xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2d7c57ec1dca2ca678d086b545c4cf38091d0902)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::TargetData &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106   if (LangOpts.ThreadSanitizer ||
107       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                            ABI.getMangleContext());
110 
111   // If debug info or coverage generation is enabled, create the CGDebugInfo
112   // object.
113   if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114       CodeGenOpts.EmitGcovArcs ||
115       CodeGenOpts.EmitGcovNotes)
116     DebugInfo = new CGDebugInfo(*this);
117 
118   Block.GlobalUniqueCount = 0;
119 
120   if (C.getLangOpts().ObjCAutoRefCount)
121     ARCData = new ARCEntrypoints();
122   RRData = new RREntrypoints();
123 }
124 
125 CodeGenModule::~CodeGenModule() {
126   delete ObjCRuntime;
127   delete OpenCLRuntime;
128   delete CUDARuntime;
129   delete TheTargetCodeGenInfo;
130   delete &ABI;
131   delete TBAA;
132   delete DebugInfo;
133   delete ARCData;
134   delete RRData;
135 }
136 
137 void CodeGenModule::createObjCRuntime() {
138   if (!LangOpts.NeXTRuntime)
139     ObjCRuntime = CreateGNUObjCRuntime(*this);
140   else
141     ObjCRuntime = CreateMacObjCRuntime(*this);
142 }
143 
144 void CodeGenModule::createOpenCLRuntime() {
145   OpenCLRuntime = new CGOpenCLRuntime(*this);
146 }
147 
148 void CodeGenModule::createCUDARuntime() {
149   CUDARuntime = CreateNVCUDARuntime(*this);
150 }
151 
152 void CodeGenModule::Release() {
153   EmitDeferred();
154   EmitCXXGlobalInitFunc();
155   EmitCXXGlobalDtorFunc();
156   if (ObjCRuntime)
157     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
158       AddGlobalCtor(ObjCInitFunction);
159   EmitCtorList(GlobalCtors, "llvm.global_ctors");
160   EmitCtorList(GlobalDtors, "llvm.global_dtors");
161   EmitGlobalAnnotations();
162   EmitLLVMUsed();
163 
164   SimplifyPersonality();
165 
166   if (getCodeGenOpts().EmitDeclMetadata)
167     EmitDeclMetadata();
168 
169   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
170     EmitCoverageFile();
171 
172   if (DebugInfo)
173     DebugInfo->finalize();
174 }
175 
176 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
177   // Make sure that this type is translated.
178   Types.UpdateCompletedType(TD);
179 }
180 
181 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
182   if (!TBAA)
183     return 0;
184   return TBAA->getTBAAInfo(QTy);
185 }
186 
187 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
188   if (!TBAA)
189     return 0;
190   return TBAA->getTBAAInfoForVTablePtr();
191 }
192 
193 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
194                                         llvm::MDNode *TBAAInfo) {
195   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
196 }
197 
198 bool CodeGenModule::isTargetDarwin() const {
199   return getContext().getTargetInfo().getTriple().isOSDarwin();
200 }
201 
202 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
203   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
204   getDiags().Report(Context.getFullLoc(loc), diagID);
205 }
206 
207 /// ErrorUnsupported - Print out an error that codegen doesn't support the
208 /// specified stmt yet.
209 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
210                                      bool OmitOnError) {
211   if (OmitOnError && getDiags().hasErrorOccurred())
212     return;
213   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
214                                                "cannot compile this %0 yet");
215   std::string Msg = Type;
216   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
217     << Msg << S->getSourceRange();
218 }
219 
220 /// ErrorUnsupported - Print out an error that codegen doesn't support the
221 /// specified decl yet.
222 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
223                                      bool OmitOnError) {
224   if (OmitOnError && getDiags().hasErrorOccurred())
225     return;
226   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
227                                                "cannot compile this %0 yet");
228   std::string Msg = Type;
229   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
230 }
231 
232 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
233   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
234 }
235 
236 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
237                                         const NamedDecl *D) const {
238   // Internal definitions always have default visibility.
239   if (GV->hasLocalLinkage()) {
240     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
241     return;
242   }
243 
244   // Set visibility for definitions.
245   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
246   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
247     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
248 }
249 
250 /// Set the symbol visibility of type information (vtable and RTTI)
251 /// associated with the given type.
252 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
253                                       const CXXRecordDecl *RD,
254                                       TypeVisibilityKind TVK) const {
255   setGlobalVisibility(GV, RD);
256 
257   if (!CodeGenOpts.HiddenWeakVTables)
258     return;
259 
260   // We never want to drop the visibility for RTTI names.
261   if (TVK == TVK_ForRTTIName)
262     return;
263 
264   // We want to drop the visibility to hidden for weak type symbols.
265   // This isn't possible if there might be unresolved references
266   // elsewhere that rely on this symbol being visible.
267 
268   // This should be kept roughly in sync with setThunkVisibility
269   // in CGVTables.cpp.
270 
271   // Preconditions.
272   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
273       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
274     return;
275 
276   // Don't override an explicit visibility attribute.
277   if (RD->getExplicitVisibility())
278     return;
279 
280   switch (RD->getTemplateSpecializationKind()) {
281   // We have to disable the optimization if this is an EI definition
282   // because there might be EI declarations in other shared objects.
283   case TSK_ExplicitInstantiationDefinition:
284   case TSK_ExplicitInstantiationDeclaration:
285     return;
286 
287   // Every use of a non-template class's type information has to emit it.
288   case TSK_Undeclared:
289     break;
290 
291   // In theory, implicit instantiations can ignore the possibility of
292   // an explicit instantiation declaration because there necessarily
293   // must be an EI definition somewhere with default visibility.  In
294   // practice, it's possible to have an explicit instantiation for
295   // an arbitrary template class, and linkers aren't necessarily able
296   // to deal with mixed-visibility symbols.
297   case TSK_ExplicitSpecialization:
298   case TSK_ImplicitInstantiation:
299     if (!CodeGenOpts.HiddenWeakTemplateVTables)
300       return;
301     break;
302   }
303 
304   // If there's a key function, there may be translation units
305   // that don't have the key function's definition.  But ignore
306   // this if we're emitting RTTI under -fno-rtti.
307   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
308     if (Context.getKeyFunction(RD))
309       return;
310   }
311 
312   // Otherwise, drop the visibility to hidden.
313   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
314   GV->setUnnamedAddr(true);
315 }
316 
317 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
318   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
319 
320   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
321   if (!Str.empty())
322     return Str;
323 
324   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
325     IdentifierInfo *II = ND->getIdentifier();
326     assert(II && "Attempt to mangle unnamed decl.");
327 
328     Str = II->getName();
329     return Str;
330   }
331 
332   SmallString<256> Buffer;
333   llvm::raw_svector_ostream Out(Buffer);
334   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
335     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
336   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
337     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
338   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
339     getCXXABI().getMangleContext().mangleBlock(BD, Out);
340   else
341     getCXXABI().getMangleContext().mangleName(ND, Out);
342 
343   // Allocate space for the mangled name.
344   Out.flush();
345   size_t Length = Buffer.size();
346   char *Name = MangledNamesAllocator.Allocate<char>(Length);
347   std::copy(Buffer.begin(), Buffer.end(), Name);
348 
349   Str = StringRef(Name, Length);
350 
351   return Str;
352 }
353 
354 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
355                                         const BlockDecl *BD) {
356   MangleContext &MangleCtx = getCXXABI().getMangleContext();
357   const Decl *D = GD.getDecl();
358   llvm::raw_svector_ostream Out(Buffer.getBuffer());
359   if (D == 0)
360     MangleCtx.mangleGlobalBlock(BD, Out);
361   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
362     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
363   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
364     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
365   else
366     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
367 }
368 
369 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
370   return getModule().getNamedValue(Name);
371 }
372 
373 /// AddGlobalCtor - Add a function to the list that will be called before
374 /// main() runs.
375 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
376   // FIXME: Type coercion of void()* types.
377   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
378 }
379 
380 /// AddGlobalDtor - Add a function to the list that will be called
381 /// when the module is unloaded.
382 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
383   // FIXME: Type coercion of void()* types.
384   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
385 }
386 
387 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
388   // Ctor function type is void()*.
389   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
390   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
391 
392   // Get the type of a ctor entry, { i32, void ()* }.
393   llvm::StructType *CtorStructTy =
394     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
395 
396   // Construct the constructor and destructor arrays.
397   SmallVector<llvm::Constant*, 8> Ctors;
398   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
399     llvm::Constant *S[] = {
400       llvm::ConstantInt::get(Int32Ty, I->second, false),
401       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
402     };
403     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
404   }
405 
406   if (!Ctors.empty()) {
407     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
408     new llvm::GlobalVariable(TheModule, AT, false,
409                              llvm::GlobalValue::AppendingLinkage,
410                              llvm::ConstantArray::get(AT, Ctors),
411                              GlobalName);
412   }
413 }
414 
415 llvm::GlobalValue::LinkageTypes
416 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
417   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
418 
419   if (Linkage == GVA_Internal)
420     return llvm::Function::InternalLinkage;
421 
422   if (D->hasAttr<DLLExportAttr>())
423     return llvm::Function::DLLExportLinkage;
424 
425   if (D->hasAttr<WeakAttr>())
426     return llvm::Function::WeakAnyLinkage;
427 
428   // In C99 mode, 'inline' functions are guaranteed to have a strong
429   // definition somewhere else, so we can use available_externally linkage.
430   if (Linkage == GVA_C99Inline)
431     return llvm::Function::AvailableExternallyLinkage;
432 
433   // Note that Apple's kernel linker doesn't support symbol
434   // coalescing, so we need to avoid linkonce and weak linkages there.
435   // Normally, this means we just map to internal, but for explicit
436   // instantiations we'll map to external.
437 
438   // In C++, the compiler has to emit a definition in every translation unit
439   // that references the function.  We should use linkonce_odr because
440   // a) if all references in this translation unit are optimized away, we
441   // don't need to codegen it.  b) if the function persists, it needs to be
442   // merged with other definitions. c) C++ has the ODR, so we know the
443   // definition is dependable.
