1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 if (!LangOpts.NeXTRuntime) 139 ObjCRuntime = CreateGNUObjCRuntime(*this); 140 else 141 ObjCRuntime = CreateMacObjCRuntime(*this); 142 } 143 144 void CodeGenModule::createOpenCLRuntime() { 145 OpenCLRuntime = new CGOpenCLRuntime(*this); 146 } 147 148 void CodeGenModule::createCUDARuntime() { 149 CUDARuntime = CreateNVCUDARuntime(*this); 150 } 151 152 void CodeGenModule::Release() { 153 EmitDeferred(); 154 EmitCXXGlobalInitFunc(); 155 EmitCXXGlobalDtorFunc(); 156 if (ObjCRuntime) 157 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 158 AddGlobalCtor(ObjCInitFunction); 159 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 160 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 161 EmitGlobalAnnotations(); 162 EmitLLVMUsed(); 163 164 SimplifyPersonality(); 165 166 if (getCodeGenOpts().EmitDeclMetadata) 167 EmitDeclMetadata(); 168 169 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 170 EmitCoverageFile(); 171 172 if (DebugInfo) 173 DebugInfo->finalize(); 174 } 175 176 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 177 // Make sure that this type is translated. 178 Types.UpdateCompletedType(TD); 179 } 180 181 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 182 if (!TBAA) 183 return 0; 184 return TBAA->getTBAAInfo(QTy); 185 } 186 187 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 188 if (!TBAA) 189 return 0; 190 return TBAA->getTBAAInfoForVTablePtr(); 191 } 192 193 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 194 llvm::MDNode *TBAAInfo) { 195 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 196 } 197 198 bool CodeGenModule::isTargetDarwin() const { 199 return getContext().getTargetInfo().getTriple().isOSDarwin(); 200 } 201 202 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 203 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 204 getDiags().Report(Context.getFullLoc(loc), diagID); 205 } 206 207 /// ErrorUnsupported - Print out an error that codegen doesn't support the 208 /// specified stmt yet. 209 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 210 bool OmitOnError) { 211 if (OmitOnError && getDiags().hasErrorOccurred()) 212 return; 213 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 214 "cannot compile this %0 yet"); 215 std::string Msg = Type; 216 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 217 << Msg << S->getSourceRange(); 218 } 219 220 /// ErrorUnsupported - Print out an error that codegen doesn't support the 221 /// specified decl yet. 222 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 223 bool OmitOnError) { 224 if (OmitOnError && getDiags().hasErrorOccurred()) 225 return; 226 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 227 "cannot compile this %0 yet"); 228 std::string Msg = Type; 229 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 230 } 231 232 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 233 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 234 } 235 236 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 237 const NamedDecl *D) const { 238 // Internal definitions always have default visibility. 239 if (GV->hasLocalLinkage()) { 240 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 241 return; 242 } 243 244 // Set visibility for definitions. 245 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 246 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 247 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 248 } 249 250 /// Set the symbol visibility of type information (vtable and RTTI) 251 /// associated with the given type. 252 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 253 const CXXRecordDecl *RD, 254 TypeVisibilityKind TVK) const { 255 setGlobalVisibility(GV, RD); 256 257 if (!CodeGenOpts.HiddenWeakVTables) 258 return; 259 260 // We never want to drop the visibility for RTTI names. 261 if (TVK == TVK_ForRTTIName) 262 return; 263 264 // We want to drop the visibility to hidden for weak type symbols. 265 // This isn't possible if there might be unresolved references 266 // elsewhere that rely on this symbol being visible. 267 268 // This should be kept roughly in sync with setThunkVisibility 269 // in CGVTables.cpp. 270 271 // Preconditions. 272 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 273 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 274 return; 275 276 // Don't override an explicit visibility attribute. 277 if (RD->getExplicitVisibility()) 278 return; 279 280 switch (RD->getTemplateSpecializationKind()) { 281 // We have to disable the optimization if this is an EI definition 282 // because there might be EI declarations in other shared objects. 283 case TSK_ExplicitInstantiationDefinition: 284 case TSK_ExplicitInstantiationDeclaration: 285 return; 286 287 // Every use of a non-template class's type information has to emit it. 288 case TSK_Undeclared: 289 break; 290 291 // In theory, implicit instantiations can ignore the possibility of 292 // an explicit instantiation declaration because there necessarily 293 // must be an EI definition somewhere with default visibility. In 294 // practice, it's possible to have an explicit instantiation for 295 // an arbitrary template class, and linkers aren't necessarily able 296 // to deal with mixed-visibility symbols. 297 case TSK_ExplicitSpecialization: 298 case TSK_ImplicitInstantiation: 299 if (!CodeGenOpts.HiddenWeakTemplateVTables) 300 return; 301 break; 302 } 303 304 // If there's a key function, there may be translation units 305 // that don't have the key function's definition. But ignore 306 // this if we're emitting RTTI under -fno-rtti. 307 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 308 if (Context.getKeyFunction(RD)) 309 return; 310 } 311 312 // Otherwise, drop the visibility to hidden. 313 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 314 GV->setUnnamedAddr(true); 315 } 316 317 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 318 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 319 320 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 321 if (!Str.empty()) 322 return Str; 323 324 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 325 IdentifierInfo *II = ND->getIdentifier(); 326 assert(II && "Attempt to mangle unnamed decl."); 327 328 Str = II->getName(); 329 return Str; 330 } 331 332 SmallString<256> Buffer; 333 llvm::raw_svector_ostream Out(Buffer); 334 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 335 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 336 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 337 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 338 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 339 getCXXABI().getMangleContext().mangleBlock(BD, Out); 340 else 341 getCXXABI().getMangleContext().mangleName(ND, Out); 342 343 // Allocate space for the mangled name. 344 Out.flush(); 345 size_t Length = Buffer.size(); 346 char *Name = MangledNamesAllocator.Allocate<char>(Length); 347 std::copy(Buffer.begin(), Buffer.end(), Name); 348 349 Str = StringRef(Name, Length); 350 351 return Str; 352 } 353 354 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 355 const BlockDecl *BD) { 356 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 357 const Decl *D = GD.getDecl(); 358 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 359 if (D == 0) 360 MangleCtx.mangleGlobalBlock(BD, Out); 361 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 362 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 363 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 364 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 365 else 366 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 367 } 368 369 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 370 return getModule().getNamedValue(Name); 371 } 372 373 /// AddGlobalCtor - Add a function to the list that will be called before 374 /// main() runs. 375 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 376 // FIXME: Type coercion of void()* types. 377 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 378 } 379 380 /// AddGlobalDtor - Add a function to the list that will be called 381 /// when the module is unloaded. 382 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 383 // FIXME: Type coercion of void()* types. 384 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 385 } 386 387 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 388 // Ctor function type is void()*. 389 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 390 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 391 392 // Get the type of a ctor entry, { i32, void ()* }. 393 llvm::StructType *CtorStructTy = 394 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 395 396 // Construct the constructor and destructor arrays. 397 SmallVector<llvm::Constant*, 8> Ctors; 398 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 399 llvm::Constant *S[] = { 400 llvm::ConstantInt::get(Int32Ty, I->second, false), 401 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 402 }; 403 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 404 } 405 406 if (!Ctors.empty()) { 407 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 408 new llvm::GlobalVariable(TheModule, AT, false, 409 llvm::GlobalValue::AppendingLinkage, 410 llvm::ConstantArray::get(AT, Ctors), 411 GlobalName); 412 } 413 } 414 415 llvm::GlobalValue::LinkageTypes 416 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 417 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 418 419 if (Linkage == GVA_Internal) 420 return llvm::Function::InternalLinkage; 421 422 if (D->hasAttr<DLLExportAttr>()) 423 return llvm::Function::DLLExportLinkage; 424 425 if (D->hasAttr<WeakAttr>()) 426 return llvm::Function::WeakAnyLinkage; 427 428 // In C99 mode, 'inline' functions are guaranteed to have a strong 429 // definition somewhere else, so we can use available_externally linkage. 430 if (Linkage == GVA_C99Inline) 431 return llvm::Function::AvailableExternallyLinkage; 432 433 // Note that Apple's kernel linker doesn't support symbol 434 // coalescing, so we need to avoid linkonce and weak linkages there. 435 // Normally, this means we just map to internal, but for explicit 436 // instantiations we'll map to external. 437 438 // In C++, the compiler has to emit a definition in every translation unit 439 // that references the function. We should use linkonce_odr because 440 // a) if all references in this translation unit are optimized away, we 441 // don't need to codegen it. b) if the function persists, it needs to be 442 // merged with other definitions. c) C++ has the ODR, so we know the 443 // definition is dependable. 444 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 445 return !Context.getLangOpts().AppleKext 446 ? llvm::Function::LinkOnceODRLinkage 447 : llvm::Function::InternalLinkage; 448 449 // An explicit instantiation of a template has weak linkage, since 450 // explicit instantiations can occur in multiple translation units 451 // and must all be equivalent. However, we are not allowed to 452 // throw away these explicit instantiations. 453 if (Linkage == GVA_ExplicitTemplateInstantiation) 454 return !Context.getLangOpts().AppleKext 455 ? llvm::Function::WeakODRLinkage 456 : llvm::Function::ExternalLinkage; 457 458 // Otherwise, we have strong external linkage. 