xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2dbdd20d378948db54347dcf13ec5bf50683b3d5)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
81       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
82       OpenCLRuntime(0), OpenMPRuntime(nullptr), CUDARuntime(0), DebugInfo(0),
83       ARCData(0), NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr),
84       CFConstantStringClassRef(0),
85       ConstantStringClassRef(0), NSConstantStringType(0),
86       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
87       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
88       LifetimeStartFn(0), LifetimeEndFn(0),
89       SanitizerBlacklist(
90           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
91       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
92                                           : LangOpts.Sanitize) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112 
113   if (LangOpts.ObjC1)
114     createObjCRuntime();
115   if (LangOpts.OpenCL)
116     createOpenCLRuntime();
117   if (LangOpts.OpenMP)
118     createOpenMPRuntime();
119   if (LangOpts.CUDA)
120     createCUDARuntime();
121 
122   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
123   if (SanOpts.Thread ||
124       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
125     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
126                            getCXXABI().getMangleContext());
127 
128   // If debug info or coverage generation is enabled, create the CGDebugInfo
129   // object.
130   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
131       CodeGenOpts.EmitGcovArcs ||
132       CodeGenOpts.EmitGcovNotes)
133     DebugInfo = new CGDebugInfo(*this);
134 
135   Block.GlobalUniqueCount = 0;
136 
137   if (C.getLangOpts().ObjCAutoRefCount)
138     ARCData = new ARCEntrypoints();
139   RRData = new RREntrypoints();
140 
141   if (!CodeGenOpts.InstrProfileInput.empty()) {
142     if (llvm::error_code EC = llvm::IndexedInstrProfReader::create(
143             CodeGenOpts.InstrProfileInput, PGOReader)) {
144       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
145                                               "Could not read profile: %0");
146       getDiags().Report(DiagID) << EC.message();
147     }
148   }
149 }
150 
151 CodeGenModule::~CodeGenModule() {
152   delete ObjCRuntime;
153   delete OpenCLRuntime;
154   delete OpenMPRuntime;
155   delete CUDARuntime;
156   delete TheTargetCodeGenInfo;
157   delete TBAA;
158   delete DebugInfo;
159   delete ARCData;
160   delete RRData;
161 }
162 
163 void CodeGenModule::createObjCRuntime() {
164   // This is just isGNUFamily(), but we want to force implementors of
165   // new ABIs to decide how best to do this.
166   switch (LangOpts.ObjCRuntime.getKind()) {
167   case ObjCRuntime::GNUstep:
168   case ObjCRuntime::GCC:
169   case ObjCRuntime::ObjFW:
170     ObjCRuntime = CreateGNUObjCRuntime(*this);
171     return;
172 
173   case ObjCRuntime::FragileMacOSX:
174   case ObjCRuntime::MacOSX:
175   case ObjCRuntime::iOS:
176     ObjCRuntime = CreateMacObjCRuntime(*this);
177     return;
178   }
179   llvm_unreachable("bad runtime kind");
180 }
181 
182 void CodeGenModule::createOpenCLRuntime() {
183   OpenCLRuntime = new CGOpenCLRuntime(*this);
184 }
185 
186 void CodeGenModule::createOpenMPRuntime() {
187   OpenMPRuntime = new CGOpenMPRuntime(*this);
188 }
189 
190 void CodeGenModule::createCUDARuntime() {
191   CUDARuntime = CreateNVCUDARuntime(*this);
192 }
193 
194 void CodeGenModule::applyReplacements() {
195   for (ReplacementsTy::iterator I = Replacements.begin(),
196                                 E = Replacements.end();
197        I != E; ++I) {
198     StringRef MangledName = I->first();
199     llvm::Constant *Replacement = I->second;
200     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
201     if (!Entry)
202       continue;
203     auto *OldF = cast<llvm::Function>(Entry);
204     auto *NewF = dyn_cast<llvm::Function>(Replacement);
205     if (!NewF) {
206       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
207         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
208       } else {
209         auto *CE = cast<llvm::ConstantExpr>(Replacement);
210         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
211                CE->getOpcode() == llvm::Instruction::GetElementPtr);
212         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
213       }
214     }
215 
216     // Replace old with new, but keep the old order.
217     OldF->replaceAllUsesWith(Replacement);
218     if (NewF) {
219       NewF->removeFromParent();
220       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
221     }
222     OldF->eraseFromParent();
223   }
224 }
225 
226 void CodeGenModule::checkAliases() {
227   // Check if the constructed aliases are well formed. It is really unfortunate
228   // that we have to do this in CodeGen, but we only construct mangled names
229   // and aliases during codegen.
230   bool Error = false;
231   DiagnosticsEngine &Diags = getDiags();
232   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
233          E = Aliases.end(); I != E; ++I) {
234     const GlobalDecl &GD = *I;
235     const auto *D = cast<ValueDecl>(GD.getDecl());
236     const AliasAttr *AA = D->getAttr<AliasAttr>();
237     StringRef MangledName = getMangledName(GD);
238     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
239     auto *Alias = cast<llvm::GlobalAlias>(Entry);
240     llvm::GlobalValue *GV = Alias->getAliasee();
241     if (GV->isDeclaration()) {
242       Error = true;
243       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
244     }
245 
246     llvm::GlobalObject *Aliasee = Alias->getAliasee();
247     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
248       StringRef AliasSection = SA->getName();
249       if (AliasSection != Aliasee->getSection())
250         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
251             << AliasSection;
252     }
253   }
254   if (!Error)
255     return;
256 
257   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
258          E = Aliases.end(); I != E; ++I) {
259     const GlobalDecl &GD = *I;
260     StringRef MangledName = getMangledName(GD);
261     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
262     auto *Alias = cast<llvm::GlobalAlias>(Entry);
263     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
264     Alias->eraseFromParent();
265   }
266 }
267 
268 void CodeGenModule::clear() {
269   DeferredDeclsToEmit.clear();
270 }
271 
272 void CodeGenModule::Release() {
273   EmitDeferred();
274   applyReplacements();
275   checkAliases();
276   EmitCXXGlobalInitFunc();
277   EmitCXXGlobalDtorFunc();
278   EmitCXXThreadLocalInitFunc();
279   if (ObjCRuntime)
280     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
281       AddGlobalCtor(ObjCInitFunction);
282   if (getCodeGenOpts().ProfileInstrGenerate)
283     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
284       AddGlobalCtor(PGOInit, 0);
285   if (PGOReader && PGOStats.isOutOfDate())
286     getDiags().Report(diag::warn_profile_data_out_of_date)
287         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
288   EmitCtorList(GlobalCtors, "llvm.global_ctors");
289   EmitCtorList(GlobalDtors, "llvm.global_dtors");
290   EmitGlobalAnnotations();
291   EmitStaticExternCAliases();
292   emitLLVMUsed();
293 
294   if (CodeGenOpts.Autolink &&
295       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
296     EmitModuleLinkOptions();
297   }
298   if (CodeGenOpts.DwarfVersion)
299     // We actually want the latest version when there are conflicts.
300     // We can change from Warning to Latest if such mode is supported.
301     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
302                               CodeGenOpts.DwarfVersion);
303   if (DebugInfo)
304     // We support a single version in the linked module. The LLVM
305     // parser will drop debug info with a different version number
306     // (and warn about it, too).
307     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
308                               llvm::DEBUG_METADATA_VERSION);
309 
310   SimplifyPersonality();
311 
312   if (getCodeGenOpts().EmitDeclMetadata)
313     EmitDeclMetadata();
314 
315   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
316     EmitCoverageFile();
317 
318   if (DebugInfo)
319     DebugInfo->finalize();
320 
321   EmitVersionIdentMetadata();
322 }
323 
324 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
325   // Make sure that this type is translated.
326   Types.UpdateCompletedType(TD);
327 }
328 
329 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
330   if (!TBAA)
331     return 0;
332   return TBAA->getTBAAInfo(QTy);
333 }
334 
335 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
336   if (!TBAA)
337     return 0;
338   return TBAA->getTBAAInfoForVTablePtr();
339 }
340 
341 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
342   if (!TBAA)
343     return 0;
344   return TBAA->getTBAAStructInfo(QTy);
345 }
346 
347 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
348   if (!TBAA)
349     return 0;
350   return TBAA->getTBAAStructTypeInfo(QTy);
351 }
352 
353 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
354                                                   llvm::MDNode *AccessN,
355                                                   uint64_t O) {
356   if (!TBAA)
357     return 0;
358   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
359 }
360 
361 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
362 /// and struct-path aware TBAA, the tag has the same format:
363 /// base type, access type and offset.
364 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
365 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
366                                         llvm::MDNode *TBAAInfo,
367                                         bool ConvertTypeToTag) {
368   if (ConvertTypeToTag && TBAA)
369     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
370                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
371   else
372     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
373 }
374 
375 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
376   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
377   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
378 }
379 
380 /// ErrorUnsupported - Print out an error that codegen doesn't support the
381 /// specified stmt yet.
382 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
383   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
384                                                "cannot compile this %0 yet");
385   std::string Msg = Type;
386   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
387     << Msg << S->getSourceRange();
388 }
389 
390 /// ErrorUnsupported - Print out an error that codegen doesn't support the
391 /// specified decl yet.
392 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
393   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
394                                                "cannot compile this %0 yet");
395   std::string Msg = Type;
396   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
397 }
398 
399 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
400   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
401 }
402 
403 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
404                                         const NamedDecl *D) const {
405   // Internal definitions always have default visibility.
406   if (GV->hasLocalLinkage()) {
407     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
408     return;
409   }
410 
411   // Set visibility for definitions.
412   LinkageInfo LV = D->getLinkageAndVisibility();
413   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
414     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
415 }
416 
417 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
418   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
419       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
420       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
421       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
422       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
423 }
424 
425 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
426     CodeGenOptions::TLSModel M) {
427   switch (M) {
428   case CodeGenOptions::GeneralDynamicTLSModel:
429     return llvm::GlobalVariable::GeneralDynamicTLSModel;
430   case CodeGenOptions::LocalDynamicTLSModel:
431     return llvm::GlobalVariable::LocalDynamicTLSModel;
432   case CodeGenOptions::InitialExecTLSModel:
433     return llvm::GlobalVariable::InitialExecTLSModel;
434   case CodeGenOptions::LocalExecTLSModel:
435     return llvm::GlobalVariable::LocalExecTLSModel;
436   }
437   llvm_unreachable("Invalid TLS model!");
438 }
439 
440 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
441                                const VarDecl &D) const {
442   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
443 
444   llvm::GlobalVariable::ThreadLocalMode TLM;
445   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
446 
447   // Override the TLS model if it is explicitly specified.
448   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
449     TLM = GetLLVMTLSModel(Attr->getModel());
450   }
451 
452   GV->setThreadLocalMode(TLM);
453 }
454 
455 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
456   const auto *ND = cast<NamedDecl>(GD.getDecl());
457 
458   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
459   if (!Str.empty())
460     return Str;
461 
462   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
463     IdentifierInfo *II = ND->getIdentifier();
464     assert(II && "Attempt to mangle unnamed decl.");
465 
466     Str = II->getName();
467     return Str;
468   }
469 
470   SmallString<256> Buffer;
471   llvm::raw_svector_ostream Out(Buffer);
472   if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
473     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
474   else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
475     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
476   else
477     getCXXABI().getMangleContext().mangleName(ND, Out);
478 
479   // Allocate space for the mangled name.
480   Out.flush();
481   size_t Length = Buffer.size();
482   char *Name = MangledNamesAllocator.Allocate<char>(Length);
483   std::copy(Buffer.begin(), Buffer.end(), Name);
484 
485   Str = StringRef(Name, Length);
486 
487   return Str;
488 }
489 
490 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
491                                         const BlockDecl *BD) {
492   MangleContext &MangleCtx = getCXXABI().getMangleContext();
493   const Decl *D = GD.getDecl();
494   llvm::raw_svector_ostream Out(Buffer.getBuffer());
495   if (D == 0)
496     MangleCtx.mangleGlobalBlock(BD,
497       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
498   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
499     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
500   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
501     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
502   else
503     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
504 }
505 
506 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
507   return getModule().getNamedValue(Name);
508 }
509 
510 /// AddGlobalCtor - Add a function to the list that will be called before
511 /// main() runs.
512 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
513   // FIXME: Type coercion of void()* types.
514   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
515 }
516 
517 /// AddGlobalDtor - Add a function to the list that will be called
518 /// when the module is unloaded.
519 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
520   // FIXME: Type coercion of void()* types.
521   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
522 }
523 
524 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
525   // Ctor function type is void()*.
526   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
527   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
528 
529   // Get the type of a ctor entry, { i32, void ()* }.
530   llvm::StructType *CtorStructTy =
531     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
532 
533   // Construct the constructor and destructor arrays.