444   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
445     return !Context.getLangOpts().AppleKext
446              ? llvm::Function::LinkOnceODRLinkage
447              : llvm::Function::InternalLinkage;
448 
449   // An explicit instantiation of a template has weak linkage, since
450   // explicit instantiations can occur in multiple translation units
451   // and must all be equivalent. However, we are not allowed to
452   // throw away these explicit instantiations.
453   if (Linkage == GVA_ExplicitTemplateInstantiation)
454     return !Context.getLangOpts().AppleKext
455              ? llvm::Function::WeakODRLinkage
456              : llvm::Function::ExternalLinkage;
457 
458   // Otherwise, we have strong external linkage.
459   assert(Linkage == GVA_StrongExternal);
460   return llvm::Function::ExternalLinkage;
461 }
462 
463 
464 /// SetFunctionDefinitionAttributes - Set attributes for a global.
465 ///
466 /// FIXME: This is currently only done for aliases and functions, but not for
467 /// variables (these details are set in EmitGlobalVarDefinition for variables).
468 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
469                                                     llvm::GlobalValue *GV) {
470   SetCommonAttributes(D, GV);
471 }
472 
473 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
474                                               const CGFunctionInfo &Info,
475                                               llvm::Function *F) {
476   unsigned CallingConv;
477   AttributeListType AttributeList;
478   ConstructAttributeList(Info, D, AttributeList, CallingConv);
479   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
480                                           AttributeList.size()));
481   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
482 }
483 
484 /// Determines whether the language options require us to model
485 /// unwind exceptions.  We treat -fexceptions as mandating this
486 /// except under the fragile ObjC ABI with only ObjC exceptions
487 /// enabled.  This means, for example, that C with -fexceptions
488 /// enables this.
489 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
490   // If exceptions are completely disabled, obviously this is false.
491   if (!LangOpts.Exceptions) return false;
492 
493   // If C++ exceptions are enabled, this is true.
494   if (LangOpts.CXXExceptions) return true;
495 
496   // If ObjC exceptions are enabled, this depends on the ABI.
497   if (LangOpts.ObjCExceptions) {
498     if (!LangOpts.ObjCNonFragileABI) return false;
499   }
500 
501   return true;
502 }
503 
504 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
505                                                            llvm::Function *F) {
506   if (CodeGenOpts.UnwindTables)
507     F->setHasUWTable();
508 
509   if (!hasUnwindExceptions(LangOpts))
510     F->addFnAttr(llvm::Attribute::NoUnwind);
511 
512   if (D->hasAttr<NakedAttr>()) {
513     // Naked implies noinline: we should not be inlining such functions.
514     F->addFnAttr(llvm::Attribute::Naked);
515     F->addFnAttr(llvm::Attribute::NoInline);
516   }
517 
518   if (D->hasAttr<NoInlineAttr>())
519     F->addFnAttr(llvm::Attribute::NoInline);
520 
521   // (noinline wins over always_inline, and we can't specify both in IR)
522   if (D->hasAttr<AlwaysInlineAttr>() &&
523       !F->hasFnAttr(llvm::Attribute::NoInline))
524     F->addFnAttr(llvm::Attribute::AlwaysInline);
525 
526   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
527     F->setUnnamedAddr(true);
528 
529   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
530     F->addFnAttr(llvm::Attribute::StackProtect);
531   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
532     F->addFnAttr(llvm::Attribute::StackProtectReq);
533 
534   if (LangOpts.AddressSanitizer) {
535     // When AddressSanitizer is enabled, set AddressSafety attribute
536     // unless __attribute__((no_address_safety_analysis)) is used.
537     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
538       F->addFnAttr(llvm::Attribute::AddressSafety);
539   }
540 
541   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
542   if (alignment)
543     F->setAlignment(alignment);
544 
545   // C++ ABI requires 2-byte alignment for member functions.
546   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
547     F->setAlignment(2);
548 }
549 
550 void CodeGenModule::SetCommonAttributes(const Decl *D,
551                                         llvm::GlobalValue *GV) {
552   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
553     setGlobalVisibility(GV, ND);
554   else
555     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
556 
557   if (D->hasAttr<UsedAttr>())
558     AddUsedGlobal(GV);
559 
560   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
561     GV->setSection(SA->getName());
562 
563   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
564 }
565 
566 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
567                                                   llvm::Function *F,
568                                                   const CGFunctionInfo &FI) {
569   SetLLVMFunctionAttributes(D, FI, F);
570   SetLLVMFunctionAttributesForDefinition(D, F);
571 
572   F->setLinkage(llvm::Function::InternalLinkage);
573 
574   SetCommonAttributes(D, F);
575 }
576 
577 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
578                                           llvm::Function *F,
579                                           bool IsIncompleteFunction) {
580   if (unsigned IID = F->getIntrinsicID()) {
581     // If this is an intrinsic function, set the function's attributes
582     // to the intrinsic's attributes.
583     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
584     return;
585   }
586 
587   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
588 
589   if (!IsIncompleteFunction)
590     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
591 
592   // Only a few attributes are set on declarations; these may later be
593   // overridden by a definition.
594 
595   if (FD->hasAttr<DLLImportAttr>()) {
596     F->setLinkage(llvm::Function::DLLImportLinkage);
597   } else if (FD->hasAttr<WeakAttr>() ||
598              FD->isWeakImported()) {
599     // "extern_weak" is overloaded in LLVM; we probably should have
600     // separate linkage types for this.
601     F->setLinkage(llvm::Function::ExternalWeakLinkage);
602   } else {
603     F->setLinkage(llvm::Function::ExternalLinkage);
604 
605     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
606     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
607       F->setVisibility(GetLLVMVisibility(LV.visibility()));
608     }
609   }
610 
611   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
612     F->setSection(SA->getName());
613 }
614 
615 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
616   assert(!GV->isDeclaration() &&
617          "Only globals with definition can force usage.");
618   LLVMUsed.push_back(GV);
619 }
620 
621 void CodeGenModule::EmitLLVMUsed() {
622   // Don't create llvm.used if there is no need.
623   if (LLVMUsed.empty())
624     return;
625 
626   // Convert LLVMUsed to what ConstantArray needs.
627   SmallVector<llvm::Constant*, 8> UsedArray;
628   UsedArray.resize(LLVMUsed.size());
629   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
630     UsedArray[i] =
631      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
632                                     Int8PtrTy);
633   }
634 
635   if (UsedArray.empty())
636     return;
637   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
638 
639   llvm::GlobalVariable *GV =
640     new llvm::GlobalVariable(getModule(), ATy, false,
641                              llvm::GlobalValue::AppendingLinkage,
642                              llvm::ConstantArray::get(ATy, UsedArray),
643                              "llvm.used");
644 
645   GV->setSection("llvm.metadata");
646 }
647 
648 void CodeGenModule::EmitDeferred() {
649   // Emit code for any potentially referenced deferred decls.  Since a
650   // previously unused static decl may become used during the generation of code
651   // for a static function, iterate until no changes are made.
652 
653   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
654     if (!DeferredVTables.empty()) {
655       const CXXRecordDecl *RD = DeferredVTables.back();
656       DeferredVTables.pop_back();
657       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
658       continue;
659     }
660 
661     GlobalDecl D = DeferredDeclsToEmit.back();
662     DeferredDeclsToEmit.pop_back();
663 
664     // Check to see if we've already emitted this.  This is necessary
665     // for a couple of reasons: first, decls can end up in the
666     // deferred-decls queue multiple times, and second, decls can end
667     // up with definitions in unusual ways (e.g. by an extern inline
668     // function acquiring a strong function redefinition).  Just
669     // ignore these cases.
670     //
671     // TODO: That said, looking this up multiple times is very wasteful.
672     StringRef Name = getMangledName(D);
673     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
674     assert(CGRef && "Deferred decl wasn't referenced?");
675 
676     if (!CGRef->isDeclaration())
677       continue;
678 
679     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
680     // purposes an alias counts as a definition.
681     if (isa<llvm::GlobalAlias>(CGRef))
682       continue;
683 
684     // Otherwise, emit the definition and move on to the next one.
685     EmitGlobalDefinition(D);
686   }
687 }
688 
689 void CodeGenModule::EmitGlobalAnnotations() {
690   if (Annotations.empty())
691     return;
692 
693   // Create a new global variable for the ConstantStruct in the Module.
694   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
695     Annotations[0]->getType(), Annotations.size()), Annotations);
696   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
697     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
698     "llvm.global.annotations");
699   gv->setSection(AnnotationSection);
700 }
701 
702 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
703   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
704   if (i != AnnotationStrings.end())
705     return i->second;
706 
707   // Not found yet, create a new global.
708   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
709   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
710     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
711   gv->setSection(AnnotationSection);
712   gv->setUnnamedAddr(true);
713   AnnotationStrings[Str] = gv;
714   return gv;
715 }
716 
717 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
718   SourceManager &SM = getContext().getSourceManager();
719   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
720   if (PLoc.isValid())
721     return EmitAnnotationString(PLoc.getFilename());
722   return EmitAnnotationString(SM.getBufferName(Loc));
723 }
724 
725 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
726   SourceManager &SM = getContext().getSourceManager();
727   PresumedLoc PLoc = SM.getPresumedLoc(L);
728   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
729     SM.getExpansionLineNumber(L);
730   return llvm::ConstantInt::get(Int32Ty, LineNo);
731 }
732 
733 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
734                                                 const AnnotateAttr *AA,
735                                                 SourceLocation L) {
736   // Get the globals for file name, annotation, and the line number.
737   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
738                  *UnitGV = EmitAnnotationUnit(L),
739                  *LineNoCst = EmitAnnotationLineNo(L);
740 
741   // Create the ConstantStruct for the global annotation.
742   llvm::Constant *Fields[4] = {
743     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
744     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
745     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
746     LineNoCst
747   };
748   return llvm::ConstantStruct::getAnon(Fields);
749 }
750 
751 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
752                                          llvm::GlobalValue *GV) {
753   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
754   // Get the struct elements for these annotations.
755   for (specific_attr_iterator<AnnotateAttr>
756        ai = D->specific_attr_begin<AnnotateAttr>(),
757        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
758     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
759 }
760 
761 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
762   // Never defer when EmitAllDecls is specified.