459 assert(Linkage == GVA_StrongExternal); 460 return llvm::Function::ExternalLinkage; 461 } 462 463 464 /// SetFunctionDefinitionAttributes - Set attributes for a global. 465 /// 466 /// FIXME: This is currently only done for aliases and functions, but not for 467 /// variables (these details are set in EmitGlobalVarDefinition for variables). 468 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 469 llvm::GlobalValue *GV) { 470 SetCommonAttributes(D, GV); 471 } 472 473 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 474 const CGFunctionInfo &Info, 475 llvm::Function *F) { 476 unsigned CallingConv; 477 AttributeListType AttributeList; 478 ConstructAttributeList(Info, D, AttributeList, CallingConv); 479 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 480 AttributeList.size())); 481 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 482 } 483 484 /// Determines whether the language options require us to model 485 /// unwind exceptions. We treat -fexceptions as mandating this 486 /// except under the fragile ObjC ABI with only ObjC exceptions 487 /// enabled. This means, for example, that C with -fexceptions 488 /// enables this. 489 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 490 // If exceptions are completely disabled, obviously this is false. 491 if (!LangOpts.Exceptions) return false; 492 493 // If C++ exceptions are enabled, this is true. 494 if (LangOpts.CXXExceptions) return true; 495 496 // If ObjC exceptions are enabled, this depends on the ABI. 497 if (LangOpts.ObjCExceptions) { 498 if (!LangOpts.ObjCNonFragileABI) return false; 499 } 500 501 return true; 502 } 503 504 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 505 llvm::Function *F) { 506 if (CodeGenOpts.UnwindTables) 507 F->setHasUWTable(); 508 509 if (!hasUnwindExceptions(LangOpts)) 510 F->addFnAttr(llvm::Attribute::NoUnwind); 511 512 if (D->hasAttr<NakedAttr>()) { 513 // Naked implies noinline: we should not be inlining such functions. 514 F->addFnAttr(llvm::Attribute::Naked); 515 F->addFnAttr(llvm::Attribute::NoInline); 516 } 517 518 if (D->hasAttr<NoInlineAttr>()) 519 F->addFnAttr(llvm::Attribute::NoInline); 520 521 // (noinline wins over always_inline, and we can't specify both in IR) 522 if (D->hasAttr<AlwaysInlineAttr>() && 523 !F->hasFnAttr(llvm::Attribute::NoInline)) 524 F->addFnAttr(llvm::Attribute::AlwaysInline); 525 526 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 527 F->setUnnamedAddr(true); 528 529 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 530 F->addFnAttr(llvm::Attribute::StackProtect); 531 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 532 F->addFnAttr(llvm::Attribute::StackProtectReq); 533 534 if (LangOpts.AddressSanitizer) { 535 // When AddressSanitizer is enabled, set AddressSafety attribute 536 // unless __attribute__((no_address_safety_analysis)) is used. 537 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 538 F->addFnAttr(llvm::Attribute::AddressSafety); 539 } 540 541 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 542 if (alignment) 543 F->setAlignment(alignment); 544 545 // C++ ABI requires 2-byte alignment for member functions. 546 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 547 F->setAlignment(2); 548 } 549 550 void CodeGenModule::SetCommonAttributes(const Decl *D, 551 llvm::GlobalValue *GV) { 552 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 553 setGlobalVisibility(GV, ND); 554 else 555 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 556 557 if (D->hasAttr<UsedAttr>()) 558 AddUsedGlobal(GV); 559 560 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 561 GV->setSection(SA->getName()); 562 563 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 564 } 565 566 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 567 llvm::Function *F, 568 const CGFunctionInfo &FI) { 569 SetLLVMFunctionAttributes(D, FI, F); 570 SetLLVMFunctionAttributesForDefinition(D, F); 571 572 F->setLinkage(llvm::Function::InternalLinkage); 573 574 SetCommonAttributes(D, F); 575 } 576 577 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 578 llvm::Function *F, 579 bool IsIncompleteFunction) { 580 if (unsigned IID = F->getIntrinsicID()) { 581 // If this is an intrinsic function, set the function's attributes 582 // to the intrinsic's attributes. 583 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 584 return; 585 } 586 587 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 588 589 if (!IsIncompleteFunction) 590 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 591 592 // Only a few attributes are set on declarations; these may later be 593 // overridden by a definition. 594 595 if (FD->hasAttr<DLLImportAttr>()) { 596 F->setLinkage(llvm::Function::DLLImportLinkage); 597 } else if (FD->hasAttr<WeakAttr>() || 598 FD->isWeakImported()) { 599 // "extern_weak" is overloaded in LLVM; we probably should have 600 // separate linkage types for this. 601 F->setLinkage(llvm::Function::ExternalWeakLinkage); 602 } else { 603 F->setLinkage(llvm::Function::ExternalLinkage); 604 605 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 606 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 607 F->setVisibility(GetLLVMVisibility(LV.visibility())); 608 } 609 } 610 611 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 612 F->setSection(SA->getName()); 613 } 614 615 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 616 assert(!GV->isDeclaration() && 617 "Only globals with definition can force usage."); 618 LLVMUsed.push_back(GV); 619 } 620 621 void CodeGenModule::EmitLLVMUsed() { 622 // Don't create llvm.used if there is no need. 623 if (LLVMUsed.empty()) 624 return; 625 626 // Convert LLVMUsed to what ConstantArray needs. 627 SmallVector<llvm::Constant*, 8> UsedArray; 628 UsedArray.resize(LLVMUsed.size()); 629 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 630 UsedArray[i] = 631 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 632 Int8PtrTy); 633 } 634 635 if (UsedArray.empty()) 636 return; 637 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 638 639 llvm::GlobalVariable *GV = 640 new llvm::GlobalVariable(getModule(), ATy, false, 641 llvm::GlobalValue::AppendingLinkage, 642 llvm::ConstantArray::get(ATy, UsedArray), 643 "llvm.used"); 644 645 GV->setSection("llvm.metadata"); 646 } 647 648 void CodeGenModule::EmitDeferred() { 649 // Emit code for any potentially referenced deferred decls. Since a 650 // previously unused static decl may become used during the generation of code 651 // for a static function, iterate until no changes are made. 652 653 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 654 if (!DeferredVTables.empty()) { 655 const CXXRecordDecl *RD = DeferredVTables.back(); 656 DeferredVTables.pop_back(); 657 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 658 continue; 659 } 660 661 GlobalDecl D = DeferredDeclsToEmit.back(); 662 DeferredDeclsToEmit.pop_back(); 663 664 // Check to see if we've already emitted this. This is necessary 665 // for a couple of reasons: first, decls can end up in the 666 // deferred-decls queue multiple times, and second, decls can end 667 // up with definitions in unusual ways (e.g. by an extern inline 668 // function acquiring a strong function redefinition). Just 669 // ignore these cases. 670 // 671 // TODO: That said, looking this up multiple times is very wasteful. 672 StringRef Name = getMangledName(D); 673 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 674 assert(CGRef && "Deferred decl wasn't referenced?"); 675 676 if (!CGRef->isDeclaration()) 677 continue; 678 679 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 680 // purposes an alias counts as a definition. 681 if (isa<llvm::GlobalAlias>(CGRef)) 682 continue; 683 684 // Otherwise, emit the definition and move on to the next one. 685 EmitGlobalDefinition(D); 686 } 687 } 688 689 void CodeGenModule::EmitGlobalAnnotations() { 690 if (Annotations.empty()) 691 return; 692 693 // Create a new global variable for the ConstantStruct in the Module. 694 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 695 Annotations[0]->getType(), Annotations.size()), Annotations); 696 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 697 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 698 "llvm.global.annotations"); 699 gv->setSection(AnnotationSection); 700 } 701 702 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 703 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 704 if (i != AnnotationStrings.end()) 705 return i->second; 706 707 // Not found yet, create a new global. 708 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 709 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 710 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 711 gv->setSection(AnnotationSection); 712 gv->setUnnamedAddr(true); 713 AnnotationStrings[Str] = gv; 714 return gv; 715 } 716 717 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 718 SourceManager &SM = getContext().getSourceManager(); 719 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 720 if (PLoc.isValid()) 721 return EmitAnnotationString(PLoc.getFilename()); 722 return EmitAnnotationString(SM.getBufferName(Loc)); 723 } 724 725 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 726 SourceManager &SM = getContext().getSourceManager(); 727 PresumedLoc PLoc = SM.getPresumedLoc(L); 728 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 729 SM.getExpansionLineNumber(L); 730 return llvm::ConstantInt::get(Int32Ty, LineNo); 731 } 732 733 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 734 const AnnotateAttr *AA, 735 SourceLocation L) { 736 // Get the globals for file name, annotation, and the line number. 737 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 738 *UnitGV = EmitAnnotationUnit(L), 739 *LineNoCst = EmitAnnotationLineNo(L); 740 741 // Create the ConstantStruct for the global annotation. 742 llvm::Constant *Fields[4] = { 743 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 744 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 745 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 746 LineNoCst 747 }; 748 return llvm::ConstantStruct::getAnon(Fields); 749 } 750 751 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 752 llvm::GlobalValue *GV) { 753 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 754 // Get the struct elements for these annotations. 755 for (specific_attr_iterator<AnnotateAttr> 756 ai = D->specific_attr_begin<AnnotateAttr>(), 757 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 758 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 759 } 760 761 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 762 // Never defer when EmitAllDecls is specified. 763 if (LangOpts.EmitAllDecls) 764 return false; 765 766 return !getContext().DeclMustBeEmitted(Global); 767 } 768 769 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 770 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 771 assert(AA && "No alias?"); 772 773 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 774 775 // See if there is already something with the target's name in the module. 