534   SmallVector<llvm::Constant*, 8> Ctors;
535   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
536     llvm::Constant *S[] = {
537       llvm::ConstantInt::get(Int32Ty, I->second, false),
538       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
539     };
540     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
541   }
542 
543   if (!Ctors.empty()) {
544     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
545     new llvm::GlobalVariable(TheModule, AT, false,
546                              llvm::GlobalValue::AppendingLinkage,
547                              llvm::ConstantArray::get(AT, Ctors),
548                              GlobalName);
549   }
550 }
551 
552 llvm::GlobalValue::LinkageTypes
553 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
554   const auto *D = cast<FunctionDecl>(GD.getDecl());
555 
556   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
557 
558   bool UseThunkForDtorVariant =
559       isa<CXXDestructorDecl>(D) &&
560       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
561                                          GD.getDtorType());
562 
563   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false,
564                                      UseThunkForDtorVariant);
565 }
566 
567 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
568                                                     llvm::Function *F) {
569   setNonAliasAttributes(D, F);
570 }
571 
572 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
573                                               const CGFunctionInfo &Info,
574                                               llvm::Function *F) {
575   unsigned CallingConv;
576   AttributeListType AttributeList;
577   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
578   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
579   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
580 }
581 
582 /// Determines whether the language options require us to model
583 /// unwind exceptions.  We treat -fexceptions as mandating this
584 /// except under the fragile ObjC ABI with only ObjC exceptions
585 /// enabled.  This means, for example, that C with -fexceptions
586 /// enables this.
587 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
588   // If exceptions are completely disabled, obviously this is false.
589   if (!LangOpts.Exceptions) return false;
590 
591   // If C++ exceptions are enabled, this is true.
592   if (LangOpts.CXXExceptions) return true;
593 
594   // If ObjC exceptions are enabled, this depends on the ABI.
595   if (LangOpts.ObjCExceptions) {
596     return LangOpts.ObjCRuntime.hasUnwindExceptions();
597   }
598 
599   return true;
600 }
601 
602 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
603                                                            llvm::Function *F) {
604   llvm::AttrBuilder B;
605 
606   if (CodeGenOpts.UnwindTables)
607     B.addAttribute(llvm::Attribute::UWTable);
608 
609   if (!hasUnwindExceptions(LangOpts))
610     B.addAttribute(llvm::Attribute::NoUnwind);
611 
612   if (D->hasAttr<NakedAttr>()) {
613     // Naked implies noinline: we should not be inlining such functions.
614     B.addAttribute(llvm::Attribute::Naked);
615     B.addAttribute(llvm::Attribute::NoInline);
616   } else if (D->hasAttr<OptimizeNoneAttr>()) {
617     // OptimizeNone implies noinline; we should not be inlining such functions.
618     B.addAttribute(llvm::Attribute::OptimizeNone);
619     B.addAttribute(llvm::Attribute::NoInline);
620   } else if (D->hasAttr<NoDuplicateAttr>()) {
621     B.addAttribute(llvm::Attribute::NoDuplicate);
622   } else if (D->hasAttr<NoInlineAttr>()) {
623     B.addAttribute(llvm::Attribute::NoInline);
624   } else if (D->hasAttr<AlwaysInlineAttr>() &&
625              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
626                                               llvm::Attribute::NoInline)) {
627     // (noinline wins over always_inline, and we can't specify both in IR)
628     B.addAttribute(llvm::Attribute::AlwaysInline);
629   }
630 
631   if (D->hasAttr<ColdAttr>()) {
632     B.addAttribute(llvm::Attribute::OptimizeForSize);
633     B.addAttribute(llvm::Attribute::Cold);
634   }
635 
636   if (D->hasAttr<MinSizeAttr>())
637     B.addAttribute(llvm::Attribute::MinSize);
638 
639   if (D->hasAttr<OptimizeNoneAttr>()) {
640     // OptimizeNone wins over OptimizeForSize and MinSize.
641     B.removeAttribute(llvm::Attribute::OptimizeForSize);
642     B.removeAttribute(llvm::Attribute::MinSize);
643   }
644 
645   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
646     B.addAttribute(llvm::Attribute::StackProtect);
647   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
648     B.addAttribute(llvm::Attribute::StackProtectStrong);
649   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
650     B.addAttribute(llvm::Attribute::StackProtectReq);
651 
652   // Add sanitizer attributes if function is not blacklisted.
653   if (!SanitizerBlacklist->isIn(*F)) {
654     // When AddressSanitizer is enabled, set SanitizeAddress attribute
655     // unless __attribute__((no_sanitize_address)) is used.
656     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
657       B.addAttribute(llvm::Attribute::SanitizeAddress);
658     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
659     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
660       B.addAttribute(llvm::Attribute::SanitizeThread);
661     }
662     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
663     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
664       B.addAttribute(llvm::Attribute::SanitizeMemory);
665   }
666 
667   F->addAttributes(llvm::AttributeSet::FunctionIndex,
668                    llvm::AttributeSet::get(
669                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
670 
671   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
672     F->setUnnamedAddr(true);
673   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
674     if (MD->isVirtual())
675       F->setUnnamedAddr(true);
676 
677   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
678   if (alignment)
679     F->setAlignment(alignment);
680 
681   // C++ ABI requires 2-byte alignment for member functions.
682   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
683     F->setAlignment(2);
684 }
685 
686 void CodeGenModule::SetCommonAttributes(const Decl *D,
687                                         llvm::GlobalValue *GV) {
688   if (const auto *ND = dyn_cast<NamedDecl>(D))
689     setGlobalVisibility(GV, ND);
690   else
691     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
692 
693   if (D->hasAttr<UsedAttr>())
694     addUsedGlobal(GV);
695 }
696 
697 void CodeGenModule::setNonAliasAttributes(const Decl *D,
698                                           llvm::GlobalObject *GO) {
699   SetCommonAttributes(D, GO);
700 
701   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
702     GO->setSection(SA->getName());
703 
704   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
705 }
706 
707 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
708                                                   llvm::Function *F,
709                                                   const CGFunctionInfo &FI) {
710   SetLLVMFunctionAttributes(D, FI, F);
711   SetLLVMFunctionAttributesForDefinition(D, F);
712 
713   F->setLinkage(llvm::Function::InternalLinkage);
714 
715   setNonAliasAttributes(D, F);
716 }
717 
718 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
719                                          const NamedDecl *ND) {
720   // Set linkage and visibility in case we never see a definition.
721   LinkageInfo LV = ND->getLinkageAndVisibility();
722   if (LV.getLinkage() != ExternalLinkage) {
723     // Don't set internal linkage on declarations.
724   } else {
725     if (ND->hasAttr<DLLImportAttr>()) {
726       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
727       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
728     } else if (ND->hasAttr<DLLExportAttr>()) {
729       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
730       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
731     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
732       // "extern_weak" is overloaded in LLVM; we probably should have
733       // separate linkage types for this.
734       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
735     }
736 
737     // Set visibility on a declaration only if it's explicit.
738     if (LV.isVisibilityExplicit())
739       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
740   }
741 }
742 
743 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
744                                           llvm::Function *F,
745                                           bool IsIncompleteFunction) {
746   if (unsigned IID = F->getIntrinsicID()) {
747     // If this is an intrinsic function, set the function's attributes
748     // to the intrinsic's attributes.
749     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
750                                                     (llvm::Intrinsic::ID)IID));
751     return;
752   }
753 
754   const auto *FD = cast<FunctionDecl>(GD.getDecl());
755 
756   if (!IsIncompleteFunction)
757     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
758 
759   // Add the Returned attribute for "this", except for iOS 5 and earlier
760   // where substantial code, including the libstdc++ dylib, was compiled with
761   // GCC and does not actually return "this".
762   if (getCXXABI().HasThisReturn(GD) &&
763       !(getTarget().getTriple().isiOS() &&
764         getTarget().getTriple().isOSVersionLT(6))) {
765     assert(!F->arg_empty() &&
766            F->arg_begin()->getType()
767              ->canLosslesslyBitCastTo(F->getReturnType()) &&
768            "unexpected this return");
769     F->addAttribute(1, llvm::Attribute::Returned);
770   }
771 
772   // Only a few attributes are set on declarations; these may later be
773   // overridden by a definition.
774 
775   setLinkageAndVisibilityForGV(F, FD);
776 
777   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
778     F->setSection(SA->getName());
779 
780   // A replaceable global allocation function does not act like a builtin by
781   // default, only if it is invoked by a new-expression or delete-expression.
782   if (FD->isReplaceableGlobalAllocationFunction())
783     F->addAttribute(llvm::AttributeSet::FunctionIndex,
784                     llvm::Attribute::NoBuiltin);
785 }
786 
787 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
788   assert(!GV->isDeclaration() &&
789          "Only globals with definition can force usage.");
790   LLVMUsed.push_back(GV);
791 }
792 
793 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
794   assert(!GV->isDeclaration() &&
795          "Only globals with definition can force usage.");
796   LLVMCompilerUsed.push_back(GV);
797 }
798 
799 static void emitUsed(CodeGenModule &CGM, StringRef Name,
800                      std::vector<llvm::WeakVH> &List) {
801   // Don't create llvm.used if there is no need.
802   if (List.empty())
803     return;
804 
805   // Convert List to what ConstantArray needs.
806   SmallVector<llvm::Constant*, 8> UsedArray;
807   UsedArray.resize(List.size());
808   for (unsigned i = 0, e = List.size(); i != e; ++i) {
809     UsedArray[i] =
810      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
811                                     CGM.Int8PtrTy);
812   }
813 
814   if (UsedArray.empty())
815     return;
816   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
817 
818   auto *GV = new llvm::GlobalVariable(
819       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
820       llvm::ConstantArray::get(ATy, UsedArray), Name);
821 
822   GV->setSection("llvm.metadata");
823 }
824 
825 void CodeGenModule::emitLLVMUsed() {
826   emitUsed(*this, "llvm.used", LLVMUsed);
827   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
828 }
829 
830 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
831   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
832   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
833 }
834 
835 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
836   llvm::SmallString<32> Opt;
837   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
838   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
839   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
840 }
841 
842 void CodeGenModule::AddDependentLib(StringRef Lib) {
843   llvm::SmallString<24> Opt;
844   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
845   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
846   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
847 }
848 
849 /// \brief Add link options implied by the given module, including modules
850 /// it depends on, using a postorder walk.
851 static void addLinkOptionsPostorder(CodeGenModule &CGM,
852                                     Module *Mod,
853                                     SmallVectorImpl<llvm::Value *> &Metadata,
854                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
855   // Import this module's parent.
856   if (Mod->Parent && Visited.insert(Mod->Parent)) {
857     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
858   }
859 
860   // Import this module's dependencies.
861   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
862     if (Visited.insert(Mod->Imports[I-1]))
863       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
864   }
865 
866   // Add linker options to link against the libraries/frameworks
867   // described by this module.
868   llvm::LLVMContext &Context = CGM.getLLVMContext();
869   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
870     // Link against a framework.  Frameworks are currently Darwin only, so we
871     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
872     if (Mod->LinkLibraries[I-1].IsFramework) {
873       llvm::Value *Args[2] = {
874         llvm::MDString::get(Context, "-framework"),
875         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
876       };
877 
878       Metadata.push_back(llvm::MDNode::get(Context, Args));
879       continue;
880     }
881 
882     // Link against a library.
883     llvm::SmallString<24> Opt;
884     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
885       Mod->LinkLibraries[I-1].Library, Opt);
886     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
887     Metadata.push_back(llvm::MDNode::get(Context, OptString));
888   }
889 }
890 
891 void CodeGenModule::EmitModuleLinkOptions() {
892   // Collect the set of all of the modules we want to visit to emit link
893   // options, which is essentially the imported modules and all of their
894   // non-explicit child modules.
895   llvm::SetVector<clang::Module *> LinkModules;
896   llvm::SmallPtrSet<clang::Module *, 16> Visited;
897   SmallVector<clang::Module *, 16> Stack;
898 
899   // Seed the stack with imported modules.
900   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
901                                                MEnd = ImportedModules.end();
902        M != MEnd; ++M) {
903     if (Visited.insert(*M))
904       Stack.push_back(*M);
905   }
906 
907   // Find all of the modules to import, making a little effort to prune
908   // non-leaf modules.
909   while (!Stack.empty()) {
910     clang::Module *Mod = Stack.pop_back_val();
911 
912     bool AnyChildren = false;
913 
914     // Visit the submodules of this module.
915     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
916                                         SubEnd = Mod->submodule_end();
917          Sub != SubEnd; ++Sub) {
918       // Skip explicit children; they need to be explicitly imported to be
919       // linked against.
