1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/Stack.h" 48 #include "clang/Basic/TargetInfo.h" 49 #include "clang/Basic/Version.h" 50 #include "clang/CodeGen/BackendUtil.h" 51 #include "clang/CodeGen/ConstantInitBuilder.h" 52 #include "clang/Frontend/FrontendDiagnostic.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/StringExtras.h" 55 #include "llvm/ADT/StringSwitch.h" 56 #include "llvm/Analysis/TargetLibraryInfo.h" 57 #include "llvm/BinaryFormat/ELF.h" 58 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 59 #include "llvm/IR/AttributeMask.h" 60 #include "llvm/IR/CallingConv.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/ProfileSummary.h" 66 #include "llvm/ProfileData/InstrProfReader.h" 67 #include "llvm/ProfileData/SampleProf.h" 68 #include "llvm/Support/CRC.h" 69 #include "llvm/Support/CodeGen.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/ConvertUTF.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/TimeProfiler.h" 74 #include "llvm/Support/xxhash.h" 75 #include "llvm/TargetParser/RISCVISAInfo.h" 76 #include "llvm/TargetParser/Triple.h" 77 #include "llvm/TargetParser/X86TargetParser.h" 78 #include "llvm/Transforms/Utils/BuildLibCalls.h" 79 #include <optional> 80 81 using namespace clang; 82 using namespace CodeGen; 83 84 static llvm::cl::opt<bool> LimitedCoverage( 85 "limited-coverage-experimental", llvm::cl::Hidden, 86 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 87 88 static const char AnnotationSection[] = "llvm.metadata"; 89 90 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 91 switch (CGM.getContext().getCXXABIKind()) { 92 case TargetCXXABI::AppleARM64: 93 case TargetCXXABI::Fuchsia: 94 case TargetCXXABI::GenericAArch64: 95 case TargetCXXABI::GenericARM: 96 case TargetCXXABI::iOS: 97 case TargetCXXABI::WatchOS: 98 case TargetCXXABI::GenericMIPS: 99 case TargetCXXABI::GenericItanium: 100 case TargetCXXABI::WebAssembly: 101 case TargetCXXABI::XL: 102 return CreateItaniumCXXABI(CGM); 103 case TargetCXXABI::Microsoft: 104 return CreateMicrosoftCXXABI(CGM); 105 } 106 107 llvm_unreachable("invalid C++ ABI kind"); 108 } 109 110 static std::unique_ptr<TargetCodeGenInfo> 111 createTargetCodeGenInfo(CodeGenModule &CGM) { 112 const TargetInfo &Target = CGM.getTarget(); 113 const llvm::Triple &Triple = Target.getTriple(); 114 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 115 116 switch (Triple.getArch()) { 117 default: 118 return createDefaultTargetCodeGenInfo(CGM); 119 120 case llvm::Triple::m68k: 121 return createM68kTargetCodeGenInfo(CGM); 122 case llvm::Triple::mips: 123 case llvm::Triple::mipsel: 124 if (Triple.getOS() == llvm::Triple::NaCl) 125 return createPNaClTargetCodeGenInfo(CGM); 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 127 128 case llvm::Triple::mips64: 129 case llvm::Triple::mips64el: 130 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 131 132 case llvm::Triple::avr: { 133 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 134 // on avrtiny. For passing return value, R18~R25 are used on avr, and 135 // R22~R25 are used on avrtiny. 136 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 137 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 138 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 139 } 140 141 case llvm::Triple::aarch64: 142 case llvm::Triple::aarch64_32: 143 case llvm::Triple::aarch64_be: { 144 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 145 if (Target.getABI() == "darwinpcs") 146 Kind = AArch64ABIKind::DarwinPCS; 147 else if (Triple.isOSWindows()) 148 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 149 else if (Target.getABI() == "aapcs-soft") 150 Kind = AArch64ABIKind::AAPCSSoft; 151 else if (Target.getABI() == "pauthtest") 152 Kind = AArch64ABIKind::PAuthTest; 153 154 return createAArch64TargetCodeGenInfo(CGM, Kind); 155 } 156 157 case llvm::Triple::wasm32: 158 case llvm::Triple::wasm64: { 159 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 160 if (Target.getABI() == "experimental-mv") 161 Kind = WebAssemblyABIKind::ExperimentalMV; 162 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 163 } 164 165 case llvm::Triple::arm: 166 case llvm::Triple::armeb: 167 case llvm::Triple::thumb: 168 case llvm::Triple::thumbeb: { 169 if (Triple.getOS() == llvm::Triple::Win32) 170 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 171 172 ARMABIKind Kind = ARMABIKind::AAPCS; 173 StringRef ABIStr = Target.getABI(); 174 if (ABIStr == "apcs-gnu") 175 Kind = ARMABIKind::APCS; 176 else if (ABIStr == "aapcs16") 177 Kind = ARMABIKind::AAPCS16_VFP; 178 else if (CodeGenOpts.FloatABI == "hard" || 179 (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI())) 180 Kind = ARMABIKind::AAPCS_VFP; 181 182 return createARMTargetCodeGenInfo(CGM, Kind); 183 } 184 185 case llvm::Triple::ppc: { 186 if (Triple.isOSAIX()) 187 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 188 189 bool IsSoftFloat = 190 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 191 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 192 } 193 case llvm::Triple::ppcle: { 194 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 195 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 196 } 197 case llvm::Triple::ppc64: 198 if (Triple.isOSAIX()) 199 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 200 201 if (Triple.isOSBinFormatELF()) { 202 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 203 if (Target.getABI() == "elfv2") 204 Kind = PPC64_SVR4_ABIKind::ELFv2; 205 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 206 207 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 208 } 209 return createPPC64TargetCodeGenInfo(CGM); 210 case llvm::Triple::ppc64le: { 211 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 212 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 213 if (Target.getABI() == "elfv1") 214 Kind = PPC64_SVR4_ABIKind::ELFv1; 215 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 216 217 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 218 } 219 220 case llvm::Triple::nvptx: 221 case llvm::Triple::nvptx64: 222 return createNVPTXTargetCodeGenInfo(CGM); 223 224 case llvm::Triple::msp430: 225 return createMSP430TargetCodeGenInfo(CGM); 226 227 case llvm::Triple::riscv32: 228 case llvm::Triple::riscv64: { 229 StringRef ABIStr = Target.getABI(); 230 unsigned XLen = Target.getPointerWidth(LangAS::Default); 231 unsigned ABIFLen = 0; 232 if (ABIStr.ends_with("f")) 233 ABIFLen = 32; 234 else if (ABIStr.ends_with("d")) 235 ABIFLen = 64; 236 bool EABI = ABIStr.ends_with("e"); 237 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 238 } 239 240 case llvm::Triple::systemz: { 241 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 242 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 243 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 244 } 245 246 case llvm::Triple::tce: 247 case llvm::Triple::tcele: 248 return createTCETargetCodeGenInfo(CGM); 249 250 case llvm::Triple::x86: { 251 bool IsDarwinVectorABI = Triple.isOSDarwin(); 252 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 253 254 if (Triple.getOS() == llvm::Triple::Win32) { 255 return createWinX86_32TargetCodeGenInfo( 256 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 257 CodeGenOpts.NumRegisterParameters); 258 } 259 return createX86_32TargetCodeGenInfo( 260 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 261 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 262 } 263 264 case llvm::Triple::x86_64: { 265 StringRef ABI = Target.getABI(); 266 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 267 : ABI == "avx" ? X86AVXABILevel::AVX 268 : X86AVXABILevel::None); 269 270 switch (Triple.getOS()) { 271 case llvm::Triple::Win32: 272 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 273 default: 274 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 } 276 } 277 case llvm::Triple::hexagon: 278 return createHexagonTargetCodeGenInfo(CGM); 279 case llvm::Triple::lanai: 280 return createLanaiTargetCodeGenInfo(CGM); 281 case llvm::Triple::r600: 282 return createAMDGPUTargetCodeGenInfo(CGM); 283 case llvm::Triple::amdgcn: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::sparc: 286 return createSparcV8TargetCodeGenInfo(CGM); 287 case llvm::Triple::sparcv9: 288 return createSparcV9TargetCodeGenInfo(CGM); 289 case llvm::Triple::xcore: 290 return createXCoreTargetCodeGenInfo(CGM); 291 case llvm::Triple::arc: 292 return createARCTargetCodeGenInfo(CGM); 293 case llvm::Triple::spir: 294 case llvm::Triple::spir64: 295 return createCommonSPIRTargetCodeGenInfo(CGM); 296 case llvm::Triple::spirv32: 297 case llvm::Triple::spirv64: 298 case llvm::Triple::spirv: 299 return createSPIRVTargetCodeGenInfo(CGM); 300 case llvm::Triple::dxil: 301 return createDirectXTargetCodeGenInfo(CGM); 302 case llvm::Triple::ve: 303 return createVETargetCodeGenInfo(CGM); 304 case llvm::Triple::csky: { 305 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 306 bool hasFP64 = 307 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 308 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 309 : hasFP64 ? 64 310 : 32); 311 } 312 case llvm::Triple::bpfeb: 313 case llvm::Triple::bpfel: 314 return createBPFTargetCodeGenInfo(CGM); 315 case llvm::Triple::loongarch32: 316 case llvm::Triple::loongarch64: { 317 StringRef ABIStr = Target.getABI(); 318 unsigned ABIFRLen = 0; 319 if (ABIStr.ends_with("f")) 320 ABIFRLen = 32; 321 else if (ABIStr.ends_with("d")) 322 ABIFRLen = 64; 323 return createLoongArchTargetCodeGenInfo( 324 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 325 } 326 } 327 } 328 329 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 330 if (!TheTargetCodeGenInfo) 331 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 332 return *TheTargetCodeGenInfo; 333 } 334 335 CodeGenModule::CodeGenModule(ASTContext &C, 336 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 337 const HeaderSearchOptions &HSO, 338 const PreprocessorOptions &PPO, 339 const CodeGenOptions &CGO, llvm::Module &M, 340 DiagnosticsEngine &diags, 341 CoverageSourceInfo *CoverageInfo) 342 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 343 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 344 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 345 VMContext(M.getContext()), VTables(*this), 346 SanitizerMD(new SanitizerMetadata(*this)) { 347 348 // Initialize the type cache. 349 Types.reset(new CodeGenTypes(*this)); 350 llvm::LLVMContext &LLVMContext = M.getContext(); 351 VoidTy = llvm::Type::getVoidTy(LLVMContext); 352 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 353 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 354 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 355 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 356 HalfTy = llvm::Type::getHalfTy(LLVMContext); 357 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 358 FloatTy = llvm::Type::getFloatTy(LLVMContext); 359 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 360 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 361 PointerAlignInBytes = 362 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 363 .getQuantity(); 364 SizeSizeInBytes = 365 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 366 IntAlignInBytes = 367 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 368 CharTy = 369 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 370 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 371 IntPtrTy = llvm::IntegerType::get(LLVMContext, 372 C.getTargetInfo().getMaxPointerWidth()); 373 Int8PtrTy = llvm::PointerType::get(LLVMContext, 374 C.getTargetAddressSpace(LangAS::Default)); 375 const llvm::DataLayout &DL = M.getDataLayout(); 376 AllocaInt8PtrTy = 377 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 378 GlobalsInt8PtrTy = 379 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 380 ConstGlobalsPtrTy = llvm::PointerType::get( 381 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 382 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 383 384 // Build C++20 Module initializers. 385 // TODO: Add Microsoft here once we know the mangling required for the 386 // initializers. 387 CXX20ModuleInits = 388 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 389 ItaniumMangleContext::MK_Itanium; 390 391 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 392 393 if (LangOpts.ObjC) 394 createObjCRuntime(); 395 if (LangOpts.OpenCL) 396 createOpenCLRuntime(); 397 if (LangOpts.OpenMP) 398 createOpenMPRuntime(); 399 if (LangOpts.CUDA) 400 createCUDARuntime(); 401 if (LangOpts.HLSL) 402 createHLSLRuntime(); 403 404 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 405 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 406 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 407 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 408 getLangOpts())); 409 410 // If debug info or coverage generation is enabled, create the CGDebugInfo 411 // object. 412 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 413 CodeGenOpts.CoverageNotesFile.size() || 414 CodeGenOpts.CoverageDataFile.size()) 415 DebugInfo.reset(new CGDebugInfo(*this)); 416 417 Block.GlobalUniqueCount = 0; 418 419 if (C.getLangOpts().ObjC) 420 ObjCData.reset(new ObjCEntrypoints()); 421 422 if (CodeGenOpts.hasProfileClangUse()) { 423 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 424 CodeGenOpts.ProfileInstrumentUsePath, *FS, 425 CodeGenOpts.ProfileRemappingFile); 426 // We're checking for profile read errors in CompilerInvocation, so if 427 // there was an error it should've already been caught. If it hasn't been 428 // somehow, trip an assertion. 429 assert(ReaderOrErr); 430 PGOReader = std::move(ReaderOrErr.get()); 431 } 432 433 // If coverage mapping generation is enabled, create the 434 // CoverageMappingModuleGen object. 435 if (CodeGenOpts.CoverageMapping) 436 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 437 438 // Generate the module name hash here if needed. 439 if (CodeGenOpts.UniqueInternalLinkageNames && 440 !getModule().getSourceFileName().empty()) { 441 std::string Path = getModule().getSourceFileName(); 442 // Check if a path substitution is needed from the MacroPrefixMap. 443 for (const auto &Entry : LangOpts.MacroPrefixMap) 444 if (Path.rfind(Entry.first, 0) != std::string::npos) { 445 Path = Entry.second + Path.substr(Entry.first.size()); 446 break; 447 } 448 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 449 } 450 451 // Record mregparm value now so it is visible through all of codegen. 452 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 453 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 454 CodeGenOpts.NumRegisterParameters); 455 } 456 457 CodeGenModule::~CodeGenModule() {} 458 459 void CodeGenModule::createObjCRuntime() { 460 // This is just isGNUFamily(), but we want to force implementors of 461 // new ABIs to decide how best to do this. 462 switch (LangOpts.ObjCRuntime.getKind()) { 463 case ObjCRuntime::GNUstep: 464 case ObjCRuntime::GCC: 465 case ObjCRuntime::ObjFW: 466 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 467 return; 468 469 case ObjCRuntime::FragileMacOSX: 470 case ObjCRuntime::MacOSX: 471 case ObjCRuntime::iOS: 472 case ObjCRuntime::WatchOS: 473 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 474 return; 475 } 476 llvm_unreachable("bad runtime kind"); 477 } 478 479 void CodeGenModule::createOpenCLRuntime() { 480 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 481 } 482 483 void CodeGenModule::createOpenMPRuntime() { 484 // Select a specialized code generation class based on the target, if any. 485 // If it does not exist use the default implementation. 486 switch (getTriple().getArch()) { 487 case llvm::Triple::nvptx: 488 case llvm::Triple::nvptx64: 489 case llvm::Triple::amdgcn: 490 assert(getLangOpts().OpenMPIsTargetDevice && 491 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 492 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 493 break; 494 default: 495 if (LangOpts.OpenMPSimd) 496 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 497 else 498 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 499 break; 500 } 501 } 502 503 void CodeGenModule::createCUDARuntime() { 504 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 505 } 506 507 void CodeGenModule::createHLSLRuntime() { 508 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 509 } 510 511 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 512 Replacements[Name] = C; 513 } 514 515 void CodeGenModule::applyReplacements() { 516 for (auto &I : Replacements) { 517 StringRef MangledName = I.first; 518 llvm::Constant *Replacement = I.second; 519 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 520 if (!Entry) 521 continue; 522 auto *OldF = cast<llvm::Function>(Entry); 523 auto *NewF = dyn_cast<llvm::Function>(Replacement); 524 if (!NewF) { 525 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 526 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 527 } else { 528 auto *CE = cast<llvm::ConstantExpr>(Replacement); 529 assert(CE->getOpcode() == llvm::Instruction::BitCast || 530 CE->getOpcode() == llvm::Instruction::GetElementPtr); 531 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 532 } 533 } 534 535 // Replace old with new, but keep the old order. 536 OldF->replaceAllUsesWith(Replacement); 537 if (NewF) { 538 NewF->removeFromParent(); 539 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 540 NewF); 541 } 542 OldF->eraseFromParent(); 543 } 544 } 545 546 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 547 GlobalValReplacements.push_back(std::make_pair(GV, C)); 548 } 549 550 void CodeGenModule::applyGlobalValReplacements() { 551 for (auto &I : GlobalValReplacements) { 552 llvm::GlobalValue *GV = I.first; 553 llvm::Constant *C = I.second; 554 555 GV->replaceAllUsesWith(C); 556 GV->eraseFromParent(); 557 } 558 } 559 560 // This is only used in aliases that we created and we know they have a 561 // linear structure. 562 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 563 const llvm::Constant *C; 564 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 565 C = GA->getAliasee(); 566 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 567 C = GI->getResolver(); 568 else 569 return GV; 570 571 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 572 if (!AliaseeGV) 573 return nullptr; 574 575 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 576 if (FinalGV == GV) 577 return nullptr; 578 579 return FinalGV; 580 } 581 582 static bool checkAliasedGlobal( 583 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 584 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 585 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 586 SourceRange AliasRange) { 587 GV = getAliasedGlobal(Alias); 588 if (!GV) { 589 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 590 return false; 591 } 592 593 if (GV->hasCommonLinkage()) { 594 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 595 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 596 Diags.Report(Location, diag::err_alias_to_common); 597 return false; 598 } 599 } 600 601 if (GV->isDeclaration()) { 602 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 603 Diags.Report(Location, diag::note_alias_requires_mangled_name) 604 << IsIFunc << IsIFunc; 605 // Provide a note if the given function is not found and exists as a 606 // mangled name. 607 for (const auto &[Decl, Name] : MangledDeclNames) { 608 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 609 if (ND->getName() == GV->getName()) { 610 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 611 << Name 612 << FixItHint::CreateReplacement( 613 AliasRange, 614 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 615 .str()); 616 } 617 } 618 } 619 return false; 620 } 621 622 if (IsIFunc) { 623 // Check resolver function type. 624 const auto *F = dyn_cast<llvm::Function>(GV); 625 if (!F) { 626 Diags.Report(Location, diag::err_alias_to_undefined) 627 << IsIFunc << IsIFunc; 628 return false; 629 } 630 631 llvm::FunctionType *FTy = F->getFunctionType(); 632 if (!FTy->getReturnType()->isPointerTy()) { 633 Diags.Report(Location, diag::err_ifunc_resolver_return); 634 return false; 635 } 636 } 637 638 return true; 639 } 640 641 // Emit a warning if toc-data attribute is requested for global variables that 642 // have aliases and remove the toc-data attribute. 643 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 644 const CodeGenOptions &CodeGenOpts, 645 DiagnosticsEngine &Diags, 646 SourceLocation Location) { 647 if (GVar->hasAttribute("toc-data")) { 648 auto GVId = GVar->getName(); 649 // Is this a global variable specified by the user as local? 650 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 651 Diags.Report(Location, diag::warn_toc_unsupported_type) 652 << GVId << "the variable has an alias"; 653 } 654 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 655 llvm::AttributeSet NewAttributes = 656 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 657 GVar->setAttributes(NewAttributes); 658 } 659 } 660 661 void CodeGenModule::checkAliases() { 662 // Check if the constructed aliases are well formed. It is really unfortunate 663 // that we have to do this in CodeGen, but we only construct mangled names 664 // and aliases during codegen. 665 bool Error = false; 666 DiagnosticsEngine &Diags = getDiags(); 667 for (const GlobalDecl &GD : Aliases) { 668 const auto *D = cast<ValueDecl>(GD.getDecl()); 669 SourceLocation Location; 670 SourceRange Range; 671 bool IsIFunc = D->hasAttr<IFuncAttr>(); 672 if (const Attr *A = D->getDefiningAttr()) { 673 Location = A->getLocation(); 674 Range = A->getRange(); 675 } else 676 llvm_unreachable("Not an alias or ifunc?"); 677 678 StringRef MangledName = getMangledName(GD); 679 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 680 const llvm::GlobalValue *GV = nullptr; 681 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 682 MangledDeclNames, Range)) { 683 Error = true; 684 continue; 685 } 686 687 if (getContext().getTargetInfo().getTriple().isOSAIX()) 688 if (const llvm::GlobalVariable *GVar = 689 dyn_cast<const llvm::GlobalVariable>(GV)) 690 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 691 getCodeGenOpts(), Diags, Location); 692 693 llvm::Constant *Aliasee = 694 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 695 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 696 697 llvm::GlobalValue *AliaseeGV; 698 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 699 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 700 else 701 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 702 703 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 704 StringRef AliasSection = SA->getName(); 705 if (AliasSection != AliaseeGV->getSection()) 706 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 707 << AliasSection << IsIFunc << IsIFunc; 708 } 709 710 // We have to handle alias to weak aliases in here. LLVM itself disallows 711 // this since the object semantics would not match the IL one. For 712 // compatibility with gcc we implement it by just pointing the alias 713 // to its aliasee's aliasee. We also warn, since the user is probably 714 // expecting the link to be weak. 715 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 716 if (GA->isInterposable()) { 717 Diags.Report(Location, diag::warn_alias_to_weak_alias) 718 << GV->getName() << GA->getName() << IsIFunc; 719 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 720 GA->getAliasee(), Alias->getType()); 721 722 if (IsIFunc) 723 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 724 else 725 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 726 } 727 } 728 // ifunc resolvers are usually implemented to run before sanitizer 729 // initialization. Disable instrumentation to prevent the ordering issue. 730 if (IsIFunc) 731 cast<llvm::Function>(Aliasee)->addFnAttr( 732 llvm::Attribute::DisableSanitizerInstrumentation); 733 } 734 if (!Error) 735 return; 736 737 for (const GlobalDecl &GD : Aliases) { 738 StringRef MangledName = getMangledName(GD); 739 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 740 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 741 Alias->eraseFromParent(); 742 } 743 } 744 745 void CodeGenModule::clear() { 746 DeferredDeclsToEmit.clear(); 747 EmittedDeferredDecls.clear(); 748 DeferredAnnotations.clear(); 749 if (OpenMPRuntime) 750 OpenMPRuntime->clear(); 751 } 752 753 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 754 StringRef MainFile) { 755 if (!hasDiagnostics()) 756 return; 757 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 758 if (MainFile.empty()) 759 MainFile = "<stdin>"; 760 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 761 } else { 762 if (Mismatched > 0) 763 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 764 765 if (Missing > 0) 766 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 767 } 768 } 769 770 static std::optional<llvm::GlobalValue::VisibilityTypes> 771 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 772 // Map to LLVM visibility. 773 switch (K) { 774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 775 return std::nullopt; 776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 777 return llvm::GlobalValue::DefaultVisibility; 778 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 779 return llvm::GlobalValue::HiddenVisibility; 780 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 781 return llvm::GlobalValue::ProtectedVisibility; 782 } 783 llvm_unreachable("unknown option value!"); 784 } 785 786 static void 787 setLLVMVisibility(llvm::GlobalValue &GV, 788 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 789 if (!V) 790 return; 791 792 // Reset DSO locality before setting the visibility. This removes 793 // any effects that visibility options and annotations may have 794 // had on the DSO locality. Setting the visibility will implicitly set 795 // appropriate globals to DSO Local; however, this will be pessimistic 796 // w.r.t. to the normal compiler IRGen. 797 GV.setDSOLocal(false); 798 GV.setVisibility(*V); 799 } 800 801 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 802 llvm::Module &M) { 803 if (!LO.VisibilityFromDLLStorageClass) 804 return; 805 806 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 807 getLLVMVisibility(LO.getDLLExportVisibility()); 808 809 std::optional<llvm::GlobalValue::VisibilityTypes> 810 NoDLLStorageClassVisibility = 811 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 812 813 std::optional<llvm::GlobalValue::VisibilityTypes> 814 ExternDeclDLLImportVisibility = 815 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 816 817 std::optional<llvm::GlobalValue::VisibilityTypes> 818 ExternDeclNoDLLStorageClassVisibility = 819 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 820 821 for (llvm::GlobalValue &GV : M.global_values()) { 822 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 823 continue; 824 825 if (GV.isDeclarationForLinker()) 826 setLLVMVisibility(GV, GV.getDLLStorageClass() == 827 llvm::GlobalValue::DLLImportStorageClass 828 ? ExternDeclDLLImportVisibility 829 : ExternDeclNoDLLStorageClassVisibility); 830 else 831 setLLVMVisibility(GV, GV.getDLLStorageClass() == 832 llvm::GlobalValue::DLLExportStorageClass 833 ? DLLExportVisibility 834 : NoDLLStorageClassVisibility); 835 836 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 837 } 838 } 839 840 static bool isStackProtectorOn(const LangOptions &LangOpts, 841 const llvm::Triple &Triple, 842 clang::LangOptions::StackProtectorMode Mode) { 843 if (Triple.isAMDGPU() || Triple.isNVPTX()) 844 return false; 845 return LangOpts.getStackProtector() == Mode; 846 } 847 848 void CodeGenModule::Release() { 849 Module *Primary = getContext().getCurrentNamedModule(); 850 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 851 EmitModuleInitializers(Primary); 852 EmitDeferred(); 853 DeferredDecls.insert(EmittedDeferredDecls.begin(), 854 EmittedDeferredDecls.end()); 855 EmittedDeferredDecls.clear(); 856 EmitVTablesOpportunistically(); 857 applyGlobalValReplacements(); 858 applyReplacements(); 859 emitMultiVersionFunctions(); 860 861 if (Context.getLangOpts().IncrementalExtensions && 862 GlobalTopLevelStmtBlockInFlight.first) { 863 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 864 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 865 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 866 } 867 868 // Module implementations are initialized the same way as a regular TU that 869 // imports one or more modules. 870 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 871 EmitCXXModuleInitFunc(Primary); 872 else 873 EmitCXXGlobalInitFunc(); 874 EmitCXXGlobalCleanUpFunc(); 875 registerGlobalDtorsWithAtExit(); 876 EmitCXXThreadLocalInitFunc(); 877 if (ObjCRuntime) 878 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 879 AddGlobalCtor(ObjCInitFunction); 880 if (Context.getLangOpts().CUDA && CUDARuntime) { 881 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 882 AddGlobalCtor(CudaCtorFunction); 883 } 884 if (OpenMPRuntime) { 885 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 886 OpenMPRuntime->clear(); 887 } 888 if (PGOReader) { 889 getModule().setProfileSummary( 890 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 891 llvm::ProfileSummary::PSK_Instr); 892 if (PGOStats.hasDiagnostics()) 893 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 894 } 895 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 896 return L.LexOrder < R.LexOrder; 897 }); 898 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 899 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 900 EmitGlobalAnnotations(); 901 EmitStaticExternCAliases(); 902 checkAliases(); 903 EmitDeferredUnusedCoverageMappings(); 904 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 905 CodeGenPGO(*this).setProfileVersion(getModule()); 906 if (CoverageMapping) 907 CoverageMapping->emit(); 908 if (CodeGenOpts.SanitizeCfiCrossDso) { 909 CodeGenFunction(*this).EmitCfiCheckFail(); 910 CodeGenFunction(*this).EmitCfiCheckStub(); 911 } 912 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 913 finalizeKCFITypes(); 914 emitAtAvailableLinkGuard(); 915 if (Context.getTargetInfo().getTriple().isWasm()) 916 EmitMainVoidAlias(); 917 918 if (getTriple().isAMDGPU() || 919 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 920 // Emit amdhsa_code_object_version module flag, which is code object version 921 // times 100. 922 if (getTarget().getTargetOpts().CodeObjectVersion != 923 llvm::CodeObjectVersionKind::COV_None) { 924 getModule().addModuleFlag(llvm::Module::Error, 925 "amdhsa_code_object_version", 926 getTarget().getTargetOpts().CodeObjectVersion); 927 } 928 929 // Currently, "-mprintf-kind" option is only supported for HIP 930 if (LangOpts.HIP) { 931 auto *MDStr = llvm::MDString::get( 932 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 933 TargetOptions::AMDGPUPrintfKind::Hostcall) 934 ? "hostcall" 935 : "buffered"); 936 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 937 MDStr); 938 } 939 } 940 941 // Emit a global array containing all external kernels or device variables 942 // used by host functions and mark it as used for CUDA/HIP. This is necessary 943 // to get kernels or device variables in archives linked in even if these 944 // kernels or device variables are only used in host functions. 945 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 946 SmallVector<llvm::Constant *, 8> UsedArray; 947 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 948 GlobalDecl GD; 949 if (auto *FD = dyn_cast<FunctionDecl>(D)) 950 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 951 else 952 GD = GlobalDecl(D); 953 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 954 GetAddrOfGlobal(GD), Int8PtrTy)); 955 } 956 957 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 958 959 auto *GV = new llvm::GlobalVariable( 960 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 961 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 962 addCompilerUsedGlobal(GV); 963 } 964 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 965 // Emit a unique ID so that host and device binaries from the same 966 // compilation unit can be associated. 967 auto *GV = new llvm::GlobalVariable( 968 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 969 llvm::Constant::getNullValue(Int8Ty), 970 "__hip_cuid_" + getContext().getCUIDHash()); 971 addCompilerUsedGlobal(GV); 972 } 973 emitLLVMUsed(); 974 if (SanStats) 975 SanStats->finish(); 976 977 if (CodeGenOpts.Autolink && 978 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 979 EmitModuleLinkOptions(); 980 } 981 982 // On ELF we pass the dependent library specifiers directly to the linker 983 // without manipulating them. This is in contrast to other platforms where 984 // they are mapped to a specific linker option by the compiler. This 985 // difference is a result of the greater variety of ELF linkers and the fact 986 // that ELF linkers tend to handle libraries in a more complicated fashion 987 // than on other platforms. This forces us to defer handling the dependent 988 // libs to the linker. 989 // 990 // CUDA/HIP device and host libraries are different. Currently there is no 991 // way to differentiate dependent libraries for host or device. Existing 992 // usage of #pragma comment(lib, *) is intended for host libraries on 993 // Windows. Therefore emit llvm.dependent-libraries only for host. 994 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 995 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 996 for (auto *MD : ELFDependentLibraries) 997 NMD->addOperand(MD); 998 } 999 1000 if (CodeGenOpts.DwarfVersion) { 1001 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 1002 CodeGenOpts.DwarfVersion); 1003 } 1004 1005 if (CodeGenOpts.Dwarf64) 1006 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1007 1008 if (Context.getLangOpts().SemanticInterposition) 1009 // Require various optimization to respect semantic interposition. 1010 getModule().setSemanticInterposition(true); 1011 1012 if (CodeGenOpts.EmitCodeView) { 1013 // Indicate that we want CodeView in the metadata. 1014 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1015 } 1016 if (CodeGenOpts.CodeViewGHash) { 1017 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1018 } 1019 if (CodeGenOpts.ControlFlowGuard) { 1020 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1021 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1022 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1023 // Function ID tables for Control Flow Guard (cfguard=1). 1024 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1025 } 1026 if (CodeGenOpts.EHContGuard) { 1027 // Function ID tables for EH Continuation Guard. 1028 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1029 } 1030 if (Context.getLangOpts().Kernel) { 1031 // Note if we are compiling with /kernel. 1032 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1033 } 1034 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1035 // We don't support LTO with 2 with different StrictVTablePointers 1036 // FIXME: we could support it by stripping all the information introduced 1037 // by StrictVTablePointers. 1038 1039 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1040 1041 llvm::Metadata *Ops[2] = { 1042 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1043 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1044 llvm::Type::getInt32Ty(VMContext), 1))}; 1045 1046 getModule().addModuleFlag(llvm::Module::Require, 1047 "StrictVTablePointersRequirement", 1048 llvm::MDNode::get(VMContext, Ops)); 1049 } 1050 if (getModuleDebugInfo()) 1051 // We support a single version in the linked module. The LLVM 1052 // parser will drop debug info with a different version number 1053 // (and warn about it, too). 1054 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1055 llvm::DEBUG_METADATA_VERSION); 1056 1057 // We need to record the widths of enums and wchar_t, so that we can generate 1058 // the correct build attributes in the ARM backend. wchar_size is also used by 1059 // TargetLibraryInfo. 1060 uint64_t WCharWidth = 1061 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1062 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1063 1064 if (getTriple().isOSzOS()) { 1065 getModule().addModuleFlag(llvm::Module::Warning, 1066 "zos_product_major_version", 1067 uint32_t(CLANG_VERSION_MAJOR)); 1068 getModule().addModuleFlag(llvm::Module::Warning, 1069 "zos_product_minor_version", 1070 uint32_t(CLANG_VERSION_MINOR)); 1071 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1072 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1073 std::string ProductId = getClangVendor() + "clang"; 1074 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1075 llvm::MDString::get(VMContext, ProductId)); 1076 1077 // Record the language because we need it for the PPA2. 