { 1687 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1688 GV->setAlignment(Align.getQuantity()); 1689 } 1690 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1691 1692 // String length. 1693 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1694 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1695 1696 // The struct. 1697 C = llvm::ConstantStruct::get(STy, Fields); 1698 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1699 llvm::GlobalVariable::PrivateLinkage, C, 1700 "_unnamed_nsstring_"); 1701 // FIXME. Fix section. 1702 if (const char *Sect = 1703 Features.ObjCNonFragileABI 1704 ? getContext().Target.getNSStringNonFragileABISection() 1705 : getContext().Target.getNSStringSection()) 1706 GV->setSection(Sect); 1707 Entry.setValue(GV); 1708 1709 return GV; 1710 } 1711 1712 /// GetStringForStringLiteral - Return the appropriate bytes for a 1713 /// string literal, properly padded to match the literal type. 1714 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1715 const ConstantArrayType *CAT = 1716 getContext().getAsConstantArrayType(E->getType()); 1717 assert(CAT && "String isn't pointer or array!"); 1718 1719 // Resize the string to the right size. 1720 uint64_t RealLen = CAT->getSize().getZExtValue(); 1721 1722 if (E->isWide()) 1723 RealLen *= getContext().Target.getWCharWidth()/8; 1724 1725 std::string Str = E->getString().str(); 1726 Str.resize(RealLen, '\0'); 1727 1728 return Str; 1729 } 1730 1731 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1732 /// constant array for the given string literal. 1733 llvm::Constant * 1734 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1735 // FIXME: This can be more efficient. 1736 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1737 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1738 if (S->isWide()) { 1739 llvm::Type *DestTy = 1740 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1741 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1742 } 1743 return C; 1744 } 1745 1746 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1747 /// array for the given ObjCEncodeExpr node. 1748 llvm::Constant * 1749 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1750 std::string Str; 1751 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1752 1753 return GetAddrOfConstantCString(Str); 1754 } 1755 1756 1757 /// GenerateWritableString -- Creates storage for a string literal. 1758 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1759 bool constant, 1760 CodeGenModule &CGM, 1761 const char *GlobalName) { 1762 // Create Constant for this string literal. Don't add a '\0'. 1763 llvm::Constant *C = 1764 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1765 1766 // Create a global variable for this string 1767 llvm::GlobalVariable *GV = 1768 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1769 llvm::GlobalValue::PrivateLinkage, 1770 C, GlobalName); 1771 GV->setUnnamedAddr(true); 1772 return GV; 1773 } 1774 1775 /// GetAddrOfConstantString - Returns a pointer to a character array 1776 /// containing the literal. This contents are exactly that of the 1777 /// given string, i.e. it will not be null terminated automatically; 1778 /// see GetAddrOfConstantCString. Note that whether the result is 1779 /// actually a pointer to an LLVM constant depends on 1780 /// Feature.WriteableStrings. 1781 /// 1782 /// The result has pointer to array type. 1783 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1784 const char *GlobalName) { 1785 bool IsConstant = !Features.WritableStrings; 1786 1787 // Get the default prefix if a name wasn't specified. 1788 if (!GlobalName) 1789 GlobalName = ".str"; 1790 1791 // Don't share any string literals if strings aren't constant. 1792 if (!IsConstant) 1793 return GenerateStringLiteral(str, false, *this, GlobalName); 1794 1795 llvm::StringMapEntry<llvm::Constant *> &Entry = 1796 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1797 1798 if (Entry.getValue()) 1799 return Entry.getValue(); 1800 1801 // Create a global variable for this. 1802 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1803 Entry.setValue(C); 1804 return C; 1805 } 1806 1807 /// GetAddrOfConstantCString - Returns a pointer to a character 1808 /// array containing the literal and a terminating '\-' 1809 /// character. The result has pointer to array type. 1810 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1811 const char *GlobalName){ 1812 return GetAddrOfConstantString(str + '\0', GlobalName); 1813 } 1814 1815 /// EmitObjCPropertyImplementations - Emit information for synthesized 1816 /// properties for an implementation. 1817 void CodeGenModule::EmitObjCPropertyImplementations(const 1818 ObjCImplementationDecl *D) { 1819 for (ObjCImplementationDecl::propimpl_iterator 1820 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1821 ObjCPropertyImplDecl *PID = *i; 1822 1823 // Dynamic is just for type-checking. 1824 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1825 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1826 1827 // Determine which methods need to be implemented, some may have 1828 // been overridden. Note that ::isSynthesized is not the method 1829 // we want, that just indicates if the decl came from a 1830 // property. What we want to know is if the method is defined in 1831 // this implementation. 1832 if (!D->getInstanceMethod(PD->getGetterName())) 1833 CodeGenFunction(*this).GenerateObjCGetter( 1834 const_cast<ObjCImplementationDecl *>(D), PID); 1835 if (!PD->isReadOnly() && 1836 !D->getInstanceMethod(PD->getSetterName())) 1837 CodeGenFunction(*this).GenerateObjCSetter( 1838 const_cast<ObjCImplementationDecl *>(D), PID); 1839 } 1840 } 1841 } 1842 1843 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1844 /// for an implementation. 