920       if ((*Sub)->IsExplicit)
921         continue;
922 
923       if (Visited.insert(*Sub)) {
924         Stack.push_back(*Sub);
925         AnyChildren = true;
926       }
927     }
928 
929     // We didn't find any children, so add this module to the list of
930     // modules to link against.
931     if (!AnyChildren) {
932       LinkModules.insert(Mod);
933     }
934   }
935 
936   // Add link options for all of the imported modules in reverse topological
937   // order.  We don't do anything to try to order import link flags with respect
938   // to linker options inserted by things like #pragma comment().
939   SmallVector<llvm::Value *, 16> MetadataArgs;
940   Visited.clear();
941   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
942                                                MEnd = LinkModules.end();
943        M != MEnd; ++M) {
944     if (Visited.insert(*M))
945       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
946   }
947   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
948   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
949 
950   // Add the linker options metadata flag.
951   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
952                             llvm::MDNode::get(getLLVMContext(),
953                                               LinkerOptionsMetadata));
954 }
955 
956 void CodeGenModule::EmitDeferred() {
957   // Emit code for any potentially referenced deferred decls.  Since a
958   // previously unused static decl may become used during the generation of code
959   // for a static function, iterate until no changes are made.
960 
961   while (true) {
962     if (!DeferredVTables.empty()) {
963       EmitDeferredVTables();
964 
965       // Emitting a v-table doesn't directly cause more v-tables to
966       // become deferred, although it can cause functions to be
967       // emitted that then need those v-tables.
968       assert(DeferredVTables.empty());
969     }
970 
971     // Stop if we're out of both deferred v-tables and deferred declarations.
972     if (DeferredDeclsToEmit.empty()) break;
973 
974     DeferredGlobal &G = DeferredDeclsToEmit.back();
975     GlobalDecl D = G.GD;
976     llvm::GlobalValue *GV = G.GV;
977     DeferredDeclsToEmit.pop_back();
978 
979     assert(GV == GetGlobalValue(getMangledName(D)));
980     // Check to see if we've already emitted this.  This is necessary
981     // for a couple of reasons: first, decls can end up in the
982     // deferred-decls queue multiple times, and second, decls can end
983     // up with definitions in unusual ways (e.g. by an extern inline
984     // function acquiring a strong function redefinition).  Just
985     // ignore these cases.
986     if(!GV->isDeclaration())
987       continue;
988 
989     // Otherwise, emit the definition and move on to the next one.
990     EmitGlobalDefinition(D, GV);
991   }
992 }
993 
994 void CodeGenModule::EmitGlobalAnnotations() {
995   if (Annotations.empty())
996     return;
997 
998   // Create a new global variable for the ConstantStruct in the Module.
999   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1000     Annotations[0]->getType(), Annotations.size()), Annotations);
1001   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1002                                       llvm::GlobalValue::AppendingLinkage,
1003                                       Array, "llvm.global.annotations");
1004   gv->setSection(AnnotationSection);
1005 }
1006 
1007 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1008   llvm::Constant *&AStr = AnnotationStrings[Str];
1009   if (AStr)
1010     return AStr;
1011 
1012   // Not found yet, create a new global.
1013   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1014   auto *gv =
1015       new llvm::GlobalVariable(getModule(), s->getType(), true,
1016                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1017   gv->setSection(AnnotationSection);
1018   gv->setUnnamedAddr(true);
1019   AStr = gv;
1020   return gv;
1021 }
1022 
1023 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1024   SourceManager &SM = getContext().getSourceManager();
1025   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1026   if (PLoc.isValid())
1027     return EmitAnnotationString(PLoc.getFilename());
1028   return EmitAnnotationString(SM.getBufferName(Loc));
1029 }
1030 
1031 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1032   SourceManager &SM = getContext().getSourceManager();
1033   PresumedLoc PLoc = SM.getPresumedLoc(L);
1034   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1035     SM.getExpansionLineNumber(L);
1036   return llvm::ConstantInt::get(Int32Ty, LineNo);
1037 }
1038 
1039 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1040                                                 const AnnotateAttr *AA,
1041                                                 SourceLocation L) {
1042   // Get the globals for file name, annotation, and the line number.
1043   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1044                  *UnitGV = EmitAnnotationUnit(L),
1045                  *LineNoCst = EmitAnnotationLineNo(L);
1046 
1047   // Create the ConstantStruct for the global annotation.
1048   llvm::Constant *Fields[4] = {
1049     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1050     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1051     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1052     LineNoCst
1053   };
1054   return llvm::ConstantStruct::getAnon(Fields);
1055 }
1056 
1057 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1058                                          llvm::GlobalValue *GV) {
1059   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1060   // Get the struct elements for these annotations.
1061   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1062     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1063 }
1064 
1065 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1066   // Never defer when EmitAllDecls is specified.
1067   if (LangOpts.EmitAllDecls)
1068     return false;
1069 
1070   return !getContext().DeclMustBeEmitted(Global);
1071 }
1072 
1073 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1074     const CXXUuidofExpr* E) {
1075   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1076   // well-formed.
1077   StringRef Uuid = E->getUuidAsStringRef(Context);
1078   std::string Name = "_GUID_" + Uuid.lower();
1079   std::replace(Name.begin(), Name.end(), '-', '_');
1080 
1081   // Look for an existing global.
1082   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1083     return GV;
1084 
1085   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1086   assert(Init && "failed to initialize as constant");
1087 
1088   auto *GV = new llvm::GlobalVariable(
1089       getModule(), Init->getType(),
1090       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1091   return GV;
1092 }
1093 
1094 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1095   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1096   assert(AA && "No alias?");
1097 
1098   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1099 
1100   // See if there is already something with the target's name in the module.
1101   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1102   if (Entry) {
1103     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1104     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1105   }
1106 
1107   llvm::Constant *Aliasee;
1108   if (isa<llvm::FunctionType>(DeclTy))
1109     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1110                                       GlobalDecl(cast<FunctionDecl>(VD)),
1111                                       /*ForVTable=*/false);
1112   else
1113     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1114                                     llvm::PointerType::getUnqual(DeclTy), 0);
1115 
1116   auto *F = cast<llvm::GlobalValue>(Aliasee);
1117   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1118   WeakRefReferences.insert(F);
1119 
1120   return Aliasee;
1121 }
1122 
1123 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1124   const auto *Global = cast<ValueDecl>(GD.getDecl());
1125 
1126   // Weak references don't produce any output by themselves.
1127   if (Global->hasAttr<WeakRefAttr>())
1128     return;
1129 
1130   // If this is an alias definition (which otherwise looks like a declaration)
1131   // emit it now.
1132   if (Global->hasAttr<AliasAttr>())
1133     return EmitAliasDefinition(GD);
1134 
1135   // If this is CUDA, be selective about which declarations we emit.
1136   if (LangOpts.CUDA) {
1137     if (CodeGenOpts.CUDAIsDevice) {
1138       if (!Global->hasAttr<CUDADeviceAttr>() &&
1139           !Global->hasAttr<CUDAGlobalAttr>() &&
1140           !Global->hasAttr<CUDAConstantAttr>() &&
1141           !Global->hasAttr<CUDASharedAttr>())
1142         return;
1143     } else {
1144       if (!Global->hasAttr<CUDAHostAttr>() && (
1145             Global->hasAttr<CUDADeviceAttr>() ||
1146             Global->hasAttr<CUDAConstantAttr>() ||
1147             Global->hasAttr<CUDASharedAttr>()))
1148         return;
1149     }
1150   }
1151 
1152   // Ignore declarations, they will be emitted on their first use.
1153   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1154     // Forward declarations are emitted lazily on first use.
1155     if (!FD->doesThisDeclarationHaveABody()) {
1156       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1157         return;
1158 
1159       StringRef MangledName = getMangledName(GD);
1160 
1161       // Compute the function info and LLVM type.
1162       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1163       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1164 
1165       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1166                               /*DontDefer=*/false);
1167       return;
1168     }
1169   } else {
1170     const auto *VD = cast<VarDecl>(Global);
1171     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1172 
1173     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1174       return;
1175   }
1176 
1177   // Defer code generation when possible if this is a static definition, inline
1178   // function etc.  These we only want to emit if they are used.
1179   if (!MayDeferGeneration(Global)) {
1180     // Emit the definition if it can't be deferred.
1181     EmitGlobalDefinition(GD);
1182     return;
1183   }
1184 
1185   // If we're deferring emission of a C++ variable with an
1186   // initializer, remember the order in which it appeared in the file.
1187   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1188       cast<VarDecl>(Global)->hasInit()) {
1189     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1190     CXXGlobalInits.push_back(0);
1191   }
1192 
1193   // If the value has already been used, add it directly to the
1194   // DeferredDeclsToEmit list.
1195   StringRef MangledName = getMangledName(GD);
1196   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1197     addDeferredDeclToEmit(GV, GD);
1198   else {
1199     // Otherwise, remember that we saw a deferred decl with this name.  The
1200     // first use of the mangled name will cause it to move into
1201     // DeferredDeclsToEmit.
1202     DeferredDecls[MangledName] = GD;
1203   }
1204 }
1205 
1206 namespace {
1207   struct FunctionIsDirectlyRecursive :
1208     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1209     const StringRef Name;
1210     const Builtin::Context &BI;
1211     bool Result;
1212     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1213       Name(N), BI(C), Result(false) {
1214     }
1215     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1216 
1217     bool TraverseCallExpr(CallExpr *E) {
1218       const FunctionDecl *FD = E->getDirectCallee();
1219       if (!FD)
1220         return true;
1221       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1222       if (Attr && Name == Attr->getLabel()) {
1223         Result = true;
1224         return false;
1225       }
1226       unsigned BuiltinID = FD->getBuiltinID();
1227       if (!BuiltinID)
1228         return true;
1229       StringRef BuiltinName = BI.GetName(BuiltinID);
1230       if (BuiltinName.startswith("__builtin_") &&
1231           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1232         Result = true;
1233         return false;
1234       }
1235       return true;
1236     }
1237   };
1238 }
1239 
1240 // isTriviallyRecursive - Check if this function calls another
1241 // decl that, because of the asm attribute or the other decl being a builtin,
1242 // ends up pointing to itself.
1243 bool
1244 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1245   StringRef Name;
1246   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1247     // asm labels are a special kind of mangling we have to support.
1248     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1249     if (!Attr)
1250       return false;
1251     Name = Attr->getLabel();
1252   } else {
1253     Name = FD->getName();
1254   }
1255 
1256   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1257   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1258   return Walker.Result;
1259 }
1260 
1261 bool
1262 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1263   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1264     return true;
1265   const auto *F = cast<FunctionDecl>(GD.getDecl());
1266   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1267     return false;
1268   // PR9614. Avoid cases where the source code is lying to us. An available
1269   // externally function should have an equivalent function somewhere else,
1270   // but a function that calls itself is clearly not equivalent to the real
1271   // implementation.
1272   // This happens in glibc's btowc and in some configure checks.
1273   return !isTriviallyRecursive(F);
1274 }
1275 
1276 /// If the type for the method's class was generated by
1277 /// CGDebugInfo::createContextChain(), the cache contains only a
1278 /// limited DIType without any declarations. Since EmitFunctionStart()
1279 /// needs to find the canonical declaration for each method, we need
1280 /// to construct the complete type prior to emitting the method.
1281 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1282   if (!D->isInstance())
1283     return;
1284 
1285   if (CGDebugInfo *DI = getModuleDebugInfo())
1286     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1287       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1288       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1289     }
1290 }
1291 
1292 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1293   const auto *D = cast<ValueDecl>(GD.getDecl());
1294 
1295   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1296                                  Context.getSourceManager(),
1297                                  "Generating code for declaration");
1298 
1299   if (isa<FunctionDecl>(D)) {
1300     // At -O0, don't generate IR for functions with available_externally
1301     // linkage.
1302     if (!shouldEmitFunction(GD))
1303       return;
1304 
1305     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1306       CompleteDIClassType(Method);
1307       // Make sure to emit the definition(s) before we emit the thunks.
1308       // This is necessary for the generation of certain thunks.
1309       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1310         EmitCXXConstructor(CD, GD.getCtorType());
1311       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1312         EmitCXXDestructor(DD, GD.getDtorType());
1313       else
1314         EmitGlobalFunctionDefinition(GD, GV);
1315 
1316       if (Method->isVirtual())
1317         getVTables().EmitThunks(GD);
1318 
1319       return;
1320     }
1321 
1322     return EmitGlobalFunctionDefinition(GD, GV);
1323   }
1324 
1325   if (const auto *VD = dyn_cast<VarDecl>(D))
1326     return EmitGlobalVarDefinition(VD);
1327 
1328   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1329 }
1330 
1331 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1332 /// module, create and return an llvm Function with the specified type. If there
1333 /// is something in the module with the specified name, return it potentially
1334 /// bitcasted to the right type.
