1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CharInfo.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Basic/Version.h" 39 #include "clang/Frontend/CodeGenOptions.h" 40 #include "clang/Sema/SemaDiagnostic.h" 41 #include "llvm/ADT/APSInt.h" 42 #include "llvm/ADT/Triple.h" 43 #include "llvm/IR/CallingConv.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/CallSite.h" 49 #include "llvm/Support/ConvertUTF.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Target/Mangler.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::GenericItanium: 64 return *CreateItaniumCXXABI(CGM); 65 case TargetCXXABI::Microsoft: 66 return *CreateMicrosoftCXXABI(CGM); 67 } 68 69 llvm_unreachable("invalid C++ ABI kind"); 70 } 71 72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 73 llvm::Module &M, const llvm::DataLayout &TD, 74 DiagnosticsEngine &diags) 75 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 76 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 77 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 78 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 79 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 80 NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0), 81 ConstantStringClassRef(0), NSConstantStringType(0), 82 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 83 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 84 LifetimeStartFn(0), LifetimeEndFn(0), 85 SanitizerBlacklist( 86 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 87 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 88 : LangOpts.Sanitize) { 89 90 // Initialize the type cache. 91 llvm::LLVMContext &LLVMContext = M.getContext(); 92 VoidTy = llvm::Type::getVoidTy(LLVMContext); 93 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 94 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 95 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 96 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 97 FloatTy = llvm::Type::getFloatTy(LLVMContext); 98 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 99 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 100 PointerAlignInBytes = 101 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 102 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 103 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 104 Int8PtrTy = Int8Ty->getPointerTo(0); 105 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 106 107 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 108 109 if (LangOpts.ObjC1) 110 createObjCRuntime(); 111 if (LangOpts.OpenCL) 112 createOpenCLRuntime(); 113 if (LangOpts.CUDA) 114 createCUDARuntime(); 115 116 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 117 if (SanOpts.Thread || 118 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 119 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 120 ABI.getMangleContext()); 121 122 // If debug info or coverage generation is enabled, create the CGDebugInfo 123 // object. 124 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 125 CodeGenOpts.EmitGcovArcs || 126 CodeGenOpts.EmitGcovNotes) 127 DebugInfo = new CGDebugInfo(*this); 128 129 Block.GlobalUniqueCount = 0; 130 131 if (C.getLangOpts().ObjCAutoRefCount) 132 ARCData = new ARCEntrypoints(); 133 RRData = new RREntrypoints(); 134 } 135 136 CodeGenModule::~CodeGenModule() { 137 delete ObjCRuntime; 138 delete OpenCLRuntime; 139 delete CUDARuntime; 140 delete TheTargetCodeGenInfo; 141 delete &ABI; 142 delete TBAA; 143 delete DebugInfo; 144 delete ARCData; 145 delete RRData; 146 } 147 148 void CodeGenModule::createObjCRuntime() { 149 // This is just isGNUFamily(), but we want to force implementors of 150 // new ABIs to decide how best to do this. 151 switch (LangOpts.ObjCRuntime.getKind()) { 152 case ObjCRuntime::GNUstep: 153 case ObjCRuntime::GCC: 154 case ObjCRuntime::ObjFW: 155 ObjCRuntime = CreateGNUObjCRuntime(*this); 156 return; 157 158 case ObjCRuntime::FragileMacOSX: 159 case ObjCRuntime::MacOSX: 160 case ObjCRuntime::iOS: 161 ObjCRuntime = CreateMacObjCRuntime(*this); 162 return; 163 } 164 llvm_unreachable("bad runtime kind"); 165 } 166 167 void CodeGenModule::createOpenCLRuntime() { 168 OpenCLRuntime = new CGOpenCLRuntime(*this); 169 } 170 171 void CodeGenModule::createCUDARuntime() { 172 CUDARuntime = CreateNVCUDARuntime(*this); 173 } 174 175 void CodeGenModule::applyReplacements() { 176 for (ReplacementsTy::iterator I = Replacements.begin(), 177 E = Replacements.end(); 178 I != E; ++I) { 179 StringRef MangledName = I->first(); 180 llvm::Constant *Replacement = I->second; 181 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 182 if (!Entry) 183 continue; 184 llvm::Function *OldF = cast<llvm::Function>(Entry); 185 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 186 if (!NewF) { 187 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 188 assert(CE->getOpcode() == llvm::Instruction::BitCast || 189 CE->getOpcode() == llvm::Instruction::GetElementPtr); 190 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 191 } 192 193 // Replace old with new, but keep the old order. 194 OldF->replaceAllUsesWith(Replacement); 195 if (NewF) { 196 NewF->removeFromParent(); 197 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 198 } 199 OldF->eraseFromParent(); 200 } 201 } 202 203 void CodeGenModule::checkAliases() { 204 bool Error = false; 205 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 206 E = Aliases.end(); I != E; ++I) { 207 const GlobalDecl &GD = *I; 208 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 209 const AliasAttr *AA = D->getAttr<AliasAttr>(); 210 StringRef MangledName = getMangledName(GD); 211 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 212 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 213 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 214 if (GV->isDeclaration()) { 215 Error = true; 216 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 217 } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) { 218 Error = true; 219 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 220 } 221 } 222 if (!Error) 223 return; 224 225 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 226 E = Aliases.end(); I != E; ++I) { 227 const GlobalDecl &GD = *I; 228 StringRef MangledName = getMangledName(GD); 229 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 230 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 231 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 232 Alias->eraseFromParent(); 233 } 234 } 235 236 void CodeGenModule::clear() { 237 DeferredDeclsToEmit.clear(); 238 } 239 240 void CodeGenModule::Release() { 241 EmitDeferred(); 242 applyReplacements(); 243 checkAliases(); 244 EmitCXXGlobalInitFunc(); 245 EmitCXXGlobalDtorFunc(); 246 EmitCXXThreadLocalInitFunc(); 247 if (ObjCRuntime) 248 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 249 AddGlobalCtor(ObjCInitFunction); 250 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 251 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 252 EmitGlobalAnnotations(); 253 EmitStaticExternCAliases(); 254 EmitLLVMUsed(); 255 256 if (CodeGenOpts.Autolink && 257 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 258 EmitModuleLinkOptions(); 259 } 260 if (CodeGenOpts.DwarfVersion) 261 // We actually want the latest version when there are conflicts. 262 // We can change from Warning to Latest if such mode is supported. 263 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 264 CodeGenOpts.DwarfVersion); 265 if (DebugInfo) 266 // We support a single version in the linked module: error out when 267 // modules do not have the same version. We are going to implement dropping 268 // debug info when the version number is not up-to-date. Once that is 269 // done, the bitcode linker is not going to see modules with different 270 // version numbers. 271 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 272 llvm::DEBUG_METADATA_VERSION); 273 274 SimplifyPersonality(); 275 276 if (getCodeGenOpts().EmitDeclMetadata) 277 EmitDeclMetadata(); 278 279 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 280 EmitCoverageFile(); 281 282 if (DebugInfo) 283 DebugInfo->finalize(); 284 285 EmitVersionIdentMetadata(); 286 } 287 288 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 289 // Make sure that this type is translated. 290 Types.UpdateCompletedType(TD); 291 } 292 293 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 294 if (!TBAA) 295 return 0; 296 return TBAA->getTBAAInfo(QTy); 297 } 298 299 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 300 if (!TBAA) 301 return 0; 302 return TBAA->getTBAAInfoForVTablePtr(); 303 } 304 305 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 306 if (!TBAA) 307 return 0; 308 return TBAA->getTBAAStructInfo(QTy); 309 } 310 311 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 312 if (!TBAA) 313 return 0; 314 return TBAA->getTBAAStructTypeInfo(QTy); 315 } 316 317 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 318 llvm::MDNode *AccessN, 319 uint64_t O) { 320 if (!TBAA) 321 return 0; 322 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 323 } 324 325 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 326 /// and struct-path aware TBAA, the tag has the same format: 327 /// base type, access type and offset. 328 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 329 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 330 llvm::MDNode *TBAAInfo, 331 bool ConvertTypeToTag) { 332 if (ConvertTypeToTag && TBAA) 333 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 334 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 335 else 336 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 337 } 338 339 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 340 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 341 getDiags().Report(Context.getFullLoc(loc), diagID); 342 } 343 344 /// ErrorUnsupported - Print out an error that codegen doesn't support the 345 /// specified stmt yet. 346 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 347 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 348 "cannot compile this %0 yet"); 349 std::string Msg = Type; 350 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 351 << Msg << S->getSourceRange(); 352 } 353 354 /// ErrorUnsupported - Print out an error that codegen doesn't support the 355 /// specified decl yet. 356 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 357 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 358 "cannot compile this %0 yet"); 359 std::string Msg = Type; 360 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 361 } 362 363 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 364 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 365 } 366 367 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 368 const NamedDecl *D) const { 369 // Internal definitions always have default visibility. 370 if (GV->hasLocalLinkage()) { 371 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 372 return; 373 } 374 375 // Set visibility for definitions. 376 LinkageInfo LV = D->getLinkageAndVisibility(); 377 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 378 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 379 } 380 381 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 382 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 383 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 384 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 385 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 386 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 387 } 388 389 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 390 CodeGenOptions::TLSModel M) { 391 switch (M) { 392 case CodeGenOptions::GeneralDynamicTLSModel: 393 return llvm::GlobalVariable::GeneralDynamicTLSModel; 394 case CodeGenOptions::LocalDynamicTLSModel: 395 return llvm::GlobalVariable::LocalDynamicTLSModel; 396 case CodeGenOptions::InitialExecTLSModel: 397 return llvm::GlobalVariable::InitialExecTLSModel; 398 case CodeGenOptions::LocalExecTLSModel: 399 return llvm::GlobalVariable::LocalExecTLSModel; 400 } 401 llvm_unreachable("Invalid TLS model!"); 402 } 403 404 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 405 const VarDecl &D) const { 406 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 407 408 llvm::GlobalVariable::ThreadLocalMode TLM; 409 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 410 411 // Override the TLS model if it is explicitly specified. 412 if (D.hasAttr<TLSModelAttr>()) { 413 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 414 TLM = GetLLVMTLSModel(Attr->getModel()); 415 } 416 417 GV->setThreadLocalMode(TLM); 418 } 419 420 /// Set the symbol visibility of type information (vtable and RTTI) 421 /// associated with the given type. 422 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 423 const CXXRecordDecl *RD, 424 TypeVisibilityKind TVK) const { 425 setGlobalVisibility(GV, RD); 426 427 if (!CodeGenOpts.HiddenWeakVTables) 428 return; 429 430 // We never want to drop the visibility for RTTI names. 431 if (TVK == TVK_ForRTTIName) 432 return; 433 434 // We want to drop the visibility to hidden for weak type symbols. 435 // This isn't possible if there might be unresolved references 436 // elsewhere that rely on this symbol being visible. 437 438 // This should be kept roughly in sync with setThunkVisibility 439 // in CGVTables.cpp. 440 441 // Preconditions. 442 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 443 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 444 return; 445 446 // Don't override an explicit visibility attribute. 447 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 448 return; 449 450 switch (RD->getTemplateSpecializationKind()) { 451 // We have to disable the optimization if this is an EI definition 452 // because there might be EI declarations in other shared objects. 453 case TSK_ExplicitInstantiationDefinition: 454 case TSK_ExplicitInstantiationDeclaration: 455 return; 456 457 // Every use of a non-template class's type information has to emit it. 458 case TSK_Undeclared: 459 break; 460 461 // In theory, implicit instantiations can ignore the possibility of 462 // an explicit instantiation declaration because there necessarily 463 // must be an EI definition somewhere with default visibility. In 464 // practice, it's possible to have an explicit instantiation for 465 // an arbitrary template class, and linkers aren't necessarily able 466 // to deal with mixed-visibility symbols. 