1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/DeclCXX.h" 34 #include "clang/AST/DeclObjC.h" 35 #include "clang/AST/DeclTemplate.h" 36 #include "clang/AST/Mangle.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/AST/StmtVisitor.h" 39 #include "clang/Basic/Builtins.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/CodeGenOptions.h" 42 #include "clang/Basic/Diagnostic.h" 43 #include "clang/Basic/FileManager.h" 44 #include "clang/Basic/Module.h" 45 #include "clang/Basic/SourceManager.h" 46 #include "clang/Basic/TargetInfo.h" 47 #include "clang/Basic/Version.h" 48 #include "clang/CodeGen/BackendUtil.h" 49 #include "clang/CodeGen/ConstantInitBuilder.h" 50 #include "clang/Frontend/FrontendDiagnostic.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/StringExtras.h" 53 #include "llvm/ADT/StringSwitch.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/AttributeMask.h" 57 #include "llvm/IR/CallingConv.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/ProfileSummary.h" 63 #include "llvm/ProfileData/InstrProfReader.h" 64 #include "llvm/ProfileData/SampleProf.h" 65 #include "llvm/Support/CRC.h" 66 #include "llvm/Support/CodeGen.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/ConvertUTF.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/Support/xxhash.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/TargetParser/X86TargetParser.h" 74 #include <optional> 75 76 using namespace clang; 77 using namespace CodeGen; 78 79 static llvm::cl::opt<bool> LimitedCoverage( 80 "limited-coverage-experimental", llvm::cl::Hidden, 81 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 82 83 static const char AnnotationSection[] = "llvm.metadata"; 84 85 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 86 switch (CGM.getContext().getCXXABIKind()) { 87 case TargetCXXABI::AppleARM64: 88 case TargetCXXABI::Fuchsia: 89 case TargetCXXABI::GenericAArch64: 90 case TargetCXXABI::GenericARM: 91 case TargetCXXABI::iOS: 92 case TargetCXXABI::WatchOS: 93 case TargetCXXABI::GenericMIPS: 94 case TargetCXXABI::GenericItanium: 95 case TargetCXXABI::WebAssembly: 96 case TargetCXXABI::XL: 97 return CreateItaniumCXXABI(CGM); 98 case TargetCXXABI::Microsoft: 99 return CreateMicrosoftCXXABI(CGM); 100 } 101 102 llvm_unreachable("invalid C++ ABI kind"); 103 } 104 105 static std::unique_ptr<TargetCodeGenInfo> 106 createTargetCodeGenInfo(CodeGenModule &CGM) { 107 const TargetInfo &Target = CGM.getTarget(); 108 const llvm::Triple &Triple = Target.getTriple(); 109 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 110 111 switch (Triple.getArch()) { 112 default: 113 return createDefaultTargetCodeGenInfo(CGM); 114 115 case llvm::Triple::le32: 116 return createPNaClTargetCodeGenInfo(CGM); 117 case llvm::Triple::m68k: 118 return createM68kTargetCodeGenInfo(CGM); 119 case llvm::Triple::mips: 120 case llvm::Triple::mipsel: 121 if (Triple.getOS() == llvm::Triple::NaCl) 122 return createPNaClTargetCodeGenInfo(CGM); 123 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 124 125 case llvm::Triple::mips64: 126 case llvm::Triple::mips64el: 127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 128 129 case llvm::Triple::avr: { 130 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 131 // on avrtiny. For passing return value, R18~R25 are used on avr, and 132 // R22~R25 are used on avrtiny. 133 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 134 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 135 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 136 } 137 138 case llvm::Triple::aarch64: 139 case llvm::Triple::aarch64_32: 140 case llvm::Triple::aarch64_be: { 141 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 142 if (Target.getABI() == "darwinpcs") 143 Kind = AArch64ABIKind::DarwinPCS; 144 else if (Triple.isOSWindows()) 145 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 146 147 return createAArch64TargetCodeGenInfo(CGM, Kind); 148 } 149 150 case llvm::Triple::wasm32: 151 case llvm::Triple::wasm64: { 152 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 153 if (Target.getABI() == "experimental-mv") 154 Kind = WebAssemblyABIKind::ExperimentalMV; 155 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 156 } 157 158 case llvm::Triple::arm: 159 case llvm::Triple::armeb: 160 case llvm::Triple::thumb: 161 case llvm::Triple::thumbeb: { 162 if (Triple.getOS() == llvm::Triple::Win32) 163 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 164 165 ARMABIKind Kind = ARMABIKind::AAPCS; 166 StringRef ABIStr = Target.getABI(); 167 if (ABIStr == "apcs-gnu") 168 Kind = ARMABIKind::APCS; 169 else if (ABIStr == "aapcs16") 170 Kind = ARMABIKind::AAPCS16_VFP; 171 else if (CodeGenOpts.FloatABI == "hard" || 172 (CodeGenOpts.FloatABI != "soft" && 173 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 174 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 175 Triple.getEnvironment() == llvm::Triple::EABIHF))) 176 Kind = ARMABIKind::AAPCS_VFP; 177 178 return createARMTargetCodeGenInfo(CGM, Kind); 179 } 180 181 case llvm::Triple::ppc: { 182 if (Triple.isOSAIX()) 183 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 184 185 bool IsSoftFloat = 186 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 187 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 188 } 189 case llvm::Triple::ppcle: { 190 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 191 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 192 } 193 case llvm::Triple::ppc64: 194 if (Triple.isOSAIX()) 195 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 196 197 if (Triple.isOSBinFormatELF()) { 198 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 199 if (Target.getABI() == "elfv2") 200 Kind = PPC64_SVR4_ABIKind::ELFv2; 201 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 202 203 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 204 } 205 return createPPC64TargetCodeGenInfo(CGM); 206 case llvm::Triple::ppc64le: { 207 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 208 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 209 if (Target.getABI() == "elfv1") 210 Kind = PPC64_SVR4_ABIKind::ELFv1; 211 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 212 213 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 214 } 215 216 case llvm::Triple::nvptx: 217 case llvm::Triple::nvptx64: 218 return createNVPTXTargetCodeGenInfo(CGM); 219 220 case llvm::Triple::msp430: 221 return createMSP430TargetCodeGenInfo(CGM); 222 223 case llvm::Triple::riscv32: 224 case llvm::Triple::riscv64: { 225 StringRef ABIStr = Target.getABI(); 226 unsigned XLen = Target.getPointerWidth(LangAS::Default); 227 unsigned ABIFLen = 0; 228 if (ABIStr.ends_with("f")) 229 ABIFLen = 32; 230 else if (ABIStr.ends_with("d")) 231 ABIFLen = 64; 232 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen); 233 } 234 235 case llvm::Triple::systemz: { 236 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 237 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 238 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 239 } 240 241 case llvm::Triple::tce: 242 case llvm::Triple::tcele: 243 return createTCETargetCodeGenInfo(CGM); 244 245 case llvm::Triple::x86: { 246 bool IsDarwinVectorABI = Triple.isOSDarwin(); 247 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 248 249 if (Triple.getOS() == llvm::Triple::Win32) { 250 return createWinX86_32TargetCodeGenInfo( 251 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 252 CodeGenOpts.NumRegisterParameters); 253 } 254 return createX86_32TargetCodeGenInfo( 255 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 256 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 257 } 258 259 case llvm::Triple::x86_64: { 260 StringRef ABI = Target.getABI(); 261 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 262 : ABI == "avx" ? X86AVXABILevel::AVX 263 : X86AVXABILevel::None); 264 265 switch (Triple.getOS()) { 266 case llvm::Triple::Win32: 267 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 268 default: 269 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 270 } 271 } 272 case llvm::Triple::hexagon: 273 return createHexagonTargetCodeGenInfo(CGM); 274 case llvm::Triple::lanai: 275 return createLanaiTargetCodeGenInfo(CGM); 276 case llvm::Triple::r600: 277 return createAMDGPUTargetCodeGenInfo(CGM); 278 case llvm::Triple::amdgcn: 279 return createAMDGPUTargetCodeGenInfo(CGM); 280 case llvm::Triple::sparc: 281 return createSparcV8TargetCodeGenInfo(CGM); 282 case llvm::Triple::sparcv9: 283 return createSparcV9TargetCodeGenInfo(CGM); 284 case llvm::Triple::xcore: 285 return createXCoreTargetCodeGenInfo(CGM); 286 case llvm::Triple::arc: 287 return createARCTargetCodeGenInfo(CGM); 288 case llvm::Triple::spir: 289 case llvm::Triple::spir64: 290 return createCommonSPIRTargetCodeGenInfo(CGM); 291 case llvm::Triple::spirv32: 292 case llvm::Triple::spirv64: 293 return createSPIRVTargetCodeGenInfo(CGM); 294 case llvm::Triple::ve: 295 return createVETargetCodeGenInfo(CGM); 296 case llvm::Triple::csky: { 297 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 298 bool hasFP64 = 299 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 300 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 301 : hasFP64 ? 64 302 : 32); 303 } 304 case llvm::Triple::bpfeb: 305 case llvm::Triple::bpfel: 306 return createBPFTargetCodeGenInfo(CGM); 307 case llvm::Triple::loongarch32: 308 case llvm::Triple::loongarch64: { 309 StringRef ABIStr = Target.getABI(); 310 unsigned ABIFRLen = 0; 311 if (ABIStr.ends_with("f")) 312 ABIFRLen = 32; 313 else if (ABIStr.ends_with("d")) 314 ABIFRLen = 64; 315 return createLoongArchTargetCodeGenInfo( 316 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 317 } 318 } 319 } 320 321 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 322 if (!TheTargetCodeGenInfo) 323 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 324 return *TheTargetCodeGenInfo; 325 } 326 327 CodeGenModule::CodeGenModule(ASTContext &C, 328 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 329 const HeaderSearchOptions &HSO, 330 const PreprocessorOptions &PPO, 331 const CodeGenOptions &CGO, llvm::Module &M, 332 DiagnosticsEngine &diags, 333 CoverageSourceInfo *CoverageInfo) 334 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 335 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 336 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 337 VMContext(M.getContext()), Types(*this), VTables(*this), 338 SanitizerMD(new SanitizerMetadata(*this)) { 339 340 // Initialize the type cache. 341 llvm::LLVMContext &LLVMContext = M.getContext(); 342 VoidTy = llvm::Type::getVoidTy(LLVMContext); 343 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 344 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 345 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 346 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 347 HalfTy = llvm::Type::getHalfTy(LLVMContext); 348 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 349 FloatTy = llvm::Type::getFloatTy(LLVMContext); 350 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 351 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 352 PointerAlignInBytes = 353 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 354 .getQuantity(); 355 SizeSizeInBytes = 356 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 357 IntAlignInBytes = 358 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 359 CharTy = 360 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 361 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 362 IntPtrTy = llvm::IntegerType::get(LLVMContext, 363 C.getTargetInfo().getMaxPointerWidth()); 364 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 365 const llvm::DataLayout &DL = M.getDataLayout(); 366 AllocaInt8PtrTy = 367 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 368 GlobalsInt8PtrTy = 369 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 370 ConstGlobalsPtrTy = llvm::PointerType::get( 371 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 372 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 373 374 // Build C++20 Module initializers. 375 // TODO: Add Microsoft here once we know the mangling required for the 376 // initializers. 377 CXX20ModuleInits = 378 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 379 ItaniumMangleContext::MK_Itanium; 380 381 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 382 383 if (LangOpts.ObjC) 384 createObjCRuntime(); 385 if (LangOpts.OpenCL) 386 createOpenCLRuntime(); 387 if (LangOpts.OpenMP) 388 createOpenMPRuntime(); 389 if (LangOpts.CUDA) 390 createCUDARuntime(); 391 if (LangOpts.HLSL) 392 createHLSLRuntime(); 393 394 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 395 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 396 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 397 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 398 getCXXABI().getMangleContext())); 399 400 // If debug info or coverage generation is enabled, create the CGDebugInfo 401 // object. 402 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 403 CodeGenOpts.CoverageNotesFile.size() || 404 CodeGenOpts.CoverageDataFile.size()) 405 DebugInfo.reset(new CGDebugInfo(*this)); 406 407 Block.GlobalUniqueCount = 0; 408 409 if (C.getLangOpts().ObjC) 410 ObjCData.reset(new ObjCEntrypoints()); 411 412 if (CodeGenOpts.hasProfileClangUse()) { 413 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 414 CodeGenOpts.ProfileInstrumentUsePath, *FS, 415 CodeGenOpts.ProfileRemappingFile); 416 // We're checking for profile read errors in CompilerInvocation, so if 417 // there was an error it should've already been caught. If it hasn't been 418 // somehow, trip an assertion. 419 assert(ReaderOrErr); 420 PGOReader = std::move(ReaderOrErr.get()); 421 } 422 423 // If coverage mapping generation is enabled, create the 424 // CoverageMappingModuleGen object. 425 if (CodeGenOpts.CoverageMapping) 426 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 427 428 // Generate the module name hash here if needed. 429 if (CodeGenOpts.UniqueInternalLinkageNames && 430 !getModule().getSourceFileName().empty()) { 431 std::string Path = getModule().getSourceFileName(); 432 // Check if a path substitution is needed from the MacroPrefixMap. 433 for (const auto &Entry : LangOpts.MacroPrefixMap) 434 if (Path.rfind(Entry.first, 0) != std::string::npos) { 435 Path = Entry.second + Path.substr(Entry.first.size()); 436 break; 437 } 438 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 439 } 440 } 441 442 CodeGenModule::~CodeGenModule() {} 443 444 void CodeGenModule::createObjCRuntime() { 445 // This is just isGNUFamily(), but we want to force implementors of 446 // new ABIs to decide how best to do this. 447 switch (LangOpts.ObjCRuntime.getKind()) { 448 case ObjCRuntime::GNUstep: 449 case ObjCRuntime::GCC: 450 case ObjCRuntime::ObjFW: 451 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 452 return; 453 454 case ObjCRuntime::FragileMacOSX: 455 case ObjCRuntime::MacOSX: 456 case ObjCRuntime::iOS: 457 case ObjCRuntime::WatchOS: 458 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 459 return; 460 } 461 llvm_unreachable("bad runtime kind"); 462 } 463 464 void CodeGenModule::createOpenCLRuntime() { 465 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 466 } 467 468 void CodeGenModule::createOpenMPRuntime() { 469 // Select a specialized code generation class based on the target, if any. 470 // If it does not exist use the default implementation. 471 switch (getTriple().getArch()) { 472 case llvm::Triple::nvptx: 473 case llvm::Triple::nvptx64: 474 case llvm::Triple::amdgcn: 475 assert(getLangOpts().OpenMPIsTargetDevice && 476 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 477 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 478 break; 479 default: 480 if (LangOpts.OpenMPSimd) 481 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 482 else 483 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 484 break; 485 } 486 } 487 488 void CodeGenModule::createCUDARuntime() { 489 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 490 } 491 492 void CodeGenModule::createHLSLRuntime() { 493 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 494 } 495 496 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 497 Replacements[Name] = C; 498 } 499 500 void CodeGenModule::applyReplacements() { 501 for (auto &I : Replacements) { 502 StringRef MangledName = I.first; 503 llvm::Constant *Replacement = I.second; 504 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 505 if (!Entry) 506 continue; 507 auto *OldF = cast<llvm::Function>(Entry); 508 auto *NewF = dyn_cast<llvm::Function>(Replacement); 509 if (!NewF) { 510 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 511 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 512 } else { 513 auto *CE = cast<llvm::ConstantExpr>(Replacement); 514 assert(CE->getOpcode() == llvm::Instruction::BitCast || 515 CE->getOpcode() == llvm::Instruction::GetElementPtr); 516 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 517 } 518 } 519 520 // Replace old with new, but keep the old order. 521 OldF->replaceAllUsesWith(Replacement); 522 if (NewF) { 523 NewF->removeFromParent(); 524 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 525 NewF); 526 } 527 OldF->eraseFromParent(); 528 } 529 } 530 531 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 532 GlobalValReplacements.push_back(std::make_pair(GV, C)); 533 } 534 535 void CodeGenModule::applyGlobalValReplacements() { 536 for (auto &I : GlobalValReplacements) { 537 llvm::GlobalValue *GV = I.first; 538 llvm::Constant *C = I.second; 539 540 GV->replaceAllUsesWith(C); 541 GV->eraseFromParent(); 542 } 543 } 544 545 // This is only used in aliases that we created and we know they have a 546 // linear structure. 547 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 548 const llvm::Constant *C; 549 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 550 C = GA->getAliasee(); 551 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 552 C = GI->getResolver(); 553 else 554 return GV; 555 556 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 557 if (!AliaseeGV) 558 return nullptr; 559 560 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 561 if (FinalGV == GV) 562 return nullptr; 563 564 return FinalGV; 565 } 566 567 static bool checkAliasedGlobal( 568 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 569 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 570 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 571 SourceRange AliasRange) { 572 GV = getAliasedGlobal(Alias); 573 if (!GV) { 574 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 575 return false; 576 } 577 578 if (GV->hasCommonLinkage()) { 579 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 580 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 581 Diags.Report(Location, diag::err_alias_to_common); 582 return false; 583 } 584 } 585 586 if (GV->isDeclaration()) { 587 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 588 Diags.Report(Location, diag::note_alias_requires_mangled_name) 589 << IsIFunc << IsIFunc; 590 // Provide a note if the given function is not found and exists as a 591 // mangled name. 592 for (const auto &[Decl, Name] : MangledDeclNames) { 593 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 594 if (ND->getName() == GV->getName()) { 595 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 596 << Name 597 << FixItHint::CreateReplacement( 598 AliasRange, 599 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 600 .str()); 601 } 602 } 603 } 604 return false; 605 } 606 607 if (IsIFunc) { 608 // Check resolver function type. 609 const auto *F = dyn_cast<llvm::Function>(GV); 610 if (!F) { 611 Diags.Report(Location, diag::err_alias_to_undefined) 612 << IsIFunc << IsIFunc; 613 return false; 614 } 615 616 llvm::FunctionType *FTy = F->getFunctionType(); 617 if (!FTy->getReturnType()->isPointerTy()) { 618 Diags.Report(Location, diag::err_ifunc_resolver_return); 619 return false; 620 } 621 } 622 623 return true; 624 } 625 626 void CodeGenModule::checkAliases() { 627 // Check if the constructed aliases are well formed. It is really unfortunate 628 // that we have to do this in CodeGen, but we only construct mangled names 629 // and aliases during codegen. 630 bool Error = false; 631 DiagnosticsEngine &Diags = getDiags(); 632 for (const GlobalDecl &GD : Aliases) { 633 const auto *D = cast<ValueDecl>(GD.getDecl()); 634 SourceLocation Location; 635 SourceRange Range; 636 bool IsIFunc = D->hasAttr<IFuncAttr>(); 637 if (const Attr *A = D->getDefiningAttr()) { 638 Location = A->getLocation(); 639 Range = A->getRange(); 640 } else 641 llvm_unreachable("Not an alias or ifunc?"); 642 643 StringRef MangledName = getMangledName(GD); 644 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 645 const llvm::GlobalValue *GV = nullptr; 646 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 647 MangledDeclNames, Range)) { 648 Error = true; 649 continue; 650 } 651 652 llvm::Constant *Aliasee = 653 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 654 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 655 656 llvm::GlobalValue *AliaseeGV; 657 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 658 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 659 else 660 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 661 662 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 663 StringRef AliasSection = SA->getName(); 664 if (AliasSection != AliaseeGV->getSection()) 665 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 666 << AliasSection << IsIFunc << IsIFunc; 667 } 668 669 // We have to handle alias to weak aliases in here. LLVM itself disallows 670 // this since the object semantics would not match the IL one. For 671 // compatibility with gcc we implement it by just pointing the alias 672 // to its aliasee's aliasee. We also warn, since the user is probably 673 // expecting the link to be weak. 674 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 675 if (GA->isInterposable()) { 676 Diags.Report(Location, diag::warn_alias_to_weak_alias) 677 << GV->getName() << GA->getName() << IsIFunc; 678 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 679 GA->getAliasee(), Alias->getType()); 680 681 if (IsIFunc) 682 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 683 else 684 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 685 } 686 } 687 } 688 if (!Error) 689 return; 690 691 for (const GlobalDecl &GD : Aliases) { 692 StringRef MangledName = getMangledName(GD); 693 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 694 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 695 Alias->eraseFromParent(); 696 } 697 } 698 699 void CodeGenModule::clear() { 700 DeferredDeclsToEmit.clear(); 701 EmittedDeferredDecls.clear(); 702 DeferredAnnotations.clear(); 703 if (OpenMPRuntime) 704 OpenMPRuntime->clear(); 705 } 706 707 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 708 StringRef MainFile) { 709 if (!hasDiagnostics()) 710 return; 711 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 712 if (MainFile.empty()) 713 MainFile = "<stdin>"; 714 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 715 } else { 716 if (Mismatched > 0) 717 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 718 719 if (Missing > 0) 720 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 721 } 722 } 723 724 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 725 llvm::Module &M) { 726 if (!LO.VisibilityFromDLLStorageClass) 727 return; 728 729 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 730 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 731 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 732 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 733 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 734 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 735 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 736 CodeGenModule::GetLLVMVisibility( 737 LO.getExternDeclNoDLLStorageClassVisibility()); 738 739 for (llvm::GlobalValue &GV : M.global_values()) { 740 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 741 continue; 742 743 // Reset DSO locality before setting the visibility. This removes 744 // any effects that visibility options and annotations may have 745 // had on the DSO locality. Setting the visibility will implicitly set 746 // appropriate globals to DSO Local; however, this will be pessimistic 747 // w.r.t. to the normal compiler IRGen. 748 GV.setDSOLocal(false); 749 750 if (GV.isDeclarationForLinker()) { 751 GV.setVisibility(GV.getDLLStorageClass() == 752 llvm::GlobalValue::DLLImportStorageClass 753 ? ExternDeclDLLImportVisibility 754 : ExternDeclNoDLLStorageClassVisibility); 755 } else { 756 GV.setVisibility(GV.getDLLStorageClass() == 757 llvm::GlobalValue::DLLExportStorageClass 758 ? DLLExportVisibility 759 : NoDLLStorageClassVisibility); 760 } 761 762 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 763 } 764 } 765 766 static bool isStackProtectorOn(const LangOptions &LangOpts, 767 const llvm::Triple &Triple, 768 clang::LangOptions::StackProtectorMode Mode) { 769 if (Triple.isAMDGPU() || Triple.isNVPTX()) 770 return false; 771 return LangOpts.getStackProtector() == Mode; 772 } 773 774 void CodeGenModule::Release() { 775 Module *Primary = getContext().getCurrentNamedModule(); 776 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 777 EmitModuleInitializers(Primary); 778 EmitDeferred(); 779 DeferredDecls.insert(EmittedDeferredDecls.begin(), 780 EmittedDeferredDecls.end()); 781 EmittedDeferredDecls.clear(); 782 EmitVTablesOpportunistically(); 783 applyGlobalValReplacements(); 784 applyReplacements(); 785 emitMultiVersionFunctions(); 786 787 if (Context.getLangOpts().IncrementalExtensions && 788 GlobalTopLevelStmtBlockInFlight.first) { 789 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 790 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 791 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 792 } 793 794 // Module implementations are initialized the same way as a regular TU that 795 // imports one or more modules. 796 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 797 EmitCXXModuleInitFunc(Primary); 798 else 799 EmitCXXGlobalInitFunc(); 800 EmitCXXGlobalCleanUpFunc(); 801 registerGlobalDtorsWithAtExit(); 802 EmitCXXThreadLocalInitFunc(); 803 if (ObjCRuntime) 804 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 805 AddGlobalCtor(ObjCInitFunction); 806 if (Context.getLangOpts().CUDA && CUDARuntime) { 807 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 808 AddGlobalCtor(CudaCtorFunction); 809 } 810 if (OpenMPRuntime) { 811 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 812 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 813 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 814 } 815 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 816 OpenMPRuntime->clear(); 817 } 818 if (PGOReader) { 819 getModule().setProfileSummary( 820 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 821 llvm::ProfileSummary::PSK_Instr); 822 if (PGOStats.hasDiagnostics()) 823 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 824 } 825 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 826 return L.LexOrder < R.LexOrder; 827 }); 828 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 829 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 830 EmitGlobalAnnotations(); 831 EmitStaticExternCAliases(); 832 checkAliases(); 833 EmitDeferredUnusedCoverageMappings(); 834 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 835 if (CoverageMapping) 836 CoverageMapping->emit(); 837 if (CodeGenOpts.SanitizeCfiCrossDso) { 838 CodeGenFunction(*this).EmitCfiCheckFail(); 839 CodeGenFunction(*this).EmitCfiCheckStub(); 840 } 841 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 842 finalizeKCFITypes(); 843 emitAtAvailableLinkGuard(); 844 if (Context.getTargetInfo().getTriple().isWasm()) 845 EmitMainVoidAlias(); 846 847 if (getTriple().isAMDGPU()) { 848 // Emit amdgpu_code_object_version module flag, which is code object version 849 // times 100. 850 if (getTarget().getTargetOpts().CodeObjectVersion != 851 llvm::CodeObjectVersionKind::COV_None) { 852 getModule().addModuleFlag(llvm::Module::Error, 853 "amdgpu_code_object_version", 854 getTarget().getTargetOpts().CodeObjectVersion); 855 } 856 857 // Currently, "-mprintf-kind" option is only supported for HIP 858 if (LangOpts.HIP) { 859 auto *MDStr = llvm::MDString::get( 860 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 861 TargetOptions::AMDGPUPrintfKind::Hostcall) 862 ? "hostcall" 863 : "buffered"); 864 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 865 MDStr); 866 } 867 } 868 869 // Emit a global array containing all external kernels or device variables 870 // used by host functions and mark it as used for CUDA/HIP. This is necessary 871 // to get kernels or device variables in archives linked in even if these 872 // kernels or device variables are only used in host functions. 873 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 874 SmallVector<llvm::Constant *, 8> UsedArray; 875 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 876 GlobalDecl GD; 877 if (auto *FD = dyn_cast<FunctionDecl>(D)) 878 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 879 else 880 GD = GlobalDecl(D); 881 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 882 GetAddrOfGlobal(GD), Int8PtrTy)); 883 } 884 885 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 886 887 auto *GV = new llvm::GlobalVariable( 888 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 889 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 890 addCompilerUsedGlobal(GV); 891 } 892 893 emitLLVMUsed(); 894 if (SanStats) 895 SanStats->finish(); 896 897 if (CodeGenOpts.Autolink && 898 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 899 EmitModuleLinkOptions(); 900 } 901 902 // On ELF we pass the dependent library specifiers directly to the linker 903 // without manipulating them. This is in contrast to other platforms where 904 // they are mapped to a specific linker option by the compiler. This 905 // difference is a result of the greater variety of ELF linkers and the fact 906 // that ELF linkers tend to handle libraries in a more complicated fashion 907 // than on other platforms. This forces us to defer handling the dependent 908 // libs to the linker. 