1845 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1846 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1847 return; 1848 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1849 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1850 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1851 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1852 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1853 D->getLocation(), 1854 D->getLocation(), cxxSelector, 1855 getContext().VoidTy, 0, 1856 DC, true, false, true, false, 1857 ObjCMethodDecl::Required); 1858 D->addInstanceMethod(DTORMethod); 1859 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1860 1861 II = &getContext().Idents.get(".cxx_construct"); 1862 cxxSelector = getContext().Selectors.getSelector(0, &II); 1863 // The constructor returns 'self'. 1864 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1865 D->getLocation(), 1866 D->getLocation(), cxxSelector, 1867 getContext().getObjCIdType(), 0, 1868 DC, true, false, true, false, 1869 ObjCMethodDecl::Required); 1870 D->addInstanceMethod(CTORMethod); 1871 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1872 1873 1874 } 1875 1876 /// EmitNamespace - Emit all declarations in a namespace. 1877 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1878 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1879 I != E; ++I) 1880 EmitTopLevelDecl(*I); 1881 } 1882 1883 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1884 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1885 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1886 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1887 ErrorUnsupported(LSD, "linkage spec"); 1888 return; 1889 } 1890 1891 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1892 I != E; ++I) 1893 EmitTopLevelDecl(*I); 1894 } 1895 1896 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1897 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1898 // If an error has occurred, stop code generation, but continue 1899 // parsing and semantic analysis (to ensure all warnings and errors 1900 // are emitted). 1901 if (Diags.hasErrorOccurred()) 1902 return; 1903 1904 // Ignore dependent declarations. 1905 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1906 return; 1907 1908 switch (D->getKind()) { 1909 case Decl::CXXConversion: 1910 case Decl::CXXMethod: 1911 case Decl::Function: 1912 // Skip function templates 1913 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1914 return; 1915 1916 EmitGlobal(cast<FunctionDecl>(D)); 1917 break; 1918 1919 case Decl::Var: 1920 EmitGlobal(cast<VarDecl>(D)); 1921 break; 1922 1923 // C++ Decls 1924 case Decl::Namespace: 1925 EmitNamespace(cast<NamespaceDecl>(D)); 1926 break; 1927 // No code generation needed. 1928 case Decl::UsingShadow: 1929 case Decl::Using: 1930 case Decl::UsingDirective: 1931 case Decl::ClassTemplate: 1932 case Decl::FunctionTemplate: 1933 case Decl::NamespaceAlias: 1934 break; 1935 case Decl::CXXConstructor: 1936 // Skip function templates 1937 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1938 return; 1939 1940 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1941 break; 1942 case Decl::CXXDestructor: 1943 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1944 break; 1945 1946 case Decl::StaticAssert: 1947 // Nothing to do. 1948 break; 1949 1950 // Objective-C Decls 1951 1952 // Forward declarations, no (immediate) code generation. 1953 case Decl::ObjCClass: 1954 case Decl::ObjCForwardProtocol: 1955 case Decl::ObjCInterface: 1956 break; 1957 1958 case Decl::ObjCCategory: { 1959 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1960 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1961 Context.ResetObjCLayout(CD->getClassInterface()); 1962 break; 1963 } 1964 1965 1966 case Decl::ObjCProtocol: 1967 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1968 break; 1969 1970 case Decl::ObjCCategoryImpl: 1971 // Categories have properties but don't support synthesize so we 1972 // can ignore them here. 1973 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1974 break; 1975 1976 case Decl::ObjCImplementation: { 1977 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1978 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1979 Context.ResetObjCLayout(OMD->getClassInterface()); 1980 EmitObjCPropertyImplementations(OMD); 1981 EmitObjCIvarInitializations(OMD); 1982 Runtime->GenerateClass(OMD); 1983 break; 1984 } 1985 case Decl::ObjCMethod: { 1986 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1987 // If this is not a prototype, emit the body. 1988 if (OMD->getBody()) 1989 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1990 break; 1991 } 1992 case Decl::ObjCCompatibleAlias: 1993 // compatibility-alias is a directive and has no code gen. 1994 break; 1995 1996 case Decl::LinkageSpec: 1997 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1998 break; 1999 2000 case Decl::FileScopeAsm: { 2001 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2002 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2003 2004 const std::string &S = getModule().getModuleInlineAsm(); 2005 if (S.empty()) 2006 getModule().setModuleInlineAsm(AsmString); 2007 else 2008 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2009 break; 2010 } 2011 2012 default: 2013 // Make sure we handled everything we should, every other kind is a 2014 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2015 // function. Need to recode Decl::Kind to do that easily. 