467 case TSK_ExplicitSpecialization: 468 case TSK_ImplicitInstantiation: 469 return; 470 } 471 472 // If there's a key function, there may be translation units 473 // that don't have the key function's definition. But ignore 474 // this if we're emitting RTTI under -fno-rtti. 475 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 476 // FIXME: what should we do if we "lose" the key function during 477 // the emission of the file? 478 if (Context.getCurrentKeyFunction(RD)) 479 return; 480 } 481 482 // Otherwise, drop the visibility to hidden. 483 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 484 GV->setUnnamedAddr(true); 485 } 486 487 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 488 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 489 490 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 491 if (!Str.empty()) 492 return Str; 493 494 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 495 IdentifierInfo *II = ND->getIdentifier(); 496 assert(II && "Attempt to mangle unnamed decl."); 497 498 Str = II->getName(); 499 return Str; 500 } 501 502 SmallString<256> Buffer; 503 llvm::raw_svector_ostream Out(Buffer); 504 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 505 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 506 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 507 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 508 else 509 getCXXABI().getMangleContext().mangleName(ND, Out); 510 511 // Allocate space for the mangled name. 512 Out.flush(); 513 size_t Length = Buffer.size(); 514 char *Name = MangledNamesAllocator.Allocate<char>(Length); 515 std::copy(Buffer.begin(), Buffer.end(), Name); 516 517 Str = StringRef(Name, Length); 518 519 return Str; 520 } 521 522 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 523 const BlockDecl *BD) { 524 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 525 const Decl *D = GD.getDecl(); 526 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 527 if (D == 0) 528 MangleCtx.mangleGlobalBlock(BD, 529 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 530 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 531 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 532 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 533 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 534 else 535 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 536 } 537 538 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 539 return getModule().getNamedValue(Name); 540 } 541 542 /// AddGlobalCtor - Add a function to the list that will be called before 543 /// main() runs. 544 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 545 // FIXME: Type coercion of void()* types. 546 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 547 } 548 549 /// AddGlobalDtor - Add a function to the list that will be called 550 /// when the module is unloaded. 551 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 552 // FIXME: Type coercion of void()* types. 553 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 554 } 555 556 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 557 // Ctor function type is void()*. 558 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 559 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 560 561 // Get the type of a ctor entry, { i32, void ()* }. 562 llvm::StructType *CtorStructTy = 563 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 564 565 // Construct the constructor and destructor arrays. 566 SmallVector<llvm::Constant*, 8> Ctors; 567 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 568 llvm::Constant *S[] = { 569 llvm::ConstantInt::get(Int32Ty, I->second, false), 570 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 571 }; 572 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 573 } 574 575 if (!Ctors.empty()) { 576 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 577 new llvm::GlobalVariable(TheModule, AT, false, 578 llvm::GlobalValue::AppendingLinkage, 579 llvm::ConstantArray::get(AT, Ctors), 580 GlobalName); 581 } 582 } 583 584 llvm::GlobalValue::LinkageTypes 585 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 586 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 587 588 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 589 590 if (Linkage == GVA_Internal) 591 return llvm::Function::InternalLinkage; 592 593 if (D->hasAttr<DLLExportAttr>()) 594 return llvm::Function::DLLExportLinkage; 595 596 if (D->hasAttr<WeakAttr>()) 597 return llvm::Function::WeakAnyLinkage; 598 599 // In C99 mode, 'inline' functions are guaranteed to have a strong 600 // definition somewhere else, so we can use available_externally linkage. 601 if (Linkage == GVA_C99Inline) 602 return llvm::Function::AvailableExternallyLinkage; 603 604 // Note that Apple's kernel linker doesn't support symbol 605 // coalescing, so we need to avoid linkonce and weak linkages there. 606 // Normally, this means we just map to internal, but for explicit 607 // instantiations we'll map to external. 608 609 // In C++, the compiler has to emit a definition in every translation unit 610 // that references the function. We should use linkonce_odr because 611 // a) if all references in this translation unit are optimized away, we 612 // don't need to codegen it. b) if the function persists, it needs to be 613 // merged with other definitions. c) C++ has the ODR, so we know the 614 // definition is dependable. 615 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 616 return !Context.getLangOpts().AppleKext 617 ? llvm::Function::LinkOnceODRLinkage 618 : llvm::Function::InternalLinkage; 619 620 // An explicit instantiation of a template has weak linkage, since 621 // explicit instantiations can occur in multiple translation units 622 // and must all be equivalent. However, we are not allowed to 623 // throw away these explicit instantiations. 624 if (Linkage == GVA_ExplicitTemplateInstantiation) 625 return !Context.getLangOpts().AppleKext 626 ? llvm::Function::WeakODRLinkage 627 : llvm::Function::ExternalLinkage; 628 629 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 630 // emitted on an as-needed basis. 631 if (isa<CXXDestructorDecl>(D) && 632 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 633 GD.getDtorType())) 634 return llvm::Function::LinkOnceODRLinkage; 635 636 // Otherwise, we have strong external linkage. 637 assert(Linkage == GVA_StrongExternal); 638 return llvm::Function::ExternalLinkage; 639 } 640 641 642 /// SetFunctionDefinitionAttributes - Set attributes for a global. 643 /// 644 /// FIXME: This is currently only done for aliases and functions, but not for 645 /// variables (these details are set in EmitGlobalVarDefinition for variables). 646 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 647 llvm::GlobalValue *GV) { 648 SetCommonAttributes(D, GV); 649 } 650 651 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 652 const CGFunctionInfo &Info, 653 llvm::Function *F) { 654 unsigned CallingConv; 655 AttributeListType AttributeList; 656 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 657 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 658 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 659 } 660 661 /// Determines whether the language options require us to model 662 /// unwind exceptions. We treat -fexceptions as mandating this 663 /// except under the fragile ObjC ABI with only ObjC exceptions 664 /// enabled. This means, for example, that C with -fexceptions 665 /// enables this. 666 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 667 // If exceptions are completely disabled, obviously this is false. 668 if (!LangOpts.Exceptions) return false; 669 670 // If C++ exceptions are enabled, this is true. 671 if (LangOpts.CXXExceptions) return true; 672 673 // If ObjC exceptions are enabled, this depends on the ABI. 674 if (LangOpts.ObjCExceptions) { 675 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 676 } 677 678 return true; 679 } 680 681 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 682 llvm::Function *F) { 683 llvm::AttrBuilder B; 684 685 if (CodeGenOpts.UnwindTables) 686 B.addAttribute(llvm::Attribute::UWTable); 687 688 if (!hasUnwindExceptions(LangOpts)) 689 B.addAttribute(llvm::Attribute::NoUnwind); 690 691 if (D->hasAttr<NakedAttr>()) { 692 // Naked implies noinline: we should not be inlining such functions. 693 B.addAttribute(llvm::Attribute::Naked); 694 B.addAttribute(llvm::Attribute::NoInline); 695 } else if (D->hasAttr<NoInlineAttr>()) { 696 B.addAttribute(llvm::Attribute::NoInline); 697 } else if ((D->hasAttr<AlwaysInlineAttr>() || 698 D->hasAttr<ForceInlineAttr>()) && 699 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 700 llvm::Attribute::NoInline)) { 701 // (noinline wins over always_inline, and we can't specify both in IR) 702 B.addAttribute(llvm::Attribute::AlwaysInline); 703 } 704 705 if (D->hasAttr<ColdAttr>()) { 706 B.addAttribute(llvm::Attribute::OptimizeForSize); 707 B.addAttribute(llvm::Attribute::Cold); 708 } 709 710 if (D->hasAttr<MinSizeAttr>()) 711 B.addAttribute(llvm::Attribute::MinSize); 712 713 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 714 B.addAttribute(llvm::Attribute::StackProtect); 715 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 716 B.addAttribute(llvm::Attribute::StackProtectReq); 717 718 // Add sanitizer attributes if function is not blacklisted. 719 if (!SanitizerBlacklist->isIn(*F)) { 720 // When AddressSanitizer is enabled, set SanitizeAddress attribute 721 // unless __attribute__((no_sanitize_address)) is used. 722 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 723 B.addAttribute(llvm::Attribute::SanitizeAddress); 724 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 725 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 726 B.addAttribute(llvm::Attribute::SanitizeThread); 727 } 728 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 729 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 730 B.addAttribute(llvm::Attribute::SanitizeMemory); 731 } 732 733 F->addAttributes(llvm::AttributeSet::FunctionIndex, 734 llvm::AttributeSet::get( 735 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 736 737 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 738 F->setUnnamedAddr(true); 739 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 740 if (MD->isVirtual()) 741 F->setUnnamedAddr(true); 742 743 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 744 if (alignment) 745 F->setAlignment(alignment); 746 747 // C++ ABI requires 2-byte alignment for member functions. 748 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 749 F->setAlignment(2); 750 } 751 752 void CodeGenModule::SetCommonAttributes(const Decl *D, 753 llvm::GlobalValue *GV) { 754 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 755 setGlobalVisibility(GV, ND); 756 else 757 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 758 759 if (D->hasAttr<UsedAttr>()) 760 AddUsedGlobal(GV); 761 762 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 763 GV->setSection(SA->getName()); 764 765 // Alias cannot have attributes. Filter them here. 766 if (!isa<llvm::GlobalAlias>(GV)) 767 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 768 } 769 770 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 771 llvm::Function *F, 772 const CGFunctionInfo &FI) { 773 SetLLVMFunctionAttributes(D, FI, F); 774 SetLLVMFunctionAttributesForDefinition(D, F); 775 776 F->setLinkage(llvm::Function::InternalLinkage); 777 778 SetCommonAttributes(D, F); 779 } 780 781 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 782 llvm::Function *F, 783 bool IsIncompleteFunction) { 784 if (unsigned IID = F->getIntrinsicID()) { 785 // If this is an intrinsic function, set the function's attributes 786 // to the intrinsic's attributes. 787 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 788 (llvm::Intrinsic::ID)IID)); 789 return; 790 } 791 792 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 793 794 if (!IsIncompleteFunction) 795 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 796 797 if (getCXXABI().HasThisReturn(GD)) { 798 assert(!F->arg_empty() && 799 F->arg_begin()->getType() 800 ->canLosslesslyBitCastTo(F->getReturnType()) && 801 "unexpected this return"); 802 F->addAttribute(1, llvm::Attribute::Returned); 803 } 804 805 // Only a few attributes are set on declarations; these may later be 806 // overridden by a definition. 807 808 if (FD->hasAttr<DLLImportAttr>()) { 809 F->setLinkage(llvm::Function::DLLImportLinkage); 810 } else if (FD->hasAttr<WeakAttr>() || 811 FD->isWeakImported()) { 812 // "extern_weak" is overloaded in LLVM; we probably should have 813 // separate linkage types for this. 814 F->setLinkage(llvm::Function::ExternalWeakLinkage); 815 } else { 816 F->setLinkage(llvm::Function::ExternalLinkage); 817 818 LinkageInfo LV = FD->getLinkageAndVisibility(); 819 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 820 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 821 } 822 } 823 824 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 825 F->setSection(SA->getName()); 826 827 // A replaceable global allocation function does not act like a builtin by 828 // default, only if it is invoked by a new-expression or delete-expression. 829 if (FD->isReplaceableGlobalAllocationFunction()) 830 F->addAttribute(llvm::AttributeSet::FunctionIndex, 831 llvm::Attribute::NoBuiltin); 832 } 833 834 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 835 assert(!GV->isDeclaration() && 836 "Only globals with definition can force usage."); 837 LLVMUsed.push_back(GV); 838 } 839 840 void CodeGenModule::EmitLLVMUsed() { 841 // Don't create llvm.used if there is no need. 842 if (LLVMUsed.empty()) 843 return; 844 845 // Convert LLVMUsed to what ConstantArray needs. 