776 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 777 778 llvm::Constant *Aliasee; 779 if (isa<llvm::FunctionType>(DeclTy)) 780 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 781 /*ForVTable=*/false); 782 else 783 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 784 llvm::PointerType::getUnqual(DeclTy), 0); 785 if (!Entry) { 786 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 787 F->setLinkage(llvm::Function::ExternalWeakLinkage); 788 WeakRefReferences.insert(F); 789 } 790 791 return Aliasee; 792 } 793 794 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 795 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 796 797 // Weak references don't produce any output by themselves. 798 if (Global->hasAttr<WeakRefAttr>()) 799 return; 800 801 // If this is an alias definition (which otherwise looks like a declaration) 802 // emit it now. 803 if (Global->hasAttr<AliasAttr>()) 804 return EmitAliasDefinition(GD); 805 806 // If this is CUDA, be selective about which declarations we emit. 807 if (LangOpts.CUDA) { 808 if (CodeGenOpts.CUDAIsDevice) { 809 if (!Global->hasAttr<CUDADeviceAttr>() && 810 !Global->hasAttr<CUDAGlobalAttr>() && 811 !Global->hasAttr<CUDAConstantAttr>() && 812 !Global->hasAttr<CUDASharedAttr>()) 813 return; 814 } else { 815 if (!Global->hasAttr<CUDAHostAttr>() && ( 816 Global->hasAttr<CUDADeviceAttr>() || 817 Global->hasAttr<CUDAConstantAttr>() || 818 Global->hasAttr<CUDASharedAttr>())) 819 return; 820 } 821 } 822 823 // Ignore declarations, they will be emitted on their first use. 824 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 825 // Forward declarations are emitted lazily on first use. 826 if (!FD->doesThisDeclarationHaveABody()) { 827 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 828 return; 829 830 const FunctionDecl *InlineDefinition = 0; 831 FD->getBody(InlineDefinition); 832 833 StringRef MangledName = getMangledName(GD); 834 DeferredDecls.erase(MangledName); 835 EmitGlobalDefinition(InlineDefinition); 836 return; 837 } 838 } else { 839 const VarDecl *VD = cast<VarDecl>(Global); 840 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 841 842 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 843 return; 844 } 845 846 // Defer code generation when possible if this is a static definition, inline 847 // function etc. These we only want to emit if they are used. 848 if (!MayDeferGeneration(Global)) { 849 // Emit the definition if it can't be deferred. 850 EmitGlobalDefinition(GD); 851 return; 852 } 853 854 // If we're deferring emission of a C++ variable with an 855 // initializer, remember the order in which it appeared in the file. 856 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 857 cast<VarDecl>(Global)->hasInit()) { 858 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 859 CXXGlobalInits.push_back(0); 860 } 861 862 // If the value has already been used, add it directly to the 863 // DeferredDeclsToEmit list. 864 StringRef MangledName = getMangledName(GD); 865 if (GetGlobalValue(MangledName)) 866 DeferredDeclsToEmit.push_back(GD); 867 else { 868 // Otherwise, remember that we saw a deferred decl with this name. The 869 // first use of the mangled name will cause it to move into 870 // DeferredDeclsToEmit. 871 DeferredDecls[MangledName] = GD; 872 } 873 } 874 875 namespace { 876 struct FunctionIsDirectlyRecursive : 877 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 878 const StringRef Name; 879 const Builtin::Context &BI; 880 bool Result; 881 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 882 Name(N), BI(C), Result(false) { 883 } 884 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 885 886 bool TraverseCallExpr(CallExpr *E) { 887 const FunctionDecl *FD = E->getDirectCallee(); 888 if (!FD) 889 return true; 890 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 891 if (Attr && Name == Attr->getLabel()) { 892 Result = true; 893 return false; 894 } 895 unsigned BuiltinID = FD->getBuiltinID(); 896 if (!BuiltinID) 897 return true; 898 StringRef BuiltinName = BI.GetName(BuiltinID); 899 if (BuiltinName.startswith("__builtin_") && 900 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 901 Result = true; 902 return false; 903 } 904 return true; 905 } 906 }; 907 } 908 909 // isTriviallyRecursive - Check if this function calls another 910 // decl that, because of the asm attribute or the other decl being a builtin, 911 // ends up pointing to itself. 912 bool 913 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 914 StringRef Name; 915 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 916 // asm labels are a special kind of mangling we have to support. 917 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 918 if (!Attr) 919 return false; 920 Name = Attr->getLabel(); 921 } else { 922 Name = FD->getName(); 923 } 924 925 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 926 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 927 return Walker.Result; 928 } 929 930 bool 931 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 932 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 933 return true; 934 if (CodeGenOpts.OptimizationLevel == 0 && 935 !F->hasAttr<AlwaysInlineAttr>()) 936 return false; 937 // PR9614. Avoid cases where the source code is lying to us. An available 938 // externally function should have an equivalent function somewhere else, 939 // but a function that calls itself is clearly not equivalent to the real 940 // implementation. 941 // This happens in glibc's btowc and in some configure checks. 942 return !isTriviallyRecursive(F); 943 } 944 945 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 946 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 947 948 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 949 Context.getSourceManager(), 950 "Generating code for declaration"); 951 952 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 953 // At -O0, don't generate IR for functions with available_externally 954 // linkage. 955 if (!shouldEmitFunction(Function)) 956 return; 957 958 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 959 // Make sure to emit the definition(s) before we emit the thunks. 960 // This is necessary for the generation of certain thunks. 961 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 962 EmitCXXConstructor(CD, GD.getCtorType()); 963 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 964 EmitCXXDestructor(DD, GD.getDtorType()); 965 else 966 EmitGlobalFunctionDefinition(GD); 967 968 if (Method->isVirtual()) 969 getVTables().EmitThunks(GD); 970 971 return; 972 } 973 974 return EmitGlobalFunctionDefinition(GD); 975 } 976 977 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 978 return EmitGlobalVarDefinition(VD); 979 980 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 981 } 982 983 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 984 /// module, create and return an llvm Function with the specified type. If there 985 /// is something in the module with the specified name, return it potentially 986 /// bitcasted to the right type. 987 /// 988 /// If D is non-null, it specifies a decl that correspond to this. This is used 989 /// to set the attributes on the function when it is first created. 990 llvm::Constant * 991 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 992 llvm::Type *Ty, 993 GlobalDecl D, bool ForVTable, 994 llvm::Attributes ExtraAttrs) { 995 // Lookup the entry, lazily creating it if necessary. 996 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 997 if (Entry) { 998 if (WeakRefReferences.count(Entry)) { 999 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1000 if (FD && !FD->hasAttr<WeakAttr>()) 1001 Entry->setLinkage(llvm::Function::ExternalLinkage); 1002 1003 WeakRefReferences.erase(Entry); 1004 } 1005 1006 if (Entry->getType()->getElementType() == Ty) 1007 return Entry; 1008 1009 // Make sure the result is of the correct type. 1010 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1011 } 1012 1013 // This function doesn't have a complete type (for example, the return 1014 // type is an incomplete struct). Use a fake type instead, and make 1015 // sure not to try to set attributes. 1016 bool IsIncompleteFunction = false; 1017 1018 llvm::FunctionType *FTy; 1019 if (isa<llvm::FunctionType>(Ty)) { 1020 FTy = cast<llvm::FunctionType>(Ty); 1021 } else { 1022 FTy = llvm::FunctionType::get(VoidTy, false); 1023 IsIncompleteFunction = true; 1024 } 1025 1026 llvm::Function *F = llvm::Function::Create(FTy, 1027 llvm::Function::ExternalLinkage, 1028 MangledName, &getModule()); 1029 assert(F->getName() == MangledName && "name was uniqued!"); 1030 if (D.getDecl()) 1031 SetFunctionAttributes(D, F, IsIncompleteFunction); 1032 if (ExtraAttrs != llvm::Attribute::None) 1033 F->addFnAttr(ExtraAttrs); 1034 1035 // This is the first use or definition of a mangled name. If there is a 1036 // deferred decl with this name, remember that we need to emit it at the end 1037 // of the file. 1038 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1039 if (DDI != DeferredDecls.end()) { 1040 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1041 // list, and remove it from DeferredDecls (since we don't need it anymore). 1042 DeferredDeclsToEmit.push_back(DDI->second); 1043 DeferredDecls.erase(DDI); 1044 1045 // Otherwise, there are cases we have to worry about where we're 1046 // using a declaration for which we must emit a definition but where 1047 // we might not find a top-level definition: 1048 // - member functions defined inline in their classes 1049 // - friend functions defined inline in some class 1050 // - special member functions with implicit definitions 1051 // If we ever change our AST traversal to walk into class methods, 1052 // this will be unnecessary. 1053 // 1054 // We also don't emit a definition for a function if it's going to be an entry 1055 // in a vtable, unless it's already marked as used. 1056 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1057 // Look for a declaration that's lexically in a record. 1058 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1059 do { 1060 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1061 if (FD->isImplicit() && !ForVTable) { 1062 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1063 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1064 break; 1065 } else if (FD->doesThisDeclarationHaveABody()) { 1066 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1067 break; 1068 } 1069 } 1070 FD = FD->getPreviousDecl(); 1071 } while (FD); 1072 } 1073 1074 // Make sure the result is of the requested type. 1075 if (!IsIncompleteFunction) { 1076 assert(F->getType()->getElementType() == Ty); 1077 return F; 1078 } 1079 1080 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1081 return llvm::ConstantExpr::getBitCast(F, PTy); 1082 } 1083 1084 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1085 /// non-null, then this function will use the specified type if it has to 1086 /// create it (this occurs when we see a definition of the function). 1087 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1088 llvm::Type *Ty, 1089 bool ForVTable) { 1090 // If there was no specific requested type, just convert it now. 1091 if (!Ty) 1092 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1093 1094 StringRef MangledName = getMangledName(GD); 1095 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1096 } 1097 1098 /// CreateRuntimeFunction - Create a new runtime function with the specified 1099 /// type and name. 1100 llvm::Constant * 1101 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1102 StringRef Name, 1103 llvm::Attributes ExtraAttrs) { 1104 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1105 ExtraAttrs); 1106 } 1107 1108 /// isTypeConstant - Determine whether an object of this type can be emitted 1109 /// as a constant. 