xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2d1c055eba74cba5c024240e498c7f57bbec3c7b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0), DebugInfo(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info or coverage generation is enabled, create the CGDebugInfo
84   // object.
85   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86       CodeGenOpts.EmitGcovNotes)
87     DebugInfo = new CGDebugInfo(*this);
88 
89   Block.GlobalUniqueCount = 0;
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
94   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
95   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
96   PointerWidthInBits = C.Target.getPointerWidth(0);
97   PointerAlignInBytes =
98     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
99   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
100   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
101   Int8PtrTy = Int8Ty->getPointerTo(0);
102   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
103 }
104 
105 CodeGenModule::~CodeGenModule() {
106   delete Runtime;
107   delete &ABI;
108   delete TBAA;
109   delete DebugInfo;
110 }
111 
112 void CodeGenModule::createObjCRuntime() {
113   if (!Features.NeXTRuntime)
114     Runtime = CreateGNUObjCRuntime(*this);
115   else
116     Runtime = CreateMacObjCRuntime(*this);
117 }
118 
119 void CodeGenModule::Release() {
120   EmitDeferred();
121   EmitCXXGlobalInitFunc();
122   EmitCXXGlobalDtorFunc();
123   if (Runtime)
124     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
125       AddGlobalCtor(ObjCInitFunction);
126   EmitCtorList(GlobalCtors, "llvm.global_ctors");
127   EmitCtorList(GlobalDtors, "llvm.global_dtors");
128   EmitAnnotations();
129   EmitLLVMUsed();
130 
131   SimplifyPersonality();
132 
133   if (getCodeGenOpts().EmitDeclMetadata)
134     EmitDeclMetadata();
135 
136   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
137     EmitCoverageFile();
138 }
139 
140 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
141   // Make sure that this type is translated.
142   Types.UpdateCompletedType(TD);
143   if (DebugInfo)
144     DebugInfo->UpdateCompletedType(TD);
145 }
146 
147 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
148   if (!TBAA)
149     return 0;
150   return TBAA->getTBAAInfo(QTy);
151 }
152 
153 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
154                                         llvm::MDNode *TBAAInfo) {
155   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
156 }
157 
158 bool CodeGenModule::isTargetDarwin() const {
159   return getContext().Target.getTriple().isOSDarwin();
160 }
161 
162 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
163   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
164   getDiags().Report(Context.getFullLoc(loc), diagID);
165 }
166 
167 /// ErrorUnsupported - Print out an error that codegen doesn't support the
168 /// specified stmt yet.
169 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
170                                      bool OmitOnError) {
171   if (OmitOnError && getDiags().hasErrorOccurred())
172     return;
173   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
174                                                "cannot compile this %0 yet");
175   std::string Msg = Type;
176   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
177     << Msg << S->getSourceRange();
178 }
179 
180 /// ErrorUnsupported - Print out an error that codegen doesn't support the
181 /// specified decl yet.
182 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
183                                      bool OmitOnError) {
184   if (OmitOnError && getDiags().hasErrorOccurred())
185     return;
186   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
187                                                "cannot compile this %0 yet");
188   std::string Msg = Type;
189   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
190 }
191 
192 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
193                                         const NamedDecl *D) const {
194   // Internal definitions always have default visibility.
195   if (GV->hasLocalLinkage()) {
196     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
197     return;
198   }
199 
200   // Set visibility for definitions.
201   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
202   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
203     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
204 }
205 
206 /// Set the symbol visibility of type information (vtable and RTTI)
207 /// associated with the given type.
208 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
209                                       const CXXRecordDecl *RD,
210                                       TypeVisibilityKind TVK) const {
211   setGlobalVisibility(GV, RD);
212 
213   if (!CodeGenOpts.HiddenWeakVTables)
214     return;
215 
216   // We never want to drop the visibility for RTTI names.
217   if (TVK == TVK_ForRTTIName)
218     return;
219 
220   // We want to drop the visibility to hidden for weak type symbols.
221   // This isn't possible if there might be unresolved references
222   // elsewhere that rely on this symbol being visible.
223 
224   // This should be kept roughly in sync with setThunkVisibility
225   // in CGVTables.cpp.
226 
227   // Preconditions.
228   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
229       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
230     return;
231 
232   // Don't override an explicit visibility attribute.
233   if (RD->getExplicitVisibility())
234     return;
235 
236   switch (RD->getTemplateSpecializationKind()) {
237   // We have to disable the optimization if this is an EI definition
238   // because there might be EI declarations in other shared objects.
239   case TSK_ExplicitInstantiationDefinition:
240   case TSK_ExplicitInstantiationDeclaration:
241     return;
242 
243   // Every use of a non-template class's type information has to emit it.
244   case TSK_Undeclared:
245     break;
246 
247   // In theory, implicit instantiations can ignore the possibility of
248   // an explicit instantiation declaration because there necessarily
249   // must be an EI definition somewhere with default visibility.  In
250   // practice, it's possible to have an explicit instantiation for
251   // an arbitrary template class, and linkers aren't necessarily able
252   // to deal with mixed-visibility symbols.
253   case TSK_ExplicitSpecialization:
254   case TSK_ImplicitInstantiation:
255     if (!CodeGenOpts.HiddenWeakTemplateVTables)
256       return;
257     break;
258   }
259 
260   // If there's a key function, there may be translation units
261   // that don't have the key function's definition.  But ignore
262   // this if we're emitting RTTI under -fno-rtti.
263   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
264     if (Context.getKeyFunction(RD))
265       return;
266   }
267 
268   // Otherwise, drop the visibility to hidden.
269   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
270   GV->setUnnamedAddr(true);
271 }
272 
273 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
274   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
275 
276   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
277   if (!Str.empty())
278     return Str;
279 
280   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
281     IdentifierInfo *II = ND->getIdentifier();
282     assert(II && "Attempt to mangle unnamed decl.");
283 
284     Str = II->getName();
285     return Str;
286   }
287 
288   llvm::SmallString<256> Buffer;
289   llvm::raw_svector_ostream Out(Buffer);
290   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
291     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
292   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
293     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
294   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
295     getCXXABI().getMangleContext().mangleBlock(BD, Out);
296   else
297     getCXXABI().getMangleContext().mangleName(ND, Out);
298 
299   // Allocate space for the mangled name.
300   Out.flush();
301   size_t Length = Buffer.size();
302   char *Name = MangledNamesAllocator.Allocate<char>(Length);
303   std::copy(Buffer.begin(), Buffer.end(), Name);
304 
305   Str = llvm::StringRef(Name, Length);
306 
307   return Str;
308 }
309 
310 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
311                                         const BlockDecl *BD) {
312   MangleContext &MangleCtx = getCXXABI().getMangleContext();
313   const Decl *D = GD.getDecl();
314   llvm::raw_svector_ostream Out(Buffer.getBuffer());
315   if (D == 0)
316     MangleCtx.mangleGlobalBlock(BD, Out);
317   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
318     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
319   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
320     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
321   else
322     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
323 }
324 
325 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
326   return getModule().getNamedValue(Name);
327 }
328 
329 /// AddGlobalCtor - Add a function to the list that will be called before
330 /// main() runs.
331 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
332   // FIXME: Type coercion of void()* types.
333   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
334 }
335 
336 /// AddGlobalDtor - Add a function to the list that will be called
337 /// when the module is unloaded.
338 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
339   // FIXME: Type coercion of void()* types.
340   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
341 }
342 
343 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
344   // Ctor function type is void()*.
345   llvm::FunctionType* CtorFTy =
346     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
347   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
348 
349   // Get the type of a ctor entry, { i32, void ()* }.
350   llvm::StructType* CtorStructTy =
351     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
352                           llvm::PointerType::getUnqual(CtorFTy), NULL);
353 
354   // Construct the constructor and destructor arrays.
355   std::vector<llvm::Constant*> Ctors;
356   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
357     std::vector<llvm::Constant*> S;
358     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
359                 I->second, false));
360     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
361     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
362   }
363 
364   if (!Ctors.empty()) {
365     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
366     new llvm::GlobalVariable(TheModule, AT, false,
367                              llvm::GlobalValue::AppendingLinkage,
368                              llvm::ConstantArray::get(AT, Ctors),
369                              GlobalName);
370   }
371 }
372 
373 void CodeGenModule::EmitAnnotations() {
374   if (Annotations.empty())
375     return;
376 
377   // Create a new global variable for the ConstantStruct in the Module.
378   llvm::Constant *Array =
379   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
380                                                 Annotations.size()),
381                            Annotations);
382   llvm::GlobalValue *gv =
383   new llvm::GlobalVariable(TheModule, Array->getType(), false,
384                            llvm::GlobalValue::AppendingLinkage, Array,
385                            "llvm.global.annotations");
386   gv->setSection("llvm.metadata");
387 }
388 
389 llvm::GlobalValue::LinkageTypes
390 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
391   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
392 
393   if (Linkage == GVA_Internal)
394     return llvm::Function::InternalLinkage;
395 
396   if (D->hasAttr<DLLExportAttr>())
397     return llvm::Function::DLLExportLinkage;
398 
399   if (D->hasAttr<WeakAttr>())
400     return llvm::Function::WeakAnyLinkage;
401 
402   // In C99 mode, 'inline' functions are guaranteed to have a strong
403   // definition somewhere else, so we can use available_externally linkage.