846 SmallVector<llvm::Constant*, 8> UsedArray; 847 UsedArray.resize(LLVMUsed.size()); 848 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 849 UsedArray[i] = 850 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 851 Int8PtrTy); 852 } 853 854 if (UsedArray.empty()) 855 return; 856 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 857 858 llvm::GlobalVariable *GV = 859 new llvm::GlobalVariable(getModule(), ATy, false, 860 llvm::GlobalValue::AppendingLinkage, 861 llvm::ConstantArray::get(ATy, UsedArray), 862 "llvm.used"); 863 864 GV->setSection("llvm.metadata"); 865 } 866 867 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 868 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 869 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 870 } 871 872 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 873 llvm::SmallString<32> Opt; 874 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 875 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 876 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 877 } 878 879 void CodeGenModule::AddDependentLib(StringRef Lib) { 880 llvm::SmallString<24> Opt; 881 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 882 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 883 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 884 } 885 886 /// \brief Add link options implied by the given module, including modules 887 /// it depends on, using a postorder walk. 888 static void addLinkOptionsPostorder(CodeGenModule &CGM, 889 Module *Mod, 890 SmallVectorImpl<llvm::Value *> &Metadata, 891 llvm::SmallPtrSet<Module *, 16> &Visited) { 892 // Import this module's parent. 893 if (Mod->Parent && Visited.insert(Mod->Parent)) { 894 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 895 } 896 897 // Import this module's dependencies. 898 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 899 if (Visited.insert(Mod->Imports[I-1])) 900 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 901 } 902 903 // Add linker options to link against the libraries/frameworks 904 // described by this module. 905 llvm::LLVMContext &Context = CGM.getLLVMContext(); 906 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 907 // Link against a framework. Frameworks are currently Darwin only, so we 908 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 909 if (Mod->LinkLibraries[I-1].IsFramework) { 910 llvm::Value *Args[2] = { 911 llvm::MDString::get(Context, "-framework"), 912 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 913 }; 914 915 Metadata.push_back(llvm::MDNode::get(Context, Args)); 916 continue; 917 } 918 919 // Link against a library. 920 llvm::SmallString<24> Opt; 921 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 922 Mod->LinkLibraries[I-1].Library, Opt); 923 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 924 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 925 } 926 } 927 928 void CodeGenModule::EmitModuleLinkOptions() { 929 // Collect the set of all of the modules we want to visit to emit link 930 // options, which is essentially the imported modules and all of their 931 // non-explicit child modules. 932 llvm::SetVector<clang::Module *> LinkModules; 933 llvm::SmallPtrSet<clang::Module *, 16> Visited; 934 SmallVector<clang::Module *, 16> Stack; 935 936 // Seed the stack with imported modules. 937 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 938 MEnd = ImportedModules.end(); 939 M != MEnd; ++M) { 940 if (Visited.insert(*M)) 941 Stack.push_back(*M); 942 } 943 944 // Find all of the modules to import, making a little effort to prune 945 // non-leaf modules. 946 while (!Stack.empty()) { 947 clang::Module *Mod = Stack.pop_back_val(); 948 949 bool AnyChildren = false; 950 951 // Visit the submodules of this module. 952 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 953 SubEnd = Mod->submodule_end(); 954 Sub != SubEnd; ++Sub) { 955 // Skip explicit children; they need to be explicitly imported to be 956 // linked against. 957 if ((*Sub)->IsExplicit) 958 continue; 959 960 if (Visited.insert(*Sub)) { 961 Stack.push_back(*Sub); 962 AnyChildren = true; 963 } 964 } 965 966 // We didn't find any children, so add this module to the list of 967 // modules to link against. 968 if (!AnyChildren) { 969 LinkModules.insert(Mod); 970 } 971 } 972 973 // Add link options for all of the imported modules in reverse topological 974 // order. We don't do anything to try to order import link flags with respect 975 // to linker options inserted by things like #pragma comment(). 976 SmallVector<llvm::Value *, 16> MetadataArgs; 977 Visited.clear(); 978 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 979 MEnd = LinkModules.end(); 980 M != MEnd; ++M) { 981 if (Visited.insert(*M)) 982 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 983 } 984 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 985 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 986 987 // Add the linker options metadata flag. 988 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 989 llvm::MDNode::get(getLLVMContext(), 990 LinkerOptionsMetadata)); 991 } 992 993 void CodeGenModule::EmitDeferred() { 994 // Emit code for any potentially referenced deferred decls. Since a 995 // previously unused static decl may become used during the generation of code 996 // for a static function, iterate until no changes are made. 997 998 while (true) { 999 if (!DeferredVTables.empty()) { 1000 EmitDeferredVTables(); 1001 1002 // Emitting a v-table doesn't directly cause more v-tables to 1003 // become deferred, although it can cause functions to be 1004 // emitted that then need those v-tables. 1005 assert(DeferredVTables.empty()); 1006 } 1007 1008 // Stop if we're out of both deferred v-tables and deferred declarations. 1009 if (DeferredDeclsToEmit.empty()) break; 1010 1011 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1012 GlobalDecl D = G.GD; 1013 llvm::GlobalValue *GV = G.GV; 1014 DeferredDeclsToEmit.pop_back(); 1015 1016 assert(GV == GetGlobalValue(getMangledName(D))); 1017 // Check to see if we've already emitted this. This is necessary 1018 // for a couple of reasons: first, decls can end up in the 1019 // deferred-decls queue multiple times, and second, decls can end 1020 // up with definitions in unusual ways (e.g. by an extern inline 1021 // function acquiring a strong function redefinition). Just 1022 // ignore these cases. 1023 if(!GV->isDeclaration()) 1024 continue; 1025 1026 // Otherwise, emit the definition and move on to the next one. 1027 EmitGlobalDefinition(D, GV); 1028 } 1029 } 1030 1031 void CodeGenModule::EmitGlobalAnnotations() { 1032 if (Annotations.empty()) 1033 return; 1034 1035 // Create a new global variable for the ConstantStruct in the Module. 1036 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1037 Annotations[0]->getType(), Annotations.size()), Annotations); 1038 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1039 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1040 "llvm.global.annotations"); 1041 gv->setSection(AnnotationSection); 1042 } 1043 1044 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1045 llvm::Constant *&AStr = AnnotationStrings[Str]; 1046 if (AStr) 1047 return AStr; 1048 1049 // Not found yet, create a new global. 1050 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1051 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1052 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1053 gv->setSection(AnnotationSection); 1054 gv->setUnnamedAddr(true); 1055 AStr = gv; 1056 return gv; 1057 } 1058 1059 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1060 SourceManager &SM = getContext().getSourceManager(); 1061 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1062 if (PLoc.isValid()) 1063 return EmitAnnotationString(PLoc.getFilename()); 1064 return EmitAnnotationString(SM.getBufferName(Loc)); 1065 } 1066 1067 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1068 SourceManager &SM = getContext().getSourceManager(); 1069 PresumedLoc PLoc = SM.getPresumedLoc(L); 1070 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1071 SM.getExpansionLineNumber(L); 1072 return llvm::ConstantInt::get(Int32Ty, LineNo); 1073 } 1074 1075 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1076 const AnnotateAttr *AA, 1077 SourceLocation L) { 1078 // Get the globals for file name, annotation, and the line number. 1079 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1080 *UnitGV = EmitAnnotationUnit(L), 1081 *LineNoCst = EmitAnnotationLineNo(L); 1082 1083 // Create the ConstantStruct for the global annotation. 1084 llvm::Constant *Fields[4] = { 1085 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1086 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1087 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1088 LineNoCst 1089 }; 1090 return llvm::ConstantStruct::getAnon(Fields); 1091 } 1092 1093 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1094 llvm::GlobalValue *GV) { 1095 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1096 // Get the struct elements for these annotations. 1097 for (specific_attr_iterator<AnnotateAttr> 1098 ai = D->specific_attr_begin<AnnotateAttr>(), 1099 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1100 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1101 } 1102 1103 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1104 // Never defer when EmitAllDecls is specified. 1105 if (LangOpts.EmitAllDecls) 1106 return false; 1107 1108 return !getContext().DeclMustBeEmitted(Global); 1109 } 1110 1111 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1112 const CXXUuidofExpr* E) { 1113 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1114 // well-formed. 1115 StringRef Uuid = E->getUuidAsStringRef(Context); 1116 std::string Name = "_GUID_" + Uuid.lower(); 1117 std::replace(Name.begin(), Name.end(), '-', '_'); 1118 1119 // Look for an existing global. 1120 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1121 return GV; 1122 1123 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1124 assert(Init && "failed to initialize as constant"); 1125 1126 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1127 getModule(), Init->getType(), 1128 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1129 return GV; 1130 } 1131 1132 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1133 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1134 assert(AA && "No alias?"); 1135 1136 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1137 1138 // See if there is already something with the target's name in the module. 1139 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1140 if (Entry) { 1141 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1142 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1143 } 1144 1145 llvm::Constant *Aliasee; 1146 if (isa<llvm::FunctionType>(DeclTy)) 1147 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1148 GlobalDecl(cast<FunctionDecl>(VD)), 1149 /*ForVTable=*/false); 1150 else 1151 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1152 llvm::PointerType::getUnqual(DeclTy), 0); 1153 1154 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1155 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1156 WeakRefReferences.insert(F); 1157 1158 return Aliasee; 1159 } 1160 1161 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1162 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1163 1164 // Weak references don't produce any output by themselves. 1165 if (Global->hasAttr<WeakRefAttr>()) 1166 return; 1167 1168 // If this is an alias definition (which otherwise looks like a declaration) 1169 // emit it now. 1170 if (Global->hasAttr<AliasAttr>()) 1171 return EmitAliasDefinition(GD); 1172 1173 // If this is CUDA, be selective about which declarations we emit. 1174 if (LangOpts.CUDA) { 1175 if (CodeGenOpts.CUDAIsDevice) { 1176 if (!Global->hasAttr<CUDADeviceAttr>() && 1177 !Global->hasAttr<CUDAGlobalAttr>() && 1178 !Global->hasAttr<CUDAConstantAttr>() && 1179 !Global->hasAttr<CUDASharedAttr>()) 1180 return; 1181 } else { 1182 if (!Global->hasAttr<CUDAHostAttr>() && ( 1183 Global->hasAttr<CUDADeviceAttr>() || 1184 Global->hasAttr<CUDAConstantAttr>() || 1185 Global->hasAttr<CUDASharedAttr>())) 1186 return; 1187 } 1188 } 1189 1190 // Ignore declarations, they will be emitted on their first use. 1191 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1192 // Forward declarations are emitted lazily on first use. 1193 if (!FD->doesThisDeclarationHaveABody()) { 1194 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1195 return; 1196 1197 const FunctionDecl *InlineDefinition = 0; 1198 FD->getBody(InlineDefinition); 1199 1200 StringRef MangledName = getMangledName(GD); 1201 DeferredDecls.erase(MangledName); 1202 EmitGlobalDefinition(InlineDefinition); 1203 return; 1204 } 1205 } else { 1206 const VarDecl *VD = cast<VarDecl>(Global); 1207 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1208 1209 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1210 return; 1211 } 1212 1213 // Defer code generation when possible if this is a static definition, inline 1214 // function etc. These we only want to emit if they are used. 1215 if (!MayDeferGeneration(Global)) { 1216 // Emit the definition if it can't be deferred. 1217 EmitGlobalDefinition(GD); 1218 return; 1219 } 1220 1221 // If we're deferring emission of a C++ variable with an 1222 // initializer, remember the order in which it appeared in the file. 1223 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1224 cast<VarDecl>(Global)->hasInit()) { 1225 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1226 CXXGlobalInits.push_back(0); 1227 } 1228 1229 // If the value has already been used, add it directly to the 1230 // DeferredDeclsToEmit list. 1231 StringRef MangledName = getMangledName(GD); 1232 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1233 addDeferredDeclToEmit(GV, GD); 1234 else { 1235 // Otherwise, remember that we saw a deferred decl with this name. The 1236 // first use of the mangled name will cause it to move into 1237 // DeferredDeclsToEmit. 