1110 /// 1111 /// If ExcludeCtor is true, the duration when the object's constructor runs 1112 /// will not be considered. The caller will need to verify that the object is 1113 /// not written to during its construction. 1114 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1115 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1116 return false; 1117 1118 if (Context.getLangOpts().CPlusPlus) { 1119 if (const CXXRecordDecl *Record 1120 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1121 return ExcludeCtor && !Record->hasMutableFields() && 1122 Record->hasTrivialDestructor(); 1123 } 1124 1125 return true; 1126 } 1127 1128 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1129 /// create and return an llvm GlobalVariable with the specified type. If there 1130 /// is something in the module with the specified name, return it potentially 1131 /// bitcasted to the right type. 1132 /// 1133 /// If D is non-null, it specifies a decl that correspond to this. This is used 1134 /// to set the attributes on the global when it is first created. 1135 llvm::Constant * 1136 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1137 llvm::PointerType *Ty, 1138 const VarDecl *D, 1139 bool UnnamedAddr) { 1140 // Lookup the entry, lazily creating it if necessary. 1141 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1142 if (Entry) { 1143 if (WeakRefReferences.count(Entry)) { 1144 if (D && !D->hasAttr<WeakAttr>()) 1145 Entry->setLinkage(llvm::Function::ExternalLinkage); 1146 1147 WeakRefReferences.erase(Entry); 1148 } 1149 1150 if (UnnamedAddr) 1151 Entry->setUnnamedAddr(true); 1152 1153 if (Entry->getType() == Ty) 1154 return Entry; 1155 1156 // Make sure the result is of the correct type. 1157 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1158 } 1159 1160 // This is the first use or definition of a mangled name. If there is a 1161 // deferred decl with this name, remember that we need to emit it at the end 1162 // of the file. 1163 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1164 if (DDI != DeferredDecls.end()) { 1165 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1166 // list, and remove it from DeferredDecls (since we don't need it anymore). 1167 DeferredDeclsToEmit.push_back(DDI->second); 1168 DeferredDecls.erase(DDI); 1169 } 1170 1171 llvm::GlobalVariable *GV = 1172 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1173 llvm::GlobalValue::ExternalLinkage, 1174 0, MangledName, 0, 1175 false, Ty->getAddressSpace()); 1176 1177 // Handle things which are present even on external declarations. 1178 if (D) { 1179 // FIXME: This code is overly simple and should be merged with other global 1180 // handling. 1181 GV->setConstant(isTypeConstant(D->getType(), false)); 1182 1183 // Set linkage and visibility in case we never see a definition. 1184 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1185 if (LV.linkage() != ExternalLinkage) { 1186 // Don't set internal linkage on declarations. 1187 } else { 1188 if (D->hasAttr<DLLImportAttr>()) 1189 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1190 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1191 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1192 1193 // Set visibility on a declaration only if it's explicit. 1194 if (LV.visibilityExplicit()) 1195 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1196 } 1197 1198 GV->setThreadLocal(D->isThreadSpecified()); 1199 } 1200 1201 return GV; 1202 } 1203 1204 1205 llvm::GlobalVariable * 1206 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1207 llvm::Type *Ty, 1208 llvm::GlobalValue::LinkageTypes Linkage) { 1209 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1210 llvm::GlobalVariable *OldGV = 0; 1211 1212 1213 if (GV) { 1214 // Check if the variable has the right type. 1215 if (GV->getType()->getElementType() == Ty) 1216 return GV; 1217 1218 // Because C++ name mangling, the only way we can end up with an already 1219 // existing global with the same name is if it has been declared extern "C". 1220 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1221 OldGV = GV; 1222 } 1223 1224 // Create a new variable. 1225 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1226 Linkage, 0, Name); 1227 1228 if (OldGV) { 1229 // Replace occurrences of the old variable if needed. 1230 GV->takeName(OldGV); 1231 1232 if (!OldGV->use_empty()) { 1233 llvm::Constant *NewPtrForOldDecl = 1234 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1235 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1236 } 1237 1238 OldGV->eraseFromParent(); 1239 } 1240 1241 return GV; 1242 } 1243 1244 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1245 /// given global variable. If Ty is non-null and if the global doesn't exist, 1246 /// then it will be created with the specified type instead of whatever the 1247 /// normal requested type would be. 1248 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1249 llvm::Type *Ty) { 1250 assert(D->hasGlobalStorage() && "Not a global variable"); 1251 QualType ASTTy = D->getType(); 1252 if (Ty == 0) 1253 Ty = getTypes().ConvertTypeForMem(ASTTy); 1254 1255 llvm::PointerType *PTy = 1256 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1257 1258 StringRef MangledName = getMangledName(D); 1259 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1260 } 1261 1262 /// CreateRuntimeVariable - Create a new runtime global variable with the 1263 /// specified type and name. 1264 llvm::Constant * 1265 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1266 StringRef Name) { 1267 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1268 true); 1269 } 1270 1271 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1272 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1273 1274 if (MayDeferGeneration(D)) { 1275 // If we have not seen a reference to this variable yet, place it 1276 // into the deferred declarations table to be emitted if needed 1277 // later. 1278 StringRef MangledName = getMangledName(D); 1279 if (!GetGlobalValue(MangledName)) { 1280 DeferredDecls[MangledName] = D; 1281 return; 1282 } 1283 } 1284 1285 // The tentative definition is the only definition. 1286 EmitGlobalVarDefinition(D); 1287 } 1288 1289 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1290 if (DefinitionRequired) 1291 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1292 } 1293 1294 llvm::GlobalVariable::LinkageTypes 1295 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1296 if (RD->getLinkage() != ExternalLinkage) 1297 return llvm::GlobalVariable::InternalLinkage; 1298 1299 if (const CXXMethodDecl *KeyFunction 1300 = RD->getASTContext().getKeyFunction(RD)) { 1301 // If this class has a key function, use that to determine the linkage of 1302 // the vtable. 1303 const FunctionDecl *Def = 0; 1304 if (KeyFunction->hasBody(Def)) 1305 KeyFunction = cast<CXXMethodDecl>(Def); 1306 1307 switch (KeyFunction->getTemplateSpecializationKind()) { 1308 case TSK_Undeclared: 1309 case TSK_ExplicitSpecialization: 1310 // When compiling with optimizations turned on, we emit all vtables, 1311 // even if the key function is not defined in the current translation 1312 // unit. If this is the case, use available_externally linkage. 1313 if (!Def && CodeGenOpts.OptimizationLevel) 1314 return llvm::GlobalVariable::AvailableExternallyLinkage; 1315 1316 if (KeyFunction->isInlined()) 1317 return !Context.getLangOpts().AppleKext ? 1318 llvm::GlobalVariable::LinkOnceODRLinkage : 1319 llvm::Function::InternalLinkage; 1320 1321 return llvm::GlobalVariable::ExternalLinkage; 1322 1323 case TSK_ImplicitInstantiation: 1324 return !Context.getLangOpts().AppleKext ? 1325 llvm::GlobalVariable::LinkOnceODRLinkage : 1326 llvm::Function::InternalLinkage; 1327 1328 case TSK_ExplicitInstantiationDefinition: 1329 return !Context.getLangOpts().AppleKext ? 1330 llvm::GlobalVariable::WeakODRLinkage : 1331 llvm::Function::InternalLinkage; 1332 1333 case TSK_ExplicitInstantiationDeclaration: 1334 // FIXME: Use available_externally linkage. However, this currently 1335 // breaks LLVM's build due to undefined symbols. 1336 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1337 return !Context.getLangOpts().AppleKext ? 1338 llvm::GlobalVariable::LinkOnceODRLinkage : 1339 llvm::Function::InternalLinkage; 1340 } 1341 } 1342 1343 if (Context.getLangOpts().AppleKext) 1344 return llvm::Function::InternalLinkage; 1345 1346 switch (RD->getTemplateSpecializationKind()) { 1347 case TSK_Undeclared: 1348 case TSK_ExplicitSpecialization: 1349 case TSK_ImplicitInstantiation: 1350 // FIXME: Use available_externally linkage. However, this currently 1351 // breaks LLVM's build due to undefined symbols. 1352 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1353 case TSK_ExplicitInstantiationDeclaration: 1354 return llvm::GlobalVariable::LinkOnceODRLinkage; 1355 1356 case TSK_ExplicitInstantiationDefinition: 1357 return llvm::GlobalVariable::WeakODRLinkage; 1358 } 1359 1360 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1361 } 1362 1363 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1364 return Context.toCharUnitsFromBits( 1365 TheTargetData.getTypeStoreSizeInBits(Ty)); 1366 } 1367 1368 llvm::Constant * 1369 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1370 const Expr *rawInit) { 1371 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1372 if (const ExprWithCleanups *withCleanups = 1373 dyn_cast<ExprWithCleanups>(rawInit)) { 1374 cleanups = withCleanups->getObjects(); 1375 rawInit = withCleanups->getSubExpr(); 1376 } 1377 1378 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1379 if (!init || !init->initializesStdInitializerList() || 1380 init->getNumInits() == 0) 1381 return 0; 1382 1383 ASTContext &ctx = getContext(); 1384 unsigned numInits = init->getNumInits(); 1385 // FIXME: This check is here because we would otherwise silently miscompile 1386 // nested global std::initializer_lists. Better would be to have a real 1387 // implementation. 1388 for (unsigned i = 0; i < numInits; ++i) { 1389 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1390 if (inner && inner->initializesStdInitializerList()) { 1391 ErrorUnsupported(inner, "nested global std::initializer_list"); 1392 return 0; 1393 } 1394 } 1395 1396 // Synthesize a fake VarDecl for the array and initialize that. 1397 QualType elementType = init->getInit(0)->getType(); 1398 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1399 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1400 ArrayType::Normal, 0); 1401 1402 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1403 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1404 arrayType, D->getLocation()); 1405 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1406 D->getDeclContext()), 1407 D->getLocStart(), D->getLocation(), 1408 name, arrayType, sourceInfo, 1409 SC_Static, SC_Static); 1410 1411 // Now clone the InitListExpr to initialize the array instead. 