1078 StringRef lang_str = languageToString( 1079 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1080 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1081 llvm::MDString::get(VMContext, lang_str)); 1082 1083 time_t TT = PreprocessorOpts.SourceDateEpoch 1084 ? *PreprocessorOpts.SourceDateEpoch 1085 : std::time(nullptr); 1086 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1087 static_cast<uint64_t>(TT)); 1088 1089 // Multiple modes will be supported here. 1090 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1091 llvm::MDString::get(VMContext, "ascii")); 1092 } 1093 1094 llvm::Triple T = Context.getTargetInfo().getTriple(); 1095 if (T.isARM() || T.isThumb()) { 1096 // The minimum width of an enum in bytes 1097 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1098 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1099 } 1100 1101 if (T.isRISCV()) { 1102 StringRef ABIStr = Target.getABI(); 1103 llvm::LLVMContext &Ctx = TheModule.getContext(); 1104 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1105 llvm::MDString::get(Ctx, ABIStr)); 1106 1107 // Add the canonical ISA string as metadata so the backend can set the ELF 1108 // attributes correctly. We use AppendUnique so LTO will keep all of the 1109 // unique ISA strings that were linked together. 1110 const std::vector<std::string> &Features = 1111 getTarget().getTargetOpts().Features; 1112 auto ParseResult = 1113 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1114 if (!errorToBool(ParseResult.takeError())) 1115 getModule().addModuleFlag( 1116 llvm::Module::AppendUnique, "riscv-isa", 1117 llvm::MDNode::get( 1118 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1119 } 1120 1121 if (CodeGenOpts.SanitizeCfiCrossDso) { 1122 // Indicate that we want cross-DSO control flow integrity checks. 1123 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1124 } 1125 1126 if (CodeGenOpts.WholeProgramVTables) { 1127 // Indicate whether VFE was enabled for this module, so that the 1128 // vcall_visibility metadata added under whole program vtables is handled 1129 // appropriately in the optimizer. 1130 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1131 CodeGenOpts.VirtualFunctionElimination); 1132 } 1133 1134 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1135 getModule().addModuleFlag(llvm::Module::Override, 1136 "CFI Canonical Jump Tables", 1137 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1138 } 1139 1140 if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) { 1141 getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers", 1142 1); 1143 } 1144 1145 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1146 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1147 // KCFI assumes patchable-function-prefix is the same for all indirectly 1148 // called functions. Store the expected offset for code generation. 1149 if (CodeGenOpts.PatchableFunctionEntryOffset) 1150 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1151 CodeGenOpts.PatchableFunctionEntryOffset); 1152 } 1153 1154 if (CodeGenOpts.CFProtectionReturn && 1155 Target.checkCFProtectionReturnSupported(getDiags())) { 1156 // Indicate that we want to instrument return control flow protection. 1157 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1158 1); 1159 } 1160 1161 if (CodeGenOpts.CFProtectionBranch && 1162 Target.checkCFProtectionBranchSupported(getDiags())) { 1163 // Indicate that we want to instrument branch control flow protection. 1164 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1165 1); 1166 1167 auto Scheme = CodeGenOpts.getCFBranchLabelScheme(); 1168 if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) { 1169 if (Scheme == CFBranchLabelSchemeKind::Default) 1170 Scheme = Target.getDefaultCFBranchLabelScheme(); 1171 getModule().addModuleFlag( 1172 llvm::Module::Error, "cf-branch-label-scheme", 1173 llvm::MDString::get(getLLVMContext(), 1174 getCFBranchLabelSchemeFlagVal(Scheme))); 1175 } 1176 } 1177 1178 if (CodeGenOpts.FunctionReturnThunks) 1179 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1180 1181 if (CodeGenOpts.IndirectBranchCSPrefix) 1182 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1183 1184 // Add module metadata for return address signing (ignoring 1185 // non-leaf/all) and stack tagging. These are actually turned on by function 1186 // attributes, but we use module metadata to emit build attributes. This is 1187 // needed for LTO, where the function attributes are inside bitcode 1188 // serialised into a global variable by the time build attributes are 1189 // emitted, so we can't access them. LTO objects could be compiled with 1190 // different flags therefore module flags are set to "Min" behavior to achieve 1191 // the same end result of the normal build where e.g BTI is off if any object 1192 // doesn't support it. 1193 if (Context.getTargetInfo().hasFeature("ptrauth") && 1194 LangOpts.getSignReturnAddressScope() != 1195 LangOptions::SignReturnAddressScopeKind::None) 1196 getModule().addModuleFlag(llvm::Module::Override, 1197 "sign-return-address-buildattr", 1); 1198 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1199 getModule().addModuleFlag(llvm::Module::Override, 1200 "tag-stack-memory-buildattr", 1); 1201 1202 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1203 if (LangOpts.BranchTargetEnforcement) 1204 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1205 1); 1206 if (LangOpts.BranchProtectionPAuthLR) 1207 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1208 1); 1209 if (LangOpts.GuardedControlStack) 1210 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1211 if (LangOpts.hasSignReturnAddress()) 1212 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1213 if (LangOpts.isSignReturnAddressScopeAll()) 1214 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1215 1); 1216 if (!LangOpts.isSignReturnAddressWithAKey()) 1217 getModule().addModuleFlag(llvm::Module::Min, 1218 "sign-return-address-with-bkey", 1); 1219 1220 if (getTriple().isOSLinux()) { 1221 assert(getTriple().isOSBinFormatELF()); 1222 using namespace llvm::ELF; 1223 uint64_t PAuthABIVersion = 1224 (LangOpts.PointerAuthIntrinsics 1225 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1226 (LangOpts.PointerAuthCalls 1227 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1228 (LangOpts.PointerAuthReturns 1229 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1230 (LangOpts.PointerAuthAuthTraps 1231 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1232 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1233 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1234 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1235 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1236 (LangOpts.PointerAuthInitFini 1237 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) | 1238 (LangOpts.PointerAuthInitFiniAddressDiscrimination 1239 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) | 1240 (LangOpts.PointerAuthELFGOT 1241 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) | 1242 (LangOpts.PointerAuthIndirectGotos 1243 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) | 1244 (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination 1245 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) | 1246 (LangOpts.PointerAuthFunctionTypeDiscrimination 1247 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR); 1248 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR == 1249 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1250 "Update when new enum items are defined"); 1251 if (PAuthABIVersion != 0) { 1252 getModule().addModuleFlag(llvm::Module::Error, 1253 "aarch64-elf-pauthabi-platform", 1254 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1255 getModule().addModuleFlag(llvm::Module::Error, 1256 "aarch64-elf-pauthabi-version", 1257 PAuthABIVersion); 1258 } 1259 } 1260 } 1261 1262 if (CodeGenOpts.StackClashProtector) 1263 getModule().addModuleFlag( 1264 llvm::Module::Override, "probe-stack", 1265 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1266 1267 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1268 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1269 CodeGenOpts.StackProbeSize); 1270 1271 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1272 llvm::LLVMContext &Ctx = TheModule.getContext(); 1273 getModule().addModuleFlag( 1274 llvm::Module::Error, "MemProfProfileFilename", 1275 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1276 } 1277 1278 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1279 // Indicate whether __nvvm_reflect should be configured to flush denormal 1280 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1281 // property.) 1282 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1283 CodeGenOpts.FP32DenormalMode.Output != 1284 llvm::DenormalMode::IEEE); 1285 } 1286 1287 if (LangOpts.EHAsynch) 1288 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1289 1290 // Indicate whether this Module was compiled with -fopenmp 1291 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1292 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1293 if (getLangOpts().OpenMPIsTargetDevice) 1294 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1295 LangOpts.OpenMP); 1296 1297 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1298 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1299 EmitOpenCLMetadata(); 1300 // Emit SPIR version. 1301 if (getTriple().isSPIR()) { 1302 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1303 // opencl.spir.version named metadata. 1304 // C++ for OpenCL has a distinct mapping for version compatibility with 1305 // OpenCL. 1306 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1307 llvm::Metadata *SPIRVerElts[] = { 1308 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1309 Int32Ty, Version / 100)), 1310 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1311 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1312 llvm::NamedMDNode *SPIRVerMD = 1313 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1314 llvm::LLVMContext &Ctx = TheModule.getContext(); 1315 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1316 } 1317 } 1318 1319 // HLSL related end of code gen work items. 1320 if (LangOpts.HLSL) 1321 getHLSLRuntime().finishCodeGen(); 1322 1323 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1324 assert(PLevel < 3 && "Invalid PIC Level"); 1325 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1326 if (Context.getLangOpts().PIE) 1327 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1328 } 1329 1330 if (getCodeGenOpts().CodeModel.size() > 0) { 1331 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1332 .Case("tiny", llvm::CodeModel::Tiny) 1333 .Case("small", llvm::CodeModel::Small) 1334 .Case("kernel", llvm::CodeModel::Kernel) 1335 .Case("medium", llvm::CodeModel::Medium) 1336 .Case("large", llvm::CodeModel::Large) 1337 .Default(~0u); 1338 if (CM != ~0u) { 1339 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1340 getModule().setCodeModel(codeModel); 1341 1342 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1343 Context.getTargetInfo().getTriple().getArch() == 1344 llvm::Triple::x86_64) { 1345 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1346 } 1347 } 1348 } 1349 1350 if (CodeGenOpts.NoPLT) 1351 getModule().setRtLibUseGOT(); 1352 if (getTriple().isOSBinFormatELF() && 1353 CodeGenOpts.DirectAccessExternalData != 1354 getModule().getDirectAccessExternalData()) { 1355 getModule().setDirectAccessExternalData( 1356 CodeGenOpts.DirectAccessExternalData); 1357 } 1358 if (CodeGenOpts.UnwindTables) 1359 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1360 1361 switch (CodeGenOpts.getFramePointer()) { 1362 case CodeGenOptions::FramePointerKind::None: 1363 // 0 ("none") is the default. 1364 break; 1365 case CodeGenOptions::FramePointerKind::Reserved: 1366 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1367 break; 1368 case CodeGenOptions::FramePointerKind::NonLeaf: 1369 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1370 break; 1371 case CodeGenOptions::FramePointerKind::All: 1372 getModule().setFramePointer(llvm::FramePointerKind::All); 1373 break; 1374 } 1375 1376 SimplifyPersonality(); 1377 1378 if (getCodeGenOpts().EmitDeclMetadata) 1379 EmitDeclMetadata(); 1380 1381 if (getCodeGenOpts().CoverageNotesFile.size() || 1382 getCodeGenOpts().CoverageDataFile.size()) 1383 EmitCoverageFile(); 1384 1385 if (CGDebugInfo *DI = getModuleDebugInfo()) 1386 DI->finalize(); 1387 1388 if (getCodeGenOpts().EmitVersionIdentMetadata) 1389 EmitVersionIdentMetadata(); 1390 1391 if (!getCodeGenOpts().RecordCommandLine.empty()) 1392 EmitCommandLineMetadata(); 1393 1394 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1395 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1396 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1397 getModule().setStackProtectorGuardReg( 1398 getCodeGenOpts().StackProtectorGuardReg); 1399 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1400 getModule().setStackProtectorGuardSymbol( 1401 getCodeGenOpts().StackProtectorGuardSymbol); 1402 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1403 getModule().setStackProtectorGuardOffset( 1404 getCodeGenOpts().StackProtectorGuardOffset); 1405 if (getCodeGenOpts().StackAlignment) 1406 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1407 if (getCodeGenOpts().SkipRaxSetup) 1408 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1409 if (getLangOpts().RegCall4) 1410 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1411 1412 if (getContext().getTargetInfo().getMaxTLSAlign()) 1413 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1414 getContext().getTargetInfo().getMaxTLSAlign()); 1415 1416 getTargetCodeGenInfo().emitTargetGlobals(*this); 1417 1418 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1419 1420 EmitBackendOptionsMetadata(getCodeGenOpts()); 1421 1422 // If there is device offloading code embed it in the host now. 1423 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1424 1425 // Set visibility from DLL storage class 1426 // We do this at the end of LLVM IR generation; after any operation 1427 // that might affect the DLL storage class or the visibility, and 1428 // before anything that might act on these. 1429 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1430 1431 // Check the tail call symbols are truly undefined. 1432 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1433 for (auto &I : MustTailCallUndefinedGlobals) { 1434 if (!I.first->isDefined()) 1435 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1436 else { 1437 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1438 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1439 if (!Entry || Entry->isWeakForLinker() || 1440 Entry->isDeclarationForLinker()) 1441 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1442 } 1443 } 1444 } 1445 } 1446 1447 void CodeGenModule::EmitOpenCLMetadata() { 1448 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1449 // opencl.ocl.version named metadata node. 1450 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1451 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1452 1453 auto EmitVersion = [this](StringRef MDName, int Version) { 1454 llvm::Metadata *OCLVerElts[] = { 1455 llvm::ConstantAsMetadata::get( 1456 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1457 llvm::ConstantAsMetadata::get( 1458 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1459 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1460 llvm::LLVMContext &Ctx = TheModule.getContext(); 1461 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1462 }; 1463 1464 EmitVersion("opencl.ocl.version", CLVersion); 1465 if (LangOpts.OpenCLCPlusPlus) { 1466 // In addition to the OpenCL compatible version, emit the C++ version. 1467 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1468 } 1469 } 1470 1471 void CodeGenModule::EmitBackendOptionsMetadata( 1472 const CodeGenOptions &CodeGenOpts) { 1473 if (getTriple().isRISCV()) { 1474 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1475 CodeGenOpts.SmallDataLimit); 1476 } 1477 } 1478 1479 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1480 // Make sure that this type is translated. 1481 getTypes().UpdateCompletedType(TD); 1482 } 1483 1484 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1485 // Make sure that this type is translated. 1486 getTypes().RefreshTypeCacheForClass(RD); 1487 } 1488 1489 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1490 if (!TBAA) 1491 return nullptr; 1492 return TBAA->getTypeInfo(QTy); 1493 } 1494 1495 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1496 if (!TBAA) 1497 return TBAAAccessInfo(); 1498 if (getLangOpts().CUDAIsDevice) { 1499 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1500 // access info. 1501 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1502 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1503 nullptr) 1504 return TBAAAccessInfo(); 1505 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1506 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1507 nullptr) 1508 return TBAAAccessInfo(); 1509 } 1510 } 1511 return TBAA->getAccessInfo(AccessType); 1512 } 1513 1514 TBAAAccessInfo 1515 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1516 if (!TBAA) 1517 return TBAAAccessInfo(); 1518 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1519 } 1520 1521 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1522 if (!TBAA) 1523 return nullptr; 1524 return TBAA->getTBAAStructInfo(QTy); 1525 } 1526 1527 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1528 if (!TBAA) 1529 return nullptr; 1530 return TBAA->getBaseTypeInfo(QTy); 1531 } 1532 1533 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1534 if (!TBAA) 1535 return nullptr; 1536 return TBAA->getAccessTagInfo(Info); 1537 } 1538 1539 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1540 TBAAAccessInfo TargetInfo) { 1541 if (!TBAA) 1542 return TBAAAccessInfo(); 1543 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1544 } 1545 1546 TBAAAccessInfo 1547 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1548 TBAAAccessInfo InfoB) { 1549 if (!TBAA) 1550 return TBAAAccessInfo(); 1551 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1552 } 1553 1554 TBAAAccessInfo 1555 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1556 TBAAAccessInfo SrcInfo) { 1557 if (!TBAA) 1558 return TBAAAccessInfo(); 1559 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1560 } 1561 1562 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1563 TBAAAccessInfo TBAAInfo) { 1564 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1565 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1566 } 1567 1568 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1569 llvm::Instruction *I, const CXXRecordDecl *RD) { 1570 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1571 llvm::MDNode::get(getLLVMContext(), {})); 1572 } 1573 1574 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1575 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1576 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1577 } 1578 1579 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1580 /// specified stmt yet. 1581 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1582 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1583 "cannot compile this %0 yet"); 1584 std::string Msg = Type; 1585 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1586 << Msg << S->getSourceRange(); 1587 } 1588 1589 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1590 /// specified decl yet. 1591 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1592 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1593 "cannot compile this %0 yet"); 1594 std::string Msg = Type; 1595 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1596 } 1597 1598 void CodeGenModule::warnStackExhausted(SourceLocation Loc) { 1599 // Only warn about this once. 1600 if (!WarnedStackExhausted) { 1601 getDiags().Report(Loc, diag::warn_stack_exhausted); 1602 WarnedStackExhausted = true; 1603 } 1604 } 1605 1606 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc, 1607 llvm::function_ref<void()> Fn) { 1608 clang::runWithSufficientStackSpace([&] { warnStackExhausted(Loc); }, Fn); 1609 } 1610 1611 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1612 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1613 } 1614 1615 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1616 const NamedDecl *D) const { 1617 // Internal definitions always have default visibility. 1618 if (GV->hasLocalLinkage()) { 1619 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1620 return; 1621 } 1622 if (!D) 1623 return; 1624 1625 // Set visibility for definitions, and for declarations if requested globally 1626 // or set explicitly. 1627 LinkageInfo LV = D->getLinkageAndVisibility(); 1628 1629 // OpenMP declare target variables must be visible to the host so they can 1630 // be registered. We require protected visibility unless the variable has 1631 // the DT_nohost modifier and does not need to be registered. 1632 if (Context.getLangOpts().OpenMP && 1633 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1634 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1635 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1636 OMPDeclareTargetDeclAttr::DT_NoHost && 1637 LV.getVisibility() == HiddenVisibility) { 1638 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1639 return; 1640 } 1641 1642 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1643 // Reject incompatible dlllstorage and visibility annotations. 1644 if (!LV.isVisibilityExplicit()) 1645 return; 1646 if (GV->hasDLLExportStorageClass()) { 1647 if (LV.getVisibility() == HiddenVisibility) 1648 getDiags().Report(D->getLocation(), 1649 diag::err_hidden_visibility_dllexport); 1650 } else if (LV.getVisibility() != DefaultVisibility) { 1651 getDiags().Report(D->getLocation(), 1652 diag::err_non_default_visibility_dllimport); 1653 } 1654 return; 1655 } 1656 1657 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1658 !GV->isDeclarationForLinker()) 1659 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1660 } 1661 1662 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1663 llvm::GlobalValue *GV) { 1664 if (GV->hasLocalLinkage()) 1665 return true; 1666 1667 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1668 return true; 1669 1670 // DLLImport explicitly marks the GV as external. 1671 if (GV->hasDLLImportStorageClass()) 1672 return false; 1673 1674 const llvm::Triple &TT = CGM.getTriple(); 1675 const auto &CGOpts = CGM.getCodeGenOpts(); 1676 if (TT.isWindowsGNUEnvironment()) { 1677 // In MinGW, variables without DLLImport can still be automatically 1678 // imported from a DLL by the linker; don't mark variables that 1679 // potentially could come from another DLL as DSO local. 1680 1681 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1682 // (and this actually happens in the public interface of libstdc++), so 1683 // such variables can't be marked as DSO local. (Native TLS variables 1684 // can't be dllimported at all, though.) 1685 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1686 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1687 CGOpts.AutoImport) 1688 return false; 1689 } 1690 1691 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1692 // remain unresolved in the link, they can be resolved to zero, which is 1693 // outside the current DSO. 1694 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1695 return false; 1696 1697 // Every other GV is local on COFF. 1698 // Make an exception for windows OS in the triple: Some firmware builds use 1699 // *-win32-macho triples. This (accidentally?) produced windows relocations 1700 // without GOT tables in older clang versions; Keep this behaviour. 1701 // FIXME: even thread local variables? 1702 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1703 return true; 1704 1705 // Only handle COFF and ELF for now. 1706 if (!TT.isOSBinFormatELF()) 1707 return false; 1708 1709 // If this is not an executable, don't assume anything is local. 1710 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1711 const auto &LOpts = CGM.getLangOpts(); 1712 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1713 // On ELF, if -fno-semantic-interposition is specified and the target 1714 // supports local aliases, there will be neither CC1 1715 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1716 // dso_local on the function if using a local alias is preferable (can avoid 1717 // PLT indirection). 1718 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1719 return false; 1720 return !(CGM.getLangOpts().SemanticInterposition || 1721 CGM.getLangOpts().HalfNoSemanticInterposition); 1722 } 1723 1724 // A definition cannot be preempted from an executable. 1725 if (!GV->isDeclarationForLinker()) 1726 return true; 1727 1728 // Most PIC code sequences that assume that a symbol is local cannot produce a 1729 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1730 // depended, it seems worth it to handle it here. 1731 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1732 return false; 1733 1734 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1735 if (TT.isPPC64()) 1736 return false; 1737 1738 if (CGOpts.DirectAccessExternalData) { 1739 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1740 // for non-thread-local variables. If the symbol is not defined in the 1741 // executable, a copy relocation will be needed at link time. dso_local is 1742 // excluded for thread-local variables because they generally don't support 1743 // copy relocations. 1744 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1745 if (!Var->isThreadLocal()) 1746 return true; 1747 1748 // -fno-pic sets dso_local on a function declaration to allow direct 1749 // accesses when taking its address (similar to a data symbol). If the 1750 // function is not defined in the executable, a canonical PLT entry will be 1751 // needed at link time. -fno-direct-access-external-data can avoid the 1752 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1753 // it could just cause trouble without providing perceptible benefits. 1754 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1755 return true; 1756 } 1757 1758 // If we can use copy relocations we can assume it is local. 1759 1760 // Otherwise don't assume it is local. 1761 return false; 1762 } 1763 1764 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1765 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1766 } 1767 1768 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1769 GlobalDecl GD) const { 1770 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1771 // C++ destructors have a few C++ ABI specific special cases. 1772 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1773 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1774 return; 1775 } 1776 setDLLImportDLLExport(GV, D); 1777 } 1778 1779 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1780 const NamedDecl *D) const { 1781 if (D && D->isExternallyVisible()) { 1782 if (D->hasAttr<DLLImportAttr>()) 1783 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1784 else if ((D->hasAttr<DLLExportAttr>() || 1785 shouldMapVisibilityToDLLExport(D)) && 1786 !GV->isDeclarationForLinker()) 1787 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1788 } 1789 } 1790 1791 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1792 GlobalDecl GD) const { 1793 setDLLImportDLLExport(GV, GD); 1794 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1795 } 1796 1797 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1798 const NamedDecl *D) const { 1799 setDLLImportDLLExport(GV, D); 1800 setGVPropertiesAux(GV, D); 1801 } 1802 1803 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1804 const NamedDecl *D) const { 1805 setGlobalVisibility(GV, D); 1806 setDSOLocal(GV); 1807 GV->setPartition(CodeGenOpts.SymbolPartition); 1808 } 1809 1810 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1811 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1812 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1813 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1814 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1815 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1816 } 1817 1818 llvm::GlobalVariable::ThreadLocalMode 1819 CodeGenModule::GetDefaultLLVMTLSModel() const { 1820 switch (CodeGenOpts.getDefaultTLSModel()) { 1821 case CodeGenOptions::GeneralDynamicTLSModel: 1822 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1823 case CodeGenOptions::LocalDynamicTLSModel: 1824 return llvm::GlobalVariable::LocalDynamicTLSModel; 1825 case CodeGenOptions::InitialExecTLSModel: 1826 return llvm::GlobalVariable::InitialExecTLSModel; 1827 case CodeGenOptions::LocalExecTLSModel: 1828 return llvm::GlobalVariable::LocalExecTLSModel; 1829 } 1830 llvm_unreachable("Invalid TLS model!"); 1831 } 1832 1833 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1834 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1835 1836 llvm::GlobalValue::ThreadLocalMode TLM; 1837 TLM = GetDefaultLLVMTLSModel(); 1838 1839 // Override the TLS model if it is explicitly specified. 1840 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1841 TLM = GetLLVMTLSModel(Attr->getModel()); 1842 } 1843 1844 GV->setThreadLocalMode(TLM); 1845 } 1846 1847 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1848 StringRef Name) { 1849 const TargetInfo &Target = CGM.getTarget(); 1850 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1851 } 1852 1853 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1854 const CPUSpecificAttr *Attr, 1855 unsigned CPUIndex, 1856 raw_ostream &Out) { 1857 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1858 // supported. 1859 if (Attr) 1860 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1861 else if (CGM.getTarget().supportsIFunc()) 1862 Out << ".resolver"; 1863 } 1864 1865 // Returns true if GD is a function decl with internal linkage and 1866 // needs a unique suffix after the mangled name. 1867 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1868 CodeGenModule &CGM) { 1869 const Decl *D = GD.getDecl(); 1870 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1871 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1872 } 1873 1874 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1875 const NamedDecl *ND, 1876 bool OmitMultiVersionMangling = false) { 1877 SmallString<256> Buffer; 1878 llvm::raw_svector_ostream Out(Buffer); 1879 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1880 if (!CGM.getModuleNameHash().empty()) 1881 MC.needsUniqueInternalLinkageNames(); 1882 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1883 if (ShouldMangle) 1884 MC.mangleName(GD.getWithDecl(ND), Out); 1885 else { 1886 IdentifierInfo *II = ND->getIdentifier(); 1887 assert(II && "Attempt to mangle unnamed decl."); 1888 const auto *FD = dyn_cast<FunctionDecl>(ND); 1889 1890 if (FD && 1891 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1892 if (CGM.getLangOpts().RegCall4) 1893 Out << "__regcall4__" << II->getName(); 1894 else 1895 Out << "__regcall3__" << II->getName(); 1896 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1897 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1898 Out << "__device_stub__" << II->getName(); 1899 } else { 1900 Out << II->getName(); 1901 } 1902 } 1903 1904 // Check if the module name hash should be appended for internal linkage 1905 // symbols. This should come before multi-version target suffixes are 1906 // appended. This is to keep the name and module hash suffix of the 1907 // internal linkage function together. The unique suffix should only be 1908 // added when name mangling is done to make sure that the final name can 1909 // be properly demangled. For example, for C functions without prototypes, 1910 // name mangling is not done and the unique suffix should not be appeneded 1911 // then. 1912 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1913 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1914 "Hash computed when not explicitly requested"); 1915 Out << CGM.getModuleNameHash(); 1916 } 1917 1918 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1919 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1920 switch (FD->getMultiVersionKind()) { 1921 case MultiVersionKind::CPUDispatch: 1922 case MultiVersionKind::CPUSpecific: 1923 AppendCPUSpecificCPUDispatchMangling(CGM, 1924 FD->getAttr<CPUSpecificAttr>(), 1925 GD.getMultiVersionIndex(), Out); 1926 break; 1927 case MultiVersionKind::Target: { 1928 auto *Attr = FD->getAttr<TargetAttr>(); 1929 assert(Attr && "Expected TargetAttr to be present " 1930 "for attribute mangling"); 1931 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1932 Info.appendAttributeMangling(Attr, Out); 1933 break; 1934 } 1935 case MultiVersionKind::TargetVersion: { 1936 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1937 assert(Attr && "Expected TargetVersionAttr to be present " 1938 "for attribute mangling"); 1939 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1940 Info.appendAttributeMangling(Attr, Out); 1941 break; 1942 } 1943 case MultiVersionKind::TargetClones: { 1944 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1945 assert(Attr && "Expected TargetClonesAttr to be present " 1946 "for attribute mangling"); 1947 unsigned Index = GD.getMultiVersionIndex(); 1948 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1949 Info.appendAttributeMangling(Attr, Index, Out); 1950 break; 1951 } 1952 case MultiVersionKind::None: 1953 llvm_unreachable("None multiversion type isn't valid here"); 1954 } 1955 } 1956 1957 // Make unique name for device side static file-scope variable for HIP. 1958 if (CGM.getContext().shouldExternalize(ND) && 1959 CGM.getLangOpts().GPURelocatableDeviceCode && 1960 CGM.getLangOpts().CUDAIsDevice) 1961 CGM.printPostfixForExternalizedDecl(Out, ND); 1962 1963 return std::string(Out.str()); 1964 } 1965 1966 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1967 const FunctionDecl *FD, 1968 StringRef &CurName) { 1969 if (!FD->isMultiVersion()) 1970 return; 1971 1972 // Get the name of what this would be without the 'target' attribute. This 1973 // allows us to lookup the version that was emitted when this wasn't a 1974 // multiversion function. 1975 std::string NonTargetName = 1976 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1977 GlobalDecl OtherGD; 1978 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1979 assert(OtherGD.getCanonicalDecl() 1980 .getDecl() 1981 ->getAsFunction() 1982 ->isMultiVersion() && 1983 "Other GD should now be a multiversioned function"); 1984 // OtherFD is the version of this function that was mangled BEFORE 1985 // becoming a MultiVersion function. It potentially needs to be updated. 1986 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1987 .getDecl() 1988 ->getAsFunction() 1989 ->getMostRecentDecl(); 1990 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1991 // This is so that if the initial version was already the 'default' 1992 // version, we don't try to update it. 1993 if (OtherName != NonTargetName) { 1994 // Remove instead of erase, since others may have stored the StringRef 1995 // to this. 1996 const auto ExistingRecord = Manglings.find(NonTargetName); 1997 if (ExistingRecord != std::end(Manglings)) 1998 Manglings.remove(&(*ExistingRecord)); 1999 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 2000 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 2001 Result.first->first(); 2002 // If this is the current decl is being created, make sure we update the name. 2003 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 2004 CurName = OtherNameRef; 2005 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 2006 Entry->setName(OtherName); 2007 } 2008 } 2009 } 2010 2011 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 2012 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 2013 2014 // Some ABIs don't have constructor variants. Make sure that base and 2015 // complete constructors get mangled the same. 2016 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 2017 if (!getTarget().getCXXABI().hasConstructorVariants()) { 2018 CXXCtorType OrigCtorType = GD.getCtorType(); 2019 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 2020 if (OrigCtorType == Ctor_Base) 2021 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 2022 } 2023 } 2024 2025 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 2026 // static device variable depends on whether the variable is referenced by 2027 // a host or device host function. Therefore the mangled name cannot be 2028 // cached. 