909 // 910 // CUDA/HIP device and host libraries are different. Currently there is no 911 // way to differentiate dependent libraries for host or device. Existing 912 // usage of #pragma comment(lib, *) is intended for host libraries on 913 // Windows. Therefore emit llvm.dependent-libraries only for host. 914 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 915 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 916 for (auto *MD : ELFDependentLibraries) 917 NMD->addOperand(MD); 918 } 919 920 // Record mregparm value now so it is visible through rest of codegen. 921 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 922 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 923 CodeGenOpts.NumRegisterParameters); 924 925 if (CodeGenOpts.DwarfVersion) { 926 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 927 CodeGenOpts.DwarfVersion); 928 } 929 930 if (CodeGenOpts.Dwarf64) 931 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 932 933 if (Context.getLangOpts().SemanticInterposition) 934 // Require various optimization to respect semantic interposition. 935 getModule().setSemanticInterposition(true); 936 937 if (CodeGenOpts.EmitCodeView) { 938 // Indicate that we want CodeView in the metadata. 939 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 940 } 941 if (CodeGenOpts.CodeViewGHash) { 942 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 943 } 944 if (CodeGenOpts.ControlFlowGuard) { 945 // Function ID tables and checks for Control Flow Guard (cfguard=2). 946 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 947 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 948 // Function ID tables for Control Flow Guard (cfguard=1). 949 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 950 } 951 if (CodeGenOpts.EHContGuard) { 952 // Function ID tables for EH Continuation Guard. 953 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 954 } 955 if (Context.getLangOpts().Kernel) { 956 // Note if we are compiling with /kernel. 957 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 958 } 959 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 960 // We don't support LTO with 2 with different StrictVTablePointers 961 // FIXME: we could support it by stripping all the information introduced 962 // by StrictVTablePointers. 963 964 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 965 966 llvm::Metadata *Ops[2] = { 967 llvm::MDString::get(VMContext, "StrictVTablePointers"), 968 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 969 llvm::Type::getInt32Ty(VMContext), 1))}; 970 971 getModule().addModuleFlag(llvm::Module::Require, 972 "StrictVTablePointersRequirement", 973 llvm::MDNode::get(VMContext, Ops)); 974 } 975 if (getModuleDebugInfo()) 976 // We support a single version in the linked module. The LLVM 977 // parser will drop debug info with a different version number 978 // (and warn about it, too). 979 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 980 llvm::DEBUG_METADATA_VERSION); 981 982 // We need to record the widths of enums and wchar_t, so that we can generate 983 // the correct build attributes in the ARM backend. wchar_size is also used by 984 // TargetLibraryInfo. 985 uint64_t WCharWidth = 986 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 987 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 988 989 if (getTriple().isOSzOS()) { 990 getModule().addModuleFlag(llvm::Module::Warning, 991 "zos_product_major_version", 992 uint32_t(CLANG_VERSION_MAJOR)); 993 getModule().addModuleFlag(llvm::Module::Warning, 994 "zos_product_minor_version", 995 uint32_t(CLANG_VERSION_MINOR)); 996 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 997 uint32_t(CLANG_VERSION_PATCHLEVEL)); 998 std::string ProductId = getClangVendor() + "clang"; 999 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1000 llvm::MDString::get(VMContext, ProductId)); 1001 1002 // Record the language because we need it for the PPA2. 1003 StringRef lang_str = languageToString( 1004 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1005 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1006 llvm::MDString::get(VMContext, lang_str)); 1007 1008 time_t TT = PreprocessorOpts.SourceDateEpoch 1009 ? *PreprocessorOpts.SourceDateEpoch 1010 : std::time(nullptr); 1011 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1012 static_cast<uint64_t>(TT)); 1013 1014 // Multiple modes will be supported here. 1015 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1016 llvm::MDString::get(VMContext, "ascii")); 1017 } 1018 1019 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 1020 if ( Arch == llvm::Triple::arm 1021 || Arch == llvm::Triple::armeb 1022 || Arch == llvm::Triple::thumb 1023 || Arch == llvm::Triple::thumbeb) { 1024 // The minimum width of an enum in bytes 1025 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1026 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1027 } 1028 1029 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 1030 StringRef ABIStr = Target.getABI(); 1031 llvm::LLVMContext &Ctx = TheModule.getContext(); 1032 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1033 llvm::MDString::get(Ctx, ABIStr)); 1034 } 1035 1036 if (CodeGenOpts.SanitizeCfiCrossDso) { 1037 // Indicate that we want cross-DSO control flow integrity checks. 1038 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1039 } 1040 1041 if (CodeGenOpts.WholeProgramVTables) { 1042 // Indicate whether VFE was enabled for this module, so that the 1043 // vcall_visibility metadata added under whole program vtables is handled 1044 // appropriately in the optimizer. 1045 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1046 CodeGenOpts.VirtualFunctionElimination); 1047 } 1048 1049 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1050 getModule().addModuleFlag(llvm::Module::Override, 1051 "CFI Canonical Jump Tables", 1052 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1053 } 1054 1055 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1056 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1057 // KCFI assumes patchable-function-prefix is the same for all indirectly 1058 // called functions. Store the expected offset for code generation. 1059 if (CodeGenOpts.PatchableFunctionEntryOffset) 1060 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1061 CodeGenOpts.PatchableFunctionEntryOffset); 1062 } 1063 1064 if (CodeGenOpts.CFProtectionReturn && 1065 Target.checkCFProtectionReturnSupported(getDiags())) { 1066 // Indicate that we want to instrument return control flow protection. 1067 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1068 1); 1069 } 1070 1071 if (CodeGenOpts.CFProtectionBranch && 1072 Target.checkCFProtectionBranchSupported(getDiags())) { 1073 // Indicate that we want to instrument branch control flow protection. 1074 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1075 1); 1076 } 1077 1078 if (CodeGenOpts.FunctionReturnThunks) 1079 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1080 1081 if (CodeGenOpts.IndirectBranchCSPrefix) 1082 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1083 1084 // Add module metadata for return address signing (ignoring 1085 // non-leaf/all) and stack tagging. These are actually turned on by function 1086 // attributes, but we use module metadata to emit build attributes. This is 1087 // needed for LTO, where the function attributes are inside bitcode 1088 // serialised into a global variable by the time build attributes are 1089 // emitted, so we can't access them. LTO objects could be compiled with 1090 // different flags therefore module flags are set to "Min" behavior to achieve 1091 // the same end result of the normal build where e.g BTI is off if any object 1092 // doesn't support it. 1093 if (Context.getTargetInfo().hasFeature("ptrauth") && 1094 LangOpts.getSignReturnAddressScope() != 1095 LangOptions::SignReturnAddressScopeKind::None) 1096 getModule().addModuleFlag(llvm::Module::Override, 1097 "sign-return-address-buildattr", 1); 1098 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1099 getModule().addModuleFlag(llvm::Module::Override, 1100 "tag-stack-memory-buildattr", 1); 1101 1102 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1103 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1104 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1105 Arch == llvm::Triple::aarch64_be) { 1106 if (LangOpts.BranchTargetEnforcement) 1107 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1108 1); 1109 if (LangOpts.hasSignReturnAddress()) 1110 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1111 if (LangOpts.isSignReturnAddressScopeAll()) 1112 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1113 1); 1114 if (!LangOpts.isSignReturnAddressWithAKey()) 1115 getModule().addModuleFlag(llvm::Module::Min, 1116 "sign-return-address-with-bkey", 1); 1117 } 1118 1119 if (CodeGenOpts.StackClashProtector) 1120 getModule().addModuleFlag( 1121 llvm::Module::Override, "probe-stack", 1122 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1123 1124 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1125 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1126 CodeGenOpts.StackProbeSize); 1127 1128 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1129 llvm::LLVMContext &Ctx = TheModule.getContext(); 1130 getModule().addModuleFlag( 1131 llvm::Module::Error, "MemProfProfileFilename", 1132 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1133 } 1134 1135 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1136 // Indicate whether __nvvm_reflect should be configured to flush denormal 1137 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1138 // property.) 1139 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1140 CodeGenOpts.FP32DenormalMode.Output != 1141 llvm::DenormalMode::IEEE); 1142 } 1143 1144 if (LangOpts.EHAsynch) 1145 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1146 1147 // Indicate whether this Module was compiled with -fopenmp 1148 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1149 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1150 if (getLangOpts().OpenMPIsTargetDevice) 1151 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1152 LangOpts.OpenMP); 1153 1154 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1155 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1156 EmitOpenCLMetadata(); 1157 // Emit SPIR version. 1158 if (getTriple().isSPIR()) { 1159 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1160 // opencl.spir.version named metadata. 1161 // C++ for OpenCL has a distinct mapping for version compatibility with 1162 // OpenCL. 1163 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1164 llvm::Metadata *SPIRVerElts[] = { 1165 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1166 Int32Ty, Version / 100)), 1167 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1168 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1169 llvm::NamedMDNode *SPIRVerMD = 1170 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1171 llvm::LLVMContext &Ctx = TheModule.getContext(); 1172 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1173 } 1174 } 1175 1176 // HLSL related end of code gen work items. 1177 if (LangOpts.HLSL) 1178 getHLSLRuntime().finishCodeGen(); 1179 1180 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1181 assert(PLevel < 3 && "Invalid PIC Level"); 1182 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1183 if (Context.getLangOpts().PIE) 1184 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1185 } 1186 1187 if (getCodeGenOpts().CodeModel.size() > 0) { 1188 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1189 .Case("tiny", llvm::CodeModel::Tiny) 1190 .Case("small", llvm::CodeModel::Small) 1191 .Case("kernel", llvm::CodeModel::Kernel) 1192 .Case("medium", llvm::CodeModel::Medium) 1193 .Case("large", llvm::CodeModel::Large) 1194 .Default(~0u); 1195 if (CM != ~0u) { 1196 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1197 getModule().setCodeModel(codeModel); 1198 1199 if (CM == llvm::CodeModel::Medium && 1200 Context.getTargetInfo().getTriple().getArch() == 1201 llvm::Triple::x86_64) { 1202 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1203 } 1204 } 1205 } 1206 1207 if (CodeGenOpts.NoPLT) 1208 getModule().setRtLibUseGOT(); 1209 if (getTriple().isOSBinFormatELF() && 1210 CodeGenOpts.DirectAccessExternalData != 1211 getModule().getDirectAccessExternalData()) { 1212 getModule().setDirectAccessExternalData( 1213 CodeGenOpts.DirectAccessExternalData); 1214 } 1215 if (CodeGenOpts.UnwindTables) 1216 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1217 1218 switch (CodeGenOpts.getFramePointer()) { 1219 case CodeGenOptions::FramePointerKind::None: 1220 // 0 ("none") is the default. 1221 break; 1222 case CodeGenOptions::FramePointerKind::NonLeaf: 1223 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1224 break; 1225 case CodeGenOptions::FramePointerKind::All: 1226 getModule().setFramePointer(llvm::FramePointerKind::All); 1227 break; 1228 } 1229 1230 SimplifyPersonality(); 1231 1232 if (getCodeGenOpts().EmitDeclMetadata) 1233 EmitDeclMetadata(); 1234 1235 if (getCodeGenOpts().CoverageNotesFile.size() || 1236 getCodeGenOpts().CoverageDataFile.size()) 1237 EmitCoverageFile(); 1238 1239 if (CGDebugInfo *DI = getModuleDebugInfo()) 1240 DI->finalize(); 1241 1242 if (getCodeGenOpts().EmitVersionIdentMetadata) 1243 EmitVersionIdentMetadata(); 1244 1245 if (!getCodeGenOpts().RecordCommandLine.empty()) 1246 EmitCommandLineMetadata(); 1247 1248 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1249 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1250 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1251 getModule().setStackProtectorGuardReg( 1252 getCodeGenOpts().StackProtectorGuardReg); 1253 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1254 getModule().setStackProtectorGuardSymbol( 1255 getCodeGenOpts().StackProtectorGuardSymbol); 1256 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1257 getModule().setStackProtectorGuardOffset( 1258 getCodeGenOpts().StackProtectorGuardOffset); 1259 if (getCodeGenOpts().StackAlignment) 1260 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1261 if (getCodeGenOpts().SkipRaxSetup) 1262 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1263 if (getLangOpts().RegCall4) 1264 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1265 1266 if (getContext().getTargetInfo().getMaxTLSAlign()) 1267 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1268 getContext().getTargetInfo().getMaxTLSAlign()); 1269 1270 getTargetCodeGenInfo().emitTargetGlobals(*this); 1271 1272 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1273 1274 EmitBackendOptionsMetadata(getCodeGenOpts()); 1275 1276 // If there is device offloading code embed it in the host now. 1277 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1278 1279 // Set visibility from DLL storage class 1280 // We do this at the end of LLVM IR generation; after any operation 1281 // that might affect the DLL storage class or the visibility, and 1282 // before anything that might act on these. 1283 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1284 } 1285 1286 void CodeGenModule::EmitOpenCLMetadata() { 1287 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1288 // opencl.ocl.version named metadata node. 1289 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1290 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1291 llvm::Metadata *OCLVerElts[] = { 1292 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1293 Int32Ty, Version / 100)), 1294 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1295 Int32Ty, (Version % 100) / 10))}; 1296 llvm::NamedMDNode *OCLVerMD = 1297 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1298 llvm::LLVMContext &Ctx = TheModule.getContext(); 1299 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1300 } 1301 1302 void CodeGenModule::EmitBackendOptionsMetadata( 1303 const CodeGenOptions &CodeGenOpts) { 1304 if (getTriple().isRISCV()) { 1305 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1306 CodeGenOpts.SmallDataLimit); 1307 } 1308 } 1309 1310 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1311 // Make sure that this type is translated. 1312 Types.UpdateCompletedType(TD); 1313 } 1314 1315 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1316 // Make sure that this type is translated. 1317 Types.RefreshTypeCacheForClass(RD); 1318 } 1319 1320 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1321 if (!TBAA) 1322 return nullptr; 1323 return TBAA->getTypeInfo(QTy); 1324 } 1325 1326 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1327 if (!TBAA) 1328 return TBAAAccessInfo(); 1329 if (getLangOpts().CUDAIsDevice) { 1330 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1331 // access info. 1332 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1333 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1334 nullptr) 1335 return TBAAAccessInfo(); 1336 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1337 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1338 nullptr) 1339 return TBAAAccessInfo(); 1340 } 1341 } 1342 return TBAA->getAccessInfo(AccessType); 1343 } 1344 1345 TBAAAccessInfo 1346 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1347 if (!TBAA) 1348 return TBAAAccessInfo(); 1349 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1350 } 1351 1352 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1353 if (!TBAA) 1354 return nullptr; 1355 return TBAA->getTBAAStructInfo(QTy); 1356 } 1357 1358 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1359 if (!TBAA) 1360 return nullptr; 1361 return TBAA->getBaseTypeInfo(QTy); 1362 } 1363 1364 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1365 if (!TBAA) 1366 return nullptr; 1367 return TBAA->getAccessTagInfo(Info); 1368 } 1369 1370 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1371 TBAAAccessInfo TargetInfo) { 1372 if (!TBAA) 1373 return TBAAAccessInfo(); 1374 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1375 } 1376 1377 TBAAAccessInfo 1378 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1379 TBAAAccessInfo InfoB) { 1380 if (!TBAA) 1381 return TBAAAccessInfo(); 1382 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1383 } 1384 1385 TBAAAccessInfo 1386 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1387 TBAAAccessInfo SrcInfo) { 1388 if (!TBAA) 1389 return TBAAAccessInfo(); 1390 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1391 } 1392 1393 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1394 TBAAAccessInfo TBAAInfo) { 1395 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1396 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1397 } 1398 1399 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1400 llvm::Instruction *I, const CXXRecordDecl *RD) { 1401 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1402 llvm::MDNode::get(getLLVMContext(), {})); 1403 } 1404 1405 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1406 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1407 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1408 } 1409 1410 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1411 /// specified stmt yet. 1412 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1413 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1414 "cannot compile this %0 yet"); 1415 std::string Msg = Type; 1416 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1417 << Msg << S->getSourceRange(); 1418 } 1419 1420 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1421 /// specified decl yet. 1422 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1423 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1424 "cannot compile this %0 yet"); 1425 std::string Msg = Type; 1426 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1427 } 1428 1429 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1430 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1431 } 1432 1433 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1434 const NamedDecl *D) const { 1435 // Internal definitions always have default visibility. 1436 if (GV->hasLocalLinkage()) { 1437 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1438 return; 1439 } 1440 if (!D) 1441 return; 1442 1443 // Set visibility for definitions, and for declarations if requested globally 1444 // or set explicitly. 1445 LinkageInfo LV = D->getLinkageAndVisibility(); 1446 1447 // OpenMP declare target variables must be visible to the host so they can 1448 // be registered. We require protected visibility unless the variable has 1449 // the DT_nohost modifier and does not need to be registered. 1450 if (Context.getLangOpts().OpenMP && 1451 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1452 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1453 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1454 OMPDeclareTargetDeclAttr::DT_NoHost && 1455 LV.getVisibility() == HiddenVisibility) { 1456 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1457 return; 1458 } 1459 1460 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1461 // Reject incompatible dlllstorage and visibility annotations. 1462 if (!LV.isVisibilityExplicit()) 1463 return; 1464 if (GV->hasDLLExportStorageClass()) { 1465 if (LV.getVisibility() == HiddenVisibility) 1466 getDiags().Report(D->getLocation(), 1467 diag::err_hidden_visibility_dllexport); 1468 } else if (LV.getVisibility() != DefaultVisibility) { 1469 getDiags().Report(D->getLocation(), 1470 diag::err_non_default_visibility_dllimport); 1471 } 1472 return; 1473 } 1474 1475 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1476 !GV->isDeclarationForLinker()) 1477 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1478 } 1479 1480 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1481 llvm::GlobalValue *GV) { 1482 if (GV->hasLocalLinkage()) 1483 return true; 1484 1485 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1486 return true; 1487 1488 // DLLImport explicitly marks the GV as external. 1489 if (GV->hasDLLImportStorageClass()) 1490 return false; 1491 1492 const llvm::Triple &TT = CGM.getTriple(); 1493 const auto &CGOpts = CGM.getCodeGenOpts(); 1494 if (TT.isWindowsGNUEnvironment()) { 1495 // In MinGW, variables without DLLImport can still be automatically 1496 // imported from a DLL by the linker; don't mark variables that 1497 // potentially could come from another DLL as DSO local. 1498 1499 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1500 // (and this actually happens in the public interface of libstdc++), so 1501 // such variables can't be marked as DSO local. (Native TLS variables 1502 // can't be dllimported at all, though.) 1503 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1504 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1505 CGOpts.AutoImport) 1506 return false; 1507 } 1508 1509 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1510 // remain unresolved in the link, they can be resolved to zero, which is 1511 // outside the current DSO. 1512 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1513 return false; 1514 1515 // Every other GV is local on COFF. 1516 // Make an exception for windows OS in the triple: Some firmware builds use 1517 // *-win32-macho triples. This (accidentally?) produced windows relocations 1518 // without GOT tables in older clang versions; Keep this behaviour. 1519 // FIXME: even thread local variables? 1520 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1521 return true; 1522 1523 // Only handle COFF and ELF for now. 1524 if (!TT.isOSBinFormatELF()) 1525 return false; 1526 1527 // If this is not an executable, don't assume anything is local. 1528 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1529 const auto &LOpts = CGM.getLangOpts(); 1530 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1531 // On ELF, if -fno-semantic-interposition is specified and the target 1532 // supports local aliases, there will be neither CC1 1533 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1534 // dso_local on the function if using a local alias is preferable (can avoid 1535 // PLT indirection). 1536 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1537 return false; 1538 return !(CGM.getLangOpts().SemanticInterposition || 1539 CGM.getLangOpts().HalfNoSemanticInterposition); 1540 } 1541 1542 // A definition cannot be preempted from an executable. 1543 if (!GV->isDeclarationForLinker()) 1544 return true; 1545 1546 // Most PIC code sequences that assume that a symbol is local cannot produce a 1547 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1548 // depended, it seems worth it to handle it here. 1549 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1550 return false; 1551 1552 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1553 if (TT.isPPC64()) 1554 return false; 1555 1556 if (CGOpts.DirectAccessExternalData) { 1557 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1558 // for non-thread-local variables. If the symbol is not defined in the 1559 // executable, a copy relocation will be needed at link time. dso_local is 1560 // excluded for thread-local variables because they generally don't support 1561 // copy relocations. 1562 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1563 if (!Var->isThreadLocal()) 1564 return true; 1565 1566 // -fno-pic sets dso_local on a function declaration to allow direct 1567 // accesses when taking its address (similar to a data symbol). If the 1568 // function is not defined in the executable, a canonical PLT entry will be 1569 // needed at link time. -fno-direct-access-external-data can avoid the 1570 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1571 // it could just cause trouble without providing perceptible benefits. 1572 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1573 return true; 1574 } 1575 1576 // If we can use copy relocations we can assume it is local. 1577 1578 // Otherwise don't assume it is local. 1579 return false; 1580 } 1581 1582 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1583 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1584 } 1585 1586 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1587 GlobalDecl GD) const { 1588 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1589 // C++ destructors have a few C++ ABI specific special cases. 1590 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1591 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1592 return; 1593 } 1594 setDLLImportDLLExport(GV, D); 1595 } 1596 1597 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1598 const NamedDecl *D) const { 1599 if (D && D->isExternallyVisible()) { 1600 if (D->hasAttr<DLLImportAttr>()) 1601 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1602 else if ((D->hasAttr<DLLExportAttr>() || 1603 shouldMapVisibilityToDLLExport(D)) && 1604 !GV->isDeclarationForLinker()) 1605 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1606 } 1607 } 1608 1609 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1610 GlobalDecl GD) const { 1611 setDLLImportDLLExport(GV, GD); 1612 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1613 } 1614 1615 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1616 const NamedDecl *D) const { 1617 setDLLImportDLLExport(GV, D); 1618 setGVPropertiesAux(GV, D); 1619 } 1620 1621 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1622 const NamedDecl *D) const { 1623 setGlobalVisibility(GV, D); 1624 setDSOLocal(GV); 1625 GV->setPartition(CodeGenOpts.SymbolPartition); 1626 } 1627 1628 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1629 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1630 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1631 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1632 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1633 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1634 } 1635 1636 llvm::GlobalVariable::ThreadLocalMode 1637 CodeGenModule::GetDefaultLLVMTLSModel() const { 1638 switch (CodeGenOpts.getDefaultTLSModel()) { 1639 case CodeGenOptions::GeneralDynamicTLSModel: 1640 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1641 case CodeGenOptions::LocalDynamicTLSModel: 1642 return llvm::GlobalVariable::LocalDynamicTLSModel; 1643 case CodeGenOptions::InitialExecTLSModel: 1644 return llvm::GlobalVariable::InitialExecTLSModel; 1645 case CodeGenOptions::LocalExecTLSModel: 1646 return llvm::GlobalVariable::LocalExecTLSModel; 1647 } 1648 llvm_unreachable("Invalid TLS model!"); 1649 } 1650 1651 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1652 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1653 1654 llvm::GlobalValue::ThreadLocalMode TLM; 1655 TLM = GetDefaultLLVMTLSModel(); 1656 1657 // Override the TLS model if it is explicitly specified. 1658 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1659 TLM = GetLLVMTLSModel(Attr->getModel()); 1660 } 1661 1662 GV->setThreadLocalMode(TLM); 1663 } 1664 1665 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1666 StringRef Name) { 1667 const TargetInfo &Target = CGM.getTarget(); 1668 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1669 } 1670 1671 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1672 const CPUSpecificAttr *Attr, 1673 unsigned CPUIndex, 1674 raw_ostream &Out) { 1675 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1676 // supported. 