1412 // Incredible hack: we want to use the existing InitListExpr here, so we need 1413 // to tell it that it no longer initializes a std::initializer_list. 1414 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1415 const_cast<InitListExpr*>(init)->getInits(), 1416 init->getNumInits(), 1417 init->getRBraceLoc()); 1418 arrayInit->setType(arrayType); 1419 1420 if (!cleanups.empty()) 1421 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1422 1423 backingArray->setInit(arrayInit); 1424 1425 // Emit the definition of the array. 1426 EmitGlobalVarDefinition(backingArray); 1427 1428 // Inspect the initializer list to validate it and determine its type. 1429 // FIXME: doing this every time is probably inefficient; caching would be nice 1430 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1431 RecordDecl::field_iterator field = record->field_begin(); 1432 if (field == record->field_end()) { 1433 ErrorUnsupported(D, "weird std::initializer_list"); 1434 return 0; 1435 } 1436 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1437 // Start pointer. 1438 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1439 ErrorUnsupported(D, "weird std::initializer_list"); 1440 return 0; 1441 } 1442 ++field; 1443 if (field == record->field_end()) { 1444 ErrorUnsupported(D, "weird std::initializer_list"); 1445 return 0; 1446 } 1447 bool isStartEnd = false; 1448 if (ctx.hasSameType(field->getType(), elementPtr)) { 1449 // End pointer. 1450 isStartEnd = true; 1451 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1452 ErrorUnsupported(D, "weird std::initializer_list"); 1453 return 0; 1454 } 1455 1456 // Now build an APValue representing the std::initializer_list. 1457 APValue initListValue(APValue::UninitStruct(), 0, 2); 1458 APValue &startField = initListValue.getStructField(0); 1459 APValue::LValuePathEntry startOffsetPathEntry; 1460 startOffsetPathEntry.ArrayIndex = 0; 1461 startField = APValue(APValue::LValueBase(backingArray), 1462 CharUnits::fromQuantity(0), 1463 llvm::makeArrayRef(startOffsetPathEntry), 1464 /*IsOnePastTheEnd=*/false, 0); 1465 1466 if (isStartEnd) { 1467 APValue &endField = initListValue.getStructField(1); 1468 APValue::LValuePathEntry endOffsetPathEntry; 1469 endOffsetPathEntry.ArrayIndex = numInits; 1470 endField = APValue(APValue::LValueBase(backingArray), 1471 ctx.getTypeSizeInChars(elementType) * numInits, 1472 llvm::makeArrayRef(endOffsetPathEntry), 1473 /*IsOnePastTheEnd=*/true, 0); 1474 } else { 1475 APValue &sizeField = initListValue.getStructField(1); 1476 sizeField = APValue(llvm::APSInt(numElements)); 1477 } 1478 1479 // Emit the constant for the initializer_list. 1480 llvm::Constant *llvmInit = 1481 EmitConstantValueForMemory(initListValue, D->getType()); 1482 assert(llvmInit && "failed to initialize as constant"); 1483 return llvmInit; 1484 } 1485 1486 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1487 llvm::Constant *Init = 0; 1488 QualType ASTTy = D->getType(); 1489 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1490 bool NeedsGlobalCtor = false; 1491 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1492 1493 const VarDecl *InitDecl; 1494 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1495 1496 if (!InitExpr) { 1497 // This is a tentative definition; tentative definitions are 1498 // implicitly initialized with { 0 }. 1499 // 1500 // Note that tentative definitions are only emitted at the end of 1501 // a translation unit, so they should never have incomplete 1502 // type. In addition, EmitTentativeDefinition makes sure that we 1503 // never attempt to emit a tentative definition if a real one 1504 // exists. A use may still exists, however, so we still may need 1505 // to do a RAUW. 1506 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1507 Init = EmitNullConstant(D->getType()); 1508 } else { 1509 // If this is a std::initializer_list, emit the special initializer. 1510 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1511 // An empty init list will perform zero-initialization, which happens 1512 // to be exactly what we want. 1513 // FIXME: It does so in a global constructor, which is *not* what we 1514 // want. 1515 1516 if (!Init) 1517 Init = EmitConstantInit(*InitDecl); 1518 if (!Init) { 1519 QualType T = InitExpr->getType(); 1520 if (D->getType()->isReferenceType()) 1521 T = D->getType(); 1522 1523 if (getLangOpts().CPlusPlus) { 1524 Init = EmitNullConstant(T); 1525 NeedsGlobalCtor = true; 1526 } else { 1527 ErrorUnsupported(D, "static initializer"); 1528 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1529 } 1530 } else { 1531 // We don't need an initializer, so remove the entry for the delayed 1532 // initializer position (just in case this entry was delayed) if we 1533 // also don't need to register a destructor. 1534 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1535 DelayedCXXInitPosition.erase(D); 1536 } 1537 } 1538 1539 llvm::Type* InitType = Init->getType(); 1540 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1541 1542 // Strip off a bitcast if we got one back. 1543 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1544 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1545 // all zero index gep. 1546 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1547 Entry = CE->getOperand(0); 1548 } 1549 1550 // Entry is now either a Function or GlobalVariable. 1551 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1552 1553 // We have a definition after a declaration with the wrong type. 1554 // We must make a new GlobalVariable* and update everything that used OldGV 1555 // (a declaration or tentative definition) with the new GlobalVariable* 1556 // (which will be a definition). 1557 // 1558 // This happens if there is a prototype for a global (e.g. 1559 // "extern int x[];") and then a definition of a different type (e.g. 1560 // "int x[10];"). This also happens when an initializer has a different type 1561 // from the type of the global (this happens with unions). 1562 if (GV == 0 || 1563 GV->getType()->getElementType() != InitType || 1564 GV->getType()->getAddressSpace() != 1565 getContext().getTargetAddressSpace(ASTTy)) { 1566 1567 // Move the old entry aside so that we'll create a new one. 1568 Entry->setName(StringRef()); 1569 1570 // Make a new global with the correct type, this is now guaranteed to work. 1571 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1572 1573 // Replace all uses of the old global with the new global 1574 llvm::Constant *NewPtrForOldDecl = 1575 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1576 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1577 1578 // Erase the old global, since it is no longer used. 1579 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1580 } 1581 1582 if (D->hasAttr<AnnotateAttr>()) 1583 AddGlobalAnnotations(D, GV); 1584 1585 GV->setInitializer(Init); 1586 1587 // If it is safe to mark the global 'constant', do so now. 1588 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1589 isTypeConstant(D->getType(), true)); 1590 1591 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1592 1593 // Set the llvm linkage type as appropriate. 1594 llvm::GlobalValue::LinkageTypes Linkage = 1595 GetLLVMLinkageVarDefinition(D, GV); 1596 GV->setLinkage(Linkage); 1597 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1598 // common vars aren't constant even if declared const. 1599 GV->setConstant(false); 1600 1601 SetCommonAttributes(D, GV); 1602 1603 // Emit the initializer function if necessary. 1604 if (NeedsGlobalCtor || NeedsGlobalDtor) 1605 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1606 1607 // Emit global variable debug information. 1608 if (CGDebugInfo *DI = getModuleDebugInfo()) 1609 DI->EmitGlobalVariable(GV, D); 1610 } 1611 1612 llvm::GlobalValue::LinkageTypes 1613 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1614 llvm::GlobalVariable *GV) { 1615 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1616 if (Linkage == GVA_Internal) 1617 return llvm::Function::InternalLinkage; 1618 else if (D->hasAttr<DLLImportAttr>()) 1619 return llvm::Function::DLLImportLinkage; 1620 else if (D->hasAttr<DLLExportAttr>()) 1621 return llvm::Function::DLLExportLinkage; 1622 else if (D->hasAttr<WeakAttr>()) { 1623 if (GV->isConstant()) 1624 return llvm::GlobalVariable::WeakODRLinkage; 1625 else 1626 return llvm::GlobalVariable::WeakAnyLinkage; 1627 } else if (Linkage == GVA_TemplateInstantiation || 1628 Linkage == GVA_ExplicitTemplateInstantiation) 1629 return llvm::GlobalVariable::WeakODRLinkage; 1630 else if (!getLangOpts().CPlusPlus && 1631 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1632 D->getAttr<CommonAttr>()) && 1633 !D->hasExternalStorage() && !D->getInit() && 1634 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1635 !D->getAttr<WeakImportAttr>()) { 1636 // Thread local vars aren't considered common linkage. 1637 return llvm::GlobalVariable::CommonLinkage; 1638 } 1639 return llvm::GlobalVariable::ExternalLinkage; 1640 } 1641 1642 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1643 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1644 /// existing call uses of the old function in the module, this adjusts them to 1645 /// call the new function directly. 1646 /// 1647 /// This is not just a cleanup: the always_inline pass requires direct calls to 1648 /// functions to be able to inline them. If there is a bitcast in the way, it 1649 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1650 /// run at -O0. 1651 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1652 llvm::Function *NewFn) { 1653 // If we're redefining a global as a function, don't transform it. 1654 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1655 if (OldFn == 0) return; 1656 1657 llvm::Type *NewRetTy = NewFn->getReturnType(); 1658 SmallVector<llvm::Value*, 4> ArgList; 1659 1660 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1661 UI != E; ) { 1662 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1663 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1664 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1665 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1666 llvm::CallSite CS(CI); 1667 if (!CI || !CS.isCallee(I)) continue; 1668 1669 // If the return types don't match exactly, and if the call isn't dead, then 1670 // we can't transform this call. 1671 if (CI->getType() != NewRetTy && !CI->use_empty()) 1672 continue; 1673 1674 // Get the attribute list. 1675 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1676 llvm::AttrListPtr AttrList = CI->getAttributes(); 1677 1678 // Get any return attributes. 1679 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1680 1681 // Add the return attributes. 1682 if (RAttrs) 1683 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1684 1685 // If the function was passed too few arguments, don't transform. If extra 1686 // arguments were passed, we silently drop them. If any of the types 1687 // mismatch, we don't transform. 1688 unsigned ArgNo = 0; 1689 bool DontTransform = false; 1690 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1691 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1692 if (CS.arg_size() == ArgNo || 1693 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1694 DontTransform = true; 1695 break; 1696 } 1697 1698 // Add any parameter attributes. 