763   if (LangOpts.EmitAllDecls)
764     return false;
765 
766   return !getContext().DeclMustBeEmitted(Global);
767 }
768 
769 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
770   const AliasAttr *AA = VD->getAttr<AliasAttr>();
771   assert(AA && "No alias?");
772 
773   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
774 
775   // See if there is already something with the target's name in the module.
776   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
777 
778   llvm::Constant *Aliasee;
779   if (isa<llvm::FunctionType>(DeclTy))
780     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
781                                       /*ForVTable=*/false);
782   else
783     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
784                                     llvm::PointerType::getUnqual(DeclTy), 0);
785   if (!Entry) {
786     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
787     F->setLinkage(llvm::Function::ExternalWeakLinkage);
788     WeakRefReferences.insert(F);
789   }
790 
791   return Aliasee;
792 }
793 
794 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
795   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
796 
797   // Weak references don't produce any output by themselves.
798   if (Global->hasAttr<WeakRefAttr>())
799     return;
800 
801   // If this is an alias definition (which otherwise looks like a declaration)
802   // emit it now.
803   if (Global->hasAttr<AliasAttr>())
804     return EmitAliasDefinition(GD);
805 
806   // If this is CUDA, be selective about which declarations we emit.
807   if (LangOpts.CUDA) {
808     if (CodeGenOpts.CUDAIsDevice) {
809       if (!Global->hasAttr<CUDADeviceAttr>() &&
810           !Global->hasAttr<CUDAGlobalAttr>() &&
811           !Global->hasAttr<CUDAConstantAttr>() &&
812           !Global->hasAttr<CUDASharedAttr>())
813         return;
814     } else {
815       if (!Global->hasAttr<CUDAHostAttr>() && (
816             Global->hasAttr<CUDADeviceAttr>() ||
817             Global->hasAttr<CUDAConstantAttr>() ||
818             Global->hasAttr<CUDASharedAttr>()))
819         return;
820     }
821   }
822 
823   // Ignore declarations, they will be emitted on their first use.
824   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
825     // Forward declarations are emitted lazily on first use.
826     if (!FD->doesThisDeclarationHaveABody()) {
827       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
828         return;
829 
830       const FunctionDecl *InlineDefinition = 0;
831       FD->getBody(InlineDefinition);
832 
833       StringRef MangledName = getMangledName(GD);
834       DeferredDecls.erase(MangledName);
835       EmitGlobalDefinition(InlineDefinition);
836       return;
837     }
838   } else {
839     const VarDecl *VD = cast<VarDecl>(Global);
840     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
841 
842     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
843       return;
844   }
845 
846   // Defer code generation when possible if this is a static definition, inline
847   // function etc.  These we only want to emit if they are used.
848   if (!MayDeferGeneration(Global)) {
849     // Emit the definition if it can't be deferred.
850     EmitGlobalDefinition(GD);
851     return;
852   }
853 
854   // If we're deferring emission of a C++ variable with an
855   // initializer, remember the order in which it appeared in the file.
856   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
857       cast<VarDecl>(Global)->hasInit()) {
858     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
859     CXXGlobalInits.push_back(0);
860   }
861 
862   // If the value has already been used, add it directly to the
863   // DeferredDeclsToEmit list.
864   StringRef MangledName = getMangledName(GD);
865   if (GetGlobalValue(MangledName))
866     DeferredDeclsToEmit.push_back(GD);
867   else {
868     // Otherwise, remember that we saw a deferred decl with this name.  The
869     // first use of the mangled name will cause it to move into
870     // DeferredDeclsToEmit.
871     DeferredDecls[MangledName] = GD;
872   }
873 }
874 
875 namespace {
876   struct FunctionIsDirectlyRecursive :
877     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
878     const StringRef Name;
879     const Builtin::Context &BI;
880     bool Result;
881     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
882       Name(N), BI(C), Result(false) {
883     }
884     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
885 
886     bool TraverseCallExpr(CallExpr *E) {
887       const FunctionDecl *FD = E->getDirectCallee();
888       if (!FD)
889         return true;
890       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
891       if (Attr && Name == Attr->getLabel()) {
892         Result = true;
893         return false;
894       }
895       unsigned BuiltinID = FD->getBuiltinID();
896       if (!BuiltinID)
897         return true;
898       StringRef BuiltinName = BI.GetName(BuiltinID);
899       if (BuiltinName.startswith("__builtin_") &&
900           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
901         Result = true;
902         return false;
903       }
904       return true;
905     }
906   };
907 }
908 
909 // isTriviallyRecursive - Check if this function calls another
910 // decl that, because of the asm attribute or the other decl being a builtin,
911 // ends up pointing to itself.
912 bool
913 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
914   StringRef Name;
915   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
916     // asm labels are a special kind of mangling we have to support.
917     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
918     if (!Attr)
919       return false;
920     Name = Attr->getLabel();
921   } else {
922     Name = FD->getName();
923   }
924 
925   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
926   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
927   return Walker.Result;
928 }
929 
930 bool
931 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
932   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
933     return true;
934   if (CodeGenOpts.OptimizationLevel == 0 &&
935       !F->hasAttr<AlwaysInlineAttr>())
936     return false;
937   // PR9614. Avoid cases where the source code is lying to us. An available
938   // externally function should have an equivalent function somewhere else,
939   // but a function that calls itself is clearly not equivalent to the real
940   // implementation.
941   // This happens in glibc's btowc and in some configure checks.
942   return !isTriviallyRecursive(F);
943 }
944 
945 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
946   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
947 
948   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
949                                  Context.getSourceManager(),
950                                  "Generating code for declaration");
951 
952   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
953     // At -O0, don't generate IR for functions with available_externally
954     // linkage.
955     if (!shouldEmitFunction(Function))
956       return;
957 
958     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
959       // Make sure to emit the definition(s) before we emit the thunks.
960       // This is necessary for the generation of certain thunks.
961       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
962         EmitCXXConstructor(CD, GD.getCtorType());
963       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
964         EmitCXXDestructor(DD, GD.getDtorType());
965       else
966         EmitGlobalFunctionDefinition(GD);
967 
968       if (Method->isVirtual())
969         getVTables().EmitThunks(GD);
970 
971       return;
972     }
973 
974     return EmitGlobalFunctionDefinition(GD);
975   }
976 
977   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
978     return EmitGlobalVarDefinition(VD);
979 
980   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
981 }
982 
983 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
984 /// module, create and return an llvm Function with the specified type. If there
985 /// is something in the module with the specified name, return it potentially
986 /// bitcasted to the right type.
987 ///
988 /// If D is non-null, it specifies a decl that correspond to this.  This is used
989 /// to set the attributes on the function when it is first created.
990 llvm::Constant *
991 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
992                                        llvm::Type *Ty,
993                                        GlobalDecl D, bool ForVTable,
994                                        llvm::Attributes ExtraAttrs) {
995   // Lookup the entry, lazily creating it if necessary.
996   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
997   if (Entry) {
998     if (WeakRefReferences.count(Entry)) {
999       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1000       if (FD && !FD->hasAttr<WeakAttr>())
1001         Entry->setLinkage(llvm::Function::ExternalLinkage);
1002 
1003       WeakRefReferences.erase(Entry);
1004     }
1005 
1006     if (Entry->getType()->getElementType() == Ty)
1007       return Entry;
1008 
1009     // Make sure the result is of the correct type.
1010     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1011   }
1012 
1013   // This function doesn't have a complete type (for example, the return
1014   // type is an incomplete struct). Use a fake type instead, and make
1015   // sure not to try to set attributes.
1016   bool IsIncompleteFunction = false;
1017 
1018   llvm::FunctionType *FTy;
1019   if (isa<llvm::FunctionType>(Ty)) {
1020     FTy = cast<llvm::FunctionType>(Ty);
1021   } else {
1022     FTy = llvm::FunctionType::get(VoidTy, false);
1023     IsIncompleteFunction = true;
1024   }
1025 
1026   llvm::Function *F = llvm::Function::Create(FTy,
1027                                              llvm::Function::ExternalLinkage,
1028                                              MangledName, &getModule());
1029   assert(F->getName() == MangledName && "name was uniqued!");
1030   if (D.getDecl())
1031     SetFunctionAttributes(D, F, IsIncompleteFunction);
1032   if (ExtraAttrs != llvm::Attribute::None)
1033     F->addFnAttr(ExtraAttrs);
1034 
1035   // This is the first use or definition of a mangled name.  If there is a
1036   // deferred decl with this name, remember that we need to emit it at the end
1037   // of the file.
1038   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1039   if (DDI != DeferredDecls.end()) {
1040     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1041     // list, and remove it from DeferredDecls (since we don't need it anymore).
1042     DeferredDeclsToEmit.push_back(DDI->second);
1043     DeferredDecls.erase(DDI);
1044 
1045   // Otherwise, there are cases we have to worry about where we're
1046   // using a declaration for which we must emit a definition but where
1047   // we might not find a top-level definition:
1048   //   - member functions defined inline in their classes
1049   //   - friend functions defined inline in some class
1050   //   - special member functions with implicit definitions
1051   // If we ever change our AST traversal to walk into class methods,
1052   // this will be unnecessary.
1053   //
1054   // We also don't emit a definition for a function if it's going to be an entry
1055   // in a vtable, unless it's already marked as used.
1056   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1057     // Look for a declaration that's lexically in a record.
1058     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1059     do {
1060       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1061         if (FD->isImplicit() && !ForVTable) {
1062           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1063           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1064           break;
1065         } else if (FD->doesThisDeclarationHaveABody()) {
1066           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1067           break;
1068         }
1069       }
1070       FD = FD->getPreviousDecl();
1071     } while (FD);
1072   }
1073 
1074   // Make sure the result is of the requested type.
1075   if (!IsIncompleteFunction) {
1076     assert(F->getType()->getElementType() == Ty);
1077     return F;
1078   }
1079 
1080   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1081   return llvm::ConstantExpr::getBitCast(F, PTy);
1082 }
1083 
1084 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1085 /// non-null, then this function will use the specified type if it has to
1086 /// create it (this occurs when we see a definition of the function).
1087 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1088                                                  llvm::Type *Ty,
1089                                                  bool ForVTable) {
1090   // If there was no specific requested type, just convert it now.