1677 if (Attr) 1678 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1679 else if (CGM.getTarget().supportsIFunc()) 1680 Out << ".resolver"; 1681 } 1682 1683 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1684 const TargetVersionAttr *Attr, 1685 raw_ostream &Out) { 1686 if (Attr->isDefaultVersion()) 1687 return; 1688 Out << "._"; 1689 const TargetInfo &TI = CGM.getTarget(); 1690 llvm::SmallVector<StringRef, 8> Feats; 1691 Attr->getFeatures(Feats); 1692 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1693 return TI.multiVersionSortPriority(FeatL) < 1694 TI.multiVersionSortPriority(FeatR); 1695 }); 1696 for (const auto &Feat : Feats) { 1697 Out << 'M'; 1698 Out << Feat; 1699 } 1700 } 1701 1702 static void AppendTargetMangling(const CodeGenModule &CGM, 1703 const TargetAttr *Attr, raw_ostream &Out) { 1704 if (Attr->isDefaultVersion()) 1705 return; 1706 1707 Out << '.'; 1708 const TargetInfo &Target = CGM.getTarget(); 1709 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1710 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1711 // Multiversioning doesn't allow "no-${feature}", so we can 1712 // only have "+" prefixes here. 1713 assert(LHS.starts_with("+") && RHS.starts_with("+") && 1714 "Features should always have a prefix."); 1715 return Target.multiVersionSortPriority(LHS.substr(1)) > 1716 Target.multiVersionSortPriority(RHS.substr(1)); 1717 }); 1718 1719 bool IsFirst = true; 1720 1721 if (!Info.CPU.empty()) { 1722 IsFirst = false; 1723 Out << "arch_" << Info.CPU; 1724 } 1725 1726 for (StringRef Feat : Info.Features) { 1727 if (!IsFirst) 1728 Out << '_'; 1729 IsFirst = false; 1730 Out << Feat.substr(1); 1731 } 1732 } 1733 1734 // Returns true if GD is a function decl with internal linkage and 1735 // needs a unique suffix after the mangled name. 1736 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1737 CodeGenModule &CGM) { 1738 const Decl *D = GD.getDecl(); 1739 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1740 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1741 } 1742 1743 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1744 const TargetClonesAttr *Attr, 1745 unsigned VersionIndex, 1746 raw_ostream &Out) { 1747 const TargetInfo &TI = CGM.getTarget(); 1748 if (TI.getTriple().isAArch64()) { 1749 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1750 if (FeatureStr == "default") 1751 return; 1752 Out << "._"; 1753 SmallVector<StringRef, 8> Features; 1754 FeatureStr.split(Features, "+"); 1755 llvm::stable_sort(Features, 1756 [&TI](const StringRef FeatL, const StringRef FeatR) { 1757 return TI.multiVersionSortPriority(FeatL) < 1758 TI.multiVersionSortPriority(FeatR); 1759 }); 1760 for (auto &Feat : Features) { 1761 Out << 'M'; 1762 Out << Feat; 1763 } 1764 } else { 1765 Out << '.'; 1766 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1767 if (FeatureStr.starts_with("arch=")) 1768 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1769 else 1770 Out << FeatureStr; 1771 1772 Out << '.' << Attr->getMangledIndex(VersionIndex); 1773 } 1774 } 1775 1776 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1777 const NamedDecl *ND, 1778 bool OmitMultiVersionMangling = false) { 1779 SmallString<256> Buffer; 1780 llvm::raw_svector_ostream Out(Buffer); 1781 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1782 if (!CGM.getModuleNameHash().empty()) 1783 MC.needsUniqueInternalLinkageNames(); 1784 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1785 if (ShouldMangle) 1786 MC.mangleName(GD.getWithDecl(ND), Out); 1787 else { 1788 IdentifierInfo *II = ND->getIdentifier(); 1789 assert(II && "Attempt to mangle unnamed decl."); 1790 const auto *FD = dyn_cast<FunctionDecl>(ND); 1791 1792 if (FD && 1793 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1794 if (CGM.getLangOpts().RegCall4) 1795 Out << "__regcall4__" << II->getName(); 1796 else 1797 Out << "__regcall3__" << II->getName(); 1798 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1799 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1800 Out << "__device_stub__" << II->getName(); 1801 } else { 1802 Out << II->getName(); 1803 } 1804 } 1805 1806 // Check if the module name hash should be appended for internal linkage 1807 // symbols. This should come before multi-version target suffixes are 1808 // appended. This is to keep the name and module hash suffix of the 1809 // internal linkage function together. The unique suffix should only be 1810 // added when name mangling is done to make sure that the final name can 1811 // be properly demangled. For example, for C functions without prototypes, 1812 // name mangling is not done and the unique suffix should not be appeneded 1813 // then. 1814 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1815 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1816 "Hash computed when not explicitly requested"); 1817 Out << CGM.getModuleNameHash(); 1818 } 1819 1820 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1821 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1822 switch (FD->getMultiVersionKind()) { 1823 case MultiVersionKind::CPUDispatch: 1824 case MultiVersionKind::CPUSpecific: 1825 AppendCPUSpecificCPUDispatchMangling(CGM, 1826 FD->getAttr<CPUSpecificAttr>(), 1827 GD.getMultiVersionIndex(), Out); 1828 break; 1829 case MultiVersionKind::Target: 1830 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1831 break; 1832 case MultiVersionKind::TargetVersion: 1833 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1834 break; 1835 case MultiVersionKind::TargetClones: 1836 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1837 GD.getMultiVersionIndex(), Out); 1838 break; 1839 case MultiVersionKind::None: 1840 llvm_unreachable("None multiversion type isn't valid here"); 1841 } 1842 } 1843 1844 // Make unique name for device side static file-scope variable for HIP. 1845 if (CGM.getContext().shouldExternalize(ND) && 1846 CGM.getLangOpts().GPURelocatableDeviceCode && 1847 CGM.getLangOpts().CUDAIsDevice) 1848 CGM.printPostfixForExternalizedDecl(Out, ND); 1849 1850 return std::string(Out.str()); 1851 } 1852 1853 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1854 const FunctionDecl *FD, 1855 StringRef &CurName) { 1856 if (!FD->isMultiVersion()) 1857 return; 1858 1859 // Get the name of what this would be without the 'target' attribute. This 1860 // allows us to lookup the version that was emitted when this wasn't a 1861 // multiversion function. 1862 std::string NonTargetName = 1863 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1864 GlobalDecl OtherGD; 1865 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1866 assert(OtherGD.getCanonicalDecl() 1867 .getDecl() 1868 ->getAsFunction() 1869 ->isMultiVersion() && 1870 "Other GD should now be a multiversioned function"); 1871 // OtherFD is the version of this function that was mangled BEFORE 1872 // becoming a MultiVersion function. It potentially needs to be updated. 1873 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1874 .getDecl() 1875 ->getAsFunction() 1876 ->getMostRecentDecl(); 1877 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1878 // This is so that if the initial version was already the 'default' 1879 // version, we don't try to update it. 1880 if (OtherName != NonTargetName) { 1881 // Remove instead of erase, since others may have stored the StringRef 1882 // to this. 1883 const auto ExistingRecord = Manglings.find(NonTargetName); 1884 if (ExistingRecord != std::end(Manglings)) 1885 Manglings.remove(&(*ExistingRecord)); 1886 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1887 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1888 Result.first->first(); 1889 // If this is the current decl is being created, make sure we update the name. 1890 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1891 CurName = OtherNameRef; 1892 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1893 Entry->setName(OtherName); 1894 } 1895 } 1896 } 1897 1898 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1899 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1900 1901 // Some ABIs don't have constructor variants. Make sure that base and 1902 // complete constructors get mangled the same. 1903 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1904 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1905 CXXCtorType OrigCtorType = GD.getCtorType(); 1906 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1907 if (OrigCtorType == Ctor_Base) 1908 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1909 } 1910 } 1911 1912 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1913 // static device variable depends on whether the variable is referenced by 1914 // a host or device host function. Therefore the mangled name cannot be 1915 // cached. 1916 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1917 auto FoundName = MangledDeclNames.find(CanonicalGD); 1918 if (FoundName != MangledDeclNames.end()) 1919 return FoundName->second; 1920 } 1921 1922 // Keep the first result in the case of a mangling collision. 1923 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1924 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1925 1926 // Ensure either we have different ABIs between host and device compilations, 1927 // says host compilation following MSVC ABI but device compilation follows 1928 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1929 // mangling should be the same after name stubbing. The later checking is 1930 // very important as the device kernel name being mangled in host-compilation 1931 // is used to resolve the device binaries to be executed. Inconsistent naming 1932 // result in undefined behavior. Even though we cannot check that naming 1933 // directly between host- and device-compilations, the host- and 1934 // device-mangling in host compilation could help catching certain ones. 1935 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1936 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1937 (getContext().getAuxTargetInfo() && 1938 (getContext().getAuxTargetInfo()->getCXXABI() != 1939 getContext().getTargetInfo().getCXXABI())) || 1940 getCUDARuntime().getDeviceSideName(ND) == 1941 getMangledNameImpl( 1942 *this, 1943 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1944 ND)); 1945 1946 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1947 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1948 } 1949 1950 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1951 const BlockDecl *BD) { 1952 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1953 const Decl *D = GD.getDecl(); 1954 1955 SmallString<256> Buffer; 1956 llvm::raw_svector_ostream Out(Buffer); 1957 if (!D) 1958 MangleCtx.mangleGlobalBlock(BD, 1959 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1960 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1961 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1962 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1963 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1964 else 1965 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1966 1967 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1968 return Result.first->first(); 1969 } 1970 1971 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1972 auto it = MangledDeclNames.begin(); 1973 while (it != MangledDeclNames.end()) { 1974 if (it->second == Name) 1975 return it->first; 1976 it++; 1977 } 1978 return GlobalDecl(); 1979 } 1980 1981 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1982 return getModule().getNamedValue(Name); 1983 } 1984 1985 /// AddGlobalCtor - Add a function to the list that will be called before 1986 /// main() runs. 1987 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1988 unsigned LexOrder, 1989 llvm::Constant *AssociatedData) { 1990 // FIXME: Type coercion of void()* types. 1991 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1992 } 1993 1994 /// AddGlobalDtor - Add a function to the list that will be called 1995 /// when the module is unloaded. 1996 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1997 bool IsDtorAttrFunc) { 1998 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1999 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2000 DtorsUsingAtExit[Priority].push_back(Dtor); 2001 return; 2002 } 2003 2004 // FIXME: Type coercion of void()* types. 2005 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2006 } 2007 2008 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2009 if (Fns.empty()) return; 2010 2011 // Ctor function type is void()*. 2012 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2013 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2014 TheModule.getDataLayout().getProgramAddressSpace()); 2015 2016 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2017 llvm::StructType *CtorStructTy = llvm::StructType::get( 2018 Int32Ty, CtorPFTy, VoidPtrTy); 2019 2020 // Construct the constructor and destructor arrays. 2021 ConstantInitBuilder builder(*this); 2022 auto ctors = builder.beginArray(CtorStructTy); 2023 for (const auto &I : Fns) { 2024 auto ctor = ctors.beginStruct(CtorStructTy); 2025 ctor.addInt(Int32Ty, I.Priority); 2026 ctor.add(I.Initializer); 2027 if (I.AssociatedData) 2028 ctor.add(I.AssociatedData); 2029 else 2030 ctor.addNullPointer(VoidPtrTy); 2031 ctor.finishAndAddTo(ctors); 2032 } 2033 2034 auto list = 2035 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2036 /*constant*/ false, 2037 llvm::GlobalValue::AppendingLinkage); 2038 2039 // The LTO linker doesn't seem to like it when we set an alignment 2040 // on appending variables. Take it off as a workaround. 2041 list->setAlignment(std::nullopt); 2042 2043 Fns.clear(); 2044 } 2045 2046 llvm::GlobalValue::LinkageTypes 2047 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2048 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2049 2050 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2051 2052 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2053 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2054 2055 return getLLVMLinkageForDeclarator(D, Linkage); 2056 } 2057 2058 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2059 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2060 if (!MDS) return nullptr; 2061 2062 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2063 } 2064 2065 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2066 if (auto *FnType = T->getAs<FunctionProtoType>()) 2067 T = getContext().getFunctionType( 2068 FnType->getReturnType(), FnType->getParamTypes(), 2069 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2070 2071 std::string OutName; 2072 llvm::raw_string_ostream Out(OutName); 2073 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2074 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2075 2076 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2077 Out << ".normalized"; 2078 2079 return llvm::ConstantInt::get(Int32Ty, 2080 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2081 } 2082 2083 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2084 const CGFunctionInfo &Info, 2085 llvm::Function *F, bool IsThunk) { 2086 unsigned CallingConv; 2087 llvm::AttributeList PAL; 2088 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2089 /*AttrOnCallSite=*/false, IsThunk); 2090 F->setAttributes(PAL); 2091 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2092 } 2093 2094 static void removeImageAccessQualifier(std::string& TyName) { 2095 std::string ReadOnlyQual("__read_only"); 2096 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2097 if (ReadOnlyPos != std::string::npos) 2098 // "+ 1" for the space after access qualifier. 2099 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2100 else { 2101 std::string WriteOnlyQual("__write_only"); 2102 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2103 if (WriteOnlyPos != std::string::npos) 2104 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2105 else { 2106 std::string ReadWriteQual("__read_write"); 2107 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2108 if (ReadWritePos != std::string::npos) 2109 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2110 } 2111 } 2112 } 2113 2114 // Returns the address space id that should be produced to the 2115 // kernel_arg_addr_space metadata. This is always fixed to the ids 2116 // as specified in the SPIR 2.0 specification in order to differentiate 2117 // for example in clGetKernelArgInfo() implementation between the address 2118 // spaces with targets without unique mapping to the OpenCL address spaces 2119 // (basically all single AS CPUs). 2120 static unsigned ArgInfoAddressSpace(LangAS AS) { 2121 switch (AS) { 2122 case LangAS::opencl_global: 2123 return 1; 2124 case LangAS::opencl_constant: 2125 return 2; 2126 case LangAS::opencl_local: 2127 return 3; 2128 case LangAS::opencl_generic: 2129 return 4; // Not in SPIR 2.0 specs. 2130 case LangAS::opencl_global_device: 2131 return 5; 2132 case LangAS::opencl_global_host: 2133 return 6; 2134 default: 2135 return 0; // Assume private. 2136 } 2137 } 2138 2139 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2140 const FunctionDecl *FD, 2141 CodeGenFunction *CGF) { 2142 assert(((FD && CGF) || (!FD && !CGF)) && 2143 "Incorrect use - FD and CGF should either be both null or not!"); 2144 // Create MDNodes that represent the kernel arg metadata. 2145 // Each MDNode is a list in the form of "key", N number of values which is 2146 // the same number of values as their are kernel arguments. 2147 2148 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2149 2150 // MDNode for the kernel argument address space qualifiers. 2151 SmallVector<llvm::Metadata *, 8> addressQuals; 2152 2153 // MDNode for the kernel argument access qualifiers (images only). 2154 SmallVector<llvm::Metadata *, 8> accessQuals; 2155 2156 // MDNode for the kernel argument type names. 2157 SmallVector<llvm::Metadata *, 8> argTypeNames; 2158 2159 // MDNode for the kernel argument base type names. 2160 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2161 2162 // MDNode for the kernel argument type qualifiers. 2163 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2164 2165 // MDNode for the kernel argument names. 2166 SmallVector<llvm::Metadata *, 8> argNames; 2167 2168 if (FD && CGF) 2169 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2170 const ParmVarDecl *parm = FD->getParamDecl(i); 2171 // Get argument name. 2172 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2173 2174 if (!getLangOpts().OpenCL) 2175 continue; 2176 QualType ty = parm->getType(); 2177 std::string typeQuals; 2178 2179 // Get image and pipe access qualifier: 2180 if (ty->isImageType() || ty->isPipeType()) { 2181 const Decl *PDecl = parm; 2182 if (const auto *TD = ty->getAs<TypedefType>()) 2183 PDecl = TD->getDecl(); 2184 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2185 if (A && A->isWriteOnly()) 2186 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2187 else if (A && A->isReadWrite()) 2188 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2189 else 2190 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2191 } else 2192 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2193 2194 auto getTypeSpelling = [&](QualType Ty) { 2195 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2196 2197 if (Ty.isCanonical()) { 2198 StringRef typeNameRef = typeName; 2199 // Turn "unsigned type" to "utype" 2200 if (typeNameRef.consume_front("unsigned ")) 2201 return std::string("u") + typeNameRef.str(); 2202 if (typeNameRef.consume_front("signed ")) 2203 return typeNameRef.str(); 2204 } 2205 2206 return typeName; 2207 }; 2208 2209 if (ty->isPointerType()) { 2210 QualType pointeeTy = ty->getPointeeType(); 2211 2212 // Get address qualifier. 2213 addressQuals.push_back( 2214 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2215 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2216 2217 // Get argument type name. 2218 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2219 std::string baseTypeName = 2220 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2221 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2222 argBaseTypeNames.push_back( 2223 llvm::MDString::get(VMContext, baseTypeName)); 2224 2225 // Get argument type qualifiers: 2226 if (ty.isRestrictQualified()) 2227 typeQuals = "restrict"; 2228 if (pointeeTy.isConstQualified() || 2229 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2230 typeQuals += typeQuals.empty() ? "const" : " const"; 2231 if (pointeeTy.isVolatileQualified()) 2232 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2233 } else { 2234 uint32_t AddrSpc = 0; 2235 bool isPipe = ty->isPipeType(); 2236 if (ty->isImageType() || isPipe) 2237 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2238 2239 addressQuals.push_back( 2240 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2241 2242 // Get argument type name. 2243 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2244 std::string typeName = getTypeSpelling(ty); 2245 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2246 2247 // Remove access qualifiers on images 2248 // (as they are inseparable from type in clang implementation, 2249 // but OpenCL spec provides a special query to get access qualifier 2250 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2251 if (ty->isImageType()) { 2252 removeImageAccessQualifier(typeName); 2253 removeImageAccessQualifier(baseTypeName); 2254 } 2255 2256 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2257 argBaseTypeNames.push_back( 2258 llvm::MDString::get(VMContext, baseTypeName)); 2259 2260 if (isPipe) 2261 typeQuals = "pipe"; 2262 } 2263 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2264 } 2265 2266 if (getLangOpts().OpenCL) { 2267 Fn->setMetadata("kernel_arg_addr_space", 2268 llvm::MDNode::get(VMContext, addressQuals)); 2269 Fn->setMetadata("kernel_arg_access_qual", 2270 llvm::MDNode::get(VMContext, accessQuals)); 2271 Fn->setMetadata("kernel_arg_type", 2272 llvm::MDNode::get(VMContext, argTypeNames)); 2273 Fn->setMetadata("kernel_arg_base_type", 2274 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2275 Fn->setMetadata("kernel_arg_type_qual", 2276 llvm::MDNode::get(VMContext, argTypeQuals)); 2277 } 2278 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2279 getCodeGenOpts().HIPSaveKernelArgName) 2280 Fn->setMetadata("kernel_arg_name", 2281 llvm::MDNode::get(VMContext, argNames)); 2282 } 2283 2284 /// Determines whether the language options require us to model 2285 /// unwind exceptions. We treat -fexceptions as mandating this 2286 /// except under the fragile ObjC ABI with only ObjC exceptions 2287 /// enabled. This means, for example, that C with -fexceptions 2288 /// enables this. 2289 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2290 // If exceptions are completely disabled, obviously this is false. 2291 if (!LangOpts.Exceptions) return false; 2292 2293 // If C++ exceptions are enabled, this is true. 2294 if (LangOpts.CXXExceptions) return true; 2295 2296 // If ObjC exceptions are enabled, this depends on the ABI. 2297 if (LangOpts.ObjCExceptions) { 2298 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2299 } 2300 2301 return true; 2302 } 2303 2304 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2305 const CXXMethodDecl *MD) { 2306 // Check that the type metadata can ever actually be used by a call. 2307 if (!CGM.getCodeGenOpts().LTOUnit || 2308 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2309 return false; 2310 2311 // Only functions whose address can be taken with a member function pointer 2312 // need this sort of type metadata. 2313 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2314 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2315 } 2316 2317 SmallVector<const CXXRecordDecl *, 0> 2318 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2319 llvm::SetVector<const CXXRecordDecl *> MostBases; 2320 2321 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2322 CollectMostBases = [&](const CXXRecordDecl *RD) { 2323 if (RD->getNumBases() == 0) 2324 MostBases.insert(RD); 2325 for (const CXXBaseSpecifier &B : RD->bases()) 2326 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2327 }; 2328 CollectMostBases(RD); 2329 return MostBases.takeVector(); 2330 } 2331 2332 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2333 llvm::Function *F) { 2334 llvm::AttrBuilder B(F->getContext()); 2335 2336 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2337 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2338 2339 if (CodeGenOpts.StackClashProtector) 2340 B.addAttribute("probe-stack", "inline-asm"); 2341 2342 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2343 B.addAttribute("stack-probe-size", 2344 std::to_string(CodeGenOpts.StackProbeSize)); 2345 2346 if (!hasUnwindExceptions(LangOpts)) 2347 B.addAttribute(llvm::Attribute::NoUnwind); 2348 2349 if (D && D->hasAttr<NoStackProtectorAttr>()) 2350 ; // Do nothing. 2351 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2352 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2353 B.addAttribute(llvm::Attribute::StackProtectStrong); 2354 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2355 B.addAttribute(llvm::Attribute::StackProtect); 2356 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2357 B.addAttribute(llvm::Attribute::StackProtectStrong); 2358 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2359 B.addAttribute(llvm::Attribute::StackProtectReq); 2360 2361 if (!D) { 2362 // If we don't have a declaration to control inlining, the function isn't 2363 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2364 // disabled, mark the function as noinline. 2365 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2366 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2367 B.addAttribute(llvm::Attribute::NoInline); 2368 2369 F->addFnAttrs(B); 2370 return; 2371 } 2372 2373 // Handle SME attributes that apply to function definitions, 2374 // rather than to function prototypes. 2375 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2376 B.addAttribute("aarch64_pstate_sm_body"); 2377 2378 if (D->hasAttr<ArmNewZAAttr>()) 2379 B.addAttribute("aarch64_pstate_za_new"); 2380 2381 // Track whether we need to add the optnone LLVM attribute, 2382 // starting with the default for this optimization level. 2383 bool ShouldAddOptNone = 2384 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2385 // We can't add optnone in the following cases, it won't pass the verifier. 2386 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2387 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2388 2389 // Add optnone, but do so only if the function isn't always_inline. 2390 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2391 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2392 B.addAttribute(llvm::Attribute::OptimizeNone); 2393 2394 // OptimizeNone implies noinline; we should not be inlining such functions. 2395 B.addAttribute(llvm::Attribute::NoInline); 2396 2397 // We still need to handle naked functions even though optnone subsumes 2398 // much of their semantics. 2399 if (D->hasAttr<NakedAttr>()) 2400 B.addAttribute(llvm::Attribute::Naked); 2401 2402 // OptimizeNone wins over OptimizeForSize and MinSize. 2403 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2404 F->removeFnAttr(llvm::Attribute::MinSize); 2405 } else if (D->hasAttr<NakedAttr>()) { 2406 // Naked implies noinline: we should not be inlining such functions. 2407 B.addAttribute(llvm::Attribute::Naked); 2408 B.addAttribute(llvm::Attribute::NoInline); 2409 } else if (D->hasAttr<NoDuplicateAttr>()) { 2410 B.addAttribute(llvm::Attribute::NoDuplicate); 2411 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2412 // Add noinline if the function isn't always_inline. 2413 B.addAttribute(llvm::Attribute::NoInline); 2414 } else if (D->hasAttr<AlwaysInlineAttr>() && 2415 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2416 // (noinline wins over always_inline, and we can't specify both in IR) 2417 B.addAttribute(llvm::Attribute::AlwaysInline); 2418 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2419 // If we're not inlining, then force everything that isn't always_inline to 2420 // carry an explicit noinline attribute. 2421 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2422 B.addAttribute(llvm::Attribute::NoInline); 2423 } else { 2424 // Otherwise, propagate the inline hint attribute and potentially use its 2425 // absence to mark things as noinline. 2426 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2427 // Search function and template pattern redeclarations for inline. 2428 auto CheckForInline = [](const FunctionDecl *FD) { 2429 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2430 return Redecl->isInlineSpecified(); 2431 }; 2432 if (any_of(FD->redecls(), CheckRedeclForInline)) 2433 return true; 2434 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2435 if (!Pattern) 2436 return false; 2437 return any_of(Pattern->redecls(), CheckRedeclForInline); 2438 }; 2439 if (CheckForInline(FD)) { 2440 B.addAttribute(llvm::Attribute::InlineHint); 2441 } else if (CodeGenOpts.getInlining() == 2442 CodeGenOptions::OnlyHintInlining && 2443 !FD->isInlined() && 2444 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2445 B.addAttribute(llvm::Attribute::NoInline); 2446 } 2447 } 2448 } 2449 2450 // Add other optimization related attributes if we are optimizing this 2451 // function. 2452 if (!D->hasAttr<OptimizeNoneAttr>()) { 2453 if (D->hasAttr<ColdAttr>()) { 2454 if (!ShouldAddOptNone) 2455 B.addAttribute(llvm::Attribute::OptimizeForSize); 2456 B.addAttribute(llvm::Attribute::Cold); 2457 } 2458 if (D->hasAttr<HotAttr>()) 2459 B.addAttribute(llvm::Attribute::Hot); 2460 if (D->hasAttr<MinSizeAttr>()) 2461 B.addAttribute(llvm::Attribute::MinSize); 2462 } 2463 2464 F->addFnAttrs(B); 2465 2466 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2467 if (alignment) 2468 F->setAlignment(llvm::Align(alignment)); 2469 2470 if (!D->hasAttr<AlignedAttr>()) 2471 if (LangOpts.FunctionAlignment) 2472 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2473 2474 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2475 // reserve a bit for differentiating between virtual and non-virtual member 2476 // functions. If the current target's C++ ABI requires this and this is a 2477 // member function, set its alignment accordingly. 2478 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2479 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2480 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2481 } 2482 2483 // In the cross-dso CFI mode with canonical jump tables, we want !type 2484 // attributes on definitions only. 2485 if (CodeGenOpts.SanitizeCfiCrossDso && 2486 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2487 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2488 // Skip available_externally functions. They won't be codegen'ed in the 2489 // current module anyway. 2490 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2491 CreateFunctionTypeMetadataForIcall(FD, F); 2492 } 2493 } 2494 2495 // Emit type metadata on member functions for member function pointer checks. 2496 // These are only ever necessary on definitions; we're guaranteed that the 2497 // definition will be present in the LTO unit as a result of LTO visibility. 