1238 DeferredDecls[MangledName] = GD; 1239 } 1240 } 1241 1242 namespace { 1243 struct FunctionIsDirectlyRecursive : 1244 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1245 const StringRef Name; 1246 const Builtin::Context &BI; 1247 bool Result; 1248 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1249 Name(N), BI(C), Result(false) { 1250 } 1251 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1252 1253 bool TraverseCallExpr(CallExpr *E) { 1254 const FunctionDecl *FD = E->getDirectCallee(); 1255 if (!FD) 1256 return true; 1257 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1258 if (Attr && Name == Attr->getLabel()) { 1259 Result = true; 1260 return false; 1261 } 1262 unsigned BuiltinID = FD->getBuiltinID(); 1263 if (!BuiltinID) 1264 return true; 1265 StringRef BuiltinName = BI.GetName(BuiltinID); 1266 if (BuiltinName.startswith("__builtin_") && 1267 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1268 Result = true; 1269 return false; 1270 } 1271 return true; 1272 } 1273 }; 1274 } 1275 1276 // isTriviallyRecursive - Check if this function calls another 1277 // decl that, because of the asm attribute or the other decl being a builtin, 1278 // ends up pointing to itself. 1279 bool 1280 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1281 StringRef Name; 1282 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1283 // asm labels are a special kind of mangling we have to support. 1284 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1285 if (!Attr) 1286 return false; 1287 Name = Attr->getLabel(); 1288 } else { 1289 Name = FD->getName(); 1290 } 1291 1292 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1293 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1294 return Walker.Result; 1295 } 1296 1297 bool 1298 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1299 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1300 return true; 1301 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1302 if (CodeGenOpts.OptimizationLevel == 0 && 1303 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1304 return false; 1305 // PR9614. Avoid cases where the source code is lying to us. An available 1306 // externally function should have an equivalent function somewhere else, 1307 // but a function that calls itself is clearly not equivalent to the real 1308 // implementation. 1309 // This happens in glibc's btowc and in some configure checks. 1310 return !isTriviallyRecursive(F); 1311 } 1312 1313 /// If the type for the method's class was generated by 1314 /// CGDebugInfo::createContextChain(), the cache contains only a 1315 /// limited DIType without any declarations. Since EmitFunctionStart() 1316 /// needs to find the canonical declaration for each method, we need 1317 /// to construct the complete type prior to emitting the method. 1318 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1319 if (!D->isInstance()) 1320 return; 1321 1322 if (CGDebugInfo *DI = getModuleDebugInfo()) 1323 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1324 const PointerType *ThisPtr = 1325 cast<PointerType>(D->getThisType(getContext())); 1326 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1327 } 1328 } 1329 1330 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1331 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1332 1333 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1334 Context.getSourceManager(), 1335 "Generating code for declaration"); 1336 1337 if (isa<FunctionDecl>(D)) { 1338 // At -O0, don't generate IR for functions with available_externally 1339 // linkage. 1340 if (!shouldEmitFunction(GD)) 1341 return; 1342 1343 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1344 CompleteDIClassType(Method); 1345 // Make sure to emit the definition(s) before we emit the thunks. 1346 // This is necessary for the generation of certain thunks. 1347 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1348 EmitCXXConstructor(CD, GD.getCtorType()); 1349 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1350 EmitCXXDestructor(DD, GD.getDtorType()); 1351 else 1352 EmitGlobalFunctionDefinition(GD, GV); 1353 1354 if (Method->isVirtual()) 1355 getVTables().EmitThunks(GD); 1356 1357 return; 1358 } 1359 1360 return EmitGlobalFunctionDefinition(GD, GV); 1361 } 1362 1363 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1364 return EmitGlobalVarDefinition(VD); 1365 1366 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1367 } 1368 1369 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1370 /// module, create and return an llvm Function with the specified type. If there 1371 /// is something in the module with the specified name, return it potentially 1372 /// bitcasted to the right type. 1373 /// 1374 /// If D is non-null, it specifies a decl that correspond to this. This is used 1375 /// to set the attributes on the function when it is first created. 1376 llvm::Constant * 1377 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1378 llvm::Type *Ty, 1379 GlobalDecl GD, bool ForVTable, 1380 bool DontDefer, 1381 llvm::AttributeSet ExtraAttrs) { 1382 const Decl *D = GD.getDecl(); 1383 1384 // Lookup the entry, lazily creating it if necessary. 1385 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1386 if (Entry) { 1387 if (WeakRefReferences.erase(Entry)) { 1388 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1389 if (FD && !FD->hasAttr<WeakAttr>()) 1390 Entry->setLinkage(llvm::Function::ExternalLinkage); 1391 } 1392 1393 if (Entry->getType()->getElementType() == Ty) 1394 return Entry; 1395 1396 // Make sure the result is of the correct type. 1397 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1398 } 1399 1400 // This function doesn't have a complete type (for example, the return 1401 // type is an incomplete struct). Use a fake type instead, and make 1402 // sure not to try to set attributes. 1403 bool IsIncompleteFunction = false; 1404 1405 llvm::FunctionType *FTy; 1406 if (isa<llvm::FunctionType>(Ty)) { 1407 FTy = cast<llvm::FunctionType>(Ty); 1408 } else { 1409 FTy = llvm::FunctionType::get(VoidTy, false); 1410 IsIncompleteFunction = true; 1411 } 1412 1413 llvm::Function *F = llvm::Function::Create(FTy, 1414 llvm::Function::ExternalLinkage, 1415 MangledName, &getModule()); 1416 assert(F->getName() == MangledName && "name was uniqued!"); 1417 if (D) 1418 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1419 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1420 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1421 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1422 llvm::AttributeSet::get(VMContext, 1423 llvm::AttributeSet::FunctionIndex, 1424 B)); 1425 } 1426 1427 if (!DontDefer) { 1428 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1429 // each other bottoming out with the base dtor. Therefore we emit non-base 1430 // dtors on usage, even if there is no dtor definition in the TU. 1431 if (D && isa<CXXDestructorDecl>(D) && 1432 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1433 GD.getDtorType())) 1434 addDeferredDeclToEmit(F, GD); 1435 1436 // This is the first use or definition of a mangled name. If there is a 1437 // deferred decl with this name, remember that we need to emit it at the end 1438 // of the file. 1439 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1440 if (DDI != DeferredDecls.end()) { 1441 // Move the potentially referenced deferred decl to the 1442 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1443 // don't need it anymore). 1444 addDeferredDeclToEmit(F, DDI->second); 1445 DeferredDecls.erase(DDI); 1446 1447 // Otherwise, if this is a sized deallocation function, emit a weak 1448 // definition 1449 // for it at the end of the translation unit. 1450 } else if (D && cast<FunctionDecl>(D) 1451 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1452 addDeferredDeclToEmit(F, GD); 1453 1454 // Otherwise, there are cases we have to worry about where we're 1455 // using a declaration for which we must emit a definition but where 1456 // we might not find a top-level definition: 1457 // - member functions defined inline in their classes 1458 // - friend functions defined inline in some class 1459 // - special member functions with implicit definitions 1460 // If we ever change our AST traversal to walk into class methods, 1461 // this will be unnecessary. 1462 // 1463 // We also don't emit a definition for a function if it's going to be an 1464 // entry 1465 // in a vtable, unless it's already marked as used. 1466 } else if (getLangOpts().CPlusPlus && D) { 1467 // Look for a declaration that's lexically in a record. 1468 const FunctionDecl *FD = cast<FunctionDecl>(D); 1469 FD = FD->getMostRecentDecl(); 1470 do { 1471 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1472 if (FD->isImplicit() && !ForVTable) { 1473 assert(FD->isUsed() && 1474 "Sema didn't mark implicit function as used!"); 1475 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1476 break; 1477 } else if (FD->doesThisDeclarationHaveABody()) { 1478 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1479 break; 1480 } 1481 } 1482 FD = FD->getPreviousDecl(); 1483 } while (FD); 1484 } 1485 } 1486 1487 // Make sure the result is of the requested type. 1488 if (!IsIncompleteFunction) { 1489 assert(F->getType()->getElementType() == Ty); 1490 return F; 1491 } 1492 1493 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1494 return llvm::ConstantExpr::getBitCast(F, PTy); 1495 } 1496 1497 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1498 /// non-null, then this function will use the specified type if it has to 1499 /// create it (this occurs when we see a definition of the function). 1500 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1501 llvm::Type *Ty, 1502 bool ForVTable, 1503 bool DontDefer) { 1504 // If there was no specific requested type, just convert it now. 1505 if (!Ty) 1506 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1507 1508 StringRef MangledName = getMangledName(GD); 1509 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1510 } 1511 1512 /// CreateRuntimeFunction - Create a new runtime function with the specified 1513 /// type and name. 1514 llvm::Constant * 1515 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1516 StringRef Name, 1517 llvm::AttributeSet ExtraAttrs) { 1518 llvm::Constant *C = 1519 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1520 /*DontDefer=*/false, ExtraAttrs); 1521 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1522 if (F->empty()) 1523 F->setCallingConv(getRuntimeCC()); 1524 return C; 1525 } 1526 1527 /// isTypeConstant - Determine whether an object of this type can be emitted 1528 /// as a constant. 1529 /// 1530 /// If ExcludeCtor is true, the duration when the object's constructor runs 1531 /// will not be considered. The caller will need to verify that the object is 1532 /// not written to during its construction. 1533 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1534 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1535 return false; 1536 1537 if (Context.getLangOpts().CPlusPlus) { 1538 if (const CXXRecordDecl *Record 1539 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1540 return ExcludeCtor && !Record->hasMutableFields() && 1541 Record->hasTrivialDestructor(); 1542 } 1543 1544 return true; 1545 } 1546 1547 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1548 /// create and return an llvm GlobalVariable with the specified type. If there 1549 /// is something in the module with the specified name, return it potentially 1550 /// bitcasted to the right type. 1551 /// 1552 /// If D is non-null, it specifies a decl that correspond to this. This is used 1553 /// to set the attributes on the global when it is first created. 1554 llvm::Constant * 1555 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1556 llvm::PointerType *Ty, 1557 const VarDecl *D, 1558 bool UnnamedAddr) { 1559 // Lookup the entry, lazily creating it if necessary. 1560 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1561 if (Entry) { 1562 if (WeakRefReferences.erase(Entry)) { 1563 if (D && !D->hasAttr<WeakAttr>()) 1564 Entry->setLinkage(llvm::Function::ExternalLinkage); 1565 } 1566 1567 if (UnnamedAddr) 1568 Entry->setUnnamedAddr(true); 1569 1570 if (Entry->getType() == Ty) 1571 return Entry; 1572 1573 // Make sure the result is of the correct type. 1574 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1575 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1576 1577 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1578 } 1579 1580 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1581 llvm::GlobalVariable *GV = 1582 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1583 llvm::GlobalValue::ExternalLinkage, 1584 0, MangledName, 0, 1585 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1586 1587 // This is the first use or definition of a mangled name. If there is a 1588 // deferred decl with this name, remember that we need to emit it at the end 1589 // of the file. 1590 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1591 if (DDI != DeferredDecls.end()) { 1592 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1593 // list, and remove it from DeferredDecls (since we don't need it anymore). 1594 addDeferredDeclToEmit(GV, DDI->second); 1595 DeferredDecls.erase(DDI); 1596 } 1597 1598 // Handle things which are present even on external declarations. 1599 if (D) { 1600 // FIXME: This code is overly simple and should be merged with other global 1601 // handling. 1602 GV->setConstant(isTypeConstant(D->getType(), false)); 1603 1604 // Set linkage and visibility in case we never see a definition. 1605 LinkageInfo LV = D->getLinkageAndVisibility(); 1606 if (LV.getLinkage() != ExternalLinkage) { 1607 // Don't set internal linkage on declarations. 1608 } else { 1609 if (D->hasAttr<DLLImportAttr>()) 1610 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1611 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1612 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1613 1614 // Set visibility on a declaration only if it's explicit. 1615 if (LV.isVisibilityExplicit()) 1616 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1617 } 1618 1619 if (D->getTLSKind()) { 1620 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1621 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1622 setTLSMode(GV, *D); 1623 } 1624 1625 // If required by the ABI, treat declarations of static data members with 1626 // inline initializers as definitions. 