2029 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 2030 auto FoundName = MangledDeclNames.find(CanonicalGD); 2031 if (FoundName != MangledDeclNames.end()) 2032 return FoundName->second; 2033 } 2034 2035 // Keep the first result in the case of a mangling collision. 2036 const auto *ND = cast<NamedDecl>(GD.getDecl()); 2037 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2038 2039 // Ensure either we have different ABIs between host and device compilations, 2040 // says host compilation following MSVC ABI but device compilation follows 2041 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2042 // mangling should be the same after name stubbing. The later checking is 2043 // very important as the device kernel name being mangled in host-compilation 2044 // is used to resolve the device binaries to be executed. Inconsistent naming 2045 // result in undefined behavior. Even though we cannot check that naming 2046 // directly between host- and device-compilations, the host- and 2047 // device-mangling in host compilation could help catching certain ones. 2048 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2049 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2050 (getContext().getAuxTargetInfo() && 2051 (getContext().getAuxTargetInfo()->getCXXABI() != 2052 getContext().getTargetInfo().getCXXABI())) || 2053 getCUDARuntime().getDeviceSideName(ND) == 2054 getMangledNameImpl( 2055 *this, 2056 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2057 ND)); 2058 2059 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2060 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2061 } 2062 2063 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2064 const BlockDecl *BD) { 2065 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2066 const Decl *D = GD.getDecl(); 2067 2068 SmallString<256> Buffer; 2069 llvm::raw_svector_ostream Out(Buffer); 2070 if (!D) 2071 MangleCtx.mangleGlobalBlock(BD, 2072 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2073 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2074 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2075 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2076 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2077 else 2078 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2079 2080 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2081 return Result.first->first(); 2082 } 2083 2084 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2085 auto it = MangledDeclNames.begin(); 2086 while (it != MangledDeclNames.end()) { 2087 if (it->second == Name) 2088 return it->first; 2089 it++; 2090 } 2091 return GlobalDecl(); 2092 } 2093 2094 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2095 return getModule().getNamedValue(Name); 2096 } 2097 2098 /// AddGlobalCtor - Add a function to the list that will be called before 2099 /// main() runs. 2100 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2101 unsigned LexOrder, 2102 llvm::Constant *AssociatedData) { 2103 // FIXME: Type coercion of void()* types. 2104 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2105 } 2106 2107 /// AddGlobalDtor - Add a function to the list that will be called 2108 /// when the module is unloaded. 2109 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2110 bool IsDtorAttrFunc) { 2111 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2112 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2113 DtorsUsingAtExit[Priority].push_back(Dtor); 2114 return; 2115 } 2116 2117 // FIXME: Type coercion of void()* types. 2118 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2119 } 2120 2121 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2122 if (Fns.empty()) return; 2123 2124 const PointerAuthSchema &InitFiniAuthSchema = 2125 getCodeGenOpts().PointerAuth.InitFiniPointers; 2126 2127 // Ctor function type is ptr. 2128 llvm::PointerType *PtrTy = llvm::PointerType::get( 2129 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace()); 2130 2131 // Get the type of a ctor entry, { i32, ptr, ptr }. 2132 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy); 2133 2134 // Construct the constructor and destructor arrays. 2135 ConstantInitBuilder Builder(*this); 2136 auto Ctors = Builder.beginArray(CtorStructTy); 2137 for (const auto &I : Fns) { 2138 auto Ctor = Ctors.beginStruct(CtorStructTy); 2139 Ctor.addInt(Int32Ty, I.Priority); 2140 if (InitFiniAuthSchema) { 2141 llvm::Constant *StorageAddress = 2142 (InitFiniAuthSchema.isAddressDiscriminated() 2143 ? llvm::ConstantExpr::getIntToPtr( 2144 llvm::ConstantInt::get( 2145 IntPtrTy, 2146 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors), 2147 PtrTy) 2148 : nullptr); 2149 llvm::Constant *SignedCtorPtr = getConstantSignedPointer( 2150 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress, 2151 llvm::ConstantInt::get( 2152 SizeTy, InitFiniAuthSchema.getConstantDiscrimination())); 2153 Ctor.add(SignedCtorPtr); 2154 } else { 2155 Ctor.add(I.Initializer); 2156 } 2157 if (I.AssociatedData) 2158 Ctor.add(I.AssociatedData); 2159 else 2160 Ctor.addNullPointer(PtrTy); 2161 Ctor.finishAndAddTo(Ctors); 2162 } 2163 2164 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2165 /*constant*/ false, 2166 llvm::GlobalValue::AppendingLinkage); 2167 2168 // The LTO linker doesn't seem to like it when we set an alignment 2169 // on appending variables. Take it off as a workaround. 2170 List->setAlignment(std::nullopt); 2171 2172 Fns.clear(); 2173 } 2174 2175 llvm::GlobalValue::LinkageTypes 2176 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2177 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2178 2179 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2180 2181 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2182 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2183 2184 return getLLVMLinkageForDeclarator(D, Linkage); 2185 } 2186 2187 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2188 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2189 if (!MDS) return nullptr; 2190 2191 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2192 } 2193 2194 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2195 if (auto *FnType = T->getAs<FunctionProtoType>()) 2196 T = getContext().getFunctionType( 2197 FnType->getReturnType(), FnType->getParamTypes(), 2198 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2199 2200 std::string OutName; 2201 llvm::raw_string_ostream Out(OutName); 2202 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2203 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2204 2205 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2206 Out << ".normalized"; 2207 2208 return llvm::ConstantInt::get(Int32Ty, 2209 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2210 } 2211 2212 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2213 const CGFunctionInfo &Info, 2214 llvm::Function *F, bool IsThunk) { 2215 unsigned CallingConv; 2216 llvm::AttributeList PAL; 2217 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2218 /*AttrOnCallSite=*/false, IsThunk); 2219 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2220 getTarget().getTriple().isWindowsArm64EC()) { 2221 SourceLocation Loc; 2222 if (const Decl *D = GD.getDecl()) 2223 Loc = D->getLocation(); 2224 2225 Error(Loc, "__vectorcall calling convention is not currently supported"); 2226 } 2227 F->setAttributes(PAL); 2228 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2229 } 2230 2231 static void removeImageAccessQualifier(std::string& TyName) { 2232 std::string ReadOnlyQual("__read_only"); 2233 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2234 if (ReadOnlyPos != std::string::npos) 2235 // "+ 1" for the space after access qualifier. 2236 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2237 else { 2238 std::string WriteOnlyQual("__write_only"); 2239 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2240 if (WriteOnlyPos != std::string::npos) 2241 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2242 else { 2243 std::string ReadWriteQual("__read_write"); 2244 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2245 if (ReadWritePos != std::string::npos) 2246 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2247 } 2248 } 2249 } 2250 2251 // Returns the address space id that should be produced to the 2252 // kernel_arg_addr_space metadata. This is always fixed to the ids 2253 // as specified in the SPIR 2.0 specification in order to differentiate 2254 // for example in clGetKernelArgInfo() implementation between the address 2255 // spaces with targets without unique mapping to the OpenCL address spaces 2256 // (basically all single AS CPUs). 2257 static unsigned ArgInfoAddressSpace(LangAS AS) { 2258 switch (AS) { 2259 case LangAS::opencl_global: 2260 return 1; 2261 case LangAS::opencl_constant: 2262 return 2; 2263 case LangAS::opencl_local: 2264 return 3; 2265 case LangAS::opencl_generic: 2266 return 4; // Not in SPIR 2.0 specs. 2267 case LangAS::opencl_global_device: 2268 return 5; 2269 case LangAS::opencl_global_host: 2270 return 6; 2271 default: 2272 return 0; // Assume private. 2273 } 2274 } 2275 2276 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2277 const FunctionDecl *FD, 2278 CodeGenFunction *CGF) { 2279 assert(((FD && CGF) || (!FD && !CGF)) && 2280 "Incorrect use - FD and CGF should either be both null or not!"); 2281 // Create MDNodes that represent the kernel arg metadata. 2282 // Each MDNode is a list in the form of "key", N number of values which is 2283 // the same number of values as their are kernel arguments. 2284 2285 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2286 2287 // MDNode for the kernel argument address space qualifiers. 2288 SmallVector<llvm::Metadata *, 8> addressQuals; 2289 2290 // MDNode for the kernel argument access qualifiers (images only). 2291 SmallVector<llvm::Metadata *, 8> accessQuals; 2292 2293 // MDNode for the kernel argument type names. 2294 SmallVector<llvm::Metadata *, 8> argTypeNames; 2295 2296 // MDNode for the kernel argument base type names. 2297 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2298 2299 // MDNode for the kernel argument type qualifiers. 2300 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2301 2302 // MDNode for the kernel argument names. 2303 SmallVector<llvm::Metadata *, 8> argNames; 2304 2305 if (FD && CGF) 2306 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2307 const ParmVarDecl *parm = FD->getParamDecl(i); 2308 // Get argument name. 2309 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2310 2311 if (!getLangOpts().OpenCL) 2312 continue; 2313 QualType ty = parm->getType(); 2314 std::string typeQuals; 2315 2316 // Get image and pipe access qualifier: 2317 if (ty->isImageType() || ty->isPipeType()) { 2318 const Decl *PDecl = parm; 2319 if (const auto *TD = ty->getAs<TypedefType>()) 2320 PDecl = TD->getDecl(); 2321 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2322 if (A && A->isWriteOnly()) 2323 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2324 else if (A && A->isReadWrite()) 2325 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2326 else 2327 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2328 } else 2329 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2330 2331 auto getTypeSpelling = [&](QualType Ty) { 2332 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2333 2334 if (Ty.isCanonical()) { 2335 StringRef typeNameRef = typeName; 2336 // Turn "unsigned type" to "utype" 2337 if (typeNameRef.consume_front("unsigned ")) 2338 return std::string("u") + typeNameRef.str(); 2339 if (typeNameRef.consume_front("signed ")) 2340 return typeNameRef.str(); 2341 } 2342 2343 return typeName; 2344 }; 2345 2346 if (ty->isPointerType()) { 2347 QualType pointeeTy = ty->getPointeeType(); 2348 2349 // Get address qualifier. 2350 addressQuals.push_back( 2351 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2352 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2353 2354 // Get argument type name. 2355 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2356 std::string baseTypeName = 2357 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2358 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2359 argBaseTypeNames.push_back( 2360 llvm::MDString::get(VMContext, baseTypeName)); 2361 2362 // Get argument type qualifiers: 2363 if (ty.isRestrictQualified()) 2364 typeQuals = "restrict"; 2365 if (pointeeTy.isConstQualified() || 2366 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2367 typeQuals += typeQuals.empty() ? "const" : " const"; 2368 if (pointeeTy.isVolatileQualified()) 2369 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2370 } else { 2371 uint32_t AddrSpc = 0; 2372 bool isPipe = ty->isPipeType(); 2373 if (ty->isImageType() || isPipe) 2374 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2375 2376 addressQuals.push_back( 2377 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2378 2379 // Get argument type name. 2380 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2381 std::string typeName = getTypeSpelling(ty); 2382 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2383 2384 // Remove access qualifiers on images 2385 // (as they are inseparable from type in clang implementation, 2386 // but OpenCL spec provides a special query to get access qualifier 2387 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2388 if (ty->isImageType()) { 2389 removeImageAccessQualifier(typeName); 2390 removeImageAccessQualifier(baseTypeName); 2391 } 2392 2393 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2394 argBaseTypeNames.push_back( 2395 llvm::MDString::get(VMContext, baseTypeName)); 2396 2397 if (isPipe) 2398 typeQuals = "pipe"; 2399 } 2400 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2401 } 2402 2403 if (getLangOpts().OpenCL) { 2404 Fn->setMetadata("kernel_arg_addr_space", 2405 llvm::MDNode::get(VMContext, addressQuals)); 2406 Fn->setMetadata("kernel_arg_access_qual", 2407 llvm::MDNode::get(VMContext, accessQuals)); 2408 Fn->setMetadata("kernel_arg_type", 2409 llvm::MDNode::get(VMContext, argTypeNames)); 2410 Fn->setMetadata("kernel_arg_base_type", 2411 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2412 Fn->setMetadata("kernel_arg_type_qual", 2413 llvm::MDNode::get(VMContext, argTypeQuals)); 2414 } 2415 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2416 getCodeGenOpts().HIPSaveKernelArgName) 2417 Fn->setMetadata("kernel_arg_name", 2418 llvm::MDNode::get(VMContext, argNames)); 2419 } 2420 2421 /// Determines whether the language options require us to model 2422 /// unwind exceptions. We treat -fexceptions as mandating this 2423 /// except under the fragile ObjC ABI with only ObjC exceptions 2424 /// enabled. This means, for example, that C with -fexceptions 2425 /// enables this. 2426 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2427 // If exceptions are completely disabled, obviously this is false. 2428 if (!LangOpts.Exceptions) return false; 2429 2430 // If C++ exceptions are enabled, this is true. 2431 if (LangOpts.CXXExceptions) return true; 2432 2433 // If ObjC exceptions are enabled, this depends on the ABI. 2434 if (LangOpts.ObjCExceptions) { 2435 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2436 } 2437 2438 return true; 2439 } 2440 2441 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2442 const CXXMethodDecl *MD) { 2443 // Check that the type metadata can ever actually be used by a call. 2444 if (!CGM.getCodeGenOpts().LTOUnit || 2445 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2446 return false; 2447 2448 // Only functions whose address can be taken with a member function pointer 2449 // need this sort of type metadata. 2450 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2451 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2452 } 2453 2454 SmallVector<const CXXRecordDecl *, 0> 2455 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2456 llvm::SetVector<const CXXRecordDecl *> MostBases; 2457 2458 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2459 CollectMostBases = [&](const CXXRecordDecl *RD) { 2460 if (RD->getNumBases() == 0) 2461 MostBases.insert(RD); 2462 for (const CXXBaseSpecifier &B : RD->bases()) 2463 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2464 }; 2465 CollectMostBases(RD); 2466 return MostBases.takeVector(); 2467 } 2468 2469 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2470 llvm::Function *F) { 2471 llvm::AttrBuilder B(F->getContext()); 2472 2473 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2474 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2475 2476 if (CodeGenOpts.StackClashProtector) 2477 B.addAttribute("probe-stack", "inline-asm"); 2478 2479 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2480 B.addAttribute("stack-probe-size", 2481 std::to_string(CodeGenOpts.StackProbeSize)); 2482 2483 if (!hasUnwindExceptions(LangOpts)) 2484 B.addAttribute(llvm::Attribute::NoUnwind); 2485 2486 if (D && D->hasAttr<NoStackProtectorAttr>()) 2487 ; // Do nothing. 2488 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2489 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2490 B.addAttribute(llvm::Attribute::StackProtectStrong); 2491 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2492 B.addAttribute(llvm::Attribute::StackProtect); 2493 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2494 B.addAttribute(llvm::Attribute::StackProtectStrong); 2495 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2496 B.addAttribute(llvm::Attribute::StackProtectReq); 2497 2498 if (!D) { 2499 // Non-entry HLSL functions must always be inlined. 2500 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline)) 2501 B.addAttribute(llvm::Attribute::AlwaysInline); 2502 // If we don't have a declaration to control inlining, the function isn't 2503 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2504 // disabled, mark the function as noinline. 2505 else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2506 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2507 B.addAttribute(llvm::Attribute::NoInline); 2508 2509 F->addFnAttrs(B); 2510 return; 2511 } 2512 2513 // Handle SME attributes that apply to function definitions, 2514 // rather than to function prototypes. 2515 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2516 B.addAttribute("aarch64_pstate_sm_body"); 2517 2518 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2519 if (Attr->isNewZA()) 2520 B.addAttribute("aarch64_new_za"); 2521 if (Attr->isNewZT0()) 2522 B.addAttribute("aarch64_new_zt0"); 2523 } 2524 2525 // Track whether we need to add the optnone LLVM attribute, 2526 // starting with the default for this optimization level. 2527 bool ShouldAddOptNone = 2528 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2529 // We can't add optnone in the following cases, it won't pass the verifier. 2530 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2531 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2532 2533 // Non-entry HLSL functions must always be inlined. 2534 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) && 2535 !D->hasAttr<NoInlineAttr>()) { 2536 B.addAttribute(llvm::Attribute::AlwaysInline); 2537 } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2538 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2539 // Add optnone, but do so only if the function isn't always_inline. 2540 B.addAttribute(llvm::Attribute::OptimizeNone); 2541 2542 // OptimizeNone implies noinline; we should not be inlining such functions. 2543 B.addAttribute(llvm::Attribute::NoInline); 2544 2545 // We still need to handle naked functions even though optnone subsumes 2546 // much of their semantics. 2547 if (D->hasAttr<NakedAttr>()) 2548 B.addAttribute(llvm::Attribute::Naked); 2549 2550 // OptimizeNone wins over OptimizeForSize and MinSize. 2551 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2552 F->removeFnAttr(llvm::Attribute::MinSize); 2553 } else if (D->hasAttr<NakedAttr>()) { 2554 // Naked implies noinline: we should not be inlining such functions. 2555 B.addAttribute(llvm::Attribute::Naked); 2556 B.addAttribute(llvm::Attribute::NoInline); 2557 } else if (D->hasAttr<NoDuplicateAttr>()) { 2558 B.addAttribute(llvm::Attribute::NoDuplicate); 2559 } else if (D->hasAttr<NoInlineAttr>() && 2560 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2561 // Add noinline if the function isn't always_inline. 2562 B.addAttribute(llvm::Attribute::NoInline); 2563 } else if (D->hasAttr<AlwaysInlineAttr>() && 2564 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2565 // (noinline wins over always_inline, and we can't specify both in IR) 2566 B.addAttribute(llvm::Attribute::AlwaysInline); 2567 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2568 // If we're not inlining, then force everything that isn't always_inline to 2569 // carry an explicit noinline attribute. 2570 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2571 B.addAttribute(llvm::Attribute::NoInline); 2572 } else { 2573 // Otherwise, propagate the inline hint attribute and potentially use its 2574 // absence to mark things as noinline. 2575 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2576 // Search function and template pattern redeclarations for inline. 2577 auto CheckForInline = [](const FunctionDecl *FD) { 2578 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2579 return Redecl->isInlineSpecified(); 2580 }; 2581 if (any_of(FD->redecls(), CheckRedeclForInline)) 2582 return true; 2583 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2584 if (!Pattern) 2585 return false; 2586 return any_of(Pattern->redecls(), CheckRedeclForInline); 2587 }; 2588 if (CheckForInline(FD)) { 2589 B.addAttribute(llvm::Attribute::InlineHint); 2590 } else if (CodeGenOpts.getInlining() == 2591 CodeGenOptions::OnlyHintInlining && 2592 !FD->isInlined() && 2593 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2594 B.addAttribute(llvm::Attribute::NoInline); 2595 } 2596 } 2597 } 2598 2599 // Add other optimization related attributes if we are optimizing this 2600 // function. 2601 if (!D->hasAttr<OptimizeNoneAttr>()) { 2602 if (D->hasAttr<ColdAttr>()) { 2603 if (!ShouldAddOptNone) 2604 B.addAttribute(llvm::Attribute::OptimizeForSize); 2605 B.addAttribute(llvm::Attribute::Cold); 2606 } 2607 if (D->hasAttr<HotAttr>()) 2608 B.addAttribute(llvm::Attribute::Hot); 2609 if (D->hasAttr<MinSizeAttr>()) 2610 B.addAttribute(llvm::Attribute::MinSize); 2611 } 2612 2613 F->addFnAttrs(B); 2614 2615 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2616 if (alignment) 2617 F->setAlignment(llvm::Align(alignment)); 2618 2619 if (!D->hasAttr<AlignedAttr>()) 2620 if (LangOpts.FunctionAlignment) 2621 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2622 2623 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2624 // reserve a bit for differentiating between virtual and non-virtual member 2625 // functions. If the current target's C++ ABI requires this and this is a 2626 // member function, set its alignment accordingly. 2627 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2628 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2629 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2630 } 2631 2632 // In the cross-dso CFI mode with canonical jump tables, we want !type 2633 // attributes on definitions only. 2634 if (CodeGenOpts.SanitizeCfiCrossDso && 2635 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2636 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2637 // Skip available_externally functions. They won't be codegen'ed in the 2638 // current module anyway. 2639 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2640 CreateFunctionTypeMetadataForIcall(FD, F); 2641 } 2642 } 2643 2644 // Emit type metadata on member functions for member function pointer checks. 2645 // These are only ever necessary on definitions; we're guaranteed that the 2646 // definition will be present in the LTO unit as a result of LTO visibility. 2647 auto *MD = dyn_cast<CXXMethodDecl>(D); 2648 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2649 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2650 llvm::Metadata *Id = 2651 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2652 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2653 F->addTypeMetadata(0, Id); 2654 } 2655 } 2656 } 2657 2658 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2659 const Decl *D = GD.getDecl(); 2660 if (isa_and_nonnull<NamedDecl>(D)) 2661 setGVProperties(GV, GD); 2662 else 2663 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2664 2665 if (D && D->hasAttr<UsedAttr>()) 2666 addUsedOrCompilerUsedGlobal(GV); 2667 2668 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2669 VD && 2670 ((CodeGenOpts.KeepPersistentStorageVariables && 2671 (VD->getStorageDuration() == SD_Static || 2672 VD->getStorageDuration() == SD_Thread)) || 2673 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2674 VD->getType().isConstQualified()))) 2675 addUsedOrCompilerUsedGlobal(GV); 2676 } 2677 2678 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2679 llvm::AttrBuilder &Attrs, 2680 bool SetTargetFeatures) { 2681 // Add target-cpu and target-features attributes to functions. If 2682 // we have a decl for the function and it has a target attribute then 2683 // parse that and add it to the feature set. 2684 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2685 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2686 std::vector<std::string> Features; 2687 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2688 FD = FD ? FD->getMostRecentDecl() : FD; 2689 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2690 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2691 assert((!TD || !TV) && "both target_version and target specified"); 2692 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2693 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2694 bool AddedAttr = false; 2695 if (TD || TV || SD || TC) { 2696 llvm::StringMap<bool> FeatureMap; 2697 getContext().getFunctionFeatureMap(FeatureMap, GD); 2698 2699 // Produce the canonical string for this set of features. 2700 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2701 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2702 2703 // Now add the target-cpu and target-features to the function. 2704 // While we populated the feature map above, we still need to 2705 // get and parse the target attribute so we can get the cpu for 2706 // the function. 2707 if (TD) { 2708 ParsedTargetAttr ParsedAttr = 2709 Target.parseTargetAttr(TD->getFeaturesStr()); 2710 if (!ParsedAttr.CPU.empty() && 2711 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2712 TargetCPU = ParsedAttr.CPU; 2713 TuneCPU = ""; // Clear the tune CPU. 2714 } 2715 if (!ParsedAttr.Tune.empty() && 2716 getTarget().isValidCPUName(ParsedAttr.Tune)) 2717 TuneCPU = ParsedAttr.Tune; 2718 } 2719 2720 if (SD) { 2721 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2722 // favor this processor. 2723 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2724 } 2725 } else { 2726 // Otherwise just add the existing target cpu and target features to the 2727 // function. 2728 Features = getTarget().getTargetOpts().Features; 2729 } 2730 2731 if (!TargetCPU.empty()) { 2732 Attrs.addAttribute("target-cpu", TargetCPU); 2733 AddedAttr = true; 2734 } 2735 if (!TuneCPU.empty()) { 2736 Attrs.addAttribute("tune-cpu", TuneCPU); 2737 AddedAttr = true; 2738 } 2739 if (!Features.empty() && SetTargetFeatures) { 2740 llvm::erase_if(Features, [&](const std::string& F) { 2741 return getTarget().isReadOnlyFeature(F.substr(1)); 2742 }); 2743 llvm::sort(Features); 2744 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2745 AddedAttr = true; 2746 } 2747 2748 return AddedAttr; 2749 } 2750 2751 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2752 llvm::GlobalObject *GO) { 2753 const Decl *D = GD.getDecl(); 2754 SetCommonAttributes(GD, GO); 2755 2756 if (D) { 2757 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2758 if (D->hasAttr<RetainAttr>()) 2759 addUsedGlobal(GV); 2760 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2761 GV->addAttribute("bss-section", SA->getName()); 2762 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2763 GV->addAttribute("data-section", SA->getName()); 2764 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2765 GV->addAttribute("rodata-section", SA->getName()); 2766 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2767 GV->addAttribute("relro-section", SA->getName()); 2768 } 2769 2770 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2771 if (D->hasAttr<RetainAttr>()) 2772 addUsedGlobal(F); 2773 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2774 if (!D->getAttr<SectionAttr>()) 2775 F->setSection(SA->getName()); 2776 2777 llvm::AttrBuilder Attrs(F->getContext()); 2778 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2779 // We know that GetCPUAndFeaturesAttributes will always have the 2780 // newest set, since it has the newest possible FunctionDecl, so the 2781 // new ones should replace the old. 2782 llvm::AttributeMask RemoveAttrs; 2783 RemoveAttrs.addAttribute("target-cpu"); 2784 RemoveAttrs.addAttribute("target-features"); 2785 RemoveAttrs.addAttribute("tune-cpu"); 2786 F->removeFnAttrs(RemoveAttrs); 2787 F->addFnAttrs(Attrs); 2788 } 2789 } 2790 2791 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2792 GO->setSection(CSA->getName()); 2793 else if (const auto *SA = D->getAttr<SectionAttr>()) 2794 GO->setSection(SA->getName()); 2795 } 2796 2797 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2798 } 2799 2800 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2801 llvm::Function *F, 2802 const CGFunctionInfo &FI) { 2803 const Decl *D = GD.getDecl(); 2804 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2805 SetLLVMFunctionAttributesForDefinition(D, F); 2806 2807 F->setLinkage(llvm::Function::InternalLinkage); 2808 2809 setNonAliasAttributes(GD, F); 2810 } 2811 2812 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2813 // Set linkage and visibility in case we never see a definition. 2814 LinkageInfo LV = ND->getLinkageAndVisibility(); 2815 // Don't set internal linkage on declarations. 2816 // "extern_weak" is overloaded in LLVM; we probably should have 2817 // separate linkage types for this. 2818 if (isExternallyVisible(LV.getLinkage()) && 2819 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2820 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2821 } 2822 2823 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2824 llvm::Function *F) { 2825 // Only if we are checking indirect calls. 2826 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2827 return; 2828 2829 // Non-static class methods are handled via vtable or member function pointer 2830 // checks elsewhere. 2831 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2832 return; 2833 2834 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2835 F->addTypeMetadata(0, MD); 2836 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2837 2838 // Emit a hash-based bit set entry for cross-DSO calls. 2839 if (CodeGenOpts.SanitizeCfiCrossDso) 2840 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2841 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2842 } 2843 2844 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2845 llvm::LLVMContext &Ctx = F->getContext(); 2846 llvm::MDBuilder MDB(Ctx); 2847 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2848 llvm::MDNode::get( 2849 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2850 } 2851 2852 static bool allowKCFIIdentifier(StringRef Name) { 2853 // KCFI type identifier constants are only necessary for external assembly 2854 // functions, which means it's safe to skip unusual names. Subset of 2855 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2856 return llvm::all_of(Name, [](const char &C) { 2857 return llvm::isAlnum(C) || C == '_' || C == '.'; 2858 }); 2859 } 2860 2861 void CodeGenModule::finalizeKCFITypes() { 2862 llvm::Module &M = getModule(); 2863 for (auto &F : M.functions()) { 2864 // Remove KCFI type metadata from non-address-taken local functions. 2865 bool AddressTaken = F.hasAddressTaken(); 2866 if (!AddressTaken && F.hasLocalLinkage()) 2867 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2868 2869 // Generate a constant with the expected KCFI type identifier for all 2870 // address-taken function declarations to support annotating indirectly 2871 // called assembly functions. 2872 if (!AddressTaken || !F.isDeclaration()) 2873 continue; 2874 2875 const llvm::ConstantInt *Type; 2876 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2877 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2878 else 2879 continue; 2880 2881 StringRef Name = F.getName(); 2882 if (!allowKCFIIdentifier(Name)) 2883 continue; 2884 2885 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2886 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2887 .str(); 2888 M.appendModuleInlineAsm(Asm); 2889 } 2890 } 2891 2892 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2893 bool IsIncompleteFunction, 2894 bool IsThunk) { 2895 2896 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2897 // If this is an intrinsic function, set the function's attributes 2898 // to the intrinsic's attributes. 2899 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2900 return; 2901 } 2902 2903 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2904 2905 if (!IsIncompleteFunction) 2906 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2907 IsThunk); 2908 2909 // Add the Returned attribute for "this", except for iOS 5 and earlier 2910 // where substantial code, including the libstdc++ dylib, was compiled with 2911 // GCC and does not actually return "this". 2912 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2913 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2914 assert(!F->arg_empty() && 2915 F->arg_begin()->getType() 2916 ->canLosslesslyBitCastTo(F->getReturnType()) && 2917 "unexpected this return"); 2918 F->addParamAttr(0, llvm::Attribute::Returned); 2919 } 2920 2921 // Only a few attributes are set on declarations; these may later be 2922 // overridden by a definition. 2923 2924 setLinkageForGV(F, FD); 2925 setGVProperties(F, FD); 2926 2927 // Setup target-specific attributes. 2928 if (!IsIncompleteFunction && F->isDeclaration()) 2929 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2930 2931 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2932 F->setSection(CSA->getName()); 2933 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2934 F->setSection(SA->getName()); 2935 2936 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2937 if (EA->isError()) 2938 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2939 else if (EA->isWarning()) 2940 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2941 } 2942 2943 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2944 if (FD->isInlineBuiltinDeclaration()) { 2945 const FunctionDecl *FDBody; 2946 bool HasBody = FD->hasBody(FDBody); 2947 (void)HasBody; 2948 assert(HasBody && "Inline builtin declarations should always have an " 2949 "available body!"); 2950 if (shouldEmitFunction(FDBody)) 2951 F->addFnAttr(llvm::Attribute::NoBuiltin); 2952 } 2953 2954 if (FD->isReplaceableGlobalAllocationFunction()) { 2955 // A replaceable global allocation function does not act like a builtin by 2956 // default, only if it is invoked by a new-expression or delete-expression. 2957 F->addFnAttr(llvm::Attribute::NoBuiltin); 2958 } 2959 2960 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2961 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2962 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2963 if (MD->isVirtual()) 2964 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2965 2966 // Don't emit entries for function declarations in the cross-DSO mode. This 2967 // is handled with better precision by the receiving DSO. But if jump tables 2968 // are non-canonical then we need type metadata in order to produce the local 2969 // jump table. 