404   if (Linkage == GVA_C99Inline)
405     return llvm::Function::AvailableExternallyLinkage;
406 
407   // In C++, the compiler has to emit a definition in every translation unit
408   // that references the function.  We should use linkonce_odr because
409   // a) if all references in this translation unit are optimized away, we
410   // don't need to codegen it.  b) if the function persists, it needs to be
411   // merged with other definitions. c) C++ has the ODR, so we know the
412   // definition is dependable.
413   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
414     return !Context.getLangOptions().AppleKext
415              ? llvm::Function::LinkOnceODRLinkage
416              : llvm::Function::InternalLinkage;
417 
418   // An explicit instantiation of a template has weak linkage, since
419   // explicit instantiations can occur in multiple translation units
420   // and must all be equivalent. However, we are not allowed to
421   // throw away these explicit instantiations.
422   if (Linkage == GVA_ExplicitTemplateInstantiation)
423     return !Context.getLangOptions().AppleKext
424              ? llvm::Function::WeakODRLinkage
425              : llvm::Function::InternalLinkage;
426 
427   // Otherwise, we have strong external linkage.
428   assert(Linkage == GVA_StrongExternal);
429   return llvm::Function::ExternalLinkage;
430 }
431 
432 
433 /// SetFunctionDefinitionAttributes - Set attributes for a global.
434 ///
435 /// FIXME: This is currently only done for aliases and functions, but not for
436 /// variables (these details are set in EmitGlobalVarDefinition for variables).
437 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
438                                                     llvm::GlobalValue *GV) {
439   SetCommonAttributes(D, GV);
440 }
441 
442 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
443                                               const CGFunctionInfo &Info,
444                                               llvm::Function *F) {
445   unsigned CallingConv;
446   AttributeListType AttributeList;
447   ConstructAttributeList(Info, D, AttributeList, CallingConv);
448   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
449                                           AttributeList.size()));
450   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
451 }
452 
453 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
454                                                            llvm::Function *F) {
455   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
456     F->addFnAttr(llvm::Attribute::NoUnwind);
457 
458   if (D->hasAttr<AlwaysInlineAttr>())
459     F->addFnAttr(llvm::Attribute::AlwaysInline);
460 
461   if (D->hasAttr<NakedAttr>())
462     F->addFnAttr(llvm::Attribute::Naked);
463 
464   if (D->hasAttr<NoInlineAttr>())
465     F->addFnAttr(llvm::Attribute::NoInline);
466 
467   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
468     F->setUnnamedAddr(true);
469 
470   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
471     F->addFnAttr(llvm::Attribute::StackProtect);
472   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
473     F->addFnAttr(llvm::Attribute::StackProtectReq);
474 
475   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
476   if (alignment)
477     F->setAlignment(alignment);
478 
479   // C++ ABI requires 2-byte alignment for member functions.
480   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
481     F->setAlignment(2);
482 }
483 
484 void CodeGenModule::SetCommonAttributes(const Decl *D,
485                                         llvm::GlobalValue *GV) {
486   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
487     setGlobalVisibility(GV, ND);
488   else
489     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
490 
491   if (D->hasAttr<UsedAttr>())
492     AddUsedGlobal(GV);
493 
494   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
495     GV->setSection(SA->getName());
496 
497   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
498 }
499 
500 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
501                                                   llvm::Function *F,
502                                                   const CGFunctionInfo &FI) {
503   SetLLVMFunctionAttributes(D, FI, F);
504   SetLLVMFunctionAttributesForDefinition(D, F);
505 
506   F->setLinkage(llvm::Function::InternalLinkage);
507 
508   SetCommonAttributes(D, F);
509 }
510 
511 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
512                                           llvm::Function *F,
513                                           bool IsIncompleteFunction) {
514   if (unsigned IID = F->getIntrinsicID()) {
515     // If this is an intrinsic function, set the function's attributes
516     // to the intrinsic's attributes.
517     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
518     return;
519   }
520 
521   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
522 
523   if (!IsIncompleteFunction)
524     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
525 
526   // Only a few attributes are set on declarations; these may later be
527   // overridden by a definition.
528 
529   if (FD->hasAttr<DLLImportAttr>()) {
530     F->setLinkage(llvm::Function::DLLImportLinkage);
531   } else if (FD->hasAttr<WeakAttr>() ||
532              FD->isWeakImported()) {
533     // "extern_weak" is overloaded in LLVM; we probably should have
534     // separate linkage types for this.
535     F->setLinkage(llvm::Function::ExternalWeakLinkage);
536   } else {
537     F->setLinkage(llvm::Function::ExternalLinkage);
538 
539     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
540     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
541       F->setVisibility(GetLLVMVisibility(LV.visibility()));
542     }
543   }
544 
545   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
546     F->setSection(SA->getName());
547 }
548 
549 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
550   assert(!GV->isDeclaration() &&
551          "Only globals with definition can force usage.");
552   LLVMUsed.push_back(GV);
553 }
554 
555 void CodeGenModule::EmitLLVMUsed() {
556   // Don't create llvm.used if there is no need.
557   if (LLVMUsed.empty())
558     return;
559 
560   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
561 
562   // Convert LLVMUsed to what ConstantArray needs.
563   std::vector<llvm::Constant*> UsedArray;
564   UsedArray.resize(LLVMUsed.size());
565   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
566     UsedArray[i] =
567      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
568                                       i8PTy);
569   }
570 
571   if (UsedArray.empty())
572     return;
573   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
574 
575   llvm::GlobalVariable *GV =
576     new llvm::GlobalVariable(getModule(), ATy, false,
577                              llvm::GlobalValue::AppendingLinkage,
578                              llvm::ConstantArray::get(ATy, UsedArray),
579                              "llvm.used");
580 
581   GV->setSection("llvm.metadata");
582 }
583 
584 void CodeGenModule::EmitDeferred() {
585   // Emit code for any potentially referenced deferred decls.  Since a
586   // previously unused static decl may become used during the generation of code
587   // for a static function, iterate until no  changes are made.
588 
589   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
590     if (!DeferredVTables.empty()) {
591       const CXXRecordDecl *RD = DeferredVTables.back();
592       DeferredVTables.pop_back();
593       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
594       continue;
595     }
596 
597     GlobalDecl D = DeferredDeclsToEmit.back();
598     DeferredDeclsToEmit.pop_back();
599 
600     // Check to see if we've already emitted this.  This is necessary
601     // for a couple of reasons: first, decls can end up in the
602     // deferred-decls queue multiple times, and second, decls can end
603     // up with definitions in unusual ways (e.g. by an extern inline
604     // function acquiring a strong function redefinition).  Just
605     // ignore these cases.
606     //
607     // TODO: That said, looking this up multiple times is very wasteful.
608     llvm::StringRef Name = getMangledName(D);
609     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
610     assert(CGRef && "Deferred decl wasn't referenced?");
611 
612     if (!CGRef->isDeclaration())
613       continue;
614 
615     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
616     // purposes an alias counts as a definition.
617     if (isa<llvm::GlobalAlias>(CGRef))
618       continue;
619 
620     // Otherwise, emit the definition and move on to the next one.
621     EmitGlobalDefinition(D);
622   }
623 }
624 
625 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
626 /// annotation information for a given GlobalValue.  The annotation struct is
627 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
628 /// GlobalValue being annotated.  The second field is the constant string
629 /// created from the AnnotateAttr's annotation.  The third field is a constant
630 /// string containing the name of the translation unit.  The fourth field is
631 /// the line number in the file of the annotated value declaration.
632 ///
633 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
634 ///        appears to.
635 ///
636 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
637                                                 const AnnotateAttr *AA,
638                                                 unsigned LineNo) {
639   llvm::Module *M = &getModule();
640 
641   // get [N x i8] constants for the annotation string, and the filename string
642   // which are the 2nd and 3rd elements of the global annotation structure.
643   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
644   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
645                                                   AA->getAnnotation(), true);
646   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
647                                                   M->getModuleIdentifier(),
648                                                   true);
649 
650   // Get the two global values corresponding to the ConstantArrays we just
651   // created to hold the bytes of the strings.
652   llvm::GlobalValue *annoGV =
653     new llvm::GlobalVariable(*M, anno->getType(), false,
654                              llvm::GlobalValue::PrivateLinkage, anno,
655                              GV->getName());
656   // translation unit name string, emitted into the llvm.metadata section.
