xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2e204e23911b1f8bd1463535da40c6e48747a138)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::Fuchsia:
80   case TargetCXXABI::GenericAArch64:
81   case TargetCXXABI::GenericARM:
82   case TargetCXXABI::iOS:
83   case TargetCXXABI::iOS64:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 void CodeGenModule::Release() {
405   EmitDeferred();
406   EmitVTablesOpportunistically();
407   applyGlobalValReplacements();
408   applyReplacements();
409   checkAliases();
410   emitMultiVersionFunctions();
411   EmitCXXGlobalInitFunc();
412   EmitCXXGlobalCleanUpFunc();
413   registerGlobalDtorsWithAtExit();
414   EmitCXXThreadLocalInitFunc();
415   if (ObjCRuntime)
416     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
417       AddGlobalCtor(ObjCInitFunction);
418   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
419       CUDARuntime) {
420     if (llvm::Function *CudaCtorFunction =
421             CUDARuntime->makeModuleCtorFunction())
422       AddGlobalCtor(CudaCtorFunction);
423   }
424   if (OpenMPRuntime) {
425     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
426             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
427       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
428     }
429     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
430     OpenMPRuntime->clear();
431   }
432   if (PGOReader) {
433     getModule().setProfileSummary(
434         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
435         llvm::ProfileSummary::PSK_Instr);
436     if (PGOStats.hasDiagnostics())
437       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
438   }
439   EmitCtorList(GlobalCtors, "llvm.global_ctors");
440   EmitCtorList(GlobalDtors, "llvm.global_dtors");
441   EmitGlobalAnnotations();
442   EmitStaticExternCAliases();
443   EmitDeferredUnusedCoverageMappings();
444   if (CoverageMapping)
445     CoverageMapping->emit();
446   if (CodeGenOpts.SanitizeCfiCrossDso) {
447     CodeGenFunction(*this).EmitCfiCheckFail();
448     CodeGenFunction(*this).EmitCfiCheckStub();
449   }
450   emitAtAvailableLinkGuard();
451   if (Context.getTargetInfo().getTriple().isWasm() &&
452       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
453     EmitMainVoidAlias();
454   }
455   emitLLVMUsed();
456   if (SanStats)
457     SanStats->finish();
458 
459   if (CodeGenOpts.Autolink &&
460       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
461     EmitModuleLinkOptions();
462   }
463 
464   // On ELF we pass the dependent library specifiers directly to the linker
465   // without manipulating them. This is in contrast to other platforms where
466   // they are mapped to a specific linker option by the compiler. This
467   // difference is a result of the greater variety of ELF linkers and the fact
468   // that ELF linkers tend to handle libraries in a more complicated fashion
469   // than on other platforms. This forces us to defer handling the dependent
470   // libs to the linker.
471   //
472   // CUDA/HIP device and host libraries are different. Currently there is no
473   // way to differentiate dependent libraries for host or device. Existing
474   // usage of #pragma comment(lib, *) is intended for host libraries on
475   // Windows. Therefore emit llvm.dependent-libraries only for host.
476   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
477     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
478     for (auto *MD : ELFDependentLibraries)
479       NMD->addOperand(MD);
480   }
481 
482   // Record mregparm value now so it is visible through rest of codegen.
483   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
484     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
485                               CodeGenOpts.NumRegisterParameters);
486 
487   if (CodeGenOpts.DwarfVersion) {
488     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
489                               CodeGenOpts.DwarfVersion);
490   }
491 
492   if (Context.getLangOpts().SemanticInterposition)
493     // Require various optimization to respect semantic interposition.
494     getModule().setSemanticInterposition(1);
495   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
496     // Allow dso_local on applicable targets.
497     getModule().setSemanticInterposition(0);
498 
499   if (CodeGenOpts.EmitCodeView) {
500     // Indicate that we want CodeView in the metadata.
501     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
502   }
503   if (CodeGenOpts.CodeViewGHash) {
504     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
505   }
506   if (CodeGenOpts.ControlFlowGuard) {
507     // Function ID tables and checks for Control Flow Guard (cfguard=2).
508     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
509   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
510     // Function ID tables for Control Flow Guard (cfguard=1).
511     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
512   }
513   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
514     // We don't support LTO with 2 with different StrictVTablePointers
515     // FIXME: we could support it by stripping all the information introduced
516     // by StrictVTablePointers.
517 
518     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
519 
520     llvm::Metadata *Ops[2] = {
521               llvm::MDString::get(VMContext, "StrictVTablePointers"),
522               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
523                   llvm::Type::getInt32Ty(VMContext), 1))};
524 
525     getModule().addModuleFlag(llvm::Module::Require,
526                               "StrictVTablePointersRequirement",
527                               llvm::MDNode::get(VMContext, Ops));
528   }
529   if (getModuleDebugInfo())
530     // We support a single version in the linked module. The LLVM
531     // parser will drop debug info with a different version number
532     // (and warn about it, too).
533     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
534                               llvm::DEBUG_METADATA_VERSION);
535 
536   // We need to record the widths of enums and wchar_t, so that we can generate
537   // the correct build attributes in the ARM backend. wchar_size is also used by
538   // TargetLibraryInfo.
539   uint64_t WCharWidth =
540       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
541   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
542 
543   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
544   if (   Arch == llvm::Triple::arm
545       || Arch == llvm::Triple::armeb
546       || Arch == llvm::Triple::thumb
547       || Arch == llvm::Triple::thumbeb) {
548     // The minimum width of an enum in bytes
549     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
550     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
551   }
552 
553   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
554     StringRef ABIStr = Target.getABI();
555     llvm::LLVMContext &Ctx = TheModule.getContext();
556     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
557                               llvm::MDString::get(Ctx, ABIStr));
558   }
559 
560   if (CodeGenOpts.SanitizeCfiCrossDso) {
561     // Indicate that we want cross-DSO control flow integrity checks.
562     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
563   }
564 
565   if (CodeGenOpts.WholeProgramVTables) {
566     // Indicate whether VFE was enabled for this module, so that the
567     // vcall_visibility metadata added under whole program vtables is handled
568     // appropriately in the optimizer.
569     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
570                               CodeGenOpts.VirtualFunctionElimination);
571   }
572 
573   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
574     getModule().addModuleFlag(llvm::Module::Override,
575                               "CFI Canonical Jump Tables",
576                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
577   }
578 
579   if (CodeGenOpts.CFProtectionReturn &&
580       Target.checkCFProtectionReturnSupported(getDiags())) {
581     // Indicate that we want to instrument return control flow protection.
582     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
583                               1);
584   }
585 
586   if (CodeGenOpts.CFProtectionBranch &&
587       Target.checkCFProtectionBranchSupported(getDiags())) {
588     // Indicate that we want to instrument branch control flow protection.
589     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
590                               1);
591   }
592 
593   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
594       Arch == llvm::Triple::aarch64_be) {
595     getModule().addModuleFlag(llvm::Module::Error,
596                               "branch-target-enforcement",
597                               LangOpts.BranchTargetEnforcement);
598 
599     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
600                               LangOpts.hasSignReturnAddress());
601 
602     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
603                               LangOpts.isSignReturnAddressScopeAll());
604 
605     getModule().addModuleFlag(llvm::Module::Error,
606                               "sign-return-address-with-bkey",
607                               !LangOpts.isSignReturnAddressWithAKey());
608   }
609 
610   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
611     // Indicate whether __nvvm_reflect should be configured to flush denormal
612     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
613     // property.)
614     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
615                               CodeGenOpts.FP32DenormalMode.Output !=
616                                   llvm::DenormalMode::IEEE);
617   }
618 
619   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
620   if (LangOpts.OpenCL) {
621     EmitOpenCLMetadata();
622     // Emit SPIR version.
623     if (getTriple().isSPIR()) {
624       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
625       // opencl.spir.version named metadata.
626       // C++ is backwards compatible with OpenCL v2.0.
627       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
628       llvm::Metadata *SPIRVerElts[] = {
629           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
630               Int32Ty, Version / 100)),
631           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
632               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
633       llvm::NamedMDNode *SPIRVerMD =
634           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
635       llvm::LLVMContext &Ctx = TheModule.getContext();
636       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
637     }
638   }
639 
640   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
641     assert(PLevel < 3 && "Invalid PIC Level");
642     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
643     if (Context.getLangOpts().PIE)
644       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
645   }
646 
647   if (getCodeGenOpts().CodeModel.size() > 0) {
648     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
649                   .Case("tiny", llvm::CodeModel::Tiny)
650                   .Case("small", llvm::CodeModel::Small)
651                   .Case("kernel", llvm::CodeModel::Kernel)
652                   .Case("medium", llvm::CodeModel::Medium)
653                   .Case("large", llvm::CodeModel::Large)
654                   .Default(~0u);
655     if (CM != ~0u) {
656       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
657       getModule().setCodeModel(codeModel);
658     }
659   }
660 
661   if (CodeGenOpts.NoPLT)
662     getModule().setRtLibUseGOT();
663 
664   SimplifyPersonality();
665 
666   if (getCodeGenOpts().EmitDeclMetadata)
667     EmitDeclMetadata();
668 
669   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
670     EmitCoverageFile();
671 
672   if (CGDebugInfo *DI = getModuleDebugInfo())
673     DI->finalize();
674 
675   if (getCodeGenOpts().EmitVersionIdentMetadata)
676     EmitVersionIdentMetadata();
677 
678   if (!getCodeGenOpts().RecordCommandLine.empty())
679     EmitCommandLineMetadata();
680 
681   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
682 
683   EmitBackendOptionsMetadata(getCodeGenOpts());
684 }
685 
686 void CodeGenModule::EmitOpenCLMetadata() {
687   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
688   // opencl.ocl.version named metadata node.
689   // C++ is backwards compatible with OpenCL v2.0.
690   // FIXME: We might need to add CXX version at some point too?
691   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
692   llvm::Metadata *OCLVerElts[] = {
693       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
694           Int32Ty, Version / 100)),
695       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
696           Int32Ty, (Version % 100) / 10))};
697   llvm::NamedMDNode *OCLVerMD =
698       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
699   llvm::LLVMContext &Ctx = TheModule.getContext();
700   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
701 }
702 
703 void CodeGenModule::EmitBackendOptionsMetadata(
704     const CodeGenOptions CodeGenOpts) {
705   switch (getTriple().getArch()) {
706   default:
707     break;
708   case llvm::Triple::riscv32:
709   case llvm::Triple::riscv64:
710     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
711                               CodeGenOpts.SmallDataLimit);
712     break;
713   }
714 }
715 
716 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
717   // Make sure that this type is translated.
718   Types.UpdateCompletedType(TD);
719 }
720 
721 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
722   // Make sure that this type is translated.
723   Types.RefreshTypeCacheForClass(RD);
724 }
725 
726 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
727   if (!TBAA)
728     return nullptr;
729   return TBAA->getTypeInfo(QTy);
730 }
731 
732 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
733   if (!TBAA)
734     return TBAAAccessInfo();
735   if (getLangOpts().CUDAIsDevice) {
736     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
737     // access info.
738     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
739       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
740           nullptr)
741         return TBAAAccessInfo();
742     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
743       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
744           nullptr)
745         return TBAAAccessInfo();
746     }
747   }
748   return TBAA->getAccessInfo(AccessType);
749 }
750 
751 TBAAAccessInfo
752 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
753   if (!TBAA)
754     return TBAAAccessInfo();
755   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
756 }
757 
758 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
759   if (!TBAA)
760     return nullptr;
761   return TBAA->getTBAAStructInfo(QTy);
762 }
763 
764 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
765   if (!TBAA)
766     return nullptr;
767   return TBAA->getBaseTypeInfo(QTy);
768 }
769 
770 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
771   if (!TBAA)
772     return nullptr;
773   return TBAA->getAccessTagInfo(Info);
774 }
775 
776 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
777                                                    TBAAAccessInfo TargetInfo) {
778   if (!TBAA)
779     return TBAAAccessInfo();
780   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
781 }
782 
783 TBAAAccessInfo
784 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
785                                                    TBAAAccessInfo InfoB) {
786   if (!TBAA)
787     return TBAAAccessInfo();
788   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
789 }
790 
791 TBAAAccessInfo
792 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
793                                               TBAAAccessInfo SrcInfo) {
794   if (!TBAA)
795     return TBAAAccessInfo();
796   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
797 }
798 
799 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
800                                                 TBAAAccessInfo TBAAInfo) {
801   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
802     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
803 }
804 
805 void CodeGenModule::DecorateInstructionWithInvariantGroup(
806     llvm::Instruction *I, const CXXRecordDecl *RD) {
807   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
808                  llvm::MDNode::get(getLLVMContext(), {}));
809 }
810 
811 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
812   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
813   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
814 }
815 
816 /// ErrorUnsupported - Print out an error that codegen doesn't support the
817 /// specified stmt yet.
818 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
819   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
820                                                "cannot compile this %0 yet");
821   std::string Msg = Type;
822   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
823       << Msg << S->getSourceRange();
824 }
825 
826 /// ErrorUnsupported - Print out an error that codegen doesn't support the
827 /// specified decl yet.
828 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
829   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
830                                                "cannot compile this %0 yet");
831   std::string Msg = Type;
832   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
833 }
834 
835 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
836   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
837 }
838 
839 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
840                                         const NamedDecl *D) const {
841   if (GV->hasDLLImportStorageClass())
842     return;
843   // Internal definitions always have default visibility.
844   if (GV->hasLocalLinkage()) {
845     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
846     return;
847   }
848   if (!D)
849     return;
850   // Set visibility for definitions, and for declarations if requested globally
851   // or set explicitly.
852   LinkageInfo LV = D->getLinkageAndVisibility();
853   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
854       !GV->isDeclarationForLinker())
855     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
856 }
857 
858 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
859                                  llvm::GlobalValue *GV) {
860   if (GV->hasLocalLinkage())
861     return true;
862 
863   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
864     return true;
865 
866   // DLLImport explicitly marks the GV as external.
867   if (GV->hasDLLImportStorageClass())
868     return false;
869 
870   const llvm::Triple &TT = CGM.getTriple();
871   if (TT.isWindowsGNUEnvironment()) {
872     // In MinGW, variables without DLLImport can still be automatically
873     // imported from a DLL by the linker; don't mark variables that
874     // potentially could come from another DLL as DSO local.
875     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
876         !GV->isThreadLocal())
877       return false;
878   }
879 
880   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
881   // remain unresolved in the link, they can be resolved to zero, which is
882   // outside the current DSO.
883   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
884     return false;
885 
886   // Every other GV is local on COFF.
887   // Make an exception for windows OS in the triple: Some firmware builds use
888   // *-win32-macho triples. This (accidentally?) produced windows relocations
889   // without GOT tables in older clang versions; Keep this behaviour.
890   // FIXME: even thread local variables?
891   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
892     return true;
893 
894   // Only handle COFF and ELF for now.
895   if (!TT.isOSBinFormatELF())
896     return false;
897 
898   // If this is not an executable, don't assume anything is local.
899   const auto &CGOpts = CGM.getCodeGenOpts();
900   llvm::Reloc::Model RM = CGOpts.RelocationModel;
901   const auto &LOpts = CGM.getLangOpts();
902   if (RM != llvm::Reloc::Static && !LOpts.PIE)
903     return false;
904 
905   // A definition cannot be preempted from an executable.
906   if (!GV->isDeclarationForLinker())
907     return true;
908 
909   // Most PIC code sequences that assume that a symbol is local cannot produce a
910   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
911   // depended, it seems worth it to handle it here.
912   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
913     return false;
914 
915   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
916   llvm::Triple::ArchType Arch = TT.getArch();
917   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
918       Arch == llvm::Triple::ppc64le)
919     return false;
920 
921   // If we can use copy relocations we can assume it is local.
922   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
923     if (!Var->isThreadLocal() &&
924         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
925       return true;
926 
927   // If we can use a plt entry as the symbol address we can assume it
928   // is local.
929   // FIXME: This should work for PIE, but the gold linker doesn't support it.
930   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
931     return true;
932 
933   // Otherwise don't assume it is local.
934   return false;
935 }
936 
937 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
938   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
939 }
940 
941 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
942                                           GlobalDecl GD) const {
943   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
944   // C++ destructors have a few C++ ABI specific special cases.
945   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
946     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
947     return;
948   }
949   setDLLImportDLLExport(GV, D);
950 }
951 
952 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
953                                           const NamedDecl *D) const {
954   if (D && D->isExternallyVisible()) {
955     if (D->hasAttr<DLLImportAttr>())
956       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
957     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
958       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
959   }
960 }
961 
962 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
963                                     GlobalDecl GD) const {
964   setDLLImportDLLExport(GV, GD);
965   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
966 }
967 
968 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
969                                     const NamedDecl *D) const {
970   setDLLImportDLLExport(GV, D);
971   setGVPropertiesAux(GV, D);
972 }
973 
974 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
975                                        const NamedDecl *D) const {
976   setGlobalVisibility(GV, D);
977   setDSOLocal(GV);
978   GV->setPartition(CodeGenOpts.SymbolPartition);
979 }
980 
981 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
982   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
983       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
984       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
985       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
986       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
987 }
988 
989 llvm::GlobalVariable::ThreadLocalMode
990 CodeGenModule::GetDefaultLLVMTLSModel() const {
991   switch (CodeGenOpts.getDefaultTLSModel()) {
992   case CodeGenOptions::GeneralDynamicTLSModel:
993     return llvm::GlobalVariable::GeneralDynamicTLSModel;
994   case CodeGenOptions::LocalDynamicTLSModel:
995     return llvm::GlobalVariable::LocalDynamicTLSModel;
996   case CodeGenOptions::InitialExecTLSModel:
997     return llvm::GlobalVariable::InitialExecTLSModel;
998   case CodeGenOptions::LocalExecTLSModel:
999     return llvm::GlobalVariable::LocalExecTLSModel;
1000   }
1001   llvm_unreachable("Invalid TLS model!");
1002 }
1003 
1004 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1005   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1006 
1007   llvm::GlobalValue::ThreadLocalMode TLM;
1008   TLM = GetDefaultLLVMTLSModel();
1009 
1010   // Override the TLS model if it is explicitly specified.
1011   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1012     TLM = GetLLVMTLSModel(Attr->getModel());
1013   }
1014 
1015   GV->setThreadLocalMode(TLM);
1016 }
1017 
1018 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1019                                           StringRef Name) {
1020   const TargetInfo &Target = CGM.getTarget();
1021   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1022 }
1023 
1024 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1025                                                  const CPUSpecificAttr *Attr,
1026                                                  unsigned CPUIndex,
1027                                                  raw_ostream &Out) {
1028   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1029   // supported.
1030   if (Attr)
1031     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1032   else if (CGM.getTarget().supportsIFunc())
1033     Out << ".resolver";
1034 }
1035 
1036 static void AppendTargetMangling(const CodeGenModule &CGM,
1037                                  const TargetAttr *Attr, raw_ostream &Out) {
1038   if (Attr->isDefaultVersion())
1039     return;
1040 
1041   Out << '.';
1042   const TargetInfo &Target = CGM.getTarget();
1043   ParsedTargetAttr Info =
1044       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1045         // Multiversioning doesn't allow "no-${feature}", so we can
1046         // only have "+" prefixes here.
1047         assert(LHS.startswith("+") && RHS.startswith("+") &&
1048                "Features should always have a prefix.");
1049         return Target.multiVersionSortPriority(LHS.substr(1)) >
1050                Target.multiVersionSortPriority(RHS.substr(1));
1051       });
1052 
1053   bool IsFirst = true;
1054 
1055   if (!Info.Architecture.empty()) {
1056     IsFirst = false;
1057     Out << "arch_" << Info.Architecture;
1058   }
1059 
1060   for (StringRef Feat : Info.Features) {
1061     if (!IsFirst)
1062       Out << '_';
1063     IsFirst = false;
1064     Out << Feat.substr(1);
1065   }
1066 }
1067 
1068 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1069                                       const NamedDecl *ND,
1070                                       bool OmitMultiVersionMangling = false) {
1071   SmallString<256> Buffer;
1072   llvm::raw_svector_ostream Out(Buffer);
1073   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1074   if (MC.shouldMangleDeclName(ND))
1075     MC.mangleName(GD.getWithDecl(ND), Out);
1076   else {
1077     IdentifierInfo *II = ND->getIdentifier();
1078     assert(II && "Attempt to mangle unnamed decl.");
1079     const auto *FD = dyn_cast<FunctionDecl>(ND);
1080 
1081     if (FD &&
1082         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1083       Out << "__regcall3__" << II->getName();
1084     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1085                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1086       Out << "__device_stub__" << II->getName();
1087     } else {
1088       Out << II->getName();
1089     }
1090   }
1091 
1092   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1093     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1094       switch (FD->getMultiVersionKind()) {
1095       case MultiVersionKind::CPUDispatch:
1096       case MultiVersionKind::CPUSpecific:
1097         AppendCPUSpecificCPUDispatchMangling(CGM,
1098                                              FD->getAttr<CPUSpecificAttr>(),
1099                                              GD.getMultiVersionIndex(), Out);
1100         break;
1101       case MultiVersionKind::Target:
1102         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1103         break;
1104       case MultiVersionKind::None:
1105         llvm_unreachable("None multiversion type isn't valid here");
1106       }
1107     }
1108 
1109   return std::string(Out.str());
1110 }
1111 
1112 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1113                                             const FunctionDecl *FD) {
1114   if (!FD->isMultiVersion())
1115     return;
1116 
1117   // Get the name of what this would be without the 'target' attribute.  This
1118   // allows us to lookup the version that was emitted when this wasn't a
1119   // multiversion function.
1120   std::string NonTargetName =
1121       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1122   GlobalDecl OtherGD;
1123   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1124     assert(OtherGD.getCanonicalDecl()
1125                .getDecl()
1126                ->getAsFunction()
1127                ->isMultiVersion() &&
1128            "Other GD should now be a multiversioned function");
1129     // OtherFD is the version of this function that was mangled BEFORE
1130     // becoming a MultiVersion function.  It potentially needs to be updated.
1131     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1132                                       .getDecl()
1133                                       ->getAsFunction()
1134                                       ->getMostRecentDecl();
1135     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1136     // This is so that if the initial version was already the 'default'
1137     // version, we don't try to update it.
1138     if (OtherName != NonTargetName) {
1139       // Remove instead of erase, since others may have stored the StringRef
1140       // to this.