1335 ///
1336 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1337 /// to set the attributes on the function when it is first created.
1338 llvm::Constant *
1339 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1340                                        llvm::Type *Ty,
1341                                        GlobalDecl GD, bool ForVTable,
1342                                        bool DontDefer,
1343                                        llvm::AttributeSet ExtraAttrs) {
1344   const Decl *D = GD.getDecl();
1345 
1346   // Lookup the entry, lazily creating it if necessary.
1347   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1348   if (Entry) {
1349     if (WeakRefReferences.erase(Entry)) {
1350       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1351       if (FD && !FD->hasAttr<WeakAttr>())
1352         Entry->setLinkage(llvm::Function::ExternalLinkage);
1353     }
1354 
1355     if (Entry->getType()->getElementType() == Ty)
1356       return Entry;
1357 
1358     // Make sure the result is of the correct type.
1359     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1360   }
1361 
1362   // This function doesn't have a complete type (for example, the return
1363   // type is an incomplete struct). Use a fake type instead, and make
1364   // sure not to try to set attributes.
1365   bool IsIncompleteFunction = false;
1366 
1367   llvm::FunctionType *FTy;
1368   if (isa<llvm::FunctionType>(Ty)) {
1369     FTy = cast<llvm::FunctionType>(Ty);
1370   } else {
1371     FTy = llvm::FunctionType::get(VoidTy, false);
1372     IsIncompleteFunction = true;
1373   }
1374 
1375   llvm::Function *F = llvm::Function::Create(FTy,
1376                                              llvm::Function::ExternalLinkage,
1377                                              MangledName, &getModule());
1378   assert(F->getName() == MangledName && "name was uniqued!");
1379   if (D)
1380     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1381   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1382     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1383     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1384                      llvm::AttributeSet::get(VMContext,
1385                                              llvm::AttributeSet::FunctionIndex,
1386                                              B));
1387   }
1388 
1389   if (!DontDefer) {
1390     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1391     // each other bottoming out with the base dtor.  Therefore we emit non-base
1392     // dtors on usage, even if there is no dtor definition in the TU.
1393     if (D && isa<CXXDestructorDecl>(D) &&
1394         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1395                                            GD.getDtorType()))
1396       addDeferredDeclToEmit(F, GD);
1397 
1398     // This is the first use or definition of a mangled name.  If there is a
1399     // deferred decl with this name, remember that we need to emit it at the end
1400     // of the file.
1401     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1402     if (DDI != DeferredDecls.end()) {
1403       // Move the potentially referenced deferred decl to the
1404       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1405       // don't need it anymore).
1406       addDeferredDeclToEmit(F, DDI->second);
1407       DeferredDecls.erase(DDI);
1408 
1409       // Otherwise, if this is a sized deallocation function, emit a weak
1410       // definition
1411       // for it at the end of the translation unit.
1412     } else if (D && cast<FunctionDecl>(D)
1413                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1414       addDeferredDeclToEmit(F, GD);
1415 
1416       // Otherwise, there are cases we have to worry about where we're
1417       // using a declaration for which we must emit a definition but where
1418       // we might not find a top-level definition:
1419       //   - member functions defined inline in their classes
1420       //   - friend functions defined inline in some class
1421       //   - special member functions with implicit definitions
1422       // If we ever change our AST traversal to walk into class methods,
1423       // this will be unnecessary.
1424       //
1425       // We also don't emit a definition for a function if it's going to be an
1426       // entry
1427       // in a vtable, unless it's already marked as used.
1428     } else if (getLangOpts().CPlusPlus && D) {
1429       // Look for a declaration that's lexically in a record.
1430       const auto *FD = cast<FunctionDecl>(D);
1431       FD = FD->getMostRecentDecl();
1432       do {
1433         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1434           if (FD->isImplicit() && !ForVTable) {
1435             assert(FD->isUsed() &&
1436                    "Sema didn't mark implicit function as used!");
1437             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1438             break;
1439           } else if (FD->doesThisDeclarationHaveABody()) {
1440             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1441             break;
1442           }
1443         }
1444         FD = FD->getPreviousDecl();
1445       } while (FD);
1446     }
1447   }
1448 
1449   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1450 
1451   // Make sure the result is of the requested type.
1452   if (!IsIncompleteFunction) {
1453     assert(F->getType()->getElementType() == Ty);
1454     return F;
1455   }
1456 
1457   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1458   return llvm::ConstantExpr::getBitCast(F, PTy);
1459 }
1460 
1461 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1462 /// non-null, then this function will use the specified type if it has to
1463 /// create it (this occurs when we see a definition of the function).
1464 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1465                                                  llvm::Type *Ty,
1466                                                  bool ForVTable,
1467                                                  bool DontDefer) {
1468   // If there was no specific requested type, just convert it now.
1469   if (!Ty)
1470     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1471 
1472   StringRef MangledName = getMangledName(GD);
1473   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1474 }
1475 
1476 /// CreateRuntimeFunction - Create a new runtime function with the specified
1477 /// type and name.
1478 llvm::Constant *
1479 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1480                                      StringRef Name,
1481                                      llvm::AttributeSet ExtraAttrs) {
1482   llvm::Constant *C =
1483       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1484                               /*DontDefer=*/false, ExtraAttrs);
1485   if (auto *F = dyn_cast<llvm::Function>(C))
1486     if (F->empty())
1487       F->setCallingConv(getRuntimeCC());
1488   return C;
1489 }
1490 
1491 /// isTypeConstant - Determine whether an object of this type can be emitted
1492 /// as a constant.
1493 ///
1494 /// If ExcludeCtor is true, the duration when the object's constructor runs
1495 /// will not be considered. The caller will need to verify that the object is
1496 /// not written to during its construction.
1497 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1498   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1499     return false;
1500 
1501   if (Context.getLangOpts().CPlusPlus) {
1502     if (const CXXRecordDecl *Record
1503           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1504       return ExcludeCtor && !Record->hasMutableFields() &&
1505              Record->hasTrivialDestructor();
1506   }
1507 
1508   return true;
1509 }
1510 
1511 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1512   if (!VD->isStaticDataMember())
1513     return false;
1514   const VarDecl *InitDecl;
1515   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1516   if (!InitExpr)
1517     return false;
1518   if (InitDecl->isThisDeclarationADefinition())
1519     return false;
1520   return true;
1521 }
1522 
1523 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1524 /// create and return an llvm GlobalVariable with the specified type.  If there
1525 /// is something in the module with the specified name, return it potentially
1526 /// bitcasted to the right type.
1527 ///
1528 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1529 /// to set the attributes on the global when it is first created.
1530 llvm::Constant *
1531 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1532                                      llvm::PointerType *Ty,
1533                                      const VarDecl *D,
1534                                      bool UnnamedAddr) {
1535   // Lookup the entry, lazily creating it if necessary.
1536   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1537   if (Entry) {
1538     if (WeakRefReferences.erase(Entry)) {
1539       if (D && !D->hasAttr<WeakAttr>())
1540         Entry->setLinkage(llvm::Function::ExternalLinkage);
1541     }
1542 
1543     if (UnnamedAddr)
1544       Entry->setUnnamedAddr(true);
1545 
1546     if (Entry->getType() == Ty)
1547       return Entry;
1548 
1549     // Make sure the result is of the correct type.
1550     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1551       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1552 
1553     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1554   }
1555 
1556   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1557   auto *GV = new llvm::GlobalVariable(
1558       getModule(), Ty->getElementType(), false,
1559       llvm::GlobalValue::ExternalLinkage, 0, MangledName, 0,
1560       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1561 
1562   // This is the first use or definition of a mangled name.  If there is a
1563   // deferred decl with this name, remember that we need to emit it at the end
1564   // of the file.
1565   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1566   if (DDI != DeferredDecls.end()) {
1567     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1568     // list, and remove it from DeferredDecls (since we don't need it anymore).
1569     addDeferredDeclToEmit(GV, DDI->second);
1570     DeferredDecls.erase(DDI);
1571   }
1572 
1573   // Handle things which are present even on external declarations.
1574   if (D) {
1575     // FIXME: This code is overly simple and should be merged with other global
1576     // handling.
1577     GV->setConstant(isTypeConstant(D->getType(), false));
1578 
1579     setLinkageAndVisibilityForGV(GV, D);
1580 
1581     if (D->getTLSKind()) {
1582       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1583         CXXThreadLocals.push_back(std::make_pair(D, GV));
1584       setTLSMode(GV, *D);
1585     }
1586 
1587     // If required by the ABI, treat declarations of static data members with
1588     // inline initializers as definitions.
1589     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1590         isVarDeclInlineInitializedStaticDataMember(D))
1591       EmitGlobalVarDefinition(D);
1592 
1593     // Handle XCore specific ABI requirements.
1594     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1595         D->getLanguageLinkage() == CLanguageLinkage &&
1596         D->getType().isConstant(Context) &&
1597         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1598       GV->setSection(".cp.rodata");
1599   }
1600 
1601   if (AddrSpace != Ty->getAddressSpace())
1602     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1603 
1604   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1605 
1606   return GV;
1607 }
1608 
1609 
1610 llvm::GlobalVariable *
1611 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1612                                       llvm::Type *Ty,
1613                                       llvm::GlobalValue::LinkageTypes Linkage) {
1614   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1615   llvm::GlobalVariable *OldGV = 0;
1616 
1617 
1618   if (GV) {
1619     // Check if the variable has the right type.
1620     if (GV->getType()->getElementType() == Ty)
1621       return GV;
1622 
1623     // Because C++ name mangling, the only way we can end up with an already
1624     // existing global with the same name is if it has been declared extern "C".
1625     assert(GV->isDeclaration() && "Declaration has wrong type!");
1626     OldGV = GV;
1627   }
1628 
1629   // Create a new variable.
1630   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1631                                 Linkage, 0, Name);
1632 
1633   if (OldGV) {
1634     // Replace occurrences of the old variable if needed.
1635     GV->takeName(OldGV);
1636 
1637     if (!OldGV->use_empty()) {
1638       llvm::Constant *NewPtrForOldDecl =
1639       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1640       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1641     }
1642 
1643     OldGV->eraseFromParent();
1644   }
1645 
1646   return GV;
1647 }
1648 
1649 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1650 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1651 /// then it will be created with the specified type instead of whatever the
1652 /// normal requested type would be.
1653 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1654                                                   llvm::Type *Ty) {
1655   assert(D->hasGlobalStorage() && "Not a global variable");
1656   QualType ASTTy = D->getType();
1657   if (Ty == 0)
1658     Ty = getTypes().ConvertTypeForMem(ASTTy);
1659 
1660   llvm::PointerType *PTy =
1661     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1662 
1663   StringRef MangledName = getMangledName(D);
1664   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1665 }
1666 
1667 /// CreateRuntimeVariable - Create a new runtime global variable with the
1668 /// specified type and name.
1669 llvm::Constant *
1670 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1671                                      StringRef Name) {
1672   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1673                                true);
1674 }
1675 
1676 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1677   assert(!D->getInit() && "Cannot emit definite definitions here!");
1678 
1679   if (MayDeferGeneration(D)) {
1680     // If we have not seen a reference to this variable yet, place it
1681     // into the deferred declarations table to be emitted if needed
1682     // later.
1683     StringRef MangledName = getMangledName(D);
1684     if (!GetGlobalValue(MangledName)) {
1685       DeferredDecls[MangledName] = D;
1686       return;
1687     }
1688   }
1689 
1690   // The tentative definition is the only definition.
1691   EmitGlobalVarDefinition(D);
1692 }
1693 
1694 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1695     return Context.toCharUnitsFromBits(
1696       TheDataLayout.getTypeStoreSizeInBits(Ty));
1697 }
1698 
1699 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1700                                                  unsigned AddrSpace) {
1701   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1702     if (D->hasAttr<CUDAConstantAttr>())
1703       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1704     else if (D->hasAttr<CUDASharedAttr>())
1705       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1706     else
1707       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1708   }
1709 
1710   return AddrSpace;
1711 }
1712 
1713 template<typename SomeDecl>
1714 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1715                                                llvm::GlobalValue *GV) {
1716   if (!getLangOpts().CPlusPlus)
1717     return;
1718 
1719   // Must have 'used' attribute, or else inline assembly can't rely on
1720   // the name existing.
1721   if (!D->template hasAttr<UsedAttr>())
1722     return;
1723 
1724   // Must have internal linkage and an ordinary name.
1725   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1726     return;
1727 
1728   // Must be in an extern "C" context. Entities declared directly within
1729   // a record are not extern "C" even if the record is in such a context.
1730   const SomeDecl *First = D->getFirstDecl();
1731   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1732     return;
1733 
1734   // OK, this is an internal linkage entity inside an extern "C" linkage
1735   // specification. Make a note of that so we can give it the "expected"
1736   // mangled name if nothing else is using that name.