1627 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1628 D->isStaticDataMember() && D->hasInit() && 1629 !D->isThisDeclarationADefinition()) 1630 EmitGlobalVarDefinition(D); 1631 } 1632 1633 if (AddrSpace != Ty->getAddressSpace()) 1634 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1635 1636 return GV; 1637 } 1638 1639 1640 llvm::GlobalVariable * 1641 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1642 llvm::Type *Ty, 1643 llvm::GlobalValue::LinkageTypes Linkage) { 1644 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1645 llvm::GlobalVariable *OldGV = 0; 1646 1647 1648 if (GV) { 1649 // Check if the variable has the right type. 1650 if (GV->getType()->getElementType() == Ty) 1651 return GV; 1652 1653 // Because C++ name mangling, the only way we can end up with an already 1654 // existing global with the same name is if it has been declared extern "C". 1655 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1656 OldGV = GV; 1657 } 1658 1659 // Create a new variable. 1660 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1661 Linkage, 0, Name); 1662 1663 if (OldGV) { 1664 // Replace occurrences of the old variable if needed. 1665 GV->takeName(OldGV); 1666 1667 if (!OldGV->use_empty()) { 1668 llvm::Constant *NewPtrForOldDecl = 1669 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1670 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1671 } 1672 1673 OldGV->eraseFromParent(); 1674 } 1675 1676 return GV; 1677 } 1678 1679 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1680 /// given global variable. If Ty is non-null and if the global doesn't exist, 1681 /// then it will be created with the specified type instead of whatever the 1682 /// normal requested type would be. 1683 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1684 llvm::Type *Ty) { 1685 assert(D->hasGlobalStorage() && "Not a global variable"); 1686 QualType ASTTy = D->getType(); 1687 if (Ty == 0) 1688 Ty = getTypes().ConvertTypeForMem(ASTTy); 1689 1690 llvm::PointerType *PTy = 1691 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1692 1693 StringRef MangledName = getMangledName(D); 1694 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1695 } 1696 1697 /// CreateRuntimeVariable - Create a new runtime global variable with the 1698 /// specified type and name. 1699 llvm::Constant * 1700 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1701 StringRef Name) { 1702 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1703 true); 1704 } 1705 1706 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1707 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1708 1709 if (MayDeferGeneration(D)) { 1710 // If we have not seen a reference to this variable yet, place it 1711 // into the deferred declarations table to be emitted if needed 1712 // later. 1713 StringRef MangledName = getMangledName(D); 1714 if (!GetGlobalValue(MangledName)) { 1715 DeferredDecls[MangledName] = D; 1716 return; 1717 } 1718 } 1719 1720 // The tentative definition is the only definition. 1721 EmitGlobalVarDefinition(D); 1722 } 1723 1724 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1725 return Context.toCharUnitsFromBits( 1726 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1727 } 1728 1729 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1730 unsigned AddrSpace) { 1731 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1732 if (D->hasAttr<CUDAConstantAttr>()) 1733 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1734 else if (D->hasAttr<CUDASharedAttr>()) 1735 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1736 else 1737 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1738 } 1739 1740 return AddrSpace; 1741 } 1742 1743 template<typename SomeDecl> 1744 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1745 llvm::GlobalValue *GV) { 1746 if (!getLangOpts().CPlusPlus) 1747 return; 1748 1749 // Must have 'used' attribute, or else inline assembly can't rely on 1750 // the name existing. 1751 if (!D->template hasAttr<UsedAttr>()) 1752 return; 1753 1754 // Must have internal linkage and an ordinary name. 1755 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1756 return; 1757 1758 // Must be in an extern "C" context. Entities declared directly within 1759 // a record are not extern "C" even if the record is in such a context. 1760 const SomeDecl *First = D->getFirstDecl(); 1761 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1762 return; 1763 1764 // OK, this is an internal linkage entity inside an extern "C" linkage 1765 // specification. Make a note of that so we can give it the "expected" 1766 // mangled name if nothing else is using that name. 1767 std::pair<StaticExternCMap::iterator, bool> R = 1768 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1769 1770 // If we have multiple internal linkage entities with the same name 1771 // in extern "C" regions, none of them gets that name. 1772 if (!R.second) 1773 R.first->second = 0; 1774 } 1775 1776 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1777 llvm::Constant *Init = 0; 1778 QualType ASTTy = D->getType(); 1779 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1780 bool NeedsGlobalCtor = false; 1781 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1782 1783 const VarDecl *InitDecl; 1784 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1785 1786 if (!InitExpr) { 1787 // This is a tentative definition; tentative definitions are 1788 // implicitly initialized with { 0 }. 1789 // 1790 // Note that tentative definitions are only emitted at the end of 1791 // a translation unit, so they should never have incomplete 1792 // type. In addition, EmitTentativeDefinition makes sure that we 1793 // never attempt to emit a tentative definition if a real one 1794 // exists. A use may still exists, however, so we still may need 1795 // to do a RAUW. 1796 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1797 Init = EmitNullConstant(D->getType()); 1798 } else { 1799 initializedGlobalDecl = GlobalDecl(D); 1800 Init = EmitConstantInit(*InitDecl); 1801 1802 if (!Init) { 1803 QualType T = InitExpr->getType(); 1804 if (D->getType()->isReferenceType()) 1805 T = D->getType(); 1806 1807 if (getLangOpts().CPlusPlus) { 1808 Init = EmitNullConstant(T); 1809 NeedsGlobalCtor = true; 1810 } else { 1811 ErrorUnsupported(D, "static initializer"); 1812 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1813 } 1814 } else { 1815 // We don't need an initializer, so remove the entry for the delayed 1816 // initializer position (just in case this entry was delayed) if we 1817 // also don't need to register a destructor. 1818 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1819 DelayedCXXInitPosition.erase(D); 1820 } 1821 } 1822 1823 llvm::Type* InitType = Init->getType(); 1824 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1825 1826 // Strip off a bitcast if we got one back. 1827 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1828 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1829 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1830 // All zero index gep. 1831 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1832 Entry = CE->getOperand(0); 1833 } 1834 1835 // Entry is now either a Function or GlobalVariable. 1836 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1837 1838 // We have a definition after a declaration with the wrong type. 1839 // We must make a new GlobalVariable* and update everything that used OldGV 1840 // (a declaration or tentative definition) with the new GlobalVariable* 1841 // (which will be a definition). 1842 // 1843 // This happens if there is a prototype for a global (e.g. 1844 // "extern int x[];") and then a definition of a different type (e.g. 1845 // "int x[10];"). This also happens when an initializer has a different type 1846 // from the type of the global (this happens with unions). 1847 if (GV == 0 || 1848 GV->getType()->getElementType() != InitType || 1849 GV->getType()->getAddressSpace() != 1850 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1851 1852 // Move the old entry aside so that we'll create a new one. 1853 Entry->setName(StringRef()); 1854 1855 // Make a new global with the correct type, this is now guaranteed to work. 1856 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1857 1858 // Replace all uses of the old global with the new global 1859 llvm::Constant *NewPtrForOldDecl = 1860 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1861 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1862 1863 // Erase the old global, since it is no longer used. 1864 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1865 } 1866 1867 MaybeHandleStaticInExternC(D, GV); 1868 1869 if (D->hasAttr<AnnotateAttr>()) 1870 AddGlobalAnnotations(D, GV); 1871 1872 GV->setInitializer(Init); 1873 1874 // If it is safe to mark the global 'constant', do so now. 1875 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1876 isTypeConstant(D->getType(), true)); 1877 1878 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1879 1880 // Set the llvm linkage type as appropriate. 1881 llvm::GlobalValue::LinkageTypes Linkage = 1882 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1883 GV->setLinkage(Linkage); 1884 1885 // If required by the ABI, give definitions of static data members with inline 1886 // initializers linkonce_odr linkage. 1887 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1888 D->isStaticDataMember() && InitExpr && 1889 !InitDecl->isThisDeclarationADefinition()) 1890 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1891 1892 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1893 // common vars aren't constant even if declared const. 1894 GV->setConstant(false); 1895 1896 SetCommonAttributes(D, GV); 1897 1898 // Emit the initializer function if necessary. 1899 if (NeedsGlobalCtor || NeedsGlobalDtor) 1900 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1901 1902 // If we are compiling with ASan, add metadata indicating dynamically 1903 // initialized globals. 1904 if (SanOpts.Address && NeedsGlobalCtor) { 1905 llvm::Module &M = getModule(); 1906 1907 llvm::NamedMDNode *DynamicInitializers = 1908 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1909 llvm::Value *GlobalToAdd[] = { GV }; 1910 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1911 DynamicInitializers->addOperand(ThisGlobal); 1912 } 1913 1914 // Emit global variable debug information. 1915 if (CGDebugInfo *DI = getModuleDebugInfo()) 1916 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1917 DI->EmitGlobalVariable(GV, D); 1918 } 1919 1920 llvm::GlobalValue::LinkageTypes 1921 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1922 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1923 if (Linkage == GVA_Internal) 1924 return llvm::Function::InternalLinkage; 1925 else if (D->hasAttr<DLLImportAttr>()) 1926 return llvm::Function::DLLImportLinkage; 1927 else if (D->hasAttr<DLLExportAttr>()) 1928 return llvm::Function::DLLExportLinkage; 1929 else if (D->hasAttr<SelectAnyAttr>()) { 1930 // selectany symbols are externally visible, so use weak instead of 1931 // linkonce. MSVC optimizes away references to const selectany globals, so 1932 // all definitions should be the same and ODR linkage should be used. 1933 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1934 return llvm::GlobalVariable::WeakODRLinkage; 1935 } else if (D->hasAttr<WeakAttr>()) { 1936 if (isConstant) 1937 return llvm::GlobalVariable::WeakODRLinkage; 1938 else 1939 return llvm::GlobalVariable::WeakAnyLinkage; 1940 } else if (Linkage == GVA_TemplateInstantiation || 1941 Linkage == GVA_ExplicitTemplateInstantiation) 1942 return llvm::GlobalVariable::WeakODRLinkage; 1943 else if (!getLangOpts().CPlusPlus && 1944 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1945 D->getAttr<CommonAttr>()) && 1946 !D->hasExternalStorage() && !D->getInit() && 1947 !D->getAttr<SectionAttr>() && !D->getTLSKind() && 1948 !D->getAttr<WeakImportAttr>()) { 1949 // Thread local vars aren't considered common linkage. 1950 return llvm::GlobalVariable::CommonLinkage; 1951 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1952 getTarget().getTriple().isMacOSX()) 1953 // On Darwin, the backing variable for a C++11 thread_local variable always 1954 // has internal linkage; all accesses should just be calls to the 1955 // Itanium-specified entry point, which has the normal linkage of the 1956 // variable. 1957 return llvm::GlobalValue::InternalLinkage; 1958 return llvm::GlobalVariable::ExternalLinkage; 1959 } 1960 1961 /// Replace the uses of a function that was declared with a non-proto type. 1962 /// We want to silently drop extra arguments from call sites 1963 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1964 llvm::Function *newFn) { 1965 // Fast path. 1966 if (old->use_empty()) return; 1967 1968 llvm::Type *newRetTy = newFn->getReturnType(); 1969 SmallVector<llvm::Value*, 4> newArgs; 1970 1971 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1972 ui != ue; ) { 1973 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1974 llvm::User *user = *use; 1975 1976 // Recognize and replace uses of bitcasts. Most calls to 1977 // unprototyped functions will use bitcasts. 1978 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1979 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1980 replaceUsesOfNonProtoConstant(bitcast, newFn); 1981 continue; 1982 } 1983 1984 // Recognize calls to the function. 1985 llvm::CallSite callSite(user); 1986 if (!callSite) continue; 1987 if (!callSite.isCallee(use)) continue; 1988 1989 // If the return types don't match exactly, then we can't 1990 // transform this call unless it's dead. 1991 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1992 continue; 1993 1994 // Get the call site's attribute list. 1995 SmallVector<llvm::AttributeSet, 8> newAttrs; 1996 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1997 1998 // Collect any return attributes from the call. 1999 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2000 newAttrs.push_back( 2001 llvm::AttributeSet::get(newFn->getContext(), 2002 oldAttrs.getRetAttributes())); 2003 2004 // If the function was passed too few arguments, don't transform. 