1141       const auto ExistingRecord = Manglings.find(NonTargetName);
1142       if (ExistingRecord != std::end(Manglings))
1143         Manglings.remove(&(*ExistingRecord));
1144       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1145       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1146       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1147         Entry->setName(OtherName);
1148     }
1149   }
1150 }
1151 
1152 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1153   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1154 
1155   // Some ABIs don't have constructor variants.  Make sure that base and
1156   // complete constructors get mangled the same.
1157   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1158     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1159       CXXCtorType OrigCtorType = GD.getCtorType();
1160       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1161       if (OrigCtorType == Ctor_Base)
1162         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1163     }
1164   }
1165 
1166   auto FoundName = MangledDeclNames.find(CanonicalGD);
1167   if (FoundName != MangledDeclNames.end())
1168     return FoundName->second;
1169 
1170   // Keep the first result in the case of a mangling collision.
1171   const auto *ND = cast<NamedDecl>(GD.getDecl());
1172   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1173 
1174   // Ensure either we have different ABIs between host and device compilations,
1175   // says host compilation following MSVC ABI but device compilation follows
1176   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1177   // mangling should be the same after name stubbing. The later checking is
1178   // very important as the device kernel name being mangled in host-compilation
1179   // is used to resolve the device binaries to be executed. Inconsistent naming
1180   // result in undefined behavior. Even though we cannot check that naming
1181   // directly between host- and device-compilations, the host- and
1182   // device-mangling in host compilation could help catching certain ones.
1183   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1184          getLangOpts().CUDAIsDevice ||
1185          (getContext().getAuxTargetInfo() &&
1186           (getContext().getAuxTargetInfo()->getCXXABI() !=
1187            getContext().getTargetInfo().getCXXABI())) ||
1188          getCUDARuntime().getDeviceSideName(ND) ==
1189              getMangledNameImpl(
1190                  *this,
1191                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1192                  ND));
1193 
1194   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1195   return MangledDeclNames[CanonicalGD] = Result.first->first();
1196 }
1197 
1198 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1199                                              const BlockDecl *BD) {
1200   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1201   const Decl *D = GD.getDecl();
1202 
1203   SmallString<256> Buffer;
1204   llvm::raw_svector_ostream Out(Buffer);
1205   if (!D)
1206     MangleCtx.mangleGlobalBlock(BD,
1207       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1208   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1209     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1210   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1211     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1212   else
1213     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1214 
1215   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1216   return Result.first->first();
1217 }
1218 
1219 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1220   return getModule().getNamedValue(Name);
1221 }
1222 
1223 /// AddGlobalCtor - Add a function to the list that will be called before
1224 /// main() runs.
1225 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1226                                   llvm::Constant *AssociatedData) {
1227   // FIXME: Type coercion of void()* types.
1228   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1229 }
1230 
1231 /// AddGlobalDtor - Add a function to the list that will be called
1232 /// when the module is unloaded.
1233 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1234   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1235     if (getCXXABI().useSinitAndSterm())
1236       llvm::report_fatal_error(
1237           "register global dtors with atexit() is not supported yet");
1238     DtorsUsingAtExit[Priority].push_back(Dtor);
1239     return;
1240   }
1241 
1242   // FIXME: Type coercion of void()* types.
1243   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1244 }
1245 
1246 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1247   if (Fns.empty()) return;
1248 
1249   // Ctor function type is void()*.
1250   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1251   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1252       TheModule.getDataLayout().getProgramAddressSpace());
1253 
1254   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1255   llvm::StructType *CtorStructTy = llvm::StructType::get(
1256       Int32Ty, CtorPFTy, VoidPtrTy);
1257 
1258   // Construct the constructor and destructor arrays.
1259   ConstantInitBuilder builder(*this);
1260   auto ctors = builder.beginArray(CtorStructTy);
1261   for (const auto &I : Fns) {
1262     auto ctor = ctors.beginStruct(CtorStructTy);
1263     ctor.addInt(Int32Ty, I.Priority);
1264     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1265     if (I.AssociatedData)
1266       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1267     else
1268       ctor.addNullPointer(VoidPtrTy);
1269     ctor.finishAndAddTo(ctors);
1270   }
1271 
1272   auto list =
1273     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1274                                 /*constant*/ false,
1275                                 llvm::GlobalValue::AppendingLinkage);
1276 
1277   // The LTO linker doesn't seem to like it when we set an alignment
1278   // on appending variables.  Take it off as a workaround.
1279   list->setAlignment(llvm::None);
1280 
1281   Fns.clear();
1282 }
1283 
1284 llvm::GlobalValue::LinkageTypes
1285 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1286   const auto *D = cast<FunctionDecl>(GD.getDecl());
1287 
1288   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1289 
1290   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1291     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1292 
1293   if (isa<CXXConstructorDecl>(D) &&
1294       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1295       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1296     // Our approach to inheriting constructors is fundamentally different from
1297     // that used by the MS ABI, so keep our inheriting constructor thunks
1298     // internal rather than trying to pick an unambiguous mangling for them.
1299     return llvm::GlobalValue::InternalLinkage;
1300   }
1301 
1302   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1303 }
1304 
1305 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1306   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1307   if (!MDS) return nullptr;
1308 
1309   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1310 }
1311 
1312 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1313                                               const CGFunctionInfo &Info,
1314                                               llvm::Function *F) {
1315   unsigned CallingConv;
1316   llvm::AttributeList PAL;
1317   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1318   F->setAttributes(PAL);
1319   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1320 }
1321 
1322 static void removeImageAccessQualifier(std::string& TyName) {
1323   std::string ReadOnlyQual("__read_only");
1324   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1325   if (ReadOnlyPos != std::string::npos)
1326     // "+ 1" for the space after access qualifier.
1327     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1328   else {
1329     std::string WriteOnlyQual("__write_only");
1330     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1331     if (WriteOnlyPos != std::string::npos)
1332       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1333     else {
1334       std::string ReadWriteQual("__read_write");
1335       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1336       if (ReadWritePos != std::string::npos)
1337         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1338     }
1339   }
1340 }
1341 
1342 // Returns the address space id that should be produced to the
1343 // kernel_arg_addr_space metadata. This is always fixed to the ids
1344 // as specified in the SPIR 2.0 specification in order to differentiate
1345 // for example in clGetKernelArgInfo() implementation between the address
1346 // spaces with targets without unique mapping to the OpenCL address spaces
1347 // (basically all single AS CPUs).
1348 static unsigned ArgInfoAddressSpace(LangAS AS) {
1349   switch (AS) {
1350   case LangAS::opencl_global:
1351     return 1;
1352   case LangAS::opencl_constant:
1353     return 2;
1354   case LangAS::opencl_local:
1355     return 3;
1356   case LangAS::opencl_generic:
1357     return 4; // Not in SPIR 2.0 specs.
1358   case LangAS::opencl_global_device:
1359     return 5;
1360   case LangAS::opencl_global_host:
1361     return 6;
1362   default:
1363     return 0; // Assume private.
1364   }
1365 }
1366 
1367 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1368                                          const FunctionDecl *FD,
1369                                          CodeGenFunction *CGF) {
1370   assert(((FD && CGF) || (!FD && !CGF)) &&
1371          "Incorrect use - FD and CGF should either be both null or not!");
1372   // Create MDNodes that represent the kernel arg metadata.
1373   // Each MDNode is a list in the form of "key", N number of values which is
1374   // the same number of values as their are kernel arguments.
1375 
1376   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1377 
1378   // MDNode for the kernel argument address space qualifiers.
1379   SmallVector<llvm::Metadata *, 8> addressQuals;
1380 
1381   // MDNode for the kernel argument access qualifiers (images only).
1382   SmallVector<llvm::Metadata *, 8> accessQuals;
1383 
1384   // MDNode for the kernel argument type names.
1385   SmallVector<llvm::Metadata *, 8> argTypeNames;
1386 
1387   // MDNode for the kernel argument base type names.
1388   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1389 
1390   // MDNode for the kernel argument type qualifiers.
1391   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1392 
1393   // MDNode for the kernel argument names.
1394   SmallVector<llvm::Metadata *, 8> argNames;
1395 
1396   if (FD && CGF)
1397     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1398       const ParmVarDecl *parm = FD->getParamDecl(i);
1399       QualType ty = parm->getType();
1400       std::string typeQuals;
1401 
1402       if (ty->isPointerType()) {
1403         QualType pointeeTy = ty->getPointeeType();
1404 
1405         // Get address qualifier.
1406         addressQuals.push_back(
1407             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1408                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1409 
1410         // Get argument type name.
1411         std::string typeName =
1412             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1413 
1414         // Turn "unsigned type" to "utype"
1415         std::string::size_type pos = typeName.find("unsigned");
1416         if (pointeeTy.isCanonical() && pos != std::string::npos)
1417           typeName.erase(pos + 1, 8);
1418 
1419         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1420 
1421         std::string baseTypeName =
1422             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1423                 Policy) +
1424             "*";
1425 
1426         // Turn "unsigned type" to "utype"
1427         pos = baseTypeName.find("unsigned");
1428         if (pos != std::string::npos)
1429           baseTypeName.erase(pos + 1, 8);
1430 
1431         argBaseTypeNames.push_back(
1432             llvm::MDString::get(VMContext, baseTypeName));
1433 
1434         // Get argument type qualifiers:
1435         if (ty.isRestrictQualified())
1436           typeQuals = "restrict";
1437         if (pointeeTy.isConstQualified() ||
1438             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1439           typeQuals += typeQuals.empty() ? "const" : " const";
1440         if (pointeeTy.isVolatileQualified())
1441           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1442       } else {
1443         uint32_t AddrSpc = 0;
1444         bool isPipe = ty->isPipeType();
1445         if (ty->isImageType() || isPipe)
1446           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1447 
1448         addressQuals.push_back(
1449             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1450 
1451         // Get argument type name.
1452         std::string typeName;
1453         if (isPipe)
1454           typeName = ty.getCanonicalType()
1455                          ->castAs<PipeType>()
1456                          ->getElementType()
1457                          .getAsString(Policy);
1458         else
1459           typeName = ty.getUnqualifiedType().getAsString(Policy);
1460 
1461         // Turn "unsigned type" to "utype"
1462         std::string::size_type pos = typeName.find("unsigned");
1463         if (ty.isCanonical() && pos != std::string::npos)
1464           typeName.erase(pos + 1, 8);
1465 
1466         std::string baseTypeName;
1467         if (isPipe)
1468           baseTypeName = ty.getCanonicalType()
1469                              ->castAs<PipeType>()
1470                              ->getElementType()
1471                              .getCanonicalType()
1472                              .getAsString(Policy);
1473         else
1474           baseTypeName =
1475               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1476 
1477         // Remove access qualifiers on images
1478         // (as they are inseparable from type in clang implementation,
1479         // but OpenCL spec provides a special query to get access qualifier
1480         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1481         if (ty->isImageType()) {
1482           removeImageAccessQualifier(typeName);
1483           removeImageAccessQualifier(baseTypeName);
1484         }
1485 
1486         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1487 
1488         // Turn "unsigned type" to "utype"
1489         pos = baseTypeName.find("unsigned");
1490         if (pos != std::string::npos)
1491           baseTypeName.erase(pos + 1, 8);
1492 
1493         argBaseTypeNames.push_back(
1494             llvm::MDString::get(VMContext, baseTypeName));
1495 
1496         if (isPipe)
1497           typeQuals = "pipe";
1498       }
1499 
1500       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1501 
1502       // Get image and pipe access qualifier:
1503       if (ty->isImageType() || ty->isPipeType()) {
1504         const Decl *PDecl = parm;
1505         if (auto *TD = dyn_cast<TypedefType>(ty))
1506           PDecl = TD->getDecl();
1507         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1508         if (A && A->isWriteOnly())
1509           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1510         else if (A && A->isReadWrite())
1511           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1512         else
1513           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1514       } else
1515         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1516 
1517       // Get argument name.
1518       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1519     }
1520 
1521   Fn->setMetadata("kernel_arg_addr_space",
1522                   llvm::MDNode::get(VMContext, addressQuals));
1523   Fn->setMetadata("kernel_arg_access_qual",
1524                   llvm::MDNode::get(VMContext, accessQuals));
1525   Fn->setMetadata("kernel_arg_type",
1526                   llvm::MDNode::get(VMContext, argTypeNames));
1527   Fn->setMetadata("kernel_arg_base_type",
1528                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1529   Fn->setMetadata("kernel_arg_type_qual",
1530                   llvm::MDNode::get(VMContext, argTypeQuals));
1531   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1532     Fn->setMetadata("kernel_arg_name",
1533                     llvm::MDNode::get(VMContext, argNames));
1534 }
1535 
1536 /// Determines whether the language options require us to model
1537 /// unwind exceptions.  We treat -fexceptions as mandating this
1538 /// except under the fragile ObjC ABI with only ObjC exceptions
1539 /// enabled.  This means, for example, that C with -fexceptions
1540 /// enables this.
1541 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1542   // If exceptions are completely disabled, obviously this is false.
1543   if (!LangOpts.Exceptions) return false;
1544 
1545   // If C++ exceptions are enabled, this is true.
1546   if (LangOpts.CXXExceptions) return true;
1547 
1548   // If ObjC exceptions are enabled, this depends on the ABI.
1549   if (LangOpts.ObjCExceptions) {
1550     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1551   }
1552 
1553   return true;
1554 }
1555 
1556 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1557                                                       const CXXMethodDecl *MD) {
1558   // Check that the type metadata can ever actually be used by a call.
1559   if (!CGM.getCodeGenOpts().LTOUnit ||
1560       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1561     return false;
1562 
1563   // Only functions whose address can be taken with a member function pointer
1564   // need this sort of type metadata.
1565   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1566          !isa<CXXDestructorDecl>(MD);
1567 }
1568 
1569 std::vector<const CXXRecordDecl *>
1570 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1571   llvm::SetVector<const CXXRecordDecl *> MostBases;
1572 
1573   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1574   CollectMostBases = [&](const CXXRecordDecl *RD) {
1575     if (RD->getNumBases() == 0)
1576       MostBases.insert(RD);
1577     for (const CXXBaseSpecifier &B : RD->bases())
1578       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1579   };
1580   CollectMostBases(RD);
1581   return MostBases.takeVector();
1582 }
1583 
1584 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1585                                                            llvm::Function *F) {
1586   llvm::AttrBuilder B;
1587 
1588   if (CodeGenOpts.UnwindTables)
1589     B.addAttribute(llvm::Attribute::UWTable);
1590 
1591   if (CodeGenOpts.StackClashProtector)
1592     B.addAttribute("probe-stack", "inline-asm");
1593 
1594   if (!hasUnwindExceptions(LangOpts))
1595     B.addAttribute(llvm::Attribute::NoUnwind);
1596 
1597   if (D && D->hasAttr<NoStackProtectorAttr>())
1598     B.addAttribute(llvm::Attribute::NoStackProtect);
1599   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1600     B.addAttribute(llvm::Attribute::StackProtect);
1601   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1602     B.addAttribute(llvm::Attribute::StackProtectStrong);
1603   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1604     B.addAttribute(llvm::Attribute::StackProtectReq);
1605 
1606   if (!D) {
1607     // If we don't have a declaration to control inlining, the function isn't
1608     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1609     // disabled, mark the function as noinline.
1610     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1611         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1612       B.addAttribute(llvm::Attribute::NoInline);
1613 
1614     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1615     return;
1616   }
1617 
1618   // Track whether we need to add the optnone LLVM attribute,
1619   // starting with the default for this optimization level.
1620   bool ShouldAddOptNone =
1621       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1622   // We can't add optnone in the following cases, it won't pass the verifier.
1623   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1624   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1625 
1626   // Add optnone, but do so only if the function isn't always_inline.
1627   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1628       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1629     B.addAttribute(llvm::Attribute::OptimizeNone);
1630 
1631     // OptimizeNone implies noinline; we should not be inlining such functions.
1632     B.addAttribute(llvm::Attribute::NoInline);
1633 
1634     // We still need to handle naked functions even though optnone subsumes
1635     // much of their semantics.
1636     if (D->hasAttr<NakedAttr>())
1637       B.addAttribute(llvm::Attribute::Naked);
1638 
1639     // OptimizeNone wins over OptimizeForSize and MinSize.
1640     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1641     F->removeFnAttr(llvm::Attribute::MinSize);
1642   } else if (D->hasAttr<NakedAttr>()) {
1643     // Naked implies noinline: we should not be inlining such functions.
1644     B.addAttribute(llvm::Attribute::Naked);
1645     B.addAttribute(llvm::Attribute::NoInline);
1646   } else if (D->hasAttr<NoDuplicateAttr>()) {
1647     B.addAttribute(llvm::Attribute::NoDuplicate);
1648   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1649     // Add noinline if the function isn't always_inline.
1650     B.addAttribute(llvm::Attribute::NoInline);
1651   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1652              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1653     // (noinline wins over always_inline, and we can't specify both in IR)
1654     B.addAttribute(llvm::Attribute::AlwaysInline);
1655   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1656     // If we're not inlining, then force everything that isn't always_inline to
1657     // carry an explicit noinline attribute.
1658     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1659       B.addAttribute(llvm::Attribute::NoInline);
1660   } else {
1661     // Otherwise, propagate the inline hint attribute and potentially use its
1662     // absence to mark things as noinline.
1663     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1664       // Search function and template pattern redeclarations for inline.
1665       auto CheckForInline = [](const FunctionDecl *FD) {
1666         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1667           return Redecl->isInlineSpecified();
1668         };
1669         if (any_of(FD->redecls(), CheckRedeclForInline))
1670           return true;
1671         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1672         if (!Pattern)
1673           return false;
1674         return any_of(Pattern->redecls(), CheckRedeclForInline);
1675       };
1676       if (CheckForInline(FD)) {
1677         B.addAttribute(llvm::Attribute::InlineHint);
1678       } else if (CodeGenOpts.getInlining() ==
1679                      CodeGenOptions::OnlyHintInlining &&
1680                  !FD->isInlined() &&
1681                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1682         B.addAttribute(llvm::Attribute::NoInline);
1683       }
1684     }
1685   }
1686 
1687   // Add other optimization related attributes if we are optimizing this
1688   // function.
1689   if (!D->hasAttr<OptimizeNoneAttr>()) {
1690     if (D->hasAttr<ColdAttr>()) {
1691       if (!ShouldAddOptNone)
1692         B.addAttribute(llvm::Attribute::OptimizeForSize);
1693       B.addAttribute(llvm::Attribute::Cold);
1694     }
1695 
1696     if (D->hasAttr<MinSizeAttr>())
1697       B.addAttribute(llvm::Attribute::MinSize);
1698   }
1699 
1700   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1701 
1702   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1703   if (alignment)
1704     F->setAlignment(llvm::Align(alignment));
1705 
1706   if (!D->hasAttr<AlignedAttr>())
1707     if (LangOpts.FunctionAlignment)
1708       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1709 
1710   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1711   // reserve a bit for differentiating between virtual and non-virtual member
1712   // functions. If the current target's C++ ABI requires this and this is a
1713   // member function, set its alignment accordingly.
1714   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1715     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1716       F->setAlignment(llvm::Align(2));
1717   }
1718 
1719   // In the cross-dso CFI mode with canonical jump tables, we want !type
1720   // attributes on definitions only.
1721   if (CodeGenOpts.SanitizeCfiCrossDso &&
1722       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1723     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1724       // Skip available_externally functions. They won't be codegen'ed in the
1725       // current module anyway.
1726       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1727         CreateFunctionTypeMetadataForIcall(FD, F);
1728     }
1729   }
1730 
1731   // Emit type metadata on member functions for member function pointer checks.
1732   // These are only ever necessary on definitions; we're guaranteed that the
1733   // definition will be present in the LTO unit as a result of LTO visibility.
1734   auto *MD = dyn_cast<CXXMethodDecl>(D);
1735   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1736     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1737       llvm::Metadata *Id =
1738           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1739               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1740       F->addTypeMetadata(0, Id);
1741     }
1742   }
1743 }
1744 
1745 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1746                                                   llvm::Function *F) {
1747   if (D->hasAttr<StrictFPAttr>()) {
1748     llvm::AttrBuilder FuncAttrs;
1749     FuncAttrs.addAttribute("strictfp");
1750     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1751   }
1752 }
1753 
1754 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1755   const Decl *D = GD.getDecl();
1756   if (dyn_cast_or_null<NamedDecl>(D))
1757     setGVProperties(GV, GD);
1758   else
1759     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1760 
1761   if (D && D->hasAttr<UsedAttr>())
1762     addUsedGlobal(GV);
1763 
1764   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1765     const auto *VD = cast<VarDecl>(D);
1766     if (VD->getType().isConstQualified() &&
1767         VD->getStorageDuration() == SD_Static)
1768       addUsedGlobal(GV);
1769   }
1770 }
1771 
1772 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1773                                                 llvm::AttrBuilder &Attrs) {
1774   // Add target-cpu and target-features attributes to functions. If
1775   // we have a decl for the function and it has a target attribute then
1776   // parse that and add it to the feature set.
1777   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1778   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1779   std::vector<std::string> Features;
1780   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1781   FD = FD ? FD->getMostRecentDecl() : FD;
1782   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1783   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1784   bool AddedAttr = false;
1785   if (TD || SD) {
1786     llvm::StringMap<bool> FeatureMap;
1787     getContext().getFunctionFeatureMap(FeatureMap, GD);
1788 
1789     // Produce the canonical string for this set of features.
1790     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1791       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1792 
1793     // Now add the target-cpu and target-features to the function.
1794     // While we populated the feature map above, we still need to
1795     // get and parse the target attribute so we can get the cpu for
1796     // the function.
1797     if (TD) {
1798       ParsedTargetAttr ParsedAttr = TD->parse();
1799       if (!ParsedAttr.Architecture.empty() &&
1800           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1801         TargetCPU = ParsedAttr.Architecture;
1802         TuneCPU = ""; // Clear the tune CPU.
1803       }
1804       if (!ParsedAttr.Tune.empty() &&
1805           getTarget().isValidCPUName(ParsedAttr.Tune))
1806         TuneCPU = ParsedAttr.Tune;
1807     }
1808   } else {
1809     // Otherwise just add the existing target cpu and target features to the
1810     // function.