1737   std::pair<StaticExternCMap::iterator, bool> R =
1738       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1739 
1740   // If we have multiple internal linkage entities with the same name
1741   // in extern "C" regions, none of them gets that name.
1742   if (!R.second)
1743     R.first->second = 0;
1744 }
1745 
1746 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1747   llvm::Constant *Init = 0;
1748   QualType ASTTy = D->getType();
1749   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1750   bool NeedsGlobalCtor = false;
1751   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1752 
1753   const VarDecl *InitDecl;
1754   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1755 
1756   if (!InitExpr) {
1757     // This is a tentative definition; tentative definitions are
1758     // implicitly initialized with { 0 }.
1759     //
1760     // Note that tentative definitions are only emitted at the end of
1761     // a translation unit, so they should never have incomplete
1762     // type. In addition, EmitTentativeDefinition makes sure that we
1763     // never attempt to emit a tentative definition if a real one
1764     // exists. A use may still exists, however, so we still may need
1765     // to do a RAUW.
1766     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1767     Init = EmitNullConstant(D->getType());
1768   } else {
1769     initializedGlobalDecl = GlobalDecl(D);
1770     Init = EmitConstantInit(*InitDecl);
1771 
1772     if (!Init) {
1773       QualType T = InitExpr->getType();
1774       if (D->getType()->isReferenceType())
1775         T = D->getType();
1776 
1777       if (getLangOpts().CPlusPlus) {
1778         Init = EmitNullConstant(T);
1779         NeedsGlobalCtor = true;
1780       } else {
1781         ErrorUnsupported(D, "static initializer");
1782         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1783       }
1784     } else {
1785       // We don't need an initializer, so remove the entry for the delayed
1786       // initializer position (just in case this entry was delayed) if we
1787       // also don't need to register a destructor.
1788       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1789         DelayedCXXInitPosition.erase(D);
1790     }
1791   }
1792 
1793   llvm::Type* InitType = Init->getType();
1794   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1795 
1796   // Strip off a bitcast if we got one back.
1797   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1798     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1799            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1800            // All zero index gep.
1801            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1802     Entry = CE->getOperand(0);
1803   }
1804 
1805   // Entry is now either a Function or GlobalVariable.
1806   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1807 
1808   // We have a definition after a declaration with the wrong type.
1809   // We must make a new GlobalVariable* and update everything that used OldGV
1810   // (a declaration or tentative definition) with the new GlobalVariable*
1811   // (which will be a definition).
1812   //
1813   // This happens if there is a prototype for a global (e.g.
1814   // "extern int x[];") and then a definition of a different type (e.g.
1815   // "int x[10];"). This also happens when an initializer has a different type
1816   // from the type of the global (this happens with unions).
1817   if (GV == 0 ||
1818       GV->getType()->getElementType() != InitType ||
1819       GV->getType()->getAddressSpace() !=
1820        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1821 
1822     // Move the old entry aside so that we'll create a new one.
1823     Entry->setName(StringRef());
1824 
1825     // Make a new global with the correct type, this is now guaranteed to work.
1826     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1827 
1828     // Replace all uses of the old global with the new global
1829     llvm::Constant *NewPtrForOldDecl =
1830         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1831     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1832 
1833     // Erase the old global, since it is no longer used.
1834     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1835   }
1836 
1837   MaybeHandleStaticInExternC(D, GV);
1838 
1839   if (D->hasAttr<AnnotateAttr>())
1840     AddGlobalAnnotations(D, GV);
1841 
1842   GV->setInitializer(Init);
1843 
1844   // If it is safe to mark the global 'constant', do so now.
1845   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1846                   isTypeConstant(D->getType(), true));
1847 
1848   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1849 
1850   // Set the llvm linkage type as appropriate.
1851   llvm::GlobalValue::LinkageTypes Linkage =
1852       getLLVMLinkageVarDefinition(D, GV->isConstant());
1853   GV->setLinkage(Linkage);
1854   if (D->hasAttr<DLLImportAttr>())
1855     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1856   else if (D->hasAttr<DLLExportAttr>())
1857     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1858 
1859   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1860     // common vars aren't constant even if declared const.
1861     GV->setConstant(false);
1862 
1863   setNonAliasAttributes(D, GV);
1864 
1865   // Emit the initializer function if necessary.
1866   if (NeedsGlobalCtor || NeedsGlobalDtor)
1867     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1868 
1869   // If we are compiling with ASan, add metadata indicating dynamically
1870   // initialized globals.
1871   if (SanOpts.Address && NeedsGlobalCtor) {
1872     llvm::Module &M = getModule();
1873 
1874     llvm::NamedMDNode *DynamicInitializers =
1875         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1876     llvm::Value *GlobalToAdd[] = { GV };
1877     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1878     DynamicInitializers->addOperand(ThisGlobal);
1879   }
1880 
1881   // Emit global variable debug information.
1882   if (CGDebugInfo *DI = getModuleDebugInfo())
1883     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1884       DI->EmitGlobalVariable(GV, D);
1885 }
1886 
1887 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1888   // Don't give variables common linkage if -fno-common was specified unless it
1889   // was overridden by a NoCommon attribute.
1890   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1891     return true;
1892 
1893   // C11 6.9.2/2:
1894   //   A declaration of an identifier for an object that has file scope without
1895   //   an initializer, and without a storage-class specifier or with the
1896   //   storage-class specifier static, constitutes a tentative definition.
1897   if (D->getInit() || D->hasExternalStorage())
1898     return true;
1899 
1900   // A variable cannot be both common and exist in a section.
1901   if (D->hasAttr<SectionAttr>())
1902     return true;
1903 
1904   // Thread local vars aren't considered common linkage.
1905   if (D->getTLSKind())
1906     return true;
1907 
1908   // Tentative definitions marked with WeakImportAttr are true definitions.
1909   if (D->hasAttr<WeakImportAttr>())
1910     return true;
1911 
1912   return false;
1913 }
1914 
1915 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
1916     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable,
1917     bool UseThunkForDtorVariant) {
1918   if (Linkage == GVA_Internal)
1919     return llvm::Function::InternalLinkage;
1920 
1921   if (D->hasAttr<WeakAttr>()) {
1922     if (IsConstantVariable)
1923       return llvm::GlobalVariable::WeakODRLinkage;
1924     else
1925       return llvm::GlobalVariable::WeakAnyLinkage;
1926   }
1927 
1928   // We are guaranteed to have a strong definition somewhere else,
1929   // so we can use available_externally linkage.
1930   if (Linkage == GVA_AvailableExternally)
1931     return llvm::Function::AvailableExternallyLinkage;
1932 
1933   // Note that Apple's kernel linker doesn't support symbol
1934   // coalescing, so we need to avoid linkonce and weak linkages there.
1935   // Normally, this means we just map to internal, but for explicit
1936   // instantiations we'll map to external.
1937 
1938   // In C++, the compiler has to emit a definition in every translation unit
1939   // that references the function.  We should use linkonce_odr because
1940   // a) if all references in this translation unit are optimized away, we
1941   // don't need to codegen it.  b) if the function persists, it needs to be
1942   // merged with other definitions. c) C++ has the ODR, so we know the
1943   // definition is dependable.
1944   if (Linkage == GVA_DiscardableODR)
1945     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
1946                                             : llvm::Function::InternalLinkage;
1947 
1948   // An explicit instantiation of a template has weak linkage, since
1949   // explicit instantiations can occur in multiple translation units
1950   // and must all be equivalent. However, we are not allowed to
1951   // throw away these explicit instantiations.
1952   if (Linkage == GVA_StrongODR)
1953     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
1954                                             : llvm::Function::ExternalLinkage;
1955 
1956   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
1957   // emitted on an as-needed basis.
1958   if (UseThunkForDtorVariant)
1959     return llvm::GlobalValue::LinkOnceODRLinkage;
1960 
1961   // If required by the ABI, give definitions of static data members with inline
1962   // initializers at least linkonce_odr linkage.
1963   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1964       isa<VarDecl>(D) &&
1965       isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D)))
1966     return llvm::GlobalValue::LinkOnceODRLinkage;
1967 
1968   // C++ doesn't have tentative definitions and thus cannot have common
1969   // linkage.
1970   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
1971       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
1972     return llvm::GlobalVariable::CommonLinkage;
1973 
1974   // selectany symbols are externally visible, so use weak instead of
1975   // linkonce.  MSVC optimizes away references to const selectany globals, so
1976   // all definitions should be the same and ODR linkage should be used.
1977   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1978   if (D->hasAttr<SelectAnyAttr>())
1979     return llvm::GlobalVariable::WeakODRLinkage;
1980 
1981   // Otherwise, we have strong external linkage.
1982   assert(Linkage == GVA_StrongExternal);
1983   return llvm::GlobalVariable::ExternalLinkage;
1984 }
1985 
1986 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
1987     const VarDecl *VD, bool IsConstant) {
1988   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
1989   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant,
1990                                      /*UseThunkForDtorVariant=*/false);
1991 }
1992 
1993 /// Replace the uses of a function that was declared with a non-proto type.
1994 /// We want to silently drop extra arguments from call sites
1995 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1996                                           llvm::Function *newFn) {
1997   // Fast path.
1998   if (old->use_empty()) return;
1999 
2000   llvm::Type *newRetTy = newFn->getReturnType();
2001   SmallVector<llvm::Value*, 4> newArgs;
2002 
2003   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2004          ui != ue; ) {
2005     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2006     llvm::User *user = use->getUser();
2007 
2008     // Recognize and replace uses of bitcasts.  Most calls to
2009     // unprototyped functions will use bitcasts.
2010     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2011       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2012         replaceUsesOfNonProtoConstant(bitcast, newFn);
2013       continue;
2014     }
2015 
2016     // Recognize calls to the function.
2017     llvm::CallSite callSite(user);
2018     if (!callSite) continue;
2019     if (!callSite.isCallee(&*use)) continue;
2020 
2021     // If the return types don't match exactly, then we can't
2022     // transform this call unless it's dead.
2023     if (callSite->getType() != newRetTy && !callSite->use_empty())
2024       continue;
2025 
2026     // Get the call site's attribute list.
2027     SmallVector<llvm::AttributeSet, 8> newAttrs;
2028     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2029 
2030     // Collect any return attributes from the call.
2031     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2032       newAttrs.push_back(
2033         llvm::AttributeSet::get(newFn->getContext(),
2034                                 oldAttrs.getRetAttributes()));
2035 
2036     // If the function was passed too few arguments, don't transform.
2037     unsigned newNumArgs = newFn->arg_size();
2038     if (callSite.arg_size() < newNumArgs) continue;
2039 
2040     // If extra arguments were passed, we silently drop them.
2041     // If any of the types mismatch, we don't transform.
2042     unsigned argNo = 0;
2043     bool dontTransform = false;
2044     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2045            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2046       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2047         dontTransform = true;
2048         break;
2049       }
2050 
2051       // Add any parameter attributes.
2052       if (oldAttrs.hasAttributes(argNo + 1))
2053         newAttrs.
2054           push_back(llvm::
2055                     AttributeSet::get(newFn->getContext(),
2056                                       oldAttrs.getParamAttributes(argNo + 1)));
2057     }
2058     if (dontTransform)
2059       continue;
2060 
2061     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2062       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2063                                                  oldAttrs.getFnAttributes()));
2064 
2065     // Okay, we can transform this.  Create the new call instruction and copy
2066     // over the required information.
2067     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2068 
2069     llvm::CallSite newCall;
2070     if (callSite.isCall()) {
2071       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2072                                        callSite.getInstruction());
2073     } else {
2074       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2075       newCall = llvm::InvokeInst::Create(newFn,
2076                                          oldInvoke->getNormalDest(),
2077                                          oldInvoke->getUnwindDest(),
2078                                          newArgs, "",
2079                                          callSite.getInstruction());
2080     }
2081     newArgs.clear(); // for the next iteration
2082 
2083     if (!newCall->getType()->isVoidTy())
2084       newCall->takeName(callSite.getInstruction());
2085     newCall.setAttributes(
2086                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2087     newCall.setCallingConv(callSite.getCallingConv());
2088 
2089     // Finally, remove the old call, replacing any uses with the new one.
2090     if (!callSite->use_empty())
2091       callSite->replaceAllUsesWith(newCall.getInstruction());
2092 
2093     // Copy debug location attached to CI.
2094     if (!callSite->getDebugLoc().isUnknown())
2095       newCall->setDebugLoc(callSite->getDebugLoc());
2096     callSite->eraseFromParent();
2097   }
2098 }
2099 
2100 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2101 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2102 /// existing call uses of the old function in the module, this adjusts them to
2103 /// call the new function directly.