2005 unsigned newNumArgs = newFn->arg_size(); 2006 if (callSite.arg_size() < newNumArgs) continue; 2007 2008 // If extra arguments were passed, we silently drop them. 2009 // If any of the types mismatch, we don't transform. 2010 unsigned argNo = 0; 2011 bool dontTransform = false; 2012 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2013 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2014 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2015 dontTransform = true; 2016 break; 2017 } 2018 2019 // Add any parameter attributes. 2020 if (oldAttrs.hasAttributes(argNo + 1)) 2021 newAttrs. 2022 push_back(llvm:: 2023 AttributeSet::get(newFn->getContext(), 2024 oldAttrs.getParamAttributes(argNo + 1))); 2025 } 2026 if (dontTransform) 2027 continue; 2028 2029 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2030 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2031 oldAttrs.getFnAttributes())); 2032 2033 // Okay, we can transform this. Create the new call instruction and copy 2034 // over the required information. 2035 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2036 2037 llvm::CallSite newCall; 2038 if (callSite.isCall()) { 2039 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2040 callSite.getInstruction()); 2041 } else { 2042 llvm::InvokeInst *oldInvoke = 2043 cast<llvm::InvokeInst>(callSite.getInstruction()); 2044 newCall = llvm::InvokeInst::Create(newFn, 2045 oldInvoke->getNormalDest(), 2046 oldInvoke->getUnwindDest(), 2047 newArgs, "", 2048 callSite.getInstruction()); 2049 } 2050 newArgs.clear(); // for the next iteration 2051 2052 if (!newCall->getType()->isVoidTy()) 2053 newCall->takeName(callSite.getInstruction()); 2054 newCall.setAttributes( 2055 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2056 newCall.setCallingConv(callSite.getCallingConv()); 2057 2058 // Finally, remove the old call, replacing any uses with the new one. 2059 if (!callSite->use_empty()) 2060 callSite->replaceAllUsesWith(newCall.getInstruction()); 2061 2062 // Copy debug location attached to CI. 2063 if (!callSite->getDebugLoc().isUnknown()) 2064 newCall->setDebugLoc(callSite->getDebugLoc()); 2065 callSite->eraseFromParent(); 2066 } 2067 } 2068 2069 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2070 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2071 /// existing call uses of the old function in the module, this adjusts them to 2072 /// call the new function directly. 2073 /// 2074 /// This is not just a cleanup: the always_inline pass requires direct calls to 2075 /// functions to be able to inline them. If there is a bitcast in the way, it 2076 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2077 /// run at -O0. 2078 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2079 llvm::Function *NewFn) { 2080 // If we're redefining a global as a function, don't transform it. 2081 if (!isa<llvm::Function>(Old)) return; 2082 2083 replaceUsesOfNonProtoConstant(Old, NewFn); 2084 } 2085 2086 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2087 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2088 // If we have a definition, this might be a deferred decl. If the 2089 // instantiation is explicit, make sure we emit it at the end. 2090 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2091 GetAddrOfGlobalVar(VD); 2092 2093 EmitTopLevelDecl(VD); 2094 } 2095 2096 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2097 llvm::GlobalValue *GV) { 2098 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2099 2100 // Compute the function info and LLVM type. 2101 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2102 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2103 2104 // Get or create the prototype for the function. 2105 llvm::Constant *Entry = 2106 GV ? GV 2107 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2108 2109 // Strip off a bitcast if we got one back. 2110 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2111 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2112 Entry = CE->getOperand(0); 2113 } 2114 2115 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2116 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2117 return; 2118 } 2119 2120 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2121 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2122 2123 // If the types mismatch then we have to rewrite the definition. 2124 assert(OldFn->isDeclaration() && 2125 "Shouldn't replace non-declaration"); 2126 2127 // F is the Function* for the one with the wrong type, we must make a new 2128 // Function* and update everything that used F (a declaration) with the new 2129 // Function* (which will be a definition). 2130 // 2131 // This happens if there is a prototype for a function 2132 // (e.g. "int f()") and then a definition of a different type 2133 // (e.g. "int f(int x)"). Move the old function aside so that it 2134 // doesn't interfere with GetAddrOfFunction. 2135 OldFn->setName(StringRef()); 2136 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2137 2138 // This might be an implementation of a function without a 2139 // prototype, in which case, try to do special replacement of 2140 // calls which match the new prototype. The really key thing here 2141 // is that we also potentially drop arguments from the call site 2142 // so as to make a direct call, which makes the inliner happier 2143 // and suppresses a number of optimizer warnings (!) about 2144 // dropping arguments. 2145 if (!OldFn->use_empty()) { 2146 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2147 OldFn->removeDeadConstantUsers(); 2148 } 2149 2150 // Replace uses of F with the Function we will endow with a body. 2151 if (!Entry->use_empty()) { 2152 llvm::Constant *NewPtrForOldDecl = 2153 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2154 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2155 } 2156 2157 // Ok, delete the old function now, which is dead. 2158 OldFn->eraseFromParent(); 2159 2160 Entry = NewFn; 2161 } 2162 2163 // We need to set linkage and visibility on the function before 2164 // generating code for it because various parts of IR generation 2165 // want to propagate this information down (e.g. to local static 2166 // declarations). 2167 llvm::Function *Fn = cast<llvm::Function>(Entry); 2168 setFunctionLinkage(GD, Fn); 2169 2170 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2171 setGlobalVisibility(Fn, D); 2172 2173 MaybeHandleStaticInExternC(D, Fn); 2174 2175 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2176 2177 SetFunctionDefinitionAttributes(D, Fn); 2178 SetLLVMFunctionAttributesForDefinition(D, Fn); 2179 2180 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2181 AddGlobalCtor(Fn, CA->getPriority()); 2182 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2183 AddGlobalDtor(Fn, DA->getPriority()); 2184 if (D->hasAttr<AnnotateAttr>()) 2185 AddGlobalAnnotations(D, Fn); 2186 } 2187 2188 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2189 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2190 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2191 assert(AA && "Not an alias?"); 2192 2193 StringRef MangledName = getMangledName(GD); 2194 2195 // If there is a definition in the module, then it wins over the alias. 2196 // This is dubious, but allow it to be safe. Just ignore the alias. 2197 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2198 if (Entry && !Entry->isDeclaration()) 2199 return; 2200 2201 Aliases.push_back(GD); 2202 2203 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2204 2205 // Create a reference to the named value. This ensures that it is emitted 2206 // if a deferred decl. 2207 llvm::Constant *Aliasee; 2208 if (isa<llvm::FunctionType>(DeclTy)) 2209 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2210 /*ForVTable=*/false); 2211 else 2212 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2213 llvm::PointerType::getUnqual(DeclTy), 0); 2214 2215 // Create the new alias itself, but don't set a name yet. 2216 llvm::GlobalValue *GA = 2217 new llvm::GlobalAlias(Aliasee->getType(), 2218 llvm::Function::ExternalLinkage, 2219 "", Aliasee, &getModule()); 2220 2221 if (Entry) { 2222 assert(Entry->isDeclaration()); 2223 2224 // If there is a declaration in the module, then we had an extern followed 2225 // by the alias, as in: 2226 // extern int test6(); 2227 // ... 2228 // int test6() __attribute__((alias("test7"))); 2229 // 2230 // Remove it and replace uses of it with the alias. 2231 GA->takeName(Entry); 2232 2233 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2234 Entry->getType())); 2235 Entry->eraseFromParent(); 2236 } else { 2237 GA->setName(MangledName); 2238 } 2239 2240 // Set attributes which are particular to an alias; this is a 2241 // specialization of the attributes which may be set on a global 2242 // variable/function. 2243 if (D->hasAttr<DLLExportAttr>()) { 2244 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2245 // The dllexport attribute is ignored for undefined symbols. 2246 if (FD->hasBody()) 2247 GA->setLinkage(llvm::Function::DLLExportLinkage); 2248 } else { 2249 GA->setLinkage(llvm::Function::DLLExportLinkage); 2250 } 2251 } else if (D->hasAttr<WeakAttr>() || 2252 D->hasAttr<WeakRefAttr>() || 2253 D->isWeakImported()) { 2254 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2255 } 2256 2257 SetCommonAttributes(D, GA); 2258 } 2259 2260 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2261 ArrayRef<llvm::Type*> Tys) { 2262 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2263 Tys); 2264 } 2265 2266 static llvm::StringMapEntry<llvm::Constant*> & 2267 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2268 const StringLiteral *Literal, 2269 bool TargetIsLSB, 2270 bool &IsUTF16, 2271 unsigned &StringLength) { 2272 StringRef String = Literal->getString(); 2273 unsigned NumBytes = String.size(); 2274 2275 // Check for simple case. 2276 if (!Literal->containsNonAsciiOrNull()) { 2277 StringLength = NumBytes; 2278 return Map.GetOrCreateValue(String); 2279 } 2280 2281 // Otherwise, convert the UTF8 literals into a string of shorts. 2282 IsUTF16 = true; 2283 2284 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2285 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2286 UTF16 *ToPtr = &ToBuf[0]; 2287 2288 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2289 &ToPtr, ToPtr + NumBytes, 2290 strictConversion); 2291 2292 // ConvertUTF8toUTF16 returns the length in ToPtr. 2293 StringLength = ToPtr - &ToBuf[0]; 2294 2295 // Add an explicit null. 2296 *ToPtr = 0; 2297 return Map. 2298 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2299 (StringLength + 1) * 2)); 2300 } 2301 2302 static llvm::StringMapEntry<llvm::Constant*> & 2303 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2304 const StringLiteral *Literal, 2305 unsigned &StringLength) { 2306 StringRef String = Literal->getString(); 2307 StringLength = String.size(); 2308 return Map.GetOrCreateValue(String); 2309 } 2310 2311 llvm::Constant * 2312 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2313 unsigned StringLength = 0; 2314 bool isUTF16 = false; 2315 llvm::StringMapEntry<llvm::Constant*> &Entry = 2316 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2317 getDataLayout().isLittleEndian(), 2318 isUTF16, StringLength); 2319 2320 if (llvm::Constant *C = Entry.getValue()) 2321 return C; 2322 2323 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2324 llvm::Constant *Zeros[] = { Zero, Zero }; 2325 llvm::Value *V; 2326 2327 // If we don't already have it, get __CFConstantStringClassReference. 2328 if (!CFConstantStringClassRef) { 2329 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2330 Ty = llvm::ArrayType::get(Ty, 0); 2331 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2332 "__CFConstantStringClassReference"); 2333 // Decay array -> ptr 2334 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2335 CFConstantStringClassRef = V; 2336 } 2337 else 2338 V = CFConstantStringClassRef; 2339 2340 QualType CFTy = getContext().getCFConstantStringType(); 2341 2342 llvm::StructType *STy = 2343 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2344 2345 llvm::Constant *Fields[4]; 2346 2347 // Class pointer. 2348 Fields[0] = cast<llvm::ConstantExpr>(V); 2349 2350 // Flags. 2351 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2352 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2353 llvm::ConstantInt::get(Ty, 0x07C8); 2354 2355 // String pointer. 2356 llvm::Constant *C = 0; 2357 if (isUTF16) { 2358 ArrayRef<uint16_t> Arr = 2359 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2360 const_cast<char *>(Entry.getKey().data())), 2361 Entry.getKey().size() / 2); 2362 C = llvm::ConstantDataArray::get(VMContext, Arr); 2363 } else { 2364 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2365 } 2366 2367 llvm::GlobalValue::LinkageTypes Linkage; 2368 if (isUTF16) 2369 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2370 Linkage = llvm::GlobalValue::InternalLinkage; 2371 else 2372 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2373 // when using private linkage. It is not clear if this is a bug in ld 2374 // or a reasonable new restriction. 2375 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2376 2377 // Note: -fwritable-strings doesn't make the backing store strings of 2378 // CFStrings writable. (See <rdar://problem/10657500>) 2379 llvm::GlobalVariable *GV = 2380 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2381 Linkage, C, ".str"); 2382 GV->setUnnamedAddr(true); 2383 // Don't enforce the target's minimum global alignment, since the only use 2384 // of the string is via this class initializer. 2385 if (isUTF16) { 2386 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2387 GV->setAlignment(Align.getQuantity()); 2388 } else { 2389 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2390 GV->setAlignment(Align.getQuantity()); 2391 } 2392 2393 // String. 2394 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2395 2396 if (isUTF16) 2397 // Cast the UTF16 string to the correct type. 2398 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2399 2400 // String length. 