2970 if (!CodeGenOpts.SanitizeCfiCrossDso || 2971 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2972 CreateFunctionTypeMetadataForIcall(FD, F); 2973 2974 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2975 setKCFIType(FD, F); 2976 2977 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2978 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2979 2980 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2981 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2982 2983 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2984 // Annotate the callback behavior as metadata: 2985 // - The callback callee (as argument number). 2986 // - The callback payloads (as argument numbers). 2987 llvm::LLVMContext &Ctx = F->getContext(); 2988 llvm::MDBuilder MDB(Ctx); 2989 2990 // The payload indices are all but the first one in the encoding. The first 2991 // identifies the callback callee. 2992 int CalleeIdx = *CB->encoding_begin(); 2993 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2994 F->addMetadata(llvm::LLVMContext::MD_callback, 2995 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2996 CalleeIdx, PayloadIndices, 2997 /* VarArgsArePassed */ false)})); 2998 } 2999 } 3000 3001 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 3002 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 3003 "Only globals with definition can force usage."); 3004 LLVMUsed.emplace_back(GV); 3005 } 3006 3007 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 3008 assert(!GV->isDeclaration() && 3009 "Only globals with definition can force usage."); 3010 LLVMCompilerUsed.emplace_back(GV); 3011 } 3012 3013 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 3014 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 3015 "Only globals with definition can force usage."); 3016 if (getTriple().isOSBinFormatELF()) 3017 LLVMCompilerUsed.emplace_back(GV); 3018 else 3019 LLVMUsed.emplace_back(GV); 3020 } 3021 3022 static void emitUsed(CodeGenModule &CGM, StringRef Name, 3023 std::vector<llvm::WeakTrackingVH> &List) { 3024 // Don't create llvm.used if there is no need. 3025 if (List.empty()) 3026 return; 3027 3028 // Convert List to what ConstantArray needs. 3029 SmallVector<llvm::Constant*, 8> UsedArray; 3030 UsedArray.resize(List.size()); 3031 for (unsigned i = 0, e = List.size(); i != e; ++i) { 3032 UsedArray[i] = 3033 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 3034 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 3035 } 3036 3037 if (UsedArray.empty()) 3038 return; 3039 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 3040 3041 auto *GV = new llvm::GlobalVariable( 3042 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 3043 llvm::ConstantArray::get(ATy, UsedArray), Name); 3044 3045 GV->setSection("llvm.metadata"); 3046 } 3047 3048 void CodeGenModule::emitLLVMUsed() { 3049 emitUsed(*this, "llvm.used", LLVMUsed); 3050 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 3051 } 3052 3053 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 3054 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 3055 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3056 } 3057 3058 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 3059 llvm::SmallString<32> Opt; 3060 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 3061 if (Opt.empty()) 3062 return; 3063 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3064 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3065 } 3066 3067 void CodeGenModule::AddDependentLib(StringRef Lib) { 3068 auto &C = getLLVMContext(); 3069 if (getTarget().getTriple().isOSBinFormatELF()) { 3070 ELFDependentLibraries.push_back( 3071 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3072 return; 3073 } 3074 3075 llvm::SmallString<24> Opt; 3076 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3077 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3078 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3079 } 3080 3081 /// Add link options implied by the given module, including modules 3082 /// it depends on, using a postorder walk. 3083 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3084 SmallVectorImpl<llvm::MDNode *> &Metadata, 3085 llvm::SmallPtrSet<Module *, 16> &Visited) { 3086 // Import this module's parent. 3087 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3088 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3089 } 3090 3091 // Import this module's dependencies. 3092 for (Module *Import : llvm::reverse(Mod->Imports)) { 3093 if (Visited.insert(Import).second) 3094 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3095 } 3096 3097 // Add linker options to link against the libraries/frameworks 3098 // described by this module. 3099 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3100 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3101 3102 // For modules that use export_as for linking, use that module 3103 // name instead. 3104 if (Mod->UseExportAsModuleLinkName) 3105 return; 3106 3107 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3108 // Link against a framework. Frameworks are currently Darwin only, so we 3109 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3110 if (LL.IsFramework) { 3111 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3112 llvm::MDString::get(Context, LL.Library)}; 3113 3114 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3115 continue; 3116 } 3117 3118 // Link against a library. 3119 if (IsELF) { 3120 llvm::Metadata *Args[2] = { 3121 llvm::MDString::get(Context, "lib"), 3122 llvm::MDString::get(Context, LL.Library), 3123 }; 3124 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3125 } else { 3126 llvm::SmallString<24> Opt; 3127 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3128 auto *OptString = llvm::MDString::get(Context, Opt); 3129 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3130 } 3131 } 3132 } 3133 3134 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3135 assert(Primary->isNamedModuleUnit() && 3136 "We should only emit module initializers for named modules."); 3137 3138 // Emit the initializers in the order that sub-modules appear in the 3139 // source, first Global Module Fragments, if present. 3140 if (auto GMF = Primary->getGlobalModuleFragment()) { 3141 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3142 if (isa<ImportDecl>(D)) 3143 continue; 3144 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3145 EmitTopLevelDecl(D); 3146 } 3147 } 3148 // Second any associated with the module, itself. 3149 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3150 // Skip import decls, the inits for those are called explicitly. 3151 if (isa<ImportDecl>(D)) 3152 continue; 3153 EmitTopLevelDecl(D); 3154 } 3155 // Third any associated with the Privat eMOdule Fragment, if present. 3156 if (auto PMF = Primary->getPrivateModuleFragment()) { 3157 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3158 // Skip import decls, the inits for those are called explicitly. 3159 if (isa<ImportDecl>(D)) 3160 continue; 3161 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3162 EmitTopLevelDecl(D); 3163 } 3164 } 3165 } 3166 3167 void CodeGenModule::EmitModuleLinkOptions() { 3168 // Collect the set of all of the modules we want to visit to emit link 3169 // options, which is essentially the imported modules and all of their 3170 // non-explicit child modules. 3171 llvm::SetVector<clang::Module *> LinkModules; 3172 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3173 SmallVector<clang::Module *, 16> Stack; 3174 3175 // Seed the stack with imported modules. 3176 for (Module *M : ImportedModules) { 3177 // Do not add any link flags when an implementation TU of a module imports 3178 // a header of that same module. 3179 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3180 !getLangOpts().isCompilingModule()) 3181 continue; 3182 if (Visited.insert(M).second) 3183 Stack.push_back(M); 3184 } 3185 3186 // Find all of the modules to import, making a little effort to prune 3187 // non-leaf modules. 3188 while (!Stack.empty()) { 3189 clang::Module *Mod = Stack.pop_back_val(); 3190 3191 bool AnyChildren = false; 3192 3193 // Visit the submodules of this module. 3194 for (const auto &SM : Mod->submodules()) { 3195 // Skip explicit children; they need to be explicitly imported to be 3196 // linked against. 3197 if (SM->IsExplicit) 3198 continue; 3199 3200 if (Visited.insert(SM).second) { 3201 Stack.push_back(SM); 3202 AnyChildren = true; 3203 } 3204 } 3205 3206 // We didn't find any children, so add this module to the list of 3207 // modules to link against. 3208 if (!AnyChildren) { 3209 LinkModules.insert(Mod); 3210 } 3211 } 3212 3213 // Add link options for all of the imported modules in reverse topological 3214 // order. We don't do anything to try to order import link flags with respect 3215 // to linker options inserted by things like #pragma comment(). 3216 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3217 Visited.clear(); 3218 for (Module *M : LinkModules) 3219 if (Visited.insert(M).second) 3220 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3221 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3222 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3223 3224 // Add the linker options metadata flag. 3225 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3226 for (auto *MD : LinkerOptionsMetadata) 3227 NMD->addOperand(MD); 3228 } 3229 3230 void CodeGenModule::EmitDeferred() { 3231 // Emit deferred declare target declarations. 3232 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3233 getOpenMPRuntime().emitDeferredTargetDecls(); 3234 3235 // Emit code for any potentially referenced deferred decls. Since a 3236 // previously unused static decl may become used during the generation of code 3237 // for a static function, iterate until no changes are made. 3238 3239 if (!DeferredVTables.empty()) { 3240 EmitDeferredVTables(); 3241 3242 // Emitting a vtable doesn't directly cause more vtables to 3243 // become deferred, although it can cause functions to be 3244 // emitted that then need those vtables. 3245 assert(DeferredVTables.empty()); 3246 } 3247 3248 // Emit CUDA/HIP static device variables referenced by host code only. 3249 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3250 // needed for further handling. 3251 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3252 llvm::append_range(DeferredDeclsToEmit, 3253 getContext().CUDADeviceVarODRUsedByHost); 3254 3255 // Stop if we're out of both deferred vtables and deferred declarations. 3256 if (DeferredDeclsToEmit.empty()) 3257 return; 3258 3259 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3260 // work, it will not interfere with this. 3261 std::vector<GlobalDecl> CurDeclsToEmit; 3262 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3263 3264 for (GlobalDecl &D : CurDeclsToEmit) { 3265 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3266 // to get GlobalValue with exactly the type we need, not something that 3267 // might had been created for another decl with the same mangled name but 3268 // different type. 3269 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3270 GetAddrOfGlobal(D, ForDefinition)); 3271 3272 // In case of different address spaces, we may still get a cast, even with 3273 // IsForDefinition equal to true. Query mangled names table to get 3274 // GlobalValue. 3275 if (!GV) 3276 GV = GetGlobalValue(getMangledName(D)); 3277 3278 // Make sure GetGlobalValue returned non-null. 3279 assert(GV); 3280 3281 // Check to see if we've already emitted this. This is necessary 3282 // for a couple of reasons: first, decls can end up in the 3283 // deferred-decls queue multiple times, and second, decls can end 3284 // up with definitions in unusual ways (e.g. by an extern inline 3285 // function acquiring a strong function redefinition). Just 3286 // ignore these cases. 3287 if (!GV->isDeclaration()) 3288 continue; 3289 3290 // If this is OpenMP, check if it is legal to emit this global normally. 3291 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3292 continue; 3293 3294 // Otherwise, emit the definition and move on to the next one. 3295 EmitGlobalDefinition(D, GV); 3296 3297 // If we found out that we need to emit more decls, do that recursively. 3298 // This has the advantage that the decls are emitted in a DFS and related 3299 // ones are close together, which is convenient for testing. 3300 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3301 EmitDeferred(); 3302 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3303 } 3304 } 3305 } 3306 3307 void CodeGenModule::EmitVTablesOpportunistically() { 3308 // Try to emit external vtables as available_externally if they have emitted 3309 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3310 // is not allowed to create new references to things that need to be emitted 3311 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3312 3313 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3314 && "Only emit opportunistic vtables with optimizations"); 3315 3316 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3317 assert(getVTables().isVTableExternal(RD) && 3318 "This queue should only contain external vtables"); 3319 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3320 VTables.GenerateClassData(RD); 3321 } 3322 OpportunisticVTables.clear(); 3323 } 3324 3325 void CodeGenModule::EmitGlobalAnnotations() { 3326 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3327 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3328 if (GV) 3329 AddGlobalAnnotations(VD, GV); 3330 } 3331 DeferredAnnotations.clear(); 3332 3333 if (Annotations.empty()) 3334 return; 3335 3336 // Create a new global variable for the ConstantStruct in the Module. 3337 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3338 Annotations[0]->getType(), Annotations.size()), Annotations); 3339 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3340 llvm::GlobalValue::AppendingLinkage, 3341 Array, "llvm.global.annotations"); 3342 gv->setSection(AnnotationSection); 3343 } 3344 3345 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3346 llvm::Constant *&AStr = AnnotationStrings[Str]; 3347 if (AStr) 3348 return AStr; 3349 3350 // Not found yet, create a new global. 3351 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3352 auto *gv = new llvm::GlobalVariable( 3353 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3354 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3355 ConstGlobalsPtrTy->getAddressSpace()); 3356 gv->setSection(AnnotationSection); 3357 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3358 AStr = gv; 3359 return gv; 3360 } 3361 3362 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3363 SourceManager &SM = getContext().getSourceManager(); 3364 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3365 if (PLoc.isValid()) 3366 return EmitAnnotationString(PLoc.getFilename()); 3367 return EmitAnnotationString(SM.getBufferName(Loc)); 3368 } 3369 3370 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3371 SourceManager &SM = getContext().getSourceManager(); 3372 PresumedLoc PLoc = SM.getPresumedLoc(L); 3373 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3374 SM.getExpansionLineNumber(L); 3375 return llvm::ConstantInt::get(Int32Ty, LineNo); 3376 } 3377 3378 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3379 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3380 if (Exprs.empty()) 3381 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3382 3383 llvm::FoldingSetNodeID ID; 3384 for (Expr *E : Exprs) { 3385 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3386 } 3387 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3388 if (Lookup) 3389 return Lookup; 3390 3391 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3392 LLVMArgs.reserve(Exprs.size()); 3393 ConstantEmitter ConstEmiter(*this); 3394 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3395 const auto *CE = cast<clang::ConstantExpr>(E); 3396 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3397 CE->getType()); 3398 }); 3399 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3400 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3401 llvm::GlobalValue::PrivateLinkage, Struct, 3402 ".args"); 3403 GV->setSection(AnnotationSection); 3404 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3405 3406 Lookup = GV; 3407 return GV; 3408 } 3409 3410 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3411 const AnnotateAttr *AA, 3412 SourceLocation L) { 3413 // Get the globals for file name, annotation, and the line number. 3414 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3415 *UnitGV = EmitAnnotationUnit(L), 3416 *LineNoCst = EmitAnnotationLineNo(L), 3417 *Args = EmitAnnotationArgs(AA); 3418 3419 llvm::Constant *GVInGlobalsAS = GV; 3420 if (GV->getAddressSpace() != 3421 getDataLayout().getDefaultGlobalsAddressSpace()) { 3422 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3423 GV, 3424 llvm::PointerType::get( 3425 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3426 } 3427 3428 // Create the ConstantStruct for the global annotation. 3429 llvm::Constant *Fields[] = { 3430 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3431 }; 3432 return llvm::ConstantStruct::getAnon(Fields); 3433 } 3434 3435 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3436 llvm::GlobalValue *GV) { 3437 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3438 // Get the struct elements for these annotations. 3439 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3440 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3441 } 3442 3443 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3444 SourceLocation Loc) const { 3445 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3446 // NoSanitize by function name. 3447 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3448 return true; 3449 // NoSanitize by location. Check "mainfile" prefix. 3450 auto &SM = Context.getSourceManager(); 3451 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3452 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3453 return true; 3454 3455 // Check "src" prefix. 3456 if (Loc.isValid()) 3457 return NoSanitizeL.containsLocation(Kind, Loc); 3458 // If location is unknown, this may be a compiler-generated function. Assume 3459 // it's located in the main file. 3460 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3461 } 3462 3463 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3464 llvm::GlobalVariable *GV, 3465 SourceLocation Loc, QualType Ty, 3466 StringRef Category) const { 3467 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3468 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3469 return true; 3470 auto &SM = Context.getSourceManager(); 3471 if (NoSanitizeL.containsMainFile( 3472 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3473 Category)) 3474 return true; 3475 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3476 return true; 3477 3478 // Check global type. 3479 if (!Ty.isNull()) { 3480 // Drill down the array types: if global variable of a fixed type is 3481 // not sanitized, we also don't instrument arrays of them. 3482 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3483 Ty = AT->getElementType(); 3484 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3485 // Only record types (classes, structs etc.) are ignored. 3486 if (Ty->isRecordType()) { 3487 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3488 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3489 return true; 3490 } 3491 } 3492 return false; 3493 } 3494 3495 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3496 StringRef Category) const { 3497 const auto &XRayFilter = getContext().getXRayFilter(); 3498 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3499 auto Attr = ImbueAttr::NONE; 3500 if (Loc.isValid()) 3501 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3502 if (Attr == ImbueAttr::NONE) 3503 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3504 switch (Attr) { 3505 case ImbueAttr::NONE: 3506 return false; 3507 case ImbueAttr::ALWAYS: 3508 Fn->addFnAttr("function-instrument", "xray-always"); 3509 break; 3510 case ImbueAttr::ALWAYS_ARG1: 3511 Fn->addFnAttr("function-instrument", "xray-always"); 3512 Fn->addFnAttr("xray-log-args", "1"); 3513 break; 3514 case ImbueAttr::NEVER: 3515 Fn->addFnAttr("function-instrument", "xray-never"); 3516 break; 3517 } 3518 return true; 3519 } 3520 3521 ProfileList::ExclusionType 3522 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3523 SourceLocation Loc) const { 3524 const auto &ProfileList = getContext().getProfileList(); 3525 // If the profile list is empty, then instrument everything. 3526 if (ProfileList.isEmpty()) 3527 return ProfileList::Allow; 3528 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3529 // First, check the function name. 3530 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3531 return *V; 3532 // Next, check the source location. 3533 if (Loc.isValid()) 3534 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3535 return *V; 3536 // If location is unknown, this may be a compiler-generated function. Assume 3537 // it's located in the main file. 3538 auto &SM = Context.getSourceManager(); 3539 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3540 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3541 return *V; 3542 return ProfileList.getDefault(Kind); 3543 } 3544 3545 ProfileList::ExclusionType 3546 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3547 SourceLocation Loc) const { 3548 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3549 if (V != ProfileList::Allow) 3550 return V; 3551 3552 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3553 if (NumGroups > 1) { 3554 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3555 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3556 return ProfileList::Skip; 3557 } 3558 return ProfileList::Allow; 3559 } 3560 3561 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3562 // Never defer when EmitAllDecls is specified. 3563 if (LangOpts.EmitAllDecls) 3564 return true; 3565 3566 const auto *VD = dyn_cast<VarDecl>(Global); 3567 if (VD && 3568 ((CodeGenOpts.KeepPersistentStorageVariables && 3569 (VD->getStorageDuration() == SD_Static || 3570 VD->getStorageDuration() == SD_Thread)) || 3571 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3572 VD->getType().isConstQualified()))) 3573 return true; 3574 3575 return getContext().DeclMustBeEmitted(Global); 3576 } 3577 3578 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3579 // In OpenMP 5.0 variables and function may be marked as 3580 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3581 // that they must be emitted on the host/device. To be sure we need to have 3582 // seen a declare target with an explicit mentioning of the function, we know 3583 // we have if the level of the declare target attribute is -1. Note that we 3584 // check somewhere else if we should emit this at all. 3585 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3586 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3587 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3588 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3589 return false; 3590 } 3591 3592 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3593 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3594 // Implicit template instantiations may change linkage if they are later 3595 // explicitly instantiated, so they should not be emitted eagerly. 3596 return false; 3597 // Defer until all versions have been semantically checked. 3598 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3599 return false; 3600 } 3601 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3602 if (Context.getInlineVariableDefinitionKind(VD) == 3603 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3604 // A definition of an inline constexpr static data member may change 3605 // linkage later if it's redeclared outside the class. 3606 return false; 3607 if (CXX20ModuleInits && VD->getOwningModule() && 3608 !VD->getOwningModule()->isModuleMapModule()) { 3609 // For CXX20, module-owned initializers need to be deferred, since it is 3610 // not known at this point if they will be run for the current module or 3611 // as part of the initializer for an imported one. 3612 return false; 3613 } 3614 } 3615 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3616 // codegen for global variables, because they may be marked as threadprivate. 3617 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3618 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3619 !Global->getType().isConstantStorage(getContext(), false, false) && 3620 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3621 return false; 3622 3623 return true; 3624 } 3625 3626 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3627 StringRef Name = getMangledName(GD); 3628 3629 // The UUID descriptor should be pointer aligned. 3630 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3631 3632 // Look for an existing global. 3633 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3634 return ConstantAddress(GV, GV->getValueType(), Alignment); 3635 3636 ConstantEmitter Emitter(*this); 3637 llvm::Constant *Init; 3638 3639 APValue &V = GD->getAsAPValue(); 3640 if (!V.isAbsent()) { 3641 // If possible, emit the APValue version of the initializer. In particular, 3642 // this gets the type of the constant right. 3643 Init = Emitter.emitForInitializer( 3644 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3645 } else { 3646 // As a fallback, directly construct the constant. 3647 // FIXME: This may get padding wrong under esoteric struct layout rules. 3648 // MSVC appears to create a complete type 'struct __s_GUID' that it 3649 // presumably uses to represent these constants. 3650 MSGuidDecl::Parts Parts = GD->getParts(); 3651 llvm::Constant *Fields[4] = { 3652 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3653 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3654 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3655 llvm::ConstantDataArray::getRaw( 3656 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3657 Int8Ty)}; 3658 Init = llvm::ConstantStruct::getAnon(Fields); 3659 } 3660 3661 auto *GV = new llvm::GlobalVariable( 3662 getModule(), Init->getType(), 3663 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3664 if (supportsCOMDAT()) 3665 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3666 setDSOLocal(GV); 3667 3668 if (!V.isAbsent()) { 3669 Emitter.finalize(GV); 3670 return ConstantAddress(GV, GV->getValueType(), Alignment); 3671 } 3672 3673 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3674 return ConstantAddress(GV, Ty, Alignment); 3675 } 3676 3677 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3678 const UnnamedGlobalConstantDecl *GCD) { 3679 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3680 3681 llvm::GlobalVariable **Entry = nullptr; 3682 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3683 if (*Entry) 3684 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3685 3686 ConstantEmitter Emitter(*this); 3687 llvm::Constant *Init; 3688 3689 const APValue &V = GCD->getValue(); 3690 3691 assert(!V.isAbsent()); 3692 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3693 GCD->getType()); 3694 3695 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3696 /*isConstant=*/true, 3697 llvm::GlobalValue::PrivateLinkage, Init, 3698 ".constant"); 3699 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3700 GV->setAlignment(Alignment.getAsAlign()); 3701 3702 Emitter.finalize(GV); 3703 3704 *Entry = GV; 3705 return ConstantAddress(GV, GV->getValueType(), Alignment); 3706 } 3707 3708 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3709 const TemplateParamObjectDecl *TPO) { 3710 StringRef Name = getMangledName(TPO); 3711 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3712 3713 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3714 return ConstantAddress(GV, GV->getValueType(), Alignment); 3715 3716 ConstantEmitter Emitter(*this); 3717 llvm::Constant *Init = Emitter.emitForInitializer( 3718 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3719 3720 if (!Init) { 3721 ErrorUnsupported(TPO, "template parameter object"); 3722 return ConstantAddress::invalid(); 3723 } 3724 3725 llvm::GlobalValue::LinkageTypes Linkage = 3726 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3727 ? llvm::GlobalValue::LinkOnceODRLinkage 3728 : llvm::GlobalValue::InternalLinkage; 3729 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3730 /*isConstant=*/true, Linkage, Init, Name); 3731 setGVProperties(GV, TPO); 3732 if (supportsCOMDAT()) 3733 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3734 Emitter.finalize(GV); 3735 3736 return ConstantAddress(GV, GV->getValueType(), Alignment); 3737 } 3738 3739 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3740 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3741 assert(AA && "No alias?"); 3742 3743 CharUnits Alignment = getContext().getDeclAlign(VD); 3744 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3745 3746 // See if there is already something with the target's name in the module. 3747 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3748 if (Entry) 3749 return ConstantAddress(Entry, DeclTy, Alignment); 3750 3751 llvm::Constant *Aliasee; 3752 if (isa<llvm::FunctionType>(DeclTy)) 3753 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3754 GlobalDecl(cast<FunctionDecl>(VD)), 3755 /*ForVTable=*/false); 3756 else 3757 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3758 nullptr); 3759 3760 auto *F = cast<llvm::GlobalValue>(Aliasee); 3761 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3762 WeakRefReferences.insert(F); 3763 3764 return ConstantAddress(Aliasee, DeclTy, Alignment); 3765 } 3766 3767 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3768 if (!D) 3769 return false; 3770 if (auto *A = D->getAttr<AttrT>()) 3771 return A->isImplicit(); 3772 return D->isImplicit(); 3773 } 3774 3775 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3776 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3777 // We need to emit host-side 'shadows' for all global 3778 // device-side variables because the CUDA runtime needs their 3779 // size and host-side address in order to provide access to 3780 // their device-side incarnations. 3781 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3782 Global->hasAttr<CUDAConstantAttr>() || 3783 Global->hasAttr<CUDASharedAttr>() || 3784 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3785 Global->getType()->isCUDADeviceBuiltinTextureType(); 3786 } 3787 3788 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3789 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3790 3791 // Weak references don't produce any output by themselves. 3792 if (Global->hasAttr<WeakRefAttr>()) 3793 return; 3794 3795 // If this is an alias definition (which otherwise looks like a declaration) 3796 // emit it now. 3797 if (Global->hasAttr<AliasAttr>()) 3798 return EmitAliasDefinition(GD); 3799 3800 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3801 if (Global->hasAttr<IFuncAttr>()) 3802 return emitIFuncDefinition(GD); 3803 3804 // If this is a cpu_dispatch multiversion function, emit the resolver. 3805 if (Global->hasAttr<CPUDispatchAttr>()) 3806 return emitCPUDispatchDefinition(GD); 3807 3808 // If this is CUDA, be selective about which declarations we emit. 3809 // Non-constexpr non-lambda implicit host device functions are not emitted 3810 // unless they are used on device side. 3811 if (LangOpts.CUDA) { 3812 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3813 "Expected Variable or Function"); 3814 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3815 if (!shouldEmitCUDAGlobalVar(VD)) 3816 return; 3817 } else if (LangOpts.CUDAIsDevice) { 3818 const auto *FD = dyn_cast<FunctionDecl>(Global); 3819 if ((!Global->hasAttr<CUDADeviceAttr>() || 3820 (LangOpts.OffloadImplicitHostDeviceTemplates && 3821 hasImplicitAttr<CUDAHostAttr>(FD) && 3822 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3823 !isLambdaCallOperator(FD) && 3824 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3825 !Global->hasAttr<CUDAGlobalAttr>() && 3826 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3827 !Global->hasAttr<CUDAHostAttr>())) 3828 return; 3829 // Device-only functions are the only things we skip. 3830 } else if (!Global->hasAttr<CUDAHostAttr>() && 3831 Global->hasAttr<CUDADeviceAttr>()) 3832 return; 3833 } 3834 3835 if (LangOpts.OpenMP) { 3836 // If this is OpenMP, check if it is legal to emit this global normally. 3837 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3838 return; 3839 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3840 if (MustBeEmitted(Global)) 3841 EmitOMPDeclareReduction(DRD); 3842 return; 3843 } 3844 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3845 if (MustBeEmitted(Global)) 3846 EmitOMPDeclareMapper(DMD); 3847 return; 3848 } 3849 } 3850 3851 // Ignore declarations, they will be emitted on their first use. 3852 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3853 // Update deferred annotations with the latest declaration if the function 3854 // function was already used or defined. 3855 if (FD->hasAttr<AnnotateAttr>()) { 3856 StringRef MangledName = getMangledName(GD); 3857 if (GetGlobalValue(MangledName)) 3858 DeferredAnnotations[MangledName] = FD; 3859 } 3860 3861 // Forward declarations are emitted lazily on first use. 3862 if (!FD->doesThisDeclarationHaveABody()) { 3863 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3864 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3865 return; 3866 3867 StringRef MangledName = getMangledName(GD); 3868 3869 // Compute the function info and LLVM type. 3870 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3871 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3872 3873 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3874 /*DontDefer=*/false); 3875 return; 3876 } 3877 } else { 3878 const auto *VD = cast<VarDecl>(Global); 3879 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3880 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3881 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3882 if (LangOpts.OpenMP) { 3883 // Emit declaration of the must-be-emitted declare target variable. 3884 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3885 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3886 3887 // If this variable has external storage and doesn't require special 3888 // link handling we defer to its canonical definition. 3889 if (VD->hasExternalStorage() && 3890 Res != OMPDeclareTargetDeclAttr::MT_Link) 3891 return; 3892 3893 bool UnifiedMemoryEnabled = 3894 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3895 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3896 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3897 !UnifiedMemoryEnabled) { 3898 (void)GetAddrOfGlobalVar(VD); 3899 } else { 3900 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3901 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3902 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3903 UnifiedMemoryEnabled)) && 3904 "Link clause or to clause with unified memory expected."); 3905 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3906 } 3907 3908 return; 3909 } 3910 } 3911 // If this declaration may have caused an inline variable definition to 3912 // change linkage, make sure that it's emitted. 3913 if (Context.getInlineVariableDefinitionKind(VD) == 3914 ASTContext::InlineVariableDefinitionKind::Strong) 3915 GetAddrOfGlobalVar(VD); 3916 return; 3917 } 3918 } 3919 3920 // Defer code generation to first use when possible, e.g. if this is an inline 3921 // function. If the global must always be emitted, do it eagerly if possible 3922 // to benefit from cache locality. 3923 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3924 // Emit the definition if it can't be deferred. 3925 EmitGlobalDefinition(GD); 3926 addEmittedDeferredDecl(GD); 3927 return; 3928 } 3929 3930 // If we're deferring emission of a C++ variable with an 3931 // initializer, remember the order in which it appeared in the file. 3932 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3933 cast<VarDecl>(Global)->hasInit()) { 3934 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3935 CXXGlobalInits.push_back(nullptr); 3936 } 3937 3938 StringRef MangledName = getMangledName(GD); 3939 if (GetGlobalValue(MangledName) != nullptr) { 3940 // The value has already been used and should therefore be emitted. 