1811     Features = getTarget().getTargetOpts().Features;
1812   }
1813 
1814   if (!TargetCPU.empty()) {
1815     Attrs.addAttribute("target-cpu", TargetCPU);
1816     AddedAttr = true;
1817   }
1818   if (!TuneCPU.empty()) {
1819     Attrs.addAttribute("tune-cpu", TuneCPU);
1820     AddedAttr = true;
1821   }
1822   if (!Features.empty()) {
1823     llvm::sort(Features);
1824     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1825     AddedAttr = true;
1826   }
1827 
1828   return AddedAttr;
1829 }
1830 
1831 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1832                                           llvm::GlobalObject *GO) {
1833   const Decl *D = GD.getDecl();
1834   SetCommonAttributes(GD, GO);
1835 
1836   if (D) {
1837     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1838       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1839         GV->addAttribute("bss-section", SA->getName());
1840       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1841         GV->addAttribute("data-section", SA->getName());
1842       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1843         GV->addAttribute("rodata-section", SA->getName());
1844       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1845         GV->addAttribute("relro-section", SA->getName());
1846     }
1847 
1848     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1849       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1850         if (!D->getAttr<SectionAttr>())
1851           F->addFnAttr("implicit-section-name", SA->getName());
1852 
1853       llvm::AttrBuilder Attrs;
1854       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1855         // We know that GetCPUAndFeaturesAttributes will always have the
1856         // newest set, since it has the newest possible FunctionDecl, so the
1857         // new ones should replace the old.
1858         llvm::AttrBuilder RemoveAttrs;
1859         RemoveAttrs.addAttribute("target-cpu");
1860         RemoveAttrs.addAttribute("target-features");
1861         RemoveAttrs.addAttribute("tune-cpu");
1862         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1863         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1864       }
1865     }
1866 
1867     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1868       GO->setSection(CSA->getName());
1869     else if (const auto *SA = D->getAttr<SectionAttr>())
1870       GO->setSection(SA->getName());
1871   }
1872 
1873   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1874 }
1875 
1876 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1877                                                   llvm::Function *F,
1878                                                   const CGFunctionInfo &FI) {
1879   const Decl *D = GD.getDecl();
1880   SetLLVMFunctionAttributes(GD, FI, F);
1881   SetLLVMFunctionAttributesForDefinition(D, F);
1882 
1883   F->setLinkage(llvm::Function::InternalLinkage);
1884 
1885   setNonAliasAttributes(GD, F);
1886 }
1887 
1888 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1889   // Set linkage and visibility in case we never see a definition.
1890   LinkageInfo LV = ND->getLinkageAndVisibility();
1891   // Don't set internal linkage on declarations.
1892   // "extern_weak" is overloaded in LLVM; we probably should have
1893   // separate linkage types for this.
1894   if (isExternallyVisible(LV.getLinkage()) &&
1895       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1896     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1897 }
1898 
1899 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1900                                                        llvm::Function *F) {
1901   // Only if we are checking indirect calls.
1902   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1903     return;
1904 
1905   // Non-static class methods are handled via vtable or member function pointer
1906   // checks elsewhere.
1907   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1908     return;
1909 
1910   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1911   F->addTypeMetadata(0, MD);
1912   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1913 
1914   // Emit a hash-based bit set entry for cross-DSO calls.
1915   if (CodeGenOpts.SanitizeCfiCrossDso)
1916     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1917       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1918 }
1919 
1920 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1921                                           bool IsIncompleteFunction,
1922                                           bool IsThunk) {
1923 
1924   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1925     // If this is an intrinsic function, set the function's attributes
1926     // to the intrinsic's attributes.
1927     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1928     return;
1929   }
1930 
1931   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1932 
1933   if (!IsIncompleteFunction)
1934     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1935 
1936   // Add the Returned attribute for "this", except for iOS 5 and earlier
1937   // where substantial code, including the libstdc++ dylib, was compiled with
1938   // GCC and does not actually return "this".
1939   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1940       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1941     assert(!F->arg_empty() &&
1942            F->arg_begin()->getType()
1943              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1944            "unexpected this return");
1945     F->addAttribute(1, llvm::Attribute::Returned);
1946   }
1947 
1948   // Only a few attributes are set on declarations; these may later be
1949   // overridden by a definition.
1950 
1951   setLinkageForGV(F, FD);
1952   setGVProperties(F, FD);
1953 
1954   // Setup target-specific attributes.
1955   if (!IsIncompleteFunction && F->isDeclaration())
1956     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1957 
1958   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1959     F->setSection(CSA->getName());
1960   else if (const auto *SA = FD->getAttr<SectionAttr>())
1961      F->setSection(SA->getName());
1962 
1963   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1964   if (FD->isInlineBuiltinDeclaration()) {
1965     const FunctionDecl *FDBody;
1966     bool HasBody = FD->hasBody(FDBody);
1967     (void)HasBody;
1968     assert(HasBody && "Inline builtin declarations should always have an "
1969                       "available body!");
1970     if (shouldEmitFunction(FDBody))
1971       F->addAttribute(llvm::AttributeList::FunctionIndex,
1972                       llvm::Attribute::NoBuiltin);
1973   }
1974 
1975   if (FD->isReplaceableGlobalAllocationFunction()) {
1976     // A replaceable global allocation function does not act like a builtin by
1977     // default, only if it is invoked by a new-expression or delete-expression.
1978     F->addAttribute(llvm::AttributeList::FunctionIndex,
1979                     llvm::Attribute::NoBuiltin);
1980   }
1981 
1982   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1983     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1984   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1985     if (MD->isVirtual())
1986       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1987 
1988   // Don't emit entries for function declarations in the cross-DSO mode. This
1989   // is handled with better precision by the receiving DSO. But if jump tables
1990   // are non-canonical then we need type metadata in order to produce the local
1991   // jump table.
1992   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1993       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1994     CreateFunctionTypeMetadataForIcall(FD, F);
1995 
1996   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1997     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1998 
1999   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2000     // Annotate the callback behavior as metadata:
2001     //  - The callback callee (as argument number).
2002     //  - The callback payloads (as argument numbers).
2003     llvm::LLVMContext &Ctx = F->getContext();
2004     llvm::MDBuilder MDB(Ctx);
2005 
2006     // The payload indices are all but the first one in the encoding. The first
2007     // identifies the callback callee.
2008     int CalleeIdx = *CB->encoding_begin();
2009     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2010     F->addMetadata(llvm::LLVMContext::MD_callback,
2011                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2012                                                CalleeIdx, PayloadIndices,
2013                                                /* VarArgsArePassed */ false)}));
2014   }
2015 }
2016 
2017 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2018   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2019          "Only globals with definition can force usage.");
2020   LLVMUsed.emplace_back(GV);
2021 }
2022 
2023 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2024   assert(!GV->isDeclaration() &&
2025          "Only globals with definition can force usage.");
2026   LLVMCompilerUsed.emplace_back(GV);
2027 }
2028 
2029 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2030                      std::vector<llvm::WeakTrackingVH> &List) {
2031   // Don't create llvm.used if there is no need.
2032   if (List.empty())
2033     return;
2034 
2035   // Convert List to what ConstantArray needs.
2036   SmallVector<llvm::Constant*, 8> UsedArray;
2037   UsedArray.resize(List.size());
2038   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2039     UsedArray[i] =
2040         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2041             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2042   }
2043 
2044   if (UsedArray.empty())
2045     return;
2046   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2047 
2048   auto *GV = new llvm::GlobalVariable(
2049       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2050       llvm::ConstantArray::get(ATy, UsedArray), Name);
2051 
2052   GV->setSection("llvm.metadata");
2053 }
2054 
2055 void CodeGenModule::emitLLVMUsed() {
2056   emitUsed(*this, "llvm.used", LLVMUsed);
2057   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2058 }
2059 
2060 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2061   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2062   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2063 }
2064 
2065 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2066   llvm::SmallString<32> Opt;
2067   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2068   if (Opt.empty())
2069     return;
2070   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2071   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2072 }
2073 
2074 void CodeGenModule::AddDependentLib(StringRef Lib) {
2075   auto &C = getLLVMContext();
2076   if (getTarget().getTriple().isOSBinFormatELF()) {
2077       ELFDependentLibraries.push_back(
2078         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2079     return;
2080   }
2081 
2082   llvm::SmallString<24> Opt;
2083   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2084   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2085   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2086 }
2087 
2088 /// Add link options implied by the given module, including modules
2089 /// it depends on, using a postorder walk.
2090 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2091                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2092                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2093   // Import this module's parent.
2094   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2095     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2096   }
2097 
2098   // Import this module's dependencies.
2099   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2100     if (Visited.insert(Mod->Imports[I - 1]).second)
2101       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2102   }
2103 
2104   // Add linker options to link against the libraries/frameworks
2105   // described by this module.
2106   llvm::LLVMContext &Context = CGM.getLLVMContext();
2107   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2108 
2109   // For modules that use export_as for linking, use that module
2110   // name instead.
2111   if (Mod->UseExportAsModuleLinkName)
2112     return;
2113 
2114   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2115     // Link against a framework.  Frameworks are currently Darwin only, so we
2116     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2117     if (Mod->LinkLibraries[I-1].IsFramework) {
2118       llvm::Metadata *Args[2] = {
2119           llvm::MDString::get(Context, "-framework"),
2120           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2121 
2122       Metadata.push_back(llvm::MDNode::get(Context, Args));
2123       continue;
2124     }
2125 
2126     // Link against a library.
2127     if (IsELF) {
2128       llvm::Metadata *Args[2] = {
2129           llvm::MDString::get(Context, "lib"),
2130           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2131       };
2132       Metadata.push_back(llvm::MDNode::get(Context, Args));
2133     } else {
2134       llvm::SmallString<24> Opt;
2135       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2136           Mod->LinkLibraries[I - 1].Library, Opt);
2137       auto *OptString = llvm::MDString::get(Context, Opt);
2138       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2139     }
2140   }
2141 }
2142 
2143 void CodeGenModule::EmitModuleLinkOptions() {
2144   // Collect the set of all of the modules we want to visit to emit link
2145   // options, which is essentially the imported modules and all of their
2146   // non-explicit child modules.
2147   llvm::SetVector<clang::Module *> LinkModules;
2148   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2149   SmallVector<clang::Module *, 16> Stack;
2150 
2151   // Seed the stack with imported modules.
2152   for (Module *M : ImportedModules) {
2153     // Do not add any link flags when an implementation TU of a module imports
2154     // a header of that same module.
2155     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2156         !getLangOpts().isCompilingModule())
2157       continue;
2158     if (Visited.insert(M).second)
2159       Stack.push_back(M);
2160   }
2161 
2162   // Find all of the modules to import, making a little effort to prune
2163   // non-leaf modules.
2164   while (!Stack.empty()) {
2165     clang::Module *Mod = Stack.pop_back_val();
2166 
2167     bool AnyChildren = false;
2168 
2169     // Visit the submodules of this module.
2170     for (const auto &SM : Mod->submodules()) {
2171       // Skip explicit children; they need to be explicitly imported to be
2172       // linked against.
2173       if (SM->IsExplicit)
2174         continue;
2175 
2176       if (Visited.insert(SM).second) {
2177         Stack.push_back(SM);
2178         AnyChildren = true;
2179       }
2180     }
2181 
2182     // We didn't find any children, so add this module to the list of
2183     // modules to link against.
2184     if (!AnyChildren) {
2185       LinkModules.insert(Mod);
2186     }
2187   }
2188 
2189   // Add link options for all of the imported modules in reverse topological
2190   // order.  We don't do anything to try to order import link flags with respect
2191   // to linker options inserted by things like #pragma comment().
2192   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2193   Visited.clear();
2194   for (Module *M : LinkModules)
2195     if (Visited.insert(M).second)
2196       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2197   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2198   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2199 
2200   // Add the linker options metadata flag.
2201   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2202   for (auto *MD : LinkerOptionsMetadata)
2203     NMD->addOperand(MD);
2204 }
2205 
2206 void CodeGenModule::EmitDeferred() {
2207   // Emit deferred declare target declarations.
2208   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2209     getOpenMPRuntime().emitDeferredTargetDecls();
2210 
2211   // Emit code for any potentially referenced deferred decls.  Since a
2212   // previously unused static decl may become used during the generation of code
2213   // for a static function, iterate until no changes are made.
2214 
2215   if (!DeferredVTables.empty()) {
2216     EmitDeferredVTables();
2217 
2218     // Emitting a vtable doesn't directly cause more vtables to
2219     // become deferred, although it can cause functions to be
2220     // emitted that then need those vtables.
2221     assert(DeferredVTables.empty());
2222   }
2223 
2224   // Emit CUDA/HIP static device variables referenced by host code only.
2225   if (getLangOpts().CUDA)
2226     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2227       DeferredDeclsToEmit.push_back(V);
2228 
2229   // Stop if we're out of both deferred vtables and deferred declarations.
2230   if (DeferredDeclsToEmit.empty())
2231     return;
2232 
2233   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2234   // work, it will not interfere with this.
2235   std::vector<GlobalDecl> CurDeclsToEmit;
2236   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2237 
2238   for (GlobalDecl &D : CurDeclsToEmit) {
2239     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2240     // to get GlobalValue with exactly the type we need, not something that
2241     // might had been created for another decl with the same mangled name but
2242     // different type.
2243     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2244         GetAddrOfGlobal(D, ForDefinition));
2245 
2246     // In case of different address spaces, we may still get a cast, even with
2247     // IsForDefinition equal to true. Query mangled names table to get
2248     // GlobalValue.
2249     if (!GV)
2250       GV = GetGlobalValue(getMangledName(D));
2251 
2252     // Make sure GetGlobalValue returned non-null.
2253     assert(GV);
2254 
2255     // Check to see if we've already emitted this.  This is necessary
2256     // for a couple of reasons: first, decls can end up in the
2257     // deferred-decls queue multiple times, and second, decls can end
2258     // up with definitions in unusual ways (e.g. by an extern inline
2259     // function acquiring a strong function redefinition).  Just
2260     // ignore these cases.
2261     if (!GV->isDeclaration())
2262       continue;
2263 
2264     // If this is OpenMP, check if it is legal to emit this global normally.
2265     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2266       continue;
2267 
2268     // Otherwise, emit the definition and move on to the next one.
2269     EmitGlobalDefinition(D, GV);
2270 
2271     // If we found out that we need to emit more decls, do that recursively.
2272     // This has the advantage that the decls are emitted in a DFS and related
2273     // ones are close together, which is convenient for testing.
2274     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2275       EmitDeferred();
2276       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2277     }
2278   }
2279 }
2280 
2281 void CodeGenModule::EmitVTablesOpportunistically() {
2282   // Try to emit external vtables as available_externally if they have emitted
2283   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2284   // is not allowed to create new references to things that need to be emitted
2285   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2286 
2287   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2288          && "Only emit opportunistic vtables with optimizations");
2289 
2290   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2291     assert(getVTables().isVTableExternal(RD) &&
2292            "This queue should only contain external vtables");
2293     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2294       VTables.GenerateClassData(RD);
2295   }
2296   OpportunisticVTables.clear();
2297 }
2298 
2299 void CodeGenModule::EmitGlobalAnnotations() {
2300   if (Annotations.empty())
2301     return;
2302 
2303   // Create a new global variable for the ConstantStruct in the Module.
2304   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2305     Annotations[0]->getType(), Annotations.size()), Annotations);
2306   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2307                                       llvm::GlobalValue::AppendingLinkage,
2308                                       Array, "llvm.global.annotations");
2309   gv->setSection(AnnotationSection);
2310 }
2311 
2312 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2313   llvm::Constant *&AStr = AnnotationStrings[Str];
2314   if (AStr)
2315     return AStr;
2316 
2317   // Not found yet, create a new global.
2318   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2319   auto *gv =
2320       new llvm::GlobalVariable(getModule(), s->getType(), true,
2321                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2322   gv->setSection(AnnotationSection);
2323   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2324   AStr = gv;
2325   return gv;
2326 }
2327 
2328 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2329   SourceManager &SM = getContext().getSourceManager();
2330   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2331   if (PLoc.isValid())
2332     return EmitAnnotationString(PLoc.getFilename());
2333   return EmitAnnotationString(SM.getBufferName(Loc));
2334 }
2335 
2336 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2337   SourceManager &SM = getContext().getSourceManager();
2338   PresumedLoc PLoc = SM.getPresumedLoc(L);
2339   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2340     SM.getExpansionLineNumber(L);
2341   return llvm::ConstantInt::get(Int32Ty, LineNo);
2342 }
2343 
2344 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2345                                                 const AnnotateAttr *AA,
2346                                                 SourceLocation L) {
2347   // Get the globals for file name, annotation, and the line number.
2348   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2349                  *UnitGV = EmitAnnotationUnit(L),
2350                  *LineNoCst = EmitAnnotationLineNo(L);
2351 
2352   llvm::Constant *ASZeroGV = GV;
2353   if (GV->getAddressSpace() != 0) {
2354     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2355                    GV, GV->getValueType()->getPointerTo(0));
2356   }
2357 
2358   // Create the ConstantStruct for the global annotation.
2359   llvm::Constant *Fields[4] = {
2360     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2361     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2362     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2363     LineNoCst
2364   };
2365   return llvm::ConstantStruct::getAnon(Fields);
2366 }
2367 
2368 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2369                                          llvm::GlobalValue *GV) {
2370   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2371   // Get the struct elements for these annotations.
2372   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2373     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2374 }
2375 
2376 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2377                                            llvm::Function *Fn,
2378                                            SourceLocation Loc) const {
2379   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2380   // Blacklist by function name.
2381   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2382     return true;
2383   // Blacklist by location.
2384   if (Loc.isValid())
2385     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2386   // If location is unknown, this may be a compiler-generated function. Assume
2387   // it's located in the main file.
2388   auto &SM = Context.getSourceManager();
2389   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2390     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2391   }
2392   return false;
2393 }
2394 
2395 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2396                                            SourceLocation Loc, QualType Ty,
2397                                            StringRef Category) const {
2398   // For now globals can be blacklisted only in ASan and KASan.
2399   const SanitizerMask EnabledAsanMask =
2400       LangOpts.Sanitize.Mask &
2401       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2402        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2403        SanitizerKind::MemTag);
2404   if (!EnabledAsanMask)
2405     return false;
2406   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2407   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2408     return true;
2409   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2410     return true;
2411   // Check global type.
2412   if (!Ty.isNull()) {
2413     // Drill down the array types: if global variable of a fixed type is
2414     // blacklisted, we also don't instrument arrays of them.
2415     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2416       Ty = AT->getElementType();
2417     Ty = Ty.getCanonicalType().getUnqualifiedType();
2418     // We allow to blacklist only record types (classes, structs etc.)
2419     if (Ty->isRecordType()) {
2420       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2421       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2422         return true;
2423     }
2424   }
2425   return false;
2426 }
2427 
2428 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2429                                    StringRef Category) const {
2430   const auto &XRayFilter = getContext().getXRayFilter();
2431   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2432   auto Attr = ImbueAttr::NONE;
2433   if (Loc.isValid())
2434     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2435   if (Attr == ImbueAttr::NONE)
2436     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2437   switch (Attr) {
2438   case ImbueAttr::NONE:
2439     return false;
2440   case ImbueAttr::ALWAYS:
2441     Fn->addFnAttr("function-instrument", "xray-always");
2442     break;
2443   case ImbueAttr::ALWAYS_ARG1:
2444     Fn->addFnAttr("function-instrument", "xray-always");
2445     Fn->addFnAttr("xray-log-args", "1");
2446     break;
2447   case ImbueAttr::NEVER:
2448     Fn->addFnAttr("function-instrument", "xray-never");
2449     break;
2450   }
2451   return true;
2452 }
2453 
2454 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2455   // Never defer when EmitAllDecls is specified.
2456   if (LangOpts.EmitAllDecls)
2457     return true;
2458 
2459   if (CodeGenOpts.KeepStaticConsts) {
2460     const auto *VD = dyn_cast<VarDecl>(Global);
2461     if (VD && VD->getType().isConstQualified() &&
2462         VD->getStorageDuration() == SD_Static)
2463       return true;
2464   }
2465 
2466   return getContext().DeclMustBeEmitted(Global);
2467 }
2468 
2469 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2470   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2471     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2472       // Implicit template instantiations may change linkage if they are later
2473       // explicitly instantiated, so they should not be emitted eagerly.
2474       return false;
2475     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2476     // not emit them eagerly unless we sure that the function must be emitted on
2477     // the host.
2478     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2479         !LangOpts.OpenMPIsDevice &&
2480         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2481         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2482       return false;
2483   }
2484   if (const auto *VD = dyn_cast<VarDecl>(Global))
2485     if (Context.getInlineVariableDefinitionKind(VD) ==
2486         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2487       // A definition of an inline constexpr static data member may change
2488       // linkage later if it's redeclared outside the class.
2489       return false;
2490   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2491   // codegen for global variables, because they may be marked as threadprivate.
2492   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2493       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2494       !isTypeConstant(Global->getType(), false) &&
2495       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2496     return false;
2497 
2498   return true;
2499 }
2500 
2501 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2502   StringRef Name = getMangledName(GD);
2503 
2504   // The UUID descriptor should be pointer aligned.
2505   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2506 
2507   // Look for an existing global.
2508   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2509     return ConstantAddress(GV, Alignment);
2510 
2511   ConstantEmitter Emitter(*this);
2512   llvm::Constant *Init;
2513 
2514   APValue &V = GD->getAsAPValue();
2515   if (!V.isAbsent()) {
2516     // If possible, emit the APValue version of the initializer. In particular,
2517     // this gets the type of the constant right.
2518     Init = Emitter.emitForInitializer(
2519         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2520   } else {
2521     // As a fallback, directly construct the constant.
2522     // FIXME: This may get padding wrong under esoteric struct layout rules.
2523     // MSVC appears to create a complete type 'struct __s_GUID' that it
2524     // presumably uses to represent these constants.
2525     MSGuidDecl::Parts Parts = GD->getParts();
2526     llvm::Constant *Fields[4] = {
2527         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2528         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2529         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2530         llvm::ConstantDataArray::getRaw(
2531             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2532             Int8Ty)};
2533     Init = llvm::ConstantStruct::getAnon(Fields);
2534   }
2535 
2536   auto *GV = new llvm::GlobalVariable(
2537       getModule(), Init->getType(),
2538       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2539   if (supportsCOMDAT())
2540     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2541   setDSOLocal(GV);
2542 
2543   llvm::Constant *Addr = GV;
2544   if (!V.isAbsent()) {
2545     Emitter.finalize(GV);
2546   } else {
2547     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2548     Addr = llvm::ConstantExpr::getBitCast(
2549         GV, Ty->getPointerTo(GV->getAddressSpace()));
2550   }
2551   return ConstantAddress(Addr, Alignment);
2552 }
2553 
2554 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2555     const TemplateParamObjectDecl *TPO) {
2556   ErrorUnsupported(TPO, "template parameter object");
2557   return ConstantAddress::invalid();
2558 }
2559 
2560 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2561   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2562   assert(AA && "No alias?");
2563 
2564   CharUnits Alignment = getContext().getDeclAlign(VD);
2565   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2566 
2567   // See if there is already something with the target's name in the module.