657   llvm::GlobalValue *unitGV =
658     new llvm::GlobalVariable(*M, unit->getType(), false,
659                              llvm::GlobalValue::PrivateLinkage, unit,
660                              ".str");
661   unitGV->setUnnamedAddr(true);
662 
663   // Create the ConstantStruct for the global annotation.
664   llvm::Constant *Fields[4] = {
665     llvm::ConstantExpr::getBitCast(GV, SBP),
666     llvm::ConstantExpr::getBitCast(annoGV, SBP),
667     llvm::ConstantExpr::getBitCast(unitGV, SBP),
668     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
669   };
670   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
671 }
672 
673 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
674   // Never defer when EmitAllDecls is specified.
675   if (Features.EmitAllDecls)
676     return false;
677 
678   return !getContext().DeclMustBeEmitted(Global);
679 }
680 
681 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
682   const AliasAttr *AA = VD->getAttr<AliasAttr>();
683   assert(AA && "No alias?");
684 
685   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
686 
687   // See if there is already something with the target's name in the module.
688   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
689 
690   llvm::Constant *Aliasee;
691   if (isa<llvm::FunctionType>(DeclTy))
692     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
693                                       /*ForVTable=*/false);
694   else
695     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
696                                     llvm::PointerType::getUnqual(DeclTy), 0);
697   if (!Entry) {
698     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
699     F->setLinkage(llvm::Function::ExternalWeakLinkage);
700     WeakRefReferences.insert(F);
701   }
702 
703   return Aliasee;
704 }
705 
706 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
707   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
708 
709   // Weak references don't produce any output by themselves.
710   if (Global->hasAttr<WeakRefAttr>())
711     return;
712 
713   // If this is an alias definition (which otherwise looks like a declaration)
714   // emit it now.
715   if (Global->hasAttr<AliasAttr>())
716     return EmitAliasDefinition(GD);
717 
718   // Ignore declarations, they will be emitted on their first use.
719   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
720     if (FD->getIdentifier()) {
721       llvm::StringRef Name = FD->getName();
722       if (Name == "_Block_object_assign") {
723         BlockObjectAssignDecl = FD;
724       } else if (Name == "_Block_object_dispose") {
725         BlockObjectDisposeDecl = FD;
726       }
727     }
728 
729     // Forward declarations are emitted lazily on first use.
730     if (!FD->doesThisDeclarationHaveABody())
731       return;
732   } else {
733     const VarDecl *VD = cast<VarDecl>(Global);
734     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
735 
736     if (VD->getIdentifier()) {
737       llvm::StringRef Name = VD->getName();
738       if (Name == "_NSConcreteGlobalBlock") {
739         NSConcreteGlobalBlockDecl = VD;
740       } else if (Name == "_NSConcreteStackBlock") {
741         NSConcreteStackBlockDecl = VD;
742       }
743     }
744 
745 
746     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
747       return;
748   }
749 
750   // Defer code generation when possible if this is a static definition, inline
751   // function etc.  These we only want to emit if they are used.
752   if (!MayDeferGeneration(Global)) {
753     // Emit the definition if it can't be deferred.
754     EmitGlobalDefinition(GD);
755     return;
756   }
757 
758   // If we're deferring emission of a C++ variable with an
759   // initializer, remember the order in which it appeared in the file.
760   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
761       cast<VarDecl>(Global)->hasInit()) {
762     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
763     CXXGlobalInits.push_back(0);
764   }
765 
766   // If the value has already been used, add it directly to the
767   // DeferredDeclsToEmit list.
768   llvm::StringRef MangledName = getMangledName(GD);
769   if (GetGlobalValue(MangledName))
770     DeferredDeclsToEmit.push_back(GD);
771   else {
772     // Otherwise, remember that we saw a deferred decl with this name.  The
773     // first use of the mangled name will cause it to move into
774     // DeferredDeclsToEmit.
775     DeferredDecls[MangledName] = GD;
776   }
777 }
778 
779 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
780   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
781 
782   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
783                                  Context.getSourceManager(),
784                                  "Generating code for declaration");
785 
786   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
787     // At -O0, don't generate IR for functions with available_externally
788     // linkage.
789     if (CodeGenOpts.OptimizationLevel == 0 &&
790         !Function->hasAttr<AlwaysInlineAttr>() &&
791         getFunctionLinkage(Function)
792                                   == llvm::Function::AvailableExternallyLinkage)
793       return;
794 
795     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
796       // Make sure to emit the definition(s) before we emit the thunks.
797       // This is necessary for the generation of certain thunks.
798       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
799         EmitCXXConstructor(CD, GD.getCtorType());
800       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
801         EmitCXXDestructor(DD, GD.getDtorType());
802       else
803         EmitGlobalFunctionDefinition(GD);
804 
805       if (Method->isVirtual())
806         getVTables().EmitThunks(GD);
807 
808       return;
809     }
810 
811     return EmitGlobalFunctionDefinition(GD);
812   }
813 
814   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
815     return EmitGlobalVarDefinition(VD);
816 
817   assert(0 && "Invalid argument to EmitGlobalDefinition()");
818 }
819 
820 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
821 /// module, create and return an llvm Function with the specified type. If there
822 /// is something in the module with the specified name, return it potentially
823 /// bitcasted to the right type.
824 ///
825 /// If D is non-null, it specifies a decl that correspond to this.  This is used
826 /// to set the attributes on the function when it is first created.
827 llvm::Constant *
828 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
829                                        const llvm::Type *Ty,
830                                        GlobalDecl D, bool ForVTable) {
831   // Lookup the entry, lazily creating it if necessary.
832   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
833   if (Entry) {
834     if (WeakRefReferences.count(Entry)) {
835       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
836       if (FD && !FD->hasAttr<WeakAttr>())
837         Entry->setLinkage(llvm::Function::ExternalLinkage);
838 
839       WeakRefReferences.erase(Entry);
840     }
841 
842     if (Entry->getType()->getElementType() == Ty)
843       return Entry;
844 
845     // Make sure the result is of the correct type.
846     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
847     return llvm::ConstantExpr::getBitCast(Entry, PTy);
848   }
849 
850   // This function doesn't have a complete type (for example, the return
851   // type is an incomplete struct). Use a fake type instead, and make
852   // sure not to try to set attributes.
853   bool IsIncompleteFunction = false;
854 
855   const llvm::FunctionType *FTy;
856   if (isa<llvm::FunctionType>(Ty)) {
857     FTy = cast<llvm::FunctionType>(Ty);
858   } else {
859     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
860     IsIncompleteFunction = true;
861   }
862 
863   llvm::Function *F = llvm::Function::Create(FTy,
864                                              llvm::Function::ExternalLinkage,
865                                              MangledName, &getModule());
866   assert(F->getName() == MangledName && "name was uniqued!");
867   if (D.getDecl())
868     SetFunctionAttributes(D, F, IsIncompleteFunction);
869 
870   // This is the first use or definition of a mangled name.  If there is a
871   // deferred decl with this name, remember that we need to emit it at the end
872   // of the file.
873   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
874   if (DDI != DeferredDecls.end()) {
875     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
876     // list, and remove it from DeferredDecls (since we don't need it anymore).
877     DeferredDeclsToEmit.push_back(DDI->second);
878     DeferredDecls.erase(DDI);
879 
880   // Otherwise, there are cases we have to worry about where we're
881   // using a declaration for which we must emit a definition but where
882   // we might not find a top-level definition:
883   //   - member functions defined inline in their classes
884   //   - friend functions defined inline in some class
885   //   - special member functions with implicit definitions
886   // If we ever change our AST traversal to walk into class methods,
887   // this will be unnecessary.
888   //
889   // We also don't emit a definition for a function if it's going to be an entry
890   // in a vtable, unless it's already marked as used.
891   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
892     // Look for a declaration that's lexically in a record.
893     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
894     do {
895       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
896         if (FD->isImplicit() && !ForVTable) {
897           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
898           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
899           break;
900         } else if (FD->doesThisDeclarationHaveABody()) {
901           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
902           break;
903         }
904       }
905       FD = FD->getPreviousDeclaration();
906     } while (FD);
907   }
908 
909   // Make sure the result is of the requested type.
910   if (!IsIncompleteFunction) {
911     assert(F->getType()->getElementType() == Ty);
912     return F;
913   }
914 
915   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
916   return llvm::ConstantExpr::getBitCast(F, PTy);
917 }
918 
919 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
920 /// non-null, then this function will use the specified type if it has to
921 /// create it (this occurs when we see a definition of the function).
922 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
923                                                  const llvm::Type *Ty,
924                                                  bool ForVTable) {
925   // If there was no specific requested type, just convert it now.
926   if (!Ty)
927     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
928 
929   llvm::StringRef MangledName = getMangledName(GD);
930   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
931 }
932 
933 /// CreateRuntimeFunction - Create a new runtime function with the specified
934 /// type and name.