2104 ///
2105 /// This is not just a cleanup: the always_inline pass requires direct calls to
2106 /// functions to be able to inline them.  If there is a bitcast in the way, it
2107 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2108 /// run at -O0.
2109 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2110                                                       llvm::Function *NewFn) {
2111   // If we're redefining a global as a function, don't transform it.
2112   if (!isa<llvm::Function>(Old)) return;
2113 
2114   replaceUsesOfNonProtoConstant(Old, NewFn);
2115 }
2116 
2117 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2118   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2119   // If we have a definition, this might be a deferred decl. If the
2120   // instantiation is explicit, make sure we emit it at the end.
2121   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2122     GetAddrOfGlobalVar(VD);
2123 
2124   EmitTopLevelDecl(VD);
2125 }
2126 
2127 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2128                                                  llvm::GlobalValue *GV) {
2129   const auto *D = cast<FunctionDecl>(GD.getDecl());
2130 
2131   // Compute the function info and LLVM type.
2132   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2133   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2134 
2135   // Get or create the prototype for the function.
2136   if (!GV) {
2137     llvm::Constant *C =
2138         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2139 
2140     // Strip off a bitcast if we got one back.
2141     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2142       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2143       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2144     } else {
2145       GV = cast<llvm::GlobalValue>(C);
2146     }
2147   }
2148 
2149   if (!GV->isDeclaration()) {
2150     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2151     return;
2152   }
2153 
2154   if (GV->getType()->getElementType() != Ty) {
2155     // If the types mismatch then we have to rewrite the definition.
2156     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2157 
2158     // F is the Function* for the one with the wrong type, we must make a new
2159     // Function* and update everything that used F (a declaration) with the new
2160     // Function* (which will be a definition).
2161     //
2162     // This happens if there is a prototype for a function
2163     // (e.g. "int f()") and then a definition of a different type
2164     // (e.g. "int f(int x)").  Move the old function aside so that it
2165     // doesn't interfere with GetAddrOfFunction.
2166     GV->setName(StringRef());
2167     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2168 
2169     // This might be an implementation of a function without a
2170     // prototype, in which case, try to do special replacement of
2171     // calls which match the new prototype.  The really key thing here
2172     // is that we also potentially drop arguments from the call site
2173     // so as to make a direct call, which makes the inliner happier
2174     // and suppresses a number of optimizer warnings (!) about
2175     // dropping arguments.
2176     if (!GV->use_empty()) {
2177       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2178       GV->removeDeadConstantUsers();
2179     }
2180 
2181     // Replace uses of F with the Function we will endow with a body.
2182     if (!GV->use_empty()) {
2183       llvm::Constant *NewPtrForOldDecl =
2184           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2185       GV->replaceAllUsesWith(NewPtrForOldDecl);
2186     }
2187 
2188     // Ok, delete the old function now, which is dead.
2189     GV->eraseFromParent();
2190 
2191     GV = NewFn;
2192   }
2193 
2194   // We need to set linkage and visibility on the function before
2195   // generating code for it because various parts of IR generation
2196   // want to propagate this information down (e.g. to local static
2197   // declarations).
2198   auto *Fn = cast<llvm::Function>(GV);
2199   setFunctionLinkage(GD, Fn);
2200 
2201   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2202   setGlobalVisibility(Fn, D);
2203 
2204   MaybeHandleStaticInExternC(D, Fn);
2205 
2206   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2207 
2208   setFunctionDefinitionAttributes(D, Fn);
2209   SetLLVMFunctionAttributesForDefinition(D, Fn);
2210 
2211   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2212     AddGlobalCtor(Fn, CA->getPriority());
2213   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2214     AddGlobalDtor(Fn, DA->getPriority());
2215   if (D->hasAttr<AnnotateAttr>())
2216     AddGlobalAnnotations(D, Fn);
2217 }
2218 
2219 static llvm::GlobalObject &getGlobalObjectInExpr(DiagnosticsEngine &Diags,
2220                                                  const AliasAttr *AA,
2221                                                  llvm::Constant *C) {
2222   if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
2223     return *GO;
2224 
2225   auto *GA = dyn_cast<llvm::GlobalAlias>(C);
2226   if (GA) {
2227     if (GA->mayBeOverridden()) {
2228       Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
2229           << GA->getAliasee()->getName() << GA->getName();
2230     }
2231 
2232     return *GA->getAliasee();
2233   }
2234 
2235   auto *CE = cast<llvm::ConstantExpr>(C);
2236   assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2237          CE->getOpcode() == llvm::Instruction::GetElementPtr ||
2238          CE->getOpcode() == llvm::Instruction::AddrSpaceCast);
2239   return *cast<llvm::GlobalObject>(CE->getOperand(0));
2240 }
2241 
2242 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2243   const auto *D = cast<ValueDecl>(GD.getDecl());
2244   const AliasAttr *AA = D->getAttr<AliasAttr>();
2245   assert(AA && "Not an alias?");
2246 
2247   StringRef MangledName = getMangledName(GD);
2248 
2249   // If there is a definition in the module, then it wins over the alias.
2250   // This is dubious, but allow it to be safe.  Just ignore the alias.
2251   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2252   if (Entry && !Entry->isDeclaration())
2253     return;
2254 
2255   Aliases.push_back(GD);
2256 
2257   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2258 
2259   // Create a reference to the named value.  This ensures that it is emitted
2260   // if a deferred decl.
2261   llvm::Constant *Aliasee;
2262   if (isa<llvm::FunctionType>(DeclTy))
2263     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2264                                       /*ForVTable=*/false);
2265   else
2266     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2267                                     llvm::PointerType::getUnqual(DeclTy), 0);
2268 
2269   // Create the new alias itself, but don't set a name yet.
2270   auto *GA = llvm::GlobalAlias::create(
2271       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2272       llvm::Function::ExternalLinkage, "",
2273       &getGlobalObjectInExpr(Diags, AA, Aliasee));
2274 
2275   if (Entry) {
2276     if (GA->getAliasee() == Entry) {
2277       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2278       return;
2279     }
2280 
2281     assert(Entry->isDeclaration());
2282 
2283     // If there is a declaration in the module, then we had an extern followed
2284     // by the alias, as in:
2285     //   extern int test6();
2286     //   ...
2287     //   int test6() __attribute__((alias("test7")));
2288     //
2289     // Remove it and replace uses of it with the alias.
2290     GA->takeName(Entry);
2291 
2292     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2293                                                           Entry->getType()));
2294     Entry->eraseFromParent();
2295   } else {
2296     GA->setName(MangledName);
2297   }
2298 
2299   // Set attributes which are particular to an alias; this is a
2300   // specialization of the attributes which may be set on a global
2301   // variable/function.
2302   if (D->hasAttr<DLLExportAttr>()) {
2303     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2304       // The dllexport attribute is ignored for undefined symbols.
2305       if (FD->hasBody())
2306         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2307     } else {
2308       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2309     }
2310   } else if (D->hasAttr<WeakAttr>() ||
2311              D->hasAttr<WeakRefAttr>() ||
2312              D->isWeakImported()) {
2313     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2314   }
2315 
2316   SetCommonAttributes(D, GA);
2317 }
2318 
2319 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2320                                             ArrayRef<llvm::Type*> Tys) {
2321   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2322                                          Tys);
2323 }
2324 
2325 static llvm::StringMapEntry<llvm::Constant*> &
2326 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2327                          const StringLiteral *Literal,
2328                          bool TargetIsLSB,
2329                          bool &IsUTF16,
2330                          unsigned &StringLength) {
2331   StringRef String = Literal->getString();
2332   unsigned NumBytes = String.size();
2333 
2334   // Check for simple case.
2335   if (!Literal->containsNonAsciiOrNull()) {
2336     StringLength = NumBytes;
2337     return Map.GetOrCreateValue(String);
2338   }
2339 
2340   // Otherwise, convert the UTF8 literals into a string of shorts.
2341   IsUTF16 = true;
2342 
2343   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2344   const UTF8 *FromPtr = (const UTF8 *)String.data();
2345   UTF16 *ToPtr = &ToBuf[0];
2346 
2347   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2348                            &ToPtr, ToPtr + NumBytes,
2349                            strictConversion);
2350 
2351   // ConvertUTF8toUTF16 returns the length in ToPtr.
2352   StringLength = ToPtr - &ToBuf[0];
2353 
2354   // Add an explicit null.
2355   *ToPtr = 0;
2356   return Map.
2357     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2358                                (StringLength + 1) * 2));
2359 }
2360 
2361 static llvm::StringMapEntry<llvm::Constant*> &
2362 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2363                        const StringLiteral *Literal,
2364                        unsigned &StringLength) {
2365   StringRef String = Literal->getString();
2366   StringLength = String.size();
2367   return Map.GetOrCreateValue(String);
2368 }
2369 
2370 llvm::Constant *
2371 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2372   unsigned StringLength = 0;
2373   bool isUTF16 = false;
2374   llvm::StringMapEntry<llvm::Constant*> &Entry =
2375     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2376                              getDataLayout().isLittleEndian(),
2377                              isUTF16, StringLength);
2378 
2379   if (llvm::Constant *C = Entry.getValue())
2380     return C;
2381 
2382   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2383   llvm::Constant *Zeros[] = { Zero, Zero };
2384   llvm::Value *V;
2385 
2386   // If we don't already have it, get __CFConstantStringClassReference.
2387   if (!CFConstantStringClassRef) {
2388     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2389     Ty = llvm::ArrayType::get(Ty, 0);
2390     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2391                                            "__CFConstantStringClassReference");
2392     // Decay array -> ptr
2393     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2394     CFConstantStringClassRef = V;
2395   }
2396   else
2397     V = CFConstantStringClassRef;
2398 
2399   QualType CFTy = getContext().getCFConstantStringType();
2400 
2401   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2402 
2403   llvm::Constant *Fields[4];
2404 
2405   // Class pointer.
2406   Fields[0] = cast<llvm::ConstantExpr>(V);
2407 
2408   // Flags.
2409   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2410   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2411     llvm::ConstantInt::get(Ty, 0x07C8);
2412 
2413   // String pointer.
2414   llvm::Constant *C = 0;
2415   if (isUTF16) {
2416     ArrayRef<uint16_t> Arr =
2417       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2418                                      const_cast<char *>(Entry.getKey().data())),
2419                                    Entry.getKey().size() / 2);
2420     C = llvm::ConstantDataArray::get(VMContext, Arr);
2421   } else {
2422     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2423   }
2424 
2425   // Note: -fwritable-strings doesn't make the backing store strings of
2426   // CFStrings writable. (See <rdar://problem/10657500>)
2427   auto *GV =
2428       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2429                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2430   GV->setUnnamedAddr(true);
2431   // Don't enforce the target's minimum global alignment, since the only use
2432   // of the string is via this class initializer.
2433   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2434   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2435   // that changes the section it ends in, which surprises ld64.
2436   if (isUTF16) {
2437     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2438     GV->setAlignment(Align.getQuantity());
2439     GV->setSection("__TEXT,__ustring");
2440   } else {
2441     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2442     GV->setAlignment(Align.getQuantity());
2443     GV->setSection("__TEXT,__cstring,cstring_literals");
2444   }
2445 
2446   // String.
2447   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2448 
2449   if (isUTF16)
2450     // Cast the UTF16 string to the correct type.
2451     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2452 
2453   // String length.
2454   Ty = getTypes().ConvertType(getContext().LongTy);
2455   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2456 
2457   // The struct.
2458   C = llvm::ConstantStruct::get(STy, Fields);
2459   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2460                                 llvm::GlobalVariable::PrivateLinkage, C,
2461                                 "_unnamed_cfstring_");
2462   GV->setSection("__DATA,__cfstring");
2463   Entry.setValue(GV);
2464 
2465   return GV;
2466 }
2467 
2468 llvm::Constant *
2469 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2470   unsigned StringLength = 0;
2471   llvm::StringMapEntry<llvm::Constant*> &Entry =
2472     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2473 
2474   if (llvm::Constant *C = Entry.getValue())
2475     return C;
2476 
2477   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2478   llvm::Constant *Zeros[] = { Zero, Zero };
2479   llvm::Value *V;
2480   // If we don't already have it, get _NSConstantStringClassReference.
2481   if (!ConstantStringClassRef) {
2482     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2483     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2484     llvm::Constant *GV;
2485     if (LangOpts.ObjCRuntime.isNonFragile()) {
2486       std::string str =
2487         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2488                             : "OBJC_CLASS_$_" + StringClass;
2489       GV = getObjCRuntime().GetClassGlobal(str);
2490       // Make sure the result is of the correct type.