3941 addDeferredDeclToEmit(GD); 3942 } else if (MustBeEmitted(Global)) { 3943 // The value must be emitted, but cannot be emitted eagerly. 3944 assert(!MayBeEmittedEagerly(Global)); 3945 addDeferredDeclToEmit(GD); 3946 } else { 3947 // Otherwise, remember that we saw a deferred decl with this name. The 3948 // first use of the mangled name will cause it to move into 3949 // DeferredDeclsToEmit. 3950 DeferredDecls[MangledName] = GD; 3951 } 3952 } 3953 3954 // Check if T is a class type with a destructor that's not dllimport. 3955 static bool HasNonDllImportDtor(QualType T) { 3956 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3957 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3958 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3959 return true; 3960 3961 return false; 3962 } 3963 3964 namespace { 3965 struct FunctionIsDirectlyRecursive 3966 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3967 const StringRef Name; 3968 const Builtin::Context &BI; 3969 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3970 : Name(N), BI(C) {} 3971 3972 bool VisitCallExpr(const CallExpr *E) { 3973 const FunctionDecl *FD = E->getDirectCallee(); 3974 if (!FD) 3975 return false; 3976 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3977 if (Attr && Name == Attr->getLabel()) 3978 return true; 3979 unsigned BuiltinID = FD->getBuiltinID(); 3980 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3981 return false; 3982 StringRef BuiltinName = BI.getName(BuiltinID); 3983 if (BuiltinName.starts_with("__builtin_") && 3984 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3985 return true; 3986 } 3987 return false; 3988 } 3989 3990 bool VisitStmt(const Stmt *S) { 3991 for (const Stmt *Child : S->children()) 3992 if (Child && this->Visit(Child)) 3993 return true; 3994 return false; 3995 } 3996 }; 3997 3998 // Make sure we're not referencing non-imported vars or functions. 3999 struct DLLImportFunctionVisitor 4000 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 4001 bool SafeToInline = true; 4002 4003 bool shouldVisitImplicitCode() const { return true; } 4004 4005 bool VisitVarDecl(VarDecl *VD) { 4006 if (VD->getTLSKind()) { 4007 // A thread-local variable cannot be imported. 4008 SafeToInline = false; 4009 return SafeToInline; 4010 } 4011 4012 // A variable definition might imply a destructor call. 4013 if (VD->isThisDeclarationADefinition()) 4014 SafeToInline = !HasNonDllImportDtor(VD->getType()); 4015 4016 return SafeToInline; 4017 } 4018 4019 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 4020 if (const auto *D = E->getTemporary()->getDestructor()) 4021 SafeToInline = D->hasAttr<DLLImportAttr>(); 4022 return SafeToInline; 4023 } 4024 4025 bool VisitDeclRefExpr(DeclRefExpr *E) { 4026 ValueDecl *VD = E->getDecl(); 4027 if (isa<FunctionDecl>(VD)) 4028 SafeToInline = VD->hasAttr<DLLImportAttr>(); 4029 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 4030 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 4031 return SafeToInline; 4032 } 4033 4034 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 4035 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 4036 return SafeToInline; 4037 } 4038 4039 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 4040 CXXMethodDecl *M = E->getMethodDecl(); 4041 if (!M) { 4042 // Call through a pointer to member function. This is safe to inline. 4043 SafeToInline = true; 4044 } else { 4045 SafeToInline = M->hasAttr<DLLImportAttr>(); 4046 } 4047 return SafeToInline; 4048 } 4049 4050 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 4051 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 4052 return SafeToInline; 4053 } 4054 4055 bool VisitCXXNewExpr(CXXNewExpr *E) { 4056 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 4057 return SafeToInline; 4058 } 4059 }; 4060 } 4061 4062 // isTriviallyRecursive - Check if this function calls another 4063 // decl that, because of the asm attribute or the other decl being a builtin, 4064 // ends up pointing to itself. 4065 bool 4066 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4067 StringRef Name; 4068 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4069 // asm labels are a special kind of mangling we have to support. 4070 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4071 if (!Attr) 4072 return false; 4073 Name = Attr->getLabel(); 4074 } else { 4075 Name = FD->getName(); 4076 } 4077 4078 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4079 const Stmt *Body = FD->getBody(); 4080 return Body ? Walker.Visit(Body) : false; 4081 } 4082 4083 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4084 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4085 return true; 4086 4087 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4088 // Inline builtins declaration must be emitted. They often are fortified 4089 // functions. 4090 if (F->isInlineBuiltinDeclaration()) 4091 return true; 4092 4093 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4094 return false; 4095 4096 // We don't import function bodies from other named module units since that 4097 // behavior may break ABI compatibility of the current unit. 4098 if (const Module *M = F->getOwningModule(); 4099 M && M->getTopLevelModule()->isNamedModule() && 4100 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4101 // There are practices to mark template member function as always-inline 4102 // and mark the template as extern explicit instantiation but not give 4103 // the definition for member function. So we have to emit the function 4104 // from explicitly instantiation with always-inline. 4105 // 4106 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4107 // 4108 // TODO: Maybe it is better to give it a warning if we call a non-inline 4109 // function from other module units which is marked as always-inline. 4110 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4111 return false; 4112 } 4113 } 4114 4115 if (F->hasAttr<NoInlineAttr>()) 4116 return false; 4117 4118 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4119 // Check whether it would be safe to inline this dllimport function. 4120 DLLImportFunctionVisitor Visitor; 4121 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4122 if (!Visitor.SafeToInline) 4123 return false; 4124 4125 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4126 // Implicit destructor invocations aren't captured in the AST, so the 4127 // check above can't see them. Check for them manually here. 4128 for (const Decl *Member : Dtor->getParent()->decls()) 4129 if (isa<FieldDecl>(Member)) 4130 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4131 return false; 4132 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4133 if (HasNonDllImportDtor(B.getType())) 4134 return false; 4135 } 4136 } 4137 4138 // PR9614. Avoid cases where the source code is lying to us. An available 4139 // externally function should have an equivalent function somewhere else, 4140 // but a function that calls itself through asm label/`__builtin_` trickery is 4141 // clearly not equivalent to the real implementation. 4142 // This happens in glibc's btowc and in some configure checks. 4143 return !isTriviallyRecursive(F); 4144 } 4145 4146 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4147 return CodeGenOpts.OptimizationLevel > 0; 4148 } 4149 4150 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4151 llvm::GlobalValue *GV) { 4152 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4153 4154 if (FD->isCPUSpecificMultiVersion()) { 4155 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4156 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4157 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4158 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4159 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4160 // AArch64 favors the default target version over the clone if any. 4161 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4162 TC->isFirstOfVersion(I)) 4163 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4164 // Ensure that the resolver function is also emitted. 4165 GetOrCreateMultiVersionResolver(GD); 4166 } else 4167 EmitGlobalFunctionDefinition(GD, GV); 4168 4169 // Defer the resolver emission until we can reason whether the TU 4170 // contains a default target version implementation. 4171 if (FD->isTargetVersionMultiVersion()) 4172 AddDeferredMultiVersionResolverToEmit(GD); 4173 } 4174 4175 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4176 const auto *D = cast<ValueDecl>(GD.getDecl()); 4177 4178 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4179 Context.getSourceManager(), 4180 "Generating code for declaration"); 4181 4182 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4183 // At -O0, don't generate IR for functions with available_externally 4184 // linkage. 4185 if (!shouldEmitFunction(GD)) 4186 return; 4187 4188 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4189 std::string Name; 4190 llvm::raw_string_ostream OS(Name); 4191 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4192 /*Qualified=*/true); 4193 return Name; 4194 }); 4195 4196 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4197 // Make sure to emit the definition(s) before we emit the thunks. 4198 // This is necessary for the generation of certain thunks. 4199 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4200 ABI->emitCXXStructor(GD); 4201 else if (FD->isMultiVersion()) 4202 EmitMultiVersionFunctionDefinition(GD, GV); 4203 else 4204 EmitGlobalFunctionDefinition(GD, GV); 4205 4206 if (Method->isVirtual()) 4207 getVTables().EmitThunks(GD); 4208 4209 return; 4210 } 4211 4212 if (FD->isMultiVersion()) 4213 return EmitMultiVersionFunctionDefinition(GD, GV); 4214 return EmitGlobalFunctionDefinition(GD, GV); 4215 } 4216 4217 if (const auto *VD = dyn_cast<VarDecl>(D)) 4218 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4219 4220 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4221 } 4222 4223 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4224 llvm::Function *NewFn); 4225 4226 static unsigned 4227 TargetMVPriority(const TargetInfo &TI, 4228 const CodeGenFunction::MultiVersionResolverOption &RO) { 4229 unsigned Priority = 0; 4230 unsigned NumFeatures = 0; 4231 for (StringRef Feat : RO.Conditions.Features) { 4232 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4233 NumFeatures++; 4234 } 4235 4236 if (!RO.Conditions.Architecture.empty()) 4237 Priority = std::max( 4238 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4239 4240 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4241 4242 return Priority; 4243 } 4244 4245 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4246 // TU can forward declare the function without causing problems. Particularly 4247 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4248 // work with internal linkage functions, so that the same function name can be 4249 // used with internal linkage in multiple TUs. 4250 static llvm::GlobalValue::LinkageTypes 4251 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) { 4252 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4253 if (FD->getFormalLinkage() == Linkage::Internal) 4254 return llvm::GlobalValue::InternalLinkage; 4255 return llvm::GlobalValue::WeakODRLinkage; 4256 } 4257 4258 void CodeGenModule::emitMultiVersionFunctions() { 4259 std::vector<GlobalDecl> MVFuncsToEmit; 4260 MultiVersionFuncs.swap(MVFuncsToEmit); 4261 for (GlobalDecl GD : MVFuncsToEmit) { 4262 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4263 assert(FD && "Expected a FunctionDecl"); 4264 4265 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4266 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4267 StringRef MangledName = getMangledName(CurGD); 4268 llvm::Constant *Func = GetGlobalValue(MangledName); 4269 if (!Func) { 4270 if (Decl->isDefined()) { 4271 EmitGlobalFunctionDefinition(CurGD, nullptr); 4272 Func = GetGlobalValue(MangledName); 4273 } else { 4274 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4275 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4276 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4277 /*DontDefer=*/false, ForDefinition); 4278 } 4279 assert(Func && "This should have just been created"); 4280 } 4281 return cast<llvm::Function>(Func); 4282 }; 4283 4284 // For AArch64, a resolver is only emitted if a function marked with 4285 // target_version("default")) or target_clones() is present and defined 4286 // in this TU. For other architectures it is always emitted. 4287 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4288 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4289 4290 getContext().forEachMultiversionedFunctionVersion( 4291 FD, [&](const FunctionDecl *CurFD) { 4292 llvm::SmallVector<StringRef, 8> Feats; 4293 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4294 4295 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4296 TA->getAddedFeatures(Feats); 4297 llvm::Function *Func = createFunction(CurFD); 4298 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4299 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4300 if (TVA->isDefaultVersion() && IsDefined) 4301 ShouldEmitResolver = true; 4302 llvm::Function *Func = createFunction(CurFD); 4303 if (getTarget().getTriple().isRISCV()) { 4304 Feats.push_back(TVA->getName()); 4305 } else { 4306 assert(getTarget().getTriple().isAArch64()); 4307 TVA->getFeatures(Feats); 4308 } 4309 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4310 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4311 if (IsDefined) 4312 ShouldEmitResolver = true; 4313 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4314 if (!TC->isFirstOfVersion(I)) 4315 continue; 4316 4317 llvm::Function *Func = createFunction(CurFD, I); 4318 StringRef Architecture; 4319 Feats.clear(); 4320 if (getTarget().getTriple().isAArch64()) 4321 TC->getFeatures(Feats, I); 4322 else if (getTarget().getTriple().isRISCV()) { 4323 StringRef Version = TC->getFeatureStr(I); 4324 Feats.push_back(Version); 4325 } else { 4326 StringRef Version = TC->getFeatureStr(I); 4327 if (Version.starts_with("arch=")) 4328 Architecture = Version.drop_front(sizeof("arch=") - 1); 4329 else if (Version != "default") 4330 Feats.push_back(Version); 4331 } 4332 Options.emplace_back(Func, Architecture, Feats); 4333 } 4334 } else 4335 llvm_unreachable("unexpected MultiVersionKind"); 4336 }); 4337 4338 if (!ShouldEmitResolver) 4339 continue; 4340 4341 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4342 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4343 ResolverConstant = IFunc->getResolver(); 4344 if (FD->isTargetClonesMultiVersion() && 4345 !getTarget().getTriple().isAArch64()) { 4346 std::string MangledName = getMangledNameImpl( 4347 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4348 if (!GetGlobalValue(MangledName + ".ifunc")) { 4349 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4350 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4351 // In prior versions of Clang, the mangling for ifuncs incorrectly 4352 // included an .ifunc suffix. This alias is generated for backward 4353 // compatibility. It is deprecated, and may be removed in the future. 4354 auto *Alias = llvm::GlobalAlias::create( 4355 DeclTy, 0, getMultiversionLinkage(*this, GD), 4356 MangledName + ".ifunc", IFunc, &getModule()); 4357 SetCommonAttributes(FD, Alias); 4358 } 4359 } 4360 } 4361 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4362 4363 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4364 4365 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4366 ResolverFunc->setComdat( 4367 getModule().getOrInsertComdat(ResolverFunc->getName())); 4368 4369 const TargetInfo &TI = getTarget(); 4370 llvm::stable_sort( 4371 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4372 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4373 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4374 }); 4375 CodeGenFunction CGF(*this); 4376 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4377 } 4378 4379 // Ensure that any additions to the deferred decls list caused by emitting a 4380 // variant are emitted. This can happen when the variant itself is inline and 4381 // calls a function without linkage. 4382 if (!MVFuncsToEmit.empty()) 4383 EmitDeferred(); 4384 4385 // Ensure that any additions to the multiversion funcs list from either the 4386 // deferred decls or the multiversion functions themselves are emitted. 4387 if (!MultiVersionFuncs.empty()) 4388 emitMultiVersionFunctions(); 4389 } 4390 4391 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4392 llvm::Constant *New) { 4393 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4394 New->takeName(Old); 4395 Old->replaceAllUsesWith(New); 4396 Old->eraseFromParent(); 4397 } 4398 4399 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4400 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4401 assert(FD && "Not a FunctionDecl?"); 4402 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4403 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4404 assert(DD && "Not a cpu_dispatch Function?"); 4405 4406 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4407 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4408 4409 StringRef ResolverName = getMangledName(GD); 4410 UpdateMultiVersionNames(GD, FD, ResolverName); 4411 4412 llvm::Type *ResolverType; 4413 GlobalDecl ResolverGD; 4414 if (getTarget().supportsIFunc()) { 4415 ResolverType = llvm::FunctionType::get( 4416 llvm::PointerType::get(DeclTy, 4417 getTypes().getTargetAddressSpace(FD->getType())), 4418 false); 4419 } 4420 else { 4421 ResolverType = DeclTy; 4422 ResolverGD = GD; 4423 } 4424 4425 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4426 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4427 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4428 if (supportsCOMDAT()) 4429 ResolverFunc->setComdat( 4430 getModule().getOrInsertComdat(ResolverFunc->getName())); 4431 4432 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4433 const TargetInfo &Target = getTarget(); 4434 unsigned Index = 0; 4435 for (const IdentifierInfo *II : DD->cpus()) { 4436 // Get the name of the target function so we can look it up/create it. 4437 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4438 getCPUSpecificMangling(*this, II->getName()); 4439 4440 llvm::Constant *Func = GetGlobalValue(MangledName); 4441 4442 if (!Func) { 4443 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4444 if (ExistingDecl.getDecl() && 4445 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4446 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4447 Func = GetGlobalValue(MangledName); 4448 } else { 4449 if (!ExistingDecl.getDecl()) 4450 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4451 4452 Func = GetOrCreateLLVMFunction( 4453 MangledName, DeclTy, ExistingDecl, 4454 /*ForVTable=*/false, /*DontDefer=*/true, 4455 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4456 } 4457 } 4458 4459 llvm::SmallVector<StringRef, 32> Features; 4460 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4461 llvm::transform(Features, Features.begin(), 4462 [](StringRef Str) { return Str.substr(1); }); 4463 llvm::erase_if(Features, [&Target](StringRef Feat) { 4464 return !Target.validateCpuSupports(Feat); 4465 }); 4466 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4467 ++Index; 4468 } 4469 4470 llvm::stable_sort( 4471 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4472 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4473 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4474 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4475 }); 4476 4477 // If the list contains multiple 'default' versions, such as when it contains 4478 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4479 // always run on at least a 'pentium'). We do this by deleting the 'least 4480 // advanced' (read, lowest mangling letter). 4481 while (Options.size() > 1 && 4482 llvm::all_of(llvm::X86::getCpuSupportsMask( 4483 (Options.end() - 2)->Conditions.Features), 4484 [](auto X) { return X == 0; })) { 4485 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4486 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4487 if (LHSName.compare(RHSName) < 0) 4488 Options.erase(Options.end() - 2); 4489 else 4490 Options.erase(Options.end() - 1); 4491 } 4492 4493 CodeGenFunction CGF(*this); 4494 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4495 4496 if (getTarget().supportsIFunc()) { 4497 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4498 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4499 unsigned AS = IFunc->getType()->getPointerAddressSpace(); 4500 4501 // Fix up function declarations that were created for cpu_specific before 4502 // cpu_dispatch was known 4503 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4504 auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "", 4505 ResolverFunc, &getModule()); 4506 replaceDeclarationWith(IFunc, GI); 4507 IFunc = GI; 4508 } 4509 4510 std::string AliasName = getMangledNameImpl( 4511 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4512 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4513 if (!AliasFunc) { 4514 auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName, 4515 IFunc, &getModule()); 4516 SetCommonAttributes(GD, GA); 4517 } 4518 } 4519 } 4520 4521 /// Adds a declaration to the list of multi version functions if not present. 4522 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4523 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4524 assert(FD && "Not a FunctionDecl?"); 4525 4526 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4527 std::string MangledName = 4528 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4529 if (!DeferredResolversToEmit.insert(MangledName).second) 4530 return; 4531 } 4532 MultiVersionFuncs.push_back(GD); 4533 } 4534 4535 /// If a dispatcher for the specified mangled name is not in the module, create 4536 /// and return it. The dispatcher is either an llvm Function with the specified 4537 /// type, or a global ifunc. 4538 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4539 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4540 assert(FD && "Not a FunctionDecl?"); 4541 4542 std::string MangledName = 4543 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4544 4545 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4546 // a separate resolver). 4547 std::string ResolverName = MangledName; 4548 if (getTarget().supportsIFunc()) { 4549 switch (FD->getMultiVersionKind()) { 4550 case MultiVersionKind::None: 4551 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4552 case MultiVersionKind::Target: 4553 case MultiVersionKind::CPUSpecific: 4554 case MultiVersionKind::CPUDispatch: 4555 ResolverName += ".ifunc"; 4556 break; 4557 case MultiVersionKind::TargetClones: 4558 case MultiVersionKind::TargetVersion: 4559 break; 4560 } 4561 } else if (FD->isTargetMultiVersion()) { 4562 ResolverName += ".resolver"; 4563 } 4564 4565 // If the resolver has already been created, just return it. This lookup may 4566 // yield a function declaration instead of a resolver on AArch64. That is 4567 // because we didn't know whether a resolver will be generated when we first 4568 // encountered a use of the symbol named after this resolver. Therefore, 4569 // targets which support ifuncs should not return here unless we actually 4570 // found an ifunc. 4571 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4572 if (ResolverGV && 4573 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4574 return ResolverGV; 4575 4576 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4577 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4578 4579 // The resolver needs to be created. For target and target_clones, defer 4580 // creation until the end of the TU. 4581 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4582 AddDeferredMultiVersionResolverToEmit(GD); 4583 4584 // For cpu_specific, don't create an ifunc yet because we don't know if the 4585 // cpu_dispatch will be emitted in this translation unit. 4586 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4587 unsigned AS = getTypes().getTargetAddressSpace(FD->getType()); 4588 llvm::Type *ResolverType = 4589 llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false); 4590 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4591 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4592 /*ForVTable=*/false); 4593 llvm::GlobalIFunc *GIF = 4594 llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD), 4595 "", Resolver, &getModule()); 4596 GIF->setName(ResolverName); 4597 SetCommonAttributes(FD, GIF); 4598 if (ResolverGV) 4599 replaceDeclarationWith(ResolverGV, GIF); 4600 return GIF; 4601 } 4602 4603 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4604 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4605 assert(isa<llvm::GlobalValue>(Resolver) && 4606 "Resolver should be created for the first time"); 4607 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4608 if (ResolverGV) 4609 replaceDeclarationWith(ResolverGV, Resolver); 4610 return Resolver; 4611 } 4612 4613 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4614 const llvm::GlobalValue *GV) const { 4615 auto SC = GV->getDLLStorageClass(); 4616 if (SC == llvm::GlobalValue::DefaultStorageClass) 4617 return false; 4618 const Decl *MRD = D->getMostRecentDecl(); 4619 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4620 !MRD->hasAttr<DLLImportAttr>()) || 4621 (SC == llvm::GlobalValue::DLLExportStorageClass && 4622 !MRD->hasAttr<DLLExportAttr>())) && 4623 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4624 } 4625 4626 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4627 /// module, create and return an llvm Function with the specified type. If there 4628 /// is something in the module with the specified name, return it potentially 4629 /// bitcasted to the right type. 4630 /// 4631 /// If D is non-null, it specifies a decl that correspond to this. This is used 4632 /// to set the attributes on the function when it is first created. 4633 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4634 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4635 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4636 ForDefinition_t IsForDefinition) { 4637 const Decl *D = GD.getDecl(); 4638 4639 std::string NameWithoutMultiVersionMangling; 4640 // Any attempts to use a MultiVersion function should result in retrieving 4641 // the iFunc instead. Name Mangling will handle the rest of the changes. 4642 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4643 // For the device mark the function as one that should be emitted. 4644 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4645 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4646 !DontDefer && !IsForDefinition) { 4647 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4648 GlobalDecl GDDef; 4649 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4650 GDDef = GlobalDecl(CD, GD.getCtorType()); 4651 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4652 GDDef = GlobalDecl(DD, GD.getDtorType()); 4653 else 4654 GDDef = GlobalDecl(FDDef); 4655 EmitGlobal(GDDef); 4656 } 4657 } 4658 4659 if (FD->isMultiVersion()) { 4660 UpdateMultiVersionNames(GD, FD, MangledName); 4661 if (!IsForDefinition) { 4662 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4663 // function is used. Instead we defer the emission until we see a 4664 // default definition. In the meantime we just reference the symbol 4665 // without FMV mangling (it may or may not be replaced later). 4666 if (getTarget().getTriple().isAArch64()) { 4667 AddDeferredMultiVersionResolverToEmit(GD); 4668 NameWithoutMultiVersionMangling = getMangledNameImpl( 4669 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4670 } else 4671 return GetOrCreateMultiVersionResolver(GD); 4672 } 4673 } 4674 } 4675 4676 if (!NameWithoutMultiVersionMangling.empty()) 4677 MangledName = NameWithoutMultiVersionMangling; 4678 4679 // Lookup the entry, lazily creating it if necessary. 4680 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4681 if (Entry) { 4682 if (WeakRefReferences.erase(Entry)) { 4683 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4684 if (FD && !FD->hasAttr<WeakAttr>()) 4685 Entry->setLinkage(llvm::Function::ExternalLinkage); 4686 } 4687 4688 // Handle dropped DLL attributes. 4689 if (D && shouldDropDLLAttribute(D, Entry)) { 4690 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4691 setDSOLocal(Entry); 4692 } 4693 4694 // If there are two attempts to define the same mangled name, issue an 4695 // error. 4696 if (IsForDefinition && !Entry->isDeclaration()) { 4697 GlobalDecl OtherGD; 4698 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4699 // to make sure that we issue an error only once. 4700 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4701 (GD.getCanonicalDecl().getDecl() != 4702 OtherGD.getCanonicalDecl().getDecl()) && 4703 DiagnosedConflictingDefinitions.insert(GD).second) { 4704 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4705 << MangledName; 4706 getDiags().Report(OtherGD.getDecl()->getLocation(), 4707 diag::note_previous_definition); 4708 } 4709 } 4710 4711 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4712 (Entry->getValueType() == Ty)) { 4713 return Entry; 4714 } 4715 4716 // Make sure the result is of the correct type. 4717 // (If function is requested for a definition, we always need to create a new 4718 // function, not just return a bitcast.) 4719 if (!IsForDefinition) 4720 return Entry; 4721 } 4722 4723 // This function doesn't have a complete type (for example, the return 4724 // type is an incomplete struct). Use a fake type instead, and make 4725 // sure not to try to set attributes. 4726 bool IsIncompleteFunction = false; 4727 4728 llvm::FunctionType *FTy; 4729 if (isa<llvm::FunctionType>(Ty)) { 4730 FTy = cast<llvm::FunctionType>(Ty); 4731 } else { 4732 FTy = llvm::FunctionType::get(VoidTy, false); 4733 IsIncompleteFunction = true; 4734 } 4735 4736 llvm::Function *F = 4737 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4738 Entry ? StringRef() : MangledName, &getModule()); 4739 4740 // Store the declaration associated with this function so it is potentially 4741 // updated by further declarations or definitions and emitted at the end. 4742 if (D && D->hasAttr<AnnotateAttr>()) 4743 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4744 4745 // If we already created a function with the same mangled name (but different 4746 // type) before, take its name and add it to the list of functions to be 4747 // replaced with F at the end of CodeGen. 4748 // 4749 // This happens if there is a prototype for a function (e.g. "int f()") and 4750 // then a definition of a different type (e.g. "int f(int x)"). 4751 if (Entry) { 4752 F->takeName(Entry); 4753 4754 // This might be an implementation of a function without a prototype, in 4755 // which case, try to do special replacement of calls which match the new 4756 // prototype. The really key thing here is that we also potentially drop 4757 // arguments from the call site so as to make a direct call, which makes the 4758 // inliner happier and suppresses a number of optimizer warnings (!) about 4759 // dropping arguments. 4760 if (!Entry->use_empty()) { 4761 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4762 Entry->removeDeadConstantUsers(); 4763 } 4764 4765 addGlobalValReplacement(Entry, F); 4766 } 4767 4768 assert(F->getName() == MangledName && "name was uniqued!"); 4769 if (D) 4770 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4771 if (ExtraAttrs.hasFnAttrs()) { 4772 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4773 F->addFnAttrs(B); 4774 } 4775 4776 if (!DontDefer) { 4777 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4778 // each other bottoming out with the base dtor. Therefore we emit non-base 4779 // dtors on usage, even if there is no dtor definition in the TU. 4780 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4781 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4782 GD.getDtorType())) 4783 addDeferredDeclToEmit(GD); 4784 4785 // This is the first use or definition of a mangled name. If there is a 4786 // deferred decl with this name, remember that we need to emit it at the end 4787 // of the file. 4788 auto DDI = DeferredDecls.find(MangledName); 4789 if (DDI != DeferredDecls.end()) { 4790 // Move the potentially referenced deferred decl to the 4791 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4792 // don't need it anymore). 4793 addDeferredDeclToEmit(DDI->second); 4794 DeferredDecls.erase(DDI); 4795 4796 // Otherwise, there are cases we have to worry about where we're 4797 // using a declaration for which we must emit a definition but where 4798 // we might not find a top-level definition: 4799 // - member functions defined inline in their classes 4800 // - friend functions defined inline in some class 4801 // - special member functions with implicit definitions 4802 // If we ever change our AST traversal to walk into class methods, 4803 // this will be unnecessary. 4804 // 4805 // We also don't emit a definition for a function if it's going to be an 4806 // entry in a vtable, unless it's already marked as used. 4807 } else if (getLangOpts().CPlusPlus && D) { 4808 // Look for a declaration that's lexically in a record. 4809 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4810 FD = FD->getPreviousDecl()) { 4811 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4812 if (FD->doesThisDeclarationHaveABody()) { 4813 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4814 break; 4815 } 4816 } 4817 } 4818 } 4819 } 4820 4821 // Make sure the result is of the requested type. 4822 if (!IsIncompleteFunction) { 4823 assert(F->getFunctionType() == Ty); 4824 return F; 4825 } 4826 4827 return F; 4828 } 4829 4830 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4831 /// non-null, then this function will use the specified type if it has to 4832 /// create it (this occurs when we see a definition of the function). 4833 llvm::Constant * 4834 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4835 bool DontDefer, 4836 ForDefinition_t IsForDefinition) { 4837 // If there was no specific requested type, just convert it now. 4838 if (!Ty) { 4839 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4840 Ty = getTypes().ConvertType(FD->getType()); 4841 } 4842 4843 // Devirtualized destructor calls may come through here instead of via 4844 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4845 // of the complete destructor when necessary. 4846 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4847 if (getTarget().getCXXABI().isMicrosoft() && 4848 GD.getDtorType() == Dtor_Complete && 4849 DD->getParent()->getNumVBases() == 0) 4850 GD = GlobalDecl(DD, Dtor_Base); 4851 } 4852 4853 StringRef MangledName = getMangledName(GD); 4854 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4855 /*IsThunk=*/false, llvm::AttributeList(), 4856 IsForDefinition); 4857 // Returns kernel handle for HIP kernel stub function. 