1699 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1700 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1701 } 1702 if (DontTransform) 1703 continue; 1704 1705 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1706 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1707 1708 // Okay, we can transform this. Create the new call instruction and copy 1709 // over the required information. 1710 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1711 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1712 ArgList.clear(); 1713 if (!NewCall->getType()->isVoidTy()) 1714 NewCall->takeName(CI); 1715 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1716 AttrVec.end())); 1717 NewCall->setCallingConv(CI->getCallingConv()); 1718 1719 // Finally, remove the old call, replacing any uses with the new one. 1720 if (!CI->use_empty()) 1721 CI->replaceAllUsesWith(NewCall); 1722 1723 // Copy debug location attached to CI. 1724 if (!CI->getDebugLoc().isUnknown()) 1725 NewCall->setDebugLoc(CI->getDebugLoc()); 1726 CI->eraseFromParent(); 1727 } 1728 } 1729 1730 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1731 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1732 // If we have a definition, this might be a deferred decl. If the 1733 // instantiation is explicit, make sure we emit it at the end. 1734 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1735 GetAddrOfGlobalVar(VD); 1736 } 1737 1738 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1739 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1740 1741 // Compute the function info and LLVM type. 1742 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1743 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1744 1745 // Get or create the prototype for the function. 1746 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1747 1748 // Strip off a bitcast if we got one back. 1749 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1750 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1751 Entry = CE->getOperand(0); 1752 } 1753 1754 1755 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1756 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1757 1758 // If the types mismatch then we have to rewrite the definition. 1759 assert(OldFn->isDeclaration() && 1760 "Shouldn't replace non-declaration"); 1761 1762 // F is the Function* for the one with the wrong type, we must make a new 1763 // Function* and update everything that used F (a declaration) with the new 1764 // Function* (which will be a definition). 1765 // 1766 // This happens if there is a prototype for a function 1767 // (e.g. "int f()") and then a definition of a different type 1768 // (e.g. "int f(int x)"). Move the old function aside so that it 1769 // doesn't interfere with GetAddrOfFunction. 1770 OldFn->setName(StringRef()); 1771 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1772 1773 // If this is an implementation of a function without a prototype, try to 1774 // replace any existing uses of the function (which may be calls) with uses 1775 // of the new function 1776 if (D->getType()->isFunctionNoProtoType()) { 1777 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1778 OldFn->removeDeadConstantUsers(); 1779 } 1780 1781 // Replace uses of F with the Function we will endow with a body. 1782 if (!Entry->use_empty()) { 1783 llvm::Constant *NewPtrForOldDecl = 1784 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1785 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1786 } 1787 1788 // Ok, delete the old function now, which is dead. 1789 OldFn->eraseFromParent(); 1790 1791 Entry = NewFn; 1792 } 1793 1794 // We need to set linkage and visibility on the function before 1795 // generating code for it because various parts of IR generation 1796 // want to propagate this information down (e.g. to local static 1797 // declarations). 1798 llvm::Function *Fn = cast<llvm::Function>(Entry); 1799 setFunctionLinkage(D, Fn); 1800 1801 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1802 setGlobalVisibility(Fn, D); 1803 1804 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1805 1806 SetFunctionDefinitionAttributes(D, Fn); 1807 SetLLVMFunctionAttributesForDefinition(D, Fn); 1808 1809 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1810 AddGlobalCtor(Fn, CA->getPriority()); 1811 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1812 AddGlobalDtor(Fn, DA->getPriority()); 1813 if (D->hasAttr<AnnotateAttr>()) 1814 AddGlobalAnnotations(D, Fn); 1815 } 1816 1817 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1818 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1819 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1820 assert(AA && "Not an alias?"); 1821 1822 StringRef MangledName = getMangledName(GD); 1823 1824 // If there is a definition in the module, then it wins over the alias. 1825 // This is dubious, but allow it to be safe. Just ignore the alias. 1826 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1827 if (Entry && !Entry->isDeclaration()) 1828 return; 1829 1830 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1831 1832 // Create a reference to the named value. This ensures that it is emitted 1833 // if a deferred decl. 1834 llvm::Constant *Aliasee; 1835 if (isa<llvm::FunctionType>(DeclTy)) 1836 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1837 /*ForVTable=*/false); 1838 else 1839 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1840 llvm::PointerType::getUnqual(DeclTy), 0); 1841 1842 // Create the new alias itself, but don't set a name yet. 1843 llvm::GlobalValue *GA = 1844 new llvm::GlobalAlias(Aliasee->getType(), 1845 llvm::Function::ExternalLinkage, 1846 "", Aliasee, &getModule()); 1847 1848 if (Entry) { 1849 assert(Entry->isDeclaration()); 1850 1851 // If there is a declaration in the module, then we had an extern followed 1852 // by the alias, as in: 1853 // extern int test6(); 1854 // ... 1855 // int test6() __attribute__((alias("test7"))); 1856 // 1857 // Remove it and replace uses of it with the alias. 1858 GA->takeName(Entry); 1859 1860 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1861 Entry->getType())); 1862 Entry->eraseFromParent(); 1863 } else { 1864 GA->setName(MangledName); 1865 } 1866 1867 // Set attributes which are particular to an alias; this is a 1868 // specialization of the attributes which may be set on a global 1869 // variable/function. 1870 if (D->hasAttr<DLLExportAttr>()) { 1871 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1872 // The dllexport attribute is ignored for undefined symbols. 1873 if (FD->hasBody()) 1874 GA->setLinkage(llvm::Function::DLLExportLinkage); 1875 } else { 1876 GA->setLinkage(llvm::Function::DLLExportLinkage); 1877 } 1878 } else if (D->hasAttr<WeakAttr>() || 1879 D->hasAttr<WeakRefAttr>() || 1880 D->isWeakImported()) { 1881 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1882 } 1883 1884 SetCommonAttributes(D, GA); 1885 } 1886 1887 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1888 ArrayRef<llvm::Type*> Tys) { 1889 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1890 Tys); 1891 } 1892 1893 static llvm::StringMapEntry<llvm::Constant*> & 1894 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1895 const StringLiteral *Literal, 1896 bool TargetIsLSB, 1897 bool &IsUTF16, 1898 unsigned &StringLength) { 1899 StringRef String = Literal->getString(); 1900 unsigned NumBytes = String.size(); 1901 1902 // Check for simple case. 1903 if (!Literal->containsNonAsciiOrNull()) { 1904 StringLength = NumBytes; 1905 return Map.GetOrCreateValue(String); 1906 } 1907 1908 // Otherwise, convert the UTF8 literals into a string of shorts. 1909 IsUTF16 = true; 1910 1911 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1912 const UTF8 *FromPtr = (UTF8 *)String.data(); 1913 UTF16 *ToPtr = &ToBuf[0]; 1914 1915 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1916 &ToPtr, ToPtr + NumBytes, 1917 strictConversion); 1918 1919 // ConvertUTF8toUTF16 returns the length in ToPtr. 1920 StringLength = ToPtr - &ToBuf[0]; 1921 1922 // Add an explicit null. 1923 *ToPtr = 0; 1924 return Map. 1925 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 1926 (StringLength + 1) * 2)); 1927 } 1928 1929 static llvm::StringMapEntry<llvm::Constant*> & 1930 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1931 const StringLiteral *Literal, 1932 unsigned &StringLength) { 1933 StringRef String = Literal->getString(); 1934 StringLength = String.size(); 1935 return Map.GetOrCreateValue(String); 1936 } 1937 1938 llvm::Constant * 1939 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1940 unsigned StringLength = 0; 1941 bool isUTF16 = false; 1942 llvm::StringMapEntry<llvm::Constant*> &Entry = 1943 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1944 getTargetData().isLittleEndian(), 1945 isUTF16, StringLength); 1946 1947 if (llvm::Constant *C = Entry.getValue()) 1948 return C; 1949 1950 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1951 llvm::Constant *Zeros[] = { Zero, Zero }; 1952 1953 // If we don't already have it, get __CFConstantStringClassReference. 1954 if (!CFConstantStringClassRef) { 1955 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1956 Ty = llvm::ArrayType::get(Ty, 0); 1957 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1958 "__CFConstantStringClassReference"); 1959 // Decay array -> ptr 1960 CFConstantStringClassRef = 1961 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1962 } 1963 1964 QualType CFTy = getContext().getCFConstantStringType(); 1965 1966 llvm::StructType *STy = 1967 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1968 1969 llvm::Constant *Fields[4]; 1970 1971 // Class pointer. 1972 Fields[0] = CFConstantStringClassRef; 1973 1974 // Flags. 1975 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1976 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1977 llvm::ConstantInt::get(Ty, 0x07C8); 1978 1979 // String pointer. 1980 llvm::Constant *C = 0; 1981 if (isUTF16) { 1982 ArrayRef<uint16_t> Arr = 1983 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 1984 Entry.getKey().size() / 2); 1985 C = llvm::ConstantDataArray::get(VMContext, Arr); 1986 } else { 1987 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 1988 } 1989 1990 llvm::GlobalValue::LinkageTypes Linkage; 1991 if (isUTF16) 1992 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1993 Linkage = llvm::GlobalValue::InternalLinkage; 1994 else 1995 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1996 // when using private linkage. It is not clear if this is a bug in ld 1997 // or a reasonable new restriction. 1998 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1999 2000 // Note: -fwritable-strings doesn't make the backing store strings of 2001 // CFStrings writable. (See <rdar://problem/10657500>) 2002 llvm::GlobalVariable *GV = 2003 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2004 Linkage, C, ".str"); 2005 GV->setUnnamedAddr(true); 2006 if (isUTF16) { 2007 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2008 GV->setAlignment(Align.getQuantity()); 2009 } else { 2010 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2011 GV->setAlignment(Align.getQuantity()); 2012 } 2013 2014 // String. 