935 llvm::Constant *
936 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
937                                      llvm::StringRef Name) {
938   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
939 }
940 
941 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
942                                  bool ConstantInit) {
943   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
944     return false;
945 
946   if (Context.getLangOptions().CPlusPlus) {
947     if (const RecordType *Record
948           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
949       return ConstantInit && cast<CXXRecordDecl>(Record->getDecl())->isPOD();
950   }
951 
952   return true;
953 }
954 
955 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
956 /// create and return an llvm GlobalVariable with the specified type.  If there
957 /// is something in the module with the specified name, return it potentially
958 /// bitcasted to the right type.
959 ///
960 /// If D is non-null, it specifies a decl that correspond to this.  This is used
961 /// to set the attributes on the global when it is first created.
962 llvm::Constant *
963 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
964                                      const llvm::PointerType *Ty,
965                                      const VarDecl *D,
966                                      bool UnnamedAddr) {
967   // Lookup the entry, lazily creating it if necessary.
968   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
969   if (Entry) {
970     if (WeakRefReferences.count(Entry)) {
971       if (D && !D->hasAttr<WeakAttr>())
972         Entry->setLinkage(llvm::Function::ExternalLinkage);
973 
974       WeakRefReferences.erase(Entry);
975     }
976 
977     if (UnnamedAddr)
978       Entry->setUnnamedAddr(true);
979 
980     if (Entry->getType() == Ty)
981       return Entry;
982 
983     // Make sure the result is of the correct type.
984     return llvm::ConstantExpr::getBitCast(Entry, Ty);
985   }
986 
987   // This is the first use or definition of a mangled name.  If there is a
988   // deferred decl with this name, remember that we need to emit it at the end
989   // of the file.
990   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
991   if (DDI != DeferredDecls.end()) {
992     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
993     // list, and remove it from DeferredDecls (since we don't need it anymore).
994     DeferredDeclsToEmit.push_back(DDI->second);
995     DeferredDecls.erase(DDI);
996   }
997 
998   llvm::GlobalVariable *GV =
999     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1000                              llvm::GlobalValue::ExternalLinkage,
1001                              0, MangledName, 0,
1002                              false, Ty->getAddressSpace());
1003 
1004   // Handle things which are present even on external declarations.
1005   if (D) {
1006     // FIXME: This code is overly simple and should be merged with other global
1007     // handling.
1008     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1009 
1010     // Set linkage and visibility in case we never see a definition.
1011     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1012     if (LV.linkage() != ExternalLinkage) {
1013       // Don't set internal linkage on declarations.
1014     } else {
1015       if (D->hasAttr<DLLImportAttr>())
1016         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1017       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1018         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1019 
1020       // Set visibility on a declaration only if it's explicit.
1021       if (LV.visibilityExplicit())
1022         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1023     }
1024 
1025     GV->setThreadLocal(D->isThreadSpecified());
1026   }
1027 
1028   return GV;
1029 }
1030 
1031 
1032 llvm::GlobalVariable *
1033 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1034                                       const llvm::Type *Ty,
1035                                       llvm::GlobalValue::LinkageTypes Linkage) {
1036   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1037   llvm::GlobalVariable *OldGV = 0;
1038 
1039 
1040   if (GV) {
1041     // Check if the variable has the right type.
1042     if (GV->getType()->getElementType() == Ty)
1043       return GV;
1044 
1045     // Because C++ name mangling, the only way we can end up with an already
1046     // existing global with the same name is if it has been declared extern "C".
1047       assert(GV->isDeclaration() && "Declaration has wrong type!");
1048     OldGV = GV;
1049   }
1050 
1051   // Create a new variable.
1052   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1053                                 Linkage, 0, Name);
1054 
1055   if (OldGV) {
1056     // Replace occurrences of the old variable if needed.
1057     GV->takeName(OldGV);
1058 
1059     if (!OldGV->use_empty()) {
1060       llvm::Constant *NewPtrForOldDecl =
1061       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1062       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1063     }
1064 
1065     OldGV->eraseFromParent();
1066   }
1067 
1068   return GV;
1069 }
1070 
1071 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1072 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1073 /// then it will be greated with the specified type instead of whatever the
1074 /// normal requested type would be.
1075 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1076                                                   const llvm::Type *Ty) {
1077   assert(D->hasGlobalStorage() && "Not a global variable");
1078   QualType ASTTy = D->getType();
1079   if (Ty == 0)
1080     Ty = getTypes().ConvertTypeForMem(ASTTy);
1081 
1082   const llvm::PointerType *PTy =
1083     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1084 
1085   llvm::StringRef MangledName = getMangledName(D);
1086   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1087 }
1088 
1089 /// CreateRuntimeVariable - Create a new runtime global variable with the
1090 /// specified type and name.
1091 llvm::Constant *
1092 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1093                                      llvm::StringRef Name) {
1094   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1095                                true);
1096 }
1097 
1098 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1099   assert(!D->getInit() && "Cannot emit definite definitions here!");
1100 
1101   if (MayDeferGeneration(D)) {
1102     // If we have not seen a reference to this variable yet, place it
1103     // into the deferred declarations table to be emitted if needed
1104     // later.
1105     llvm::StringRef MangledName = getMangledName(D);
1106     if (!GetGlobalValue(MangledName)) {
1107       DeferredDecls[MangledName] = D;
1108       return;
1109     }
1110   }
1111 
1112   // The tentative definition is the only definition.
1113   EmitGlobalVarDefinition(D);
1114 }
1115 
1116 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1117   if (DefinitionRequired)
1118     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1119 }
1120 
1121 llvm::GlobalVariable::LinkageTypes
1122 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1123   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1124     return llvm::GlobalVariable::InternalLinkage;
1125 
1126   if (const CXXMethodDecl *KeyFunction
1127                                     = RD->getASTContext().getKeyFunction(RD)) {
1128     // If this class has a key function, use that to determine the linkage of
1129     // the vtable.
1130     const FunctionDecl *Def = 0;
1131     if (KeyFunction->hasBody(Def))
1132       KeyFunction = cast<CXXMethodDecl>(Def);
1133 
1134     switch (KeyFunction->getTemplateSpecializationKind()) {
1135       case TSK_Undeclared:
1136       case TSK_ExplicitSpecialization:
1137         // When compiling with optimizations turned on, we emit all vtables,
1138         // even if the key function is not defined in the current translation
1139         // unit. If this is the case, use available_externally linkage.
1140         if (!Def && CodeGenOpts.OptimizationLevel)
1141           return llvm::GlobalVariable::AvailableExternallyLinkage;
1142 
1143         if (KeyFunction->isInlined())
1144           return !Context.getLangOptions().AppleKext ?
1145                    llvm::GlobalVariable::LinkOnceODRLinkage :
1146                    llvm::Function::InternalLinkage;
1147 
1148         return llvm::GlobalVariable::ExternalLinkage;
1149 
1150       case TSK_ImplicitInstantiation:
1151         return !Context.getLangOptions().AppleKext ?
1152                  llvm::GlobalVariable::LinkOnceODRLinkage :
1153                  llvm::Function::InternalLinkage;
1154 
1155       case TSK_ExplicitInstantiationDefinition:
1156         return !Context.getLangOptions().AppleKext ?
1157                  llvm::GlobalVariable::WeakODRLinkage :
1158                  llvm::Function::InternalLinkage;
1159 
1160       case TSK_ExplicitInstantiationDeclaration:
1161         // FIXME: Use available_externally linkage. However, this currently
1162         // breaks LLVM's build due to undefined symbols.
1163         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1164         return !Context.getLangOptions().AppleKext ?
1165                  llvm::GlobalVariable::LinkOnceODRLinkage :
1166                  llvm::Function::InternalLinkage;
1167     }
1168   }
1169 
1170   if (Context.getLangOptions().AppleKext)
1171     return llvm::Function::InternalLinkage;
1172 
1173   switch (RD->getTemplateSpecializationKind()) {
1174   case TSK_Undeclared:
1175   case TSK_ExplicitSpecialization:
1176   case TSK_ImplicitInstantiation:
1177     // FIXME: Use available_externally linkage. However, this currently
1178     // breaks LLVM's build due to undefined symbols.
1179     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1180   case TSK_ExplicitInstantiationDeclaration:
1181     return llvm::GlobalVariable::LinkOnceODRLinkage;
1182 
1183   case TSK_ExplicitInstantiationDefinition:
1184       return llvm::GlobalVariable::WeakODRLinkage;
1185   }
1186 
1187   // Silence GCC warning.
1188   return llvm::GlobalVariable::LinkOnceODRLinkage;
1189 }
1190 
1191 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1192     return Context.toCharUnitsFromBits(
1193       TheTargetData.getTypeStoreSizeInBits(Ty));
1194 }
1195 
1196 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1197   llvm::Constant *Init = 0;
1198   QualType ASTTy = D->getType();
1199   bool NonConstInit = false;
1200 
1201   const Expr *InitExpr = D->getAnyInitializer();
1202 
1203   if (!InitExpr) {
1204     // This is a tentative definition; tentative definitions are
1205     // implicitly initialized with { 0 }.