4858 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4859 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4860 auto *Handle = getCUDARuntime().getKernelHandle( 4861 cast<llvm::Function>(F->stripPointerCasts()), GD); 4862 if (IsForDefinition) 4863 return F; 4864 return Handle; 4865 } 4866 return F; 4867 } 4868 4869 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4870 llvm::GlobalValue *F = 4871 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4872 4873 return llvm::NoCFIValue::get(F); 4874 } 4875 4876 static const FunctionDecl * 4877 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4878 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4879 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4880 4881 IdentifierInfo &CII = C.Idents.get(Name); 4882 for (const auto *Result : DC->lookup(&CII)) 4883 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4884 return FD; 4885 4886 if (!C.getLangOpts().CPlusPlus) 4887 return nullptr; 4888 4889 // Demangle the premangled name from getTerminateFn() 4890 IdentifierInfo &CXXII = 4891 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4892 ? C.Idents.get("terminate") 4893 : C.Idents.get(Name); 4894 4895 for (const auto &N : {"__cxxabiv1", "std"}) { 4896 IdentifierInfo &NS = C.Idents.get(N); 4897 for (const auto *Result : DC->lookup(&NS)) { 4898 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4899 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4900 for (const auto *Result : LSD->lookup(&NS)) 4901 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4902 break; 4903 4904 if (ND) 4905 for (const auto *Result : ND->lookup(&CXXII)) 4906 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4907 return FD; 4908 } 4909 } 4910 4911 return nullptr; 4912 } 4913 4914 /// CreateRuntimeFunction - Create a new runtime function with the specified 4915 /// type and name. 4916 llvm::FunctionCallee 4917 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4918 llvm::AttributeList ExtraAttrs, bool Local, 4919 bool AssumeConvergent) { 4920 if (AssumeConvergent) { 4921 ExtraAttrs = 4922 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4923 } 4924 4925 llvm::Constant *C = 4926 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4927 /*DontDefer=*/false, /*IsThunk=*/false, 4928 ExtraAttrs); 4929 4930 if (auto *F = dyn_cast<llvm::Function>(C)) { 4931 if (F->empty()) { 4932 F->setCallingConv(getRuntimeCC()); 4933 4934 // In Windows Itanium environments, try to mark runtime functions 4935 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4936 // will link their standard library statically or dynamically. Marking 4937 // functions imported when they are not imported can cause linker errors 4938 // and warnings. 4939 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4940 !getCodeGenOpts().LTOVisibilityPublicStd) { 4941 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4942 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4943 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4944 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4945 } 4946 } 4947 setDSOLocal(F); 4948 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4949 // of trying to approximate the attributes using the LLVM function 4950 // signature. This requires revising the API of CreateRuntimeFunction(). 4951 markRegisterParameterAttributes(F); 4952 } 4953 } 4954 4955 return {FTy, C}; 4956 } 4957 4958 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4959 /// create and return an llvm GlobalVariable with the specified type and address 4960 /// space. If there is something in the module with the specified name, return 4961 /// it potentially bitcasted to the right type. 4962 /// 4963 /// If D is non-null, it specifies a decl that correspond to this. This is used 4964 /// to set the attributes on the global when it is first created. 4965 /// 4966 /// If IsForDefinition is true, it is guaranteed that an actual global with 4967 /// type Ty will be returned, not conversion of a variable with the same 4968 /// mangled name but some other type. 4969 llvm::Constant * 4970 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4971 LangAS AddrSpace, const VarDecl *D, 4972 ForDefinition_t IsForDefinition) { 4973 // Lookup the entry, lazily creating it if necessary. 4974 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4975 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4976 if (Entry) { 4977 if (WeakRefReferences.erase(Entry)) { 4978 if (D && !D->hasAttr<WeakAttr>()) 4979 Entry->setLinkage(llvm::Function::ExternalLinkage); 4980 } 4981 4982 // Handle dropped DLL attributes. 4983 if (D && shouldDropDLLAttribute(D, Entry)) 4984 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4985 4986 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4987 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4988 4989 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4990 return Entry; 4991 4992 // If there are two attempts to define the same mangled name, issue an 4993 // error. 4994 if (IsForDefinition && !Entry->isDeclaration()) { 4995 GlobalDecl OtherGD; 4996 const VarDecl *OtherD; 4997 4998 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4999 // to make sure that we issue an error only once. 5000 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 5001 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 5002 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 5003 OtherD->hasInit() && 5004 DiagnosedConflictingDefinitions.insert(D).second) { 5005 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 5006 << MangledName; 5007 getDiags().Report(OtherGD.getDecl()->getLocation(), 5008 diag::note_previous_definition); 5009 } 5010 } 5011 5012 // Make sure the result is of the correct type. 5013 if (Entry->getType()->getAddressSpace() != TargetAS) 5014 return llvm::ConstantExpr::getAddrSpaceCast( 5015 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 5016 5017 // (If global is requested for a definition, we always need to create a new 5018 // global, not just return a bitcast.) 5019 if (!IsForDefinition) 5020 return Entry; 5021 } 5022 5023 auto DAddrSpace = GetGlobalVarAddressSpace(D); 5024 5025 auto *GV = new llvm::GlobalVariable( 5026 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 5027 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 5028 getContext().getTargetAddressSpace(DAddrSpace)); 5029 5030 // If we already created a global with the same mangled name (but different 5031 // type) before, take its name and remove it from its parent. 5032 if (Entry) { 5033 GV->takeName(Entry); 5034 5035 if (!Entry->use_empty()) { 5036 Entry->replaceAllUsesWith(GV); 5037 } 5038 5039 Entry->eraseFromParent(); 5040 } 5041 5042 // This is the first use or definition of a mangled name. If there is a 5043 // deferred decl with this name, remember that we need to emit it at the end 5044 // of the file. 5045 auto DDI = DeferredDecls.find(MangledName); 5046 if (DDI != DeferredDecls.end()) { 5047 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 5048 // list, and remove it from DeferredDecls (since we don't need it anymore). 5049 addDeferredDeclToEmit(DDI->second); 5050 DeferredDecls.erase(DDI); 5051 } 5052 5053 // Handle things which are present even on external declarations. 5054 if (D) { 5055 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 5056 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 5057 5058 // FIXME: This code is overly simple and should be merged with other global 5059 // handling. 5060 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 5061 5062 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 5063 5064 setLinkageForGV(GV, D); 5065 5066 if (D->getTLSKind()) { 5067 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5068 CXXThreadLocals.push_back(D); 5069 setTLSMode(GV, *D); 5070 } 5071 5072 setGVProperties(GV, D); 5073 5074 // If required by the ABI, treat declarations of static data members with 5075 // inline initializers as definitions. 5076 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5077 EmitGlobalVarDefinition(D); 5078 } 5079 5080 // Emit section information for extern variables. 5081 if (D->hasExternalStorage()) { 5082 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5083 GV->setSection(SA->getName()); 5084 } 5085 5086 // Handle XCore specific ABI requirements. 5087 if (getTriple().getArch() == llvm::Triple::xcore && 5088 D->getLanguageLinkage() == CLanguageLinkage && 5089 D->getType().isConstant(Context) && 5090 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5091 GV->setSection(".cp.rodata"); 5092 5093 // Handle code model attribute 5094 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5095 GV->setCodeModel(CMA->getModel()); 5096 5097 // Check if we a have a const declaration with an initializer, we may be 5098 // able to emit it as available_externally to expose it's value to the 5099 // optimizer. 5100 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5101 D->getType().isConstQualified() && !GV->hasInitializer() && 5102 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5103 const auto *Record = 5104 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5105 bool HasMutableFields = Record && Record->hasMutableFields(); 5106 if (!HasMutableFields) { 5107 const VarDecl *InitDecl; 5108 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5109 if (InitExpr) { 5110 ConstantEmitter emitter(*this); 5111 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5112 if (Init) { 5113 auto *InitType = Init->getType(); 5114 if (GV->getValueType() != InitType) { 5115 // The type of the initializer does not match the definition. 5116 // This happens when an initializer has a different type from 5117 // the type of the global (because of padding at the end of a 5118 // structure for instance). 5119 GV->setName(StringRef()); 5120 // Make a new global with the correct type, this is now guaranteed 5121 // to work. 5122 auto *NewGV = cast<llvm::GlobalVariable>( 5123 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5124 ->stripPointerCasts()); 5125 5126 // Erase the old global, since it is no longer used. 5127 GV->eraseFromParent(); 5128 GV = NewGV; 5129 } else { 5130 GV->setInitializer(Init); 5131 GV->setConstant(true); 5132 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5133 } 5134 emitter.finalize(GV); 5135 } 5136 } 5137 } 5138 } 5139 } 5140 5141 if (D && 5142 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5143 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5144 // External HIP managed variables needed to be recorded for transformation 5145 // in both device and host compilations. 5146 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5147 D->hasExternalStorage()) 5148 getCUDARuntime().handleVarRegistration(D, *GV); 5149 } 5150 5151 if (D) 5152 SanitizerMD->reportGlobal(GV, *D); 5153 5154 LangAS ExpectedAS = 5155 D ? D->getType().getAddressSpace() 5156 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5157 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5158 if (DAddrSpace != ExpectedAS) { 5159 return getTargetCodeGenInfo().performAddrSpaceCast( 5160 *this, GV, DAddrSpace, ExpectedAS, 5161 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5162 } 5163 5164 return GV; 5165 } 5166 5167 llvm::Constant * 5168 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5169 const Decl *D = GD.getDecl(); 5170 5171 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5172 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5173 /*DontDefer=*/false, IsForDefinition); 5174 5175 if (isa<CXXMethodDecl>(D)) { 5176 auto FInfo = 5177 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5178 auto Ty = getTypes().GetFunctionType(*FInfo); 5179 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5180 IsForDefinition); 5181 } 5182 5183 if (isa<FunctionDecl>(D)) { 5184 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5185 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5186 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5187 IsForDefinition); 5188 } 5189 5190 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5191 } 5192 5193 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5194 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5195 llvm::Align Alignment) { 5196 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5197 llvm::GlobalVariable *OldGV = nullptr; 5198 5199 if (GV) { 5200 // Check if the variable has the right type. 5201 if (GV->getValueType() == Ty) 5202 return GV; 5203 5204 // Because C++ name mangling, the only way we can end up with an already 5205 // existing global with the same name is if it has been declared extern "C". 5206 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5207 OldGV = GV; 5208 } 5209 5210 // Create a new variable. 5211 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5212 Linkage, nullptr, Name); 5213 5214 if (OldGV) { 5215 // Replace occurrences of the old variable if needed. 5216 GV->takeName(OldGV); 5217 5218 if (!OldGV->use_empty()) { 5219 OldGV->replaceAllUsesWith(GV); 5220 } 5221 5222 OldGV->eraseFromParent(); 5223 } 5224 5225 if (supportsCOMDAT() && GV->isWeakForLinker() && 5226 !GV->hasAvailableExternallyLinkage()) 5227 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5228 5229 GV->setAlignment(Alignment); 5230 5231 return GV; 5232 } 5233 5234 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5235 /// given global variable. If Ty is non-null and if the global doesn't exist, 5236 /// then it will be created with the specified type instead of whatever the 5237 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5238 /// that an actual global with type Ty will be returned, not conversion of a 5239 /// variable with the same mangled name but some other type. 5240 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5241 llvm::Type *Ty, 5242 ForDefinition_t IsForDefinition) { 5243 assert(D->hasGlobalStorage() && "Not a global variable"); 5244 QualType ASTTy = D->getType(); 5245 if (!Ty) 5246 Ty = getTypes().ConvertTypeForMem(ASTTy); 5247 5248 StringRef MangledName = getMangledName(D); 5249 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5250 IsForDefinition); 5251 } 5252 5253 /// CreateRuntimeVariable - Create a new runtime global variable with the 5254 /// specified type and name. 5255 llvm::Constant * 5256 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5257 StringRef Name) { 5258 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5259 : LangAS::Default; 5260 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5261 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5262 return Ret; 5263 } 5264 5265 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5266 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5267 5268 StringRef MangledName = getMangledName(D); 5269 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5270 5271 // We already have a definition, not declaration, with the same mangled name. 5272 // Emitting of declaration is not required (and actually overwrites emitted 5273 // definition). 5274 if (GV && !GV->isDeclaration()) 5275 return; 5276 5277 // If we have not seen a reference to this variable yet, place it into the 5278 // deferred declarations table to be emitted if needed later. 5279 if (!MustBeEmitted(D) && !GV) { 5280 DeferredDecls[MangledName] = D; 5281 return; 5282 } 5283 5284 // The tentative definition is the only definition. 5285 EmitGlobalVarDefinition(D); 5286 } 5287 5288 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5289 if (auto const *V = dyn_cast<const VarDecl>(D)) 5290 EmitExternalVarDeclaration(V); 5291 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5292 EmitExternalFunctionDeclaration(FD); 5293 } 5294 5295 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5296 return Context.toCharUnitsFromBits( 5297 getDataLayout().getTypeStoreSizeInBits(Ty)); 5298 } 5299 5300 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5301 if (LangOpts.OpenCL) { 5302 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5303 assert(AS == LangAS::opencl_global || 5304 AS == LangAS::opencl_global_device || 5305 AS == LangAS::opencl_global_host || 5306 AS == LangAS::opencl_constant || 5307 AS == LangAS::opencl_local || 5308 AS >= LangAS::FirstTargetAddressSpace); 5309 return AS; 5310 } 5311 5312 if (LangOpts.SYCLIsDevice && 5313 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5314 return LangAS::sycl_global; 5315 5316 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5317 if (D) { 5318 if (D->hasAttr<CUDAConstantAttr>()) 5319 return LangAS::cuda_constant; 5320 if (D->hasAttr<CUDASharedAttr>()) 5321 return LangAS::cuda_shared; 5322 if (D->hasAttr<CUDADeviceAttr>()) 5323 return LangAS::cuda_device; 5324 if (D->getType().isConstQualified()) 5325 return LangAS::cuda_constant; 5326 } 5327 return LangAS::cuda_device; 5328 } 5329 5330 if (LangOpts.OpenMP) { 5331 LangAS AS; 5332 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5333 return AS; 5334 } 5335 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5336 } 5337 5338 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5339 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5340 if (LangOpts.OpenCL) 5341 return LangAS::opencl_constant; 5342 if (LangOpts.SYCLIsDevice) 5343 return LangAS::sycl_global; 5344 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5345 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5346 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5347 // with OpVariable instructions with Generic storage class which is not 5348 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5349 // UniformConstant storage class is not viable as pointers to it may not be 5350 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5351 return LangAS::cuda_device; 5352 if (auto AS = getTarget().getConstantAddressSpace()) 5353 return *AS; 5354 return LangAS::Default; 5355 } 5356 5357 // In address space agnostic languages, string literals are in default address 5358 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5359 // emitted in constant address space in LLVM IR. To be consistent with other 5360 // parts of AST, string literal global variables in constant address space 5361 // need to be casted to default address space before being put into address 5362 // map and referenced by other part of CodeGen. 5363 // In OpenCL, string literals are in constant address space in AST, therefore 5364 // they should not be casted to default address space. 5365 static llvm::Constant * 5366 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5367 llvm::GlobalVariable *GV) { 5368 llvm::Constant *Cast = GV; 5369 if (!CGM.getLangOpts().OpenCL) { 5370 auto AS = CGM.GetGlobalConstantAddressSpace(); 5371 if (AS != LangAS::Default) 5372 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5373 CGM, GV, AS, LangAS::Default, 5374 llvm::PointerType::get( 5375 CGM.getLLVMContext(), 5376 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5377 } 5378 return Cast; 5379 } 5380 5381 template<typename SomeDecl> 5382 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5383 llvm::GlobalValue *GV) { 5384 if (!getLangOpts().CPlusPlus) 5385 return; 5386 5387 // Must have 'used' attribute, or else inline assembly can't rely on 5388 // the name existing. 5389 if (!D->template hasAttr<UsedAttr>()) 5390 return; 5391 5392 // Must have internal linkage and an ordinary name. 5393 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5394 return; 5395 5396 // Must be in an extern "C" context. Entities declared directly within 5397 // a record are not extern "C" even if the record is in such a context. 5398 const SomeDecl *First = D->getFirstDecl(); 5399 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5400 return; 5401 5402 // OK, this is an internal linkage entity inside an extern "C" linkage 5403 // specification. Make a note of that so we can give it the "expected" 5404 // mangled name if nothing else is using that name. 5405 std::pair<StaticExternCMap::iterator, bool> R = 5406 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5407 5408 // If we have multiple internal linkage entities with the same name 5409 // in extern "C" regions, none of them gets that name. 5410 if (!R.second) 5411 R.first->second = nullptr; 5412 } 5413 5414 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5415 if (!CGM.supportsCOMDAT()) 5416 return false; 5417 5418 if (D.hasAttr<SelectAnyAttr>()) 5419 return true; 5420 5421 GVALinkage Linkage; 5422 if (auto *VD = dyn_cast<VarDecl>(&D)) 5423 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5424 else 5425 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5426 5427 switch (Linkage) { 5428 case GVA_Internal: 5429 case GVA_AvailableExternally: 5430 case GVA_StrongExternal: 5431 return false; 5432 case GVA_DiscardableODR: 5433 case GVA_StrongODR: 5434 return true; 5435 } 5436 llvm_unreachable("No such linkage"); 5437 } 5438 5439 bool CodeGenModule::supportsCOMDAT() const { 5440 return getTriple().supportsCOMDAT(); 5441 } 5442 5443 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5444 llvm::GlobalObject &GO) { 5445 if (!shouldBeInCOMDAT(*this, D)) 5446 return; 5447 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5448 } 5449 5450 const ABIInfo &CodeGenModule::getABIInfo() { 5451 return getTargetCodeGenInfo().getABIInfo(); 5452 } 5453 5454 /// Pass IsTentative as true if you want to create a tentative definition. 5455 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5456 bool IsTentative) { 5457 // OpenCL global variables of sampler type are translated to function calls, 5458 // therefore no need to be translated. 5459 QualType ASTTy = D->getType(); 5460 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5461 return; 5462 5463 // If this is OpenMP device, check if it is legal to emit this global 5464 // normally. 5465 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5466 OpenMPRuntime->emitTargetGlobalVariable(D)) 5467 return; 5468 5469 llvm::TrackingVH<llvm::Constant> Init; 5470 bool NeedsGlobalCtor = false; 5471 // Whether the definition of the variable is available externally. 5472 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5473 // since this is the job for its original source. 5474 bool IsDefinitionAvailableExternally = 5475 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5476 bool NeedsGlobalDtor = 5477 !IsDefinitionAvailableExternally && 5478 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5479 5480 // It is helpless to emit the definition for an available_externally variable 5481 // which can't be marked as const. 5482 // We don't need to check if it needs global ctor or dtor. See the above 5483 // comment for ideas. 5484 if (IsDefinitionAvailableExternally && 5485 (!D->hasConstantInitialization() || 5486 // TODO: Update this when we have interface to check constexpr 5487 // destructor. 5488 D->needsDestruction(getContext()) || 5489 !D->getType().isConstantStorage(getContext(), true, true))) 5490 return; 5491 5492 const VarDecl *InitDecl; 5493 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5494 5495 std::optional<ConstantEmitter> emitter; 5496 5497 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5498 // as part of their declaration." Sema has already checked for 5499 // error cases, so we just need to set Init to UndefValue. 5500 bool IsCUDASharedVar = 5501 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5502 // Shadows of initialized device-side global variables are also left 5503 // undefined. 5504 // Managed Variables should be initialized on both host side and device side. 5505 bool IsCUDAShadowVar = 5506 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5507 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5508 D->hasAttr<CUDASharedAttr>()); 5509 bool IsCUDADeviceShadowVar = 5510 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5511 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5512 D->getType()->isCUDADeviceBuiltinTextureType()); 5513 if (getLangOpts().CUDA && 5514 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5515 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5516 else if (D->hasAttr<LoaderUninitializedAttr>()) 5517 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5518 else if (!InitExpr) { 5519 // This is a tentative definition; tentative definitions are 5520 // implicitly initialized with { 0 }. 5521 // 5522 // Note that tentative definitions are only emitted at the end of 5523 // a translation unit, so they should never have incomplete 5524 // type. In addition, EmitTentativeDefinition makes sure that we 5525 // never attempt to emit a tentative definition if a real one 5526 // exists. A use may still exists, however, so we still may need 5527 // to do a RAUW. 5528 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5529 Init = EmitNullConstant(D->getType()); 5530 } else { 5531 initializedGlobalDecl = GlobalDecl(D); 5532 emitter.emplace(*this); 5533 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5534 if (!Initializer) { 5535 QualType T = InitExpr->getType(); 5536 if (D->getType()->isReferenceType()) 5537 T = D->getType(); 5538 5539 if (getLangOpts().CPlusPlus) { 5540 if (InitDecl->hasFlexibleArrayInit(getContext())) 5541 ErrorUnsupported(D, "flexible array initializer"); 5542 Init = EmitNullConstant(T); 5543 5544 if (!IsDefinitionAvailableExternally) 5545 NeedsGlobalCtor = true; 5546 } else { 5547 ErrorUnsupported(D, "static initializer"); 5548 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5549 } 5550 } else { 5551 Init = Initializer; 5552 // We don't need an initializer, so remove the entry for the delayed 5553 // initializer position (just in case this entry was delayed) if we 5554 // also don't need to register a destructor. 5555 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5556 DelayedCXXInitPosition.erase(D); 5557 5558 #ifndef NDEBUG 5559 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5560 InitDecl->getFlexibleArrayInitChars(getContext()); 5561 CharUnits CstSize = CharUnits::fromQuantity( 5562 getDataLayout().getTypeAllocSize(Init->getType())); 5563 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5564 #endif 5565 } 5566 } 5567 5568 llvm::Type* InitType = Init->getType(); 5569 llvm::Constant *Entry = 5570 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5571 5572 // Strip off pointer casts if we got them. 5573 Entry = Entry->stripPointerCasts(); 5574 5575 // Entry is now either a Function or GlobalVariable. 5576 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5577 5578 // We have a definition after a declaration with the wrong type. 5579 // We must make a new GlobalVariable* and update everything that used OldGV 5580 // (a declaration or tentative definition) with the new GlobalVariable* 5581 // (which will be a definition). 5582 // 5583 // This happens if there is a prototype for a global (e.g. 5584 // "extern int x[];") and then a definition of a different type (e.g. 5585 // "int x[10];"). This also happens when an initializer has a different type 5586 // from the type of the global (this happens with unions). 5587 if (!GV || GV->getValueType() != InitType || 5588 GV->getType()->getAddressSpace() != 5589 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5590 5591 // Move the old entry aside so that we'll create a new one. 5592 Entry->setName(StringRef()); 5593 5594 // Make a new global with the correct type, this is now guaranteed to work. 5595 GV = cast<llvm::GlobalVariable>( 5596 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5597 ->stripPointerCasts()); 5598 5599 // Replace all uses of the old global with the new global 5600 llvm::Constant *NewPtrForOldDecl = 5601 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5602 Entry->getType()); 5603 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5604 5605 // Erase the old global, since it is no longer used. 5606 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5607 } 5608 5609 MaybeHandleStaticInExternC(D, GV); 5610 5611 if (D->hasAttr<AnnotateAttr>()) 5612 AddGlobalAnnotations(D, GV); 5613 5614 // Set the llvm linkage type as appropriate. 5615 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5616 5617 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5618 // the device. [...]" 5619 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5620 // __device__, declares a variable that: [...] 5621 // Is accessible from all the threads within the grid and from the host 5622 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5623 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5624 if (LangOpts.CUDA) { 5625 if (LangOpts.CUDAIsDevice) { 5626 if (Linkage != llvm::GlobalValue::InternalLinkage && 5627 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5628 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5629 D->getType()->isCUDADeviceBuiltinTextureType())) 5630 GV->setExternallyInitialized(true); 5631 } else { 5632 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5633 } 5634 getCUDARuntime().handleVarRegistration(D, *GV); 5635 } 5636 5637 GV->setInitializer(Init); 5638 if (emitter) 5639 emitter->finalize(GV); 5640 5641 // If it is safe to mark the global 'constant', do so now. 5642 GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) || 5643 (!NeedsGlobalCtor && !NeedsGlobalDtor && 5644 D->getType().isConstantStorage(getContext(), true, true))); 5645 5646 // If it is in a read-only section, mark it 'constant'. 5647 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5648 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5649 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5650 GV->setConstant(true); 5651 } 5652 5653 CharUnits AlignVal = getContext().getDeclAlign(D); 5654 // Check for alignment specifed in an 'omp allocate' directive. 5655 if (std::optional<CharUnits> AlignValFromAllocate = 5656 getOMPAllocateAlignment(D)) 5657 AlignVal = *AlignValFromAllocate; 5658 GV->setAlignment(AlignVal.getAsAlign()); 5659 5660 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5661 // function is only defined alongside the variable, not also alongside 5662 // callers. Normally, all accesses to a thread_local go through the 5663 // thread-wrapper in order to ensure initialization has occurred, underlying 5664 // variable will never be used other than the thread-wrapper, so it can be 5665 // converted to internal linkage. 5666 // 5667 // However, if the variable has the 'constinit' attribute, it _can_ be 5668 // referenced directly, without calling the thread-wrapper, so the linkage 5669 // must not be changed. 5670 // 5671 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5672 // weak or linkonce, the de-duplication semantics are important to preserve, 5673 // so we don't change the linkage. 5674 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5675 Linkage == llvm::GlobalValue::ExternalLinkage && 5676 Context.getTargetInfo().getTriple().isOSDarwin() && 5677 !D->hasAttr<ConstInitAttr>()) 5678 Linkage = llvm::GlobalValue::InternalLinkage; 5679 5680 GV->setLinkage(Linkage); 5681 if (D->hasAttr<DLLImportAttr>()) 5682 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5683 else if (D->hasAttr<DLLExportAttr>()) 5684 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5685 else 5686 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5687 5688 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5689 // common vars aren't constant even if declared const. 5690 GV->setConstant(false); 5691 // Tentative definition of global variables may be initialized with 5692 // non-zero null pointers. In this case they should have weak linkage 5693 // since common linkage must have zero initializer and must not have 5694 // explicit section therefore cannot have non-zero initial value. 5695 if (!GV->getInitializer()->isNullValue()) 5696 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5697 } 5698 5699 setNonAliasAttributes(D, GV); 5700 5701 if (D->getTLSKind() && !GV->isThreadLocal()) { 5702 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5703 CXXThreadLocals.push_back(D); 5704 setTLSMode(GV, *D); 5705 } 5706 5707 maybeSetTrivialComdat(*D, *GV); 5708 5709 // Emit the initializer function if necessary. 5710 if (NeedsGlobalCtor || NeedsGlobalDtor) 5711 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5712 5713 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5714 5715 // Emit global variable debug information. 5716 if (CGDebugInfo *DI = getModuleDebugInfo()) 5717 if (getCodeGenOpts().hasReducedDebugInfo()) 5718 DI->EmitGlobalVariable(GV, D); 5719 } 5720 5721 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5722 if (CGDebugInfo *DI = getModuleDebugInfo()) 5723 if (getCodeGenOpts().hasReducedDebugInfo()) { 5724 QualType ASTTy = D->getType(); 5725 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5726 llvm::Constant *GV = 5727 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5728 DI->EmitExternalVariable( 5729 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5730 } 5731 } 5732 5733 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5734 if (CGDebugInfo *DI = getModuleDebugInfo()) 5735 if (getCodeGenOpts().hasReducedDebugInfo()) { 5736 auto *Ty = getTypes().ConvertType(FD->getType()); 5737 StringRef MangledName = getMangledName(FD); 5738 auto *Fn = cast<llvm::Function>( 5739 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5740 if (!Fn->getSubprogram()) 5741 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5742 } 5743 } 5744 5745 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5746 CodeGenModule &CGM, const VarDecl *D, 5747 bool NoCommon) { 5748 // Don't give variables common linkage if -fno-common was specified unless it 5749 // was overridden by a NoCommon attribute. 5750 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5751 return true; 5752 5753 // C11 6.9.2/2: 5754 // A declaration of an identifier for an object that has file scope without 5755 // an initializer, and without a storage-class specifier or with the 5756 // storage-class specifier static, constitutes a tentative definition. 5757 if (D->getInit() || D->hasExternalStorage()) 5758 return true; 5759 5760 // A variable cannot be both common and exist in a section. 5761 if (D->hasAttr<SectionAttr>()) 5762 return true; 5763 5764 // A variable cannot be both common and exist in a section. 5765 // We don't try to determine which is the right section in the front-end. 5766 // If no specialized section name is applicable, it will resort to default. 5767 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5768 D->hasAttr<PragmaClangDataSectionAttr>() || 5769 D->hasAttr<PragmaClangRelroSectionAttr>() || 5770 D->hasAttr<PragmaClangRodataSectionAttr>()) 5771 return true; 5772 5773 // Thread local vars aren't considered common linkage. 5774 if (D->getTLSKind()) 5775 return true; 5776 5777 // Tentative definitions marked with WeakImportAttr are true definitions. 5778 if (D->hasAttr<WeakImportAttr>()) 5779 return true; 5780 5781 // A variable cannot be both common and exist in a comdat. 5782 if (shouldBeInCOMDAT(CGM, *D)) 5783 return true; 5784 5785 // Declarations with a required alignment do not have common linkage in MSVC 5786 // mode. 5787 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5788 if (D->hasAttr<AlignedAttr>()) 5789 return true; 5790 QualType VarType = D->getType(); 5791 if (Context.isAlignmentRequired(VarType)) 5792 return true; 5793 5794 if (const auto *RT = VarType->getAs<RecordType>()) { 5795 const RecordDecl *RD = RT->getDecl(); 5796 for (const FieldDecl *FD : RD->fields()) { 5797 if (FD->isBitField()) 5798 continue; 5799 if (FD->hasAttr<AlignedAttr>()) 5800 return true; 5801 if (Context.isAlignmentRequired(FD->getType())) 5802 return true; 5803 } 5804 } 5805 } 5806 5807 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5808 // common symbols, so symbols with greater alignment requirements cannot be 5809 // common. 5810 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5811 // alignments for common symbols via the aligncomm directive, so this 5812 // restriction only applies to MSVC environments. 5813 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5814 Context.getTypeAlignIfKnown(D->getType()) > 5815 Context.toBits(CharUnits::fromQuantity(32))) 5816 return true; 5817 5818 return false; 5819 } 5820 5821 llvm::GlobalValue::LinkageTypes 5822 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5823 GVALinkage Linkage) { 5824 if (Linkage == GVA_Internal) 5825 return llvm::Function::InternalLinkage; 5826 5827 if (D->hasAttr<WeakAttr>()) 5828 return llvm::GlobalVariable::WeakAnyLinkage; 5829 5830 if (const auto *FD = D->getAsFunction()) 5831 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5832 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5833 5834 // We are guaranteed to have a strong definition somewhere else, 5835 // so we can use available_externally linkage. 5836 if (Linkage == GVA_AvailableExternally) 5837 return llvm::GlobalValue::AvailableExternallyLinkage; 5838 5839 // Note that Apple's kernel linker doesn't support symbol 5840 // coalescing, so we need to avoid linkonce and weak linkages there. 5841 // Normally, this means we just map to internal, but for explicit 5842 // instantiations we'll map to external. 5843 5844 // In C++, the compiler has to emit a definition in every translation unit 5845 // that references the function. We should use linkonce_odr because 5846 // a) if all references in this translation unit are optimized away, we 5847 // don't need to codegen it. b) if the function persists, it needs to be 5848 // merged with other definitions. c) C++ has the ODR, so we know the 5849 // definition is dependable. 