2568   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2569   if (Entry) {
2570     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2571     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2572     return ConstantAddress(Ptr, Alignment);
2573   }
2574 
2575   llvm::Constant *Aliasee;
2576   if (isa<llvm::FunctionType>(DeclTy))
2577     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2578                                       GlobalDecl(cast<FunctionDecl>(VD)),
2579                                       /*ForVTable=*/false);
2580   else
2581     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2582                                     llvm::PointerType::getUnqual(DeclTy),
2583                                     nullptr);
2584 
2585   auto *F = cast<llvm::GlobalValue>(Aliasee);
2586   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2587   WeakRefReferences.insert(F);
2588 
2589   return ConstantAddress(Aliasee, Alignment);
2590 }
2591 
2592 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2593   const auto *Global = cast<ValueDecl>(GD.getDecl());
2594 
2595   // Weak references don't produce any output by themselves.
2596   if (Global->hasAttr<WeakRefAttr>())
2597     return;
2598 
2599   // If this is an alias definition (which otherwise looks like a declaration)
2600   // emit it now.
2601   if (Global->hasAttr<AliasAttr>())
2602     return EmitAliasDefinition(GD);
2603 
2604   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2605   if (Global->hasAttr<IFuncAttr>())
2606     return emitIFuncDefinition(GD);
2607 
2608   // If this is a cpu_dispatch multiversion function, emit the resolver.
2609   if (Global->hasAttr<CPUDispatchAttr>())
2610     return emitCPUDispatchDefinition(GD);
2611 
2612   // If this is CUDA, be selective about which declarations we emit.
2613   if (LangOpts.CUDA) {
2614     if (LangOpts.CUDAIsDevice) {
2615       if (!Global->hasAttr<CUDADeviceAttr>() &&
2616           !Global->hasAttr<CUDAGlobalAttr>() &&
2617           !Global->hasAttr<CUDAConstantAttr>() &&
2618           !Global->hasAttr<CUDASharedAttr>() &&
2619           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2620           !Global->getType()->isCUDADeviceBuiltinTextureType())
2621         return;
2622     } else {
2623       // We need to emit host-side 'shadows' for all global
2624       // device-side variables because the CUDA runtime needs their
2625       // size and host-side address in order to provide access to
2626       // their device-side incarnations.
2627 
2628       // So device-only functions are the only things we skip.
2629       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2630           Global->hasAttr<CUDADeviceAttr>())
2631         return;
2632 
2633       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2634              "Expected Variable or Function");
2635     }
2636   }
2637 
2638   if (LangOpts.OpenMP) {
2639     // If this is OpenMP, check if it is legal to emit this global normally.
2640     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2641       return;
2642     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2643       if (MustBeEmitted(Global))
2644         EmitOMPDeclareReduction(DRD);
2645       return;
2646     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2647       if (MustBeEmitted(Global))
2648         EmitOMPDeclareMapper(DMD);
2649       return;
2650     }
2651   }
2652 
2653   // Ignore declarations, they will be emitted on their first use.
2654   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2655     // Forward declarations are emitted lazily on first use.
2656     if (!FD->doesThisDeclarationHaveABody()) {
2657       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2658         return;
2659 
2660       StringRef MangledName = getMangledName(GD);
2661 
2662       // Compute the function info and LLVM type.
2663       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2664       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2665 
2666       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2667                               /*DontDefer=*/false);
2668       return;
2669     }
2670   } else {
2671     const auto *VD = cast<VarDecl>(Global);
2672     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2673     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2674         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2675       if (LangOpts.OpenMP) {
2676         // Emit declaration of the must-be-emitted declare target variable.
2677         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2678                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2679           bool UnifiedMemoryEnabled =
2680               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2681           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2682               !UnifiedMemoryEnabled) {
2683             (void)GetAddrOfGlobalVar(VD);
2684           } else {
2685             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2686                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2687                      UnifiedMemoryEnabled)) &&
2688                    "Link clause or to clause with unified memory expected.");
2689             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2690           }
2691 
2692           return;
2693         }
2694       }
2695       // If this declaration may have caused an inline variable definition to
2696       // change linkage, make sure that it's emitted.
2697       if (Context.getInlineVariableDefinitionKind(VD) ==
2698           ASTContext::InlineVariableDefinitionKind::Strong)
2699         GetAddrOfGlobalVar(VD);
2700       return;
2701     }
2702   }
2703 
2704   // Defer code generation to first use when possible, e.g. if this is an inline
2705   // function. If the global must always be emitted, do it eagerly if possible
2706   // to benefit from cache locality.
2707   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2708     // Emit the definition if it can't be deferred.
2709     EmitGlobalDefinition(GD);
2710     return;
2711   }
2712 
2713   // If we're deferring emission of a C++ variable with an
2714   // initializer, remember the order in which it appeared in the file.
2715   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2716       cast<VarDecl>(Global)->hasInit()) {
2717     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2718     CXXGlobalInits.push_back(nullptr);
2719   }
2720 
2721   StringRef MangledName = getMangledName(GD);
2722   if (GetGlobalValue(MangledName) != nullptr) {
2723     // The value has already been used and should therefore be emitted.
2724     addDeferredDeclToEmit(GD);
2725   } else if (MustBeEmitted(Global)) {
2726     // The value must be emitted, but cannot be emitted eagerly.
2727     assert(!MayBeEmittedEagerly(Global));
2728     addDeferredDeclToEmit(GD);
2729   } else {
2730     // Otherwise, remember that we saw a deferred decl with this name.  The
2731     // first use of the mangled name will cause it to move into
2732     // DeferredDeclsToEmit.
2733     DeferredDecls[MangledName] = GD;
2734   }
2735 }
2736 
2737 // Check if T is a class type with a destructor that's not dllimport.
2738 static bool HasNonDllImportDtor(QualType T) {
2739   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2740     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2741       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2742         return true;
2743 
2744   return false;
2745 }
2746 
2747 namespace {
2748   struct FunctionIsDirectlyRecursive
2749       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2750     const StringRef Name;
2751     const Builtin::Context &BI;
2752     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2753         : Name(N), BI(C) {}
2754 
2755     bool VisitCallExpr(const CallExpr *E) {
2756       const FunctionDecl *FD = E->getDirectCallee();
2757       if (!FD)
2758         return false;
2759       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2760       if (Attr && Name == Attr->getLabel())
2761         return true;
2762       unsigned BuiltinID = FD->getBuiltinID();
2763       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2764         return false;
2765       StringRef BuiltinName = BI.getName(BuiltinID);
2766       if (BuiltinName.startswith("__builtin_") &&
2767           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2768         return true;
2769       }
2770       return false;
2771     }
2772 
2773     bool VisitStmt(const Stmt *S) {
2774       for (const Stmt *Child : S->children())
2775         if (Child && this->Visit(Child))
2776           return true;
2777       return false;
2778     }
2779   };
2780 
2781   // Make sure we're not referencing non-imported vars or functions.
2782   struct DLLImportFunctionVisitor
2783       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2784     bool SafeToInline = true;
2785 
2786     bool shouldVisitImplicitCode() const { return true; }
2787 
2788     bool VisitVarDecl(VarDecl *VD) {
2789       if (VD->getTLSKind()) {
2790         // A thread-local variable cannot be imported.
2791         SafeToInline = false;
2792         return SafeToInline;
2793       }
2794 
2795       // A variable definition might imply a destructor call.
2796       if (VD->isThisDeclarationADefinition())
2797         SafeToInline = !HasNonDllImportDtor(VD->getType());
2798 
2799       return SafeToInline;
2800     }
2801 
2802     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2803       if (const auto *D = E->getTemporary()->getDestructor())
2804         SafeToInline = D->hasAttr<DLLImportAttr>();
2805       return SafeToInline;
2806     }
2807 
2808     bool VisitDeclRefExpr(DeclRefExpr *E) {
2809       ValueDecl *VD = E->getDecl();
2810       if (isa<FunctionDecl>(VD))
2811         SafeToInline = VD->hasAttr<DLLImportAttr>();
2812       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2813         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2814       return SafeToInline;
2815     }
2816 
2817     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2818       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2819       return SafeToInline;
2820     }
2821 
2822     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2823       CXXMethodDecl *M = E->getMethodDecl();
2824       if (!M) {
2825         // Call through a pointer to member function. This is safe to inline.
2826         SafeToInline = true;
2827       } else {
2828         SafeToInline = M->hasAttr<DLLImportAttr>();
2829       }
2830       return SafeToInline;
2831     }
2832 
2833     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2834       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2835       return SafeToInline;
2836     }
2837 
2838     bool VisitCXXNewExpr(CXXNewExpr *E) {
2839       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2840       return SafeToInline;
2841     }
2842   };
2843 }
2844 
2845 // isTriviallyRecursive - Check if this function calls another
2846 // decl that, because of the asm attribute or the other decl being a builtin,
2847 // ends up pointing to itself.
2848 bool
2849 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2850   StringRef Name;
2851   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2852     // asm labels are a special kind of mangling we have to support.
2853     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2854     if (!Attr)
2855       return false;
2856     Name = Attr->getLabel();
2857   } else {
2858     Name = FD->getName();
2859   }
2860 
2861   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2862   const Stmt *Body = FD->getBody();
2863   return Body ? Walker.Visit(Body) : false;
2864 }
2865 
2866 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2867   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2868     return true;
2869   const auto *F = cast<FunctionDecl>(GD.getDecl());
2870   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2871     return false;
2872 
2873   if (F->hasAttr<DLLImportAttr>()) {
2874     // Check whether it would be safe to inline this dllimport function.
2875     DLLImportFunctionVisitor Visitor;
2876     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2877     if (!Visitor.SafeToInline)
2878       return false;
2879 
2880     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2881       // Implicit destructor invocations aren't captured in the AST, so the
2882       // check above can't see them. Check for them manually here.
2883       for (const Decl *Member : Dtor->getParent()->decls())
2884         if (isa<FieldDecl>(Member))
2885           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2886             return false;
2887       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2888         if (HasNonDllImportDtor(B.getType()))
2889           return false;
2890     }
2891   }
2892 
2893   // PR9614. Avoid cases where the source code is lying to us. An available
2894   // externally function should have an equivalent function somewhere else,
2895   // but a function that calls itself through asm label/`__builtin_` trickery is
2896   // clearly not equivalent to the real implementation.
2897   // This happens in glibc's btowc and in some configure checks.
2898   return !isTriviallyRecursive(F);
2899 }
2900 
2901 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2902   return CodeGenOpts.OptimizationLevel > 0;
2903 }
2904 
2905 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2906                                                        llvm::GlobalValue *GV) {
2907   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2908 
2909   if (FD->isCPUSpecificMultiVersion()) {
2910     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2911     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2912       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2913     // Requires multiple emits.
2914   } else
2915     EmitGlobalFunctionDefinition(GD, GV);
2916 }
2917 
2918 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2919   const auto *D = cast<ValueDecl>(GD.getDecl());
2920 
2921   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2922                                  Context.getSourceManager(),
2923                                  "Generating code for declaration");
2924 
2925   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2926     // At -O0, don't generate IR for functions with available_externally
2927     // linkage.
2928     if (!shouldEmitFunction(GD))
2929       return;
2930 
2931     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2932       std::string Name;
2933       llvm::raw_string_ostream OS(Name);
2934       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2935                                /*Qualified=*/true);
2936       return Name;
2937     });
2938 
2939     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2940       // Make sure to emit the definition(s) before we emit the thunks.
2941       // This is necessary for the generation of certain thunks.
2942       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2943         ABI->emitCXXStructor(GD);
2944       else if (FD->isMultiVersion())
2945         EmitMultiVersionFunctionDefinition(GD, GV);
2946       else
2947         EmitGlobalFunctionDefinition(GD, GV);
2948 
2949       if (Method->isVirtual())
2950         getVTables().EmitThunks(GD);
2951 
2952       return;
2953     }
2954 
2955     if (FD->isMultiVersion())
2956       return EmitMultiVersionFunctionDefinition(GD, GV);
2957     return EmitGlobalFunctionDefinition(GD, GV);
2958   }
2959 
2960   if (const auto *VD = dyn_cast<VarDecl>(D))
2961     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2962 
2963   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2964 }
2965 
2966 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2967                                                       llvm::Function *NewFn);
2968 
2969 static unsigned
2970 TargetMVPriority(const TargetInfo &TI,
2971                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2972   unsigned Priority = 0;
2973   for (StringRef Feat : RO.Conditions.Features)
2974     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2975 
2976   if (!RO.Conditions.Architecture.empty())
2977     Priority = std::max(
2978         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2979   return Priority;
2980 }
2981 
2982 void CodeGenModule::emitMultiVersionFunctions() {
2983   for (GlobalDecl GD : MultiVersionFuncs) {
2984     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2985     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2986     getContext().forEachMultiversionedFunctionVersion(
2987         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2988           GlobalDecl CurGD{
2989               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2990           StringRef MangledName = getMangledName(CurGD);
2991           llvm::Constant *Func = GetGlobalValue(MangledName);
2992           if (!Func) {
2993             if (CurFD->isDefined()) {
2994               EmitGlobalFunctionDefinition(CurGD, nullptr);
2995               Func = GetGlobalValue(MangledName);
2996             } else {
2997               const CGFunctionInfo &FI =
2998                   getTypes().arrangeGlobalDeclaration(GD);
2999               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3000               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3001                                        /*DontDefer=*/false, ForDefinition);
3002             }
3003             assert(Func && "This should have just been created");
3004           }
3005 
3006           const auto *TA = CurFD->getAttr<TargetAttr>();
3007           llvm::SmallVector<StringRef, 8> Feats;
3008           TA->getAddedFeatures(Feats);
3009 
3010           Options.emplace_back(cast<llvm::Function>(Func),
3011                                TA->getArchitecture(), Feats);
3012         });
3013 
3014     llvm::Function *ResolverFunc;
3015     const TargetInfo &TI = getTarget();
3016 
3017     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3018       ResolverFunc = cast<llvm::Function>(
3019           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3020       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3021     } else {
3022       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3023     }
3024 
3025     if (supportsCOMDAT())
3026       ResolverFunc->setComdat(
3027           getModule().getOrInsertComdat(ResolverFunc->getName()));
3028 
3029     llvm::stable_sort(
3030         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3031                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3032           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3033         });
3034     CodeGenFunction CGF(*this);
3035     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3036   }
3037 }
3038 
3039 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3040   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3041   assert(FD && "Not a FunctionDecl?");
3042   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3043   assert(DD && "Not a cpu_dispatch Function?");
3044   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3045 
3046   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3047     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3048     DeclTy = getTypes().GetFunctionType(FInfo);
3049   }
3050 
3051   StringRef ResolverName = getMangledName(GD);
3052 
3053   llvm::Type *ResolverType;
3054   GlobalDecl ResolverGD;
3055   if (getTarget().supportsIFunc())
3056     ResolverType = llvm::FunctionType::get(
3057         llvm::PointerType::get(DeclTy,
3058                                Context.getTargetAddressSpace(FD->getType())),
3059         false);
3060   else {
3061     ResolverType = DeclTy;
3062     ResolverGD = GD;
3063   }
3064 
3065   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3066       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3067   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3068   if (supportsCOMDAT())
3069     ResolverFunc->setComdat(
3070         getModule().getOrInsertComdat(ResolverFunc->getName()));
3071 
3072   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3073   const TargetInfo &Target = getTarget();
3074   unsigned Index = 0;
3075   for (const IdentifierInfo *II : DD->cpus()) {
3076     // Get the name of the target function so we can look it up/create it.
3077     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3078                               getCPUSpecificMangling(*this, II->getName());
3079 
3080     llvm::Constant *Func = GetGlobalValue(MangledName);
3081 
3082     if (!Func) {
3083       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3084       if (ExistingDecl.getDecl() &&
3085           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3086         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3087         Func = GetGlobalValue(MangledName);
3088       } else {
3089         if (!ExistingDecl.getDecl())
3090           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3091 
3092       Func = GetOrCreateLLVMFunction(
3093           MangledName, DeclTy, ExistingDecl,
3094           /*ForVTable=*/false, /*DontDefer=*/true,
3095           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3096       }
3097     }
3098 
3099     llvm::SmallVector<StringRef, 32> Features;
3100     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3101     llvm::transform(Features, Features.begin(),
3102                     [](StringRef Str) { return Str.substr(1); });
3103     Features.erase(std::remove_if(
3104         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3105           return !Target.validateCpuSupports(Feat);
3106         }), Features.end());
3107     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3108     ++Index;
3109   }
3110 
3111   llvm::sort(
3112       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3113                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3114         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3115                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3116       });
3117 
3118   // If the list contains multiple 'default' versions, such as when it contains
3119   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3120   // always run on at least a 'pentium'). We do this by deleting the 'least
3121   // advanced' (read, lowest mangling letter).
3122   while (Options.size() > 1 &&
3123          CodeGenFunction::GetX86CpuSupportsMask(
3124              (Options.end() - 2)->Conditions.Features) == 0) {
3125     StringRef LHSName = (Options.end() - 2)->Function->getName();
3126     StringRef RHSName = (Options.end() - 1)->Function->getName();
3127     if (LHSName.compare(RHSName) < 0)
3128       Options.erase(Options.end() - 2);
3129     else
3130       Options.erase(Options.end() - 1);
3131   }
3132 
3133   CodeGenFunction CGF(*this);
3134   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3135 
3136   if (getTarget().supportsIFunc()) {
3137     std::string AliasName = getMangledNameImpl(
3138         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3139     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3140     if (!AliasFunc) {
3141       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3142           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3143           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3144       auto *GA = llvm::GlobalAlias::create(
3145          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3146       GA->setLinkage(llvm::Function::WeakODRLinkage);
3147       SetCommonAttributes(GD, GA);
3148     }
3149   }
3150 }
3151 
3152 /// If a dispatcher for the specified mangled name is not in the module, create
3153 /// and return an llvm Function with the specified type.
3154 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3155     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3156   std::string MangledName =
3157       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3158 
3159   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3160   // a separate resolver).
3161   std::string ResolverName = MangledName;
3162   if (getTarget().supportsIFunc())
3163     ResolverName += ".ifunc";
3164   else if (FD->isTargetMultiVersion())
3165     ResolverName += ".resolver";
3166 
3167   // If this already exists, just return that one.
3168   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3169     return ResolverGV;
3170 
3171   // Since this is the first time we've created this IFunc, make sure
3172   // that we put this multiversioned function into the list to be
3173   // replaced later if necessary (target multiversioning only).
3174   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3175     MultiVersionFuncs.push_back(GD);
3176 
3177   if (getTarget().supportsIFunc()) {
3178     llvm::Type *ResolverType = llvm::FunctionType::get(
3179         llvm::PointerType::get(
3180             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3181         false);
3182     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3183         MangledName + ".resolver", ResolverType, GlobalDecl{},
3184         /*ForVTable=*/false);
3185     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3186         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3187     GIF->setName(ResolverName);
3188     SetCommonAttributes(FD, GIF);
3189 
3190     return GIF;
3191   }
3192 
3193   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3194       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3195   assert(isa<llvm::GlobalValue>(Resolver) &&
3196          "Resolver should be created for the first time");
3197   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3198   return Resolver;
3199 }
3200 
3201 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3202 /// module, create and return an llvm Function with the specified type. If there
3203 /// is something in the module with the specified name, return it potentially
3204 /// bitcasted to the right type.
3205 ///
3206 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3207 /// to set the attributes on the function when it is first created.
3208 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3209     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3210     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3211     ForDefinition_t IsForDefinition) {
3212   const Decl *D = GD.getDecl();
3213 
3214   // Any attempts to use a MultiVersion function should result in retrieving
3215   // the iFunc instead. Name Mangling will handle the rest of the changes.
3216   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3217     // For the device mark the function as one that should be emitted.
3218     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3219         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3220         !DontDefer && !IsForDefinition) {
3221       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3222         GlobalDecl GDDef;
3223         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3224           GDDef = GlobalDecl(CD, GD.getCtorType());
3225         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3226           GDDef = GlobalDecl(DD, GD.getDtorType());
3227         else
3228           GDDef = GlobalDecl(FDDef);
3229         EmitGlobal(GDDef);
3230       }
3231     }
3232 
3233     if (FD->isMultiVersion()) {
3234       if (FD->hasAttr<TargetAttr>())
3235         UpdateMultiVersionNames(GD, FD);
3236       if (!IsForDefinition)
3237         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3238     }
3239   }
3240 
3241   // Lookup the entry, lazily creating it if necessary.
3242   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3243   if (Entry) {
3244     if (WeakRefReferences.erase(Entry)) {
3245       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3246       if (FD && !FD->hasAttr<WeakAttr>())
3247         Entry->setLinkage(llvm::Function::ExternalLinkage);
3248     }
3249 
3250     // Handle dropped DLL attributes.
3251     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3252       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3253       setDSOLocal(Entry);
3254     }
3255 
3256     // If there are two attempts to define the same mangled name, issue an
3257     // error.
3258     if (IsForDefinition && !Entry->isDeclaration()) {
3259       GlobalDecl OtherGD;
3260       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3261       // to make sure that we issue an error only once.
3262       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3263           (GD.getCanonicalDecl().getDecl() !=
3264            OtherGD.getCanonicalDecl().getDecl()) &&
3265           DiagnosedConflictingDefinitions.insert(GD).second) {
3266         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3267             << MangledName;
3268         getDiags().Report(OtherGD.getDecl()->getLocation(),
3269                           diag::note_previous_definition);
3270       }
3271     }
3272 
3273     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3274         (Entry->getValueType() == Ty)) {
3275       return Entry;
3276     }
3277 
3278     // Make sure the result is of the correct type.
3279     // (If function is requested for a definition, we always need to create a new
3280     // function, not just return a bitcast.)
3281     if (!IsForDefinition)
3282       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3283   }
3284 
3285   // This function doesn't have a complete type (for example, the return
3286   // type is an incomplete struct). Use a fake type instead, and make
3287   // sure not to try to set attributes.
3288   bool IsIncompleteFunction = false;
3289 
3290   llvm::FunctionType *FTy;
3291   if (isa<llvm::FunctionType>(Ty)) {
3292     FTy = cast<llvm::FunctionType>(Ty);
3293   } else {
3294     FTy = llvm::FunctionType::get(VoidTy, false);
3295     IsIncompleteFunction = true;
3296   }
3297 
3298   llvm::Function *F =
3299       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3300                              Entry ? StringRef() : MangledName, &getModule());
3301 
3302   // If we already created a function with the same mangled name (but different
3303   // type) before, take its name and add it to the list of functions to be
3304   // replaced with F at the end of CodeGen.