2491       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2492       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2493       ConstantStringClassRef = V;
2494     } else {
2495       std::string str =
2496         StringClass.empty() ? "_NSConstantStringClassReference"
2497                             : "_" + StringClass + "ClassReference";
2498       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2499       GV = CreateRuntimeVariable(PTy, str);
2500       // Decay array -> ptr
2501       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2502       ConstantStringClassRef = V;
2503     }
2504   }
2505   else
2506     V = ConstantStringClassRef;
2507 
2508   if (!NSConstantStringType) {
2509     // Construct the type for a constant NSString.
2510     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2511     D->startDefinition();
2512 
2513     QualType FieldTypes[3];
2514 
2515     // const int *isa;
2516     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2517     // const char *str;
2518     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2519     // unsigned int length;
2520     FieldTypes[2] = Context.UnsignedIntTy;
2521 
2522     // Create fields
2523     for (unsigned i = 0; i < 3; ++i) {
2524       FieldDecl *Field = FieldDecl::Create(Context, D,
2525                                            SourceLocation(),
2526                                            SourceLocation(), 0,
2527                                            FieldTypes[i], /*TInfo=*/0,
2528                                            /*BitWidth=*/0,
2529                                            /*Mutable=*/false,
2530                                            ICIS_NoInit);
2531       Field->setAccess(AS_public);
2532       D->addDecl(Field);
2533     }
2534 
2535     D->completeDefinition();
2536     QualType NSTy = Context.getTagDeclType(D);
2537     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2538   }
2539 
2540   llvm::Constant *Fields[3];
2541 
2542   // Class pointer.
2543   Fields[0] = cast<llvm::ConstantExpr>(V);
2544 
2545   // String pointer.
2546   llvm::Constant *C =
2547     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2548 
2549   llvm::GlobalValue::LinkageTypes Linkage;
2550   bool isConstant;
2551   Linkage = llvm::GlobalValue::PrivateLinkage;
2552   isConstant = !LangOpts.WritableStrings;
2553 
2554   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2555                                       Linkage, C, ".str");
2556   GV->setUnnamedAddr(true);
2557   // Don't enforce the target's minimum global alignment, since the only use
2558   // of the string is via this class initializer.
2559   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2560   GV->setAlignment(Align.getQuantity());
2561   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2562 
2563   // String length.
2564   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2565   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2566 
2567   // The struct.
2568   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2569   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2570                                 llvm::GlobalVariable::PrivateLinkage, C,
2571                                 "_unnamed_nsstring_");
2572   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2573   const char *NSStringNonFragileABISection =
2574       "__DATA,__objc_stringobj,regular,no_dead_strip";
2575   // FIXME. Fix section.
2576   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2577                      ? NSStringNonFragileABISection
2578                      : NSStringSection);
2579   Entry.setValue(GV);
2580 
2581   return GV;
2582 }
2583 
2584 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2585   if (ObjCFastEnumerationStateType.isNull()) {
2586     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2587     D->startDefinition();
2588 
2589     QualType FieldTypes[] = {
2590       Context.UnsignedLongTy,
2591       Context.getPointerType(Context.getObjCIdType()),
2592       Context.getPointerType(Context.UnsignedLongTy),
2593       Context.getConstantArrayType(Context.UnsignedLongTy,
2594                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2595     };
2596 
2597     for (size_t i = 0; i < 4; ++i) {
2598       FieldDecl *Field = FieldDecl::Create(Context,
2599                                            D,
2600                                            SourceLocation(),
2601                                            SourceLocation(), 0,
2602                                            FieldTypes[i], /*TInfo=*/0,
2603                                            /*BitWidth=*/0,
2604                                            /*Mutable=*/false,
2605                                            ICIS_NoInit);
2606       Field->setAccess(AS_public);
2607       D->addDecl(Field);
2608     }
2609 
2610     D->completeDefinition();
2611     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2612   }
2613 
2614   return ObjCFastEnumerationStateType;
2615 }
2616 
2617 llvm::Constant *
2618 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2619   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2620 
2621   // Don't emit it as the address of the string, emit the string data itself
2622   // as an inline array.
2623   if (E->getCharByteWidth() == 1) {
2624     SmallString<64> Str(E->getString());
2625 
2626     // Resize the string to the right size, which is indicated by its type.
2627     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2628     Str.resize(CAT->getSize().getZExtValue());
2629     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2630   }
2631 
2632   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2633   llvm::Type *ElemTy = AType->getElementType();
2634   unsigned NumElements = AType->getNumElements();
2635 
2636   // Wide strings have either 2-byte or 4-byte elements.
2637   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2638     SmallVector<uint16_t, 32> Elements;
2639     Elements.reserve(NumElements);
2640 
2641     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2642       Elements.push_back(E->getCodeUnit(i));
2643     Elements.resize(NumElements);
2644     return llvm::ConstantDataArray::get(VMContext, Elements);
2645   }
2646 
2647   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2648   SmallVector<uint32_t, 32> Elements;
2649   Elements.reserve(NumElements);
2650 
2651   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2652     Elements.push_back(E->getCodeUnit(i));
2653   Elements.resize(NumElements);
2654   return llvm::ConstantDataArray::get(VMContext, Elements);
2655 }
2656 
2657 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2658 /// constant array for the given string literal.
2659 llvm::Constant *
2660 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2661   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2662 
2663   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2664   llvm::GlobalVariable *GV = nullptr;
2665   if (!LangOpts.WritableStrings) {
2666     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2667     switch (S->getCharByteWidth()) {
2668     case 1:
2669       ConstantStringMap = &Constant1ByteStringMap;
2670       break;
2671     case 2:
2672       ConstantStringMap = &Constant2ByteStringMap;
2673       break;
2674     case 4:
2675       ConstantStringMap = &Constant4ByteStringMap;
2676       break;
2677     default:
2678       llvm_unreachable("unhandled byte width!");
2679     }
2680     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2681     GV = Entry->getValue();
2682   }
2683 
2684   if (!GV) {
2685     SmallString<256> MangledNameBuffer;
2686     StringRef GlobalVariableName;
2687     llvm::GlobalValue::LinkageTypes LT;
2688 
2689     // Mangle the string literal if the ABI allows for it.  However, we cannot
2690     // do this if  we are compiling with ASan or -fwritable-strings because they
2691     // rely on strings having normal linkage.
2692     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2693         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2694       llvm::raw_svector_ostream Out(MangledNameBuffer);
2695       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2696       Out.flush();
2697 
2698       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2699       GlobalVariableName = MangledNameBuffer;
2700     } else {
2701       LT = llvm::GlobalValue::PrivateLinkage;
2702       GlobalVariableName = ".str";
2703     }
2704 
2705     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2706     unsigned AddrSpace = 0;
2707     if (getLangOpts().OpenCL)
2708       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2709 
2710     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2711     GV = new llvm::GlobalVariable(
2712         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2713         GlobalVariableName, /*InsertBefore=*/nullptr,
2714         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2715     GV->setUnnamedAddr(true);
2716     if (Entry)
2717       Entry->setValue(GV);
2718   }
2719 
2720   if (Align.getQuantity() > GV->getAlignment())
2721     GV->setAlignment(Align.getQuantity());
2722 
2723   return GV;
2724 }
2725 
2726 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2727 /// array for the given ObjCEncodeExpr node.
2728 llvm::Constant *
2729 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2730   std::string Str;
2731   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2732 
2733   return GetAddrOfConstantCString(Str);
2734 }
2735 
2736 
2737 /// GenerateWritableString -- Creates storage for a string literal.
2738 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2739                                              bool constant,
2740                                              CodeGenModule &CGM,
2741                                              const char *GlobalName,
2742                                              unsigned Alignment) {
2743   // Create Constant for this string literal. Don't add a '\0'.
2744   llvm::Constant *C =
2745       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2746 
2747   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2748   unsigned AddrSpace = 0;
2749   if (CGM.getLangOpts().OpenCL)
2750     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2751 
2752   // Create a global variable for this string
2753   auto *GV = new llvm::GlobalVariable(
2754       CGM.getModule(), C->getType(), constant,
2755       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2756       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2757   GV->setAlignment(Alignment);
2758   GV->setUnnamedAddr(true);
2759   return GV;
2760 }
2761 
2762 /// GetAddrOfConstantString - Returns a pointer to a character array
2763 /// containing the literal. This contents are exactly that of the
2764 /// given string, i.e. it will not be null terminated automatically;
2765 /// see GetAddrOfConstantCString. Note that whether the result is
2766 /// actually a pointer to an LLVM constant depends on
2767 /// Feature.WriteableStrings.
2768 ///
2769 /// The result has pointer to array type.
2770 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2771                                                        const char *GlobalName,
2772                                                        unsigned Alignment) {
2773   // Get the default prefix if a name wasn't specified.
2774   if (!GlobalName)
2775     GlobalName = ".str";
2776 
2777   if (Alignment == 0)
2778     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2779       .getQuantity();
2780 
2781   // Don't share any string literals if strings aren't constant.
2782   if (LangOpts.WritableStrings)
2783     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2784 
2785   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2786     Constant1ByteStringMap.GetOrCreateValue(Str);
2787 
2788   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2789     if (Alignment > GV->getAlignment()) {
2790       GV->setAlignment(Alignment);
2791     }
2792     return GV;
2793   }
2794 
2795   // Create a global variable for this.
2796   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2797                                                    Alignment);
2798   Entry.setValue(GV);
2799   return GV;
2800 }
2801 
2802 /// GetAddrOfConstantCString - Returns a pointer to a character
2803 /// array containing the literal and a terminating '\0'
2804 /// character. The result has pointer to array type.
2805 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2806                                                         const char *GlobalName,
2807                                                         unsigned Alignment) {
2808   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2809   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2810 }
2811 
2812 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2813     const MaterializeTemporaryExpr *E, const Expr *Init) {
2814   assert((E->getStorageDuration() == SD_Static ||
2815           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2816   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2817 
2818   // If we're not materializing a subobject of the temporary, keep the
2819   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2820   QualType MaterializedType = Init->getType();
2821   if (Init == E->GetTemporaryExpr())
2822     MaterializedType = E->getType();
2823 
2824   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2825   if (Slot)
2826     return Slot;
2827 
2828   // FIXME: If an externally-visible declaration extends multiple temporaries,
2829   // we need to give each temporary the same name in every translation unit (and
2830   // we also need to make the temporaries externally-visible).
2831   SmallString<256> Name;
2832   llvm::raw_svector_ostream Out(Name);
2833   getCXXABI().getMangleContext().mangleReferenceTemporary(
2834       VD, E->getManglingNumber(), Out);
2835   Out.flush();
2836 
2837   APValue *Value = 0;
2838   if (E->getStorageDuration() == SD_Static) {
2839     // We might have a cached constant initializer for this temporary. Note
2840     // that this might have a different value from the value computed by
2841     // evaluating the initializer if the surrounding constant expression
2842     // modifies the temporary.
2843     Value = getContext().getMaterializedTemporaryValue(E, false);
2844     if (Value && Value->isUninit())
2845       Value = 0;
2846   }
2847 
2848   // Try evaluating it now, it might have a constant initializer.
2849   Expr::EvalResult EvalResult;
2850   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2851       !EvalResult.hasSideEffects())
2852     Value = &EvalResult.Val;
2853 
2854   llvm::Constant *InitialValue = 0;
2855   bool Constant = false;
2856   llvm::Type *Type;
2857   if (Value) {
2858     // The temporary has a constant initializer, use it.
2859     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2860     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2861     Type = InitialValue->getType();
2862   } else {
2863     // No initializer, the initialization will be provided when we
2864     // initialize the declaration which performed lifetime extension.
2865     Type = getTypes().ConvertTypeForMem(MaterializedType);
2866   }
2867 
2868   // Create a global variable for this lifetime-extended temporary.
2869   llvm::GlobalValue::LinkageTypes Linkage =
2870       getLLVMLinkageVarDefinition(VD, Constant);
2871   // There is no need for this temporary to have global linkage if the global
2872   // variable has external linkage.
2873   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2874     Linkage = llvm::GlobalVariable::PrivateLinkage;
2875   unsigned AddrSpace = GetGlobalVarAddressSpace(
2876       VD, getContext().getTargetAddressSpace(MaterializedType));
2877   auto *GV = new llvm::GlobalVariable(
2878       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2879       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2880       AddrSpace);
2881   setGlobalVisibility(GV, VD);
2882   GV->setAlignment(
2883       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2884   if (VD->getTLSKind())
2885     setTLSMode(GV, *VD);
2886   Slot = GV;
2887   return GV;
2888 }
2889 
2890 /// EmitObjCPropertyImplementations - Emit information for synthesized
2891 /// properties for an implementation.
2892 void CodeGenModule::EmitObjCPropertyImplementations(const
2893                                                     ObjCImplementationDecl *D) {
2894   for (const auto *PID : D->property_impls()) {
2895     // Dynamic is just for type-checking.