2015 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2016 2017 if (isUTF16) 2018 // Cast the UTF16 string to the correct type. 2019 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2020 2021 // String length. 2022 Ty = getTypes().ConvertType(getContext().LongTy); 2023 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2024 2025 // The struct. 2026 C = llvm::ConstantStruct::get(STy, Fields); 2027 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2028 llvm::GlobalVariable::PrivateLinkage, C, 2029 "_unnamed_cfstring_"); 2030 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2031 GV->setSection(Sect); 2032 Entry.setValue(GV); 2033 2034 return GV; 2035 } 2036 2037 static RecordDecl * 2038 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2039 DeclContext *DC, IdentifierInfo *Id) { 2040 SourceLocation Loc; 2041 if (Ctx.getLangOpts().CPlusPlus) 2042 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2043 else 2044 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2045 } 2046 2047 llvm::Constant * 2048 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2049 unsigned StringLength = 0; 2050 llvm::StringMapEntry<llvm::Constant*> &Entry = 2051 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2052 2053 if (llvm::Constant *C = Entry.getValue()) 2054 return C; 2055 2056 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2057 llvm::Constant *Zeros[] = { Zero, Zero }; 2058 2059 // If we don't already have it, get _NSConstantStringClassReference. 2060 if (!ConstantStringClassRef) { 2061 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2062 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2063 llvm::Constant *GV; 2064 if (LangOpts.ObjCNonFragileABI) { 2065 std::string str = 2066 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2067 : "OBJC_CLASS_$_" + StringClass; 2068 GV = getObjCRuntime().GetClassGlobal(str); 2069 // Make sure the result is of the correct type. 2070 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2071 ConstantStringClassRef = 2072 llvm::ConstantExpr::getBitCast(GV, PTy); 2073 } else { 2074 std::string str = 2075 StringClass.empty() ? "_NSConstantStringClassReference" 2076 : "_" + StringClass + "ClassReference"; 2077 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2078 GV = CreateRuntimeVariable(PTy, str); 2079 // Decay array -> ptr 2080 ConstantStringClassRef = 2081 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2082 } 2083 } 2084 2085 if (!NSConstantStringType) { 2086 // Construct the type for a constant NSString. 2087 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2088 Context.getTranslationUnitDecl(), 2089 &Context.Idents.get("__builtin_NSString")); 2090 D->startDefinition(); 2091 2092 QualType FieldTypes[3]; 2093 2094 // const int *isa; 2095 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2096 // const char *str; 2097 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2098 // unsigned int length; 2099 FieldTypes[2] = Context.UnsignedIntTy; 2100 2101 // Create fields 2102 for (unsigned i = 0; i < 3; ++i) { 2103 FieldDecl *Field = FieldDecl::Create(Context, D, 2104 SourceLocation(), 2105 SourceLocation(), 0, 2106 FieldTypes[i], /*TInfo=*/0, 2107 /*BitWidth=*/0, 2108 /*Mutable=*/false, 2109 /*HasInit=*/false); 2110 Field->setAccess(AS_public); 2111 D->addDecl(Field); 2112 } 2113 2114 D->completeDefinition(); 2115 QualType NSTy = Context.getTagDeclType(D); 2116 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2117 } 2118 2119 llvm::Constant *Fields[3]; 2120 2121 // Class pointer. 2122 Fields[0] = ConstantStringClassRef; 2123 2124 // String pointer. 2125 llvm::Constant *C = 2126 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2127 2128 llvm::GlobalValue::LinkageTypes Linkage; 2129 bool isConstant; 2130 Linkage = llvm::GlobalValue::PrivateLinkage; 2131 isConstant = !LangOpts.WritableStrings; 2132 2133 llvm::GlobalVariable *GV = 2134 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2135 ".str"); 2136 GV->setUnnamedAddr(true); 2137 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2138 GV->setAlignment(Align.getQuantity()); 2139 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2140 2141 // String length. 2142 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2143 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2144 2145 // The struct. 2146 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2147 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2148 llvm::GlobalVariable::PrivateLinkage, C, 2149 "_unnamed_nsstring_"); 2150 // FIXME. Fix section. 2151 if (const char *Sect = 2152 LangOpts.ObjCNonFragileABI 2153 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2154 : getContext().getTargetInfo().getNSStringSection()) 2155 GV->setSection(Sect); 2156 Entry.setValue(GV); 2157 2158 return GV; 2159 } 2160 2161 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2162 if (ObjCFastEnumerationStateType.isNull()) { 2163 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2164 Context.getTranslationUnitDecl(), 2165 &Context.Idents.get("__objcFastEnumerationState")); 2166 D->startDefinition(); 2167 2168 QualType FieldTypes[] = { 2169 Context.UnsignedLongTy, 2170 Context.getPointerType(Context.getObjCIdType()), 2171 Context.getPointerType(Context.UnsignedLongTy), 2172 Context.getConstantArrayType(Context.UnsignedLongTy, 2173 llvm::APInt(32, 5), ArrayType::Normal, 0) 2174 }; 2175 2176 for (size_t i = 0; i < 4; ++i) { 2177 FieldDecl *Field = FieldDecl::Create(Context, 2178 D, 2179 SourceLocation(), 2180 SourceLocation(), 0, 2181 FieldTypes[i], /*TInfo=*/0, 2182 /*BitWidth=*/0, 2183 /*Mutable=*/false, 2184 /*HasInit=*/false); 2185 Field->setAccess(AS_public); 2186 D->addDecl(Field); 2187 } 2188 2189 D->completeDefinition(); 2190 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2191 } 2192 2193 return ObjCFastEnumerationStateType; 2194 } 2195 2196 llvm::Constant * 2197 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2198 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2199 2200 // Don't emit it as the address of the string, emit the string data itself 2201 // as an inline array. 2202 if (E->getCharByteWidth() == 1) { 2203 SmallString<64> Str(E->getString()); 2204 2205 // Resize the string to the right size, which is indicated by its type. 2206 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2207 Str.resize(CAT->getSize().getZExtValue()); 2208 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2209 } 2210 2211 llvm::ArrayType *AType = 2212 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2213 llvm::Type *ElemTy = AType->getElementType(); 2214 unsigned NumElements = AType->getNumElements(); 2215 2216 // Wide strings have either 2-byte or 4-byte elements. 2217 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2218 SmallVector<uint16_t, 32> Elements; 2219 Elements.reserve(NumElements); 2220 2221 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2222 Elements.push_back(E->getCodeUnit(i)); 2223 Elements.resize(NumElements); 2224 return llvm::ConstantDataArray::get(VMContext, Elements); 2225 } 2226 2227 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2228 SmallVector<uint32_t, 32> Elements; 2229 Elements.reserve(NumElements); 2230 2231 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2232 Elements.push_back(E->getCodeUnit(i)); 2233 Elements.resize(NumElements); 2234 return llvm::ConstantDataArray::get(VMContext, Elements); 2235 } 2236 2237 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2238 /// constant array for the given string literal. 2239 llvm::Constant * 2240 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2241 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2242 if (S->isAscii() || S->isUTF8()) { 2243 SmallString<64> Str(S->getString()); 2244 2245 // Resize the string to the right size, which is indicated by its type. 2246 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2247 Str.resize(CAT->getSize().getZExtValue()); 2248 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2249 } 2250 2251 // FIXME: the following does not memoize wide strings. 2252 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2253 llvm::GlobalVariable *GV = 2254 new llvm::GlobalVariable(getModule(),C->getType(), 2255 !LangOpts.WritableStrings, 2256 llvm::GlobalValue::PrivateLinkage, 2257 C,".str"); 2258 2259 GV->setAlignment(Align.getQuantity()); 2260 GV->setUnnamedAddr(true); 2261 return GV; 2262 } 2263 2264 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2265 /// array for the given ObjCEncodeExpr node. 2266 llvm::Constant * 2267 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2268 std::string Str; 2269 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2270 2271 return GetAddrOfConstantCString(Str); 2272 } 2273 2274 2275 /// GenerateWritableString -- Creates storage for a string literal. 2276 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2277 bool constant, 2278 CodeGenModule &CGM, 2279 const char *GlobalName, 2280 unsigned Alignment) { 2281 // Create Constant for this string literal. Don't add a '\0'. 2282 llvm::Constant *C = 2283 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2284 2285 // Create a global variable for this string 2286 llvm::GlobalVariable *GV = 2287 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2288 llvm::GlobalValue::PrivateLinkage, 2289 C, GlobalName); 2290 GV->setAlignment(Alignment); 2291 GV->setUnnamedAddr(true); 2292 return GV; 2293 } 2294 2295 /// GetAddrOfConstantString - Returns a pointer to a character array 2296 /// containing the literal. This contents are exactly that of the 2297 /// given string, i.e. it will not be null terminated automatically; 2298 /// see GetAddrOfConstantCString. Note that whether the result is 2299 /// actually a pointer to an LLVM constant depends on 2300 /// Feature.WriteableStrings. 2301 /// 2302 /// The result has pointer to array type. 2303 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2304 const char *GlobalName, 2305 unsigned Alignment) { 2306 // Get the default prefix if a name wasn't specified. 2307 if (!GlobalName) 2308 GlobalName = ".str"; 2309 2310 // Don't share any string literals if strings aren't constant. 2311 if (LangOpts.WritableStrings) 2312 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2313 2314 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2315 ConstantStringMap.GetOrCreateValue(Str); 2316 2317 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2318 if (Alignment > GV->getAlignment()) { 2319 GV->setAlignment(Alignment); 2320 } 2321 return GV; 2322 } 2323 2324 // Create a global variable for this. 2325 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2326 Alignment); 2327 Entry.setValue(GV); 2328 return GV; 2329 } 2330 2331 /// GetAddrOfConstantCString - Returns a pointer to a character 2332 /// array containing the literal and a terminating '\0' 2333 /// character. The result has pointer to array type. 2334 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2335 const char *GlobalName, 2336 unsigned Alignment) { 2337 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2338 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2339 } 2340 2341 /// EmitObjCPropertyImplementations - Emit information for synthesized 2342 /// properties for an implementation. 