3305   //
3306   // This happens if there is a prototype for a function (e.g. "int f()") and
3307   // then a definition of a different type (e.g. "int f(int x)").
3308   if (Entry) {
3309     F->takeName(Entry);
3310 
3311     // This might be an implementation of a function without a prototype, in
3312     // which case, try to do special replacement of calls which match the new
3313     // prototype.  The really key thing here is that we also potentially drop
3314     // arguments from the call site so as to make a direct call, which makes the
3315     // inliner happier and suppresses a number of optimizer warnings (!) about
3316     // dropping arguments.
3317     if (!Entry->use_empty()) {
3318       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3319       Entry->removeDeadConstantUsers();
3320     }
3321 
3322     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3323         F, Entry->getValueType()->getPointerTo());
3324     addGlobalValReplacement(Entry, BC);
3325   }
3326 
3327   assert(F->getName() == MangledName && "name was uniqued!");
3328   if (D)
3329     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3330   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3331     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3332     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3333   }
3334 
3335   if (!DontDefer) {
3336     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3337     // each other bottoming out with the base dtor.  Therefore we emit non-base
3338     // dtors on usage, even if there is no dtor definition in the TU.
3339     if (D && isa<CXXDestructorDecl>(D) &&
3340         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3341                                            GD.getDtorType()))
3342       addDeferredDeclToEmit(GD);
3343 
3344     // This is the first use or definition of a mangled name.  If there is a
3345     // deferred decl with this name, remember that we need to emit it at the end
3346     // of the file.
3347     auto DDI = DeferredDecls.find(MangledName);
3348     if (DDI != DeferredDecls.end()) {
3349       // Move the potentially referenced deferred decl to the
3350       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3351       // don't need it anymore).
3352       addDeferredDeclToEmit(DDI->second);
3353       DeferredDecls.erase(DDI);
3354 
3355       // Otherwise, there are cases we have to worry about where we're
3356       // using a declaration for which we must emit a definition but where
3357       // we might not find a top-level definition:
3358       //   - member functions defined inline in their classes
3359       //   - friend functions defined inline in some class
3360       //   - special member functions with implicit definitions
3361       // If we ever change our AST traversal to walk into class methods,
3362       // this will be unnecessary.
3363       //
3364       // We also don't emit a definition for a function if it's going to be an
3365       // entry in a vtable, unless it's already marked as used.
3366     } else if (getLangOpts().CPlusPlus && D) {
3367       // Look for a declaration that's lexically in a record.
3368       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3369            FD = FD->getPreviousDecl()) {
3370         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3371           if (FD->doesThisDeclarationHaveABody()) {
3372             addDeferredDeclToEmit(GD.getWithDecl(FD));
3373             break;
3374           }
3375         }
3376       }
3377     }
3378   }
3379 
3380   // Make sure the result is of the requested type.
3381   if (!IsIncompleteFunction) {
3382     assert(F->getFunctionType() == Ty);
3383     return F;
3384   }
3385 
3386   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3387   return llvm::ConstantExpr::getBitCast(F, PTy);
3388 }
3389 
3390 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3391 /// non-null, then this function will use the specified type if it has to
3392 /// create it (this occurs when we see a definition of the function).
3393 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3394                                                  llvm::Type *Ty,
3395                                                  bool ForVTable,
3396                                                  bool DontDefer,
3397                                               ForDefinition_t IsForDefinition) {
3398   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3399          "consteval function should never be emitted");
3400   // If there was no specific requested type, just convert it now.
3401   if (!Ty) {
3402     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3403     Ty = getTypes().ConvertType(FD->getType());
3404   }
3405 
3406   // Devirtualized destructor calls may come through here instead of via
3407   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3408   // of the complete destructor when necessary.
3409   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3410     if (getTarget().getCXXABI().isMicrosoft() &&
3411         GD.getDtorType() == Dtor_Complete &&
3412         DD->getParent()->getNumVBases() == 0)
3413       GD = GlobalDecl(DD, Dtor_Base);
3414   }
3415 
3416   StringRef MangledName = getMangledName(GD);
3417   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3418                                  /*IsThunk=*/false, llvm::AttributeList(),
3419                                  IsForDefinition);
3420 }
3421 
3422 static const FunctionDecl *
3423 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3424   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3425   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3426 
3427   IdentifierInfo &CII = C.Idents.get(Name);
3428   for (const auto &Result : DC->lookup(&CII))
3429     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3430       return FD;
3431 
3432   if (!C.getLangOpts().CPlusPlus)
3433     return nullptr;
3434 
3435   // Demangle the premangled name from getTerminateFn()
3436   IdentifierInfo &CXXII =
3437       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3438           ? C.Idents.get("terminate")
3439           : C.Idents.get(Name);
3440 
3441   for (const auto &N : {"__cxxabiv1", "std"}) {
3442     IdentifierInfo &NS = C.Idents.get(N);
3443     for (const auto &Result : DC->lookup(&NS)) {
3444       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3445       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3446         for (const auto &Result : LSD->lookup(&NS))
3447           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3448             break;
3449 
3450       if (ND)
3451         for (const auto &Result : ND->lookup(&CXXII))
3452           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3453             return FD;
3454     }
3455   }
3456 
3457   return nullptr;
3458 }
3459 
3460 /// CreateRuntimeFunction - Create a new runtime function with the specified
3461 /// type and name.
3462 llvm::FunctionCallee
3463 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3464                                      llvm::AttributeList ExtraAttrs, bool Local,
3465                                      bool AssumeConvergent) {
3466   if (AssumeConvergent) {
3467     ExtraAttrs =
3468         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3469                                 llvm::Attribute::Convergent);
3470   }
3471 
3472   llvm::Constant *C =
3473       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3474                               /*DontDefer=*/false, /*IsThunk=*/false,
3475                               ExtraAttrs);
3476 
3477   if (auto *F = dyn_cast<llvm::Function>(C)) {
3478     if (F->empty()) {
3479       F->setCallingConv(getRuntimeCC());
3480 
3481       // In Windows Itanium environments, try to mark runtime functions
3482       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3483       // will link their standard library statically or dynamically. Marking
3484       // functions imported when they are not imported can cause linker errors
3485       // and warnings.
3486       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3487           !getCodeGenOpts().LTOVisibilityPublicStd) {
3488         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3489         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3490           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3491           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3492         }
3493       }
3494       setDSOLocal(F);
3495     }
3496   }
3497 
3498   return {FTy, C};
3499 }
3500 
3501 /// isTypeConstant - Determine whether an object of this type can be emitted
3502 /// as a constant.
3503 ///
3504 /// If ExcludeCtor is true, the duration when the object's constructor runs
3505 /// will not be considered. The caller will need to verify that the object is
3506 /// not written to during its construction.
3507 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3508   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3509     return false;
3510 
3511   if (Context.getLangOpts().CPlusPlus) {
3512     if (const CXXRecordDecl *Record
3513           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3514       return ExcludeCtor && !Record->hasMutableFields() &&
3515              Record->hasTrivialDestructor();
3516   }
3517 
3518   return true;
3519 }
3520 
3521 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3522 /// create and return an llvm GlobalVariable with the specified type.  If there
3523 /// is something in the module with the specified name, return it potentially
3524 /// bitcasted to the right type.
3525 ///
3526 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3527 /// to set the attributes on the global when it is first created.
3528 ///
3529 /// If IsForDefinition is true, it is guaranteed that an actual global with
3530 /// type Ty will be returned, not conversion of a variable with the same
3531 /// mangled name but some other type.
3532 llvm::Constant *
3533 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3534                                      llvm::PointerType *Ty,
3535                                      const VarDecl *D,
3536                                      ForDefinition_t IsForDefinition) {
3537   // Lookup the entry, lazily creating it if necessary.
3538   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3539   if (Entry) {
3540     if (WeakRefReferences.erase(Entry)) {
3541       if (D && !D->hasAttr<WeakAttr>())
3542         Entry->setLinkage(llvm::Function::ExternalLinkage);
3543     }
3544 
3545     // Handle dropped DLL attributes.
3546     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3547       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3548 
3549     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3550       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3551 
3552     if (Entry->getType() == Ty)
3553       return Entry;
3554 
3555     // If there are two attempts to define the same mangled name, issue an
3556     // error.
3557     if (IsForDefinition && !Entry->isDeclaration()) {
3558       GlobalDecl OtherGD;
3559       const VarDecl *OtherD;
3560 
3561       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3562       // to make sure that we issue an error only once.
3563       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3564           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3565           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3566           OtherD->hasInit() &&
3567           DiagnosedConflictingDefinitions.insert(D).second) {
3568         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3569             << MangledName;
3570         getDiags().Report(OtherGD.getDecl()->getLocation(),
3571                           diag::note_previous_definition);
3572       }
3573     }
3574 
3575     // Make sure the result is of the correct type.
3576     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3577       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3578 
3579     // (If global is requested for a definition, we always need to create a new
3580     // global, not just return a bitcast.)
3581     if (!IsForDefinition)
3582       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3583   }
3584 
3585   auto AddrSpace = GetGlobalVarAddressSpace(D);
3586   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3587 
3588   auto *GV = new llvm::GlobalVariable(
3589       getModule(), Ty->getElementType(), false,
3590       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3591       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3592 
3593   // If we already created a global with the same mangled name (but different
3594   // type) before, take its name and remove it from its parent.
3595   if (Entry) {
3596     GV->takeName(Entry);
3597 
3598     if (!Entry->use_empty()) {
3599       llvm::Constant *NewPtrForOldDecl =
3600           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3601       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3602     }
3603 
3604     Entry->eraseFromParent();
3605   }
3606 
3607   // This is the first use or definition of a mangled name.  If there is a
3608   // deferred decl with this name, remember that we need to emit it at the end
3609   // of the file.
3610   auto DDI = DeferredDecls.find(MangledName);
3611   if (DDI != DeferredDecls.end()) {
3612     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3613     // list, and remove it from DeferredDecls (since we don't need it anymore).
3614     addDeferredDeclToEmit(DDI->second);
3615     DeferredDecls.erase(DDI);
3616   }
3617 
3618   // Handle things which are present even on external declarations.
3619   if (D) {
3620     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3621       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3622 
3623     // FIXME: This code is overly simple and should be merged with other global
3624     // handling.
3625     GV->setConstant(isTypeConstant(D->getType(), false));
3626 
3627     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3628 
3629     setLinkageForGV(GV, D);
3630 
3631     if (D->getTLSKind()) {
3632       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3633         CXXThreadLocals.push_back(D);
3634       setTLSMode(GV, *D);
3635     }
3636 
3637     setGVProperties(GV, D);
3638 
3639     // If required by the ABI, treat declarations of static data members with
3640     // inline initializers as definitions.
3641     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3642       EmitGlobalVarDefinition(D);
3643     }
3644 
3645     // Emit section information for extern variables.
3646     if (D->hasExternalStorage()) {
3647       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3648         GV->setSection(SA->getName());
3649     }
3650 
3651     // Handle XCore specific ABI requirements.
3652     if (getTriple().getArch() == llvm::Triple::xcore &&
3653         D->getLanguageLinkage() == CLanguageLinkage &&
3654         D->getType().isConstant(Context) &&
3655         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3656       GV->setSection(".cp.rodata");
3657 
3658     // Check if we a have a const declaration with an initializer, we may be
3659     // able to emit it as available_externally to expose it's value to the
3660     // optimizer.
3661     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3662         D->getType().isConstQualified() && !GV->hasInitializer() &&
3663         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3664       const auto *Record =
3665           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3666       bool HasMutableFields = Record && Record->hasMutableFields();
3667       if (!HasMutableFields) {
3668         const VarDecl *InitDecl;
3669         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3670         if (InitExpr) {
3671           ConstantEmitter emitter(*this);
3672           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3673           if (Init) {
3674             auto *InitType = Init->getType();
3675             if (GV->getValueType() != InitType) {
3676               // The type of the initializer does not match the definition.
3677               // This happens when an initializer has a different type from
3678               // the type of the global (because of padding at the end of a
3679               // structure for instance).
3680               GV->setName(StringRef());
3681               // Make a new global with the correct type, this is now guaranteed
3682               // to work.
3683               auto *NewGV = cast<llvm::GlobalVariable>(
3684                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3685                       ->stripPointerCasts());
3686 
3687               // Erase the old global, since it is no longer used.
3688               GV->eraseFromParent();
3689               GV = NewGV;
3690             } else {
3691               GV->setInitializer(Init);
3692               GV->setConstant(true);
3693               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3694             }
3695             emitter.finalize(GV);
3696           }
3697         }
3698       }
3699     }
3700   }
3701 
3702   if (GV->isDeclaration())
3703     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3704 
3705   LangAS ExpectedAS =
3706       D ? D->getType().getAddressSpace()
3707         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3708   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3709          Ty->getPointerAddressSpace());
3710   if (AddrSpace != ExpectedAS)
3711     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3712                                                        ExpectedAS, Ty);
3713 
3714   return GV;
3715 }
3716 
3717 llvm::Constant *
3718 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3719   const Decl *D = GD.getDecl();
3720 
3721   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3722     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3723                                 /*DontDefer=*/false, IsForDefinition);
3724 
3725   if (isa<CXXMethodDecl>(D)) {
3726     auto FInfo =
3727         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3728     auto Ty = getTypes().GetFunctionType(*FInfo);
3729     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3730                              IsForDefinition);
3731   }
3732 
3733   if (isa<FunctionDecl>(D)) {
3734     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3735     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3736     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3737                              IsForDefinition);
3738   }
3739 
3740   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3741 }
3742 
3743 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3744     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3745     unsigned Alignment) {
3746   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3747   llvm::GlobalVariable *OldGV = nullptr;
3748 
3749   if (GV) {
3750     // Check if the variable has the right type.
3751     if (GV->getValueType() == Ty)
3752       return GV;
3753 
3754     // Because C++ name mangling, the only way we can end up with an already
3755     // existing global with the same name is if it has been declared extern "C".
3756     assert(GV->isDeclaration() && "Declaration has wrong type!");
3757     OldGV = GV;
3758   }
3759 
3760   // Create a new variable.
3761   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3762                                 Linkage, nullptr, Name);
3763 
3764   if (OldGV) {
3765     // Replace occurrences of the old variable if needed.
3766     GV->takeName(OldGV);
3767 
3768     if (!OldGV->use_empty()) {
3769       llvm::Constant *NewPtrForOldDecl =
3770       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3771       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3772     }
3773 
3774     OldGV->eraseFromParent();
3775   }
3776 
3777   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3778       !GV->hasAvailableExternallyLinkage())
3779     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3780 
3781   GV->setAlignment(llvm::MaybeAlign(Alignment));
3782 
3783   return GV;
3784 }
3785 
3786 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3787 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3788 /// then it will be created with the specified type instead of whatever the
3789 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3790 /// that an actual global with type Ty will be returned, not conversion of a
3791 /// variable with the same mangled name but some other type.
3792 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3793                                                   llvm::Type *Ty,
3794                                            ForDefinition_t IsForDefinition) {
3795   assert(D->hasGlobalStorage() && "Not a global variable");
3796   QualType ASTTy = D->getType();
3797   if (!Ty)
3798     Ty = getTypes().ConvertTypeForMem(ASTTy);
3799 
3800   llvm::PointerType *PTy =
3801     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3802 
3803   StringRef MangledName = getMangledName(D);
3804   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3805 }
3806 
3807 /// CreateRuntimeVariable - Create a new runtime global variable with the
3808 /// specified type and name.
3809 llvm::Constant *
3810 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3811                                      StringRef Name) {
3812   auto PtrTy =
3813       getContext().getLangOpts().OpenCL
3814           ? llvm::PointerType::get(
3815                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3816           : llvm::PointerType::getUnqual(Ty);
3817   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3818   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3819   return Ret;
3820 }
3821 
3822 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3823   assert(!D->getInit() && "Cannot emit definite definitions here!");
3824 
3825   StringRef MangledName = getMangledName(D);
3826   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3827 
3828   // We already have a definition, not declaration, with the same mangled name.
3829   // Emitting of declaration is not required (and actually overwrites emitted
3830   // definition).
3831   if (GV && !GV->isDeclaration())
3832     return;
3833 
3834   // If we have not seen a reference to this variable yet, place it into the
3835   // deferred declarations table to be emitted if needed later.
3836   if (!MustBeEmitted(D) && !GV) {
3837       DeferredDecls[MangledName] = D;
3838       return;
3839   }
3840 
3841   // The tentative definition is the only definition.
3842   EmitGlobalVarDefinition(D);
3843 }
3844 
3845 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3846   EmitExternalVarDeclaration(D);
3847 }
3848 
3849 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3850   return Context.toCharUnitsFromBits(
3851       getDataLayout().getTypeStoreSizeInBits(Ty));
3852 }
3853 
3854 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3855   LangAS AddrSpace = LangAS::Default;
3856   if (LangOpts.OpenCL) {
3857     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3858     assert(AddrSpace == LangAS::opencl_global ||
3859            AddrSpace == LangAS::opencl_global_device ||
3860            AddrSpace == LangAS::opencl_global_host ||
3861            AddrSpace == LangAS::opencl_constant ||
3862            AddrSpace == LangAS::opencl_local ||
3863            AddrSpace >= LangAS::FirstTargetAddressSpace);
3864     return AddrSpace;
3865   }
3866 
3867   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3868     if (D && D->hasAttr<CUDAConstantAttr>())
3869       return LangAS::cuda_constant;
3870     else if (D && D->hasAttr<CUDASharedAttr>())
3871       return LangAS::cuda_shared;
3872     else if (D && D->hasAttr<CUDADeviceAttr>())
3873       return LangAS::cuda_device;
3874     else if (D && D->getType().isConstQualified())
3875       return LangAS::cuda_constant;
3876     else
3877       return LangAS::cuda_device;
3878   }
3879 
3880   if (LangOpts.OpenMP) {
3881     LangAS AS;
3882     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3883       return AS;
3884   }
3885   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3886 }
3887 
3888 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3889   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3890   if (LangOpts.OpenCL)
3891     return LangAS::opencl_constant;
3892   if (auto AS = getTarget().getConstantAddressSpace())
3893     return AS.getValue();
3894   return LangAS::Default;
3895 }
3896 
3897 // In address space agnostic languages, string literals are in default address
3898 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3899 // emitted in constant address space in LLVM IR. To be consistent with other
3900 // parts of AST, string literal global variables in constant address space
3901 // need to be casted to default address space before being put into address
3902 // map and referenced by other part of CodeGen.
3903 // In OpenCL, string literals are in constant address space in AST, therefore
3904 // they should not be casted to default address space.
3905 static llvm::Constant *
3906 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3907                                        llvm::GlobalVariable *GV) {
3908   llvm::Constant *Cast = GV;
3909   if (!CGM.getLangOpts().OpenCL) {
3910     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3911       if (AS != LangAS::Default)
3912         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3913             CGM, GV, AS.getValue(), LangAS::Default,
3914             GV->getValueType()->getPointerTo(
3915                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3916     }
3917   }
3918   return Cast;
3919 }
3920 
3921 template<typename SomeDecl>
3922 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3923                                                llvm::GlobalValue *GV) {
3924   if (!getLangOpts().CPlusPlus)
3925     return;
3926 
3927   // Must have 'used' attribute, or else inline assembly can't rely on
3928   // the name existing.
3929   if (!D->template hasAttr<UsedAttr>())
3930     return;
3931 
3932   // Must have internal linkage and an ordinary name.
3933   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3934     return;
3935 
3936   // Must be in an extern "C" context. Entities declared directly within
3937   // a record are not extern "C" even if the record is in such a context.
3938   const SomeDecl *First = D->getFirstDecl();
3939   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3940     return;
3941 
3942   // OK, this is an internal linkage entity inside an extern "C" linkage
3943   // specification. Make a note of that so we can give it the "expected"
3944   // mangled name if nothing else is using that name.
3945   std::pair<StaticExternCMap::iterator, bool> R =
3946       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3947 
3948   // If we have multiple internal linkage entities with the same name
3949   // in extern "C" regions, none of them gets that name.
3950   if (!R.second)
3951     R.first->second = nullptr;
3952 }
3953 
3954 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3955   if (!CGM.supportsCOMDAT())
3956     return false;
3957 
3958   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3959   // them being "merged" by the COMDAT Folding linker optimization.
3960   if (D.hasAttr<CUDAGlobalAttr>())
3961     return false;
3962 
3963   if (D.hasAttr<SelectAnyAttr>())
3964     return true;
3965 
3966   GVALinkage Linkage;
3967   if (auto *VD = dyn_cast<VarDecl>(&D))
3968     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3969   else
3970     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3971 
3972   switch (Linkage) {
3973   case GVA_Internal:
3974   case GVA_AvailableExternally:
3975   case GVA_StrongExternal:
3976     return false;
3977   case GVA_DiscardableODR:
3978   case GVA_StrongODR:
3979     return true;
3980   }
3981   llvm_unreachable("No such linkage");
3982 }
3983 
3984 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3985                                           llvm::GlobalObject &GO) {
3986   if (!shouldBeInCOMDAT(*this, D))
3987     return;
3988   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3989 }
3990 
3991 /// Pass IsTentative as true if you want to create a tentative definition.
3992 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3993                                             bool IsTentative) {
3994   // OpenCL global variables of sampler type are translated to function calls,
3995   // therefore no need to be translated.
3996   QualType ASTTy = D->getType();
3997   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3998     return;
3999 
4000   // If this is OpenMP device, check if it is legal to emit this global
4001   // normally.
4002   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4003       OpenMPRuntime->emitTargetGlobalVariable(D))
4004     return;
4005 
4006   llvm::Constant *Init = nullptr;
4007   bool NeedsGlobalCtor = false;
4008   bool NeedsGlobalDtor =
4009       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4010 
4011   const VarDecl *InitDecl;
4012   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4013 
4014   Optional<ConstantEmitter> emitter;
4015 
4016   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4017   // as part of their declaration."  Sema has already checked for
4018   // error cases, so we just need to set Init to UndefValue.
4019   bool IsCUDASharedVar =
4020       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4021   // Shadows of initialized device-side global variables are also left
4022   // undefined.