1206     //
1207     // Note that tentative definitions are only emitted at the end of
1208     // a translation unit, so they should never have incomplete
1209     // type. In addition, EmitTentativeDefinition makes sure that we
1210     // never attempt to emit a tentative definition if a real one
1211     // exists. A use may still exists, however, so we still may need
1212     // to do a RAUW.
1213     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1214     Init = EmitNullConstant(D->getType());
1215   } else {
1216     Init = EmitConstantExpr(InitExpr, D->getType());
1217     if (!Init) {
1218       QualType T = InitExpr->getType();
1219       if (D->getType()->isReferenceType())
1220         T = D->getType();
1221 
1222       if (getLangOptions().CPlusPlus) {
1223         Init = EmitNullConstant(T);
1224         NonConstInit = true;
1225       } else {
1226         ErrorUnsupported(D, "static initializer");
1227         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1228       }
1229     } else {
1230       // We don't need an initializer, so remove the entry for the delayed
1231       // initializer position (just in case this entry was delayed).
1232       if (getLangOptions().CPlusPlus)
1233         DelayedCXXInitPosition.erase(D);
1234     }
1235   }
1236 
1237   const llvm::Type* InitType = Init->getType();
1238   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1239 
1240   // Strip off a bitcast if we got one back.
1241   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1242     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1243            // all zero index gep.
1244            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1245     Entry = CE->getOperand(0);
1246   }
1247 
1248   // Entry is now either a Function or GlobalVariable.
1249   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1250 
1251   // We have a definition after a declaration with the wrong type.
1252   // We must make a new GlobalVariable* and update everything that used OldGV
1253   // (a declaration or tentative definition) with the new GlobalVariable*
1254   // (which will be a definition).
1255   //
1256   // This happens if there is a prototype for a global (e.g.
1257   // "extern int x[];") and then a definition of a different type (e.g.
1258   // "int x[10];"). This also happens when an initializer has a different type
1259   // from the type of the global (this happens with unions).
1260   if (GV == 0 ||
1261       GV->getType()->getElementType() != InitType ||
1262       GV->getType()->getAddressSpace() !=
1263         getContext().getTargetAddressSpace(ASTTy)) {
1264 
1265     // Move the old entry aside so that we'll create a new one.
1266     Entry->setName(llvm::StringRef());
1267 
1268     // Make a new global with the correct type, this is now guaranteed to work.
1269     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1270 
1271     // Replace all uses of the old global with the new global
1272     llvm::Constant *NewPtrForOldDecl =
1273         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1274     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1275 
1276     // Erase the old global, since it is no longer used.
1277     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1278   }
1279 
1280   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1281     SourceManager &SM = Context.getSourceManager();
1282     AddAnnotation(EmitAnnotateAttr(GV, AA,
1283                               SM.getInstantiationLineNumber(D->getLocation())));
1284   }
1285 
1286   GV->setInitializer(Init);
1287 
1288   // If it is safe to mark the global 'constant', do so now.
1289   GV->setConstant(false);
1290   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1291     GV->setConstant(true);
1292 
1293   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1294 
1295   // Set the llvm linkage type as appropriate.
1296   llvm::GlobalValue::LinkageTypes Linkage =
1297     GetLLVMLinkageVarDefinition(D, GV);
1298   GV->setLinkage(Linkage);
1299   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1300     // common vars aren't constant even if declared const.
1301     GV->setConstant(false);
1302 
1303   SetCommonAttributes(D, GV);
1304 
1305   // Emit the initializer function if necessary.
1306   if (NonConstInit)
1307     EmitCXXGlobalVarDeclInitFunc(D, GV);
1308 
1309   // Emit global variable debug information.
1310   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1311     DI->setLocation(D->getLocation());
1312     DI->EmitGlobalVariable(GV, D);
1313   }
1314 }
1315 
1316 llvm::GlobalValue::LinkageTypes
1317 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1318                                            llvm::GlobalVariable *GV) {
1319   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1320   if (Linkage == GVA_Internal)
1321     return llvm::Function::InternalLinkage;
1322   else if (D->hasAttr<DLLImportAttr>())
1323     return llvm::Function::DLLImportLinkage;
1324   else if (D->hasAttr<DLLExportAttr>())
1325     return llvm::Function::DLLExportLinkage;
1326   else if (D->hasAttr<WeakAttr>()) {
1327     if (GV->isConstant())
1328       return llvm::GlobalVariable::WeakODRLinkage;
1329     else
1330       return llvm::GlobalVariable::WeakAnyLinkage;
1331   } else if (Linkage == GVA_TemplateInstantiation ||
1332              Linkage == GVA_ExplicitTemplateInstantiation)
1333     return llvm::GlobalVariable::WeakODRLinkage;
1334   else if (!getLangOptions().CPlusPlus &&
1335            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1336              D->getAttr<CommonAttr>()) &&
1337            !D->hasExternalStorage() && !D->getInit() &&
1338            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1339     // Thread local vars aren't considered common linkage.
1340     return llvm::GlobalVariable::CommonLinkage;
1341   }
1342   return llvm::GlobalVariable::ExternalLinkage;
1343 }
1344 
1345 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1346 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1347 /// existing call uses of the old function in the module, this adjusts them to
1348 /// call the new function directly.
1349 ///
1350 /// This is not just a cleanup: the always_inline pass requires direct calls to
1351 /// functions to be able to inline them.  If there is a bitcast in the way, it
1352 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1353 /// run at -O0.
1354 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1355                                                       llvm::Function *NewFn) {
1356   // If we're redefining a global as a function, don't transform it.
1357   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1358   if (OldFn == 0) return;
1359 
1360   const llvm::Type *NewRetTy = NewFn->getReturnType();
1361   llvm::SmallVector<llvm::Value*, 4> ArgList;
1362 
1363   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1364        UI != E; ) {
1365     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1366     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1367     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1368     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1369     llvm::CallSite CS(CI);
1370     if (!CI || !CS.isCallee(I)) continue;
1371 
1372     // If the return types don't match exactly, and if the call isn't dead, then
1373     // we can't transform this call.
1374     if (CI->getType() != NewRetTy && !CI->use_empty())
1375       continue;
1376 
1377     // If the function was passed too few arguments, don't transform.  If extra
1378     // arguments were passed, we silently drop them.  If any of the types
1379     // mismatch, we don't transform.
1380     unsigned ArgNo = 0;
1381     bool DontTransform = false;
1382     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1383          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1384       if (CS.arg_size() == ArgNo ||
1385           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1386         DontTransform = true;
1387         break;
1388       }
1389     }
1390     if (DontTransform)
1391       continue;
1392 
1393     // Okay, we can transform this.  Create the new call instruction and copy
1394     // over the required information.
1395     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1396     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1397                                                      ArgList.end(), "", CI);
1398     ArgList.clear();
1399     if (!NewCall->getType()->isVoidTy())
1400       NewCall->takeName(CI);
1401     NewCall->setAttributes(CI->getAttributes());
1402     NewCall->setCallingConv(CI->getCallingConv());
1403 
1404     // Finally, remove the old call, replacing any uses with the new one.
1405     if (!CI->use_empty())
1406       CI->replaceAllUsesWith(NewCall);
1407 
1408     // Copy debug location attached to CI.
1409     if (!CI->getDebugLoc().isUnknown())
1410       NewCall->setDebugLoc(CI->getDebugLoc());
1411     CI->eraseFromParent();
1412   }
1413 }
1414 
1415 
1416 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1417   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1418 
1419   // Compute the function info and LLVM type.
1420   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1421   bool variadic = false;
1422   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1423     variadic = fpt->isVariadic();
1424   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1425 
1426   // Get or create the prototype for the function.
1427   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1428 
1429   // Strip off a bitcast if we got one back.
1430   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1431     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1432     Entry = CE->getOperand(0);
1433   }
1434 
1435 
1436   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1437     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1438 
1439     // If the types mismatch then we have to rewrite the definition.
1440     assert(OldFn->isDeclaration() &&
1441            "Shouldn't replace non-declaration");
1442 
1443     // F is the Function* for the one with the wrong type, we must make a new
1444     // Function* and update everything that used F (a declaration) with the new
1445     // Function* (which will be a definition).
1446     //
1447     // This happens if there is a prototype for a function
1448     // (e.g. "int f()") and then a definition of a different type
1449     // (e.g. "int f(int x)").  Move the old function aside so that it
1450     // doesn't interfere with GetAddrOfFunction.
1451     OldFn->setName(llvm::StringRef());
1452     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1453 
1454     // If this is an implementation of a function without a prototype, try to
1455     // replace any existing uses of the function (which may be calls) with uses
1456     // of the new function
1457     if (D->getType()->isFunctionNoProtoType()) {
1458       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1459       OldFn->removeDeadConstantUsers();
1460     }
1461 
1462     // Replace uses of F with the Function we will endow with a body.