1091   if (!Ty)
1092     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1093 
1094   StringRef MangledName = getMangledName(GD);
1095   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1096 }
1097 
1098 /// CreateRuntimeFunction - Create a new runtime function with the specified
1099 /// type and name.
1100 llvm::Constant *
1101 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1102                                      StringRef Name,
1103                                      llvm::Attributes ExtraAttrs) {
1104   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1105                                  ExtraAttrs);
1106 }
1107 
1108 /// isTypeConstant - Determine whether an object of this type can be emitted
1109 /// as a constant.
1110 ///
1111 /// If ExcludeCtor is true, the duration when the object's constructor runs
1112 /// will not be considered. The caller will need to verify that the object is
1113 /// not written to during its construction.
1114 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1115   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1116     return false;
1117 
1118   if (Context.getLangOpts().CPlusPlus) {
1119     if (const CXXRecordDecl *Record
1120           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1121       return ExcludeCtor && !Record->hasMutableFields() &&
1122              Record->hasTrivialDestructor();
1123   }
1124 
1125   return true;
1126 }
1127 
1128 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1129 /// create and return an llvm GlobalVariable with the specified type.  If there
1130 /// is something in the module with the specified name, return it potentially
1131 /// bitcasted to the right type.
1132 ///
1133 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1134 /// to set the attributes on the global when it is first created.
1135 llvm::Constant *
1136 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1137                                      llvm::PointerType *Ty,
1138                                      const VarDecl *D,
1139                                      bool UnnamedAddr) {
1140   // Lookup the entry, lazily creating it if necessary.
1141   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1142   if (Entry) {
1143     if (WeakRefReferences.count(Entry)) {
1144       if (D && !D->hasAttr<WeakAttr>())
1145         Entry->setLinkage(llvm::Function::ExternalLinkage);
1146 
1147       WeakRefReferences.erase(Entry);
1148     }
1149 
1150     if (UnnamedAddr)
1151       Entry->setUnnamedAddr(true);
1152 
1153     if (Entry->getType() == Ty)
1154       return Entry;
1155 
1156     // Make sure the result is of the correct type.
1157     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1158   }
1159 
1160   // This is the first use or definition of a mangled name.  If there is a
1161   // deferred decl with this name, remember that we need to emit it at the end
1162   // of the file.
1163   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1164   if (DDI != DeferredDecls.end()) {
1165     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1166     // list, and remove it from DeferredDecls (since we don't need it anymore).
1167     DeferredDeclsToEmit.push_back(DDI->second);
1168     DeferredDecls.erase(DDI);
1169   }
1170 
1171   llvm::GlobalVariable *GV =
1172     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1173                              llvm::GlobalValue::ExternalLinkage,
1174                              0, MangledName, 0,
1175                              false, Ty->getAddressSpace());
1176 
1177   // Handle things which are present even on external declarations.
1178   if (D) {
1179     // FIXME: This code is overly simple and should be merged with other global
1180     // handling.
1181     GV->setConstant(isTypeConstant(D->getType(), false));
1182 
1183     // Set linkage and visibility in case we never see a definition.
1184     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1185     if (LV.linkage() != ExternalLinkage) {
1186       // Don't set internal linkage on declarations.
1187     } else {
1188       if (D->hasAttr<DLLImportAttr>())
1189         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1190       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1191         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1192 
1193       // Set visibility on a declaration only if it's explicit.
1194       if (LV.visibilityExplicit())
1195         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1196     }
1197 
1198     GV->setThreadLocal(D->isThreadSpecified());
1199   }
1200 
1201   return GV;
1202 }
1203 
1204 
1205 llvm::GlobalVariable *
1206 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1207                                       llvm::Type *Ty,
1208                                       llvm::GlobalValue::LinkageTypes Linkage) {
1209   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1210   llvm::GlobalVariable *OldGV = 0;
1211 
1212 
1213   if (GV) {
1214     // Check if the variable has the right type.
1215     if (GV->getType()->getElementType() == Ty)
1216       return GV;
1217 
1218     // Because C++ name mangling, the only way we can end up with an already
1219     // existing global with the same name is if it has been declared extern "C".
1220       assert(GV->isDeclaration() && "Declaration has wrong type!");
1221     OldGV = GV;
1222   }
1223 
1224   // Create a new variable.
1225   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1226                                 Linkage, 0, Name);
1227 
1228   if (OldGV) {
1229     // Replace occurrences of the old variable if needed.
1230     GV->takeName(OldGV);
1231 
1232     if (!OldGV->use_empty()) {
1233       llvm::Constant *NewPtrForOldDecl =
1234       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1235       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1236     }
1237 
1238     OldGV->eraseFromParent();
1239   }
1240 
1241   return GV;
1242 }
1243 
1244 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1245 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1246 /// then it will be created with the specified type instead of whatever the
1247 /// normal requested type would be.
1248 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1249                                                   llvm::Type *Ty) {
1250   assert(D->hasGlobalStorage() && "Not a global variable");
1251   QualType ASTTy = D->getType();
1252   if (Ty == 0)
1253     Ty = getTypes().ConvertTypeForMem(ASTTy);
1254 
1255   llvm::PointerType *PTy =
1256     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1257 
1258   StringRef MangledName = getMangledName(D);
1259   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1260 }
1261 
1262 /// CreateRuntimeVariable - Create a new runtime global variable with the
1263 /// specified type and name.
1264 llvm::Constant *
1265 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1266                                      StringRef Name) {
1267   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1268                                true);
1269 }
1270 
1271 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1272   assert(!D->getInit() && "Cannot emit definite definitions here!");
1273 
1274   if (MayDeferGeneration(D)) {
1275     // If we have not seen a reference to this variable yet, place it
1276     // into the deferred declarations table to be emitted if needed
1277     // later.
1278     StringRef MangledName = getMangledName(D);
1279     if (!GetGlobalValue(MangledName)) {
1280       DeferredDecls[MangledName] = D;
1281       return;
1282     }
1283   }
1284 
1285   // The tentative definition is the only definition.
1286   EmitGlobalVarDefinition(D);
1287 }
1288 
1289 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1290   if (DefinitionRequired)
1291     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1292 }
1293 
1294 llvm::GlobalVariable::LinkageTypes
1295 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1296   if (RD->getLinkage() != ExternalLinkage)
1297     return llvm::GlobalVariable::InternalLinkage;
1298 
1299   if (const CXXMethodDecl *KeyFunction
1300                                     = RD->getASTContext().getKeyFunction(RD)) {
1301     // If this class has a key function, use that to determine the linkage of
1302     // the vtable.
1303     const FunctionDecl *Def = 0;
1304     if (KeyFunction->hasBody(Def))
1305       KeyFunction = cast<CXXMethodDecl>(Def);
1306 
1307     switch (KeyFunction->getTemplateSpecializationKind()) {
1308       case TSK_Undeclared:
1309       case TSK_ExplicitSpecialization:
1310         // When compiling with optimizations turned on, we emit all vtables,
1311         // even if the key function is not defined in the current translation
1312         // unit. If this is the case, use available_externally linkage.
1313         if (!Def && CodeGenOpts.OptimizationLevel)
1314           return llvm::GlobalVariable::AvailableExternallyLinkage;
1315 
1316         if (KeyFunction->isInlined())
1317           return !Context.getLangOpts().AppleKext ?
1318                    llvm::GlobalVariable::LinkOnceODRLinkage :
1319                    llvm::Function::InternalLinkage;
1320 
1321         return llvm::GlobalVariable::ExternalLinkage;
1322 
1323       case TSK_ImplicitInstantiation:
1324         return !Context.getLangOpts().AppleKext ?
1325                  llvm::GlobalVariable::LinkOnceODRLinkage :
1326                  llvm::Function::InternalLinkage;
1327 
1328       case TSK_ExplicitInstantiationDefinition:
1329         return !Context.getLangOpts().AppleKext ?
1330                  llvm::GlobalVariable::WeakODRLinkage :
1331                  llvm::Function::InternalLinkage;
1332 
1333       case TSK_ExplicitInstantiationDeclaration:
1334         // FIXME: Use available_externally linkage. However, this currently
1335         // breaks LLVM's build due to undefined symbols.
1336         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1337         return !Context.getLangOpts().AppleKext ?
1338                  llvm::GlobalVariable::LinkOnceODRLinkage :
1339                  llvm::Function::InternalLinkage;
1340     }
1341   }
1342 
1343   if (Context.getLangOpts().AppleKext)
1344     return llvm::Function::InternalLinkage;
1345 
1346   switch (RD->getTemplateSpecializationKind()) {
1347   case TSK_Undeclared:
1348   case TSK_ExplicitSpecialization:
1349   case TSK_ImplicitInstantiation:
1350     // FIXME: Use available_externally linkage. However, this currently
1351     // breaks LLVM's build due to undefined symbols.
1352     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1353   case TSK_ExplicitInstantiationDeclaration:
1354     return llvm::GlobalVariable::LinkOnceODRLinkage;
1355 
1356   case TSK_ExplicitInstantiationDefinition:
1357       return llvm::GlobalVariable::WeakODRLinkage;
1358   }
1359 
1360   llvm_unreachable("Invalid TemplateSpecializationKind!");
1361 }
1362 
1363 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1364     return Context.toCharUnitsFromBits(
1365       TheTargetData.getTypeStoreSizeInBits(Ty));
1366 }
1367 
1368 llvm::Constant *
1369 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1370                                                        const Expr *rawInit) {
1371   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1372   if (const ExprWithCleanups *withCleanups =
1373           dyn_cast<ExprWithCleanups>(rawInit)) {
1374     cleanups = withCleanups->getObjects();
1375     rawInit = withCleanups->getSubExpr();
1376   }
1377 
1378   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1379   if (!init || !init->initializesStdInitializerList() ||
1380       init->getNumInits() == 0)
1381     return 0;
1382 
1383   ASTContext &ctx = getContext();
1384   unsigned numInits = init->getNumInits();
1385   // FIXME: This check is here because we would otherwise silently miscompile
1386   // nested global std::initializer_lists. Better would be to have a real
1387   // implementation.
1388   for (unsigned i = 0; i < numInits; ++i) {
1389     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1390     if (inner && inner->initializesStdInitializerList()) {
1391       ErrorUnsupported(inner, "nested global std::initializer_list");
1392       return 0;
1393     }
1394   }
1395 
1396   // Synthesize a fake VarDecl for the array and initialize that.