2498 auto *MD = dyn_cast<CXXMethodDecl>(D); 2499 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2500 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2501 llvm::Metadata *Id = 2502 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2503 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2504 F->addTypeMetadata(0, Id); 2505 } 2506 } 2507 } 2508 2509 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2510 const Decl *D = GD.getDecl(); 2511 if (isa_and_nonnull<NamedDecl>(D)) 2512 setGVProperties(GV, GD); 2513 else 2514 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2515 2516 if (D && D->hasAttr<UsedAttr>()) 2517 addUsedOrCompilerUsedGlobal(GV); 2518 2519 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2520 VD && 2521 ((CodeGenOpts.KeepPersistentStorageVariables && 2522 (VD->getStorageDuration() == SD_Static || 2523 VD->getStorageDuration() == SD_Thread)) || 2524 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2525 VD->getType().isConstQualified()))) 2526 addUsedOrCompilerUsedGlobal(GV); 2527 } 2528 2529 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2530 llvm::AttrBuilder &Attrs, 2531 bool SetTargetFeatures) { 2532 // Add target-cpu and target-features attributes to functions. If 2533 // we have a decl for the function and it has a target attribute then 2534 // parse that and add it to the feature set. 2535 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2536 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2537 std::vector<std::string> Features; 2538 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2539 FD = FD ? FD->getMostRecentDecl() : FD; 2540 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2541 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2542 assert((!TD || !TV) && "both target_version and target specified"); 2543 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2544 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2545 bool AddedAttr = false; 2546 if (TD || TV || SD || TC) { 2547 llvm::StringMap<bool> FeatureMap; 2548 getContext().getFunctionFeatureMap(FeatureMap, GD); 2549 2550 // Produce the canonical string for this set of features. 2551 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2552 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2553 2554 // Now add the target-cpu and target-features to the function. 2555 // While we populated the feature map above, we still need to 2556 // get and parse the target attribute so we can get the cpu for 2557 // the function. 2558 if (TD) { 2559 ParsedTargetAttr ParsedAttr = 2560 Target.parseTargetAttr(TD->getFeaturesStr()); 2561 if (!ParsedAttr.CPU.empty() && 2562 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2563 TargetCPU = ParsedAttr.CPU; 2564 TuneCPU = ""; // Clear the tune CPU. 2565 } 2566 if (!ParsedAttr.Tune.empty() && 2567 getTarget().isValidCPUName(ParsedAttr.Tune)) 2568 TuneCPU = ParsedAttr.Tune; 2569 } 2570 2571 if (SD) { 2572 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2573 // favor this processor. 2574 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2575 } 2576 } else { 2577 // Otherwise just add the existing target cpu and target features to the 2578 // function. 2579 Features = getTarget().getTargetOpts().Features; 2580 } 2581 2582 if (!TargetCPU.empty()) { 2583 Attrs.addAttribute("target-cpu", TargetCPU); 2584 AddedAttr = true; 2585 } 2586 if (!TuneCPU.empty()) { 2587 Attrs.addAttribute("tune-cpu", TuneCPU); 2588 AddedAttr = true; 2589 } 2590 if (!Features.empty() && SetTargetFeatures) { 2591 llvm::erase_if(Features, [&](const std::string& F) { 2592 return getTarget().isReadOnlyFeature(F.substr(1)); 2593 }); 2594 llvm::sort(Features); 2595 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2596 AddedAttr = true; 2597 } 2598 2599 return AddedAttr; 2600 } 2601 2602 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2603 llvm::GlobalObject *GO) { 2604 const Decl *D = GD.getDecl(); 2605 SetCommonAttributes(GD, GO); 2606 2607 if (D) { 2608 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2609 if (D->hasAttr<RetainAttr>()) 2610 addUsedGlobal(GV); 2611 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2612 GV->addAttribute("bss-section", SA->getName()); 2613 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2614 GV->addAttribute("data-section", SA->getName()); 2615 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2616 GV->addAttribute("rodata-section", SA->getName()); 2617 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2618 GV->addAttribute("relro-section", SA->getName()); 2619 } 2620 2621 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2622 if (D->hasAttr<RetainAttr>()) 2623 addUsedGlobal(F); 2624 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2625 if (!D->getAttr<SectionAttr>()) 2626 F->addFnAttr("implicit-section-name", SA->getName()); 2627 2628 llvm::AttrBuilder Attrs(F->getContext()); 2629 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2630 // We know that GetCPUAndFeaturesAttributes will always have the 2631 // newest set, since it has the newest possible FunctionDecl, so the 2632 // new ones should replace the old. 2633 llvm::AttributeMask RemoveAttrs; 2634 RemoveAttrs.addAttribute("target-cpu"); 2635 RemoveAttrs.addAttribute("target-features"); 2636 RemoveAttrs.addAttribute("tune-cpu"); 2637 F->removeFnAttrs(RemoveAttrs); 2638 F->addFnAttrs(Attrs); 2639 } 2640 } 2641 2642 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2643 GO->setSection(CSA->getName()); 2644 else if (const auto *SA = D->getAttr<SectionAttr>()) 2645 GO->setSection(SA->getName()); 2646 } 2647 2648 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2649 } 2650 2651 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2652 llvm::Function *F, 2653 const CGFunctionInfo &FI) { 2654 const Decl *D = GD.getDecl(); 2655 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2656 SetLLVMFunctionAttributesForDefinition(D, F); 2657 2658 F->setLinkage(llvm::Function::InternalLinkage); 2659 2660 setNonAliasAttributes(GD, F); 2661 } 2662 2663 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2664 // Set linkage and visibility in case we never see a definition. 2665 LinkageInfo LV = ND->getLinkageAndVisibility(); 2666 // Don't set internal linkage on declarations. 2667 // "extern_weak" is overloaded in LLVM; we probably should have 2668 // separate linkage types for this. 2669 if (isExternallyVisible(LV.getLinkage()) && 2670 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2671 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2672 } 2673 2674 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2675 llvm::Function *F) { 2676 // Only if we are checking indirect calls. 2677 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2678 return; 2679 2680 // Non-static class methods are handled via vtable or member function pointer 2681 // checks elsewhere. 2682 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2683 return; 2684 2685 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2686 F->addTypeMetadata(0, MD); 2687 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2688 2689 // Emit a hash-based bit set entry for cross-DSO calls. 2690 if (CodeGenOpts.SanitizeCfiCrossDso) 2691 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2692 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2693 } 2694 2695 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2696 llvm::LLVMContext &Ctx = F->getContext(); 2697 llvm::MDBuilder MDB(Ctx); 2698 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2699 llvm::MDNode::get( 2700 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2701 } 2702 2703 static bool allowKCFIIdentifier(StringRef Name) { 2704 // KCFI type identifier constants are only necessary for external assembly 2705 // functions, which means it's safe to skip unusual names. Subset of 2706 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2707 return llvm::all_of(Name, [](const char &C) { 2708 return llvm::isAlnum(C) || C == '_' || C == '.'; 2709 }); 2710 } 2711 2712 void CodeGenModule::finalizeKCFITypes() { 2713 llvm::Module &M = getModule(); 2714 for (auto &F : M.functions()) { 2715 // Remove KCFI type metadata from non-address-taken local functions. 2716 bool AddressTaken = F.hasAddressTaken(); 2717 if (!AddressTaken && F.hasLocalLinkage()) 2718 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2719 2720 // Generate a constant with the expected KCFI type identifier for all 2721 // address-taken function declarations to support annotating indirectly 2722 // called assembly functions. 2723 if (!AddressTaken || !F.isDeclaration()) 2724 continue; 2725 2726 const llvm::ConstantInt *Type; 2727 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2728 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2729 else 2730 continue; 2731 2732 StringRef Name = F.getName(); 2733 if (!allowKCFIIdentifier(Name)) 2734 continue; 2735 2736 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2737 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2738 .str(); 2739 M.appendModuleInlineAsm(Asm); 2740 } 2741 } 2742 2743 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2744 bool IsIncompleteFunction, 2745 bool IsThunk) { 2746 2747 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2748 // If this is an intrinsic function, set the function's attributes 2749 // to the intrinsic's attributes. 2750 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2751 return; 2752 } 2753 2754 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2755 2756 if (!IsIncompleteFunction) 2757 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2758 IsThunk); 2759 2760 // Add the Returned attribute for "this", except for iOS 5 and earlier 2761 // where substantial code, including the libstdc++ dylib, was compiled with 2762 // GCC and does not actually return "this". 2763 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2764 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2765 assert(!F->arg_empty() && 2766 F->arg_begin()->getType() 2767 ->canLosslesslyBitCastTo(F->getReturnType()) && 2768 "unexpected this return"); 2769 F->addParamAttr(0, llvm::Attribute::Returned); 2770 } 2771 2772 // Only a few attributes are set on declarations; these may later be 2773 // overridden by a definition. 2774 2775 setLinkageForGV(F, FD); 2776 setGVProperties(F, FD); 2777 2778 // Setup target-specific attributes. 2779 if (!IsIncompleteFunction && F->isDeclaration()) 2780 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2781 2782 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2783 F->setSection(CSA->getName()); 2784 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2785 F->setSection(SA->getName()); 2786 2787 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2788 if (EA->isError()) 2789 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2790 else if (EA->isWarning()) 2791 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2792 } 2793 2794 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2795 if (FD->isInlineBuiltinDeclaration()) { 2796 const FunctionDecl *FDBody; 2797 bool HasBody = FD->hasBody(FDBody); 2798 (void)HasBody; 2799 assert(HasBody && "Inline builtin declarations should always have an " 2800 "available body!"); 2801 if (shouldEmitFunction(FDBody)) 2802 F->addFnAttr(llvm::Attribute::NoBuiltin); 2803 } 2804 2805 if (FD->isReplaceableGlobalAllocationFunction()) { 2806 // A replaceable global allocation function does not act like a builtin by 2807 // default, only if it is invoked by a new-expression or delete-expression. 2808 F->addFnAttr(llvm::Attribute::NoBuiltin); 2809 } 2810 2811 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2812 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2813 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2814 if (MD->isVirtual()) 2815 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2816 2817 // Don't emit entries for function declarations in the cross-DSO mode. This 2818 // is handled with better precision by the receiving DSO. But if jump tables 2819 // are non-canonical then we need type metadata in order to produce the local 2820 // jump table. 2821 if (!CodeGenOpts.SanitizeCfiCrossDso || 2822 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2823 CreateFunctionTypeMetadataForIcall(FD, F); 2824 2825 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2826 setKCFIType(FD, F); 2827 2828 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2829 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2830 2831 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2832 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2833 2834 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2835 // Annotate the callback behavior as metadata: 2836 // - The callback callee (as argument number). 2837 // - The callback payloads (as argument numbers). 2838 llvm::LLVMContext &Ctx = F->getContext(); 2839 llvm::MDBuilder MDB(Ctx); 2840 2841 // The payload indices are all but the first one in the encoding. The first 2842 // identifies the callback callee. 2843 int CalleeIdx = *CB->encoding_begin(); 2844 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2845 F->addMetadata(llvm::LLVMContext::MD_callback, 2846 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2847 CalleeIdx, PayloadIndices, 2848 /* VarArgsArePassed */ false)})); 2849 } 2850 } 2851 2852 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2853 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2854 "Only globals with definition can force usage."); 2855 LLVMUsed.emplace_back(GV); 2856 } 2857 2858 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2859 assert(!GV->isDeclaration() && 2860 "Only globals with definition can force usage."); 2861 LLVMCompilerUsed.emplace_back(GV); 2862 } 2863 2864 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2865 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2866 "Only globals with definition can force usage."); 2867 if (getTriple().isOSBinFormatELF()) 2868 LLVMCompilerUsed.emplace_back(GV); 2869 else 2870 LLVMUsed.emplace_back(GV); 2871 } 2872 2873 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2874 std::vector<llvm::WeakTrackingVH> &List) { 2875 // Don't create llvm.used if there is no need. 2876 if (List.empty()) 2877 return; 2878 2879 // Convert List to what ConstantArray needs. 2880 SmallVector<llvm::Constant*, 8> UsedArray; 2881 UsedArray.resize(List.size()); 2882 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2883 UsedArray[i] = 2884 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2885 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2886 } 2887 2888 if (UsedArray.empty()) 2889 return; 2890 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2891 2892 auto *GV = new llvm::GlobalVariable( 2893 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2894 llvm::ConstantArray::get(ATy, UsedArray), Name); 2895 2896 GV->setSection("llvm.metadata"); 2897 } 2898 2899 void CodeGenModule::emitLLVMUsed() { 2900 emitUsed(*this, "llvm.used", LLVMUsed); 2901 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2902 } 2903 2904 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2905 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2906 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2907 } 2908 2909 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2910 llvm::SmallString<32> Opt; 2911 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2912 if (Opt.empty()) 2913 return; 2914 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2915 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2916 } 2917 2918 void CodeGenModule::AddDependentLib(StringRef Lib) { 2919 auto &C = getLLVMContext(); 2920 if (getTarget().getTriple().isOSBinFormatELF()) { 2921 ELFDependentLibraries.push_back( 2922 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2923 return; 2924 } 2925 2926 llvm::SmallString<24> Opt; 2927 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2928 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2929 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2930 } 2931 2932 /// Add link options implied by the given module, including modules 2933 /// it depends on, using a postorder walk. 2934 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2935 SmallVectorImpl<llvm::MDNode *> &Metadata, 2936 llvm::SmallPtrSet<Module *, 16> &Visited) { 2937 // Import this module's parent. 2938 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2939 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2940 } 2941 2942 // Import this module's dependencies. 2943 for (Module *Import : llvm::reverse(Mod->Imports)) { 2944 if (Visited.insert(Import).second) 2945 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2946 } 2947 2948 // Add linker options to link against the libraries/frameworks 2949 // described by this module. 2950 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2951 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2952 2953 // For modules that use export_as for linking, use that module 2954 // name instead. 2955 if (Mod->UseExportAsModuleLinkName) 2956 return; 2957 2958 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2959 // Link against a framework. Frameworks are currently Darwin only, so we 2960 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2961 if (LL.IsFramework) { 2962 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2963 llvm::MDString::get(Context, LL.Library)}; 2964 2965 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2966 continue; 2967 } 2968 2969 // Link against a library. 2970 if (IsELF) { 2971 llvm::Metadata *Args[2] = { 2972 llvm::MDString::get(Context, "lib"), 2973 llvm::MDString::get(Context, LL.Library), 2974 }; 2975 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2976 } else { 2977 llvm::SmallString<24> Opt; 2978 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2979 auto *OptString = llvm::MDString::get(Context, Opt); 2980 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2981 } 2982 } 2983 } 2984 2985 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2986 assert(Primary->isNamedModuleUnit() && 2987 "We should only emit module initializers for named modules."); 2988 2989 // Emit the initializers in the order that sub-modules appear in the 2990 // source, first Global Module Fragments, if present. 2991 if (auto GMF = Primary->getGlobalModuleFragment()) { 2992 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2993 if (isa<ImportDecl>(D)) 2994 continue; 2995 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2996 EmitTopLevelDecl(D); 2997 } 2998 } 2999 // Second any associated with the module, itself. 3000 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3001 // Skip import decls, the inits for those are called explicitly. 3002 if (isa<ImportDecl>(D)) 3003 continue; 3004 EmitTopLevelDecl(D); 3005 } 3006 // Third any associated with the Privat eMOdule Fragment, if present. 3007 if (auto PMF = Primary->getPrivateModuleFragment()) { 3008 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3009 // Skip import decls, the inits for those are called explicitly. 3010 if (isa<ImportDecl>(D)) 3011 continue; 3012 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3013 EmitTopLevelDecl(D); 3014 } 3015 } 3016 } 3017 3018 void CodeGenModule::EmitModuleLinkOptions() { 3019 // Collect the set of all of the modules we want to visit to emit link 3020 // options, which is essentially the imported modules and all of their 3021 // non-explicit child modules. 3022 llvm::SetVector<clang::Module *> LinkModules; 3023 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3024 SmallVector<clang::Module *, 16> Stack; 3025 3026 // Seed the stack with imported modules. 3027 for (Module *M : ImportedModules) { 3028 // Do not add any link flags when an implementation TU of a module imports 3029 // a header of that same module. 3030 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3031 !getLangOpts().isCompilingModule()) 3032 continue; 3033 if (Visited.insert(M).second) 3034 Stack.push_back(M); 3035 } 3036 3037 // Find all of the modules to import, making a little effort to prune 3038 // non-leaf modules. 3039 while (!Stack.empty()) { 3040 clang::Module *Mod = Stack.pop_back_val(); 3041 3042 bool AnyChildren = false; 3043 3044 // Visit the submodules of this module. 3045 for (const auto &SM : Mod->submodules()) { 3046 // Skip explicit children; they need to be explicitly imported to be 3047 // linked against. 3048 if (SM->IsExplicit) 3049 continue; 3050 3051 if (Visited.insert(SM).second) { 3052 Stack.push_back(SM); 3053 AnyChildren = true; 3054 } 3055 } 3056 3057 // We didn't find any children, so add this module to the list of 3058 // modules to link against. 3059 if (!AnyChildren) { 3060 LinkModules.insert(Mod); 3061 } 3062 } 3063 3064 // Add link options for all of the imported modules in reverse topological 3065 // order. We don't do anything to try to order import link flags with respect 3066 // to linker options inserted by things like #pragma comment(). 3067 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3068 Visited.clear(); 3069 for (Module *M : LinkModules) 3070 if (Visited.insert(M).second) 3071 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3072 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3073 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3074 3075 // Add the linker options metadata flag. 3076 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3077 for (auto *MD : LinkerOptionsMetadata) 3078 NMD->addOperand(MD); 3079 } 3080 3081 void CodeGenModule::EmitDeferred() { 3082 // Emit deferred declare target declarations. 3083 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3084 getOpenMPRuntime().emitDeferredTargetDecls(); 3085 3086 // Emit code for any potentially referenced deferred decls. Since a 3087 // previously unused static decl may become used during the generation of code 3088 // for a static function, iterate until no changes are made. 3089 3090 if (!DeferredVTables.empty()) { 3091 EmitDeferredVTables(); 3092 3093 // Emitting a vtable doesn't directly cause more vtables to 3094 // become deferred, although it can cause functions to be 3095 // emitted that then need those vtables. 3096 assert(DeferredVTables.empty()); 3097 } 3098 3099 // Emit CUDA/HIP static device variables referenced by host code only. 3100 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3101 // needed for further handling. 3102 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3103 llvm::append_range(DeferredDeclsToEmit, 3104 getContext().CUDADeviceVarODRUsedByHost); 3105 3106 // Stop if we're out of both deferred vtables and deferred declarations. 3107 if (DeferredDeclsToEmit.empty()) 3108 return; 3109 3110 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3111 // work, it will not interfere with this. 3112 std::vector<GlobalDecl> CurDeclsToEmit; 3113 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3114 3115 for (GlobalDecl &D : CurDeclsToEmit) { 3116 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3117 // to get GlobalValue with exactly the type we need, not something that 3118 // might had been created for another decl with the same mangled name but 3119 // different type. 3120 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3121 GetAddrOfGlobal(D, ForDefinition)); 3122 3123 // In case of different address spaces, we may still get a cast, even with 3124 // IsForDefinition equal to true. Query mangled names table to get 3125 // GlobalValue. 3126 if (!GV) 3127 GV = GetGlobalValue(getMangledName(D)); 3128 3129 // Make sure GetGlobalValue returned non-null. 3130 assert(GV); 3131 3132 // Check to see if we've already emitted this. This is necessary 3133 // for a couple of reasons: first, decls can end up in the 3134 // deferred-decls queue multiple times, and second, decls can end 3135 // up with definitions in unusual ways (e.g. by an extern inline 3136 // function acquiring a strong function redefinition). Just 3137 // ignore these cases. 3138 if (!GV->isDeclaration()) 3139 continue; 3140 3141 // If this is OpenMP, check if it is legal to emit this global normally. 3142 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3143 continue; 3144 3145 // Otherwise, emit the definition and move on to the next one. 3146 EmitGlobalDefinition(D, GV); 3147 3148 // If we found out that we need to emit more decls, do that recursively. 3149 // This has the advantage that the decls are emitted in a DFS and related 3150 // ones are close together, which is convenient for testing. 3151 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3152 EmitDeferred(); 3153 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3154 } 3155 } 3156 } 3157 3158 void CodeGenModule::EmitVTablesOpportunistically() { 3159 // Try to emit external vtables as available_externally if they have emitted 3160 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3161 // is not allowed to create new references to things that need to be emitted 3162 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3163 3164 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3165 && "Only emit opportunistic vtables with optimizations"); 3166 3167 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3168 assert(getVTables().isVTableExternal(RD) && 3169 "This queue should only contain external vtables"); 3170 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3171 VTables.GenerateClassData(RD); 3172 } 3173 OpportunisticVTables.clear(); 3174 } 3175 3176 void CodeGenModule::EmitGlobalAnnotations() { 3177 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3178 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3179 if (GV) 3180 AddGlobalAnnotations(VD, GV); 3181 } 3182 DeferredAnnotations.clear(); 3183 3184 if (Annotations.empty()) 3185 return; 3186 3187 // Create a new global variable for the ConstantStruct in the Module. 3188 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3189 Annotations[0]->getType(), Annotations.size()), Annotations); 3190 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3191 llvm::GlobalValue::AppendingLinkage, 3192 Array, "llvm.global.annotations"); 3193 gv->setSection(AnnotationSection); 3194 } 3195 3196 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3197 llvm::Constant *&AStr = AnnotationStrings[Str]; 3198 if (AStr) 3199 return AStr; 3200 3201 // Not found yet, create a new global. 3202 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3203 auto *gv = new llvm::GlobalVariable( 3204 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3205 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3206 ConstGlobalsPtrTy->getAddressSpace()); 3207 gv->setSection(AnnotationSection); 3208 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3209 AStr = gv; 3210 return gv; 3211 } 3212 3213 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3214 SourceManager &SM = getContext().getSourceManager(); 3215 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3216 if (PLoc.isValid()) 3217 return EmitAnnotationString(PLoc.getFilename()); 3218 return EmitAnnotationString(SM.getBufferName(Loc)); 3219 } 3220 3221 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3222 SourceManager &SM = getContext().getSourceManager(); 3223 PresumedLoc PLoc = SM.getPresumedLoc(L); 3224 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3225 SM.getExpansionLineNumber(L); 3226 return llvm::ConstantInt::get(Int32Ty, LineNo); 3227 } 3228 3229 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3230 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3231 if (Exprs.empty()) 3232 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3233 3234 llvm::FoldingSetNodeID ID; 3235 for (Expr *E : Exprs) { 3236 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3237 } 3238 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3239 if (Lookup) 3240 return Lookup; 3241 3242 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3243 LLVMArgs.reserve(Exprs.size()); 3244 ConstantEmitter ConstEmiter(*this); 3245 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3246 const auto *CE = cast<clang::ConstantExpr>(E); 3247 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3248 CE->getType()); 3249 }); 3250 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3251 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3252 llvm::GlobalValue::PrivateLinkage, Struct, 3253 ".args"); 3254 GV->setSection(AnnotationSection); 3255 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3256 3257 Lookup = GV; 3258 return GV; 3259 } 3260 3261 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3262 const AnnotateAttr *AA, 3263 SourceLocation L) { 3264 // Get the globals for file name, annotation, and the line number. 3265 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3266 *UnitGV = EmitAnnotationUnit(L), 3267 *LineNoCst = EmitAnnotationLineNo(L), 3268 *Args = EmitAnnotationArgs(AA); 3269 3270 llvm::Constant *GVInGlobalsAS = GV; 3271 if (GV->getAddressSpace() != 3272 getDataLayout().getDefaultGlobalsAddressSpace()) { 3273 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3274 GV, 3275 llvm::PointerType::get( 3276 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3277 } 3278 3279 // Create the ConstantStruct for the global annotation. 3280 llvm::Constant *Fields[] = { 3281 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3282 }; 3283 return llvm::ConstantStruct::getAnon(Fields); 3284 } 3285 3286 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3287 llvm::GlobalValue *GV) { 3288 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3289 // Get the struct elements for these annotations. 3290 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3291 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3292 } 3293 3294 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3295 SourceLocation Loc) const { 3296 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3297 // NoSanitize by function name. 3298 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3299 return true; 3300 // NoSanitize by location. Check "mainfile" prefix. 3301 auto &SM = Context.getSourceManager(); 3302 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3303 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3304 return true; 3305 3306 // Check "src" prefix. 3307 if (Loc.isValid()) 3308 return NoSanitizeL.containsLocation(Kind, Loc); 3309 // If location is unknown, this may be a compiler-generated function. Assume 3310 // it's located in the main file. 3311 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3312 } 3313 3314 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3315 llvm::GlobalVariable *GV, 3316 SourceLocation Loc, QualType Ty, 3317 StringRef Category) const { 3318 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3319 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3320 return true; 3321 auto &SM = Context.getSourceManager(); 3322 if (NoSanitizeL.containsMainFile( 3323 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3324 Category)) 3325 return true; 3326 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3327 return true; 3328 3329 // Check global type. 3330 if (!Ty.isNull()) { 3331 // Drill down the array types: if global variable of a fixed type is 3332 // not sanitized, we also don't instrument arrays of them. 3333 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3334 Ty = AT->getElementType(); 3335 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3336 // Only record types (classes, structs etc.) are ignored. 