1463     if (!Entry->use_empty()) {
1464       llvm::Constant *NewPtrForOldDecl =
1465         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1466       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1467     }
1468 
1469     // Ok, delete the old function now, which is dead.
1470     OldFn->eraseFromParent();
1471 
1472     Entry = NewFn;
1473   }
1474 
1475   // We need to set linkage and visibility on the function before
1476   // generating code for it because various parts of IR generation
1477   // want to propagate this information down (e.g. to local static
1478   // declarations).
1479   llvm::Function *Fn = cast<llvm::Function>(Entry);
1480   setFunctionLinkage(D, Fn);
1481 
1482   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1483   setGlobalVisibility(Fn, D);
1484 
1485   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1486 
1487   SetFunctionDefinitionAttributes(D, Fn);
1488   SetLLVMFunctionAttributesForDefinition(D, Fn);
1489 
1490   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1491     AddGlobalCtor(Fn, CA->getPriority());
1492   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1493     AddGlobalDtor(Fn, DA->getPriority());
1494 }
1495 
1496 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1497   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1498   const AliasAttr *AA = D->getAttr<AliasAttr>();
1499   assert(AA && "Not an alias?");
1500 
1501   llvm::StringRef MangledName = getMangledName(GD);
1502 
1503   // If there is a definition in the module, then it wins over the alias.
1504   // This is dubious, but allow it to be safe.  Just ignore the alias.
1505   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1506   if (Entry && !Entry->isDeclaration())
1507     return;
1508 
1509   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1510 
1511   // Create a reference to the named value.  This ensures that it is emitted
1512   // if a deferred decl.
1513   llvm::Constant *Aliasee;
1514   if (isa<llvm::FunctionType>(DeclTy))
1515     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1516                                       /*ForVTable=*/false);
1517   else
1518     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1519                                     llvm::PointerType::getUnqual(DeclTy), 0);
1520 
1521   // Create the new alias itself, but don't set a name yet.
1522   llvm::GlobalValue *GA =
1523     new llvm::GlobalAlias(Aliasee->getType(),
1524                           llvm::Function::ExternalLinkage,
1525                           "", Aliasee, &getModule());
1526 
1527   if (Entry) {
1528     assert(Entry->isDeclaration());
1529 
1530     // If there is a declaration in the module, then we had an extern followed
1531     // by the alias, as in:
1532     //   extern int test6();
1533     //   ...
1534     //   int test6() __attribute__((alias("test7")));
1535     //
1536     // Remove it and replace uses of it with the alias.
1537     GA->takeName(Entry);
1538 
1539     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1540                                                           Entry->getType()));
1541     Entry->eraseFromParent();
1542   } else {
1543     GA->setName(MangledName);
1544   }
1545 
1546   // Set attributes which are particular to an alias; this is a
1547   // specialization of the attributes which may be set on a global
1548   // variable/function.
1549   if (D->hasAttr<DLLExportAttr>()) {
1550     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1551       // The dllexport attribute is ignored for undefined symbols.
1552       if (FD->hasBody())
1553         GA->setLinkage(llvm::Function::DLLExportLinkage);
1554     } else {
1555       GA->setLinkage(llvm::Function::DLLExportLinkage);
1556     }
1557   } else if (D->hasAttr<WeakAttr>() ||
1558              D->hasAttr<WeakRefAttr>() ||
1559              D->isWeakImported()) {
1560     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1561   }
1562 
1563   SetCommonAttributes(D, GA);
1564 }
1565 
1566 /// getBuiltinLibFunction - Given a builtin id for a function like
1567 /// "__builtin_fabsf", return a Function* for "fabsf".
1568 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1569                                                   unsigned BuiltinID) {
1570   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1571           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1572          "isn't a lib fn");
1573 
1574   // Get the name, skip over the __builtin_ prefix (if necessary).
1575   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1576   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1577     Name += 10;
1578 
1579   const llvm::FunctionType *Ty =
1580     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1581 
1582   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1583 }
1584 
1585 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1586                                             unsigned NumTys) {
1587   return llvm::Intrinsic::getDeclaration(&getModule(),
1588                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1589 }
1590 
1591 static llvm::StringMapEntry<llvm::Constant*> &
1592 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1593                          const StringLiteral *Literal,
1594                          bool TargetIsLSB,
1595                          bool &IsUTF16,
1596                          unsigned &StringLength) {
1597   llvm::StringRef String = Literal->getString();
1598   unsigned NumBytes = String.size();
1599 
1600   // Check for simple case.
1601   if (!Literal->containsNonAsciiOrNull()) {
1602     StringLength = NumBytes;
1603     return Map.GetOrCreateValue(String);
1604   }
1605 
1606   // Otherwise, convert the UTF8 literals into a byte string.
1607   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1608   const UTF8 *FromPtr = (UTF8 *)String.data();
1609   UTF16 *ToPtr = &ToBuf[0];
1610 
1611   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1612                            &ToPtr, ToPtr + NumBytes,
1613                            strictConversion);
1614 
1615   // ConvertUTF8toUTF16 returns the length in ToPtr.
1616   StringLength = ToPtr - &ToBuf[0];
1617 
1618   // Render the UTF-16 string into a byte array and convert to the target byte
1619   // order.
1620   //
1621   // FIXME: This isn't something we should need to do here.
1622   llvm::SmallString<128> AsBytes;
1623   AsBytes.reserve(StringLength * 2);
1624   for (unsigned i = 0; i != StringLength; ++i) {
1625     unsigned short Val = ToBuf[i];
1626     if (TargetIsLSB) {
1627       AsBytes.push_back(Val & 0xFF);
1628       AsBytes.push_back(Val >> 8);
1629     } else {
1630       AsBytes.push_back(Val >> 8);
1631       AsBytes.push_back(Val & 0xFF);
1632     }
1633   }
1634   // Append one extra null character, the second is automatically added by our
1635   // caller.
1636   AsBytes.push_back(0);
1637 
1638   IsUTF16 = true;
1639   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1640 }
1641 
1642 llvm::Constant *
1643 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1644   unsigned StringLength = 0;
1645   bool isUTF16 = false;
1646   llvm::StringMapEntry<llvm::Constant*> &Entry =
1647     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1648                              getTargetData().isLittleEndian(),
1649                              isUTF16, StringLength);
1650 
1651   if (llvm::Constant *C = Entry.getValue())
1652     return C;
1653 
1654   llvm::Constant *Zero =
1655       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1656   llvm::Constant *Zeros[] = { Zero, Zero };
1657 
1658   // If we don't already have it, get __CFConstantStringClassReference.
1659   if (!CFConstantStringClassRef) {
1660     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1661     Ty = llvm::ArrayType::get(Ty, 0);
1662     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1663                                            "__CFConstantStringClassReference");
1664     // Decay array -> ptr
1665     CFConstantStringClassRef =
1666       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1667   }
1668 
1669   QualType CFTy = getContext().getCFConstantStringType();
1670 
1671   const llvm::StructType *STy =
1672     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1673 
1674   std::vector<llvm::Constant*> Fields(4);
1675 
1676   // Class pointer.
1677   Fields[0] = CFConstantStringClassRef;
1678 
1679   // Flags.
1680   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1681   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1682     llvm::ConstantInt::get(Ty, 0x07C8);
1683 
1684   // String pointer.
1685   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1686 
1687   llvm::GlobalValue::LinkageTypes Linkage;
1688   bool isConstant;
1689   if (isUTF16) {
1690     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1691     Linkage = llvm::GlobalValue::InternalLinkage;
1692     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1693     // does make plain ascii ones writable.
1694     isConstant = true;
1695   } else {
1696     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1697     // when using private linkage. It is not clear if this is a bug in ld
1698     // or a reasonable new restriction.
1699     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1700     isConstant = !Features.WritableStrings;
1701   }
1702 
1703   llvm::GlobalVariable *GV =
1704     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1705                              ".str");
1706   GV->setUnnamedAddr(true);
1707   if (isUTF16) {
1708     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1709     GV->setAlignment(Align.getQuantity());
1710   } else {
1711     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1712     GV->setAlignment(Align.getQuantity());
1713   }
1714   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1715 
1716   // String length.
1717   Ty = getTypes().ConvertType(getContext().LongTy);
1718   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1719 
1720   // The struct.
1721   C = llvm::ConstantStruct::get(STy, Fields);
1722   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1723                                 llvm::GlobalVariable::PrivateLinkage, C,
1724                                 "_unnamed_cfstring_");
1725   if (const char *Sect = getContext().Target.getCFStringSection())
1726     GV->setSection(Sect);
1727   Entry.setValue(GV);
1728 
1729   return GV;
1730 }
1731 
1732 llvm::Constant *
1733 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1734   unsigned StringLength = 0;
1735   bool isUTF16 = false;
1736   llvm::StringMapEntry<llvm::Constant*> &Entry =
1737     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1738                              getTargetData().isLittleEndian(),
1739                              isUTF16, StringLength);
1740 
1741   if (llvm::Constant *C = Entry.getValue())
1742     return C;
1743 
1744   llvm::Constant *Zero =
1745   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1746   llvm::Constant *Zeros[] = { Zero, Zero };
1747 
1748   // If we don't already have it, get _NSConstantStringClassReference.