1397   QualType elementType = init->getInit(0)->getType();
1398   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1399   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1400                                                 ArrayType::Normal, 0);
1401 
1402   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1403   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1404                                               arrayType, D->getLocation());
1405   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1406                                                           D->getDeclContext()),
1407                                           D->getLocStart(), D->getLocation(),
1408                                           name, arrayType, sourceInfo,
1409                                           SC_Static, SC_Static);
1410 
1411   // Now clone the InitListExpr to initialize the array instead.
1412   // Incredible hack: we want to use the existing InitListExpr here, so we need
1413   // to tell it that it no longer initializes a std::initializer_list.
1414   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(),
1415                                     const_cast<InitListExpr*>(init)->getInits(),
1416                                                    init->getNumInits(),
1417                                                    init->getRBraceLoc());
1418   arrayInit->setType(arrayType);
1419 
1420   if (!cleanups.empty())
1421     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1422 
1423   backingArray->setInit(arrayInit);
1424 
1425   // Emit the definition of the array.
1426   EmitGlobalVarDefinition(backingArray);
1427 
1428   // Inspect the initializer list to validate it and determine its type.
1429   // FIXME: doing this every time is probably inefficient; caching would be nice
1430   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1431   RecordDecl::field_iterator field = record->field_begin();
1432   if (field == record->field_end()) {
1433     ErrorUnsupported(D, "weird std::initializer_list");
1434     return 0;
1435   }
1436   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1437   // Start pointer.
1438   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1439     ErrorUnsupported(D, "weird std::initializer_list");
1440     return 0;
1441   }
1442   ++field;
1443   if (field == record->field_end()) {
1444     ErrorUnsupported(D, "weird std::initializer_list");
1445     return 0;
1446   }
1447   bool isStartEnd = false;
1448   if (ctx.hasSameType(field->getType(), elementPtr)) {
1449     // End pointer.
1450     isStartEnd = true;
1451   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1452     ErrorUnsupported(D, "weird std::initializer_list");
1453     return 0;
1454   }
1455 
1456   // Now build an APValue representing the std::initializer_list.
1457   APValue initListValue(APValue::UninitStruct(), 0, 2);
1458   APValue &startField = initListValue.getStructField(0);
1459   APValue::LValuePathEntry startOffsetPathEntry;
1460   startOffsetPathEntry.ArrayIndex = 0;
1461   startField = APValue(APValue::LValueBase(backingArray),
1462                        CharUnits::fromQuantity(0),
1463                        llvm::makeArrayRef(startOffsetPathEntry),
1464                        /*IsOnePastTheEnd=*/false, 0);
1465 
1466   if (isStartEnd) {
1467     APValue &endField = initListValue.getStructField(1);
1468     APValue::LValuePathEntry endOffsetPathEntry;
1469     endOffsetPathEntry.ArrayIndex = numInits;
1470     endField = APValue(APValue::LValueBase(backingArray),
1471                        ctx.getTypeSizeInChars(elementType) * numInits,
1472                        llvm::makeArrayRef(endOffsetPathEntry),
1473                        /*IsOnePastTheEnd=*/true, 0);
1474   } else {
1475     APValue &sizeField = initListValue.getStructField(1);
1476     sizeField = APValue(llvm::APSInt(numElements));
1477   }
1478 
1479   // Emit the constant for the initializer_list.
1480   llvm::Constant *llvmInit =
1481       EmitConstantValueForMemory(initListValue, D->getType());
1482   assert(llvmInit && "failed to initialize as constant");
1483   return llvmInit;
1484 }
1485 
1486 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1487   llvm::Constant *Init = 0;
1488   QualType ASTTy = D->getType();
1489   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1490   bool NeedsGlobalCtor = false;
1491   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1492 
1493   const VarDecl *InitDecl;
1494   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1495 
1496   if (!InitExpr) {
1497     // This is a tentative definition; tentative definitions are
1498     // implicitly initialized with { 0 }.
1499     //
1500     // Note that tentative definitions are only emitted at the end of
1501     // a translation unit, so they should never have incomplete
1502     // type. In addition, EmitTentativeDefinition makes sure that we
1503     // never attempt to emit a tentative definition if a real one
1504     // exists. A use may still exists, however, so we still may need
1505     // to do a RAUW.
1506     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1507     Init = EmitNullConstant(D->getType());
1508   } else {
1509     // If this is a std::initializer_list, emit the special initializer.
1510     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1511     // An empty init list will perform zero-initialization, which happens
1512     // to be exactly what we want.
1513     // FIXME: It does so in a global constructor, which is *not* what we
1514     // want.
1515 
1516     if (!Init)
1517       Init = EmitConstantInit(*InitDecl);
1518     if (!Init) {
1519       QualType T = InitExpr->getType();
1520       if (D->getType()->isReferenceType())
1521         T = D->getType();
1522 
1523       if (getLangOpts().CPlusPlus) {
1524         Init = EmitNullConstant(T);
1525         NeedsGlobalCtor = true;
1526       } else {
1527         ErrorUnsupported(D, "static initializer");
1528         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1529       }
1530     } else {
1531       // We don't need an initializer, so remove the entry for the delayed
1532       // initializer position (just in case this entry was delayed) if we
1533       // also don't need to register a destructor.
1534       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1535         DelayedCXXInitPosition.erase(D);
1536     }
1537   }
1538 
1539   llvm::Type* InitType = Init->getType();
1540   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1541 
1542   // Strip off a bitcast if we got one back.
1543   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1544     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1545            // all zero index gep.
1546            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1547     Entry = CE->getOperand(0);
1548   }
1549 
1550   // Entry is now either a Function or GlobalVariable.
1551   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1552 
1553   // We have a definition after a declaration with the wrong type.
1554   // We must make a new GlobalVariable* and update everything that used OldGV
1555   // (a declaration or tentative definition) with the new GlobalVariable*
1556   // (which will be a definition).
1557   //
1558   // This happens if there is a prototype for a global (e.g.
1559   // "extern int x[];") and then a definition of a different type (e.g.
1560   // "int x[10];"). This also happens when an initializer has a different type
1561   // from the type of the global (this happens with unions).
1562   if (GV == 0 ||
1563       GV->getType()->getElementType() != InitType ||
1564       GV->getType()->getAddressSpace() !=
1565         getContext().getTargetAddressSpace(ASTTy)) {
1566 
1567     // Move the old entry aside so that we'll create a new one.
1568     Entry->setName(StringRef());
1569 
1570     // Make a new global with the correct type, this is now guaranteed to work.
1571     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1572 
1573     // Replace all uses of the old global with the new global
1574     llvm::Constant *NewPtrForOldDecl =
1575         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1576     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1577 
1578     // Erase the old global, since it is no longer used.
1579     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1580   }
1581 
1582   if (D->hasAttr<AnnotateAttr>())
1583     AddGlobalAnnotations(D, GV);
1584 
1585   GV->setInitializer(Init);
1586 
1587   // If it is safe to mark the global 'constant', do so now.
1588   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1589                   isTypeConstant(D->getType(), true));
1590 
1591   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1592 
1593   // Set the llvm linkage type as appropriate.
1594   llvm::GlobalValue::LinkageTypes Linkage =
1595     GetLLVMLinkageVarDefinition(D, GV);
1596   GV->setLinkage(Linkage);
1597   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1598     // common vars aren't constant even if declared const.
1599     GV->setConstant(false);
1600 
1601   SetCommonAttributes(D, GV);
1602 
1603   // Emit the initializer function if necessary.
1604   if (NeedsGlobalCtor || NeedsGlobalDtor)
1605     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1606 
1607   // Emit global variable debug information.
1608   if (CGDebugInfo *DI = getModuleDebugInfo())
1609     DI->EmitGlobalVariable(GV, D);
1610 }
1611 
1612 llvm::GlobalValue::LinkageTypes
1613 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1614                                            llvm::GlobalVariable *GV) {
1615   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1616   if (Linkage == GVA_Internal)
1617     return llvm::Function::InternalLinkage;
1618   else if (D->hasAttr<DLLImportAttr>())
1619     return llvm::Function::DLLImportLinkage;
1620   else if (D->hasAttr<DLLExportAttr>())
1621     return llvm::Function::DLLExportLinkage;
1622   else if (D->hasAttr<WeakAttr>()) {
1623     if (GV->isConstant())
1624       return llvm::GlobalVariable::WeakODRLinkage;
1625     else
1626       return llvm::GlobalVariable::WeakAnyLinkage;
1627   } else if (Linkage == GVA_TemplateInstantiation ||
1628              Linkage == GVA_ExplicitTemplateInstantiation)
1629     return llvm::GlobalVariable::WeakODRLinkage;
1630   else if (!getLangOpts().CPlusPlus &&
1631            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1632              D->getAttr<CommonAttr>()) &&
1633            !D->hasExternalStorage() && !D->getInit() &&
1634            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1635            !D->getAttr<WeakImportAttr>()) {
1636     // Thread local vars aren't considered common linkage.
1637     return llvm::GlobalVariable::CommonLinkage;
1638   }
1639   return llvm::GlobalVariable::ExternalLinkage;
1640 }
1641 
1642 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1643 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1644 /// existing call uses of the old function in the module, this adjusts them to
1645 /// call the new function directly.
1646 ///
1647 /// This is not just a cleanup: the always_inline pass requires direct calls to
1648 /// functions to be able to inline them.  If there is a bitcast in the way, it
1649 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1650 /// run at -O0.
1651 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1652                                                       llvm::Function *NewFn) {
1653   // If we're redefining a global as a function, don't transform it.
1654   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1655   if (OldFn == 0) return;
1656 
1657   llvm::Type *NewRetTy = NewFn->getReturnType();
1658   SmallVector<llvm::Value*, 4> ArgList;
1659 
1660   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1661        UI != E; ) {
1662     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1663     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1664     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1665     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1666     llvm::CallSite CS(CI);
1667     if (!CI || !CS.isCallee(I)) continue;
1668 
1669     // If the return types don't match exactly, and if the call isn't dead, then
1670     // we can't transform this call.
1671     if (CI->getType() != NewRetTy && !CI->use_empty())
1672       continue;
1673 
1674     // Get the attribute list.