5850 if (Linkage == GVA_DiscardableODR) 5851 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5852 : llvm::Function::InternalLinkage; 5853 5854 // An explicit instantiation of a template has weak linkage, since 5855 // explicit instantiations can occur in multiple translation units 5856 // and must all be equivalent. However, we are not allowed to 5857 // throw away these explicit instantiations. 5858 // 5859 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5860 // so say that CUDA templates are either external (for kernels) or internal. 5861 // This lets llvm perform aggressive inter-procedural optimizations. For 5862 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5863 // therefore we need to follow the normal linkage paradigm. 5864 if (Linkage == GVA_StrongODR) { 5865 if (getLangOpts().AppleKext) 5866 return llvm::Function::ExternalLinkage; 5867 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5868 !getLangOpts().GPURelocatableDeviceCode) 5869 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5870 : llvm::Function::InternalLinkage; 5871 return llvm::Function::WeakODRLinkage; 5872 } 5873 5874 // C++ doesn't have tentative definitions and thus cannot have common 5875 // linkage. 5876 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5877 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5878 CodeGenOpts.NoCommon)) 5879 return llvm::GlobalVariable::CommonLinkage; 5880 5881 // selectany symbols are externally visible, so use weak instead of 5882 // linkonce. MSVC optimizes away references to const selectany globals, so 5883 // all definitions should be the same and ODR linkage should be used. 5884 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5885 if (D->hasAttr<SelectAnyAttr>()) 5886 return llvm::GlobalVariable::WeakODRLinkage; 5887 5888 // Otherwise, we have strong external linkage. 5889 assert(Linkage == GVA_StrongExternal); 5890 return llvm::GlobalVariable::ExternalLinkage; 5891 } 5892 5893 llvm::GlobalValue::LinkageTypes 5894 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5895 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5896 return getLLVMLinkageForDeclarator(VD, Linkage); 5897 } 5898 5899 /// Replace the uses of a function that was declared with a non-proto type. 5900 /// We want to silently drop extra arguments from call sites 5901 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5902 llvm::Function *newFn) { 5903 // Fast path. 5904 if (old->use_empty()) 5905 return; 5906 5907 llvm::Type *newRetTy = newFn->getReturnType(); 5908 SmallVector<llvm::Value *, 4> newArgs; 5909 5910 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5911 5912 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5913 ui != ue; ui++) { 5914 llvm::User *user = ui->getUser(); 5915 5916 // Recognize and replace uses of bitcasts. Most calls to 5917 // unprototyped functions will use bitcasts. 5918 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5919 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5920 replaceUsesOfNonProtoConstant(bitcast, newFn); 5921 continue; 5922 } 5923 5924 // Recognize calls to the function. 5925 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5926 if (!callSite) 5927 continue; 5928 if (!callSite->isCallee(&*ui)) 5929 continue; 5930 5931 // If the return types don't match exactly, then we can't 5932 // transform this call unless it's dead. 5933 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5934 continue; 5935 5936 // Get the call site's attribute list. 5937 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5938 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5939 5940 // If the function was passed too few arguments, don't transform. 5941 unsigned newNumArgs = newFn->arg_size(); 5942 if (callSite->arg_size() < newNumArgs) 5943 continue; 5944 5945 // If extra arguments were passed, we silently drop them. 5946 // If any of the types mismatch, we don't transform. 5947 unsigned argNo = 0; 5948 bool dontTransform = false; 5949 for (llvm::Argument &A : newFn->args()) { 5950 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5951 dontTransform = true; 5952 break; 5953 } 5954 5955 // Add any parameter attributes. 5956 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5957 argNo++; 5958 } 5959 if (dontTransform) 5960 continue; 5961 5962 // Okay, we can transform this. Create the new call instruction and copy 5963 // over the required information. 5964 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5965 5966 // Copy over any operand bundles. 5967 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5968 callSite->getOperandBundlesAsDefs(newBundles); 5969 5970 llvm::CallBase *newCall; 5971 if (isa<llvm::CallInst>(callSite)) { 5972 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 5973 callSite->getIterator()); 5974 } else { 5975 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5976 newCall = llvm::InvokeInst::Create( 5977 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), 5978 newArgs, newBundles, "", callSite->getIterator()); 5979 } 5980 newArgs.clear(); // for the next iteration 5981 5982 if (!newCall->getType()->isVoidTy()) 5983 newCall->takeName(callSite); 5984 newCall->setAttributes( 5985 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5986 oldAttrs.getRetAttrs(), newArgAttrs)); 5987 newCall->setCallingConv(callSite->getCallingConv()); 5988 5989 // Finally, remove the old call, replacing any uses with the new one. 5990 if (!callSite->use_empty()) 5991 callSite->replaceAllUsesWith(newCall); 5992 5993 // Copy debug location attached to CI. 5994 if (callSite->getDebugLoc()) 5995 newCall->setDebugLoc(callSite->getDebugLoc()); 5996 5997 callSitesToBeRemovedFromParent.push_back(callSite); 5998 } 5999 6000 for (auto *callSite : callSitesToBeRemovedFromParent) { 6001 callSite->eraseFromParent(); 6002 } 6003 } 6004 6005 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 6006 /// implement a function with no prototype, e.g. "int foo() {}". If there are 6007 /// existing call uses of the old function in the module, this adjusts them to 6008 /// call the new function directly. 6009 /// 6010 /// This is not just a cleanup: the always_inline pass requires direct calls to 6011 /// functions to be able to inline them. If there is a bitcast in the way, it 6012 /// won't inline them. Instcombine normally deletes these calls, but it isn't 6013 /// run at -O0. 6014 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 6015 llvm::Function *NewFn) { 6016 // If we're redefining a global as a function, don't transform it. 6017 if (!isa<llvm::Function>(Old)) return; 6018 6019 replaceUsesOfNonProtoConstant(Old, NewFn); 6020 } 6021 6022 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 6023 auto DK = VD->isThisDeclarationADefinition(); 6024 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 6025 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 6026 return; 6027 6028 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 6029 // If we have a definition, this might be a deferred decl. If the 6030 // instantiation is explicit, make sure we emit it at the end. 6031 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 6032 GetAddrOfGlobalVar(VD); 6033 6034 EmitTopLevelDecl(VD); 6035 } 6036 6037 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 6038 llvm::GlobalValue *GV) { 6039 const auto *D = cast<FunctionDecl>(GD.getDecl()); 6040 6041 // Compute the function info and LLVM type. 6042 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 6043 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 6044 6045 // Get or create the prototype for the function. 6046 if (!GV || (GV->getValueType() != Ty)) 6047 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 6048 /*DontDefer=*/true, 6049 ForDefinition)); 6050 6051 // Already emitted. 6052 if (!GV->isDeclaration()) 6053 return; 6054 6055 // We need to set linkage and visibility on the function before 6056 // generating code for it because various parts of IR generation 6057 // want to propagate this information down (e.g. to local static 6058 // declarations). 6059 auto *Fn = cast<llvm::Function>(GV); 6060 setFunctionLinkage(GD, Fn); 6061 6062 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 6063 setGVProperties(Fn, GD); 6064 6065 MaybeHandleStaticInExternC(D, Fn); 6066 6067 maybeSetTrivialComdat(*D, *Fn); 6068 6069 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 6070 6071 setNonAliasAttributes(GD, Fn); 6072 SetLLVMFunctionAttributesForDefinition(D, Fn); 6073 6074 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6075 AddGlobalCtor(Fn, CA->getPriority()); 6076 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6077 AddGlobalDtor(Fn, DA->getPriority(), true); 6078 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6079 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6080 } 6081 6082 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6083 const auto *D = cast<ValueDecl>(GD.getDecl()); 6084 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6085 assert(AA && "Not an alias?"); 6086 6087 StringRef MangledName = getMangledName(GD); 6088 6089 if (AA->getAliasee() == MangledName) { 6090 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6091 return; 6092 } 6093 6094 // If there is a definition in the module, then it wins over the alias. 6095 // This is dubious, but allow it to be safe. Just ignore the alias. 6096 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6097 if (Entry && !Entry->isDeclaration()) 6098 return; 6099 6100 Aliases.push_back(GD); 6101 6102 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6103 6104 // Create a reference to the named value. This ensures that it is emitted 6105 // if a deferred decl. 6106 llvm::Constant *Aliasee; 6107 llvm::GlobalValue::LinkageTypes LT; 6108 if (isa<llvm::FunctionType>(DeclTy)) { 6109 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6110 /*ForVTable=*/false); 6111 LT = getFunctionLinkage(GD); 6112 } else { 6113 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6114 /*D=*/nullptr); 6115 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6116 LT = getLLVMLinkageVarDefinition(VD); 6117 else 6118 LT = getFunctionLinkage(GD); 6119 } 6120 6121 // Create the new alias itself, but don't set a name yet. 6122 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6123 auto *GA = 6124 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6125 6126 if (Entry) { 6127 if (GA->getAliasee() == Entry) { 6128 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6129 return; 6130 } 6131 6132 assert(Entry->isDeclaration()); 6133 6134 // If there is a declaration in the module, then we had an extern followed 6135 // by the alias, as in: 6136 // extern int test6(); 6137 // ... 6138 // int test6() __attribute__((alias("test7"))); 6139 // 6140 // Remove it and replace uses of it with the alias. 6141 GA->takeName(Entry); 6142 6143 Entry->replaceAllUsesWith(GA); 6144 Entry->eraseFromParent(); 6145 } else { 6146 GA->setName(MangledName); 6147 } 6148 6149 // Set attributes which are particular to an alias; this is a 6150 // specialization of the attributes which may be set on a global 6151 // variable/function. 6152 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6153 D->isWeakImported()) { 6154 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6155 } 6156 6157 if (const auto *VD = dyn_cast<VarDecl>(D)) 6158 if (VD->getTLSKind()) 6159 setTLSMode(GA, *VD); 6160 6161 SetCommonAttributes(GD, GA); 6162 6163 // Emit global alias debug information. 6164 if (isa<VarDecl>(D)) 6165 if (CGDebugInfo *DI = getModuleDebugInfo()) 6166 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6167 } 6168 6169 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6170 const auto *D = cast<ValueDecl>(GD.getDecl()); 6171 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6172 assert(IFA && "Not an ifunc?"); 6173 6174 StringRef MangledName = getMangledName(GD); 6175 6176 if (IFA->getResolver() == MangledName) { 6177 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6178 return; 6179 } 6180 6181 // Report an error if some definition overrides ifunc. 6182 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6183 if (Entry && !Entry->isDeclaration()) { 6184 GlobalDecl OtherGD; 6185 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6186 DiagnosedConflictingDefinitions.insert(GD).second) { 6187 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6188 << MangledName; 6189 Diags.Report(OtherGD.getDecl()->getLocation(), 6190 diag::note_previous_definition); 6191 } 6192 return; 6193 } 6194 6195 Aliases.push_back(GD); 6196 6197 // The resolver might not be visited yet. Specify a dummy non-function type to 6198 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6199 // was emitted) or the whole function will be replaced (if the resolver has 6200 // not been emitted). 6201 llvm::Constant *Resolver = 6202 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6203 /*ForVTable=*/false); 6204 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6205 unsigned AS = getTypes().getTargetAddressSpace(D->getType()); 6206 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 6207 DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 6208 if (Entry) { 6209 if (GIF->getResolver() == Entry) { 6210 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6211 return; 6212 } 6213 assert(Entry->isDeclaration()); 6214 6215 // If there is a declaration in the module, then we had an extern followed 6216 // by the ifunc, as in: 6217 // extern int test(); 6218 // ... 6219 // int test() __attribute__((ifunc("resolver"))); 6220 // 6221 // Remove it and replace uses of it with the ifunc. 6222 GIF->takeName(Entry); 6223 6224 Entry->replaceAllUsesWith(GIF); 6225 Entry->eraseFromParent(); 6226 } else 6227 GIF->setName(MangledName); 6228 SetCommonAttributes(GD, GIF); 6229 } 6230 6231 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6232 ArrayRef<llvm::Type*> Tys) { 6233 return llvm::Intrinsic::getOrInsertDeclaration(&getModule(), 6234 (llvm::Intrinsic::ID)IID, Tys); 6235 } 6236 6237 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6238 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6239 const StringLiteral *Literal, bool TargetIsLSB, 6240 bool &IsUTF16, unsigned &StringLength) { 6241 StringRef String = Literal->getString(); 6242 unsigned NumBytes = String.size(); 6243 6244 // Check for simple case. 6245 if (!Literal->containsNonAsciiOrNull()) { 6246 StringLength = NumBytes; 6247 return *Map.insert(std::make_pair(String, nullptr)).first; 6248 } 6249 6250 // Otherwise, convert the UTF8 literals into a string of shorts. 6251 IsUTF16 = true; 6252 6253 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6254 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6255 llvm::UTF16 *ToPtr = &ToBuf[0]; 6256 6257 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6258 ToPtr + NumBytes, llvm::strictConversion); 6259 6260 // ConvertUTF8toUTF16 returns the length in ToPtr. 6261 StringLength = ToPtr - &ToBuf[0]; 6262 6263 // Add an explicit null. 6264 *ToPtr = 0; 6265 return *Map.insert(std::make_pair( 6266 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6267 (StringLength + 1) * 2), 6268 nullptr)).first; 6269 } 6270 6271 ConstantAddress 6272 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6273 unsigned StringLength = 0; 6274 bool isUTF16 = false; 6275 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6276 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6277 getDataLayout().isLittleEndian(), isUTF16, 6278 StringLength); 6279 6280 if (auto *C = Entry.second) 6281 return ConstantAddress( 6282 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6283 6284 const ASTContext &Context = getContext(); 6285 const llvm::Triple &Triple = getTriple(); 6286 6287 const auto CFRuntime = getLangOpts().CFRuntime; 6288 const bool IsSwiftABI = 6289 static_cast<unsigned>(CFRuntime) >= 6290 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6291 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6292 6293 // If we don't already have it, get __CFConstantStringClassReference. 6294 if (!CFConstantStringClassRef) { 6295 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6296 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6297 Ty = llvm::ArrayType::get(Ty, 0); 6298 6299 switch (CFRuntime) { 6300 default: break; 6301 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6302 case LangOptions::CoreFoundationABI::Swift5_0: 6303 CFConstantStringClassName = 6304 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6305 : "$s10Foundation19_NSCFConstantStringCN"; 6306 Ty = IntPtrTy; 6307 break; 6308 case LangOptions::CoreFoundationABI::Swift4_2: 6309 CFConstantStringClassName = 6310 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6311 : "$S10Foundation19_NSCFConstantStringCN"; 6312 Ty = IntPtrTy; 6313 break; 6314 case LangOptions::CoreFoundationABI::Swift4_1: 6315 CFConstantStringClassName = 6316 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6317 : "__T010Foundation19_NSCFConstantStringCN"; 6318 Ty = IntPtrTy; 6319 break; 6320 } 6321 6322 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6323 6324 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6325 llvm::GlobalValue *GV = nullptr; 6326 6327 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6328 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6329 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6330 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6331 6332 const VarDecl *VD = nullptr; 6333 for (const auto *Result : DC->lookup(&II)) 6334 if ((VD = dyn_cast<VarDecl>(Result))) 6335 break; 6336 6337 if (Triple.isOSBinFormatELF()) { 6338 if (!VD) 6339 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6340 } else { 6341 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6342 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6343 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6344 else 6345 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6346 } 6347 6348 setDSOLocal(GV); 6349 } 6350 } 6351 6352 // Decay array -> ptr 6353 CFConstantStringClassRef = 6354 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6355 } 6356 6357 QualType CFTy = Context.getCFConstantStringType(); 6358 6359 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6360 6361 ConstantInitBuilder Builder(*this); 6362 auto Fields = Builder.beginStruct(STy); 6363 6364 // Class pointer. 6365 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6366 6367 // Flags. 6368 if (IsSwiftABI) { 6369 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6370 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6371 } else { 6372 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6373 } 6374 6375 // String pointer. 6376 llvm::Constant *C = nullptr; 6377 if (isUTF16) { 6378 auto Arr = llvm::ArrayRef( 6379 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6380 Entry.first().size() / 2); 6381 C = llvm::ConstantDataArray::get(VMContext, Arr); 6382 } else { 6383 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6384 } 6385 6386 // Note: -fwritable-strings doesn't make the backing store strings of 6387 // CFStrings writable. 6388 auto *GV = 6389 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6390 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6391 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6392 // Don't enforce the target's minimum global alignment, since the only use 6393 // of the string is via this class initializer. 6394 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6395 : Context.getTypeAlignInChars(Context.CharTy); 6396 GV->setAlignment(Align.getAsAlign()); 6397 6398 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6399 // Without it LLVM can merge the string with a non unnamed_addr one during 6400 // LTO. Doing that changes the section it ends in, which surprises ld64. 6401 if (Triple.isOSBinFormatMachO()) 6402 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6403 : "__TEXT,__cstring,cstring_literals"); 6404 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6405 // the static linker to adjust permissions to read-only later on. 6406 else if (Triple.isOSBinFormatELF()) 6407 GV->setSection(".rodata"); 6408 6409 // String. 6410 Fields.add(GV); 6411 6412 // String length. 6413 llvm::IntegerType *LengthTy = 6414 llvm::IntegerType::get(getModule().getContext(), 6415 Context.getTargetInfo().getLongWidth()); 6416 if (IsSwiftABI) { 6417 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6418 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6419 LengthTy = Int32Ty; 6420 else 6421 LengthTy = IntPtrTy; 6422 } 6423 Fields.addInt(LengthTy, StringLength); 6424 6425 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6426 // properly aligned on 32-bit platforms. 6427 CharUnits Alignment = 6428 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6429 6430 // The struct. 6431 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6432 /*isConstant=*/false, 6433 llvm::GlobalVariable::PrivateLinkage); 6434 GV->addAttribute("objc_arc_inert"); 6435 switch (Triple.getObjectFormat()) { 6436 case llvm::Triple::UnknownObjectFormat: 6437 llvm_unreachable("unknown file format"); 6438 case llvm::Triple::DXContainer: 6439 case llvm::Triple::GOFF: 6440 case llvm::Triple::SPIRV: 6441 case llvm::Triple::XCOFF: 6442 llvm_unreachable("unimplemented"); 6443 case llvm::Triple::COFF: 6444 case llvm::Triple::ELF: 6445 case llvm::Triple::Wasm: 6446 GV->setSection("cfstring"); 6447 break; 6448 case llvm::Triple::MachO: 6449 GV->setSection("__DATA,__cfstring"); 6450 break; 6451 } 6452 Entry.second = GV; 6453 6454 return ConstantAddress(GV, GV->getValueType(), Alignment); 6455 } 6456 6457 bool CodeGenModule::getExpressionLocationsEnabled() const { 6458 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6459 } 6460 6461 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6462 if (ObjCFastEnumerationStateType.isNull()) { 6463 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6464 D->startDefinition(); 6465 6466 QualType FieldTypes[] = { 6467 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6468 Context.getPointerType(Context.UnsignedLongTy), 6469 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6470 nullptr, ArraySizeModifier::Normal, 0)}; 6471 6472 for (size_t i = 0; i < 4; ++i) { 6473 FieldDecl *Field = FieldDecl::Create(Context, 6474 D, 6475 SourceLocation(), 6476 SourceLocation(), nullptr, 6477 FieldTypes[i], /*TInfo=*/nullptr, 6478 /*BitWidth=*/nullptr, 6479 /*Mutable=*/false, 6480 ICIS_NoInit); 6481 Field->setAccess(AS_public); 6482 D->addDecl(Field); 6483 } 6484 6485 D->completeDefinition(); 6486 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6487 } 6488 6489 return ObjCFastEnumerationStateType; 6490 } 6491 6492 llvm::Constant * 6493 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6494 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6495 6496 // Don't emit it as the address of the string, emit the string data itself 6497 // as an inline array. 6498 if (E->getCharByteWidth() == 1) { 6499 SmallString<64> Str(E->getString()); 6500 6501 // Resize the string to the right size, which is indicated by its type. 6502 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6503 assert(CAT && "String literal not of constant array type!"); 6504 Str.resize(CAT->getZExtSize()); 6505 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6506 } 6507 6508 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6509 llvm::Type *ElemTy = AType->getElementType(); 6510 unsigned NumElements = AType->getNumElements(); 6511 6512 // Wide strings have either 2-byte or 4-byte elements. 6513 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6514 SmallVector<uint16_t, 32> Elements; 6515 Elements.reserve(NumElements); 6516 6517 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6518 Elements.push_back(E->getCodeUnit(i)); 6519 Elements.resize(NumElements); 6520 return llvm::ConstantDataArray::get(VMContext, Elements); 6521 } 6522 6523 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6524 SmallVector<uint32_t, 32> Elements; 6525 Elements.reserve(NumElements); 6526 6527 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6528 Elements.push_back(E->getCodeUnit(i)); 6529 Elements.resize(NumElements); 6530 return llvm::ConstantDataArray::get(VMContext, Elements); 6531 } 6532 6533 static llvm::GlobalVariable * 6534 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6535 CodeGenModule &CGM, StringRef GlobalName, 6536 CharUnits Alignment) { 6537 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6538 CGM.GetGlobalConstantAddressSpace()); 6539 6540 llvm::Module &M = CGM.getModule(); 6541 // Create a global variable for this string 6542 auto *GV = new llvm::GlobalVariable( 6543 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6544 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6545 GV->setAlignment(Alignment.getAsAlign()); 6546 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6547 if (GV->isWeakForLinker()) { 6548 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6549 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6550 } 6551 CGM.setDSOLocal(GV); 6552 6553 return GV; 6554 } 6555 6556 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6557 /// constant array for the given string literal. 6558 ConstantAddress 6559 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6560 StringRef Name) { 6561 CharUnits Alignment = 6562 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6563 6564 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6565 llvm::GlobalVariable **Entry = nullptr; 6566 if (!LangOpts.WritableStrings) { 6567 Entry = &ConstantStringMap[C]; 6568 if (auto GV = *Entry) { 6569 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6570 GV->setAlignment(Alignment.getAsAlign()); 6571 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6572 GV->getValueType(), Alignment); 6573 } 6574 } 6575 6576 SmallString<256> MangledNameBuffer; 6577 StringRef GlobalVariableName; 6578 llvm::GlobalValue::LinkageTypes LT; 6579 6580 // Mangle the string literal if that's how the ABI merges duplicate strings. 6581 // Don't do it if they are writable, since we don't want writes in one TU to 6582 // affect strings in another. 6583 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6584 !LangOpts.WritableStrings) { 6585 llvm::raw_svector_ostream Out(MangledNameBuffer); 6586 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6587 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6588 GlobalVariableName = MangledNameBuffer; 6589 } else { 6590 LT = llvm::GlobalValue::PrivateLinkage; 6591 GlobalVariableName = Name; 6592 } 6593 6594 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6595 6596 CGDebugInfo *DI = getModuleDebugInfo(); 6597 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6598 DI->AddStringLiteralDebugInfo(GV, S); 6599 6600 if (Entry) 6601 *Entry = GV; 6602 6603 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6604 6605 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6606 GV->getValueType(), Alignment); 6607 } 6608 6609 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6610 /// array for the given ObjCEncodeExpr node. 6611 ConstantAddress 6612 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6613 std::string Str; 6614 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6615 6616 return GetAddrOfConstantCString(Str); 6617 } 6618 6619 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6620 /// the literal and a terminating '\0' character. 6621 /// The result has pointer to array type. 6622 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6623 const std::string &Str, const char *GlobalName) { 6624 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6625 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6626 getContext().CharTy, /*VD=*/nullptr); 6627 6628 llvm::Constant *C = 6629 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6630 6631 // Don't share any string literals if strings aren't constant. 6632 llvm::GlobalVariable **Entry = nullptr; 6633 if (!LangOpts.WritableStrings) { 6634 Entry = &ConstantStringMap[C]; 6635 if (auto GV = *Entry) { 6636 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6637 GV->setAlignment(Alignment.getAsAlign()); 6638 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6639 GV->getValueType(), Alignment); 6640 } 6641 } 6642 6643 // Get the default prefix if a name wasn't specified. 6644 if (!GlobalName) 6645 GlobalName = ".str"; 6646 // Create a global variable for this. 6647 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6648 GlobalName, Alignment); 6649 if (Entry) 6650 *Entry = GV; 6651 6652 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6653 GV->getValueType(), Alignment); 6654 } 6655 6656 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6657 const MaterializeTemporaryExpr *E, const Expr *Init) { 6658 assert((E->getStorageDuration() == SD_Static || 6659 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6660 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6661 6662 // If we're not materializing a subobject of the temporary, keep the 6663 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6664 QualType MaterializedType = Init->getType(); 6665 if (Init == E->getSubExpr()) 6666 MaterializedType = E->getType(); 6667 6668 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6669 6670 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6671 if (!InsertResult.second) { 6672 // We've seen this before: either we already created it or we're in the 6673 // process of doing so. 6674 if (!InsertResult.first->second) { 6675 // We recursively re-entered this function, probably during emission of 6676 // the initializer. Create a placeholder. We'll clean this up in the 6677 // outer call, at the end of this function. 6678 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6679 InsertResult.first->second = new llvm::GlobalVariable( 6680 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6681 nullptr); 6682 } 6683 return ConstantAddress(InsertResult.first->second, 6684 llvm::cast<llvm::GlobalVariable>( 6685 InsertResult.first->second->stripPointerCasts()) 6686 ->getValueType(), 6687 Align); 6688 } 6689 6690 // FIXME: If an externally-visible declaration extends multiple temporaries, 6691 // we need to give each temporary the same name in every translation unit (and 6692 // we also need to make the temporaries externally-visible). 6693 SmallString<256> Name; 6694 llvm::raw_svector_ostream Out(Name); 6695 getCXXABI().getMangleContext().mangleReferenceTemporary( 6696 VD, E->getManglingNumber(), Out); 6697 6698 APValue *Value = nullptr; 6699 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6700 // If the initializer of the extending declaration is a constant 6701 // initializer, we should have a cached constant initializer for this 6702 // temporary. Note that this might have a different value from the value 6703 // computed by evaluating the initializer if the surrounding constant 6704 // expression modifies the temporary. 6705 Value = E->getOrCreateValue(false); 6706 } 6707 6708 // Try evaluating it now, it might have a constant initializer. 6709 Expr::EvalResult EvalResult; 6710 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6711 !EvalResult.hasSideEffects()) 6712 Value = &EvalResult.Val; 6713 6714 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6715 6716 std::optional<ConstantEmitter> emitter; 6717 llvm::Constant *InitialValue = nullptr; 6718 bool Constant = false; 6719 llvm::Type *Type; 6720 if (Value) { 6721 // The temporary has a constant initializer, use it. 6722 emitter.emplace(*this); 6723 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6724 MaterializedType); 6725 Constant = 6726 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6727 /*ExcludeDtor*/ false); 6728 Type = InitialValue->getType(); 6729 } else { 6730 // No initializer, the initialization will be provided when we 6731 // initialize the declaration which performed lifetime extension. 6732 Type = getTypes().ConvertTypeForMem(MaterializedType); 6733 } 6734 6735 // Create a global variable for this lifetime-extended temporary. 6736 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6737 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6738 const VarDecl *InitVD; 6739 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6740 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6741 // Temporaries defined inside a class get linkonce_odr linkage because the 6742 // class can be defined in multiple translation units. 6743 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6744 } else { 6745 // There is no need for this temporary to have external linkage if the 6746 // VarDecl has external linkage. 6747 Linkage = llvm::GlobalVariable::InternalLinkage; 6748 } 6749 } 6750 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6751 auto *GV = new llvm::GlobalVariable( 6752 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6753 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6754 if (emitter) emitter->finalize(GV); 6755 // Don't assign dllimport or dllexport to local linkage globals. 6756 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6757 setGVProperties(GV, VD); 6758 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6759 // The reference temporary should never be dllexport. 6760 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6761 } 6762 GV->setAlignment(Align.getAsAlign()); 6763 if (supportsCOMDAT() && GV->isWeakForLinker()) 6764 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6765 if (VD->getTLSKind()) 6766 setTLSMode(GV, *VD); 6767 llvm::Constant *CV = GV; 6768 if (AddrSpace != LangAS::Default) 6769 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6770 *this, GV, AddrSpace, LangAS::Default, 6771 llvm::PointerType::get( 6772 getLLVMContext(), 6773 getContext().getTargetAddressSpace(LangAS::Default))); 6774 6775 // Update the map with the new temporary. If we created a placeholder above, 6776 // replace it with the new global now. 6777 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6778 if (Entry) { 6779 Entry->replaceAllUsesWith(CV); 6780 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6781 } 6782 Entry = CV; 6783 6784 return ConstantAddress(CV, Type, Align); 6785 } 6786 6787 /// EmitObjCPropertyImplementations - Emit information for synthesized 6788 /// properties for an implementation. 6789 void CodeGenModule::EmitObjCPropertyImplementations(const 6790 ObjCImplementationDecl *D) { 6791 for (const auto *PID : D->property_impls()) { 6792 // Dynamic is just for type-checking. 6793 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6794 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6795 6796 // Determine which methods need to be implemented, some may have 6797 // been overridden. Note that ::isPropertyAccessor is not the method 6798 // we want, that just indicates if the decl came from a 6799 // property. What we want to know is if the method is defined in 6800 // this implementation. 6801 auto *Getter = PID->getGetterMethodDecl(); 6802 if (!Getter || Getter->isSynthesizedAccessorStub()) 6803 CodeGenFunction(*this).GenerateObjCGetter( 6804 const_cast<ObjCImplementationDecl *>(D), PID); 6805 auto *Setter = PID->getSetterMethodDecl(); 6806 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6807 CodeGenFunction(*this).GenerateObjCSetter( 6808 const_cast<ObjCImplementationDecl *>(D), PID); 6809 } 6810 } 6811 } 6812 6813 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6814 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6815 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6816 ivar; ivar = ivar->getNextIvar()) 6817 if (ivar->getType().isDestructedType()) 6818 return true; 6819 6820 return false; 6821 } 6822 6823 static bool AllTrivialInitializers(CodeGenModule &CGM, 6824 ObjCImplementationDecl *D) { 6825 CodeGenFunction CGF(CGM); 6826 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6827 E = D->init_end(); B != E; ++B) { 6828 CXXCtorInitializer *CtorInitExp = *B; 6829 Expr *Init = CtorInitExp->getInit(); 6830 if (!CGF.isTrivialInitializer(Init)) 6831 return false; 6832 } 6833 return true; 6834 } 6835 6836 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6837 /// for an implementation. 