1749   if (!ConstantStringClassRef) {
1750     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1751     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1752     Ty = llvm::ArrayType::get(Ty, 0);
1753     llvm::Constant *GV;
1754     if (StringClass.empty())
1755       GV = CreateRuntimeVariable(Ty,
1756                                  Features.ObjCNonFragileABI ?
1757                                  "OBJC_CLASS_$_NSConstantString" :
1758                                  "_NSConstantStringClassReference");
1759     else {
1760       std::string str;
1761       if (Features.ObjCNonFragileABI)
1762         str = "OBJC_CLASS_$_" + StringClass;
1763       else
1764         str = "_" + StringClass + "ClassReference";
1765       GV = CreateRuntimeVariable(Ty, str);
1766     }
1767     // Decay array -> ptr
1768     ConstantStringClassRef =
1769     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1770   }
1771 
1772   QualType NSTy = getContext().getNSConstantStringType();
1773 
1774   const llvm::StructType *STy =
1775   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1776 
1777   std::vector<llvm::Constant*> Fields(3);
1778 
1779   // Class pointer.
1780   Fields[0] = ConstantStringClassRef;
1781 
1782   // String pointer.
1783   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1784 
1785   llvm::GlobalValue::LinkageTypes Linkage;
1786   bool isConstant;
1787   if (isUTF16) {
1788     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1789     Linkage = llvm::GlobalValue::InternalLinkage;
1790     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1791     // does make plain ascii ones writable.
1792     isConstant = true;
1793   } else {
1794     Linkage = llvm::GlobalValue::PrivateLinkage;
1795     isConstant = !Features.WritableStrings;
1796   }
1797 
1798   llvm::GlobalVariable *GV =
1799   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1800                            ".str");
1801   GV->setUnnamedAddr(true);
1802   if (isUTF16) {
1803     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1804     GV->setAlignment(Align.getQuantity());
1805   } else {
1806     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1807     GV->setAlignment(Align.getQuantity());
1808   }
1809   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1810 
1811   // String length.
1812   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1813   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1814 
1815   // The struct.
1816   C = llvm::ConstantStruct::get(STy, Fields);
1817   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1818                                 llvm::GlobalVariable::PrivateLinkage, C,
1819                                 "_unnamed_nsstring_");
1820   // FIXME. Fix section.
1821   if (const char *Sect =
1822         Features.ObjCNonFragileABI
1823           ? getContext().Target.getNSStringNonFragileABISection()
1824           : getContext().Target.getNSStringSection())
1825     GV->setSection(Sect);
1826   Entry.setValue(GV);
1827 
1828   return GV;
1829 }
1830 
1831 /// GetStringForStringLiteral - Return the appropriate bytes for a
1832 /// string literal, properly padded to match the literal type.
1833 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1834   const ASTContext &Context = getContext();
1835   const ConstantArrayType *CAT =
1836     Context.getAsConstantArrayType(E->getType());
1837   assert(CAT && "String isn't pointer or array!");
1838 
1839   // Resize the string to the right size.
1840   uint64_t RealLen = CAT->getSize().getZExtValue();
1841 
1842   if (E->isWide())
1843     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1844 
1845   std::string Str = E->getString().str();
1846   Str.resize(RealLen, '\0');
1847 
1848   return Str;
1849 }
1850 
1851 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1852 /// constant array for the given string literal.
1853 llvm::Constant *
1854 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1855   // FIXME: This can be more efficient.
1856   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1857   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1858   if (S->isWide()) {
1859     llvm::Type *DestTy =
1860         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1861     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1862   }
1863   return C;
1864 }
1865 
1866 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1867 /// array for the given ObjCEncodeExpr node.
1868 llvm::Constant *
1869 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1870   std::string Str;
1871   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1872 
1873   return GetAddrOfConstantCString(Str);
1874 }
1875 
1876 
1877 /// GenerateWritableString -- Creates storage for a string literal.
1878 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1879                                              bool constant,
1880                                              CodeGenModule &CGM,
1881                                              const char *GlobalName) {
1882   // Create Constant for this string literal. Don't add a '\0'.
1883   llvm::Constant *C =
1884       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1885 
1886   // Create a global variable for this string
1887   llvm::GlobalVariable *GV =
1888     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1889                              llvm::GlobalValue::PrivateLinkage,
1890                              C, GlobalName);
1891   GV->setUnnamedAddr(true);
1892   return GV;
1893 }
1894 
1895 /// GetAddrOfConstantString - Returns a pointer to a character array
1896 /// containing the literal. This contents are exactly that of the
1897 /// given string, i.e. it will not be null terminated automatically;
1898 /// see GetAddrOfConstantCString. Note that whether the result is
1899 /// actually a pointer to an LLVM constant depends on
1900 /// Feature.WriteableStrings.
1901 ///
1902 /// The result has pointer to array type.
1903 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1904                                                        const char *GlobalName) {
1905   bool IsConstant = !Features.WritableStrings;
1906 
1907   // Get the default prefix if a name wasn't specified.
1908   if (!GlobalName)
1909     GlobalName = ".str";
1910 
1911   // Don't share any string literals if strings aren't constant.
1912   if (!IsConstant)
1913     return GenerateStringLiteral(Str, false, *this, GlobalName);
1914 
1915   llvm::StringMapEntry<llvm::Constant *> &Entry =
1916     ConstantStringMap.GetOrCreateValue(Str);
1917 
1918   if (Entry.getValue())
1919     return Entry.getValue();
1920 
1921   // Create a global variable for this.
1922   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1923   Entry.setValue(C);
1924   return C;
1925 }
1926 
1927 /// GetAddrOfConstantCString - Returns a pointer to a character
1928 /// array containing the literal and a terminating '\0'
1929 /// character. The result has pointer to array type.
1930 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1931                                                         const char *GlobalName){
1932   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1933   return GetAddrOfConstantString(StrWithNull, GlobalName);
1934 }
1935 
1936 /// EmitObjCPropertyImplementations - Emit information for synthesized
1937 /// properties for an implementation.
1938 void CodeGenModule::EmitObjCPropertyImplementations(const
1939                                                     ObjCImplementationDecl *D) {
1940   for (ObjCImplementationDecl::propimpl_iterator
1941          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1942     ObjCPropertyImplDecl *PID = *i;
1943 
1944     // Dynamic is just for type-checking.
1945     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1946       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1947 
1948       // Determine which methods need to be implemented, some may have
1949       // been overridden. Note that ::isSynthesized is not the method
1950       // we want, that just indicates if the decl came from a
1951       // property. What we want to know is if the method is defined in
1952       // this implementation.
1953       if (!D->getInstanceMethod(PD->getGetterName()))
1954         CodeGenFunction(*this).GenerateObjCGetter(
1955                                  const_cast<ObjCImplementationDecl *>(D), PID);
1956       if (!PD->isReadOnly() &&
1957           !D->getInstanceMethod(PD->getSetterName()))
1958         CodeGenFunction(*this).GenerateObjCSetter(
1959                                  const_cast<ObjCImplementationDecl *>(D), PID);
1960     }
1961   }
1962 }
1963 
1964 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1965   ObjCInterfaceDecl *iface
1966     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1967   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1968        ivar; ivar = ivar->getNextIvar())
1969     if (ivar->getType().isDestructedType())
1970       return true;
1971 
1972   return false;
1973 }
1974 
1975 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1976 /// for an implementation.
1977 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1978   // We might need a .cxx_destruct even if we don't have any ivar initializers.
1979   if (needsDestructMethod(D)) {
1980     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1981     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1982     ObjCMethodDecl *DTORMethod =
1983       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
1984                              cxxSelector, getContext().VoidTy, 0, D, true,
1985                              false, true, false, ObjCMethodDecl::Required);
1986     D->addInstanceMethod(DTORMethod);
1987     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1988   }
1989 
1990   // If the implementation doesn't have any ivar initializers, we don't need
1991   // a .cxx_construct.
1992   if (D->getNumIvarInitializers() == 0)
1993     return;
1994 
1995   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
1996   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1997   // The constructor returns 'self'.
1998   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1999                                                 D->getLocation(),
2000                                                 D->getLocation(), cxxSelector,
2001                                                 getContext().getObjCIdType(), 0,
2002                                                 D, true, false, true, false,
2003                                                 ObjCMethodDecl::Required);
2004   D->addInstanceMethod(CTORMethod);
2005   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2006 }
2007 
2008 /// EmitNamespace - Emit all declarations in a namespace.