2401 Ty = getTypes().ConvertType(getContext().LongTy); 2402 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2403 2404 // The struct. 2405 C = llvm::ConstantStruct::get(STy, Fields); 2406 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2407 llvm::GlobalVariable::PrivateLinkage, C, 2408 "_unnamed_cfstring_"); 2409 if (const char *Sect = getTarget().getCFStringSection()) 2410 GV->setSection(Sect); 2411 Entry.setValue(GV); 2412 2413 return GV; 2414 } 2415 2416 llvm::Constant * 2417 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2418 unsigned StringLength = 0; 2419 llvm::StringMapEntry<llvm::Constant*> &Entry = 2420 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2421 2422 if (llvm::Constant *C = Entry.getValue()) 2423 return C; 2424 2425 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2426 llvm::Constant *Zeros[] = { Zero, Zero }; 2427 llvm::Value *V; 2428 // If we don't already have it, get _NSConstantStringClassReference. 2429 if (!ConstantStringClassRef) { 2430 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2431 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2432 llvm::Constant *GV; 2433 if (LangOpts.ObjCRuntime.isNonFragile()) { 2434 std::string str = 2435 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2436 : "OBJC_CLASS_$_" + StringClass; 2437 GV = getObjCRuntime().GetClassGlobal(str); 2438 // Make sure the result is of the correct type. 2439 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2440 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2441 ConstantStringClassRef = V; 2442 } else { 2443 std::string str = 2444 StringClass.empty() ? "_NSConstantStringClassReference" 2445 : "_" + StringClass + "ClassReference"; 2446 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2447 GV = CreateRuntimeVariable(PTy, str); 2448 // Decay array -> ptr 2449 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2450 ConstantStringClassRef = V; 2451 } 2452 } 2453 else 2454 V = ConstantStringClassRef; 2455 2456 if (!NSConstantStringType) { 2457 // Construct the type for a constant NSString. 2458 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2459 D->startDefinition(); 2460 2461 QualType FieldTypes[3]; 2462 2463 // const int *isa; 2464 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2465 // const char *str; 2466 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2467 // unsigned int length; 2468 FieldTypes[2] = Context.UnsignedIntTy; 2469 2470 // Create fields 2471 for (unsigned i = 0; i < 3; ++i) { 2472 FieldDecl *Field = FieldDecl::Create(Context, D, 2473 SourceLocation(), 2474 SourceLocation(), 0, 2475 FieldTypes[i], /*TInfo=*/0, 2476 /*BitWidth=*/0, 2477 /*Mutable=*/false, 2478 ICIS_NoInit); 2479 Field->setAccess(AS_public); 2480 D->addDecl(Field); 2481 } 2482 2483 D->completeDefinition(); 2484 QualType NSTy = Context.getTagDeclType(D); 2485 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2486 } 2487 2488 llvm::Constant *Fields[3]; 2489 2490 // Class pointer. 2491 Fields[0] = cast<llvm::ConstantExpr>(V); 2492 2493 // String pointer. 2494 llvm::Constant *C = 2495 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2496 2497 llvm::GlobalValue::LinkageTypes Linkage; 2498 bool isConstant; 2499 Linkage = llvm::GlobalValue::PrivateLinkage; 2500 isConstant = !LangOpts.WritableStrings; 2501 2502 llvm::GlobalVariable *GV = 2503 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2504 ".str"); 2505 GV->setUnnamedAddr(true); 2506 // Don't enforce the target's minimum global alignment, since the only use 2507 // of the string is via this class initializer. 2508 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2509 GV->setAlignment(Align.getQuantity()); 2510 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2511 2512 // String length. 2513 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2514 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2515 2516 // The struct. 2517 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2518 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2519 llvm::GlobalVariable::PrivateLinkage, C, 2520 "_unnamed_nsstring_"); 2521 // FIXME. Fix section. 2522 if (const char *Sect = 2523 LangOpts.ObjCRuntime.isNonFragile() 2524 ? getTarget().getNSStringNonFragileABISection() 2525 : getTarget().getNSStringSection()) 2526 GV->setSection(Sect); 2527 Entry.setValue(GV); 2528 2529 return GV; 2530 } 2531 2532 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2533 if (ObjCFastEnumerationStateType.isNull()) { 2534 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2535 D->startDefinition(); 2536 2537 QualType FieldTypes[] = { 2538 Context.UnsignedLongTy, 2539 Context.getPointerType(Context.getObjCIdType()), 2540 Context.getPointerType(Context.UnsignedLongTy), 2541 Context.getConstantArrayType(Context.UnsignedLongTy, 2542 llvm::APInt(32, 5), ArrayType::Normal, 0) 2543 }; 2544 2545 for (size_t i = 0; i < 4; ++i) { 2546 FieldDecl *Field = FieldDecl::Create(Context, 2547 D, 2548 SourceLocation(), 2549 SourceLocation(), 0, 2550 FieldTypes[i], /*TInfo=*/0, 2551 /*BitWidth=*/0, 2552 /*Mutable=*/false, 2553 ICIS_NoInit); 2554 Field->setAccess(AS_public); 2555 D->addDecl(Field); 2556 } 2557 2558 D->completeDefinition(); 2559 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2560 } 2561 2562 return ObjCFastEnumerationStateType; 2563 } 2564 2565 llvm::Constant * 2566 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2567 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2568 2569 // Don't emit it as the address of the string, emit the string data itself 2570 // as an inline array. 2571 if (E->getCharByteWidth() == 1) { 2572 SmallString<64> Str(E->getString()); 2573 2574 // Resize the string to the right size, which is indicated by its type. 2575 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2576 Str.resize(CAT->getSize().getZExtValue()); 2577 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2578 } 2579 2580 llvm::ArrayType *AType = 2581 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2582 llvm::Type *ElemTy = AType->getElementType(); 2583 unsigned NumElements = AType->getNumElements(); 2584 2585 // Wide strings have either 2-byte or 4-byte elements. 2586 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2587 SmallVector<uint16_t, 32> Elements; 2588 Elements.reserve(NumElements); 2589 2590 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2591 Elements.push_back(E->getCodeUnit(i)); 2592 Elements.resize(NumElements); 2593 return llvm::ConstantDataArray::get(VMContext, Elements); 2594 } 2595 2596 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2597 SmallVector<uint32_t, 32> Elements; 2598 Elements.reserve(NumElements); 2599 2600 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2601 Elements.push_back(E->getCodeUnit(i)); 2602 Elements.resize(NumElements); 2603 return llvm::ConstantDataArray::get(VMContext, Elements); 2604 } 2605 2606 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2607 /// constant array for the given string literal. 2608 llvm::Constant * 2609 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2610 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2611 if (S->isAscii() || S->isUTF8()) { 2612 SmallString<64> Str(S->getString()); 2613 2614 // Resize the string to the right size, which is indicated by its type. 2615 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2616 Str.resize(CAT->getSize().getZExtValue()); 2617 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2618 } 2619 2620 // FIXME: the following does not memoize wide strings. 2621 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2622 llvm::GlobalVariable *GV = 2623 new llvm::GlobalVariable(getModule(),C->getType(), 2624 !LangOpts.WritableStrings, 2625 llvm::GlobalValue::PrivateLinkage, 2626 C,".str"); 2627 2628 GV->setAlignment(Align.getQuantity()); 2629 GV->setUnnamedAddr(true); 2630 return GV; 2631 } 2632 2633 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2634 /// array for the given ObjCEncodeExpr node. 2635 llvm::Constant * 2636 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2637 std::string Str; 2638 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2639 2640 return GetAddrOfConstantCString(Str); 2641 } 2642 2643 2644 /// GenerateWritableString -- Creates storage for a string literal. 2645 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2646 bool constant, 2647 CodeGenModule &CGM, 2648 const char *GlobalName, 2649 unsigned Alignment) { 2650 // Create Constant for this string literal. Don't add a '\0'. 2651 llvm::Constant *C = 2652 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2653 2654 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 2655 unsigned AddrSpace = 0; 2656 if (CGM.getLangOpts().OpenCL) 2657 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2658 2659 // Create a global variable for this string 2660 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2661 CGM.getModule(), C->getType(), constant, 2662 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2663 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2664 GV->setAlignment(Alignment); 2665 GV->setUnnamedAddr(true); 2666 return GV; 2667 } 2668 2669 /// GetAddrOfConstantString - Returns a pointer to a character array 2670 /// containing the literal. This contents are exactly that of the 2671 /// given string, i.e. it will not be null terminated automatically; 2672 /// see GetAddrOfConstantCString. Note that whether the result is 2673 /// actually a pointer to an LLVM constant depends on 2674 /// Feature.WriteableStrings. 2675 /// 2676 /// The result has pointer to array type. 2677 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2678 const char *GlobalName, 2679 unsigned Alignment) { 2680 // Get the default prefix if a name wasn't specified. 2681 if (!GlobalName) 2682 GlobalName = ".str"; 2683 2684 if (Alignment == 0) 2685 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2686 .getQuantity(); 2687 2688 // Don't share any string literals if strings aren't constant. 2689 if (LangOpts.WritableStrings) 2690 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2691 2692 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2693 ConstantStringMap.GetOrCreateValue(Str); 2694 2695 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2696 if (Alignment > GV->getAlignment()) { 2697 GV->setAlignment(Alignment); 2698 } 2699 return GV; 2700 } 2701 2702 // Create a global variable for this. 2703 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2704 Alignment); 2705 Entry.setValue(GV); 2706 return GV; 2707 } 2708 2709 /// GetAddrOfConstantCString - Returns a pointer to a character 2710 /// array containing the literal and a terminating '\0' 2711 /// character. The result has pointer to array type. 2712 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2713 const char *GlobalName, 2714 unsigned Alignment) { 2715 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2716 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2717 } 2718 2719 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2720 const MaterializeTemporaryExpr *E, const Expr *Init) { 2721 assert((E->getStorageDuration() == SD_Static || 2722 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2723 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2724 2725 // If we're not materializing a subobject of the temporary, keep the 2726 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2727 QualType MaterializedType = Init->getType(); 2728 if (Init == E->GetTemporaryExpr()) 2729 MaterializedType = E->getType(); 2730 2731 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2732 if (Slot) 2733 return Slot; 2734 2735 // FIXME: If an externally-visible declaration extends multiple temporaries, 2736 // we need to give each temporary the same name in every translation unit (and 2737 // we also need to make the temporaries externally-visible). 2738 SmallString<256> Name; 2739 llvm::raw_svector_ostream Out(Name); 2740 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2741 Out.flush(); 2742 2743 APValue *Value = 0; 2744 if (E->getStorageDuration() == SD_Static) { 2745 // We might have a cached constant initializer for this temporary. Note 2746 // that this might have a different value from the value computed by 2747 // evaluating the initializer if the surrounding constant expression 2748 // modifies the temporary. 2749 Value = getContext().getMaterializedTemporaryValue(E, false); 2750 if (Value && Value->isUninit()) 2751 Value = 0; 2752 } 2753 2754 // Try evaluating it now, it might have a constant initializer. 2755 Expr::EvalResult EvalResult; 2756 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2757 !EvalResult.hasSideEffects()) 2758 Value = &EvalResult.Val; 2759 2760 llvm::Constant *InitialValue = 0; 2761 bool Constant = false; 2762 llvm::Type *Type; 2763 if (Value) { 2764 // The temporary has a constant initializer, use it. 2765 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2766 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2767 Type = InitialValue->getType(); 2768 } else { 2769 // No initializer, the initialization will be provided when we 2770 // initialize the declaration which performed lifetime extension. 2771 Type = getTypes().ConvertTypeForMem(MaterializedType); 2772 } 2773 2774 // Create a global variable for this lifetime-extended temporary. 2775 llvm::GlobalVariable *GV = 2776 new llvm::GlobalVariable(getModule(), Type, Constant, 2777 llvm::GlobalValue::PrivateLinkage, 2778 InitialValue, Name.c_str()); 2779 GV->setAlignment( 2780 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2781 if (VD->getTLSKind()) 2782 setTLSMode(GV, *VD); 2783 Slot = GV; 2784 return GV; 2785 } 2786 2787 /// EmitObjCPropertyImplementations - Emit information for synthesized 2788 /// properties for an implementation. 2789 void CodeGenModule::EmitObjCPropertyImplementations(const 2790 ObjCImplementationDecl *D) { 2791 for (ObjCImplementationDecl::propimpl_iterator 2792 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2793 ObjCPropertyImplDecl *PID = *i; 2794 2795 // Dynamic is just for type-checking. 