2896     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2897       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2898 
2899       // Determine which methods need to be implemented, some may have
2900       // been overridden. Note that ::isPropertyAccessor is not the method
2901       // we want, that just indicates if the decl came from a
2902       // property. What we want to know is if the method is defined in
2903       // this implementation.
2904       if (!D->getInstanceMethod(PD->getGetterName()))
2905         CodeGenFunction(*this).GenerateObjCGetter(
2906                                  const_cast<ObjCImplementationDecl *>(D), PID);
2907       if (!PD->isReadOnly() &&
2908           !D->getInstanceMethod(PD->getSetterName()))
2909         CodeGenFunction(*this).GenerateObjCSetter(
2910                                  const_cast<ObjCImplementationDecl *>(D), PID);
2911     }
2912   }
2913 }
2914 
2915 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2916   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2917   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2918        ivar; ivar = ivar->getNextIvar())
2919     if (ivar->getType().isDestructedType())
2920       return true;
2921 
2922   return false;
2923 }
2924 
2925 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2926 /// for an implementation.
2927 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2928   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2929   if (needsDestructMethod(D)) {
2930     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2931     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2932     ObjCMethodDecl *DTORMethod =
2933       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2934                              cxxSelector, getContext().VoidTy, 0, D,
2935                              /*isInstance=*/true, /*isVariadic=*/false,
2936                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2937                              /*isDefined=*/false, ObjCMethodDecl::Required);
2938     D->addInstanceMethod(DTORMethod);
2939     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2940     D->setHasDestructors(true);
2941   }
2942 
2943   // If the implementation doesn't have any ivar initializers, we don't need
2944   // a .cxx_construct.
2945   if (D->getNumIvarInitializers() == 0)
2946     return;
2947 
2948   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2949   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2950   // The constructor returns 'self'.
2951   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2952                                                 D->getLocation(),
2953                                                 D->getLocation(),
2954                                                 cxxSelector,
2955                                                 getContext().getObjCIdType(), 0,
2956                                                 D, /*isInstance=*/true,
2957                                                 /*isVariadic=*/false,
2958                                                 /*isPropertyAccessor=*/true,
2959                                                 /*isImplicitlyDeclared=*/true,
2960                                                 /*isDefined=*/false,
2961                                                 ObjCMethodDecl::Required);
2962   D->addInstanceMethod(CTORMethod);
2963   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2964   D->setHasNonZeroConstructors(true);
2965 }
2966 
2967 /// EmitNamespace - Emit all declarations in a namespace.
2968 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2969   for (auto *I : ND->decls()) {
2970     if (const auto *VD = dyn_cast<VarDecl>(I))
2971       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2972           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2973         continue;
2974     EmitTopLevelDecl(I);
2975   }
2976 }
2977 
2978 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2979 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2980   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2981       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2982     ErrorUnsupported(LSD, "linkage spec");
2983     return;
2984   }
2985 
2986   for (auto *I : LSD->decls()) {
2987     // Meta-data for ObjC class includes references to implemented methods.
2988     // Generate class's method definitions first.
2989     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2990       for (auto *M : OID->methods())
2991         EmitTopLevelDecl(M);
2992     }
2993     EmitTopLevelDecl(I);
2994   }
2995 }
2996 
2997 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2998 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2999   // Ignore dependent declarations.
3000   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3001     return;
3002 
3003   switch (D->getKind()) {
3004   case Decl::CXXConversion:
3005   case Decl::CXXMethod:
3006   case Decl::Function:
3007     // Skip function templates
3008     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3009         cast<FunctionDecl>(D)->isLateTemplateParsed())
3010       return;
3011 
3012     EmitGlobal(cast<FunctionDecl>(D));
3013     break;
3014 
3015   case Decl::Var:
3016     // Skip variable templates
3017     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3018       return;
3019   case Decl::VarTemplateSpecialization:
3020     EmitGlobal(cast<VarDecl>(D));
3021     break;
3022 
3023   // Indirect fields from global anonymous structs and unions can be
3024   // ignored; only the actual variable requires IR gen support.
3025   case Decl::IndirectField:
3026     break;
3027 
3028   // C++ Decls
3029   case Decl::Namespace:
3030     EmitNamespace(cast<NamespaceDecl>(D));
3031     break;
3032     // No code generation needed.
3033   case Decl::UsingShadow:
3034   case Decl::ClassTemplate:
3035   case Decl::VarTemplate:
3036   case Decl::VarTemplatePartialSpecialization:
3037   case Decl::FunctionTemplate:
3038   case Decl::TypeAliasTemplate:
3039   case Decl::Block:
3040   case Decl::Empty:
3041     break;
3042   case Decl::Using:          // using X; [C++]
3043     if (CGDebugInfo *DI = getModuleDebugInfo())
3044         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3045     return;
3046   case Decl::NamespaceAlias:
3047     if (CGDebugInfo *DI = getModuleDebugInfo())
3048         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3049     return;
3050   case Decl::UsingDirective: // using namespace X; [C++]
3051     if (CGDebugInfo *DI = getModuleDebugInfo())
3052       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3053     return;
3054   case Decl::CXXConstructor:
3055     // Skip function templates
3056     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3057         cast<FunctionDecl>(D)->isLateTemplateParsed())
3058       return;
3059 
3060     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3061     break;
3062   case Decl::CXXDestructor:
3063     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3064       return;
3065     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3066     break;
3067 
3068   case Decl::StaticAssert:
3069     // Nothing to do.
3070     break;
3071 
3072   // Objective-C Decls
3073 
3074   // Forward declarations, no (immediate) code generation.
3075   case Decl::ObjCInterface:
3076   case Decl::ObjCCategory:
3077     break;
3078 
3079   case Decl::ObjCProtocol: {
3080     auto *Proto = cast<ObjCProtocolDecl>(D);
3081     if (Proto->isThisDeclarationADefinition())
3082       ObjCRuntime->GenerateProtocol(Proto);
3083     break;
3084   }
3085 
3086   case Decl::ObjCCategoryImpl:
3087     // Categories have properties but don't support synthesize so we
3088     // can ignore them here.
3089     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3090     break;
3091 
3092   case Decl::ObjCImplementation: {
3093     auto *OMD = cast<ObjCImplementationDecl>(D);
3094     EmitObjCPropertyImplementations(OMD);
3095     EmitObjCIvarInitializations(OMD);
3096     ObjCRuntime->GenerateClass(OMD);
3097     // Emit global variable debug information.
3098     if (CGDebugInfo *DI = getModuleDebugInfo())
3099       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3100         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3101             OMD->getClassInterface()), OMD->getLocation());
3102     break;
3103   }
3104   case Decl::ObjCMethod: {
3105     auto *OMD = cast<ObjCMethodDecl>(D);
3106     // If this is not a prototype, emit the body.
3107     if (OMD->getBody())
3108       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3109     break;
3110   }
3111   case Decl::ObjCCompatibleAlias:
3112     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3113     break;
3114 
3115   case Decl::LinkageSpec:
3116     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3117     break;
3118 
3119   case Decl::FileScopeAsm: {
3120     auto *AD = cast<FileScopeAsmDecl>(D);
3121     StringRef AsmString = AD->getAsmString()->getString();
3122 
3123     const std::string &S = getModule().getModuleInlineAsm();
3124     if (S.empty())
3125       getModule().setModuleInlineAsm(AsmString);
3126     else if (S.end()[-1] == '\n')
3127       getModule().setModuleInlineAsm(S + AsmString.str());
3128     else
3129       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3130     break;
3131   }
3132 
3133   case Decl::Import: {
3134     auto *Import = cast<ImportDecl>(D);
3135 
3136     // Ignore import declarations that come from imported modules.
3137     if (clang::Module *Owner = Import->getOwningModule()) {
3138       if (getLangOpts().CurrentModule.empty() ||
3139           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3140         break;
3141     }
3142 
3143     ImportedModules.insert(Import->getImportedModule());
3144     break;
3145   }
3146 
3147   case Decl::ClassTemplateSpecialization: {
3148     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3149     if (DebugInfo &&
3150         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3151       DebugInfo->completeTemplateDefinition(*Spec);
3152   }
3153 
3154   default:
3155     // Make sure we handled everything we should, every other kind is a
3156     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3157     // function. Need to recode Decl::Kind to do that easily.
3158     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3159   }
3160 }
3161 
3162 /// Turns the given pointer into a constant.
3163 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3164                                           const void *Ptr) {
3165   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3166   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3167   return llvm::ConstantInt::get(i64, PtrInt);
3168 }
3169 
3170 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3171                                    llvm::NamedMDNode *&GlobalMetadata,
3172                                    GlobalDecl D,
3173                                    llvm::GlobalValue *Addr) {
3174   if (!GlobalMetadata)
3175     GlobalMetadata =
3176       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3177 
3178   // TODO: should we report variant information for ctors/dtors?
3179   llvm::Value *Ops[] = {
3180     Addr,
3181     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3182   };
3183   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3184 }
3185 
3186 /// For each function which is declared within an extern "C" region and marked
3187 /// as 'used', but has internal linkage, create an alias from the unmangled
3188 /// name to the mangled name if possible. People expect to be able to refer
3189 /// to such functions with an unmangled name from inline assembly within the
3190 /// same translation unit.
3191 void CodeGenModule::EmitStaticExternCAliases() {
3192   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3193                                   E = StaticExternCValues.end();
3194        I != E; ++I) {
3195     IdentifierInfo *Name = I->first;
3196     llvm::GlobalValue *Val = I->second;
3197     if (Val && !getModule().getNamedValue(Name->getName()))
3198       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(),
3199                                               cast<llvm::GlobalObject>(Val)));
3200   }
3201 }
3202 
3203 /// Emits metadata nodes associating all the global values in the
3204 /// current module with the Decls they came from.  This is useful for
3205 /// projects using IR gen as a subroutine.
3206 ///
3207 /// Since there's currently no way to associate an MDNode directly
3208 /// with an llvm::GlobalValue, we create a global named metadata
3209 /// with the name 'clang.global.decl.ptrs'.
3210 void CodeGenModule::EmitDeclMetadata() {
3211   llvm::NamedMDNode *GlobalMetadata = 0;
3212 
3213   // StaticLocalDeclMap
3214   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3215          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3216        I != E; ++I) {
3217     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3218     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3219   }
3220 }
3221 
3222 /// Emits metadata nodes for all the local variables in the current
3223 /// function.
3224 void CodeGenFunction::EmitDeclMetadata() {
3225   if (LocalDeclMap.empty()) return;
3226 
3227   llvm::LLVMContext &Context = getLLVMContext();
3228 
3229   // Find the unique metadata ID for this name.
3230   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3231 
3232   llvm::NamedMDNode *GlobalMetadata = 0;
3233 
3234   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3235          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3236     const Decl *D = I->first;
3237     llvm::Value *Addr = I->second;
3238 
3239     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3240       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3241       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3242     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3243       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3244       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3245     }
3246   }
3247 }
3248 
3249 void CodeGenModule::EmitVersionIdentMetadata() {
3250   llvm::NamedMDNode *IdentMetadata =
3251     TheModule.getOrInsertNamedMetadata("llvm.ident");
3252   std::string Version = getClangFullVersion();
3253   llvm::LLVMContext &Ctx = TheModule.getContext();
3254 
3255   llvm::Value *IdentNode[] = {
3256     llvm::MDString::get(Ctx, Version)
3257   };
3258   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3259 }
3260 
3261 void CodeGenModule::EmitCoverageFile() {
3262   if (!getCodeGenOpts().CoverageFile.empty()) {
3263     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3264       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3265       llvm::LLVMContext &Ctx = TheModule.getContext();
3266       llvm::MDString *CoverageFile =
3267           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3268       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3269         llvm::MDNode *CU = CUNode->getOperand(i);
3270         llvm::Value *node[] = { CoverageFile, CU };
3271         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3272         GCov->addOperand(N);
3273       }
3274     }
3275   }
3276 }
3277 
3278 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3279                                                      QualType GuidType) {
3280   // Sema has checked that all uuid strings are of the form
3281   // "12345678-1234-1234-1234-1234567890ab".
3282   assert(Uuid.size() == 36);
3283   for (unsigned i = 0; i < 36; ++i) {
3284     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3285     else                                         assert(isHexDigit(Uuid[i]));
3286   }
3287 
3288   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3289 
3290   llvm::Constant *Field3[8];
3291   for (unsigned Idx = 0; Idx < 8; ++Idx)
3292     Field3[Idx] = llvm::ConstantInt::get(
3293         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3294 
3295   llvm::Constant *Fields[4] = {
3296     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3297     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3298     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3299     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3300   };
3301 
3302   return llvm::ConstantStruct::getAnon(Fields);
3303 }
3304