4023   bool IsCUDAShadowVar =
4024       !getLangOpts().CUDAIsDevice &&
4025       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4026        D->hasAttr<CUDASharedAttr>());
4027   bool IsCUDADeviceShadowVar =
4028       getLangOpts().CUDAIsDevice &&
4029       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4030        D->getType()->isCUDADeviceBuiltinTextureType());
4031   // HIP pinned shadow of initialized host-side global variables are also
4032   // left undefined.
4033   if (getLangOpts().CUDA &&
4034       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4035     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4036   else if (D->hasAttr<LoaderUninitializedAttr>())
4037     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4038   else if (!InitExpr) {
4039     // This is a tentative definition; tentative definitions are
4040     // implicitly initialized with { 0 }.
4041     //
4042     // Note that tentative definitions are only emitted at the end of
4043     // a translation unit, so they should never have incomplete
4044     // type. In addition, EmitTentativeDefinition makes sure that we
4045     // never attempt to emit a tentative definition if a real one
4046     // exists. A use may still exists, however, so we still may need
4047     // to do a RAUW.
4048     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4049     Init = EmitNullConstant(D->getType());
4050   } else {
4051     initializedGlobalDecl = GlobalDecl(D);
4052     emitter.emplace(*this);
4053     Init = emitter->tryEmitForInitializer(*InitDecl);
4054 
4055     if (!Init) {
4056       QualType T = InitExpr->getType();
4057       if (D->getType()->isReferenceType())
4058         T = D->getType();
4059 
4060       if (getLangOpts().CPlusPlus) {
4061         Init = EmitNullConstant(T);
4062         NeedsGlobalCtor = true;
4063       } else {
4064         ErrorUnsupported(D, "static initializer");
4065         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4066       }
4067     } else {
4068       // We don't need an initializer, so remove the entry for the delayed
4069       // initializer position (just in case this entry was delayed) if we
4070       // also don't need to register a destructor.
4071       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4072         DelayedCXXInitPosition.erase(D);
4073     }
4074   }
4075 
4076   llvm::Type* InitType = Init->getType();
4077   llvm::Constant *Entry =
4078       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4079 
4080   // Strip off pointer casts if we got them.
4081   Entry = Entry->stripPointerCasts();
4082 
4083   // Entry is now either a Function or GlobalVariable.
4084   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4085 
4086   // We have a definition after a declaration with the wrong type.
4087   // We must make a new GlobalVariable* and update everything that used OldGV
4088   // (a declaration or tentative definition) with the new GlobalVariable*
4089   // (which will be a definition).
4090   //
4091   // This happens if there is a prototype for a global (e.g.
4092   // "extern int x[];") and then a definition of a different type (e.g.
4093   // "int x[10];"). This also happens when an initializer has a different type
4094   // from the type of the global (this happens with unions).
4095   if (!GV || GV->getValueType() != InitType ||
4096       GV->getType()->getAddressSpace() !=
4097           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4098 
4099     // Move the old entry aside so that we'll create a new one.
4100     Entry->setName(StringRef());
4101 
4102     // Make a new global with the correct type, this is now guaranteed to work.
4103     GV = cast<llvm::GlobalVariable>(
4104         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4105             ->stripPointerCasts());
4106 
4107     // Replace all uses of the old global with the new global
4108     llvm::Constant *NewPtrForOldDecl =
4109         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4110     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4111 
4112     // Erase the old global, since it is no longer used.
4113     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4114   }
4115 
4116   MaybeHandleStaticInExternC(D, GV);
4117 
4118   if (D->hasAttr<AnnotateAttr>())
4119     AddGlobalAnnotations(D, GV);
4120 
4121   // Set the llvm linkage type as appropriate.
4122   llvm::GlobalValue::LinkageTypes Linkage =
4123       getLLVMLinkageVarDefinition(D, GV->isConstant());
4124 
4125   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4126   // the device. [...]"
4127   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4128   // __device__, declares a variable that: [...]
4129   // Is accessible from all the threads within the grid and from the host
4130   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4131   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4132   if (GV && LangOpts.CUDA) {
4133     if (LangOpts.CUDAIsDevice) {
4134       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4135           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4136         GV->setExternallyInitialized(true);
4137     } else {
4138       // Host-side shadows of external declarations of device-side
4139       // global variables become internal definitions. These have to
4140       // be internal in order to prevent name conflicts with global
4141       // host variables with the same name in a different TUs.
4142       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4143         Linkage = llvm::GlobalValue::InternalLinkage;
4144         // Shadow variables and their properties must be registered with CUDA
4145         // runtime. Skip Extern global variables, which will be registered in
4146         // the TU where they are defined.
4147         //
4148         // Don't register a C++17 inline variable. The local symbol can be
4149         // discarded and referencing a discarded local symbol from outside the
4150         // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4151         // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4152         if (!D->hasExternalStorage() && !D->isInline())
4153           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4154                                              D->hasAttr<CUDAConstantAttr>());
4155       } else if (D->hasAttr<CUDASharedAttr>()) {
4156         // __shared__ variables are odd. Shadows do get created, but
4157         // they are not registered with the CUDA runtime, so they
4158         // can't really be used to access their device-side
4159         // counterparts. It's not clear yet whether it's nvcc's bug or
4160         // a feature, but we've got to do the same for compatibility.
4161         Linkage = llvm::GlobalValue::InternalLinkage;
4162       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4163                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4164         // Builtin surfaces and textures and their template arguments are
4165         // also registered with CUDA runtime.
4166         Linkage = llvm::GlobalValue::InternalLinkage;
4167         const ClassTemplateSpecializationDecl *TD =
4168             cast<ClassTemplateSpecializationDecl>(
4169                 D->getType()->getAs<RecordType>()->getDecl());
4170         const TemplateArgumentList &Args = TD->getTemplateArgs();
4171         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4172           assert(Args.size() == 2 &&
4173                  "Unexpected number of template arguments of CUDA device "
4174                  "builtin surface type.");
4175           auto SurfType = Args[1].getAsIntegral();
4176           if (!D->hasExternalStorage())
4177             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4178                                                 SurfType.getSExtValue());
4179         } else {
4180           assert(Args.size() == 3 &&
4181                  "Unexpected number of template arguments of CUDA device "
4182                  "builtin texture type.");
4183           auto TexType = Args[1].getAsIntegral();
4184           auto Normalized = Args[2].getAsIntegral();
4185           if (!D->hasExternalStorage())
4186             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4187                                                TexType.getSExtValue(),
4188                                                Normalized.getZExtValue());
4189         }
4190       }
4191     }
4192   }
4193 
4194   GV->setInitializer(Init);
4195   if (emitter)
4196     emitter->finalize(GV);
4197 
4198   // If it is safe to mark the global 'constant', do so now.
4199   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4200                   isTypeConstant(D->getType(), true));
4201 
4202   // If it is in a read-only section, mark it 'constant'.
4203   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4204     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4205     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4206       GV->setConstant(true);
4207   }
4208 
4209   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4210 
4211   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4212   // function is only defined alongside the variable, not also alongside
4213   // callers. Normally, all accesses to a thread_local go through the
4214   // thread-wrapper in order to ensure initialization has occurred, underlying
4215   // variable will never be used other than the thread-wrapper, so it can be
4216   // converted to internal linkage.
4217   //
4218   // However, if the variable has the 'constinit' attribute, it _can_ be
4219   // referenced directly, without calling the thread-wrapper, so the linkage
4220   // must not be changed.
4221   //
4222   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4223   // weak or linkonce, the de-duplication semantics are important to preserve,
4224   // so we don't change the linkage.
4225   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4226       Linkage == llvm::GlobalValue::ExternalLinkage &&
4227       Context.getTargetInfo().getTriple().isOSDarwin() &&
4228       !D->hasAttr<ConstInitAttr>())
4229     Linkage = llvm::GlobalValue::InternalLinkage;
4230 
4231   GV->setLinkage(Linkage);
4232   if (D->hasAttr<DLLImportAttr>())
4233     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4234   else if (D->hasAttr<DLLExportAttr>())
4235     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4236   else
4237     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4238 
4239   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4240     // common vars aren't constant even if declared const.
4241     GV->setConstant(false);
4242     // Tentative definition of global variables may be initialized with
4243     // non-zero null pointers. In this case they should have weak linkage
4244     // since common linkage must have zero initializer and must not have
4245     // explicit section therefore cannot have non-zero initial value.
4246     if (!GV->getInitializer()->isNullValue())
4247       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4248   }
4249 
4250   setNonAliasAttributes(D, GV);
4251 
4252   if (D->getTLSKind() && !GV->isThreadLocal()) {
4253     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4254       CXXThreadLocals.push_back(D);
4255     setTLSMode(GV, *D);
4256   }
4257 
4258   maybeSetTrivialComdat(*D, *GV);
4259 
4260   // Emit the initializer function if necessary.
4261   if (NeedsGlobalCtor || NeedsGlobalDtor)
4262     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4263 
4264   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4265 
4266   // Emit global variable debug information.
4267   if (CGDebugInfo *DI = getModuleDebugInfo())
4268     if (getCodeGenOpts().hasReducedDebugInfo())
4269       DI->EmitGlobalVariable(GV, D);
4270 }
4271 
4272 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4273   if (CGDebugInfo *DI = getModuleDebugInfo())
4274     if (getCodeGenOpts().hasReducedDebugInfo()) {
4275       QualType ASTTy = D->getType();
4276       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4277       llvm::PointerType *PTy =
4278           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4279       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4280       DI->EmitExternalVariable(
4281           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4282     }
4283 }
4284 
4285 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4286                                       CodeGenModule &CGM, const VarDecl *D,
4287                                       bool NoCommon) {
4288   // Don't give variables common linkage if -fno-common was specified unless it
4289   // was overridden by a NoCommon attribute.
4290   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4291     return true;
4292 
4293   // C11 6.9.2/2:
4294   //   A declaration of an identifier for an object that has file scope without
4295   //   an initializer, and without a storage-class specifier or with the
4296   //   storage-class specifier static, constitutes a tentative definition.
4297   if (D->getInit() || D->hasExternalStorage())
4298     return true;
4299 
4300   // A variable cannot be both common and exist in a section.
4301   if (D->hasAttr<SectionAttr>())
4302     return true;
4303 
4304   // A variable cannot be both common and exist in a section.
4305   // We don't try to determine which is the right section in the front-end.
4306   // If no specialized section name is applicable, it will resort to default.
4307   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4308       D->hasAttr<PragmaClangDataSectionAttr>() ||
4309       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4310       D->hasAttr<PragmaClangRodataSectionAttr>())
4311     return true;
4312 
4313   // Thread local vars aren't considered common linkage.
4314   if (D->getTLSKind())
4315     return true;
4316 
4317   // Tentative definitions marked with WeakImportAttr are true definitions.
4318   if (D->hasAttr<WeakImportAttr>())
4319     return true;
4320 
4321   // A variable cannot be both common and exist in a comdat.
4322   if (shouldBeInCOMDAT(CGM, *D))
4323     return true;
4324 
4325   // Declarations with a required alignment do not have common linkage in MSVC
4326   // mode.
4327   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4328     if (D->hasAttr<AlignedAttr>())
4329       return true;
4330     QualType VarType = D->getType();
4331     if (Context.isAlignmentRequired(VarType))
4332       return true;
4333 
4334     if (const auto *RT = VarType->getAs<RecordType>()) {
4335       const RecordDecl *RD = RT->getDecl();
4336       for (const FieldDecl *FD : RD->fields()) {
4337         if (FD->isBitField())
4338           continue;
4339         if (FD->hasAttr<AlignedAttr>())
4340           return true;
4341         if (Context.isAlignmentRequired(FD->getType()))
4342           return true;
4343       }
4344     }
4345   }
4346 
4347   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4348   // common symbols, so symbols with greater alignment requirements cannot be
4349   // common.
4350   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4351   // alignments for common symbols via the aligncomm directive, so this
4352   // restriction only applies to MSVC environments.
4353   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4354       Context.getTypeAlignIfKnown(D->getType()) >
4355           Context.toBits(CharUnits::fromQuantity(32)))
4356     return true;
4357 
4358   return false;
4359 }
4360 
4361 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4362     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4363   if (Linkage == GVA_Internal)
4364     return llvm::Function::InternalLinkage;
4365 
4366   if (D->hasAttr<WeakAttr>()) {
4367     if (IsConstantVariable)
4368       return llvm::GlobalVariable::WeakODRLinkage;
4369     else
4370       return llvm::GlobalVariable::WeakAnyLinkage;
4371   }
4372 
4373   if (const auto *FD = D->getAsFunction())
4374     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4375       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4376 
4377   // We are guaranteed to have a strong definition somewhere else,
4378   // so we can use available_externally linkage.
4379   if (Linkage == GVA_AvailableExternally)
4380     return llvm::GlobalValue::AvailableExternallyLinkage;
4381 
4382   // Note that Apple's kernel linker doesn't support symbol
4383   // coalescing, so we need to avoid linkonce and weak linkages there.
4384   // Normally, this means we just map to internal, but for explicit
4385   // instantiations we'll map to external.
4386 
4387   // In C++, the compiler has to emit a definition in every translation unit
4388   // that references the function.  We should use linkonce_odr because
4389   // a) if all references in this translation unit are optimized away, we
4390   // don't need to codegen it.  b) if the function persists, it needs to be
4391   // merged with other definitions. c) C++ has the ODR, so we know the
4392   // definition is dependable.
4393   if (Linkage == GVA_DiscardableODR)
4394     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4395                                             : llvm::Function::InternalLinkage;
4396 
4397   // An explicit instantiation of a template has weak linkage, since
4398   // explicit instantiations can occur in multiple translation units
4399   // and must all be equivalent. However, we are not allowed to
4400   // throw away these explicit instantiations.
4401   //
4402   // We don't currently support CUDA device code spread out across multiple TUs,
4403   // so say that CUDA templates are either external (for kernels) or internal.
4404   // This lets llvm perform aggressive inter-procedural optimizations.
4405   if (Linkage == GVA_StrongODR) {
4406     if (Context.getLangOpts().AppleKext)
4407       return llvm::Function::ExternalLinkage;
4408     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4409       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4410                                           : llvm::Function::InternalLinkage;
4411     return llvm::Function::WeakODRLinkage;
4412   }
4413 
4414   // C++ doesn't have tentative definitions and thus cannot have common
4415   // linkage.
4416   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4417       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4418                                  CodeGenOpts.NoCommon))
4419     return llvm::GlobalVariable::CommonLinkage;
4420 
4421   // selectany symbols are externally visible, so use weak instead of
4422   // linkonce.  MSVC optimizes away references to const selectany globals, so
4423   // all definitions should be the same and ODR linkage should be used.
4424   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4425   if (D->hasAttr<SelectAnyAttr>())
4426     return llvm::GlobalVariable::WeakODRLinkage;
4427 
4428   // Otherwise, we have strong external linkage.
4429   assert(Linkage == GVA_StrongExternal);
4430   return llvm::GlobalVariable::ExternalLinkage;
4431 }
4432 
4433 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4434     const VarDecl *VD, bool IsConstant) {
4435   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4436   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4437 }
4438 
4439 /// Replace the uses of a function that was declared with a non-proto type.
4440 /// We want to silently drop extra arguments from call sites
4441 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4442                                           llvm::Function *newFn) {
4443   // Fast path.
4444   if (old->use_empty()) return;
4445 
4446   llvm::Type *newRetTy = newFn->getReturnType();
4447   SmallVector<llvm::Value*, 4> newArgs;
4448   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4449 
4450   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4451          ui != ue; ) {
4452     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4453     llvm::User *user = use->getUser();
4454 
4455     // Recognize and replace uses of bitcasts.  Most calls to
4456     // unprototyped functions will use bitcasts.
4457     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4458       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4459         replaceUsesOfNonProtoConstant(bitcast, newFn);
4460       continue;
4461     }
4462 
4463     // Recognize calls to the function.
4464     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4465     if (!callSite) continue;
4466     if (!callSite->isCallee(&*use))
4467       continue;
4468 
4469     // If the return types don't match exactly, then we can't
4470     // transform this call unless it's dead.
4471     if (callSite->getType() != newRetTy && !callSite->use_empty())
4472       continue;
4473 
4474     // Get the call site's attribute list.
4475     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4476     llvm::AttributeList oldAttrs = callSite->getAttributes();
4477 
4478     // If the function was passed too few arguments, don't transform.
4479     unsigned newNumArgs = newFn->arg_size();
4480     if (callSite->arg_size() < newNumArgs)
4481       continue;
4482 
4483     // If extra arguments were passed, we silently drop them.
4484     // If any of the types mismatch, we don't transform.
4485     unsigned argNo = 0;
4486     bool dontTransform = false;
4487     for (llvm::Argument &A : newFn->args()) {
4488       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4489         dontTransform = true;
4490         break;
4491       }
4492 
4493       // Add any parameter attributes.
4494       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4495       argNo++;
4496     }
4497     if (dontTransform)
4498       continue;
4499 
4500     // Okay, we can transform this.  Create the new call instruction and copy
4501     // over the required information.
4502     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4503 
4504     // Copy over any operand bundles.
4505     callSite->getOperandBundlesAsDefs(newBundles);
4506 
4507     llvm::CallBase *newCall;
4508     if (dyn_cast<llvm::CallInst>(callSite)) {
4509       newCall =
4510           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4511     } else {
4512       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4513       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4514                                          oldInvoke->getUnwindDest(), newArgs,
4515                                          newBundles, "", callSite);
4516     }
4517     newArgs.clear(); // for the next iteration
4518 
4519     if (!newCall->getType()->isVoidTy())
4520       newCall->takeName(callSite);
4521     newCall->setAttributes(llvm::AttributeList::get(
4522         newFn->getContext(), oldAttrs.getFnAttributes(),
4523         oldAttrs.getRetAttributes(), newArgAttrs));
4524     newCall->setCallingConv(callSite->getCallingConv());
4525 
4526     // Finally, remove the old call, replacing any uses with the new one.
4527     if (!callSite->use_empty())
4528       callSite->replaceAllUsesWith(newCall);
4529 
4530     // Copy debug location attached to CI.
4531     if (callSite->getDebugLoc())
4532       newCall->setDebugLoc(callSite->getDebugLoc());
4533 
4534     callSite->eraseFromParent();
4535   }
4536 }
4537 
4538 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4539 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4540 /// existing call uses of the old function in the module, this adjusts them to
4541 /// call the new function directly.
4542 ///
4543 /// This is not just a cleanup: the always_inline pass requires direct calls to
4544 /// functions to be able to inline them.  If there is a bitcast in the way, it
4545 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4546 /// run at -O0.
4547 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4548                                                       llvm::Function *NewFn) {
4549   // If we're redefining a global as a function, don't transform it.
4550   if (!isa<llvm::Function>(Old)) return;
4551 
4552   replaceUsesOfNonProtoConstant(Old, NewFn);
4553 }
4554 
4555 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4556   auto DK = VD->isThisDeclarationADefinition();
4557   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4558     return;
4559 
4560   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4561   // If we have a definition, this might be a deferred decl. If the
4562   // instantiation is explicit, make sure we emit it at the end.
4563   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4564     GetAddrOfGlobalVar(VD);
4565 
4566   EmitTopLevelDecl(VD);
4567 }
4568 
4569 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4570                                                  llvm::GlobalValue *GV) {
4571   const auto *D = cast<FunctionDecl>(GD.getDecl());
4572 
4573   // Compute the function info and LLVM type.
4574   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4575   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4576 
4577   // Get or create the prototype for the function.
4578   if (!GV || (GV->getValueType() != Ty))
4579     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4580                                                    /*DontDefer=*/true,
4581                                                    ForDefinition));
4582 
4583   // Already emitted.
4584   if (!GV->isDeclaration())
4585     return;
4586 
4587   // We need to set linkage and visibility on the function before
4588   // generating code for it because various parts of IR generation
4589   // want to propagate this information down (e.g. to local static
4590   // declarations).
4591   auto *Fn = cast<llvm::Function>(GV);
4592   setFunctionLinkage(GD, Fn);
4593 
4594   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4595   setGVProperties(Fn, GD);
4596 
4597   MaybeHandleStaticInExternC(D, Fn);
4598 
4599   maybeSetTrivialComdat(*D, *Fn);
4600 
4601   // Set CodeGen attributes that represent floating point environment.
4602   setLLVMFunctionFEnvAttributes(D, Fn);
4603 
4604   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4605 
4606   setNonAliasAttributes(GD, Fn);
4607   SetLLVMFunctionAttributesForDefinition(D, Fn);
4608 
4609   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4610     AddGlobalCtor(Fn, CA->getPriority());
4611   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4612     AddGlobalDtor(Fn, DA->getPriority());
4613   if (D->hasAttr<AnnotateAttr>())
4614     AddGlobalAnnotations(D, Fn);
4615 }
4616 
4617 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4618   const auto *D = cast<ValueDecl>(GD.getDecl());
4619   const AliasAttr *AA = D->getAttr<AliasAttr>();
4620   assert(AA && "Not an alias?");
4621 
4622   StringRef MangledName = getMangledName(GD);
4623 
4624   if (AA->getAliasee() == MangledName) {
4625     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4626     return;
4627   }
4628 
4629   // If there is a definition in the module, then it wins over the alias.
4630   // This is dubious, but allow it to be safe.  Just ignore the alias.
4631   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4632   if (Entry && !Entry->isDeclaration())
4633     return;
4634 
4635   Aliases.push_back(GD);
4636 
4637   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4638 
4639   // Create a reference to the named value.  This ensures that it is emitted
4640   // if a deferred decl.
4641   llvm::Constant *Aliasee;
4642   llvm::GlobalValue::LinkageTypes LT;
4643   if (isa<llvm::FunctionType>(DeclTy)) {
4644     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4645                                       /*ForVTable=*/false);
4646     LT = getFunctionLinkage(GD);
4647   } else {
4648     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4649                                     llvm::PointerType::getUnqual(DeclTy),
4650                                     /*D=*/nullptr);
4651     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4652                                      D->getType().isConstQualified());
4653   }
4654 
4655   // Create the new alias itself, but don't set a name yet.
4656   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4657   auto *GA =
4658       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4659 
4660   if (Entry) {
4661     if (GA->getAliasee() == Entry) {
4662       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4663       return;
4664     }
4665 
4666     assert(Entry->isDeclaration());
4667 
4668     // If there is a declaration in the module, then we had an extern followed
4669     // by the alias, as in:
4670     //   extern int test6();
4671     //   ...
4672     //   int test6() __attribute__((alias("test7")));
4673     //
4674     // Remove it and replace uses of it with the alias.