6838 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6839 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6840 if (needsDestructMethod(D)) { 6841 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6842 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6843 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6844 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6845 getContext().VoidTy, nullptr, D, 6846 /*isInstance=*/true, /*isVariadic=*/false, 6847 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6848 /*isImplicitlyDeclared=*/true, 6849 /*isDefined=*/false, ObjCImplementationControl::Required); 6850 D->addInstanceMethod(DTORMethod); 6851 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6852 D->setHasDestructors(true); 6853 } 6854 6855 // If the implementation doesn't have any ivar initializers, we don't need 6856 // a .cxx_construct. 6857 if (D->getNumIvarInitializers() == 0 || 6858 AllTrivialInitializers(*this, D)) 6859 return; 6860 6861 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6862 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6863 // The constructor returns 'self'. 6864 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6865 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6866 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6867 /*isVariadic=*/false, 6868 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6869 /*isImplicitlyDeclared=*/true, 6870 /*isDefined=*/false, ObjCImplementationControl::Required); 6871 D->addInstanceMethod(CTORMethod); 6872 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6873 D->setHasNonZeroConstructors(true); 6874 } 6875 6876 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6877 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6878 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6879 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6880 ErrorUnsupported(LSD, "linkage spec"); 6881 return; 6882 } 6883 6884 EmitDeclContext(LSD); 6885 } 6886 6887 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6888 // Device code should not be at top level. 6889 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6890 return; 6891 6892 std::unique_ptr<CodeGenFunction> &CurCGF = 6893 GlobalTopLevelStmtBlockInFlight.first; 6894 6895 // We emitted a top-level stmt but after it there is initialization. 6896 // Stop squashing the top-level stmts into a single function. 6897 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6898 CurCGF->FinishFunction(D->getEndLoc()); 6899 CurCGF = nullptr; 6900 } 6901 6902 if (!CurCGF) { 6903 // void __stmts__N(void) 6904 // FIXME: Ask the ABI name mangler to pick a name. 6905 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6906 FunctionArgList Args; 6907 QualType RetTy = getContext().VoidTy; 6908 const CGFunctionInfo &FnInfo = 6909 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6910 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6911 llvm::Function *Fn = llvm::Function::Create( 6912 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6913 6914 CurCGF.reset(new CodeGenFunction(*this)); 6915 GlobalTopLevelStmtBlockInFlight.second = D; 6916 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6917 D->getBeginLoc(), D->getBeginLoc()); 6918 CXXGlobalInits.push_back(Fn); 6919 } 6920 6921 CurCGF->EmitStmt(D->getStmt()); 6922 } 6923 6924 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6925 for (auto *I : DC->decls()) { 6926 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6927 // are themselves considered "top-level", so EmitTopLevelDecl on an 6928 // ObjCImplDecl does not recursively visit them. We need to do that in 6929 // case they're nested inside another construct (LinkageSpecDecl / 6930 // ExportDecl) that does stop them from being considered "top-level". 6931 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6932 for (auto *M : OID->methods()) 6933 EmitTopLevelDecl(M); 6934 } 6935 6936 EmitTopLevelDecl(I); 6937 } 6938 } 6939 6940 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6941 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6942 // Ignore dependent declarations. 6943 if (D->isTemplated()) 6944 return; 6945 6946 // Consteval function shouldn't be emitted. 6947 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6948 return; 6949 6950 switch (D->getKind()) { 6951 case Decl::CXXConversion: 6952 case Decl::CXXMethod: 6953 case Decl::Function: 6954 EmitGlobal(cast<FunctionDecl>(D)); 6955 // Always provide some coverage mapping 6956 // even for the functions that aren't emitted. 6957 AddDeferredUnusedCoverageMapping(D); 6958 break; 6959 6960 case Decl::CXXDeductionGuide: 6961 // Function-like, but does not result in code emission. 6962 break; 6963 6964 case Decl::Var: 6965 case Decl::Decomposition: 6966 case Decl::VarTemplateSpecialization: 6967 EmitGlobal(cast<VarDecl>(D)); 6968 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6969 for (auto *B : DD->bindings()) 6970 if (auto *HD = B->getHoldingVar()) 6971 EmitGlobal(HD); 6972 break; 6973 6974 // Indirect fields from global anonymous structs and unions can be 6975 // ignored; only the actual variable requires IR gen support. 6976 case Decl::IndirectField: 6977 break; 6978 6979 // C++ Decls 6980 case Decl::Namespace: 6981 EmitDeclContext(cast<NamespaceDecl>(D)); 6982 break; 6983 case Decl::ClassTemplateSpecialization: { 6984 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6985 if (CGDebugInfo *DI = getModuleDebugInfo()) 6986 if (Spec->getSpecializationKind() == 6987 TSK_ExplicitInstantiationDefinition && 6988 Spec->hasDefinition()) 6989 DI->completeTemplateDefinition(*Spec); 6990 } [[fallthrough]]; 6991 case Decl::CXXRecord: { 6992 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6993 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6994 if (CRD->hasDefinition()) 6995 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6996 if (auto *ES = D->getASTContext().getExternalSource()) 6997 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6998 DI->completeUnusedClass(*CRD); 6999 } 7000 // Emit any static data members, they may be definitions. 7001 for (auto *I : CRD->decls()) 7002 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 7003 EmitTopLevelDecl(I); 7004 break; 7005 } 7006 // No code generation needed. 7007 case Decl::UsingShadow: 7008 case Decl::ClassTemplate: 7009 case Decl::VarTemplate: 7010 case Decl::Concept: 7011 case Decl::VarTemplatePartialSpecialization: 7012 case Decl::FunctionTemplate: 7013 case Decl::TypeAliasTemplate: 7014 case Decl::Block: 7015 case Decl::Empty: 7016 case Decl::Binding: 7017 break; 7018 case Decl::Using: // using X; [C++] 7019 if (CGDebugInfo *DI = getModuleDebugInfo()) 7020 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 7021 break; 7022 case Decl::UsingEnum: // using enum X; [C++] 7023 if (CGDebugInfo *DI = getModuleDebugInfo()) 7024 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 7025 break; 7026 case Decl::NamespaceAlias: 7027 if (CGDebugInfo *DI = getModuleDebugInfo()) 7028 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 7029 break; 7030 case Decl::UsingDirective: // using namespace X; [C++] 7031 if (CGDebugInfo *DI = getModuleDebugInfo()) 7032 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 7033 break; 7034 case Decl::CXXConstructor: 7035 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 7036 break; 7037 case Decl::CXXDestructor: 7038 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 7039 break; 7040 7041 case Decl::StaticAssert: 7042 // Nothing to do. 7043 break; 7044 7045 // Objective-C Decls 7046 7047 // Forward declarations, no (immediate) code generation. 7048 case Decl::ObjCInterface: 7049 case Decl::ObjCCategory: 7050 break; 7051 7052 case Decl::ObjCProtocol: { 7053 auto *Proto = cast<ObjCProtocolDecl>(D); 7054 if (Proto->isThisDeclarationADefinition()) 7055 ObjCRuntime->GenerateProtocol(Proto); 7056 break; 7057 } 7058 7059 case Decl::ObjCCategoryImpl: 7060 // Categories have properties but don't support synthesize so we 7061 // can ignore them here. 7062 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 7063 break; 7064 7065 case Decl::ObjCImplementation: { 7066 auto *OMD = cast<ObjCImplementationDecl>(D); 7067 EmitObjCPropertyImplementations(OMD); 7068 EmitObjCIvarInitializations(OMD); 7069 ObjCRuntime->GenerateClass(OMD); 7070 // Emit global variable debug information. 7071 if (CGDebugInfo *DI = getModuleDebugInfo()) 7072 if (getCodeGenOpts().hasReducedDebugInfo()) 7073 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7074 OMD->getClassInterface()), OMD->getLocation()); 7075 break; 7076 } 7077 case Decl::ObjCMethod: { 7078 auto *OMD = cast<ObjCMethodDecl>(D); 7079 // If this is not a prototype, emit the body. 7080 if (OMD->getBody()) 7081 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7082 break; 7083 } 7084 case Decl::ObjCCompatibleAlias: 7085 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7086 break; 7087 7088 case Decl::PragmaComment: { 7089 const auto *PCD = cast<PragmaCommentDecl>(D); 7090 switch (PCD->getCommentKind()) { 7091 case PCK_Unknown: 7092 llvm_unreachable("unexpected pragma comment kind"); 7093 case PCK_Linker: 7094 AppendLinkerOptions(PCD->getArg()); 7095 break; 7096 case PCK_Lib: 7097 AddDependentLib(PCD->getArg()); 7098 break; 7099 case PCK_Compiler: 7100 case PCK_ExeStr: 7101 case PCK_User: 7102 break; // We ignore all of these. 7103 } 7104 break; 7105 } 7106 7107 case Decl::PragmaDetectMismatch: { 7108 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7109 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7110 break; 7111 } 7112 7113 case Decl::LinkageSpec: 7114 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7115 break; 7116 7117 case Decl::FileScopeAsm: { 7118 // File-scope asm is ignored during device-side CUDA compilation. 7119 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7120 break; 7121 // File-scope asm is ignored during device-side OpenMP compilation. 7122 if (LangOpts.OpenMPIsTargetDevice) 7123 break; 7124 // File-scope asm is ignored during device-side SYCL compilation. 7125 if (LangOpts.SYCLIsDevice) 7126 break; 7127 auto *AD = cast<FileScopeAsmDecl>(D); 7128 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7129 break; 7130 } 7131 7132 case Decl::TopLevelStmt: 7133 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7134 break; 7135 7136 case Decl::Import: { 7137 auto *Import = cast<ImportDecl>(D); 7138 7139 // If we've already imported this module, we're done. 7140 if (!ImportedModules.insert(Import->getImportedModule())) 7141 break; 7142 7143 // Emit debug information for direct imports. 7144 if (!Import->getImportedOwningModule()) { 7145 if (CGDebugInfo *DI = getModuleDebugInfo()) 7146 DI->EmitImportDecl(*Import); 7147 } 7148 7149 // For C++ standard modules we are done - we will call the module 7150 // initializer for imported modules, and that will likewise call those for 7151 // any imports it has. 7152 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7153 !Import->getImportedOwningModule()->isModuleMapModule()) 7154 break; 7155 7156 // For clang C++ module map modules the initializers for sub-modules are 7157 // emitted here. 7158 7159 // Find all of the submodules and emit the module initializers. 7160 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7161 SmallVector<clang::Module *, 16> Stack; 7162 Visited.insert(Import->getImportedModule()); 7163 Stack.push_back(Import->getImportedModule()); 7164 7165 while (!Stack.empty()) { 7166 clang::Module *Mod = Stack.pop_back_val(); 7167 if (!EmittedModuleInitializers.insert(Mod).second) 7168 continue; 7169 7170 for (auto *D : Context.getModuleInitializers(Mod)) 7171 EmitTopLevelDecl(D); 7172 7173 // Visit the submodules of this module. 7174 for (auto *Submodule : Mod->submodules()) { 7175 // Skip explicit children; they need to be explicitly imported to emit 7176 // the initializers. 7177 if (Submodule->IsExplicit) 7178 continue; 7179 7180 if (Visited.insert(Submodule).second) 7181 Stack.push_back(Submodule); 7182 } 7183 } 7184 break; 7185 } 7186 7187 case Decl::Export: 7188 EmitDeclContext(cast<ExportDecl>(D)); 7189 break; 7190 7191 case Decl::OMPThreadPrivate: 7192 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7193 break; 7194 7195 case Decl::OMPAllocate: 7196 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7197 break; 7198 7199 case Decl::OMPDeclareReduction: 7200 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7201 break; 7202 7203 case Decl::OMPDeclareMapper: 7204 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7205 break; 7206 7207 case Decl::OMPRequires: 7208 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7209 break; 7210 7211 case Decl::Typedef: 7212 case Decl::TypeAlias: // using foo = bar; [C++11] 7213 if (CGDebugInfo *DI = getModuleDebugInfo()) 7214 DI->EmitAndRetainType( 7215 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7216 break; 7217 7218 case Decl::Record: 7219 if (CGDebugInfo *DI = getModuleDebugInfo()) 7220 if (cast<RecordDecl>(D)->getDefinition()) 7221 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7222 break; 7223 7224 case Decl::Enum: 7225 if (CGDebugInfo *DI = getModuleDebugInfo()) 7226 if (cast<EnumDecl>(D)->getDefinition()) 7227 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7228 break; 7229 7230 case Decl::HLSLBuffer: 7231 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7232 break; 7233 7234 default: 7235 // Make sure we handled everything we should, every other kind is a 7236 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7237 // function. Need to recode Decl::Kind to do that easily. 7238 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7239 break; 7240 } 7241 } 7242 7243 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7244 // Do we need to generate coverage mapping? 7245 if (!CodeGenOpts.CoverageMapping) 7246 return; 7247 switch (D->getKind()) { 7248 case Decl::CXXConversion: 7249 case Decl::CXXMethod: 7250 case Decl::Function: 7251 case Decl::ObjCMethod: 7252 case Decl::CXXConstructor: 7253 case Decl::CXXDestructor: { 7254 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7255 break; 7256 SourceManager &SM = getContext().getSourceManager(); 7257 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7258 break; 7259 if (!llvm::coverage::SystemHeadersCoverage && 7260 SM.isInSystemHeader(D->getBeginLoc())) 7261 break; 7262 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7263 break; 7264 } 7265 default: 7266 break; 7267 }; 7268 } 7269 7270 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7271 // Do we need to generate coverage mapping? 7272 if (!CodeGenOpts.CoverageMapping) 7273 return; 7274 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7275 if (Fn->isTemplateInstantiation()) 7276 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7277 } 7278 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7279 } 7280 7281 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7282 // We call takeVector() here to avoid use-after-free. 7283 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7284 // we deserialize function bodies to emit coverage info for them, and that 7285 // deserializes more declarations. How should we handle that case? 7286 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7287 if (!Entry.second) 7288 continue; 7289 const Decl *D = Entry.first; 7290 switch (D->getKind()) { 7291 case Decl::CXXConversion: 7292 case Decl::CXXMethod: 7293 case Decl::Function: 7294 case Decl::ObjCMethod: { 7295 CodeGenPGO PGO(*this); 7296 GlobalDecl GD(cast<FunctionDecl>(D)); 7297 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7298 getFunctionLinkage(GD)); 7299 break; 7300 } 7301 case Decl::CXXConstructor: { 7302 CodeGenPGO PGO(*this); 7303 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7304 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7305 getFunctionLinkage(GD)); 7306 break; 7307 } 7308 case Decl::CXXDestructor: { 7309 CodeGenPGO PGO(*this); 7310 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7311 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7312 getFunctionLinkage(GD)); 7313 break; 7314 } 7315 default: 7316 break; 7317 }; 7318 } 7319 } 7320 7321 void CodeGenModule::EmitMainVoidAlias() { 7322 // In order to transition away from "__original_main" gracefully, emit an 7323 // alias for "main" in the no-argument case so that libc can detect when 7324 // new-style no-argument main is in used. 7325 if (llvm::Function *F = getModule().getFunction("main")) { 7326 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7327 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7328 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7329 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7330 } 7331 } 7332 } 7333 7334 /// Turns the given pointer into a constant. 7335 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7336 const void *Ptr) { 7337 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7338 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7339 return llvm::ConstantInt::get(i64, PtrInt); 7340 } 7341 7342 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7343 llvm::NamedMDNode *&GlobalMetadata, 7344 GlobalDecl D, 7345 llvm::GlobalValue *Addr) { 7346 if (!GlobalMetadata) 7347 GlobalMetadata = 7348 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7349 7350 // TODO: should we report variant information for ctors/dtors? 7351 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7352 llvm::ConstantAsMetadata::get(GetPointerConstant( 7353 CGM.getLLVMContext(), D.getDecl()))}; 7354 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7355 } 7356 7357 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7358 llvm::GlobalValue *CppFunc) { 7359 // Store the list of ifuncs we need to replace uses in. 7360 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7361 // List of ConstantExprs that we should be able to delete when we're done 7362 // here. 7363 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7364 7365 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7366 if (Elem == CppFunc) 7367 return false; 7368 7369 // First make sure that all users of this are ifuncs (or ifuncs via a 7370 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7371 // later. 7372 for (llvm::User *User : Elem->users()) { 7373 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7374 // ifunc directly. In any other case, just give up, as we don't know what we 7375 // could break by changing those. 7376 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7377 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7378 return false; 7379 7380 for (llvm::User *CEUser : ConstExpr->users()) { 7381 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7382 IFuncs.push_back(IFunc); 7383 } else { 7384 return false; 7385 } 7386 } 7387 CEs.push_back(ConstExpr); 7388 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7389 IFuncs.push_back(IFunc); 7390 } else { 7391 // This user is one we don't know how to handle, so fail redirection. This 7392 // will result in an ifunc retaining a resolver name that will ultimately 7393 // fail to be resolved to a defined function. 7394 return false; 7395 } 7396 } 7397 7398 // Now we know this is a valid case where we can do this alias replacement, we 7399 // need to remove all of the references to Elem (and the bitcasts!) so we can 7400 // delete it. 7401 for (llvm::GlobalIFunc *IFunc : IFuncs) 7402 IFunc->setResolver(nullptr); 7403 for (llvm::ConstantExpr *ConstExpr : CEs) 7404 ConstExpr->destroyConstant(); 7405 7406 // We should now be out of uses for the 'old' version of this function, so we 7407 // can erase it as well. 7408 Elem->eraseFromParent(); 7409 7410 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7411 // The type of the resolver is always just a function-type that returns the 7412 // type of the IFunc, so create that here. If the type of the actual 7413 // resolver doesn't match, it just gets bitcast to the right thing. 7414 auto *ResolverTy = 7415 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7416 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7417 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7418 IFunc->setResolver(Resolver); 7419 } 7420 return true; 7421 } 7422 7423 /// For each function which is declared within an extern "C" region and marked 7424 /// as 'used', but has internal linkage, create an alias from the unmangled 7425 /// name to the mangled name if possible. People expect to be able to refer 7426 /// to such functions with an unmangled name from inline assembly within the 7427 /// same translation unit. 7428 void CodeGenModule::EmitStaticExternCAliases() { 7429 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7430 return; 7431 for (auto &I : StaticExternCValues) { 7432 const IdentifierInfo *Name = I.first; 7433 llvm::GlobalValue *Val = I.second; 7434 7435 // If Val is null, that implies there were multiple declarations that each 7436 // had a claim to the unmangled name. In this case, generation of the alias 7437 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7438 if (!Val) 7439 break; 7440 7441 llvm::GlobalValue *ExistingElem = 7442 getModule().getNamedValue(Name->getName()); 7443 7444 // If there is either not something already by this name, or we were able to 7445 // replace all uses from IFuncs, create the alias. 7446 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7447 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7448 } 7449 } 7450 7451 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7452 GlobalDecl &Result) const { 7453 auto Res = Manglings.find(MangledName); 7454 if (Res == Manglings.end()) 7455 return false; 7456 Result = Res->getValue(); 7457 return true; 7458 } 7459 7460 /// Emits metadata nodes associating all the global values in the 7461 /// current module with the Decls they came from. This is useful for 7462 /// projects using IR gen as a subroutine. 7463 /// 7464 /// Since there's currently no way to associate an MDNode directly 7465 /// with an llvm::GlobalValue, we create a global named metadata 7466 /// with the name 'clang.global.decl.ptrs'. 7467 void CodeGenModule::EmitDeclMetadata() { 7468 llvm::NamedMDNode *GlobalMetadata = nullptr; 7469 7470 for (auto &I : MangledDeclNames) { 7471 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7472 // Some mangled names don't necessarily have an associated GlobalValue 7473 // in this module, e.g. if we mangled it for DebugInfo. 7474 if (Addr) 7475 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7476 } 7477 } 7478 7479 /// Emits metadata nodes for all the local variables in the current 7480 /// function. 7481 void CodeGenFunction::EmitDeclMetadata() { 7482 if (LocalDeclMap.empty()) return; 7483 7484 llvm::LLVMContext &Context = getLLVMContext(); 7485 7486 // Find the unique metadata ID for this name. 7487 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7488 7489 llvm::NamedMDNode *GlobalMetadata = nullptr; 7490 7491 for (auto &I : LocalDeclMap) { 7492 const Decl *D = I.first; 7493 llvm::Value *Addr = I.second.emitRawPointer(*this); 7494 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7495 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7496 Alloca->setMetadata( 7497 DeclPtrKind, llvm::MDNode::get( 7498 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7499 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7500 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7501 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7502 } 7503 } 7504 } 7505 7506 void CodeGenModule::EmitVersionIdentMetadata() { 7507 llvm::NamedMDNode *IdentMetadata = 7508 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7509 std::string Version = getClangFullVersion(); 7510 llvm::LLVMContext &Ctx = TheModule.getContext(); 7511 7512 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7513 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7514 } 7515 7516 void CodeGenModule::EmitCommandLineMetadata() { 7517 llvm::NamedMDNode *CommandLineMetadata = 7518 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7519 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7520 llvm::LLVMContext &Ctx = TheModule.getContext(); 7521 7522 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7523 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7524 } 7525 7526 void CodeGenModule::EmitCoverageFile() { 7527 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7528 if (!CUNode) 7529 return; 7530 7531 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7532 llvm::LLVMContext &Ctx = TheModule.getContext(); 7533 auto *CoverageDataFile = 7534 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7535 auto *CoverageNotesFile = 7536 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7537 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7538 llvm::MDNode *CU = CUNode->getOperand(i); 7539 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7540 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7541 } 7542 } 7543 7544 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7545 bool ForEH) { 7546 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7547 // FIXME: should we even be calling this method if RTTI is disabled 7548 // and it's not for EH? 7549 if (!shouldEmitRTTI(ForEH)) 7550 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7551 7552 if (ForEH && Ty->isObjCObjectPointerType() && 7553 LangOpts.ObjCRuntime.isGNUFamily()) 7554 return ObjCRuntime->GetEHType(Ty); 7555 7556 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7557 } 7558 7559 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7560 // Do not emit threadprivates in simd-only mode. 7561 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7562 return; 7563 for (auto RefExpr : D->varlist()) { 7564 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7565 bool PerformInit = 7566 VD->getAnyInitializer() && 7567 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7568 /*ForRef=*/false); 7569 7570 Address Addr(GetAddrOfGlobalVar(VD), 7571 getTypes().ConvertTypeForMem(VD->getType()), 7572 getContext().getDeclAlign(VD)); 7573 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7574 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7575 CXXGlobalInits.push_back(InitFunction); 7576 } 7577 } 7578 7579 llvm::Metadata * 7580 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7581 StringRef Suffix) { 7582 if (auto *FnType = T->getAs<FunctionProtoType>()) 7583 T = getContext().getFunctionType( 7584 FnType->getReturnType(), FnType->getParamTypes(), 7585 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7586 7587 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7588 if (InternalId) 7589 return InternalId; 7590 7591 if (isExternallyVisible(T->getLinkage())) { 7592 std::string OutName; 7593 llvm::raw_string_ostream Out(OutName); 7594 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7595 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7596 7597 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7598 Out << ".normalized"; 7599 7600 Out << Suffix; 7601 7602 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7603 } else { 7604 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7605 llvm::ArrayRef<llvm::Metadata *>()); 7606 } 7607 7608 return InternalId; 7609 } 7610 7611 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7612 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7613 } 7614 7615 llvm::Metadata * 7616 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7617 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7618 } 7619 7620 // Generalize pointer types to a void pointer with the qualifiers of the 7621 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7622 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7623 // 'void *'. 7624 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7625 if (!Ty->isPointerType()) 7626 return Ty; 7627 7628 return Ctx.getPointerType( 7629 QualType(Ctx.VoidTy).withCVRQualifiers( 7630 Ty->getPointeeType().getCVRQualifiers())); 7631 } 7632 7633 // Apply type generalization to a FunctionType's return and argument types 7634 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7635 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7636 SmallVector<QualType, 8> GeneralizedParams; 7637 for (auto &Param : FnType->param_types()) 7638 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7639 7640 return Ctx.getFunctionType( 7641 GeneralizeType(Ctx, FnType->getReturnType()), 7642 GeneralizedParams, FnType->getExtProtoInfo()); 7643 } 7644 7645 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7646 return Ctx.getFunctionNoProtoType( 7647 GeneralizeType(Ctx, FnType->getReturnType())); 7648 7649 llvm_unreachable("Encountered unknown FunctionType"); 7650 } 7651 7652 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7653 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7654 GeneralizedMetadataIdMap, ".generalized"); 7655 } 7656 7657 /// Returns whether this module needs the "all-vtables" type identifier. 7658 bool CodeGenModule::NeedAllVtablesTypeId() const { 7659 // Returns true if at least one of vtable-based CFI checkers is enabled and 7660 // is not in the trapping mode. 7661 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7662 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7663 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7664 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7665 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7666 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7667 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7668 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7669 } 7670 7671 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7672 CharUnits Offset, 7673 const CXXRecordDecl *RD) { 7674 llvm::Metadata *MD = 7675 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7676 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7677 7678 if (CodeGenOpts.SanitizeCfiCrossDso) 7679 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7680 VTable->addTypeMetadata(Offset.getQuantity(), 7681 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7682 7683 if (NeedAllVtablesTypeId()) { 7684 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7685 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7686 } 7687 } 7688 7689 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7690 if (!SanStats) 7691 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7692 7693 return *SanStats; 7694 } 7695 7696 llvm::Value * 7697 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7698 CodeGenFunction &CGF) { 7699 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7700 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7701 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7702 auto *Call = CGF.EmitRuntimeCall( 7703 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7704 return Call; 7705 } 7706 7707 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7708 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7709 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7710 /* forPointeeType= */ true); 7711 } 7712 7713 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7714 LValueBaseInfo *BaseInfo, 7715 TBAAAccessInfo *TBAAInfo, 7716 bool forPointeeType) { 7717 if (TBAAInfo) 7718 *TBAAInfo = getTBAAAccessInfo(T); 7719 7720 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7721 // that doesn't return the information we need to compute BaseInfo. 7722 7723 // Honor alignment typedef attributes even on incomplete types. 7724 // We also honor them straight for C++ class types, even as pointees; 7725 // there's an expressivity gap here. 7726 if (auto TT = T->getAs<TypedefType>()) { 7727 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7728 if (BaseInfo) 7729 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7730 return getContext().toCharUnitsFromBits(Align); 7731 } 7732 } 7733 7734 bool AlignForArray = T->isArrayType(); 7735 7736 // Analyze the base element type, so we don't get confused by incomplete 7737 // array types. 7738 T = getContext().getBaseElementType(T); 7739 7740 if (T->isIncompleteType()) { 7741 // We could try to replicate the logic from 7742 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7743 // type is incomplete, so it's impossible to test. We could try to reuse 7744 // getTypeAlignIfKnown, but that doesn't return the information we need 7745 // to set BaseInfo. So just ignore the possibility that the alignment is 7746 // greater than one. 7747 if (BaseInfo) 7748 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7749 return CharUnits::One(); 7750 } 7751 7752 if (BaseInfo) 7753 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7754 7755 CharUnits Alignment; 7756 const CXXRecordDecl *RD; 7757 if (T.getQualifiers().hasUnaligned()) { 7758 Alignment = CharUnits::One(); 7759 } else if (forPointeeType && !AlignForArray && 7760 (RD = T->getAsCXXRecordDecl())) { 7761 // For C++ class pointees, we don't know whether we're pointing at a 7762 // base or a complete object, so we generally need to use the 7763 // non-virtual alignment. 7764 Alignment = getClassPointerAlignment(RD); 7765 } else { 7766 Alignment = getContext().getTypeAlignInChars(T); 7767 } 7768 7769 // Cap to the global maximum type alignment unless the alignment 7770 // was somehow explicit on the type. 7771 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7772 if (Alignment.getQuantity() > MaxAlign && 7773 !getContext().isAlignmentRequired(T)) 7774 Alignment = CharUnits::fromQuantity(MaxAlign); 7775 } 7776 return Alignment; 7777 } 7778 7779 bool CodeGenModule::stopAutoInit() { 7780 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7781 if (StopAfter) { 7782 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7783 // used 7784 if (NumAutoVarInit >= StopAfter) { 7785 return true; 7786 } 7787 if (!NumAutoVarInit) { 7788 unsigned DiagID = getDiags().getCustomDiagID( 7789 DiagnosticsEngine::Warning, 7790 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7791 "number of times ftrivial-auto-var-init=%1 gets applied."); 7792 getDiags().Report(DiagID) 7793 << StopAfter 7794 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7795 LangOptions::TrivialAutoVarInitKind::Zero 7796 ? "zero" 7797 : "pattern"); 7798 } 7799 ++NumAutoVarInit; 7800 } 7801 return false; 7802 } 7803 7804 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7805 const Decl *D) const { 7806 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7807 // postfix beginning with '.' since the symbol name can be demangled. 7808 if (LangOpts.HIP) 7809 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7810 else 7811 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7812 7813 // If the CUID is not specified we try to generate a unique postfix. 7814 if (getLangOpts().CUID.empty()) { 7815 SourceManager &SM = getContext().getSourceManager(); 7816 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7817 assert(PLoc.isValid() && "Source location is expected to be valid."); 7818 7819 // Get the hash of the user defined macros. 7820 llvm::MD5 Hash; 7821 llvm::MD5::MD5Result Result; 7822 for (const auto &Arg : PreprocessorOpts.Macros) 7823 Hash.update(Arg.first); 7824 Hash.final(Result); 7825 7826 // Get the UniqueID for the file containing the decl. 7827 llvm::sys::fs::UniqueID ID; 7828 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7829 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7830 assert(PLoc.isValid() && "Source location is expected to be valid."); 7831 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7832 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7833 << PLoc.getFilename() << EC.message(); 7834 } 7835 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7836 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7837 } else { 7838 OS << getContext().getCUIDHash(); 7839 } 7840 } 7841 7842 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7843 assert(DeferredDeclsToEmit.empty() && 7844 "Should have emitted all decls deferred to emit."); 7845 assert(NewBuilder->DeferredDecls.empty() && 7846 "Newly created module should not have deferred decls"); 7847 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7848 assert(EmittedDeferredDecls.empty() && 7849 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7850 7851 assert(NewBuilder->DeferredVTables.empty() && 7852 "Newly created module should not have deferred vtables"); 7853 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7854 7855 assert(NewBuilder->MangledDeclNames.empty() && 7856 "Newly created module should not have mangled decl names"); 7857 assert(NewBuilder->Manglings.empty() && 7858 "Newly created module should not have manglings"); 7859 NewBuilder->Manglings = std::move(Manglings); 7860 7861 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7862 7863 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7864 } 7865