1675     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1676     llvm::AttrListPtr AttrList = CI->getAttributes();
1677 
1678     // Get any return attributes.
1679     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1680 
1681     // Add the return attributes.
1682     if (RAttrs)
1683       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1684 
1685     // If the function was passed too few arguments, don't transform.  If extra
1686     // arguments were passed, we silently drop them.  If any of the types
1687     // mismatch, we don't transform.
1688     unsigned ArgNo = 0;
1689     bool DontTransform = false;
1690     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1691          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1692       if (CS.arg_size() == ArgNo ||
1693           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1694         DontTransform = true;
1695         break;
1696       }
1697 
1698       // Add any parameter attributes.
1699       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1700         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1701     }
1702     if (DontTransform)
1703       continue;
1704 
1705     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1706       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1707 
1708     // Okay, we can transform this.  Create the new call instruction and copy
1709     // over the required information.
1710     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1711     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1712     ArgList.clear();
1713     if (!NewCall->getType()->isVoidTy())
1714       NewCall->takeName(CI);
1715     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1716                                                   AttrVec.end()));
1717     NewCall->setCallingConv(CI->getCallingConv());
1718 
1719     // Finally, remove the old call, replacing any uses with the new one.
1720     if (!CI->use_empty())
1721       CI->replaceAllUsesWith(NewCall);
1722 
1723     // Copy debug location attached to CI.
1724     if (!CI->getDebugLoc().isUnknown())
1725       NewCall->setDebugLoc(CI->getDebugLoc());
1726     CI->eraseFromParent();
1727   }
1728 }
1729 
1730 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1731   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1732   // If we have a definition, this might be a deferred decl. If the
1733   // instantiation is explicit, make sure we emit it at the end.
1734   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1735     GetAddrOfGlobalVar(VD);
1736 }
1737 
1738 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1739   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1740 
1741   // Compute the function info and LLVM type.
1742   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1743   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1744 
1745   // Get or create the prototype for the function.
1746   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1747 
1748   // Strip off a bitcast if we got one back.
1749   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1750     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1751     Entry = CE->getOperand(0);
1752   }
1753 
1754 
1755   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1756     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1757 
1758     // If the types mismatch then we have to rewrite the definition.
1759     assert(OldFn->isDeclaration() &&
1760            "Shouldn't replace non-declaration");
1761 
1762     // F is the Function* for the one with the wrong type, we must make a new
1763     // Function* and update everything that used F (a declaration) with the new
1764     // Function* (which will be a definition).
1765     //
1766     // This happens if there is a prototype for a function
1767     // (e.g. "int f()") and then a definition of a different type
1768     // (e.g. "int f(int x)").  Move the old function aside so that it
1769     // doesn't interfere with GetAddrOfFunction.
1770     OldFn->setName(StringRef());
1771     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1772 
1773     // If this is an implementation of a function without a prototype, try to
1774     // replace any existing uses of the function (which may be calls) with uses
1775     // of the new function
1776     if (D->getType()->isFunctionNoProtoType()) {
1777       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1778       OldFn->removeDeadConstantUsers();
1779     }
1780 
1781     // Replace uses of F with the Function we will endow with a body.
1782     if (!Entry->use_empty()) {
1783       llvm::Constant *NewPtrForOldDecl =
1784         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1785       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1786     }
1787 
1788     // Ok, delete the old function now, which is dead.
1789     OldFn->eraseFromParent();
1790 
1791     Entry = NewFn;
1792   }
1793 
1794   // We need to set linkage and visibility on the function before
1795   // generating code for it because various parts of IR generation
1796   // want to propagate this information down (e.g. to local static
1797   // declarations).
1798   llvm::Function *Fn = cast<llvm::Function>(Entry);
1799   setFunctionLinkage(D, Fn);
1800 
1801   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1802   setGlobalVisibility(Fn, D);
1803 
1804   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1805 
1806   SetFunctionDefinitionAttributes(D, Fn);
1807   SetLLVMFunctionAttributesForDefinition(D, Fn);
1808 
1809   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1810     AddGlobalCtor(Fn, CA->getPriority());
1811   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1812     AddGlobalDtor(Fn, DA->getPriority());
1813   if (D->hasAttr<AnnotateAttr>())
1814     AddGlobalAnnotations(D, Fn);
1815 }
1816 
1817 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1818   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1819   const AliasAttr *AA = D->getAttr<AliasAttr>();
1820   assert(AA && "Not an alias?");
1821 
1822   StringRef MangledName = getMangledName(GD);
1823 
1824   // If there is a definition in the module, then it wins over the alias.
1825   // This is dubious, but allow it to be safe.  Just ignore the alias.
1826   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1827   if (Entry && !Entry->isDeclaration())
1828     return;
1829 
1830   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1831 
1832   // Create a reference to the named value.  This ensures that it is emitted
1833   // if a deferred decl.
1834   llvm::Constant *Aliasee;
1835   if (isa<llvm::FunctionType>(DeclTy))
1836     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1837                                       /*ForVTable=*/false);
1838   else
1839     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1840                                     llvm::PointerType::getUnqual(DeclTy), 0);
1841 
1842   // Create the new alias itself, but don't set a name yet.
1843   llvm::GlobalValue *GA =
1844     new llvm::GlobalAlias(Aliasee->getType(),
1845                           llvm::Function::ExternalLinkage,
1846                           "", Aliasee, &getModule());
1847 
1848   if (Entry) {
1849     assert(Entry->isDeclaration());
1850 
1851     // If there is a declaration in the module, then we had an extern followed
1852     // by the alias, as in:
1853     //   extern int test6();
1854     //   ...
1855     //   int test6() __attribute__((alias("test7")));
1856     //
1857     // Remove it and replace uses of it with the alias.
1858     GA->takeName(Entry);
1859 
1860     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1861                                                           Entry->getType()));
1862     Entry->eraseFromParent();
1863   } else {
1864     GA->setName(MangledName);
1865   }
1866 
1867   // Set attributes which are particular to an alias; this is a
1868   // specialization of the attributes which may be set on a global
1869   // variable/function.
1870   if (D->hasAttr<DLLExportAttr>()) {
1871     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1872       // The dllexport attribute is ignored for undefined symbols.
1873       if (FD->hasBody())
1874         GA->setLinkage(llvm::Function::DLLExportLinkage);
1875     } else {
1876       GA->setLinkage(llvm::Function::DLLExportLinkage);
1877     }
1878   } else if (D->hasAttr<WeakAttr>() ||
1879              D->hasAttr<WeakRefAttr>() ||
1880              D->isWeakImported()) {
1881     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1882   }
1883 
1884   SetCommonAttributes(D, GA);
1885 }
1886 
1887 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1888                                             ArrayRef<llvm::Type*> Tys) {
1889   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1890                                          Tys);
1891 }
1892 
1893 static llvm::StringMapEntry<llvm::Constant*> &
1894 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1895                          const StringLiteral *Literal,
1896                          bool TargetIsLSB,
1897                          bool &IsUTF16,
1898                          unsigned &StringLength) {
1899   StringRef String = Literal->getString();
1900   unsigned NumBytes = String.size();
1901 
1902   // Check for simple case.
1903   if (!Literal->containsNonAsciiOrNull()) {
1904     StringLength = NumBytes;
1905     return Map.GetOrCreateValue(String);
1906   }
1907 
1908   // Otherwise, convert the UTF8 literals into a string of shorts.
1909   IsUTF16 = true;
1910 
1911   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
1912   const UTF8 *FromPtr = (UTF8 *)String.data();
1913   UTF16 *ToPtr = &ToBuf[0];
1914 
1915   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1916                            &ToPtr, ToPtr + NumBytes,
1917                            strictConversion);
1918 
1919   // ConvertUTF8toUTF16 returns the length in ToPtr.
1920   StringLength = ToPtr - &ToBuf[0];
1921 
1922   // Add an explicit null.
1923   *ToPtr = 0;
1924   return Map.
1925     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
1926                                (StringLength + 1) * 2));
1927 }
1928 
1929 static llvm::StringMapEntry<llvm::Constant*> &
1930 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1931                        const StringLiteral *Literal,
1932                        unsigned &StringLength) {
1933   StringRef String = Literal->getString();
1934   StringLength = String.size();
1935   return Map.GetOrCreateValue(String);
1936 }
1937 
1938 llvm::Constant *
1939 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1940   unsigned StringLength = 0;
1941   bool isUTF16 = false;
1942   llvm::StringMapEntry<llvm::Constant*> &Entry =
1943     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1944                              getTargetData().isLittleEndian(),
1945                              isUTF16, StringLength);
1946 
1947   if (llvm::Constant *C = Entry.getValue())
1948     return C;
1949 
1950   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1951   llvm::Constant *Zeros[] = { Zero, Zero };
1952 
1953   // If we don't already have it, get __CFConstantStringClassReference.
1954   if (!CFConstantStringClassRef) {
1955     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1956     Ty = llvm::ArrayType::get(Ty, 0);
1957     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1958                                            "__CFConstantStringClassReference");
1959     // Decay array -> ptr
1960     CFConstantStringClassRef =
1961       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1962   }
1963 
1964   QualType CFTy = getContext().getCFConstantStringType();
1965 
1966   llvm::StructType *STy =
1967     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1968 
1969   llvm::Constant *Fields[4];
1970 
1971   // Class pointer.
1972   Fields[0] = CFConstantStringClassRef;
1973 
1974   // Flags.
1975   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1976   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1977     llvm::ConstantInt::get(Ty, 0x07C8);
1978 
1979   // String pointer.
1980   llvm::Constant *C = 0;
1981   if (isUTF16) {
1982     ArrayRef<uint16_t> Arr =
1983       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
1984                                    Entry.getKey().size() / 2);
1985     C = llvm::ConstantDataArray::get(VMContext, Arr);
1986   } else {
1987     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
1988   }
1989 
1990   llvm::GlobalValue::LinkageTypes Linkage;
1991   if (isUTF16)
1992     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1993     Linkage = llvm::GlobalValue::InternalLinkage;
1994   else
1995     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1996     // when using private linkage. It is not clear if this is a bug in ld
1997     // or a reasonable new restriction.