3337 if (Ty->isRecordType()) { 3338 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3339 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3340 return true; 3341 } 3342 } 3343 return false; 3344 } 3345 3346 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3347 StringRef Category) const { 3348 const auto &XRayFilter = getContext().getXRayFilter(); 3349 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3350 auto Attr = ImbueAttr::NONE; 3351 if (Loc.isValid()) 3352 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3353 if (Attr == ImbueAttr::NONE) 3354 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3355 switch (Attr) { 3356 case ImbueAttr::NONE: 3357 return false; 3358 case ImbueAttr::ALWAYS: 3359 Fn->addFnAttr("function-instrument", "xray-always"); 3360 break; 3361 case ImbueAttr::ALWAYS_ARG1: 3362 Fn->addFnAttr("function-instrument", "xray-always"); 3363 Fn->addFnAttr("xray-log-args", "1"); 3364 break; 3365 case ImbueAttr::NEVER: 3366 Fn->addFnAttr("function-instrument", "xray-never"); 3367 break; 3368 } 3369 return true; 3370 } 3371 3372 ProfileList::ExclusionType 3373 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3374 SourceLocation Loc) const { 3375 const auto &ProfileList = getContext().getProfileList(); 3376 // If the profile list is empty, then instrument everything. 3377 if (ProfileList.isEmpty()) 3378 return ProfileList::Allow; 3379 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3380 // First, check the function name. 3381 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3382 return *V; 3383 // Next, check the source location. 3384 if (Loc.isValid()) 3385 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3386 return *V; 3387 // If location is unknown, this may be a compiler-generated function. Assume 3388 // it's located in the main file. 3389 auto &SM = Context.getSourceManager(); 3390 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3391 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3392 return *V; 3393 return ProfileList.getDefault(Kind); 3394 } 3395 3396 ProfileList::ExclusionType 3397 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3398 SourceLocation Loc) const { 3399 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3400 if (V != ProfileList::Allow) 3401 return V; 3402 3403 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3404 if (NumGroups > 1) { 3405 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3406 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3407 return ProfileList::Skip; 3408 } 3409 return ProfileList::Allow; 3410 } 3411 3412 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3413 // Never defer when EmitAllDecls is specified. 3414 if (LangOpts.EmitAllDecls) 3415 return true; 3416 3417 const auto *VD = dyn_cast<VarDecl>(Global); 3418 if (VD && 3419 ((CodeGenOpts.KeepPersistentStorageVariables && 3420 (VD->getStorageDuration() == SD_Static || 3421 VD->getStorageDuration() == SD_Thread)) || 3422 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3423 VD->getType().isConstQualified()))) 3424 return true; 3425 3426 return getContext().DeclMustBeEmitted(Global); 3427 } 3428 3429 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3430 // In OpenMP 5.0 variables and function may be marked as 3431 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3432 // that they must be emitted on the host/device. To be sure we need to have 3433 // seen a declare target with an explicit mentioning of the function, we know 3434 // we have if the level of the declare target attribute is -1. Note that we 3435 // check somewhere else if we should emit this at all. 3436 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3437 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3438 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3439 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3440 return false; 3441 } 3442 3443 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3444 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3445 // Implicit template instantiations may change linkage if they are later 3446 // explicitly instantiated, so they should not be emitted eagerly. 3447 return false; 3448 } 3449 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3450 if (Context.getInlineVariableDefinitionKind(VD) == 3451 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3452 // A definition of an inline constexpr static data member may change 3453 // linkage later if it's redeclared outside the class. 3454 return false; 3455 if (CXX20ModuleInits && VD->getOwningModule() && 3456 !VD->getOwningModule()->isModuleMapModule()) { 3457 // For CXX20, module-owned initializers need to be deferred, since it is 3458 // not known at this point if they will be run for the current module or 3459 // as part of the initializer for an imported one. 3460 return false; 3461 } 3462 } 3463 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3464 // codegen for global variables, because they may be marked as threadprivate. 3465 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3466 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3467 !Global->getType().isConstantStorage(getContext(), false, false) && 3468 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3469 return false; 3470 3471 return true; 3472 } 3473 3474 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3475 StringRef Name = getMangledName(GD); 3476 3477 // The UUID descriptor should be pointer aligned. 3478 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3479 3480 // Look for an existing global. 3481 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3482 return ConstantAddress(GV, GV->getValueType(), Alignment); 3483 3484 ConstantEmitter Emitter(*this); 3485 llvm::Constant *Init; 3486 3487 APValue &V = GD->getAsAPValue(); 3488 if (!V.isAbsent()) { 3489 // If possible, emit the APValue version of the initializer. In particular, 3490 // this gets the type of the constant right. 3491 Init = Emitter.emitForInitializer( 3492 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3493 } else { 3494 // As a fallback, directly construct the constant. 3495 // FIXME: This may get padding wrong under esoteric struct layout rules. 3496 // MSVC appears to create a complete type 'struct __s_GUID' that it 3497 // presumably uses to represent these constants. 3498 MSGuidDecl::Parts Parts = GD->getParts(); 3499 llvm::Constant *Fields[4] = { 3500 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3501 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3502 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3503 llvm::ConstantDataArray::getRaw( 3504 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3505 Int8Ty)}; 3506 Init = llvm::ConstantStruct::getAnon(Fields); 3507 } 3508 3509 auto *GV = new llvm::GlobalVariable( 3510 getModule(), Init->getType(), 3511 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3512 if (supportsCOMDAT()) 3513 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3514 setDSOLocal(GV); 3515 3516 if (!V.isAbsent()) { 3517 Emitter.finalize(GV); 3518 return ConstantAddress(GV, GV->getValueType(), Alignment); 3519 } 3520 3521 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3522 return ConstantAddress(GV, Ty, Alignment); 3523 } 3524 3525 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3526 const UnnamedGlobalConstantDecl *GCD) { 3527 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3528 3529 llvm::GlobalVariable **Entry = nullptr; 3530 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3531 if (*Entry) 3532 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3533 3534 ConstantEmitter Emitter(*this); 3535 llvm::Constant *Init; 3536 3537 const APValue &V = GCD->getValue(); 3538 3539 assert(!V.isAbsent()); 3540 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3541 GCD->getType()); 3542 3543 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3544 /*isConstant=*/true, 3545 llvm::GlobalValue::PrivateLinkage, Init, 3546 ".constant"); 3547 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3548 GV->setAlignment(Alignment.getAsAlign()); 3549 3550 Emitter.finalize(GV); 3551 3552 *Entry = GV; 3553 return ConstantAddress(GV, GV->getValueType(), Alignment); 3554 } 3555 3556 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3557 const TemplateParamObjectDecl *TPO) { 3558 StringRef Name = getMangledName(TPO); 3559 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3560 3561 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3562 return ConstantAddress(GV, GV->getValueType(), Alignment); 3563 3564 ConstantEmitter Emitter(*this); 3565 llvm::Constant *Init = Emitter.emitForInitializer( 3566 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3567 3568 if (!Init) { 3569 ErrorUnsupported(TPO, "template parameter object"); 3570 return ConstantAddress::invalid(); 3571 } 3572 3573 llvm::GlobalValue::LinkageTypes Linkage = 3574 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3575 ? llvm::GlobalValue::LinkOnceODRLinkage 3576 : llvm::GlobalValue::InternalLinkage; 3577 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3578 /*isConstant=*/true, Linkage, Init, Name); 3579 setGVProperties(GV, TPO); 3580 if (supportsCOMDAT()) 3581 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3582 Emitter.finalize(GV); 3583 3584 return ConstantAddress(GV, GV->getValueType(), Alignment); 3585 } 3586 3587 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3588 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3589 assert(AA && "No alias?"); 3590 3591 CharUnits Alignment = getContext().getDeclAlign(VD); 3592 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3593 3594 // See if there is already something with the target's name in the module. 3595 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3596 if (Entry) 3597 return ConstantAddress(Entry, DeclTy, Alignment); 3598 3599 llvm::Constant *Aliasee; 3600 if (isa<llvm::FunctionType>(DeclTy)) 3601 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3602 GlobalDecl(cast<FunctionDecl>(VD)), 3603 /*ForVTable=*/false); 3604 else 3605 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3606 nullptr); 3607 3608 auto *F = cast<llvm::GlobalValue>(Aliasee); 3609 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3610 WeakRefReferences.insert(F); 3611 3612 return ConstantAddress(Aliasee, DeclTy, Alignment); 3613 } 3614 3615 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3616 if (!D) 3617 return false; 3618 if (auto *A = D->getAttr<AttrT>()) 3619 return A->isImplicit(); 3620 return D->isImplicit(); 3621 } 3622 3623 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3624 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3625 3626 // Weak references don't produce any output by themselves. 3627 if (Global->hasAttr<WeakRefAttr>()) 3628 return; 3629 3630 // If this is an alias definition (which otherwise looks like a declaration) 3631 // emit it now. 3632 if (Global->hasAttr<AliasAttr>()) 3633 return EmitAliasDefinition(GD); 3634 3635 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3636 if (Global->hasAttr<IFuncAttr>()) 3637 return emitIFuncDefinition(GD); 3638 3639 // If this is a cpu_dispatch multiversion function, emit the resolver. 3640 if (Global->hasAttr<CPUDispatchAttr>()) 3641 return emitCPUDispatchDefinition(GD); 3642 3643 // If this is CUDA, be selective about which declarations we emit. 3644 // Non-constexpr non-lambda implicit host device functions are not emitted 3645 // unless they are used on device side. 3646 if (LangOpts.CUDA) { 3647 if (LangOpts.CUDAIsDevice) { 3648 const auto *FD = dyn_cast<FunctionDecl>(Global); 3649 if ((!Global->hasAttr<CUDADeviceAttr>() || 3650 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3651 hasImplicitAttr<CUDAHostAttr>(FD) && 3652 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3653 !isLambdaCallOperator(FD) && 3654 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3655 !Global->hasAttr<CUDAGlobalAttr>() && 3656 !Global->hasAttr<CUDAConstantAttr>() && 3657 !Global->hasAttr<CUDASharedAttr>() && 3658 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3659 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3660 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3661 !Global->hasAttr<CUDAHostAttr>())) 3662 return; 3663 } else { 3664 // We need to emit host-side 'shadows' for all global 3665 // device-side variables because the CUDA runtime needs their 3666 // size and host-side address in order to provide access to 3667 // their device-side incarnations. 3668 3669 // So device-only functions are the only things we skip. 3670 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3671 Global->hasAttr<CUDADeviceAttr>()) 3672 return; 3673 3674 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3675 "Expected Variable or Function"); 3676 } 3677 } 3678 3679 if (LangOpts.OpenMP) { 3680 // If this is OpenMP, check if it is legal to emit this global normally. 3681 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3682 return; 3683 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3684 if (MustBeEmitted(Global)) 3685 EmitOMPDeclareReduction(DRD); 3686 return; 3687 } 3688 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3689 if (MustBeEmitted(Global)) 3690 EmitOMPDeclareMapper(DMD); 3691 return; 3692 } 3693 } 3694 3695 // Ignore declarations, they will be emitted on their first use. 3696 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3697 // Update deferred annotations with the latest declaration if the function 3698 // function was already used or defined. 3699 if (FD->hasAttr<AnnotateAttr>()) { 3700 StringRef MangledName = getMangledName(GD); 3701 if (GetGlobalValue(MangledName)) 3702 DeferredAnnotations[MangledName] = FD; 3703 } 3704 3705 // Forward declarations are emitted lazily on first use. 3706 if (!FD->doesThisDeclarationHaveABody()) { 3707 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3708 return; 3709 3710 StringRef MangledName = getMangledName(GD); 3711 3712 // Compute the function info and LLVM type. 3713 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3714 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3715 3716 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3717 /*DontDefer=*/false); 3718 return; 3719 } 3720 } else { 3721 const auto *VD = cast<VarDecl>(Global); 3722 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3723 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3724 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3725 if (LangOpts.OpenMP) { 3726 // Emit declaration of the must-be-emitted declare target variable. 3727 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3728 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3729 3730 // If this variable has external storage and doesn't require special 3731 // link handling we defer to its canonical definition. 3732 if (VD->hasExternalStorage() && 3733 Res != OMPDeclareTargetDeclAttr::MT_Link) 3734 return; 3735 3736 bool UnifiedMemoryEnabled = 3737 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3738 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3739 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3740 !UnifiedMemoryEnabled) { 3741 (void)GetAddrOfGlobalVar(VD); 3742 } else { 3743 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3744 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3745 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3746 UnifiedMemoryEnabled)) && 3747 "Link clause or to clause with unified memory expected."); 3748 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3749 } 3750 3751 return; 3752 } 3753 } 3754 // If this declaration may have caused an inline variable definition to 3755 // change linkage, make sure that it's emitted. 3756 if (Context.getInlineVariableDefinitionKind(VD) == 3757 ASTContext::InlineVariableDefinitionKind::Strong) 3758 GetAddrOfGlobalVar(VD); 3759 return; 3760 } 3761 } 3762 3763 // Defer code generation to first use when possible, e.g. if this is an inline 3764 // function. If the global must always be emitted, do it eagerly if possible 3765 // to benefit from cache locality. 3766 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3767 // Emit the definition if it can't be deferred. 3768 EmitGlobalDefinition(GD); 3769 addEmittedDeferredDecl(GD); 3770 return; 3771 } 3772 3773 // If we're deferring emission of a C++ variable with an 3774 // initializer, remember the order in which it appeared in the file. 3775 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3776 cast<VarDecl>(Global)->hasInit()) { 3777 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3778 CXXGlobalInits.push_back(nullptr); 3779 } 3780 3781 StringRef MangledName = getMangledName(GD); 3782 if (GetGlobalValue(MangledName) != nullptr) { 3783 // The value has already been used and should therefore be emitted. 3784 addDeferredDeclToEmit(GD); 3785 } else if (MustBeEmitted(Global)) { 3786 // The value must be emitted, but cannot be emitted eagerly. 3787 assert(!MayBeEmittedEagerly(Global)); 3788 addDeferredDeclToEmit(GD); 3789 } else { 3790 // Otherwise, remember that we saw a deferred decl with this name. The 3791 // first use of the mangled name will cause it to move into 3792 // DeferredDeclsToEmit. 3793 DeferredDecls[MangledName] = GD; 3794 } 3795 } 3796 3797 // Check if T is a class type with a destructor that's not dllimport. 3798 static bool HasNonDllImportDtor(QualType T) { 3799 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3800 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3801 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3802 return true; 3803 3804 return false; 3805 } 3806 3807 namespace { 3808 struct FunctionIsDirectlyRecursive 3809 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3810 const StringRef Name; 3811 const Builtin::Context &BI; 3812 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3813 : Name(N), BI(C) {} 3814 3815 bool VisitCallExpr(const CallExpr *E) { 3816 const FunctionDecl *FD = E->getDirectCallee(); 3817 if (!FD) 3818 return false; 3819 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3820 if (Attr && Name == Attr->getLabel()) 3821 return true; 3822 unsigned BuiltinID = FD->getBuiltinID(); 3823 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3824 return false; 3825 StringRef BuiltinName = BI.getName(BuiltinID); 3826 if (BuiltinName.starts_with("__builtin_") && 3827 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3828 return true; 3829 } 3830 return false; 3831 } 3832 3833 bool VisitStmt(const Stmt *S) { 3834 for (const Stmt *Child : S->children()) 3835 if (Child && this->Visit(Child)) 3836 return true; 3837 return false; 3838 } 3839 }; 3840 3841 // Make sure we're not referencing non-imported vars or functions. 3842 struct DLLImportFunctionVisitor 3843 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3844 bool SafeToInline = true; 3845 3846 bool shouldVisitImplicitCode() const { return true; } 3847 3848 bool VisitVarDecl(VarDecl *VD) { 3849 if (VD->getTLSKind()) { 3850 // A thread-local variable cannot be imported. 3851 SafeToInline = false; 3852 return SafeToInline; 3853 } 3854 3855 // A variable definition might imply a destructor call. 3856 if (VD->isThisDeclarationADefinition()) 3857 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3858 3859 return SafeToInline; 3860 } 3861 3862 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3863 if (const auto *D = E->getTemporary()->getDestructor()) 3864 SafeToInline = D->hasAttr<DLLImportAttr>(); 3865 return SafeToInline; 3866 } 3867 3868 bool VisitDeclRefExpr(DeclRefExpr *E) { 3869 ValueDecl *VD = E->getDecl(); 3870 if (isa<FunctionDecl>(VD)) 3871 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3872 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3873 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3874 return SafeToInline; 3875 } 3876 3877 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3878 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3879 return SafeToInline; 3880 } 3881 3882 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3883 CXXMethodDecl *M = E->getMethodDecl(); 3884 if (!M) { 3885 // Call through a pointer to member function. This is safe to inline. 3886 SafeToInline = true; 3887 } else { 3888 SafeToInline = M->hasAttr<DLLImportAttr>(); 3889 } 3890 return SafeToInline; 3891 } 3892 3893 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3894 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3895 return SafeToInline; 3896 } 3897 3898 bool VisitCXXNewExpr(CXXNewExpr *E) { 3899 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3900 return SafeToInline; 3901 } 3902 }; 3903 } 3904 3905 // isTriviallyRecursive - Check if this function calls another 3906 // decl that, because of the asm attribute or the other decl being a builtin, 3907 // ends up pointing to itself. 3908 bool 3909 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3910 StringRef Name; 3911 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3912 // asm labels are a special kind of mangling we have to support. 3913 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3914 if (!Attr) 3915 return false; 3916 Name = Attr->getLabel(); 3917 } else { 3918 Name = FD->getName(); 3919 } 3920 3921 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3922 const Stmt *Body = FD->getBody(); 3923 return Body ? Walker.Visit(Body) : false; 3924 } 3925 3926 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3927 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3928 return true; 3929 3930 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3931 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3932 return false; 3933 3934 // We don't import function bodies from other named module units since that 3935 // behavior may break ABI compatibility of the current unit. 3936 if (const Module *M = F->getOwningModule(); 3937 M && M->getTopLevelModule()->isNamedModule() && 3938 getContext().getCurrentNamedModule() != M->getTopLevelModule() && 3939 !F->hasAttr<AlwaysInlineAttr>()) 3940 return false; 3941 3942 if (F->hasAttr<NoInlineAttr>()) 3943 return false; 3944 3945 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3946 // Check whether it would be safe to inline this dllimport function. 3947 DLLImportFunctionVisitor Visitor; 3948 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3949 if (!Visitor.SafeToInline) 3950 return false; 3951 3952 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3953 // Implicit destructor invocations aren't captured in the AST, so the 3954 // check above can't see them. Check for them manually here. 3955 for (const Decl *Member : Dtor->getParent()->decls()) 3956 if (isa<FieldDecl>(Member)) 3957 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3958 return false; 3959 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3960 if (HasNonDllImportDtor(B.getType())) 3961 return false; 3962 } 3963 } 3964 3965 // Inline builtins declaration must be emitted. They often are fortified 3966 // functions. 3967 if (F->isInlineBuiltinDeclaration()) 3968 return true; 3969 3970 // PR9614. Avoid cases where the source code is lying to us. An available 3971 // externally function should have an equivalent function somewhere else, 3972 // but a function that calls itself through asm label/`__builtin_` trickery is 3973 // clearly not equivalent to the real implementation. 3974 // This happens in glibc's btowc and in some configure checks. 3975 return !isTriviallyRecursive(F); 3976 } 3977 3978 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3979 return CodeGenOpts.OptimizationLevel > 0; 3980 } 3981 3982 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3983 llvm::GlobalValue *GV) { 3984 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3985 3986 if (FD->isCPUSpecificMultiVersion()) { 3987 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3988 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3989 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3990 } else if (FD->isTargetClonesMultiVersion()) { 3991 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3992 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3993 if (Clone->isFirstOfVersion(I)) 3994 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3995 // Ensure that the resolver function is also emitted. 3996 GetOrCreateMultiVersionResolver(GD); 3997 } else 3998 EmitGlobalFunctionDefinition(GD, GV); 3999 } 4000 4001 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4002 const auto *D = cast<ValueDecl>(GD.getDecl()); 4003 4004 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4005 Context.getSourceManager(), 4006 "Generating code for declaration"); 4007 4008 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4009 // At -O0, don't generate IR for functions with available_externally 4010 // linkage. 4011 if (!shouldEmitFunction(GD)) 4012 return; 4013 4014 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4015 std::string Name; 4016 llvm::raw_string_ostream OS(Name); 4017 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4018 /*Qualified=*/true); 4019 return Name; 4020 }); 4021 4022 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4023 // Make sure to emit the definition(s) before we emit the thunks. 4024 // This is necessary for the generation of certain thunks. 4025 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4026 ABI->emitCXXStructor(GD); 4027 else if (FD->isMultiVersion()) 4028 EmitMultiVersionFunctionDefinition(GD, GV); 4029 else 4030 EmitGlobalFunctionDefinition(GD, GV); 4031 4032 if (Method->isVirtual()) 4033 getVTables().EmitThunks(GD); 4034 4035 return; 4036 } 4037 4038 if (FD->isMultiVersion()) 4039 return EmitMultiVersionFunctionDefinition(GD, GV); 4040 return EmitGlobalFunctionDefinition(GD, GV); 4041 } 4042 4043 if (const auto *VD = dyn_cast<VarDecl>(D)) 4044 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4045 4046 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4047 } 4048 4049 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4050 llvm::Function *NewFn); 4051 4052 static unsigned 4053 TargetMVPriority(const TargetInfo &TI, 4054 const CodeGenFunction::MultiVersionResolverOption &RO) { 4055 unsigned Priority = 0; 4056 unsigned NumFeatures = 0; 4057 for (StringRef Feat : RO.Conditions.Features) { 4058 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4059 NumFeatures++; 4060 } 4061 4062 if (!RO.Conditions.Architecture.empty()) 4063 Priority = std::max( 4064 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4065 4066 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4067 4068 return Priority; 4069 } 4070 4071 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4072 // TU can forward declare the function without causing problems. Particularly 4073 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4074 // work with internal linkage functions, so that the same function name can be 4075 // used with internal linkage in multiple TUs. 4076 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4077 GlobalDecl GD) { 4078 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4079 if (FD->getFormalLinkage() == Linkage::Internal) 4080 return llvm::GlobalValue::InternalLinkage; 4081 return llvm::GlobalValue::WeakODRLinkage; 4082 } 4083 4084 void CodeGenModule::emitMultiVersionFunctions() { 4085 std::vector<GlobalDecl> MVFuncsToEmit; 4086 MultiVersionFuncs.swap(MVFuncsToEmit); 4087 for (GlobalDecl GD : MVFuncsToEmit) { 4088 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4089 assert(FD && "Expected a FunctionDecl"); 4090 4091 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4092 if (FD->isTargetMultiVersion()) { 4093 getContext().forEachMultiversionedFunctionVersion( 4094 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4095 GlobalDecl CurGD{ 4096 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4097 StringRef MangledName = getMangledName(CurGD); 4098 llvm::Constant *Func = GetGlobalValue(MangledName); 4099 if (!Func) { 4100 if (CurFD->isDefined()) { 4101 EmitGlobalFunctionDefinition(CurGD, nullptr); 4102 Func = GetGlobalValue(MangledName); 4103 } else { 4104 const CGFunctionInfo &FI = 4105 getTypes().arrangeGlobalDeclaration(GD); 4106 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4107 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4108 /*DontDefer=*/false, ForDefinition); 4109 } 4110 assert(Func && "This should have just been created"); 4111 } 4112 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4113 const auto *TA = CurFD->getAttr<TargetAttr>(); 4114 llvm::SmallVector<StringRef, 8> Feats; 4115 TA->getAddedFeatures(Feats); 4116 Options.emplace_back(cast<llvm::Function>(Func), 4117 TA->getArchitecture(), Feats); 4118 } else { 4119 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4120 llvm::SmallVector<StringRef, 8> Feats; 4121 TVA->getFeatures(Feats); 4122 Options.emplace_back(cast<llvm::Function>(Func), 4123 /*Architecture*/ "", Feats); 4124 } 4125 }); 4126 } else if (FD->isTargetClonesMultiVersion()) { 4127 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4128 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4129 ++VersionIndex) { 4130 if (!TC->isFirstOfVersion(VersionIndex)) 4131 continue; 4132 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4133 VersionIndex}; 4134 StringRef Version = TC->getFeatureStr(VersionIndex); 4135 StringRef MangledName = getMangledName(CurGD); 4136 llvm::Constant *Func = GetGlobalValue(MangledName); 4137 if (!Func) { 4138 if (FD->isDefined()) { 4139 EmitGlobalFunctionDefinition(CurGD, nullptr); 4140 Func = GetGlobalValue(MangledName); 4141 } else { 4142 const CGFunctionInfo &FI = 4143 getTypes().arrangeGlobalDeclaration(CurGD); 4144 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4145 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4146 /*DontDefer=*/false, ForDefinition); 4147 } 4148 assert(Func && "This should have just been created"); 4149 } 4150 4151 StringRef Architecture; 4152 llvm::SmallVector<StringRef, 1> Feature; 4153 4154 if (getTarget().getTriple().isAArch64()) { 4155 if (Version != "default") { 4156 llvm::SmallVector<StringRef, 8> VerFeats; 4157 Version.split(VerFeats, "+"); 4158 for (auto &CurFeat : VerFeats) 4159 Feature.push_back(CurFeat.trim()); 4160 } 4161 } else { 4162 if (Version.starts_with("arch=")) 4163 Architecture = Version.drop_front(sizeof("arch=") - 1); 4164 else if (Version != "default") 4165 Feature.push_back(Version); 4166 } 4167 4168 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4169 } 4170 } else { 4171 assert(0 && "Expected a target or target_clones multiversion function"); 4172 continue; 4173 } 4174 4175 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4176 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4177 ResolverConstant = IFunc->getResolver(); 4178 // In Aarch64, default versions of multiversioned functions are mangled to 4179 // their 'normal' assembly name. This deviates from other targets which 4180 // append a '.default' string. As a result we need to continue appending 4181 // .ifunc in Aarch64. 