2009 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2010   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2011        I != E; ++I)
2012     EmitTopLevelDecl(*I);
2013 }
2014 
2015 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2016 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2017   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2018       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2019     ErrorUnsupported(LSD, "linkage spec");
2020     return;
2021   }
2022 
2023   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2024        I != E; ++I)
2025     EmitTopLevelDecl(*I);
2026 }
2027 
2028 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2029 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2030   // If an error has occurred, stop code generation, but continue
2031   // parsing and semantic analysis (to ensure all warnings and errors
2032   // are emitted).
2033   if (Diags.hasErrorOccurred())
2034     return;
2035 
2036   // Ignore dependent declarations.
2037   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2038     return;
2039 
2040   switch (D->getKind()) {
2041   case Decl::CXXConversion:
2042   case Decl::CXXMethod:
2043   case Decl::Function:
2044     // Skip function templates
2045     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2046         cast<FunctionDecl>(D)->isLateTemplateParsed())
2047       return;
2048 
2049     EmitGlobal(cast<FunctionDecl>(D));
2050     break;
2051 
2052   case Decl::Var:
2053     EmitGlobal(cast<VarDecl>(D));
2054     break;
2055 
2056   // Indirect fields from global anonymous structs and unions can be
2057   // ignored; only the actual variable requires IR gen support.
2058   case Decl::IndirectField:
2059     break;
2060 
2061   // C++ Decls
2062   case Decl::Namespace:
2063     EmitNamespace(cast<NamespaceDecl>(D));
2064     break;
2065     // No code generation needed.
2066   case Decl::UsingShadow:
2067   case Decl::Using:
2068   case Decl::UsingDirective:
2069   case Decl::ClassTemplate:
2070   case Decl::FunctionTemplate:
2071   case Decl::TypeAliasTemplate:
2072   case Decl::NamespaceAlias:
2073     break;
2074   case Decl::CXXConstructor:
2075     // Skip function templates
2076     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2077         cast<FunctionDecl>(D)->isLateTemplateParsed())
2078       return;
2079 
2080     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2081     break;
2082   case Decl::CXXDestructor:
2083     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2084       return;
2085     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2086     break;
2087 
2088   case Decl::StaticAssert:
2089     // Nothing to do.
2090     break;
2091 
2092   // Objective-C Decls
2093 
2094   // Forward declarations, no (immediate) code generation.
2095   case Decl::ObjCClass:
2096   case Decl::ObjCForwardProtocol:
2097   case Decl::ObjCInterface:
2098     break;
2099 
2100   case Decl::ObjCCategory: {
2101     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2102     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2103       Context.ResetObjCLayout(CD->getClassInterface());
2104     break;
2105   }
2106 
2107   case Decl::ObjCProtocol:
2108     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2109     break;
2110 
2111   case Decl::ObjCCategoryImpl:
2112     // Categories have properties but don't support synthesize so we
2113     // can ignore them here.
2114     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2115     break;
2116 
2117   case Decl::ObjCImplementation: {
2118     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2119     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2120       Context.ResetObjCLayout(OMD->getClassInterface());
2121     EmitObjCPropertyImplementations(OMD);
2122     EmitObjCIvarInitializations(OMD);
2123     Runtime->GenerateClass(OMD);
2124     break;
2125   }
2126   case Decl::ObjCMethod: {
2127     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2128     // If this is not a prototype, emit the body.
2129     if (OMD->getBody())
2130       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2131     break;
2132   }
2133   case Decl::ObjCCompatibleAlias:
2134     // compatibility-alias is a directive and has no code gen.
2135     break;
2136 
2137   case Decl::LinkageSpec:
2138     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2139     break;
2140 
2141   case Decl::FileScopeAsm: {
2142     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2143     llvm::StringRef AsmString = AD->getAsmString()->getString();
2144 
2145     const std::string &S = getModule().getModuleInlineAsm();
2146     if (S.empty())
2147       getModule().setModuleInlineAsm(AsmString);
2148     else
2149       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2150     break;
2151   }
2152 
2153   default:
2154     // Make sure we handled everything we should, every other kind is a
2155     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2156     // function. Need to recode Decl::Kind to do that easily.
2157     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2158   }
2159 }
2160 
2161 /// Turns the given pointer into a constant.
2162 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2163                                           const void *Ptr) {
2164   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2165   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2166   return llvm::ConstantInt::get(i64, PtrInt);
2167 }
2168 
2169 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2170                                    llvm::NamedMDNode *&GlobalMetadata,
2171                                    GlobalDecl D,
2172                                    llvm::GlobalValue *Addr) {
2173   if (!GlobalMetadata)
2174     GlobalMetadata =
2175       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2176 
2177   // TODO: should we report variant information for ctors/dtors?
2178   llvm::Value *Ops[] = {
2179     Addr,
2180     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2181   };
2182   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2183 }
2184 
2185 /// Emits metadata nodes associating all the global values in the
2186 /// current module with the Decls they came from.  This is useful for
2187 /// projects using IR gen as a subroutine.
2188 ///
2189 /// Since there's currently no way to associate an MDNode directly
2190 /// with an llvm::GlobalValue, we create a global named metadata
2191 /// with the name 'clang.global.decl.ptrs'.
2192 void CodeGenModule::EmitDeclMetadata() {
2193   llvm::NamedMDNode *GlobalMetadata = 0;
2194 
2195   // StaticLocalDeclMap
2196   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2197          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2198        I != E; ++I) {
2199     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2200     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2201   }
2202 }
2203 
2204 /// Emits metadata nodes for all the local variables in the current
2205 /// function.
2206 void CodeGenFunction::EmitDeclMetadata() {
2207   if (LocalDeclMap.empty()) return;
2208 
2209   llvm::LLVMContext &Context = getLLVMContext();
2210 
2211   // Find the unique metadata ID for this name.
2212   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2213 
2214   llvm::NamedMDNode *GlobalMetadata = 0;
2215 
2216   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2217          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2218     const Decl *D = I->first;
2219     llvm::Value *Addr = I->second;
2220 
2221     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2222       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2223       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2224     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2225       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2226       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2227     }
2228   }
2229 }
2230 
2231 void CodeGenModule::EmitCoverageFile() {
2232   if (!getCodeGenOpts().CoverageFile.empty()) {
2233     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2234       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2235       llvm::LLVMContext &Ctx = TheModule.getContext();
2236       llvm::MDString *CoverageFile =
2237           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2238       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2239         llvm::MDNode *CU = CUNode->getOperand(i);
2240         llvm::Value *node[] = { CoverageFile, CU };
2241         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2242         GCov->addOperand(N);
2243       }
2244     }
2245   }
2246 }
2247 
2248 ///@name Custom Runtime Function Interfaces
2249 ///@{
2250 //
2251 // FIXME: These can be eliminated once we can have clients just get the required
2252 // AST nodes from the builtin tables.
2253 
2254 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2255   if (BlockObjectDispose)
2256     return BlockObjectDispose;
2257 
2258   // If we saw an explicit decl, use that.
2259   if (BlockObjectDisposeDecl) {
2260     return BlockObjectDispose = GetAddrOfFunction(
2261       BlockObjectDisposeDecl,
2262       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2263   }
2264 
2265   // Otherwise construct the function by hand.
2266   const llvm::FunctionType *FTy;
2267   std::vector<const llvm::Type*> ArgTys;
2268   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2269   ArgTys.push_back(Int8PtrTy);
2270   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2271   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2272   return BlockObjectDispose =
2273     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2274 }
2275 
2276 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2277   if (BlockObjectAssign)
2278     return BlockObjectAssign;
2279 
2280   // If we saw an explicit decl, use that.
2281   if (BlockObjectAssignDecl) {
2282     return BlockObjectAssign = GetAddrOfFunction(
2283       BlockObjectAssignDecl,
2284       getTypes().GetFunctionType(BlockObjectAssignDecl));
2285   }
2286 
2287   // Otherwise construct the function by hand.
2288   const llvm::FunctionType *FTy;
2289   std::vector<const llvm::Type*> ArgTys;
2290   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2291   ArgTys.push_back(Int8PtrTy);
2292   ArgTys.push_back(Int8PtrTy);
2293   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2294   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2295   return BlockObjectAssign =
2296     CreateRuntimeFunction(FTy, "_Block_object_assign");
2297 }
2298 
2299 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2300   if (NSConcreteGlobalBlock)
2301     return NSConcreteGlobalBlock;
2302 
2303   // If we saw an explicit decl, use that.
2304   if (NSConcreteGlobalBlockDecl) {
2305     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2306       NSConcreteGlobalBlockDecl,
2307       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2308   }
2309 
2310   // Otherwise construct the variable by hand.
2311   return NSConcreteGlobalBlock =
2312     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2313 }
2314 
2315 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2316   if (NSConcreteStackBlock)
2317     return NSConcreteStackBlock;
2318 
2319   // If we saw an explicit decl, use that.
2320   if (NSConcreteStackBlockDecl) {
2321     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2322       NSConcreteStackBlockDecl,
2323       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2324   }
2325 
2326   // Otherwise construct the variable by hand.
2327   return NSConcreteStackBlock =
2328     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2329 }
2330 
2331 ///@}
2332