2796 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2797 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2798 2799 // Determine which methods need to be implemented, some may have 2800 // been overridden. Note that ::isPropertyAccessor is not the method 2801 // we want, that just indicates if the decl came from a 2802 // property. What we want to know is if the method is defined in 2803 // this implementation. 2804 if (!D->getInstanceMethod(PD->getGetterName())) 2805 CodeGenFunction(*this).GenerateObjCGetter( 2806 const_cast<ObjCImplementationDecl *>(D), PID); 2807 if (!PD->isReadOnly() && 2808 !D->getInstanceMethod(PD->getSetterName())) 2809 CodeGenFunction(*this).GenerateObjCSetter( 2810 const_cast<ObjCImplementationDecl *>(D), PID); 2811 } 2812 } 2813 } 2814 2815 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2816 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2817 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2818 ivar; ivar = ivar->getNextIvar()) 2819 if (ivar->getType().isDestructedType()) 2820 return true; 2821 2822 return false; 2823 } 2824 2825 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2826 /// for an implementation. 2827 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2828 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2829 if (needsDestructMethod(D)) { 2830 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2831 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2832 ObjCMethodDecl *DTORMethod = 2833 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2834 cxxSelector, getContext().VoidTy, 0, D, 2835 /*isInstance=*/true, /*isVariadic=*/false, 2836 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2837 /*isDefined=*/false, ObjCMethodDecl::Required); 2838 D->addInstanceMethod(DTORMethod); 2839 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2840 D->setHasDestructors(true); 2841 } 2842 2843 // If the implementation doesn't have any ivar initializers, we don't need 2844 // a .cxx_construct. 2845 if (D->getNumIvarInitializers() == 0) 2846 return; 2847 2848 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2849 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2850 // The constructor returns 'self'. 2851 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2852 D->getLocation(), 2853 D->getLocation(), 2854 cxxSelector, 2855 getContext().getObjCIdType(), 0, 2856 D, /*isInstance=*/true, 2857 /*isVariadic=*/false, 2858 /*isPropertyAccessor=*/true, 2859 /*isImplicitlyDeclared=*/true, 2860 /*isDefined=*/false, 2861 ObjCMethodDecl::Required); 2862 D->addInstanceMethod(CTORMethod); 2863 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2864 D->setHasNonZeroConstructors(true); 2865 } 2866 2867 /// EmitNamespace - Emit all declarations in a namespace. 2868 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2869 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2870 I != E; ++I) { 2871 if (const VarDecl *VD = dyn_cast<VarDecl>(*I)) 2872 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2873 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2874 continue; 2875 EmitTopLevelDecl(*I); 2876 } 2877 } 2878 2879 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2880 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2881 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2882 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2883 ErrorUnsupported(LSD, "linkage spec"); 2884 return; 2885 } 2886 2887 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2888 I != E; ++I) { 2889 // Meta-data for ObjC class includes references to implemented methods. 2890 // Generate class's method definitions first. 2891 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2892 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2893 MEnd = OID->meth_end(); 2894 M != MEnd; ++M) 2895 EmitTopLevelDecl(*M); 2896 } 2897 EmitTopLevelDecl(*I); 2898 } 2899 } 2900 2901 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2902 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2903 // Ignore dependent declarations. 2904 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2905 return; 2906 2907 switch (D->getKind()) { 2908 case Decl::CXXConversion: 2909 case Decl::CXXMethod: 2910 case Decl::Function: 2911 // Skip function templates 2912 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2913 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2914 return; 2915 2916 EmitGlobal(cast<FunctionDecl>(D)); 2917 break; 2918 2919 case Decl::Var: 2920 // Skip variable templates 2921 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2922 return; 2923 case Decl::VarTemplateSpecialization: 2924 EmitGlobal(cast<VarDecl>(D)); 2925 break; 2926 2927 // Indirect fields from global anonymous structs and unions can be 2928 // ignored; only the actual variable requires IR gen support. 2929 case Decl::IndirectField: 2930 break; 2931 2932 // C++ Decls 2933 case Decl::Namespace: 2934 EmitNamespace(cast<NamespaceDecl>(D)); 2935 break; 2936 // No code generation needed. 2937 case Decl::UsingShadow: 2938 case Decl::Using: 2939 case Decl::ClassTemplate: 2940 case Decl::VarTemplate: 2941 case Decl::VarTemplatePartialSpecialization: 2942 case Decl::FunctionTemplate: 2943 case Decl::TypeAliasTemplate: 2944 case Decl::Block: 2945 case Decl::Empty: 2946 break; 2947 case Decl::NamespaceAlias: 2948 if (CGDebugInfo *DI = getModuleDebugInfo()) 2949 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2950 return; 2951 case Decl::UsingDirective: // using namespace X; [C++] 2952 if (CGDebugInfo *DI = getModuleDebugInfo()) 2953 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2954 return; 2955 case Decl::CXXConstructor: 2956 // Skip function templates 2957 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2958 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2959 return; 2960 2961 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2962 break; 2963 case Decl::CXXDestructor: 2964 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2965 return; 2966 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2967 break; 2968 2969 case Decl::StaticAssert: 2970 // Nothing to do. 2971 break; 2972 2973 // Objective-C Decls 2974 2975 // Forward declarations, no (immediate) code generation. 2976 case Decl::ObjCInterface: 2977 case Decl::ObjCCategory: 2978 break; 2979 2980 case Decl::ObjCProtocol: { 2981 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2982 if (Proto->isThisDeclarationADefinition()) 2983 ObjCRuntime->GenerateProtocol(Proto); 2984 break; 2985 } 2986 2987 case Decl::ObjCCategoryImpl: 2988 // Categories have properties but don't support synthesize so we 2989 // can ignore them here. 2990 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2991 break; 2992 2993 case Decl::ObjCImplementation: { 2994 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2995 EmitObjCPropertyImplementations(OMD); 2996 EmitObjCIvarInitializations(OMD); 2997 ObjCRuntime->GenerateClass(OMD); 2998 // Emit global variable debug information. 2999 if (CGDebugInfo *DI = getModuleDebugInfo()) 3000 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3001 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3002 OMD->getClassInterface()), OMD->getLocation()); 3003 break; 3004 } 3005 case Decl::ObjCMethod: { 3006 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3007 // If this is not a prototype, emit the body. 3008 if (OMD->getBody()) 3009 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3010 break; 3011 } 3012 case Decl::ObjCCompatibleAlias: 3013 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3014 break; 3015 3016 case Decl::LinkageSpec: 3017 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3018 break; 3019 3020 case Decl::FileScopeAsm: { 3021 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3022 StringRef AsmString = AD->getAsmString()->getString(); 3023 3024 const std::string &S = getModule().getModuleInlineAsm(); 3025 if (S.empty()) 3026 getModule().setModuleInlineAsm(AsmString); 3027 else if (S.end()[-1] == '\n') 3028 getModule().setModuleInlineAsm(S + AsmString.str()); 3029 else 3030 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3031 break; 3032 } 3033 3034 case Decl::Import: { 3035 ImportDecl *Import = cast<ImportDecl>(D); 3036 3037 // Ignore import declarations that come from imported modules. 3038 if (clang::Module *Owner = Import->getOwningModule()) { 3039 if (getLangOpts().CurrentModule.empty() || 3040 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3041 break; 3042 } 3043 3044 ImportedModules.insert(Import->getImportedModule()); 3045 break; 3046 } 3047 3048 default: 3049 // Make sure we handled everything we should, every other kind is a 3050 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3051 // function. Need to recode Decl::Kind to do that easily. 3052 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3053 } 3054 } 3055 3056 /// Turns the given pointer into a constant. 3057 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3058 const void *Ptr) { 3059 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3060 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3061 return llvm::ConstantInt::get(i64, PtrInt); 3062 } 3063 3064 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3065 llvm::NamedMDNode *&GlobalMetadata, 3066 GlobalDecl D, 3067 llvm::GlobalValue *Addr) { 3068 if (!GlobalMetadata) 3069 GlobalMetadata = 3070 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3071 3072 // TODO: should we report variant information for ctors/dtors? 3073 llvm::Value *Ops[] = { 3074 Addr, 3075 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3076 }; 3077 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3078 } 3079 3080 /// For each function which is declared within an extern "C" region and marked 3081 /// as 'used', but has internal linkage, create an alias from the unmangled 3082 /// name to the mangled name if possible. People expect to be able to refer 3083 /// to such functions with an unmangled name from inline assembly within the 3084 /// same translation unit. 3085 void CodeGenModule::EmitStaticExternCAliases() { 3086 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3087 E = StaticExternCValues.end(); 3088 I != E; ++I) { 3089 IdentifierInfo *Name = I->first; 3090 llvm::GlobalValue *Val = I->second; 3091 if (Val && !getModule().getNamedValue(Name->getName())) 3092 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3093 Name->getName(), Val, &getModule())); 3094 } 3095 } 3096 3097 /// Emits metadata nodes associating all the global values in the 3098 /// current module with the Decls they came from. This is useful for 3099 /// projects using IR gen as a subroutine. 3100 /// 3101 /// Since there's currently no way to associate an MDNode directly 3102 /// with an llvm::GlobalValue, we create a global named metadata 3103 /// with the name 'clang.global.decl.ptrs'. 3104 void CodeGenModule::EmitDeclMetadata() { 3105 llvm::NamedMDNode *GlobalMetadata = 0; 3106 3107 // StaticLocalDeclMap 3108 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3109 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3110 I != E; ++I) { 3111 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3112 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3113 } 3114 } 3115 3116 /// Emits metadata nodes for all the local variables in the current 3117 /// function. 3118 void CodeGenFunction::EmitDeclMetadata() { 3119 if (LocalDeclMap.empty()) return; 3120 3121 llvm::LLVMContext &Context = getLLVMContext(); 3122 3123 // Find the unique metadata ID for this name. 3124 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3125 3126 llvm::NamedMDNode *GlobalMetadata = 0; 3127 3128 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3129 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3130 const Decl *D = I->first; 3131 llvm::Value *Addr = I->second; 3132 3133 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3134 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3135 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3136 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3137 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3138 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3139 } 3140 } 3141 } 3142 3143 void CodeGenModule::EmitVersionIdentMetadata() { 3144 llvm::NamedMDNode *IdentMetadata = 3145 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3146 std::string Version = getClangFullVersion(); 3147 llvm::LLVMContext &Ctx = TheModule.getContext(); 3148 3149 llvm::Value *IdentNode[] = { 3150 llvm::MDString::get(Ctx, Version) 3151 }; 3152 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3153 } 3154 3155 void CodeGenModule::EmitCoverageFile() { 3156 if (!getCodeGenOpts().CoverageFile.empty()) { 3157 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3158 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3159 llvm::LLVMContext &Ctx = TheModule.getContext(); 3160 llvm::MDString *CoverageFile = 3161 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3162 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3163 llvm::MDNode *CU = CUNode->getOperand(i); 3164 llvm::Value *node[] = { CoverageFile, CU }; 3165 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3166 GCov->addOperand(N); 3167 } 3168 } 3169 } 3170 } 3171 3172 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3173 QualType GuidType) { 3174 // Sema has checked that all uuid strings are of the form 3175 // "12345678-1234-1234-1234-1234567890ab". 3176 assert(Uuid.size() == 36); 3177 for (unsigned i = 0; i < 36; ++i) { 3178 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3179 else assert(isHexDigit(Uuid[i])); 3180 } 3181 3182 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3183 3184 llvm::Constant *Field3[8]; 3185 for (unsigned Idx = 0; Idx < 8; ++Idx) 3186 Field3[Idx] = llvm::ConstantInt::get( 3187 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3188 3189 llvm::Constant *Fields[4] = { 3190 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3191 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3192 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3193 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3194 }; 3195 3196 return llvm::ConstantStruct::getAnon(Fields); 3197 } 3198