4675     GA->takeName(Entry);
4676 
4677     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4678                                                           Entry->getType()));
4679     Entry->eraseFromParent();
4680   } else {
4681     GA->setName(MangledName);
4682   }
4683 
4684   // Set attributes which are particular to an alias; this is a
4685   // specialization of the attributes which may be set on a global
4686   // variable/function.
4687   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4688       D->isWeakImported()) {
4689     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4690   }
4691 
4692   if (const auto *VD = dyn_cast<VarDecl>(D))
4693     if (VD->getTLSKind())
4694       setTLSMode(GA, *VD);
4695 
4696   SetCommonAttributes(GD, GA);
4697 }
4698 
4699 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4700   const auto *D = cast<ValueDecl>(GD.getDecl());
4701   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4702   assert(IFA && "Not an ifunc?");
4703 
4704   StringRef MangledName = getMangledName(GD);
4705 
4706   if (IFA->getResolver() == MangledName) {
4707     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4708     return;
4709   }
4710 
4711   // Report an error if some definition overrides ifunc.
4712   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4713   if (Entry && !Entry->isDeclaration()) {
4714     GlobalDecl OtherGD;
4715     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4716         DiagnosedConflictingDefinitions.insert(GD).second) {
4717       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4718           << MangledName;
4719       Diags.Report(OtherGD.getDecl()->getLocation(),
4720                    diag::note_previous_definition);
4721     }
4722     return;
4723   }
4724 
4725   Aliases.push_back(GD);
4726 
4727   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4728   llvm::Constant *Resolver =
4729       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4730                               /*ForVTable=*/false);
4731   llvm::GlobalIFunc *GIF =
4732       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4733                                 "", Resolver, &getModule());
4734   if (Entry) {
4735     if (GIF->getResolver() == Entry) {
4736       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4737       return;
4738     }
4739     assert(Entry->isDeclaration());
4740 
4741     // If there is a declaration in the module, then we had an extern followed
4742     // by the ifunc, as in:
4743     //   extern int test();
4744     //   ...
4745     //   int test() __attribute__((ifunc("resolver")));
4746     //
4747     // Remove it and replace uses of it with the ifunc.
4748     GIF->takeName(Entry);
4749 
4750     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4751                                                           Entry->getType()));
4752     Entry->eraseFromParent();
4753   } else
4754     GIF->setName(MangledName);
4755 
4756   SetCommonAttributes(GD, GIF);
4757 }
4758 
4759 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4760                                             ArrayRef<llvm::Type*> Tys) {
4761   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4762                                          Tys);
4763 }
4764 
4765 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4766 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4767                          const StringLiteral *Literal, bool TargetIsLSB,
4768                          bool &IsUTF16, unsigned &StringLength) {
4769   StringRef String = Literal->getString();
4770   unsigned NumBytes = String.size();
4771 
4772   // Check for simple case.
4773   if (!Literal->containsNonAsciiOrNull()) {
4774     StringLength = NumBytes;
4775     return *Map.insert(std::make_pair(String, nullptr)).first;
4776   }
4777 
4778   // Otherwise, convert the UTF8 literals into a string of shorts.
4779   IsUTF16 = true;
4780 
4781   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4782   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4783   llvm::UTF16 *ToPtr = &ToBuf[0];
4784 
4785   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4786                                  ToPtr + NumBytes, llvm::strictConversion);
4787 
4788   // ConvertUTF8toUTF16 returns the length in ToPtr.
4789   StringLength = ToPtr - &ToBuf[0];
4790 
4791   // Add an explicit null.
4792   *ToPtr = 0;
4793   return *Map.insert(std::make_pair(
4794                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4795                                    (StringLength + 1) * 2),
4796                          nullptr)).first;
4797 }
4798 
4799 ConstantAddress
4800 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4801   unsigned StringLength = 0;
4802   bool isUTF16 = false;
4803   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4804       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4805                                getDataLayout().isLittleEndian(), isUTF16,
4806                                StringLength);
4807 
4808   if (auto *C = Entry.second)
4809     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4810 
4811   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4812   llvm::Constant *Zeros[] = { Zero, Zero };
4813 
4814   const ASTContext &Context = getContext();
4815   const llvm::Triple &Triple = getTriple();
4816 
4817   const auto CFRuntime = getLangOpts().CFRuntime;
4818   const bool IsSwiftABI =
4819       static_cast<unsigned>(CFRuntime) >=
4820       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4821   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4822 
4823   // If we don't already have it, get __CFConstantStringClassReference.
4824   if (!CFConstantStringClassRef) {
4825     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4826     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4827     Ty = llvm::ArrayType::get(Ty, 0);
4828 
4829     switch (CFRuntime) {
4830     default: break;
4831     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4832     case LangOptions::CoreFoundationABI::Swift5_0:
4833       CFConstantStringClassName =
4834           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4835                               : "$s10Foundation19_NSCFConstantStringCN";
4836       Ty = IntPtrTy;
4837       break;
4838     case LangOptions::CoreFoundationABI::Swift4_2:
4839       CFConstantStringClassName =
4840           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4841                               : "$S10Foundation19_NSCFConstantStringCN";
4842       Ty = IntPtrTy;
4843       break;
4844     case LangOptions::CoreFoundationABI::Swift4_1:
4845       CFConstantStringClassName =
4846           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4847                               : "__T010Foundation19_NSCFConstantStringCN";
4848       Ty = IntPtrTy;
4849       break;
4850     }
4851 
4852     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4853 
4854     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4855       llvm::GlobalValue *GV = nullptr;
4856 
4857       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4858         IdentifierInfo &II = Context.Idents.get(GV->getName());
4859         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4860         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4861 
4862         const VarDecl *VD = nullptr;
4863         for (const auto &Result : DC->lookup(&II))
4864           if ((VD = dyn_cast<VarDecl>(Result)))
4865             break;
4866 
4867         if (Triple.isOSBinFormatELF()) {
4868           if (!VD)
4869             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4870         } else {
4871           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4872           if (!VD || !VD->hasAttr<DLLExportAttr>())
4873             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4874           else
4875             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4876         }
4877 
4878         setDSOLocal(GV);
4879       }
4880     }
4881 
4882     // Decay array -> ptr
4883     CFConstantStringClassRef =
4884         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4885                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4886   }
4887 
4888   QualType CFTy = Context.getCFConstantStringType();
4889 
4890   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4891 
4892   ConstantInitBuilder Builder(*this);
4893   auto Fields = Builder.beginStruct(STy);
4894 
4895   // Class pointer.
4896   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4897 
4898   // Flags.
4899   if (IsSwiftABI) {
4900     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4901     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4902   } else {
4903     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4904   }
4905 
4906   // String pointer.
4907   llvm::Constant *C = nullptr;
4908   if (isUTF16) {
4909     auto Arr = llvm::makeArrayRef(
4910         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4911         Entry.first().size() / 2);
4912     C = llvm::ConstantDataArray::get(VMContext, Arr);
4913   } else {
4914     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4915   }
4916 
4917   // Note: -fwritable-strings doesn't make the backing store strings of
4918   // CFStrings writable. (See <rdar://problem/10657500>)
4919   auto *GV =
4920       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4921                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4922   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4923   // Don't enforce the target's minimum global alignment, since the only use
4924   // of the string is via this class initializer.
4925   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4926                             : Context.getTypeAlignInChars(Context.CharTy);
4927   GV->setAlignment(Align.getAsAlign());
4928 
4929   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4930   // Without it LLVM can merge the string with a non unnamed_addr one during
4931   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4932   if (Triple.isOSBinFormatMachO())
4933     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4934                            : "__TEXT,__cstring,cstring_literals");
4935   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4936   // the static linker to adjust permissions to read-only later on.
4937   else if (Triple.isOSBinFormatELF())
4938     GV->setSection(".rodata");
4939 
4940   // String.
4941   llvm::Constant *Str =
4942       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4943 
4944   if (isUTF16)
4945     // Cast the UTF16 string to the correct type.
4946     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4947   Fields.add(Str);
4948 
4949   // String length.
4950   llvm::IntegerType *LengthTy =
4951       llvm::IntegerType::get(getModule().getContext(),
4952                              Context.getTargetInfo().getLongWidth());
4953   if (IsSwiftABI) {
4954     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4955         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4956       LengthTy = Int32Ty;
4957     else
4958       LengthTy = IntPtrTy;
4959   }
4960   Fields.addInt(LengthTy, StringLength);
4961 
4962   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4963   // properly aligned on 32-bit platforms.
4964   CharUnits Alignment =
4965       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4966 
4967   // The struct.
4968   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4969                                     /*isConstant=*/false,
4970                                     llvm::GlobalVariable::PrivateLinkage);
4971   GV->addAttribute("objc_arc_inert");
4972   switch (Triple.getObjectFormat()) {
4973   case llvm::Triple::UnknownObjectFormat:
4974     llvm_unreachable("unknown file format");
4975   case llvm::Triple::GOFF:
4976     llvm_unreachable("GOFF is not yet implemented");
4977   case llvm::Triple::XCOFF:
4978     llvm_unreachable("XCOFF is not yet implemented");
4979   case llvm::Triple::COFF:
4980   case llvm::Triple::ELF:
4981   case llvm::Triple::Wasm:
4982     GV->setSection("cfstring");
4983     break;
4984   case llvm::Triple::MachO:
4985     GV->setSection("__DATA,__cfstring");
4986     break;
4987   }
4988   Entry.second = GV;
4989 
4990   return ConstantAddress(GV, Alignment);
4991 }
4992 
4993 bool CodeGenModule::getExpressionLocationsEnabled() const {
4994   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4995 }
4996 
4997 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4998   if (ObjCFastEnumerationStateType.isNull()) {
4999     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5000     D->startDefinition();
5001 
5002     QualType FieldTypes[] = {
5003       Context.UnsignedLongTy,
5004       Context.getPointerType(Context.getObjCIdType()),
5005       Context.getPointerType(Context.UnsignedLongTy),
5006       Context.getConstantArrayType(Context.UnsignedLongTy,
5007                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5008     };
5009 
5010     for (size_t i = 0; i < 4; ++i) {
5011       FieldDecl *Field = FieldDecl::Create(Context,
5012                                            D,
5013                                            SourceLocation(),
5014                                            SourceLocation(), nullptr,
5015                                            FieldTypes[i], /*TInfo=*/nullptr,
5016                                            /*BitWidth=*/nullptr,
5017                                            /*Mutable=*/false,
5018                                            ICIS_NoInit);
5019       Field->setAccess(AS_public);
5020       D->addDecl(Field);
5021     }
5022 
5023     D->completeDefinition();
5024     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5025   }
5026 
5027   return ObjCFastEnumerationStateType;
5028 }
5029 
5030 llvm::Constant *
5031 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5032   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5033 
5034   // Don't emit it as the address of the string, emit the string data itself
5035   // as an inline array.
5036   if (E->getCharByteWidth() == 1) {
5037     SmallString<64> Str(E->getString());
5038 
5039     // Resize the string to the right size, which is indicated by its type.
5040     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5041     Str.resize(CAT->getSize().getZExtValue());
5042     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5043   }
5044 
5045   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5046   llvm::Type *ElemTy = AType->getElementType();
5047   unsigned NumElements = AType->getNumElements();
5048 
5049   // Wide strings have either 2-byte or 4-byte elements.
5050   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5051     SmallVector<uint16_t, 32> Elements;
5052     Elements.reserve(NumElements);
5053 
5054     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5055       Elements.push_back(E->getCodeUnit(i));
5056     Elements.resize(NumElements);
5057     return llvm::ConstantDataArray::get(VMContext, Elements);
5058   }
5059 
5060   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5061   SmallVector<uint32_t, 32> Elements;
5062   Elements.reserve(NumElements);
5063 
5064   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5065     Elements.push_back(E->getCodeUnit(i));
5066   Elements.resize(NumElements);
5067   return llvm::ConstantDataArray::get(VMContext, Elements);
5068 }
5069 
5070 static llvm::GlobalVariable *
5071 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5072                       CodeGenModule &CGM, StringRef GlobalName,
5073                       CharUnits Alignment) {
5074   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5075       CGM.getStringLiteralAddressSpace());
5076 
5077   llvm::Module &M = CGM.getModule();
5078   // Create a global variable for this string
5079   auto *GV = new llvm::GlobalVariable(
5080       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5081       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5082   GV->setAlignment(Alignment.getAsAlign());
5083   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5084   if (GV->isWeakForLinker()) {
5085     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5086     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5087   }
5088   CGM.setDSOLocal(GV);
5089 
5090   return GV;
5091 }
5092 
5093 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5094 /// constant array for the given string literal.
5095 ConstantAddress
5096 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5097                                                   StringRef Name) {
5098   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5099 
5100   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5101   llvm::GlobalVariable **Entry = nullptr;
5102   if (!LangOpts.WritableStrings) {
5103     Entry = &ConstantStringMap[C];
5104     if (auto GV = *Entry) {
5105       if (Alignment.getQuantity() > GV->getAlignment())
5106         GV->setAlignment(Alignment.getAsAlign());
5107       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5108                              Alignment);
5109     }
5110   }
5111 
5112   SmallString<256> MangledNameBuffer;
5113   StringRef GlobalVariableName;
5114   llvm::GlobalValue::LinkageTypes LT;
5115 
5116   // Mangle the string literal if that's how the ABI merges duplicate strings.
5117   // Don't do it if they are writable, since we don't want writes in one TU to
5118   // affect strings in another.
5119   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5120       !LangOpts.WritableStrings) {
5121     llvm::raw_svector_ostream Out(MangledNameBuffer);
5122     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5123     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5124     GlobalVariableName = MangledNameBuffer;
5125   } else {
5126     LT = llvm::GlobalValue::PrivateLinkage;
5127     GlobalVariableName = Name;
5128   }
5129 
5130   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5131   if (Entry)
5132     *Entry = GV;
5133 
5134   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5135                                   QualType());
5136 
5137   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5138                          Alignment);
5139 }
5140 
5141 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5142 /// array for the given ObjCEncodeExpr node.
5143 ConstantAddress
5144 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5145   std::string Str;
5146   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5147 
5148   return GetAddrOfConstantCString(Str);
5149 }
5150 
5151 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5152 /// the literal and a terminating '\0' character.
5153 /// The result has pointer to array type.
5154 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5155     const std::string &Str, const char *GlobalName) {
5156   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5157   CharUnits Alignment =
5158     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5159 
5160   llvm::Constant *C =
5161       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5162 
5163   // Don't share any string literals if strings aren't constant.
5164   llvm::GlobalVariable **Entry = nullptr;
5165   if (!LangOpts.WritableStrings) {
5166     Entry = &ConstantStringMap[C];
5167     if (auto GV = *Entry) {
5168       if (Alignment.getQuantity() > GV->getAlignment())
5169         GV->setAlignment(Alignment.getAsAlign());
5170       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5171                              Alignment);
5172     }
5173   }
5174 
5175   // Get the default prefix if a name wasn't specified.
5176   if (!GlobalName)
5177     GlobalName = ".str";
5178   // Create a global variable for this.
5179   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5180                                   GlobalName, Alignment);
5181   if (Entry)
5182     *Entry = GV;
5183 
5184   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5185                          Alignment);
5186 }
5187 
5188 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5189     const MaterializeTemporaryExpr *E, const Expr *Init) {
5190   assert((E->getStorageDuration() == SD_Static ||
5191           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5192   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5193 
5194   // If we're not materializing a subobject of the temporary, keep the
5195   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5196   QualType MaterializedType = Init->getType();
5197   if (Init == E->getSubExpr())
5198     MaterializedType = E->getType();
5199 
5200   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5201 
5202   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5203     return ConstantAddress(Slot, Align);
5204 
5205   // FIXME: If an externally-visible declaration extends multiple temporaries,
5206   // we need to give each temporary the same name in every translation unit (and
5207   // we also need to make the temporaries externally-visible).
5208   SmallString<256> Name;
5209   llvm::raw_svector_ostream Out(Name);
5210   getCXXABI().getMangleContext().mangleReferenceTemporary(
5211       VD, E->getManglingNumber(), Out);
5212 
5213   APValue *Value = nullptr;
5214   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5215     // If the initializer of the extending declaration is a constant
5216     // initializer, we should have a cached constant initializer for this
5217     // temporary. Note that this might have a different value from the value
5218     // computed by evaluating the initializer if the surrounding constant
5219     // expression modifies the temporary.
5220     Value = E->getOrCreateValue(false);
5221   }
5222 
5223   // Try evaluating it now, it might have a constant initializer.
5224   Expr::EvalResult EvalResult;
5225   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5226       !EvalResult.hasSideEffects())
5227     Value = &EvalResult.Val;
5228 
5229   LangAS AddrSpace =
5230       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5231 
5232   Optional<ConstantEmitter> emitter;
5233   llvm::Constant *InitialValue = nullptr;
5234   bool Constant = false;
5235   llvm::Type *Type;
5236   if (Value) {
5237     // The temporary has a constant initializer, use it.
5238     emitter.emplace(*this);
5239     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5240                                                MaterializedType);
5241     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5242     Type = InitialValue->getType();
5243   } else {
5244     // No initializer, the initialization will be provided when we
5245     // initialize the declaration which performed lifetime extension.
5246     Type = getTypes().ConvertTypeForMem(MaterializedType);
5247   }
5248 
5249   // Create a global variable for this lifetime-extended temporary.
5250   llvm::GlobalValue::LinkageTypes Linkage =
5251       getLLVMLinkageVarDefinition(VD, Constant);
5252   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5253     const VarDecl *InitVD;
5254     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5255         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5256       // Temporaries defined inside a class get linkonce_odr linkage because the
5257       // class can be defined in multiple translation units.
5258       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5259     } else {
5260       // There is no need for this temporary to have external linkage if the
5261       // VarDecl has external linkage.
5262       Linkage = llvm::GlobalVariable::InternalLinkage;
5263     }
5264   }
5265   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5266   auto *GV = new llvm::GlobalVariable(
5267       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5268       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5269   if (emitter) emitter->finalize(GV);
5270   setGVProperties(GV, VD);
5271   GV->setAlignment(Align.getAsAlign());
5272   if (supportsCOMDAT() && GV->isWeakForLinker())
5273     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5274   if (VD->getTLSKind())
5275     setTLSMode(GV, *VD);
5276   llvm::Constant *CV = GV;
5277   if (AddrSpace != LangAS::Default)
5278     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5279         *this, GV, AddrSpace, LangAS::Default,
5280         Type->getPointerTo(
5281             getContext().getTargetAddressSpace(LangAS::Default)));
5282   MaterializedGlobalTemporaryMap[E] = CV;
5283   return ConstantAddress(CV, Align);
5284 }
5285 
5286 /// EmitObjCPropertyImplementations - Emit information for synthesized
5287 /// properties for an implementation.
5288 void CodeGenModule::EmitObjCPropertyImplementations(const
5289                                                     ObjCImplementationDecl *D) {
5290   for (const auto *PID : D->property_impls()) {
5291     // Dynamic is just for type-checking.
5292     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5293       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5294 
5295       // Determine which methods need to be implemented, some may have
5296       // been overridden. Note that ::isPropertyAccessor is not the method
5297       // we want, that just indicates if the decl came from a
5298       // property. What we want to know is if the method is defined in
5299       // this implementation.
5300       auto *Getter = PID->getGetterMethodDecl();
5301       if (!Getter || Getter->isSynthesizedAccessorStub())
5302         CodeGenFunction(*this).GenerateObjCGetter(
5303             const_cast<ObjCImplementationDecl *>(D), PID);
5304       auto *Setter = PID->getSetterMethodDecl();
5305       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5306         CodeGenFunction(*this).GenerateObjCSetter(
5307                                  const_cast<ObjCImplementationDecl *>(D), PID);
5308     }
5309   }
5310 }
5311 
5312 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5313   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5314   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5315        ivar; ivar = ivar->getNextIvar())
5316     if (ivar->getType().isDestructedType())
5317       return true;
5318 
5319   return false;
5320 }
5321 
5322 static bool AllTrivialInitializers(CodeGenModule &CGM,
5323                                    ObjCImplementationDecl *D) {
5324   CodeGenFunction CGF(CGM);
5325   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5326        E = D->init_end(); B != E; ++B) {
5327     CXXCtorInitializer *CtorInitExp = *B;
5328     Expr *Init = CtorInitExp->getInit();
5329     if (!CGF.isTrivialInitializer(Init))
5330       return false;
5331   }
5332   return true;
5333 }
5334 
5335 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5336 /// for an implementation.
5337 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5338   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5339   if (needsDestructMethod(D)) {
5340     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5341     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5342     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5343         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5344         getContext().VoidTy, nullptr, D,
5345         /*isInstance=*/true, /*isVariadic=*/false,
5346         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5347         /*isImplicitlyDeclared=*/true,
5348         /*isDefined=*/false, ObjCMethodDecl::Required);
5349     D->addInstanceMethod(DTORMethod);
5350     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5351     D->setHasDestructors(true);
5352   }
5353 
5354   // If the implementation doesn't have any ivar initializers, we don't need
5355   // a .cxx_construct.
5356   if (D->getNumIvarInitializers() == 0 ||
5357       AllTrivialInitializers(*this, D))
5358     return;
5359 
5360   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5361   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5362   // The constructor returns 'self'.
5363   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5364       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5365       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5366       /*isVariadic=*/false,
5367       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5368       /*isImplicitlyDeclared=*/true,
5369       /*isDefined=*/false, ObjCMethodDecl::Required);
5370   D->addInstanceMethod(CTORMethod);
5371   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5372   D->setHasNonZeroConstructors(true);
5373 }
5374 
5375 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5376 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5377   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5378       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5379     ErrorUnsupported(LSD, "linkage spec");
5380     return;
5381   }
5382 
5383   EmitDeclContext(LSD);
5384 }
5385 
5386 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5387   for (auto *I : DC->decls()) {
5388     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5389     // are themselves considered "top-level", so EmitTopLevelDecl on an
5390     // ObjCImplDecl does not recursively visit them. We need to do that in
5391     // case they're nested inside another construct (LinkageSpecDecl /
5392     // ExportDecl) that does stop them from being considered "top-level".
5393     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5394       for (auto *M : OID->methods())
5395         EmitTopLevelDecl(M);
5396     }
5397 
5398     EmitTopLevelDecl(I);
5399   }
5400 }
5401 
5402 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5403 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5404   // Ignore dependent declarations.
5405   if (D->isTemplated())
5406     return;
5407 
5408   // Consteval function shouldn't be emitted.