2343 void CodeGenModule::EmitObjCPropertyImplementations(const 2344 ObjCImplementationDecl *D) { 2345 for (ObjCImplementationDecl::propimpl_iterator 2346 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2347 ObjCPropertyImplDecl *PID = &*i; 2348 2349 // Dynamic is just for type-checking. 2350 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2351 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2352 2353 // Determine which methods need to be implemented, some may have 2354 // been overridden. Note that ::isSynthesized is not the method 2355 // we want, that just indicates if the decl came from a 2356 // property. What we want to know is if the method is defined in 2357 // this implementation. 2358 if (!D->getInstanceMethod(PD->getGetterName())) 2359 CodeGenFunction(*this).GenerateObjCGetter( 2360 const_cast<ObjCImplementationDecl *>(D), PID); 2361 if (!PD->isReadOnly() && 2362 !D->getInstanceMethod(PD->getSetterName())) 2363 CodeGenFunction(*this).GenerateObjCSetter( 2364 const_cast<ObjCImplementationDecl *>(D), PID); 2365 } 2366 } 2367 } 2368 2369 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2370 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2371 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2372 ivar; ivar = ivar->getNextIvar()) 2373 if (ivar->getType().isDestructedType()) 2374 return true; 2375 2376 return false; 2377 } 2378 2379 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2380 /// for an implementation. 2381 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2382 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2383 if (needsDestructMethod(D)) { 2384 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2385 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2386 ObjCMethodDecl *DTORMethod = 2387 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2388 cxxSelector, getContext().VoidTy, 0, D, 2389 /*isInstance=*/true, /*isVariadic=*/false, 2390 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2391 /*isDefined=*/false, ObjCMethodDecl::Required); 2392 D->addInstanceMethod(DTORMethod); 2393 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2394 D->setHasCXXStructors(true); 2395 } 2396 2397 // If the implementation doesn't have any ivar initializers, we don't need 2398 // a .cxx_construct. 2399 if (D->getNumIvarInitializers() == 0) 2400 return; 2401 2402 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2403 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2404 // The constructor returns 'self'. 2405 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2406 D->getLocation(), 2407 D->getLocation(), 2408 cxxSelector, 2409 getContext().getObjCIdType(), 0, 2410 D, /*isInstance=*/true, 2411 /*isVariadic=*/false, 2412 /*isSynthesized=*/true, 2413 /*isImplicitlyDeclared=*/true, 2414 /*isDefined=*/false, 2415 ObjCMethodDecl::Required); 2416 D->addInstanceMethod(CTORMethod); 2417 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2418 D->setHasCXXStructors(true); 2419 } 2420 2421 /// EmitNamespace - Emit all declarations in a namespace. 2422 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2423 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2424 I != E; ++I) 2425 EmitTopLevelDecl(*I); 2426 } 2427 2428 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2429 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2430 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2431 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2432 ErrorUnsupported(LSD, "linkage spec"); 2433 return; 2434 } 2435 2436 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2437 I != E; ++I) 2438 EmitTopLevelDecl(*I); 2439 } 2440 2441 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2442 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2443 // If an error has occurred, stop code generation, but continue 2444 // parsing and semantic analysis (to ensure all warnings and errors 2445 // are emitted). 2446 if (Diags.hasErrorOccurred()) 2447 return; 2448 2449 // Ignore dependent declarations. 2450 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2451 return; 2452 2453 switch (D->getKind()) { 2454 case Decl::CXXConversion: 2455 case Decl::CXXMethod: 2456 case Decl::Function: 2457 // Skip function templates 2458 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2459 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2460 return; 2461 2462 EmitGlobal(cast<FunctionDecl>(D)); 2463 break; 2464 2465 case Decl::Var: 2466 EmitGlobal(cast<VarDecl>(D)); 2467 break; 2468 2469 // Indirect fields from global anonymous structs and unions can be 2470 // ignored; only the actual variable requires IR gen support. 2471 case Decl::IndirectField: 2472 break; 2473 2474 // C++ Decls 2475 case Decl::Namespace: 2476 EmitNamespace(cast<NamespaceDecl>(D)); 2477 break; 2478 // No code generation needed. 2479 case Decl::UsingShadow: 2480 case Decl::Using: 2481 case Decl::UsingDirective: 2482 case Decl::ClassTemplate: 2483 case Decl::FunctionTemplate: 2484 case Decl::TypeAliasTemplate: 2485 case Decl::NamespaceAlias: 2486 case Decl::Block: 2487 case Decl::Import: 2488 break; 2489 case Decl::CXXConstructor: 2490 // Skip function templates 2491 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2492 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2493 return; 2494 2495 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2496 break; 2497 case Decl::CXXDestructor: 2498 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2499 return; 2500 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2501 break; 2502 2503 case Decl::StaticAssert: 2504 // Nothing to do. 2505 break; 2506 2507 // Objective-C Decls 2508 2509 // Forward declarations, no (immediate) code generation. 2510 case Decl::ObjCInterface: 2511 break; 2512 2513 case Decl::ObjCCategory: { 2514 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2515 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2516 Context.ResetObjCLayout(CD->getClassInterface()); 2517 break; 2518 } 2519 2520 case Decl::ObjCProtocol: { 2521 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2522 if (Proto->isThisDeclarationADefinition()) 2523 ObjCRuntime->GenerateProtocol(Proto); 2524 break; 2525 } 2526 2527 case Decl::ObjCCategoryImpl: 2528 // Categories have properties but don't support synthesize so we 2529 // can ignore them here. 2530 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2531 break; 2532 2533 case Decl::ObjCImplementation: { 2534 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2535 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2536 Context.ResetObjCLayout(OMD->getClassInterface()); 2537 EmitObjCPropertyImplementations(OMD); 2538 EmitObjCIvarInitializations(OMD); 2539 ObjCRuntime->GenerateClass(OMD); 2540 // Emit global variable debug information. 2541 if (CGDebugInfo *DI = getModuleDebugInfo()) 2542 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2543 OMD->getLocation()); 2544 2545 break; 2546 } 2547 case Decl::ObjCMethod: { 2548 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2549 // If this is not a prototype, emit the body. 2550 if (OMD->getBody()) 2551 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2552 break; 2553 } 2554 case Decl::ObjCCompatibleAlias: 2555 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2556 break; 2557 2558 case Decl::LinkageSpec: 2559 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2560 break; 2561 2562 case Decl::FileScopeAsm: { 2563 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2564 StringRef AsmString = AD->getAsmString()->getString(); 2565 2566 const std::string &S = getModule().getModuleInlineAsm(); 2567 if (S.empty()) 2568 getModule().setModuleInlineAsm(AsmString); 2569 else if (*--S.end() == '\n') 2570 getModule().setModuleInlineAsm(S + AsmString.str()); 2571 else 2572 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2573 break; 2574 } 2575 2576 default: 2577 // Make sure we handled everything we should, every other kind is a 2578 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2579 // function. Need to recode Decl::Kind to do that easily. 2580 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2581 } 2582 } 2583 2584 /// Turns the given pointer into a constant. 2585 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2586 const void *Ptr) { 2587 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2588 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2589 return llvm::ConstantInt::get(i64, PtrInt); 2590 } 2591 2592 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2593 llvm::NamedMDNode *&GlobalMetadata, 2594 GlobalDecl D, 2595 llvm::GlobalValue *Addr) { 2596 if (!GlobalMetadata) 2597 GlobalMetadata = 2598 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2599 2600 // TODO: should we report variant information for ctors/dtors? 2601 llvm::Value *Ops[] = { 2602 Addr, 2603 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2604 }; 2605 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2606 } 2607 2608 /// Emits metadata nodes associating all the global values in the 2609 /// current module with the Decls they came from. This is useful for 2610 /// projects using IR gen as a subroutine. 2611 /// 2612 /// Since there's currently no way to associate an MDNode directly 2613 /// with an llvm::GlobalValue, we create a global named metadata 2614 /// with the name 'clang.global.decl.ptrs'. 2615 void CodeGenModule::EmitDeclMetadata() { 2616 llvm::NamedMDNode *GlobalMetadata = 0; 2617 2618 // StaticLocalDeclMap 2619 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2620 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2621 I != E; ++I) { 2622 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2623 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2624 } 2625 } 2626 2627 /// Emits metadata nodes for all the local variables in the current 2628 /// function. 2629 void CodeGenFunction::EmitDeclMetadata() { 2630 if (LocalDeclMap.empty()) return; 2631 2632 llvm::LLVMContext &Context = getLLVMContext(); 2633 2634 // Find the unique metadata ID for this name. 2635 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2636 2637 llvm::NamedMDNode *GlobalMetadata = 0; 2638 2639 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2640 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2641 const Decl *D = I->first; 2642 llvm::Value *Addr = I->second; 2643 2644 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2645 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2646 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2647 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2648 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2649 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2650 } 2651 } 2652 } 2653 2654 void CodeGenModule::EmitCoverageFile() { 2655 if (!getCodeGenOpts().CoverageFile.empty()) { 2656 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2657 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2658 llvm::LLVMContext &Ctx = TheModule.getContext(); 2659 llvm::MDString *CoverageFile = 2660 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2661 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2662 llvm::MDNode *CU = CUNode->getOperand(i); 2663 llvm::Value *node[] = { CoverageFile, CU }; 2664 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2665 GCov->addOperand(N); 2666 } 2667 } 2668 } 2669 } 2670