2016 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2017 } 2018 } 2019 2020 /// Turns the given pointer into a constant. 2021 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2022 const void *Ptr) { 2023 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2024 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2025 return llvm::ConstantInt::get(i64, PtrInt); 2026 } 2027 2028 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2029 llvm::NamedMDNode *&GlobalMetadata, 2030 GlobalDecl D, 2031 llvm::GlobalValue *Addr) { 2032 if (!GlobalMetadata) 2033 GlobalMetadata = 2034 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2035 2036 // TODO: should we report variant information for ctors/dtors? 2037 llvm::Value *Ops[] = { 2038 Addr, 2039 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2040 }; 2041 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2042 } 2043 2044 /// Emits metadata nodes associating all the global values in the 2045 /// current module with the Decls they came from. This is useful for 2046 /// projects using IR gen as a subroutine. 2047 /// 2048 /// Since there's currently no way to associate an MDNode directly 2049 /// with an llvm::GlobalValue, we create a global named metadata 2050 /// with the name 'clang.global.decl.ptrs'. 2051 void CodeGenModule::EmitDeclMetadata() { 2052 llvm::NamedMDNode *GlobalMetadata = 0; 2053 2054 // StaticLocalDeclMap 2055 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2056 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2057 I != E; ++I) { 2058 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2059 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2060 } 2061 } 2062 2063 /// Emits metadata nodes for all the local variables in the current 2064 /// function. 2065 void CodeGenFunction::EmitDeclMetadata() { 2066 if (LocalDeclMap.empty()) return; 2067 2068 llvm::LLVMContext &Context = getLLVMContext(); 2069 2070 // Find the unique metadata ID for this name. 2071 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2072 2073 llvm::NamedMDNode *GlobalMetadata = 0; 2074 2075 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2076 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2077 const Decl *D = I->first; 2078 llvm::Value *Addr = I->second; 2079 2080 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2081 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2082 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2083 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2084 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2085 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2086 } 2087 } 2088 } 2089 2090 ///@name Custom Runtime Function Interfaces 2091 ///@{ 2092 // 2093 // FIXME: These can be eliminated once we can have clients just get the required 2094 // AST nodes from the builtin tables. 2095 2096 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2097 if (BlockObjectDispose) 2098 return BlockObjectDispose; 2099 2100 // If we saw an explicit decl, use that. 2101 if (BlockObjectDisposeDecl) { 2102 return BlockObjectDispose = GetAddrOfFunction( 2103 BlockObjectDisposeDecl, 2104 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2105 } 2106 2107 // Otherwise construct the function by hand. 2108 const llvm::FunctionType *FTy; 2109 std::vector<const llvm::Type*> ArgTys; 2110 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2111 ArgTys.push_back(PtrToInt8Ty); 2112 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2113 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2114 return BlockObjectDispose = 2115 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2116 } 2117 2118 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2119 if (BlockObjectAssign) 2120 return BlockObjectAssign; 2121 2122 // If we saw an explicit decl, use that. 2123 if (BlockObjectAssignDecl) { 2124 return BlockObjectAssign = GetAddrOfFunction( 2125 BlockObjectAssignDecl, 2126 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2127 } 2128 2129 // Otherwise construct the function by hand. 2130 const llvm::FunctionType *FTy; 2131 std::vector<const llvm::Type*> ArgTys; 2132 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2133 ArgTys.push_back(PtrToInt8Ty); 2134 ArgTys.push_back(PtrToInt8Ty); 2135 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2136 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2137 return BlockObjectAssign = 2138 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2139 } 2140 2141 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2142 if (NSConcreteGlobalBlock) 2143 return NSConcreteGlobalBlock; 2144 2145 // If we saw an explicit decl, use that. 2146 if (NSConcreteGlobalBlockDecl) { 2147 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2148 NSConcreteGlobalBlockDecl, 2149 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2150 } 2151 2152 // Otherwise construct the variable by hand. 2153 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2154 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2155 } 2156 2157 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2158 if (NSConcreteStackBlock) 2159 return NSConcreteStackBlock; 2160 2161 // If we saw an explicit decl, use that. 2162 if (NSConcreteStackBlockDecl) { 2163 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2164 NSConcreteStackBlockDecl, 2165 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2166 } 2167 2168 // Otherwise construct the variable by hand. 2169 return NSConcreteStackBlock = CreateRuntimeVariable( 2170 PtrToInt8Ty, "_NSConcreteStackBlock"); 2171 } 2172 2173 ///@} 2174