1998     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1999 
2000   // Note: -fwritable-strings doesn't make the backing store strings of
2001   // CFStrings writable. (See <rdar://problem/10657500>)
2002   llvm::GlobalVariable *GV =
2003     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2004                              Linkage, C, ".str");
2005   GV->setUnnamedAddr(true);
2006   if (isUTF16) {
2007     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2008     GV->setAlignment(Align.getQuantity());
2009   } else {
2010     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2011     GV->setAlignment(Align.getQuantity());
2012   }
2013 
2014   // String.
2015   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2016 
2017   if (isUTF16)
2018     // Cast the UTF16 string to the correct type.
2019     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2020 
2021   // String length.
2022   Ty = getTypes().ConvertType(getContext().LongTy);
2023   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2024 
2025   // The struct.
2026   C = llvm::ConstantStruct::get(STy, Fields);
2027   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2028                                 llvm::GlobalVariable::PrivateLinkage, C,
2029                                 "_unnamed_cfstring_");
2030   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2031     GV->setSection(Sect);
2032   Entry.setValue(GV);
2033 
2034   return GV;
2035 }
2036 
2037 static RecordDecl *
2038 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2039                  DeclContext *DC, IdentifierInfo *Id) {
2040   SourceLocation Loc;
2041   if (Ctx.getLangOpts().CPlusPlus)
2042     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2043   else
2044     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2045 }
2046 
2047 llvm::Constant *
2048 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2049   unsigned StringLength = 0;
2050   llvm::StringMapEntry<llvm::Constant*> &Entry =
2051     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2052 
2053   if (llvm::Constant *C = Entry.getValue())
2054     return C;
2055 
2056   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2057   llvm::Constant *Zeros[] = { Zero, Zero };
2058 
2059   // If we don't already have it, get _NSConstantStringClassReference.
2060   if (!ConstantStringClassRef) {
2061     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2062     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2063     llvm::Constant *GV;
2064     if (LangOpts.ObjCNonFragileABI) {
2065       std::string str =
2066         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2067                             : "OBJC_CLASS_$_" + StringClass;
2068       GV = getObjCRuntime().GetClassGlobal(str);
2069       // Make sure the result is of the correct type.
2070       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2071       ConstantStringClassRef =
2072         llvm::ConstantExpr::getBitCast(GV, PTy);
2073     } else {
2074       std::string str =
2075         StringClass.empty() ? "_NSConstantStringClassReference"
2076                             : "_" + StringClass + "ClassReference";
2077       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2078       GV = CreateRuntimeVariable(PTy, str);
2079       // Decay array -> ptr
2080       ConstantStringClassRef =
2081         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2082     }
2083   }
2084 
2085   if (!NSConstantStringType) {
2086     // Construct the type for a constant NSString.
2087     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2088                                      Context.getTranslationUnitDecl(),
2089                                    &Context.Idents.get("__builtin_NSString"));
2090     D->startDefinition();
2091 
2092     QualType FieldTypes[3];
2093 
2094     // const int *isa;
2095     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2096     // const char *str;
2097     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2098     // unsigned int length;
2099     FieldTypes[2] = Context.UnsignedIntTy;
2100 
2101     // Create fields
2102     for (unsigned i = 0; i < 3; ++i) {
2103       FieldDecl *Field = FieldDecl::Create(Context, D,
2104                                            SourceLocation(),
2105                                            SourceLocation(), 0,
2106                                            FieldTypes[i], /*TInfo=*/0,
2107                                            /*BitWidth=*/0,
2108                                            /*Mutable=*/false,
2109                                            /*HasInit=*/false);
2110       Field->setAccess(AS_public);
2111       D->addDecl(Field);
2112     }
2113 
2114     D->completeDefinition();
2115     QualType NSTy = Context.getTagDeclType(D);
2116     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2117   }
2118 
2119   llvm::Constant *Fields[3];
2120 
2121   // Class pointer.
2122   Fields[0] = ConstantStringClassRef;
2123 
2124   // String pointer.
2125   llvm::Constant *C =
2126     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2127 
2128   llvm::GlobalValue::LinkageTypes Linkage;
2129   bool isConstant;
2130   Linkage = llvm::GlobalValue::PrivateLinkage;
2131   isConstant = !LangOpts.WritableStrings;
2132 
2133   llvm::GlobalVariable *GV =
2134   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2135                            ".str");
2136   GV->setUnnamedAddr(true);
2137   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2138   GV->setAlignment(Align.getQuantity());
2139   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2140 
2141   // String length.
2142   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2143   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2144 
2145   // The struct.
2146   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2147   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2148                                 llvm::GlobalVariable::PrivateLinkage, C,
2149                                 "_unnamed_nsstring_");
2150   // FIXME. Fix section.
2151   if (const char *Sect =
2152         LangOpts.ObjCNonFragileABI
2153           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2154           : getContext().getTargetInfo().getNSStringSection())
2155     GV->setSection(Sect);
2156   Entry.setValue(GV);
2157 
2158   return GV;
2159 }
2160 
2161 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2162   if (ObjCFastEnumerationStateType.isNull()) {
2163     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2164                                      Context.getTranslationUnitDecl(),
2165                       &Context.Idents.get("__objcFastEnumerationState"));
2166     D->startDefinition();
2167 
2168     QualType FieldTypes[] = {
2169       Context.UnsignedLongTy,
2170       Context.getPointerType(Context.getObjCIdType()),
2171       Context.getPointerType(Context.UnsignedLongTy),
2172       Context.getConstantArrayType(Context.UnsignedLongTy,
2173                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2174     };
2175 
2176     for (size_t i = 0; i < 4; ++i) {
2177       FieldDecl *Field = FieldDecl::Create(Context,
2178                                            D,
2179                                            SourceLocation(),
2180                                            SourceLocation(), 0,
2181                                            FieldTypes[i], /*TInfo=*/0,
2182                                            /*BitWidth=*/0,
2183                                            /*Mutable=*/false,
2184                                            /*HasInit=*/false);
2185       Field->setAccess(AS_public);
2186       D->addDecl(Field);
2187     }
2188 
2189     D->completeDefinition();
2190     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2191   }
2192 
2193   return ObjCFastEnumerationStateType;
2194 }
2195 
2196 llvm::Constant *
2197 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2198   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2199 
2200   // Don't emit it as the address of the string, emit the string data itself
2201   // as an inline array.
2202   if (E->getCharByteWidth() == 1) {
2203     SmallString<64> Str(E->getString());
2204 
2205     // Resize the string to the right size, which is indicated by its type.
2206     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2207     Str.resize(CAT->getSize().getZExtValue());
2208     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2209   }
2210 
2211   llvm::ArrayType *AType =
2212     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2213   llvm::Type *ElemTy = AType->getElementType();
2214   unsigned NumElements = AType->getNumElements();
2215 
2216   // Wide strings have either 2-byte or 4-byte elements.
2217   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2218     SmallVector<uint16_t, 32> Elements;
2219     Elements.reserve(NumElements);
2220 
2221     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2222       Elements.push_back(E->getCodeUnit(i));
2223     Elements.resize(NumElements);
2224     return llvm::ConstantDataArray::get(VMContext, Elements);
2225   }
2226 
2227   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2228   SmallVector<uint32_t, 32> Elements;
2229   Elements.reserve(NumElements);
2230 
2231   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2232     Elements.push_back(E->getCodeUnit(i));
2233   Elements.resize(NumElements);
2234   return llvm::ConstantDataArray::get(VMContext, Elements);
2235 }
2236 
2237 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2238 /// constant array for the given string literal.
2239 llvm::Constant *
2240 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2241   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2242   if (S->isAscii() || S->isUTF8()) {
2243     SmallString<64> Str(S->getString());
2244 
2245     // Resize the string to the right size, which is indicated by its type.
2246     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2247     Str.resize(CAT->getSize().getZExtValue());
2248     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2249   }
2250 
2251   // FIXME: the following does not memoize wide strings.
2252   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2253   llvm::GlobalVariable *GV =
2254     new llvm::GlobalVariable(getModule(),C->getType(),
2255                              !LangOpts.WritableStrings,
2256                              llvm::GlobalValue::PrivateLinkage,
2257                              C,".str");
2258 
2259   GV->setAlignment(Align.getQuantity());
2260   GV->setUnnamedAddr(true);
2261   return GV;
2262 }
2263 
2264 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2265 /// array for the given ObjCEncodeExpr node.
2266 llvm::Constant *
2267 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2268   std::string Str;
2269   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2270 
2271   return GetAddrOfConstantCString(Str);
2272 }
2273 
2274 
2275 /// GenerateWritableString -- Creates storage for a string literal.
2276 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2277                                              bool constant,
2278                                              CodeGenModule &CGM,
2279                                              const char *GlobalName,
2280                                              unsigned Alignment) {
2281   // Create Constant for this string literal. Don't add a '\0'.
2282   llvm::Constant *C =
2283       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2284 
2285   // Create a global variable for this string
2286   llvm::GlobalVariable *GV =
2287     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2288                              llvm::GlobalValue::PrivateLinkage,
2289                              C, GlobalName);
2290   GV->setAlignment(Alignment);
2291   GV->setUnnamedAddr(true);
2292   return GV;
2293 }
2294 
2295 /// GetAddrOfConstantString - Returns a pointer to a character array
2296 /// containing the literal. This contents are exactly that of the
2297 /// given string, i.e. it will not be null terminated automatically;
2298 /// see GetAddrOfConstantCString. Note that whether the result is
2299 /// actually a pointer to an LLVM constant depends on
2300 /// Feature.WriteableStrings.
2301 ///
2302 /// The result has pointer to array type.
2303 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2304                                                        const char *GlobalName,
2305                                                        unsigned Alignment) {
2306   // Get the default prefix if a name wasn't specified.
2307   if (!GlobalName)
2308     GlobalName = ".str";
2309 
2310   // Don't share any string literals if strings aren't constant.
2311   if (LangOpts.WritableStrings)
2312     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2313 
2314   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2315     ConstantStringMap.GetOrCreateValue(Str);
2316 
2317   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2318     if (Alignment > GV->getAlignment()) {
2319       GV->setAlignment(Alignment);
2320     }
2321     return GV;
2322   }
2323 
2324   // Create a global variable for this.