5409   if (auto *FD = dyn_cast<FunctionDecl>(D))
5410     if (FD->isConsteval())
5411       return;
5412 
5413   switch (D->getKind()) {
5414   case Decl::CXXConversion:
5415   case Decl::CXXMethod:
5416   case Decl::Function:
5417     EmitGlobal(cast<FunctionDecl>(D));
5418     // Always provide some coverage mapping
5419     // even for the functions that aren't emitted.
5420     AddDeferredUnusedCoverageMapping(D);
5421     break;
5422 
5423   case Decl::CXXDeductionGuide:
5424     // Function-like, but does not result in code emission.
5425     break;
5426 
5427   case Decl::Var:
5428   case Decl::Decomposition:
5429   case Decl::VarTemplateSpecialization:
5430     EmitGlobal(cast<VarDecl>(D));
5431     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5432       for (auto *B : DD->bindings())
5433         if (auto *HD = B->getHoldingVar())
5434           EmitGlobal(HD);
5435     break;
5436 
5437   // Indirect fields from global anonymous structs and unions can be
5438   // ignored; only the actual variable requires IR gen support.
5439   case Decl::IndirectField:
5440     break;
5441 
5442   // C++ Decls
5443   case Decl::Namespace:
5444     EmitDeclContext(cast<NamespaceDecl>(D));
5445     break;
5446   case Decl::ClassTemplateSpecialization: {
5447     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5448     if (CGDebugInfo *DI = getModuleDebugInfo())
5449       if (Spec->getSpecializationKind() ==
5450               TSK_ExplicitInstantiationDefinition &&
5451           Spec->hasDefinition())
5452         DI->completeTemplateDefinition(*Spec);
5453   } LLVM_FALLTHROUGH;
5454   case Decl::CXXRecord: {
5455     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5456     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5457       if (CRD->hasDefinition())
5458         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5459       if (auto *ES = D->getASTContext().getExternalSource())
5460         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5461           DI->completeUnusedClass(*CRD);
5462     }
5463     // Emit any static data members, they may be definitions.
5464     for (auto *I : CRD->decls())
5465       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5466         EmitTopLevelDecl(I);
5467     break;
5468   }
5469     // No code generation needed.
5470   case Decl::UsingShadow:
5471   case Decl::ClassTemplate:
5472   case Decl::VarTemplate:
5473   case Decl::Concept:
5474   case Decl::VarTemplatePartialSpecialization:
5475   case Decl::FunctionTemplate:
5476   case Decl::TypeAliasTemplate:
5477   case Decl::Block:
5478   case Decl::Empty:
5479   case Decl::Binding:
5480     break;
5481   case Decl::Using:          // using X; [C++]
5482     if (CGDebugInfo *DI = getModuleDebugInfo())
5483         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5484     break;
5485   case Decl::NamespaceAlias:
5486     if (CGDebugInfo *DI = getModuleDebugInfo())
5487         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5488     break;
5489   case Decl::UsingDirective: // using namespace X; [C++]
5490     if (CGDebugInfo *DI = getModuleDebugInfo())
5491       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5492     break;
5493   case Decl::CXXConstructor:
5494     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5495     break;
5496   case Decl::CXXDestructor:
5497     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5498     break;
5499 
5500   case Decl::StaticAssert:
5501     // Nothing to do.
5502     break;
5503 
5504   // Objective-C Decls
5505 
5506   // Forward declarations, no (immediate) code generation.
5507   case Decl::ObjCInterface:
5508   case Decl::ObjCCategory:
5509     break;
5510 
5511   case Decl::ObjCProtocol: {
5512     auto *Proto = cast<ObjCProtocolDecl>(D);
5513     if (Proto->isThisDeclarationADefinition())
5514       ObjCRuntime->GenerateProtocol(Proto);
5515     break;
5516   }
5517 
5518   case Decl::ObjCCategoryImpl:
5519     // Categories have properties but don't support synthesize so we
5520     // can ignore them here.
5521     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5522     break;
5523 
5524   case Decl::ObjCImplementation: {
5525     auto *OMD = cast<ObjCImplementationDecl>(D);
5526     EmitObjCPropertyImplementations(OMD);
5527     EmitObjCIvarInitializations(OMD);
5528     ObjCRuntime->GenerateClass(OMD);
5529     // Emit global variable debug information.
5530     if (CGDebugInfo *DI = getModuleDebugInfo())
5531       if (getCodeGenOpts().hasReducedDebugInfo())
5532         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5533             OMD->getClassInterface()), OMD->getLocation());
5534     break;
5535   }
5536   case Decl::ObjCMethod: {
5537     auto *OMD = cast<ObjCMethodDecl>(D);
5538     // If this is not a prototype, emit the body.
5539     if (OMD->getBody())
5540       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5541     break;
5542   }
5543   case Decl::ObjCCompatibleAlias:
5544     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5545     break;
5546 
5547   case Decl::PragmaComment: {
5548     const auto *PCD = cast<PragmaCommentDecl>(D);
5549     switch (PCD->getCommentKind()) {
5550     case PCK_Unknown:
5551       llvm_unreachable("unexpected pragma comment kind");
5552     case PCK_Linker:
5553       AppendLinkerOptions(PCD->getArg());
5554       break;
5555     case PCK_Lib:
5556         AddDependentLib(PCD->getArg());
5557       break;
5558     case PCK_Compiler:
5559     case PCK_ExeStr:
5560     case PCK_User:
5561       break; // We ignore all of these.
5562     }
5563     break;
5564   }
5565 
5566   case Decl::PragmaDetectMismatch: {
5567     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5568     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5569     break;
5570   }
5571 
5572   case Decl::LinkageSpec:
5573     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5574     break;
5575 
5576   case Decl::FileScopeAsm: {
5577     // File-scope asm is ignored during device-side CUDA compilation.
5578     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5579       break;
5580     // File-scope asm is ignored during device-side OpenMP compilation.
5581     if (LangOpts.OpenMPIsDevice)
5582       break;
5583     auto *AD = cast<FileScopeAsmDecl>(D);
5584     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5585     break;
5586   }
5587 
5588   case Decl::Import: {
5589     auto *Import = cast<ImportDecl>(D);
5590 
5591     // If we've already imported this module, we're done.
5592     if (!ImportedModules.insert(Import->getImportedModule()))
5593       break;
5594 
5595     // Emit debug information for direct imports.
5596     if (!Import->getImportedOwningModule()) {
5597       if (CGDebugInfo *DI = getModuleDebugInfo())
5598         DI->EmitImportDecl(*Import);
5599     }
5600 
5601     // Find all of the submodules and emit the module initializers.
5602     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5603     SmallVector<clang::Module *, 16> Stack;
5604     Visited.insert(Import->getImportedModule());
5605     Stack.push_back(Import->getImportedModule());
5606 
5607     while (!Stack.empty()) {
5608       clang::Module *Mod = Stack.pop_back_val();
5609       if (!EmittedModuleInitializers.insert(Mod).second)
5610         continue;
5611 
5612       for (auto *D : Context.getModuleInitializers(Mod))
5613         EmitTopLevelDecl(D);
5614 
5615       // Visit the submodules of this module.
5616       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5617                                              SubEnd = Mod->submodule_end();
5618            Sub != SubEnd; ++Sub) {
5619         // Skip explicit children; they need to be explicitly imported to emit
5620         // the initializers.
5621         if ((*Sub)->IsExplicit)
5622           continue;
5623 
5624         if (Visited.insert(*Sub).second)
5625           Stack.push_back(*Sub);
5626       }
5627     }
5628     break;
5629   }
5630 
5631   case Decl::Export:
5632     EmitDeclContext(cast<ExportDecl>(D));
5633     break;
5634 
5635   case Decl::OMPThreadPrivate:
5636     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5637     break;
5638 
5639   case Decl::OMPAllocate:
5640     break;
5641 
5642   case Decl::OMPDeclareReduction:
5643     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5644     break;
5645 
5646   case Decl::OMPDeclareMapper:
5647     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5648     break;
5649 
5650   case Decl::OMPRequires:
5651     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5652     break;
5653 
5654   case Decl::Typedef:
5655   case Decl::TypeAlias: // using foo = bar; [C++11]
5656     if (CGDebugInfo *DI = getModuleDebugInfo())
5657       DI->EmitAndRetainType(
5658           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5659     break;
5660 
5661   case Decl::Record:
5662     if (CGDebugInfo *DI = getModuleDebugInfo())
5663       if (cast<RecordDecl>(D)->getDefinition())
5664         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5665     break;
5666 
5667   case Decl::Enum:
5668     if (CGDebugInfo *DI = getModuleDebugInfo())
5669       if (cast<EnumDecl>(D)->getDefinition())
5670         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5671     break;
5672 
5673   default:
5674     // Make sure we handled everything we should, every other kind is a
5675     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5676     // function. Need to recode Decl::Kind to do that easily.
5677     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5678     break;
5679   }
5680 }
5681 
5682 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5683   // Do we need to generate coverage mapping?
5684   if (!CodeGenOpts.CoverageMapping)
5685     return;
5686   switch (D->getKind()) {
5687   case Decl::CXXConversion:
5688   case Decl::CXXMethod:
5689   case Decl::Function:
5690   case Decl::ObjCMethod:
5691   case Decl::CXXConstructor:
5692   case Decl::CXXDestructor: {
5693     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5694       break;
5695     SourceManager &SM = getContext().getSourceManager();
5696     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5697       break;
5698     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5699     if (I == DeferredEmptyCoverageMappingDecls.end())
5700       DeferredEmptyCoverageMappingDecls[D] = true;
5701     break;
5702   }
5703   default:
5704     break;
5705   };
5706 }
5707 
5708 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5709   // Do we need to generate coverage mapping?
5710   if (!CodeGenOpts.CoverageMapping)
5711     return;
5712   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5713     if (Fn->isTemplateInstantiation())
5714       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5715   }
5716   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5717   if (I == DeferredEmptyCoverageMappingDecls.end())
5718     DeferredEmptyCoverageMappingDecls[D] = false;
5719   else
5720     I->second = false;
5721 }
5722 
5723 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5724   // We call takeVector() here to avoid use-after-free.
5725   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5726   // we deserialize function bodies to emit coverage info for them, and that
5727   // deserializes more declarations. How should we handle that case?
5728   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5729     if (!Entry.second)
5730       continue;
5731     const Decl *D = Entry.first;
5732     switch (D->getKind()) {
5733     case Decl::CXXConversion:
5734     case Decl::CXXMethod:
5735     case Decl::Function:
5736     case Decl::ObjCMethod: {
5737       CodeGenPGO PGO(*this);
5738       GlobalDecl GD(cast<FunctionDecl>(D));
5739       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5740                                   getFunctionLinkage(GD));
5741       break;
5742     }
5743     case Decl::CXXConstructor: {
5744       CodeGenPGO PGO(*this);
5745       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5746       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5747                                   getFunctionLinkage(GD));
5748       break;
5749     }
5750     case Decl::CXXDestructor: {
5751       CodeGenPGO PGO(*this);
5752       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5753       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5754                                   getFunctionLinkage(GD));
5755       break;
5756     }
5757     default:
5758       break;
5759     };
5760   }
5761 }
5762 
5763 void CodeGenModule::EmitMainVoidAlias() {
5764   // In order to transition away from "__original_main" gracefully, emit an
5765   // alias for "main" in the no-argument case so that libc can detect when
5766   // new-style no-argument main is in used.
5767   if (llvm::Function *F = getModule().getFunction("main")) {
5768     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5769         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5770       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5771   }
5772 }
5773 
5774 /// Turns the given pointer into a constant.
5775 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5776                                           const void *Ptr) {
5777   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5778   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5779   return llvm::ConstantInt::get(i64, PtrInt);
5780 }
5781 
5782 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5783                                    llvm::NamedMDNode *&GlobalMetadata,
5784                                    GlobalDecl D,
5785                                    llvm::GlobalValue *Addr) {
5786   if (!GlobalMetadata)
5787     GlobalMetadata =
5788       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5789 
5790   // TODO: should we report variant information for ctors/dtors?
5791   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5792                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5793                                CGM.getLLVMContext(), D.getDecl()))};
5794   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5795 }
5796 
5797 /// For each function which is declared within an extern "C" region and marked
5798 /// as 'used', but has internal linkage, create an alias from the unmangled
5799 /// name to the mangled name if possible. People expect to be able to refer
5800 /// to such functions with an unmangled name from inline assembly within the
5801 /// same translation unit.
5802 void CodeGenModule::EmitStaticExternCAliases() {
5803   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5804     return;
5805   for (auto &I : StaticExternCValues) {
5806     IdentifierInfo *Name = I.first;
5807     llvm::GlobalValue *Val = I.second;
5808     if (Val && !getModule().getNamedValue(Name->getName()))
5809       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5810   }
5811 }
5812 
5813 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5814                                              GlobalDecl &Result) const {
5815   auto Res = Manglings.find(MangledName);
5816   if (Res == Manglings.end())
5817     return false;
5818   Result = Res->getValue();
5819   return true;
5820 }
5821 
5822 /// Emits metadata nodes associating all the global values in the
5823 /// current module with the Decls they came from.  This is useful for
5824 /// projects using IR gen as a subroutine.
5825 ///
5826 /// Since there's currently no way to associate an MDNode directly
5827 /// with an llvm::GlobalValue, we create a global named metadata
5828 /// with the name 'clang.global.decl.ptrs'.
5829 void CodeGenModule::EmitDeclMetadata() {
5830   llvm::NamedMDNode *GlobalMetadata = nullptr;
5831 
5832   for (auto &I : MangledDeclNames) {
5833     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5834     // Some mangled names don't necessarily have an associated GlobalValue
5835     // in this module, e.g. if we mangled it for DebugInfo.
5836     if (Addr)
5837       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5838   }
5839 }
5840 
5841 /// Emits metadata nodes for all the local variables in the current
5842 /// function.
5843 void CodeGenFunction::EmitDeclMetadata() {
5844   if (LocalDeclMap.empty()) return;
5845 
5846   llvm::LLVMContext &Context = getLLVMContext();
5847 
5848   // Find the unique metadata ID for this name.
5849   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5850 
5851   llvm::NamedMDNode *GlobalMetadata = nullptr;
5852 
5853   for (auto &I : LocalDeclMap) {
5854     const Decl *D = I.first;
5855     llvm::Value *Addr = I.second.getPointer();
5856     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5857       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5858       Alloca->setMetadata(
5859           DeclPtrKind, llvm::MDNode::get(
5860                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5861     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5862       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5863       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5864     }
5865   }
5866 }
5867 
5868 void CodeGenModule::EmitVersionIdentMetadata() {
5869   llvm::NamedMDNode *IdentMetadata =
5870     TheModule.getOrInsertNamedMetadata("llvm.ident");
5871   std::string Version = getClangFullVersion();
5872   llvm::LLVMContext &Ctx = TheModule.getContext();
5873 
5874   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5875   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5876 }
5877 
5878 void CodeGenModule::EmitCommandLineMetadata() {
5879   llvm::NamedMDNode *CommandLineMetadata =
5880     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5881   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5882   llvm::LLVMContext &Ctx = TheModule.getContext();
5883 
5884   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5885   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5886 }
5887 
5888 void CodeGenModule::EmitCoverageFile() {
5889   if (getCodeGenOpts().CoverageDataFile.empty() &&
5890       getCodeGenOpts().CoverageNotesFile.empty())
5891     return;
5892 
5893   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5894   if (!CUNode)
5895     return;
5896 
5897   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5898   llvm::LLVMContext &Ctx = TheModule.getContext();
5899   auto *CoverageDataFile =
5900       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5901   auto *CoverageNotesFile =
5902       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5903   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5904     llvm::MDNode *CU = CUNode->getOperand(i);
5905     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5906     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5907   }
5908 }
5909 
5910 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5911                                                        bool ForEH) {
5912   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5913   // FIXME: should we even be calling this method if RTTI is disabled
5914   // and it's not for EH?
5915   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5916       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5917        getTriple().isNVPTX()))
5918     return llvm::Constant::getNullValue(Int8PtrTy);
5919 
5920   if (ForEH && Ty->isObjCObjectPointerType() &&
5921       LangOpts.ObjCRuntime.isGNUFamily())
5922     return ObjCRuntime->GetEHType(Ty);
5923 
5924   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5925 }
5926 
5927 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5928   // Do not emit threadprivates in simd-only mode.
5929   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5930     return;
5931   for (auto RefExpr : D->varlists()) {
5932     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5933     bool PerformInit =
5934         VD->getAnyInitializer() &&
5935         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5936                                                         /*ForRef=*/false);
5937 
5938     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5939     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5940             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5941       CXXGlobalInits.push_back(InitFunction);
5942   }
5943 }
5944 
5945 llvm::Metadata *
5946 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5947                                             StringRef Suffix) {
5948   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5949   if (InternalId)
5950     return InternalId;
5951 
5952   if (isExternallyVisible(T->getLinkage())) {
5953     std::string OutName;
5954     llvm::raw_string_ostream Out(OutName);
5955     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5956     Out << Suffix;
5957 
5958     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5959   } else {
5960     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5961                                            llvm::ArrayRef<llvm::Metadata *>());
5962   }
5963 
5964   return InternalId;
5965 }
5966 
5967 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5968   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5969 }
5970 
5971 llvm::Metadata *
5972 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5973   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5974 }
5975 
5976 // Generalize pointer types to a void pointer with the qualifiers of the
5977 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5978 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5979 // 'void *'.
5980 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5981   if (!Ty->isPointerType())
5982     return Ty;
5983 
5984   return Ctx.getPointerType(
5985       QualType(Ctx.VoidTy).withCVRQualifiers(
5986           Ty->getPointeeType().getCVRQualifiers()));
5987 }
5988 
5989 // Apply type generalization to a FunctionType's return and argument types
5990 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5991   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5992     SmallVector<QualType, 8> GeneralizedParams;
5993     for (auto &Param : FnType->param_types())
5994       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5995 
5996     return Ctx.getFunctionType(
5997         GeneralizeType(Ctx, FnType->getReturnType()),
5998         GeneralizedParams, FnType->getExtProtoInfo());
5999   }
6000 
6001   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6002     return Ctx.getFunctionNoProtoType(
6003         GeneralizeType(Ctx, FnType->getReturnType()));
6004 
6005   llvm_unreachable("Encountered unknown FunctionType");
6006 }
6007 
6008 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6009   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6010                                       GeneralizedMetadataIdMap, ".generalized");
6011 }
6012 
6013 /// Returns whether this module needs the "all-vtables" type identifier.
6014 bool CodeGenModule::NeedAllVtablesTypeId() const {
6015   // Returns true if at least one of vtable-based CFI checkers is enabled and
6016   // is not in the trapping mode.
6017   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6018            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6019           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6020            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6021           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6022            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6023           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6024            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6025 }
6026 
6027 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6028                                           CharUnits Offset,
6029                                           const CXXRecordDecl *RD) {
6030   llvm::Metadata *MD =
6031       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6032   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6033 
6034   if (CodeGenOpts.SanitizeCfiCrossDso)
6035     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6036       VTable->addTypeMetadata(Offset.getQuantity(),
6037                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6038 
6039   if (NeedAllVtablesTypeId()) {
6040     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6041     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6042   }
6043 }
6044 
6045 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6046   if (!SanStats)
6047     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6048 
6049   return *SanStats;
6050 }
6051 llvm::Value *
6052 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6053                                                   CodeGenFunction &CGF) {
6054   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6055   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6056   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6057   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6058                                 "__translate_sampler_initializer"),
6059                                 {C});
6060 }
6061 
6062 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6063     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6064   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6065                                  /* forPointeeType= */ true);
6066 }
6067 
6068 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6069                                                  LValueBaseInfo *BaseInfo,
6070                                                  TBAAAccessInfo *TBAAInfo,
6071                                                  bool forPointeeType) {
6072   if (TBAAInfo)
6073     *TBAAInfo = getTBAAAccessInfo(T);
6074 
6075   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6076   // that doesn't return the information we need to compute BaseInfo.
6077 
6078   // Honor alignment typedef attributes even on incomplete types.
6079   // We also honor them straight for C++ class types, even as pointees;
6080   // there's an expressivity gap here.
6081   if (auto TT = T->getAs<TypedefType>()) {
6082     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6083       if (BaseInfo)
6084         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6085       return getContext().toCharUnitsFromBits(Align);
6086     }
6087   }
6088 
6089   bool AlignForArray = T->isArrayType();
6090 
6091   // Analyze the base element type, so we don't get confused by incomplete
6092   // array types.
6093   T = getContext().getBaseElementType(T);
6094 
6095   if (T->isIncompleteType()) {
6096     // We could try to replicate the logic from
6097     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6098     // type is incomplete, so it's impossible to test. We could try to reuse
6099     // getTypeAlignIfKnown, but that doesn't return the information we need
6100     // to set BaseInfo.  So just ignore the possibility that the alignment is
6101     // greater than one.
6102     if (BaseInfo)
6103       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6104     return CharUnits::One();
6105   }
6106 
6107   if (BaseInfo)
6108     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6109 
6110   CharUnits Alignment;
6111   // For C++ class pointees, we don't know whether we're pointing at a
6112   // base or a complete object, so we generally need to use the
6113   // non-virtual alignment.
6114   const CXXRecordDecl *RD;
6115   if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6116     Alignment = getClassPointerAlignment(RD);
6117   } else {
6118     Alignment = getContext().getTypeAlignInChars(T);
6119     if (T.getQualifiers().hasUnaligned())
6120       Alignment = CharUnits::One();
6121   }
6122 
6123   // Cap to the global maximum type alignment unless the alignment
6124   // was somehow explicit on the type.
6125   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6126     if (Alignment.getQuantity() > MaxAlign &&
6127         !getContext().isAlignmentRequired(T))
6128       Alignment = CharUnits::fromQuantity(MaxAlign);
6129   }
6130   return Alignment;
6131 }
6132 
6133 bool CodeGenModule::stopAutoInit() {
6134   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6135   if (StopAfter) {
6136     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6137     // used
6138     if (NumAutoVarInit >= StopAfter) {
6139       return true;
6140     }
6141     if (!NumAutoVarInit) {
6142       unsigned DiagID = getDiags().getCustomDiagID(
6143           DiagnosticsEngine::Warning,
6144           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6145           "number of times ftrivial-auto-var-init=%1 gets applied.");
6146       getDiags().Report(DiagID)
6147           << StopAfter
6148           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6149                       LangOptions::TrivialAutoVarInitKind::Zero
6150                   ? "zero"
6151                   : "pattern");
6152     }
6153     ++NumAutoVarInit;
6154   }
6155   return false;
6156 }
6157