4182 // FIXME: Should Aarch64 mangling for 'default' multiversion function and 4183 // in turn ifunc function match that of other targets? 4184 if (FD->isTargetClonesMultiVersion() && 4185 !getTarget().getTriple().isAArch64()) { 4186 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4187 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4188 std::string MangledName = getMangledNameImpl( 4189 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4190 // In prior versions of Clang, the mangling for ifuncs incorrectly 4191 // included an .ifunc suffix. This alias is generated for backward 4192 // compatibility. It is deprecated, and may be removed in the future. 4193 auto *Alias = llvm::GlobalAlias::create( 4194 DeclTy, 0, getMultiversionLinkage(*this, GD), 4195 MangledName + ".ifunc", IFunc, &getModule()); 4196 SetCommonAttributes(FD, Alias); 4197 } 4198 } 4199 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4200 4201 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4202 4203 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4204 ResolverFunc->setComdat( 4205 getModule().getOrInsertComdat(ResolverFunc->getName())); 4206 4207 const TargetInfo &TI = getTarget(); 4208 llvm::stable_sort( 4209 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4210 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4211 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4212 }); 4213 CodeGenFunction CGF(*this); 4214 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4215 } 4216 4217 // Ensure that any additions to the deferred decls list caused by emitting a 4218 // variant are emitted. This can happen when the variant itself is inline and 4219 // calls a function without linkage. 4220 if (!MVFuncsToEmit.empty()) 4221 EmitDeferred(); 4222 4223 // Ensure that any additions to the multiversion funcs list from either the 4224 // deferred decls or the multiversion functions themselves are emitted. 4225 if (!MultiVersionFuncs.empty()) 4226 emitMultiVersionFunctions(); 4227 } 4228 4229 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4230 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4231 assert(FD && "Not a FunctionDecl?"); 4232 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4233 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4234 assert(DD && "Not a cpu_dispatch Function?"); 4235 4236 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4237 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4238 4239 StringRef ResolverName = getMangledName(GD); 4240 UpdateMultiVersionNames(GD, FD, ResolverName); 4241 4242 llvm::Type *ResolverType; 4243 GlobalDecl ResolverGD; 4244 if (getTarget().supportsIFunc()) { 4245 ResolverType = llvm::FunctionType::get( 4246 llvm::PointerType::get(DeclTy, 4247 getTypes().getTargetAddressSpace(FD->getType())), 4248 false); 4249 } 4250 else { 4251 ResolverType = DeclTy; 4252 ResolverGD = GD; 4253 } 4254 4255 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4256 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4257 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4258 if (supportsCOMDAT()) 4259 ResolverFunc->setComdat( 4260 getModule().getOrInsertComdat(ResolverFunc->getName())); 4261 4262 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4263 const TargetInfo &Target = getTarget(); 4264 unsigned Index = 0; 4265 for (const IdentifierInfo *II : DD->cpus()) { 4266 // Get the name of the target function so we can look it up/create it. 4267 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4268 getCPUSpecificMangling(*this, II->getName()); 4269 4270 llvm::Constant *Func = GetGlobalValue(MangledName); 4271 4272 if (!Func) { 4273 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4274 if (ExistingDecl.getDecl() && 4275 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4276 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4277 Func = GetGlobalValue(MangledName); 4278 } else { 4279 if (!ExistingDecl.getDecl()) 4280 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4281 4282 Func = GetOrCreateLLVMFunction( 4283 MangledName, DeclTy, ExistingDecl, 4284 /*ForVTable=*/false, /*DontDefer=*/true, 4285 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4286 } 4287 } 4288 4289 llvm::SmallVector<StringRef, 32> Features; 4290 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4291 llvm::transform(Features, Features.begin(), 4292 [](StringRef Str) { return Str.substr(1); }); 4293 llvm::erase_if(Features, [&Target](StringRef Feat) { 4294 return !Target.validateCpuSupports(Feat); 4295 }); 4296 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4297 ++Index; 4298 } 4299 4300 llvm::stable_sort( 4301 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4302 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4303 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4304 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4305 }); 4306 4307 // If the list contains multiple 'default' versions, such as when it contains 4308 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4309 // always run on at least a 'pentium'). We do this by deleting the 'least 4310 // advanced' (read, lowest mangling letter). 4311 while (Options.size() > 1 && 4312 llvm::all_of(llvm::X86::getCpuSupportsMask( 4313 (Options.end() - 2)->Conditions.Features), 4314 [](auto X) { return X == 0; })) { 4315 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4316 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4317 if (LHSName.compare(RHSName) < 0) 4318 Options.erase(Options.end() - 2); 4319 else 4320 Options.erase(Options.end() - 1); 4321 } 4322 4323 CodeGenFunction CGF(*this); 4324 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4325 4326 if (getTarget().supportsIFunc()) { 4327 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4328 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4329 4330 // Fix up function declarations that were created for cpu_specific before 4331 // cpu_dispatch was known 4332 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4333 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4334 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4335 &getModule()); 4336 GI->takeName(IFunc); 4337 IFunc->replaceAllUsesWith(GI); 4338 IFunc->eraseFromParent(); 4339 IFunc = GI; 4340 } 4341 4342 std::string AliasName = getMangledNameImpl( 4343 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4344 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4345 if (!AliasFunc) { 4346 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4347 &getModule()); 4348 SetCommonAttributes(GD, GA); 4349 } 4350 } 4351 } 4352 4353 /// If a dispatcher for the specified mangled name is not in the module, create 4354 /// and return an llvm Function with the specified type. 4355 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4356 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4357 assert(FD && "Not a FunctionDecl?"); 4358 4359 std::string MangledName = 4360 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4361 4362 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4363 // a separate resolver). 4364 std::string ResolverName = MangledName; 4365 if (getTarget().supportsIFunc()) { 4366 // In Aarch64, default versions of multiversioned functions are mangled to 4367 // their 'normal' assembly name. This deviates from other targets which 4368 // append a '.default' string. As a result we need to continue appending 4369 // .ifunc in Aarch64. 4370 // FIXME: Should Aarch64 mangling for 'default' multiversion function and 4371 // in turn ifunc function match that of other targets? 4372 if (!FD->isTargetClonesMultiVersion() || 4373 getTarget().getTriple().isAArch64()) 4374 ResolverName += ".ifunc"; 4375 } else if (FD->isTargetMultiVersion()) { 4376 ResolverName += ".resolver"; 4377 } 4378 4379 // If the resolver has already been created, just return it. 4380 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4381 return ResolverGV; 4382 4383 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4384 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4385 4386 // The resolver needs to be created. For target and target_clones, defer 4387 // creation until the end of the TU. 4388 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4389 MultiVersionFuncs.push_back(GD); 4390 4391 // For cpu_specific, don't create an ifunc yet because we don't know if the 4392 // cpu_dispatch will be emitted in this translation unit. 4393 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4394 llvm::Type *ResolverType = llvm::FunctionType::get( 4395 llvm::PointerType::get(DeclTy, 4396 getTypes().getTargetAddressSpace(FD->getType())), 4397 false); 4398 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4399 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4400 /*ForVTable=*/false); 4401 llvm::GlobalIFunc *GIF = 4402 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4403 "", Resolver, &getModule()); 4404 GIF->setName(ResolverName); 4405 SetCommonAttributes(FD, GIF); 4406 4407 return GIF; 4408 } 4409 4410 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4411 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4412 assert(isa<llvm::GlobalValue>(Resolver) && 4413 "Resolver should be created for the first time"); 4414 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4415 return Resolver; 4416 } 4417 4418 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4419 /// module, create and return an llvm Function with the specified type. If there 4420 /// is something in the module with the specified name, return it potentially 4421 /// bitcasted to the right type. 4422 /// 4423 /// If D is non-null, it specifies a decl that correspond to this. This is used 4424 /// to set the attributes on the function when it is first created. 4425 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4426 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4427 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4428 ForDefinition_t IsForDefinition) { 4429 const Decl *D = GD.getDecl(); 4430 4431 // Any attempts to use a MultiVersion function should result in retrieving 4432 // the iFunc instead. Name Mangling will handle the rest of the changes. 4433 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4434 // For the device mark the function as one that should be emitted. 4435 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4436 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4437 !DontDefer && !IsForDefinition) { 4438 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4439 GlobalDecl GDDef; 4440 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4441 GDDef = GlobalDecl(CD, GD.getCtorType()); 4442 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4443 GDDef = GlobalDecl(DD, GD.getDtorType()); 4444 else 4445 GDDef = GlobalDecl(FDDef); 4446 EmitGlobal(GDDef); 4447 } 4448 } 4449 4450 if (FD->isMultiVersion()) { 4451 UpdateMultiVersionNames(GD, FD, MangledName); 4452 if (!IsForDefinition) 4453 return GetOrCreateMultiVersionResolver(GD); 4454 } 4455 } 4456 4457 // Lookup the entry, lazily creating it if necessary. 4458 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4459 if (Entry) { 4460 if (WeakRefReferences.erase(Entry)) { 4461 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4462 if (FD && !FD->hasAttr<WeakAttr>()) 4463 Entry->setLinkage(llvm::Function::ExternalLinkage); 4464 } 4465 4466 // Handle dropped DLL attributes. 4467 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4468 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4469 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4470 setDSOLocal(Entry); 4471 } 4472 4473 // If there are two attempts to define the same mangled name, issue an 4474 // error. 4475 if (IsForDefinition && !Entry->isDeclaration()) { 4476 GlobalDecl OtherGD; 4477 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4478 // to make sure that we issue an error only once. 4479 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4480 (GD.getCanonicalDecl().getDecl() != 4481 OtherGD.getCanonicalDecl().getDecl()) && 4482 DiagnosedConflictingDefinitions.insert(GD).second) { 4483 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4484 << MangledName; 4485 getDiags().Report(OtherGD.getDecl()->getLocation(), 4486 diag::note_previous_definition); 4487 } 4488 } 4489 4490 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4491 (Entry->getValueType() == Ty)) { 4492 return Entry; 4493 } 4494 4495 // Make sure the result is of the correct type. 4496 // (If function is requested for a definition, we always need to create a new 4497 // function, not just return a bitcast.) 4498 if (!IsForDefinition) 4499 return Entry; 4500 } 4501 4502 // This function doesn't have a complete type (for example, the return 4503 // type is an incomplete struct). Use a fake type instead, and make 4504 // sure not to try to set attributes. 4505 bool IsIncompleteFunction = false; 4506 4507 llvm::FunctionType *FTy; 4508 if (isa<llvm::FunctionType>(Ty)) { 4509 FTy = cast<llvm::FunctionType>(Ty); 4510 } else { 4511 FTy = llvm::FunctionType::get(VoidTy, false); 4512 IsIncompleteFunction = true; 4513 } 4514 4515 llvm::Function *F = 4516 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4517 Entry ? StringRef() : MangledName, &getModule()); 4518 4519 // Store the declaration associated with this function so it is potentially 4520 // updated by further declarations or definitions and emitted at the end. 4521 if (D && D->hasAttr<AnnotateAttr>()) 4522 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4523 4524 // If we already created a function with the same mangled name (but different 4525 // type) before, take its name and add it to the list of functions to be 4526 // replaced with F at the end of CodeGen. 4527 // 4528 // This happens if there is a prototype for a function (e.g. "int f()") and 4529 // then a definition of a different type (e.g. "int f(int x)"). 4530 if (Entry) { 4531 F->takeName(Entry); 4532 4533 // This might be an implementation of a function without a prototype, in 4534 // which case, try to do special replacement of calls which match the new 4535 // prototype. The really key thing here is that we also potentially drop 4536 // arguments from the call site so as to make a direct call, which makes the 4537 // inliner happier and suppresses a number of optimizer warnings (!) about 4538 // dropping arguments. 4539 if (!Entry->use_empty()) { 4540 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4541 Entry->removeDeadConstantUsers(); 4542 } 4543 4544 addGlobalValReplacement(Entry, F); 4545 } 4546 4547 assert(F->getName() == MangledName && "name was uniqued!"); 4548 if (D) 4549 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4550 if (ExtraAttrs.hasFnAttrs()) { 4551 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4552 F->addFnAttrs(B); 4553 } 4554 4555 if (!DontDefer) { 4556 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4557 // each other bottoming out with the base dtor. Therefore we emit non-base 4558 // dtors on usage, even if there is no dtor definition in the TU. 4559 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4560 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4561 GD.getDtorType())) 4562 addDeferredDeclToEmit(GD); 4563 4564 // This is the first use or definition of a mangled name. If there is a 4565 // deferred decl with this name, remember that we need to emit it at the end 4566 // of the file. 4567 auto DDI = DeferredDecls.find(MangledName); 4568 if (DDI != DeferredDecls.end()) { 4569 // Move the potentially referenced deferred decl to the 4570 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4571 // don't need it anymore). 4572 addDeferredDeclToEmit(DDI->second); 4573 DeferredDecls.erase(DDI); 4574 4575 // Otherwise, there are cases we have to worry about where we're 4576 // using a declaration for which we must emit a definition but where 4577 // we might not find a top-level definition: 4578 // - member functions defined inline in their classes 4579 // - friend functions defined inline in some class 4580 // - special member functions with implicit definitions 4581 // If we ever change our AST traversal to walk into class methods, 4582 // this will be unnecessary. 4583 // 4584 // We also don't emit a definition for a function if it's going to be an 4585 // entry in a vtable, unless it's already marked as used. 4586 } else if (getLangOpts().CPlusPlus && D) { 4587 // Look for a declaration that's lexically in a record. 4588 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4589 FD = FD->getPreviousDecl()) { 4590 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4591 if (FD->doesThisDeclarationHaveABody()) { 4592 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4593 break; 4594 } 4595 } 4596 } 4597 } 4598 } 4599 4600 // Make sure the result is of the requested type. 4601 if (!IsIncompleteFunction) { 4602 assert(F->getFunctionType() == Ty); 4603 return F; 4604 } 4605 4606 return F; 4607 } 4608 4609 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4610 /// non-null, then this function will use the specified type if it has to 4611 /// create it (this occurs when we see a definition of the function). 4612 llvm::Constant * 4613 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4614 bool DontDefer, 4615 ForDefinition_t IsForDefinition) { 4616 // If there was no specific requested type, just convert it now. 4617 if (!Ty) { 4618 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4619 Ty = getTypes().ConvertType(FD->getType()); 4620 } 4621 4622 // Devirtualized destructor calls may come through here instead of via 4623 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4624 // of the complete destructor when necessary. 4625 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4626 if (getTarget().getCXXABI().isMicrosoft() && 4627 GD.getDtorType() == Dtor_Complete && 4628 DD->getParent()->getNumVBases() == 0) 4629 GD = GlobalDecl(DD, Dtor_Base); 4630 } 4631 4632 StringRef MangledName = getMangledName(GD); 4633 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4634 /*IsThunk=*/false, llvm::AttributeList(), 4635 IsForDefinition); 4636 // Returns kernel handle for HIP kernel stub function. 4637 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4638 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4639 auto *Handle = getCUDARuntime().getKernelHandle( 4640 cast<llvm::Function>(F->stripPointerCasts()), GD); 4641 if (IsForDefinition) 4642 return F; 4643 return Handle; 4644 } 4645 return F; 4646 } 4647 4648 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4649 llvm::GlobalValue *F = 4650 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4651 4652 return llvm::NoCFIValue::get(F); 4653 } 4654 4655 static const FunctionDecl * 4656 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4657 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4658 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4659 4660 IdentifierInfo &CII = C.Idents.get(Name); 4661 for (const auto *Result : DC->lookup(&CII)) 4662 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4663 return FD; 4664 4665 if (!C.getLangOpts().CPlusPlus) 4666 return nullptr; 4667 4668 // Demangle the premangled name from getTerminateFn() 4669 IdentifierInfo &CXXII = 4670 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4671 ? C.Idents.get("terminate") 4672 : C.Idents.get(Name); 4673 4674 for (const auto &N : {"__cxxabiv1", "std"}) { 4675 IdentifierInfo &NS = C.Idents.get(N); 4676 for (const auto *Result : DC->lookup(&NS)) { 4677 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4678 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4679 for (const auto *Result : LSD->lookup(&NS)) 4680 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4681 break; 4682 4683 if (ND) 4684 for (const auto *Result : ND->lookup(&CXXII)) 4685 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4686 return FD; 4687 } 4688 } 4689 4690 return nullptr; 4691 } 4692 4693 /// CreateRuntimeFunction - Create a new runtime function with the specified 4694 /// type and name. 4695 llvm::FunctionCallee 4696 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4697 llvm::AttributeList ExtraAttrs, bool Local, 4698 bool AssumeConvergent) { 4699 if (AssumeConvergent) { 4700 ExtraAttrs = 4701 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4702 } 4703 4704 llvm::Constant *C = 4705 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4706 /*DontDefer=*/false, /*IsThunk=*/false, 4707 ExtraAttrs); 4708 4709 if (auto *F = dyn_cast<llvm::Function>(C)) { 4710 if (F->empty()) { 4711 F->setCallingConv(getRuntimeCC()); 4712 4713 // In Windows Itanium environments, try to mark runtime functions 4714 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4715 // will link their standard library statically or dynamically. Marking 4716 // functions imported when they are not imported can cause linker errors 4717 // and warnings. 4718 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4719 !getCodeGenOpts().LTOVisibilityPublicStd) { 4720 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4721 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4722 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4723 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4724 } 4725 } 4726 setDSOLocal(F); 4727 } 4728 } 4729 4730 return {FTy, C}; 4731 } 4732 4733 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4734 /// create and return an llvm GlobalVariable with the specified type and address 4735 /// space. If there is something in the module with the specified name, return 4736 /// it potentially bitcasted to the right type. 4737 /// 4738 /// If D is non-null, it specifies a decl that correspond to this. This is used 4739 /// to set the attributes on the global when it is first created. 4740 /// 4741 /// If IsForDefinition is true, it is guaranteed that an actual global with 4742 /// type Ty will be returned, not conversion of a variable with the same 4743 /// mangled name but some other type. 4744 llvm::Constant * 4745 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4746 LangAS AddrSpace, const VarDecl *D, 4747 ForDefinition_t IsForDefinition) { 4748 // Lookup the entry, lazily creating it if necessary. 4749 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4750 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4751 if (Entry) { 4752 if (WeakRefReferences.erase(Entry)) { 4753 if (D && !D->hasAttr<WeakAttr>()) 4754 Entry->setLinkage(llvm::Function::ExternalLinkage); 4755 } 4756 4757 // Handle dropped DLL attributes. 4758 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4759 !shouldMapVisibilityToDLLExport(D)) 4760 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4761 4762 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4763 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4764 4765 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4766 return Entry; 4767 4768 // If there are two attempts to define the same mangled name, issue an 4769 // error. 4770 if (IsForDefinition && !Entry->isDeclaration()) { 4771 GlobalDecl OtherGD; 4772 const VarDecl *OtherD; 4773 4774 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4775 // to make sure that we issue an error only once. 4776 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4777 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4778 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4779 OtherD->hasInit() && 4780 DiagnosedConflictingDefinitions.insert(D).second) { 4781 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4782 << MangledName; 4783 getDiags().Report(OtherGD.getDecl()->getLocation(), 4784 diag::note_previous_definition); 4785 } 4786 } 4787 4788 // Make sure the result is of the correct type. 4789 if (Entry->getType()->getAddressSpace() != TargetAS) 4790 return llvm::ConstantExpr::getAddrSpaceCast( 4791 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4792 4793 // (If global is requested for a definition, we always need to create a new 4794 // global, not just return a bitcast.) 4795 if (!IsForDefinition) 4796 return Entry; 4797 } 4798 4799 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4800 4801 auto *GV = new llvm::GlobalVariable( 4802 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4803 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4804 getContext().getTargetAddressSpace(DAddrSpace)); 4805 4806 // If we already created a global with the same mangled name (but different 4807 // type) before, take its name and remove it from its parent. 4808 if (Entry) { 4809 GV->takeName(Entry); 4810 4811 if (!Entry->use_empty()) { 4812 Entry->replaceAllUsesWith(GV); 4813 } 4814 4815 Entry->eraseFromParent(); 4816 } 4817 4818 // This is the first use or definition of a mangled name. If there is a 4819 // deferred decl with this name, remember that we need to emit it at the end 4820 // of the file. 4821 auto DDI = DeferredDecls.find(MangledName); 4822 if (DDI != DeferredDecls.end()) { 4823 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4824 // list, and remove it from DeferredDecls (since we don't need it anymore). 4825 addDeferredDeclToEmit(DDI->second); 4826 DeferredDecls.erase(DDI); 4827 } 4828 4829 // Handle things which are present even on external declarations. 4830 if (D) { 4831 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4832 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4833 4834 // FIXME: This code is overly simple and should be merged with other global 4835 // handling. 4836 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4837 4838 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4839 4840 setLinkageForGV(GV, D); 4841 4842 if (D->getTLSKind()) { 4843 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4844 CXXThreadLocals.push_back(D); 4845 setTLSMode(GV, *D); 4846 } 4847 4848 setGVProperties(GV, D); 4849 4850 // If required by the ABI, treat declarations of static data members with 4851 // inline initializers as definitions. 4852 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4853 EmitGlobalVarDefinition(D); 4854 } 4855 4856 // Emit section information for extern variables. 4857 if (D->hasExternalStorage()) { 4858 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4859 GV->setSection(SA->getName()); 4860 } 4861 4862 // Handle XCore specific ABI requirements. 4863 if (getTriple().getArch() == llvm::Triple::xcore && 4864 D->getLanguageLinkage() == CLanguageLinkage && 4865 D->getType().isConstant(Context) && 4866 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4867 GV->setSection(".cp.rodata"); 4868 4869 // Check if we a have a const declaration with an initializer, we may be 4870 // able to emit it as available_externally to expose it's value to the 4871 // optimizer. 4872 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4873 D->getType().isConstQualified() && !GV->hasInitializer() && 4874 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4875 const auto *Record = 4876 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4877 bool HasMutableFields = Record && Record->hasMutableFields(); 4878 if (!HasMutableFields) { 4879 const VarDecl *InitDecl; 4880 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4881 if (InitExpr) { 4882 ConstantEmitter emitter(*this); 4883 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4884 if (Init) { 4885 auto *InitType = Init->getType(); 4886 if (GV->getValueType() != InitType) { 4887 // The type of the initializer does not match the definition. 4888 // This happens when an initializer has a different type from 4889 // the type of the global (because of padding at the end of a 4890 // structure for instance). 4891 GV->setName(StringRef()); 4892 // Make a new global with the correct type, this is now guaranteed 4893 // to work. 4894 auto *NewGV = cast<llvm::GlobalVariable>( 4895 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4896 ->stripPointerCasts()); 4897 4898 // Erase the old global, since it is no longer used. 4899 GV->eraseFromParent(); 4900 GV = NewGV; 4901 } else { 4902 GV->setInitializer(Init); 4903 GV->setConstant(true); 4904 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4905 } 4906 emitter.finalize(GV); 4907 } 4908 } 4909 } 4910 } 4911 } 4912 4913 if (D && 4914 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4915 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4916 // External HIP managed variables needed to be recorded for transformation 4917 // in both device and host compilations. 4918 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4919 D->hasExternalStorage()) 4920 getCUDARuntime().handleVarRegistration(D, *GV); 4921 } 4922 4923 if (D) 4924 SanitizerMD->reportGlobal(GV, *D); 4925 4926 LangAS ExpectedAS = 4927 D ? D->getType().getAddressSpace() 4928 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4929 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4930 if (DAddrSpace != ExpectedAS) { 4931 return getTargetCodeGenInfo().performAddrSpaceCast( 4932 *this, GV, DAddrSpace, ExpectedAS, 4933 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4934 } 4935 4936 return GV; 4937 } 4938 4939 llvm::Constant * 4940 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4941 const Decl *D = GD.getDecl(); 4942 4943 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4944 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4945 /*DontDefer=*/false, IsForDefinition); 4946 4947 if (isa<CXXMethodDecl>(D)) { 4948 auto FInfo = 4949 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4950 auto Ty = getTypes().GetFunctionType(*FInfo); 4951 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4952 IsForDefinition); 4953 } 4954 4955 if (isa<FunctionDecl>(D)) { 4956 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4957 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4958 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4959 IsForDefinition); 4960 } 4961 4962 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4963 } 4964 4965 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4966 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4967 llvm::Align Alignment) { 4968 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4969 llvm::GlobalVariable *OldGV = nullptr; 4970 4971 if (GV) { 4972 // Check if the variable has the right type. 4973 if (GV->getValueType() == Ty) 4974 return GV; 4975 4976 // Because C++ name mangling, the only way we can end up with an already 4977 // existing global with the same name is if it has been declared extern "C". 