2325   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2326                                                    Alignment);
2327   Entry.setValue(GV);
2328   return GV;
2329 }
2330 
2331 /// GetAddrOfConstantCString - Returns a pointer to a character
2332 /// array containing the literal and a terminating '\0'
2333 /// character. The result has pointer to array type.
2334 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2335                                                         const char *GlobalName,
2336                                                         unsigned Alignment) {
2337   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2338   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2339 }
2340 
2341 /// EmitObjCPropertyImplementations - Emit information for synthesized
2342 /// properties for an implementation.
2343 void CodeGenModule::EmitObjCPropertyImplementations(const
2344                                                     ObjCImplementationDecl *D) {
2345   for (ObjCImplementationDecl::propimpl_iterator
2346          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2347     ObjCPropertyImplDecl *PID = &*i;
2348 
2349     // Dynamic is just for type-checking.
2350     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2351       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2352 
2353       // Determine which methods need to be implemented, some may have
2354       // been overridden. Note that ::isSynthesized is not the method
2355       // we want, that just indicates if the decl came from a
2356       // property. What we want to know is if the method is defined in
2357       // this implementation.
2358       if (!D->getInstanceMethod(PD->getGetterName()))
2359         CodeGenFunction(*this).GenerateObjCGetter(
2360                                  const_cast<ObjCImplementationDecl *>(D), PID);
2361       if (!PD->isReadOnly() &&
2362           !D->getInstanceMethod(PD->getSetterName()))
2363         CodeGenFunction(*this).GenerateObjCSetter(
2364                                  const_cast<ObjCImplementationDecl *>(D), PID);
2365     }
2366   }
2367 }
2368 
2369 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2370   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2371   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2372        ivar; ivar = ivar->getNextIvar())
2373     if (ivar->getType().isDestructedType())
2374       return true;
2375 
2376   return false;
2377 }
2378 
2379 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2380 /// for an implementation.
2381 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2382   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2383   if (needsDestructMethod(D)) {
2384     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2385     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2386     ObjCMethodDecl *DTORMethod =
2387       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2388                              cxxSelector, getContext().VoidTy, 0, D,
2389                              /*isInstance=*/true, /*isVariadic=*/false,
2390                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2391                              /*isDefined=*/false, ObjCMethodDecl::Required);
2392     D->addInstanceMethod(DTORMethod);
2393     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2394     D->setHasCXXStructors(true);
2395   }
2396 
2397   // If the implementation doesn't have any ivar initializers, we don't need
2398   // a .cxx_construct.
2399   if (D->getNumIvarInitializers() == 0)
2400     return;
2401 
2402   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2403   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2404   // The constructor returns 'self'.
2405   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2406                                                 D->getLocation(),
2407                                                 D->getLocation(),
2408                                                 cxxSelector,
2409                                                 getContext().getObjCIdType(), 0,
2410                                                 D, /*isInstance=*/true,
2411                                                 /*isVariadic=*/false,
2412                                                 /*isSynthesized=*/true,
2413                                                 /*isImplicitlyDeclared=*/true,
2414                                                 /*isDefined=*/false,
2415                                                 ObjCMethodDecl::Required);
2416   D->addInstanceMethod(CTORMethod);
2417   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2418   D->setHasCXXStructors(true);
2419 }
2420 
2421 /// EmitNamespace - Emit all declarations in a namespace.
2422 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2423   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2424        I != E; ++I)
2425     EmitTopLevelDecl(*I);
2426 }
2427 
2428 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2429 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2430   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2431       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2432     ErrorUnsupported(LSD, "linkage spec");
2433     return;
2434   }
2435 
2436   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2437        I != E; ++I)
2438     EmitTopLevelDecl(*I);
2439 }
2440 
2441 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2442 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2443   // If an error has occurred, stop code generation, but continue
2444   // parsing and semantic analysis (to ensure all warnings and errors
2445   // are emitted).
2446   if (Diags.hasErrorOccurred())
2447     return;
2448 
2449   // Ignore dependent declarations.
2450   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2451     return;
2452 
2453   switch (D->getKind()) {
2454   case Decl::CXXConversion:
2455   case Decl::CXXMethod:
2456   case Decl::Function:
2457     // Skip function templates
2458     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2459         cast<FunctionDecl>(D)->isLateTemplateParsed())
2460       return;
2461 
2462     EmitGlobal(cast<FunctionDecl>(D));
2463     break;
2464 
2465   case Decl::Var:
2466     EmitGlobal(cast<VarDecl>(D));
2467     break;
2468 
2469   // Indirect fields from global anonymous structs and unions can be
2470   // ignored; only the actual variable requires IR gen support.
2471   case Decl::IndirectField:
2472     break;
2473 
2474   // C++ Decls
2475   case Decl::Namespace:
2476     EmitNamespace(cast<NamespaceDecl>(D));
2477     break;
2478     // No code generation needed.
2479   case Decl::UsingShadow:
2480   case Decl::Using:
2481   case Decl::UsingDirective:
2482   case Decl::ClassTemplate:
2483   case Decl::FunctionTemplate:
2484   case Decl::TypeAliasTemplate:
2485   case Decl::NamespaceAlias:
2486   case Decl::Block:
2487   case Decl::Import:
2488     break;
2489   case Decl::CXXConstructor:
2490     // Skip function templates
2491     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2492         cast<FunctionDecl>(D)->isLateTemplateParsed())
2493       return;
2494 
2495     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2496     break;
2497   case Decl::CXXDestructor:
2498     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2499       return;
2500     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2501     break;
2502 
2503   case Decl::StaticAssert:
2504     // Nothing to do.
2505     break;
2506 
2507   // Objective-C Decls
2508 
2509   // Forward declarations, no (immediate) code generation.
2510   case Decl::ObjCInterface:
2511     break;
2512 
2513   case Decl::ObjCCategory: {
2514     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2515     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2516       Context.ResetObjCLayout(CD->getClassInterface());
2517     break;
2518   }
2519 
2520   case Decl::ObjCProtocol: {
2521     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2522     if (Proto->isThisDeclarationADefinition())
2523       ObjCRuntime->GenerateProtocol(Proto);
2524     break;
2525   }
2526 
2527   case Decl::ObjCCategoryImpl:
2528     // Categories have properties but don't support synthesize so we
2529     // can ignore them here.
2530     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2531     break;
2532 
2533   case Decl::ObjCImplementation: {
2534     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2535     if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2536       Context.ResetObjCLayout(OMD->getClassInterface());
2537     EmitObjCPropertyImplementations(OMD);
2538     EmitObjCIvarInitializations(OMD);
2539     ObjCRuntime->GenerateClass(OMD);
2540     // Emit global variable debug information.
2541     if (CGDebugInfo *DI = getModuleDebugInfo())
2542       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2543 				   OMD->getLocation());
2544 
2545     break;
2546   }
2547   case Decl::ObjCMethod: {
2548     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2549     // If this is not a prototype, emit the body.
2550     if (OMD->getBody())
2551       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2552     break;
2553   }
2554   case Decl::ObjCCompatibleAlias:
2555     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2556     break;
2557 
2558   case Decl::LinkageSpec:
2559     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2560     break;
2561 
2562   case Decl::FileScopeAsm: {
2563     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2564     StringRef AsmString = AD->getAsmString()->getString();
2565 
2566     const std::string &S = getModule().getModuleInlineAsm();
2567     if (S.empty())
2568       getModule().setModuleInlineAsm(AsmString);
2569     else if (*--S.end() == '\n')
2570       getModule().setModuleInlineAsm(S + AsmString.str());
2571     else
2572       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2573     break;
2574   }
2575 
2576   default:
2577     // Make sure we handled everything we should, every other kind is a
2578     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2579     // function. Need to recode Decl::Kind to do that easily.
2580     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2581   }
2582 }
2583 
2584 /// Turns the given pointer into a constant.
2585 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2586                                           const void *Ptr) {
2587   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2588   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2589   return llvm::ConstantInt::get(i64, PtrInt);
2590 }
2591 
2592 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2593                                    llvm::NamedMDNode *&GlobalMetadata,
2594                                    GlobalDecl D,
2595                                    llvm::GlobalValue *Addr) {
2596   if (!GlobalMetadata)
2597     GlobalMetadata =
2598       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2599 
2600   // TODO: should we report variant information for ctors/dtors?
2601   llvm::Value *Ops[] = {
2602     Addr,
2603     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2604   };
2605   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2606 }
2607 
2608 /// Emits metadata nodes associating all the global values in the
2609 /// current module with the Decls they came from.  This is useful for
2610 /// projects using IR gen as a subroutine.
2611 ///
2612 /// Since there's currently no way to associate an MDNode directly
2613 /// with an llvm::GlobalValue, we create a global named metadata
2614 /// with the name 'clang.global.decl.ptrs'.
2615 void CodeGenModule::EmitDeclMetadata() {
2616   llvm::NamedMDNode *GlobalMetadata = 0;
2617 
2618   // StaticLocalDeclMap
2619   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2620          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2621        I != E; ++I) {
2622     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2623     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2624   }
2625 }
2626 
2627 /// Emits metadata nodes for all the local variables in the current
2628 /// function.
2629 void CodeGenFunction::EmitDeclMetadata() {
2630   if (LocalDeclMap.empty()) return;
2631 
2632   llvm::LLVMContext &Context = getLLVMContext();
2633 
2634   // Find the unique metadata ID for this name.
2635   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2636 
2637   llvm::NamedMDNode *GlobalMetadata = 0;
2638 
2639   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2640          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2641     const Decl *D = I->first;
2642     llvm::Value *Addr = I->second;
2643 
2644     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2645       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2646       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2647     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2648       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2649       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2650     }
2651   }
2652 }
2653 
2654 void CodeGenModule::EmitCoverageFile() {
2655   if (!getCodeGenOpts().CoverageFile.empty()) {
2656     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2657       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2658       llvm::LLVMContext &Ctx = TheModule.getContext();
2659       llvm::MDString *CoverageFile =
2660           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2661       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2662         llvm::MDNode *CU = CUNode->getOperand(i);
2663         llvm::Value *node[] = { CoverageFile, CU };
2664         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2665         GCov->addOperand(N);
2666       }
2667     }
2668   }
2669 }
2670