4978 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4979 OldGV = GV; 4980 } 4981 4982 // Create a new variable. 4983 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4984 Linkage, nullptr, Name); 4985 4986 if (OldGV) { 4987 // Replace occurrences of the old variable if needed. 4988 GV->takeName(OldGV); 4989 4990 if (!OldGV->use_empty()) { 4991 OldGV->replaceAllUsesWith(GV); 4992 } 4993 4994 OldGV->eraseFromParent(); 4995 } 4996 4997 if (supportsCOMDAT() && GV->isWeakForLinker() && 4998 !GV->hasAvailableExternallyLinkage()) 4999 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5000 5001 GV->setAlignment(Alignment); 5002 5003 return GV; 5004 } 5005 5006 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5007 /// given global variable. If Ty is non-null and if the global doesn't exist, 5008 /// then it will be created with the specified type instead of whatever the 5009 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5010 /// that an actual global with type Ty will be returned, not conversion of a 5011 /// variable with the same mangled name but some other type. 5012 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5013 llvm::Type *Ty, 5014 ForDefinition_t IsForDefinition) { 5015 assert(D->hasGlobalStorage() && "Not a global variable"); 5016 QualType ASTTy = D->getType(); 5017 if (!Ty) 5018 Ty = getTypes().ConvertTypeForMem(ASTTy); 5019 5020 StringRef MangledName = getMangledName(D); 5021 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5022 IsForDefinition); 5023 } 5024 5025 /// CreateRuntimeVariable - Create a new runtime global variable with the 5026 /// specified type and name. 5027 llvm::Constant * 5028 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5029 StringRef Name) { 5030 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5031 : LangAS::Default; 5032 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5033 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5034 return Ret; 5035 } 5036 5037 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5038 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5039 5040 StringRef MangledName = getMangledName(D); 5041 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5042 5043 // We already have a definition, not declaration, with the same mangled name. 5044 // Emitting of declaration is not required (and actually overwrites emitted 5045 // definition). 5046 if (GV && !GV->isDeclaration()) 5047 return; 5048 5049 // If we have not seen a reference to this variable yet, place it into the 5050 // deferred declarations table to be emitted if needed later. 5051 if (!MustBeEmitted(D) && !GV) { 5052 DeferredDecls[MangledName] = D; 5053 return; 5054 } 5055 5056 // The tentative definition is the only definition. 5057 EmitGlobalVarDefinition(D); 5058 } 5059 5060 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5061 EmitExternalVarDeclaration(D); 5062 } 5063 5064 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5065 return Context.toCharUnitsFromBits( 5066 getDataLayout().getTypeStoreSizeInBits(Ty)); 5067 } 5068 5069 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5070 if (LangOpts.OpenCL) { 5071 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5072 assert(AS == LangAS::opencl_global || 5073 AS == LangAS::opencl_global_device || 5074 AS == LangAS::opencl_global_host || 5075 AS == LangAS::opencl_constant || 5076 AS == LangAS::opencl_local || 5077 AS >= LangAS::FirstTargetAddressSpace); 5078 return AS; 5079 } 5080 5081 if (LangOpts.SYCLIsDevice && 5082 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5083 return LangAS::sycl_global; 5084 5085 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5086 if (D) { 5087 if (D->hasAttr<CUDAConstantAttr>()) 5088 return LangAS::cuda_constant; 5089 if (D->hasAttr<CUDASharedAttr>()) 5090 return LangAS::cuda_shared; 5091 if (D->hasAttr<CUDADeviceAttr>()) 5092 return LangAS::cuda_device; 5093 if (D->getType().isConstQualified()) 5094 return LangAS::cuda_constant; 5095 } 5096 return LangAS::cuda_device; 5097 } 5098 5099 if (LangOpts.OpenMP) { 5100 LangAS AS; 5101 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5102 return AS; 5103 } 5104 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5105 } 5106 5107 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5108 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5109 if (LangOpts.OpenCL) 5110 return LangAS::opencl_constant; 5111 if (LangOpts.SYCLIsDevice) 5112 return LangAS::sycl_global; 5113 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5114 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5115 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5116 // with OpVariable instructions with Generic storage class which is not 5117 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5118 // UniformConstant storage class is not viable as pointers to it may not be 5119 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5120 return LangAS::cuda_device; 5121 if (auto AS = getTarget().getConstantAddressSpace()) 5122 return *AS; 5123 return LangAS::Default; 5124 } 5125 5126 // In address space agnostic languages, string literals are in default address 5127 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5128 // emitted in constant address space in LLVM IR. To be consistent with other 5129 // parts of AST, string literal global variables in constant address space 5130 // need to be casted to default address space before being put into address 5131 // map and referenced by other part of CodeGen. 5132 // In OpenCL, string literals are in constant address space in AST, therefore 5133 // they should not be casted to default address space. 5134 static llvm::Constant * 5135 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5136 llvm::GlobalVariable *GV) { 5137 llvm::Constant *Cast = GV; 5138 if (!CGM.getLangOpts().OpenCL) { 5139 auto AS = CGM.GetGlobalConstantAddressSpace(); 5140 if (AS != LangAS::Default) 5141 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5142 CGM, GV, AS, LangAS::Default, 5143 llvm::PointerType::get( 5144 CGM.getLLVMContext(), 5145 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5146 } 5147 return Cast; 5148 } 5149 5150 template<typename SomeDecl> 5151 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5152 llvm::GlobalValue *GV) { 5153 if (!getLangOpts().CPlusPlus) 5154 return; 5155 5156 // Must have 'used' attribute, or else inline assembly can't rely on 5157 // the name existing. 5158 if (!D->template hasAttr<UsedAttr>()) 5159 return; 5160 5161 // Must have internal linkage and an ordinary name. 5162 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5163 return; 5164 5165 // Must be in an extern "C" context. Entities declared directly within 5166 // a record are not extern "C" even if the record is in such a context. 5167 const SomeDecl *First = D->getFirstDecl(); 5168 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5169 return; 5170 5171 // OK, this is an internal linkage entity inside an extern "C" linkage 5172 // specification. Make a note of that so we can give it the "expected" 5173 // mangled name if nothing else is using that name. 5174 std::pair<StaticExternCMap::iterator, bool> R = 5175 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5176 5177 // If we have multiple internal linkage entities with the same name 5178 // in extern "C" regions, none of them gets that name. 5179 if (!R.second) 5180 R.first->second = nullptr; 5181 } 5182 5183 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5184 if (!CGM.supportsCOMDAT()) 5185 return false; 5186 5187 if (D.hasAttr<SelectAnyAttr>()) 5188 return true; 5189 5190 GVALinkage Linkage; 5191 if (auto *VD = dyn_cast<VarDecl>(&D)) 5192 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5193 else 5194 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5195 5196 switch (Linkage) { 5197 case GVA_Internal: 5198 case GVA_AvailableExternally: 5199 case GVA_StrongExternal: 5200 return false; 5201 case GVA_DiscardableODR: 5202 case GVA_StrongODR: 5203 return true; 5204 } 5205 llvm_unreachable("No such linkage"); 5206 } 5207 5208 bool CodeGenModule::supportsCOMDAT() const { 5209 return getTriple().supportsCOMDAT(); 5210 } 5211 5212 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5213 llvm::GlobalObject &GO) { 5214 if (!shouldBeInCOMDAT(*this, D)) 5215 return; 5216 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5217 } 5218 5219 /// Pass IsTentative as true if you want to create a tentative definition. 5220 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5221 bool IsTentative) { 5222 // OpenCL global variables of sampler type are translated to function calls, 5223 // therefore no need to be translated. 5224 QualType ASTTy = D->getType(); 5225 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5226 return; 5227 5228 // If this is OpenMP device, check if it is legal to emit this global 5229 // normally. 5230 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5231 OpenMPRuntime->emitTargetGlobalVariable(D)) 5232 return; 5233 5234 llvm::TrackingVH<llvm::Constant> Init; 5235 bool NeedsGlobalCtor = false; 5236 // Whether the definition of the variable is available externally. 5237 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5238 // since this is the job for its original source. 5239 bool IsDefinitionAvailableExternally = 5240 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5241 bool NeedsGlobalDtor = 5242 !IsDefinitionAvailableExternally && 5243 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5244 5245 const VarDecl *InitDecl; 5246 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5247 5248 std::optional<ConstantEmitter> emitter; 5249 5250 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5251 // as part of their declaration." Sema has already checked for 5252 // error cases, so we just need to set Init to UndefValue. 5253 bool IsCUDASharedVar = 5254 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5255 // Shadows of initialized device-side global variables are also left 5256 // undefined. 5257 // Managed Variables should be initialized on both host side and device side. 5258 bool IsCUDAShadowVar = 5259 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5260 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5261 D->hasAttr<CUDASharedAttr>()); 5262 bool IsCUDADeviceShadowVar = 5263 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5264 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5265 D->getType()->isCUDADeviceBuiltinTextureType()); 5266 if (getLangOpts().CUDA && 5267 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5268 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5269 else if (D->hasAttr<LoaderUninitializedAttr>()) 5270 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5271 else if (!InitExpr) { 5272 // This is a tentative definition; tentative definitions are 5273 // implicitly initialized with { 0 }. 5274 // 5275 // Note that tentative definitions are only emitted at the end of 5276 // a translation unit, so they should never have incomplete 5277 // type. In addition, EmitTentativeDefinition makes sure that we 5278 // never attempt to emit a tentative definition if a real one 5279 // exists. A use may still exists, however, so we still may need 5280 // to do a RAUW. 5281 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5282 Init = EmitNullConstant(D->getType()); 5283 } else { 5284 initializedGlobalDecl = GlobalDecl(D); 5285 emitter.emplace(*this); 5286 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5287 if (!Initializer) { 5288 QualType T = InitExpr->getType(); 5289 if (D->getType()->isReferenceType()) 5290 T = D->getType(); 5291 5292 if (getLangOpts().CPlusPlus) { 5293 if (InitDecl->hasFlexibleArrayInit(getContext())) 5294 ErrorUnsupported(D, "flexible array initializer"); 5295 Init = EmitNullConstant(T); 5296 5297 if (!IsDefinitionAvailableExternally) 5298 NeedsGlobalCtor = true; 5299 } else { 5300 ErrorUnsupported(D, "static initializer"); 5301 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5302 } 5303 } else { 5304 Init = Initializer; 5305 // We don't need an initializer, so remove the entry for the delayed 5306 // initializer position (just in case this entry was delayed) if we 5307 // also don't need to register a destructor. 5308 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5309 DelayedCXXInitPosition.erase(D); 5310 5311 #ifndef NDEBUG 5312 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5313 InitDecl->getFlexibleArrayInitChars(getContext()); 5314 CharUnits CstSize = CharUnits::fromQuantity( 5315 getDataLayout().getTypeAllocSize(Init->getType())); 5316 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5317 #endif 5318 } 5319 } 5320 5321 llvm::Type* InitType = Init->getType(); 5322 llvm::Constant *Entry = 5323 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5324 5325 // Strip off pointer casts if we got them. 5326 Entry = Entry->stripPointerCasts(); 5327 5328 // Entry is now either a Function or GlobalVariable. 5329 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5330 5331 // We have a definition after a declaration with the wrong type. 5332 // We must make a new GlobalVariable* and update everything that used OldGV 5333 // (a declaration or tentative definition) with the new GlobalVariable* 5334 // (which will be a definition). 5335 // 5336 // This happens if there is a prototype for a global (e.g. 5337 // "extern int x[];") and then a definition of a different type (e.g. 5338 // "int x[10];"). This also happens when an initializer has a different type 5339 // from the type of the global (this happens with unions). 5340 if (!GV || GV->getValueType() != InitType || 5341 GV->getType()->getAddressSpace() != 5342 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5343 5344 // Move the old entry aside so that we'll create a new one. 5345 Entry->setName(StringRef()); 5346 5347 // Make a new global with the correct type, this is now guaranteed to work. 5348 GV = cast<llvm::GlobalVariable>( 5349 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5350 ->stripPointerCasts()); 5351 5352 // Replace all uses of the old global with the new global 5353 llvm::Constant *NewPtrForOldDecl = 5354 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5355 Entry->getType()); 5356 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5357 5358 // Erase the old global, since it is no longer used. 5359 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5360 } 5361 5362 MaybeHandleStaticInExternC(D, GV); 5363 5364 if (D->hasAttr<AnnotateAttr>()) 5365 AddGlobalAnnotations(D, GV); 5366 5367 // Set the llvm linkage type as appropriate. 5368 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5369 5370 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5371 // the device. [...]" 5372 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5373 // __device__, declares a variable that: [...] 5374 // Is accessible from all the threads within the grid and from the host 5375 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5376 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5377 if (LangOpts.CUDA) { 5378 if (LangOpts.CUDAIsDevice) { 5379 if (Linkage != llvm::GlobalValue::InternalLinkage && 5380 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5381 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5382 D->getType()->isCUDADeviceBuiltinTextureType())) 5383 GV->setExternallyInitialized(true); 5384 } else { 5385 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5386 } 5387 getCUDARuntime().handleVarRegistration(D, *GV); 5388 } 5389 5390 GV->setInitializer(Init); 5391 if (emitter) 5392 emitter->finalize(GV); 5393 5394 // If it is safe to mark the global 'constant', do so now. 5395 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5396 D->getType().isConstantStorage(getContext(), true, true)); 5397 5398 // If it is in a read-only section, mark it 'constant'. 5399 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5400 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5401 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5402 GV->setConstant(true); 5403 } 5404 5405 CharUnits AlignVal = getContext().getDeclAlign(D); 5406 // Check for alignment specifed in an 'omp allocate' directive. 5407 if (std::optional<CharUnits> AlignValFromAllocate = 5408 getOMPAllocateAlignment(D)) 5409 AlignVal = *AlignValFromAllocate; 5410 GV->setAlignment(AlignVal.getAsAlign()); 5411 5412 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5413 // function is only defined alongside the variable, not also alongside 5414 // callers. Normally, all accesses to a thread_local go through the 5415 // thread-wrapper in order to ensure initialization has occurred, underlying 5416 // variable will never be used other than the thread-wrapper, so it can be 5417 // converted to internal linkage. 5418 // 5419 // However, if the variable has the 'constinit' attribute, it _can_ be 5420 // referenced directly, without calling the thread-wrapper, so the linkage 5421 // must not be changed. 5422 // 5423 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5424 // weak or linkonce, the de-duplication semantics are important to preserve, 5425 // so we don't change the linkage. 5426 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5427 Linkage == llvm::GlobalValue::ExternalLinkage && 5428 Context.getTargetInfo().getTriple().isOSDarwin() && 5429 !D->hasAttr<ConstInitAttr>()) 5430 Linkage = llvm::GlobalValue::InternalLinkage; 5431 5432 GV->setLinkage(Linkage); 5433 if (D->hasAttr<DLLImportAttr>()) 5434 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5435 else if (D->hasAttr<DLLExportAttr>()) 5436 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5437 else 5438 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5439 5440 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5441 // common vars aren't constant even if declared const. 5442 GV->setConstant(false); 5443 // Tentative definition of global variables may be initialized with 5444 // non-zero null pointers. In this case they should have weak linkage 5445 // since common linkage must have zero initializer and must not have 5446 // explicit section therefore cannot have non-zero initial value. 5447 if (!GV->getInitializer()->isNullValue()) 5448 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5449 } 5450 5451 setNonAliasAttributes(D, GV); 5452 5453 if (D->getTLSKind() && !GV->isThreadLocal()) { 5454 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5455 CXXThreadLocals.push_back(D); 5456 setTLSMode(GV, *D); 5457 } 5458 5459 maybeSetTrivialComdat(*D, *GV); 5460 5461 // Emit the initializer function if necessary. 5462 if (NeedsGlobalCtor || NeedsGlobalDtor) 5463 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5464 5465 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5466 5467 // Emit global variable debug information. 5468 if (CGDebugInfo *DI = getModuleDebugInfo()) 5469 if (getCodeGenOpts().hasReducedDebugInfo()) 5470 DI->EmitGlobalVariable(GV, D); 5471 } 5472 5473 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5474 if (CGDebugInfo *DI = getModuleDebugInfo()) 5475 if (getCodeGenOpts().hasReducedDebugInfo()) { 5476 QualType ASTTy = D->getType(); 5477 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5478 llvm::Constant *GV = 5479 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5480 DI->EmitExternalVariable( 5481 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5482 } 5483 } 5484 5485 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5486 CodeGenModule &CGM, const VarDecl *D, 5487 bool NoCommon) { 5488 // Don't give variables common linkage if -fno-common was specified unless it 5489 // was overridden by a NoCommon attribute. 5490 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5491 return true; 5492 5493 // C11 6.9.2/2: 5494 // A declaration of an identifier for an object that has file scope without 5495 // an initializer, and without a storage-class specifier or with the 5496 // storage-class specifier static, constitutes a tentative definition. 5497 if (D->getInit() || D->hasExternalStorage()) 5498 return true; 5499 5500 // A variable cannot be both common and exist in a section. 5501 if (D->hasAttr<SectionAttr>()) 5502 return true; 5503 5504 // A variable cannot be both common and exist in a section. 5505 // We don't try to determine which is the right section in the front-end. 5506 // If no specialized section name is applicable, it will resort to default. 5507 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5508 D->hasAttr<PragmaClangDataSectionAttr>() || 5509 D->hasAttr<PragmaClangRelroSectionAttr>() || 5510 D->hasAttr<PragmaClangRodataSectionAttr>()) 5511 return true; 5512 5513 // Thread local vars aren't considered common linkage. 5514 if (D->getTLSKind()) 5515 return true; 5516 5517 // Tentative definitions marked with WeakImportAttr are true definitions. 5518 if (D->hasAttr<WeakImportAttr>()) 5519 return true; 5520 5521 // A variable cannot be both common and exist in a comdat. 5522 if (shouldBeInCOMDAT(CGM, *D)) 5523 return true; 5524 5525 // Declarations with a required alignment do not have common linkage in MSVC 5526 // mode. 5527 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5528 if (D->hasAttr<AlignedAttr>()) 5529 return true; 5530 QualType VarType = D->getType(); 5531 if (Context.isAlignmentRequired(VarType)) 5532 return true; 5533 5534 if (const auto *RT = VarType->getAs<RecordType>()) { 5535 const RecordDecl *RD = RT->getDecl(); 5536 for (const FieldDecl *FD : RD->fields()) { 5537 if (FD->isBitField()) 5538 continue; 5539 if (FD->hasAttr<AlignedAttr>()) 5540 return true; 5541 if (Context.isAlignmentRequired(FD->getType())) 5542 return true; 5543 } 5544 } 5545 } 5546 5547 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5548 // common symbols, so symbols with greater alignment requirements cannot be 5549 // common. 5550 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5551 // alignments for common symbols via the aligncomm directive, so this 5552 // restriction only applies to MSVC environments. 5553 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5554 Context.getTypeAlignIfKnown(D->getType()) > 5555 Context.toBits(CharUnits::fromQuantity(32))) 5556 return true; 5557 5558 return false; 5559 } 5560 5561 llvm::GlobalValue::LinkageTypes 5562 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5563 GVALinkage Linkage) { 5564 if (Linkage == GVA_Internal) 5565 return llvm::Function::InternalLinkage; 5566 5567 if (D->hasAttr<WeakAttr>()) 5568 return llvm::GlobalVariable::WeakAnyLinkage; 5569 5570 if (const auto *FD = D->getAsFunction()) 5571 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5572 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5573 5574 // We are guaranteed to have a strong definition somewhere else, 5575 // so we can use available_externally linkage. 5576 if (Linkage == GVA_AvailableExternally) 5577 return llvm::GlobalValue::AvailableExternallyLinkage; 5578 5579 // Note that Apple's kernel linker doesn't support symbol 5580 // coalescing, so we need to avoid linkonce and weak linkages there. 5581 // Normally, this means we just map to internal, but for explicit 5582 // instantiations we'll map to external. 5583 5584 // In C++, the compiler has to emit a definition in every translation unit 5585 // that references the function. We should use linkonce_odr because 5586 // a) if all references in this translation unit are optimized away, we 5587 // don't need to codegen it. b) if the function persists, it needs to be 5588 // merged with other definitions. c) C++ has the ODR, so we know the 5589 // definition is dependable. 5590 if (Linkage == GVA_DiscardableODR) 5591 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5592 : llvm::Function::InternalLinkage; 5593 5594 // An explicit instantiation of a template has weak linkage, since 5595 // explicit instantiations can occur in multiple translation units 5596 // and must all be equivalent. However, we are not allowed to 5597 // throw away these explicit instantiations. 5598 // 5599 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5600 // so say that CUDA templates are either external (for kernels) or internal. 5601 // This lets llvm perform aggressive inter-procedural optimizations. For 5602 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5603 // therefore we need to follow the normal linkage paradigm. 5604 if (Linkage == GVA_StrongODR) { 5605 if (getLangOpts().AppleKext) 5606 return llvm::Function::ExternalLinkage; 5607 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5608 !getLangOpts().GPURelocatableDeviceCode) 5609 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5610 : llvm::Function::InternalLinkage; 5611 return llvm::Function::WeakODRLinkage; 5612 } 5613 5614 // C++ doesn't have tentative definitions and thus cannot have common 5615 // linkage. 5616 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5617 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5618 CodeGenOpts.NoCommon)) 5619 return llvm::GlobalVariable::CommonLinkage; 5620 5621 // selectany symbols are externally visible, so use weak instead of 5622 // linkonce. MSVC optimizes away references to const selectany globals, so 5623 // all definitions should be the same and ODR linkage should be used. 5624 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5625 if (D->hasAttr<SelectAnyAttr>()) 5626 return llvm::GlobalVariable::WeakODRLinkage; 5627 5628 // Otherwise, we have strong external linkage. 5629 assert(Linkage == GVA_StrongExternal); 5630 return llvm::GlobalVariable::ExternalLinkage; 5631 } 5632 5633 llvm::GlobalValue::LinkageTypes 5634 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5635 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5636 return getLLVMLinkageForDeclarator(VD, Linkage); 5637 } 5638 5639 /// Replace the uses of a function that was declared with a non-proto type. 5640 /// We want to silently drop extra arguments from call sites 5641 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5642 llvm::Function *newFn) { 5643 // Fast path. 5644 if (old->use_empty()) return; 5645 5646 llvm::Type *newRetTy = newFn->getReturnType(); 5647 SmallVector<llvm::Value*, 4> newArgs; 5648 5649 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5650 ui != ue; ) { 5651 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5652 llvm::User *user = use->getUser(); 5653 5654 // Recognize and replace uses of bitcasts. Most calls to 5655 // unprototyped functions will use bitcasts. 5656 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5657 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5658 replaceUsesOfNonProtoConstant(bitcast, newFn); 5659 continue; 5660 } 5661 5662 // Recognize calls to the function. 5663 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5664 if (!callSite) continue; 5665 if (!callSite->isCallee(&*use)) 5666 continue; 5667 5668 // If the return types don't match exactly, then we can't 5669 // transform this call unless it's dead. 5670 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5671 continue; 5672 5673 // Get the call site's attribute list. 5674 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5675 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5676 5677 // If the function was passed too few arguments, don't transform. 5678 unsigned newNumArgs = newFn->arg_size(); 5679 if (callSite->arg_size() < newNumArgs) 5680 continue; 5681 5682 // If extra arguments were passed, we silently drop them. 5683 // If any of the types mismatch, we don't transform. 5684 unsigned argNo = 0; 5685 bool dontTransform = false; 5686 for (llvm::Argument &A : newFn->args()) { 5687 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5688 dontTransform = true; 5689 break; 5690 } 5691 5692 // Add any parameter attributes. 5693 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5694 argNo++; 5695 } 5696 if (dontTransform) 5697 continue; 5698 5699 // Okay, we can transform this. Create the new call instruction and copy 5700 // over the required information. 5701 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5702 5703 // Copy over any operand bundles. 5704 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5705 callSite->getOperandBundlesAsDefs(newBundles); 5706 5707 llvm::CallBase *newCall; 5708 if (isa<llvm::CallInst>(callSite)) { 5709 newCall = 5710 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5711 } else { 5712 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5713 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5714 oldInvoke->getUnwindDest(), newArgs, 5715 newBundles, "", callSite); 5716 } 5717 newArgs.clear(); // for the next iteration 5718 5719 if (!newCall->getType()->isVoidTy()) 5720 newCall->takeName(callSite); 5721 newCall->setAttributes( 5722 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5723 oldAttrs.getRetAttrs(), newArgAttrs)); 5724 newCall->setCallingConv(callSite->getCallingConv()); 5725 5726 // Finally, remove the old call, replacing any uses with the new one. 5727 if (!callSite->use_empty()) 5728 callSite->replaceAllUsesWith(newCall); 5729 5730 // Copy debug location attached to CI. 5731 if (callSite->getDebugLoc()) 5732 newCall->setDebugLoc(callSite->getDebugLoc()); 5733 5734 callSite->eraseFromParent(); 5735 } 5736 } 5737 5738 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5739 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5740 /// existing call uses of the old function in the module, this adjusts them to 5741 /// call the new function directly. 5742 /// 5743 /// This is not just a cleanup: the always_inline pass requires direct calls to 5744 /// functions to be able to inline them. If there is a bitcast in the way, it 5745 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5746 /// run at -O0. 5747 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5748 llvm::Function *NewFn) { 5749 // If we're redefining a global as a function, don't transform it. 5750 if (!isa<llvm::Function>(Old)) return; 5751 5752 replaceUsesOfNonProtoConstant(Old, NewFn); 5753 } 5754 5755 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5756 auto DK = VD->isThisDeclarationADefinition(); 5757 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5758 return; 5759 5760 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5761 // If we have a definition, this might be a deferred decl. If the 5762 // instantiation is explicit, make sure we emit it at the end. 5763 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5764 GetAddrOfGlobalVar(VD); 5765 5766 EmitTopLevelDecl(VD); 5767 } 5768 5769 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5770 llvm::GlobalValue *GV) { 5771 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5772 5773 // Compute the function info and LLVM type. 5774 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5775 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5776 5777 // Get or create the prototype for the function. 5778 if (!GV || (GV->getValueType() != Ty)) 5779 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5780 /*DontDefer=*/true, 5781 ForDefinition)); 5782 5783 // Already emitted. 5784 if (!GV->isDeclaration()) 5785 return; 5786 5787 // We need to set linkage and visibility on the function before 5788 // generating code for it because various parts of IR generation 5789 // want to propagate this information down (e.g. to local static 5790 // declarations). 5791 auto *Fn = cast<llvm::Function>(GV); 5792 setFunctionLinkage(GD, Fn); 5793 5794 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5795 setGVProperties(Fn, GD); 5796 5797 MaybeHandleStaticInExternC(D, Fn); 5798 5799 maybeSetTrivialComdat(*D, *Fn); 5800 5801 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5802 5803 setNonAliasAttributes(GD, Fn); 5804 SetLLVMFunctionAttributesForDefinition(D, Fn); 5805 5806 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5807 AddGlobalCtor(Fn, CA->getPriority()); 5808 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5809 AddGlobalDtor(Fn, DA->getPriority(), true); 5810 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5811 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5812 } 5813 5814 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5815 const auto *D = cast<ValueDecl>(GD.getDecl()); 5816 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5817 assert(AA && "Not an alias?"); 5818 5819 StringRef MangledName = getMangledName(GD); 5820 5821 if (AA->getAliasee() == MangledName) { 5822 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5823 return; 5824 } 5825 5826 // If there is a definition in the module, then it wins over the alias. 5827 // This is dubious, but allow it to be safe. Just ignore the alias. 5828 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5829 if (Entry && !Entry->isDeclaration()) 5830 return; 5831 5832 Aliases.push_back(GD); 5833 5834 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5835 5836 // Create a reference to the named value. This ensures that it is emitted 5837 // if a deferred decl. 5838 llvm::Constant *Aliasee; 5839 llvm::GlobalValue::LinkageTypes LT; 5840 if (isa<llvm::FunctionType>(DeclTy)) { 5841 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5842 /*ForVTable=*/false); 5843 LT = getFunctionLinkage(GD); 5844 } else { 5845 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5846 /*D=*/nullptr); 5847 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5848 LT = getLLVMLinkageVarDefinition(VD); 5849 else 5850 LT = getFunctionLinkage(GD); 5851 } 5852 5853 // Create the new alias itself, but don't set a name yet. 5854 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5855 auto *GA = 5856 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5857 5858 if (Entry) { 5859 if (GA->getAliasee() == Entry) { 5860 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5861 return; 5862 } 5863 5864 assert(Entry->isDeclaration()); 5865 5866 // If there is a declaration in the module, then we had an extern followed 5867 // by the alias, as in: 5868 // extern int test6(); 5869 // ... 5870 // int test6() __attribute__((alias("test7"))); 5871 // 5872 // Remove it and replace uses of it with the alias. 5873 GA->takeName(Entry); 5874 5875 Entry->replaceAllUsesWith(GA); 5876 Entry->eraseFromParent(); 5877 } else { 5878 GA->setName(MangledName); 5879 } 5880 5881 // Set attributes which are particular to an alias; this is a 5882 // specialization of the attributes which may be set on a global 5883 // variable/function. 5884 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5885 D->isWeakImported()) { 5886 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5887 } 5888 5889 if (const auto *VD = dyn_cast<VarDecl>(D)) 5890 if (VD->getTLSKind()) 5891 setTLSMode(GA, *VD); 5892 5893 SetCommonAttributes(GD, GA); 5894 5895 // Emit global alias debug information. 5896 if (isa<VarDecl>(D)) 5897 if (CGDebugInfo *DI = getModuleDebugInfo()) 5898 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5899 } 5900 5901 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5902 const auto *D = cast<ValueDecl>(GD.getDecl()); 5903 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5904 assert(IFA && "Not an ifunc?"); 5905 5906 StringRef MangledName = getMangledName(GD); 5907 5908 if (IFA->getResolver() == MangledName) { 5909 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5910 return; 5911 } 5912 5913 // Report an error if some definition overrides ifunc. 5914 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5915 if (Entry && !Entry->isDeclaration()) { 5916 GlobalDecl OtherGD; 5917 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5918 DiagnosedConflictingDefinitions.insert(GD).second) { 5919 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5920 << MangledName; 5921 Diags.Report(OtherGD.getDecl()->getLocation(), 5922 diag::note_previous_definition); 5923 } 5924 return; 5925 } 5926 5927 Aliases.push_back(GD); 5928 5929 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5930 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5931 llvm::Constant *Resolver = 5932 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5933 /*ForVTable=*/false); 5934 llvm::GlobalIFunc *GIF = 5935 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5936 "", Resolver, &getModule()); 5937 if (Entry) { 5938 if (GIF->getResolver() == Entry) { 5939 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5940 return; 5941 } 5942 assert(Entry->isDeclaration()); 5943 5944 // If there is a declaration in the module, then we had an extern followed 5945 // by the ifunc, as in: 5946 // extern int test(); 5947 // ... 5948 // int test() __attribute__((ifunc("resolver"))); 5949 // 5950 // Remove it and replace uses of it with the ifunc. 5951 GIF->takeName(Entry); 5952 5953 Entry->replaceAllUsesWith(GIF); 5954 Entry->eraseFromParent(); 5955 } else 5956 GIF->setName(MangledName); 5957 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5958 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5959 } 5960 SetCommonAttributes(GD, GIF); 5961 } 5962 5963 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5964 ArrayRef<llvm::Type*> Tys) { 5965 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5966 Tys); 5967 } 5968 5969 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5970 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5971 const StringLiteral *Literal, bool TargetIsLSB, 5972 bool &IsUTF16, unsigned &StringLength) { 5973 StringRef String = Literal->getString(); 5974 unsigned NumBytes = String.size(); 5975 5976 // Check for simple case. 5977 if (!Literal->containsNonAsciiOrNull()) { 5978 StringLength = NumBytes; 5979 return *Map.insert(std::make_pair(String, nullptr)).first; 5980 } 5981 5982 // Otherwise, convert the UTF8 literals into a string of shorts. 5983 IsUTF16 = true; 5984 5985 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5986 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5987 llvm::UTF16 *ToPtr = &ToBuf[0]; 5988 5989 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5990 ToPtr + NumBytes, llvm::strictConversion); 5991 5992 // ConvertUTF8toUTF16 returns the length in ToPtr. 5993 StringLength = ToPtr - &ToBuf[0]; 5994 5995 // Add an explicit null. 5996 *ToPtr = 0; 5997 return *Map.insert(std::make_pair( 5998 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5999 (StringLength + 1) * 2), 6000 nullptr)).first; 6001 } 6002 6003 ConstantAddress 6004 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6005 unsigned StringLength = 0; 6006 bool isUTF16 = false; 6007 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6008 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6009 getDataLayout().isLittleEndian(), isUTF16, 6010 StringLength); 6011 6012 if (auto *C = Entry.second) 6013 return ConstantAddress( 6014 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6015 6016 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6017 llvm::Constant *Zeros[] = { Zero, Zero }; 6018 6019 const ASTContext &Context = getContext(); 6020 const llvm::Triple &Triple = getTriple(); 6021 6022 const auto CFRuntime = getLangOpts().CFRuntime; 6023 const bool IsSwiftABI = 6024 static_cast<unsigned>(CFRuntime) >= 6025 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6026 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6027 6028 // If we don't already have it, get __CFConstantStringClassReference. 6029 if (!CFConstantStringClassRef) { 6030 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6031 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6032 Ty = llvm::ArrayType::get(Ty, 0); 6033 6034 switch (CFRuntime) { 6035 default: break; 6036 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6037 case LangOptions::CoreFoundationABI::Swift5_0: 6038 CFConstantStringClassName = 6039 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6040 : "$s10Foundation19_NSCFConstantStringCN"; 6041 Ty = IntPtrTy; 6042 break; 6043 case LangOptions::CoreFoundationABI::Swift4_2: 6044 CFConstantStringClassName = 6045 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6046 : "$S10Foundation19_NSCFConstantStringCN"; 6047 Ty = IntPtrTy; 6048 break; 6049 case LangOptions::CoreFoundationABI::Swift4_1: 6050 CFConstantStringClassName = 6051 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6052 : "__T010Foundation19_NSCFConstantStringCN"; 6053 Ty = IntPtrTy; 6054 break; 6055 } 6056 6057 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6058 6059 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6060 llvm::GlobalValue *GV = nullptr; 6061 6062 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6063 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6064 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6065 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6066 6067 const VarDecl *VD = nullptr; 6068 for (const auto *Result : DC->lookup(&II)) 6069 if ((VD = dyn_cast<VarDecl>(Result))) 6070 break; 6071 6072 if (Triple.isOSBinFormatELF()) { 6073 if (!VD) 6074 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6075 } else { 6076 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6077 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6078 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6079 else 6080 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6081 } 6082 6083 setDSOLocal(GV); 6084 } 6085 } 6086 6087 // Decay array -> ptr 6088 CFConstantStringClassRef = 6089 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6090 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6091 } 6092 6093 QualType CFTy = Context.getCFConstantStringType(); 6094 6095 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6096 6097 ConstantInitBuilder Builder(*this); 6098 auto Fields = Builder.beginStruct(STy); 6099 6100 // Class pointer. 6101 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6102 6103 // Flags. 6104 if (IsSwiftABI) { 6105 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6106 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6107 } else { 6108 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6109 } 6110 6111 // String pointer. 6112 llvm::Constant *C = nullptr; 6113 if (isUTF16) { 6114 auto Arr = llvm::ArrayRef( 6115 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6116 Entry.first().size() / 2); 6117 C = llvm::ConstantDataArray::get(VMContext, Arr); 6118 } else { 6119 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6120 } 6121 6122 // Note: -fwritable-strings doesn't make the backing store strings of 6123 // CFStrings writable. 6124 auto *GV = 6125 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6126 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6127 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6128 // Don't enforce the target's minimum global alignment, since the only use 6129 // of the string is via this class initializer. 6130 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6131 : Context.getTypeAlignInChars(Context.CharTy); 6132 GV->setAlignment(Align.getAsAlign()); 6133 6134 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6135 // Without it LLVM can merge the string with a non unnamed_addr one during 6136 // LTO. Doing that changes the section it ends in, which surprises ld64. 6137 if (Triple.isOSBinFormatMachO()) 6138 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6139 : "__TEXT,__cstring,cstring_literals"); 6140 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6141 // the static linker to adjust permissions to read-only later on. 6142 else if (Triple.isOSBinFormatELF()) 6143 GV->setSection(".rodata"); 6144 6145 // String. 6146 llvm::Constant *Str = 6147 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6148 6149 Fields.add(Str); 6150 6151 // String length. 6152 llvm::IntegerType *LengthTy = 6153 llvm::IntegerType::get(getModule().getContext(), 6154 Context.getTargetInfo().getLongWidth()); 6155 if (IsSwiftABI) { 6156 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6157 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6158 LengthTy = Int32Ty; 6159 else 6160 LengthTy = IntPtrTy; 6161 } 6162 Fields.addInt(LengthTy, StringLength); 6163 6164 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6165 // properly aligned on 32-bit platforms. 6166 CharUnits Alignment = 6167 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6168 6169 // The struct. 6170 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6171 /*isConstant=*/false, 6172 llvm::GlobalVariable::PrivateLinkage); 6173 GV->addAttribute("objc_arc_inert"); 6174 switch (Triple.getObjectFormat()) { 6175 case llvm::Triple::UnknownObjectFormat: 6176 llvm_unreachable("unknown file format"); 6177 case llvm::Triple::DXContainer: 6178 case llvm::Triple::GOFF: 6179 case llvm::Triple::SPIRV: 6180 case llvm::Triple::XCOFF: 6181 llvm_unreachable("unimplemented"); 6182 case llvm::Triple::COFF: 6183 case llvm::Triple::ELF: 6184 case llvm::Triple::Wasm: 6185 GV->setSection("cfstring"); 6186 break; 6187 case llvm::Triple::MachO: 6188 GV->setSection("__DATA,__cfstring"); 6189 break; 6190 } 6191 Entry.second = GV; 6192 6193 return ConstantAddress(GV, GV->getValueType(), Alignment); 6194 } 6195 6196 bool CodeGenModule::getExpressionLocationsEnabled() const { 6197 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6198 } 6199 6200 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6201 if (ObjCFastEnumerationStateType.isNull()) { 6202 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6203 D->startDefinition(); 6204 6205 QualType FieldTypes[] = { 6206 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6207 Context.getPointerType(Context.UnsignedLongTy), 6208 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6209 nullptr, ArraySizeModifier::Normal, 0)}; 6210 6211 for (size_t i = 0; i < 4; ++i) { 6212 FieldDecl *Field = FieldDecl::Create(Context, 6213 D, 6214 SourceLocation(), 6215 SourceLocation(), nullptr, 6216 FieldTypes[i], /*TInfo=*/nullptr, 6217 /*BitWidth=*/nullptr, 6218 /*Mutable=*/false, 6219 ICIS_NoInit); 6220 Field->setAccess(AS_public); 6221 D->addDecl(Field); 6222 } 6223 6224 D->completeDefinition(); 6225 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6226 } 6227 6228 return ObjCFastEnumerationStateType; 6229 } 6230 6231 llvm::Constant * 6232 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6233 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6234 6235 // Don't emit it as the address of the string, emit the string data itself 6236 // as an inline array. 6237 if (E->getCharByteWidth() == 1) { 6238 SmallString<64> Str(E->getString()); 6239 6240 // Resize the string to the right size, which is indicated by its type. 6241 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6242 assert(CAT && "String literal not of constant array type!"); 6243 Str.resize(CAT->getSize().getZExtValue()); 6244 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6245 } 6246 6247 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6248 llvm::Type *ElemTy = AType->getElementType(); 6249 unsigned NumElements = AType->getNumElements(); 6250 6251 // Wide strings have either 2-byte or 4-byte elements. 6252 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6253 SmallVector<uint16_t, 32> Elements; 6254 Elements.reserve(NumElements); 6255 6256 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6257 Elements.push_back(E->getCodeUnit(i)); 6258 Elements.resize(NumElements); 6259 return llvm::ConstantDataArray::get(VMContext, Elements); 6260 } 6261 6262 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6263 SmallVector<uint32_t, 32> Elements; 6264 Elements.reserve(NumElements); 6265 6266 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6267 Elements.push_back(E->getCodeUnit(i)); 6268 Elements.resize(NumElements); 6269 return llvm::ConstantDataArray::get(VMContext, Elements); 6270 } 6271 6272 static llvm::GlobalVariable * 6273 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6274 CodeGenModule &CGM, StringRef GlobalName, 6275 CharUnits Alignment) { 6276 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6277 CGM.GetGlobalConstantAddressSpace()); 6278 6279 llvm::Module &M = CGM.getModule(); 6280 // Create a global variable for this string 6281 auto *GV = new llvm::GlobalVariable( 6282 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6283 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6284 GV->setAlignment(Alignment.getAsAlign()); 6285 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6286 if (GV->isWeakForLinker()) { 6287 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6288 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6289 } 6290 CGM.setDSOLocal(GV); 6291 6292 return GV; 6293 } 6294 6295 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6296 /// constant array for the given string literal. 6297 ConstantAddress 6298 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6299 StringRef Name) { 6300 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6301 6302 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6303 llvm::GlobalVariable **Entry = nullptr; 6304 if (!LangOpts.WritableStrings) { 6305 Entry = &ConstantStringMap[C]; 6306 if (auto GV = *Entry) { 6307 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6308 GV->setAlignment(Alignment.getAsAlign()); 6309 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6310 GV->getValueType(), Alignment); 6311 } 6312 } 6313 6314 SmallString<256> MangledNameBuffer; 6315 StringRef GlobalVariableName; 6316 llvm::GlobalValue::LinkageTypes LT; 6317 6318 // Mangle the string literal if that's how the ABI merges duplicate strings. 6319 // Don't do it if they are writable, since we don't want writes in one TU to 6320 // affect strings in another. 6321 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6322 !LangOpts.WritableStrings) { 6323 llvm::raw_svector_ostream Out(MangledNameBuffer); 6324 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6325 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6326 GlobalVariableName = MangledNameBuffer; 6327 } else { 6328 LT = llvm::GlobalValue::PrivateLinkage; 6329 GlobalVariableName = Name; 6330 } 6331 6332 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6333 6334 CGDebugInfo *DI = getModuleDebugInfo(); 6335 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6336 DI->AddStringLiteralDebugInfo(GV, S); 6337 6338 if (Entry) 6339 *Entry = GV; 6340 6341 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6342 6343 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6344 GV->getValueType(), Alignment); 6345 } 6346 6347 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6348 /// array for the given ObjCEncodeExpr node. 6349 ConstantAddress 6350 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6351 std::string Str; 6352 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6353 6354 return GetAddrOfConstantCString(Str); 6355 } 6356 6357 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6358 /// the literal and a terminating '\0' character. 6359 /// The result has pointer to array type. 6360 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6361 const std::string &Str, const char *GlobalName) { 6362 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6363 CharUnits Alignment = 6364 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6365 6366 llvm::Constant *C = 6367 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6368 6369 // Don't share any string literals if strings aren't constant. 6370 llvm::GlobalVariable **Entry = nullptr; 6371 if (!LangOpts.WritableStrings) { 6372 Entry = &ConstantStringMap[C]; 6373 if (auto GV = *Entry) { 6374 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6375 GV->setAlignment(Alignment.getAsAlign()); 6376 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6377 GV->getValueType(), Alignment); 6378 } 6379 } 6380 6381 // Get the default prefix if a name wasn't specified. 6382 if (!GlobalName) 6383 GlobalName = ".str"; 6384 // Create a global variable for this. 6385 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6386 GlobalName, Alignment); 6387 if (Entry) 6388 *Entry = GV; 6389 6390 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6391 GV->getValueType(), Alignment); 6392 } 6393 6394 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6395 const MaterializeTemporaryExpr *E, const Expr *Init) { 6396 assert((E->getStorageDuration() == SD_Static || 6397 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6398 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6399 6400 // If we're not materializing a subobject of the temporary, keep the 6401 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6402 QualType MaterializedType = Init->getType(); 6403 if (Init == E->getSubExpr()) 6404 MaterializedType = E->getType(); 6405 6406 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6407 6408 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6409 if (!InsertResult.second) { 6410 // We've seen this before: either we already created it or we're in the 6411 // process of doing so. 6412 if (!InsertResult.first->second) { 6413 // We recursively re-entered this function, probably during emission of 6414 // the initializer. Create a placeholder. We'll clean this up in the 6415 // outer call, at the end of this function. 6416 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6417 InsertResult.first->second = new llvm::GlobalVariable( 6418 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6419 nullptr); 6420 } 6421 return ConstantAddress(InsertResult.first->second, 6422 llvm::cast<llvm::GlobalVariable>( 6423 InsertResult.first->second->stripPointerCasts()) 6424 ->getValueType(), 6425 Align); 6426 } 6427 6428 // FIXME: If an externally-visible declaration extends multiple temporaries, 6429 // we need to give each temporary the same name in every translation unit (and 6430 // we also need to make the temporaries externally-visible). 6431 SmallString<256> Name; 6432 llvm::raw_svector_ostream Out(Name); 6433 getCXXABI().getMangleContext().mangleReferenceTemporary( 6434 VD, E->getManglingNumber(), Out); 6435 6436 APValue *Value = nullptr; 6437 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6438 // If the initializer of the extending declaration is a constant 6439 // initializer, we should have a cached constant initializer for this 6440 // temporary. Note that this might have a different value from the value 6441 // computed by evaluating the initializer if the surrounding constant 6442 // expression modifies the temporary. 6443 Value = E->getOrCreateValue(false); 6444 } 6445 6446 // Try evaluating it now, it might have a constant initializer. 6447 Expr::EvalResult EvalResult; 6448 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6449 !EvalResult.hasSideEffects()) 6450 Value = &EvalResult.Val; 6451 6452 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6453 6454 std::optional<ConstantEmitter> emitter; 6455 llvm::Constant *InitialValue = nullptr; 6456 bool Constant = false; 6457 llvm::Type *Type; 6458 if (Value) { 6459 // The temporary has a constant initializer, use it. 6460 emitter.emplace(*this); 6461 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6462 MaterializedType); 6463 Constant = 6464 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6465 /*ExcludeDtor*/ false); 6466 Type = InitialValue->getType(); 6467 } else { 6468 // No initializer, the initialization will be provided when we 6469 // initialize the declaration which performed lifetime extension. 6470 Type = getTypes().ConvertTypeForMem(MaterializedType); 6471 } 6472 6473 // Create a global variable for this lifetime-extended temporary. 6474 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6475 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6476 const VarDecl *InitVD; 6477 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6478 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6479 // Temporaries defined inside a class get linkonce_odr linkage because the 6480 // class can be defined in multiple translation units. 6481 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6482 } else { 6483 // There is no need for this temporary to have external linkage if the 6484 // VarDecl has external linkage. 6485 Linkage = llvm::GlobalVariable::InternalLinkage; 6486 } 6487 } 6488 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6489 auto *GV = new llvm::GlobalVariable( 6490 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6491 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6492 if (emitter) emitter->finalize(GV); 6493 // Don't assign dllimport or dllexport to local linkage globals. 6494 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6495 setGVProperties(GV, VD); 6496 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6497 // The reference temporary should never be dllexport. 6498 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6499 } 6500 GV->setAlignment(Align.getAsAlign()); 6501 if (supportsCOMDAT() && GV->isWeakForLinker()) 6502 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6503 if (VD->getTLSKind()) 6504 setTLSMode(GV, *VD); 6505 llvm::Constant *CV = GV; 6506 if (AddrSpace != LangAS::Default) 6507 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6508 *this, GV, AddrSpace, LangAS::Default, 6509 llvm::PointerType::get( 6510 getLLVMContext(), 6511 getContext().getTargetAddressSpace(LangAS::Default))); 6512 6513 // Update the map with the new temporary. If we created a placeholder above, 6514 // replace it with the new global now. 6515 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6516 if (Entry) { 6517 Entry->replaceAllUsesWith(CV); 6518 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6519 } 6520 Entry = CV; 6521 6522 return ConstantAddress(CV, Type, Align); 6523 } 6524 6525 /// EmitObjCPropertyImplementations - Emit information for synthesized 6526 /// properties for an implementation. 6527 void CodeGenModule::EmitObjCPropertyImplementations(const 6528 ObjCImplementationDecl *D) { 6529 for (const auto *PID : D->property_impls()) { 6530 // Dynamic is just for type-checking. 6531 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6532 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6533 6534 // Determine which methods need to be implemented, some may have 6535 // been overridden. Note that ::isPropertyAccessor is not the method 6536 // we want, that just indicates if the decl came from a 6537 // property. What we want to know is if the method is defined in 6538 // this implementation. 6539 auto *Getter = PID->getGetterMethodDecl(); 6540 if (!Getter || Getter->isSynthesizedAccessorStub()) 6541 CodeGenFunction(*this).GenerateObjCGetter( 6542 const_cast<ObjCImplementationDecl *>(D), PID); 6543 auto *Setter = PID->getSetterMethodDecl(); 6544 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6545 CodeGenFunction(*this).GenerateObjCSetter( 6546 const_cast<ObjCImplementationDecl *>(D), PID); 6547 } 6548 } 6549 } 6550 6551 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6552 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6553 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6554 ivar; ivar = ivar->getNextIvar()) 6555 if (ivar->getType().isDestructedType()) 6556 return true; 6557 6558 return false; 6559 } 6560 6561 static bool AllTrivialInitializers(CodeGenModule &CGM, 6562 ObjCImplementationDecl *D) { 6563 CodeGenFunction CGF(CGM); 6564 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6565 E = D->init_end(); B != E; ++B) { 6566 CXXCtorInitializer *CtorInitExp = *B; 6567 Expr *Init = CtorInitExp->getInit(); 6568 if (!CGF.isTrivialInitializer(Init)) 6569 return false; 6570 } 6571 return true; 6572 } 6573 6574 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6575 /// for an implementation. 6576 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6577 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6578 if (needsDestructMethod(D)) { 6579 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6580 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6581 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6582 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6583 getContext().VoidTy, nullptr, D, 6584 /*isInstance=*/true, /*isVariadic=*/false, 6585 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6586 /*isImplicitlyDeclared=*/true, 6587 /*isDefined=*/false, ObjCImplementationControl::Required); 6588 D->addInstanceMethod(DTORMethod); 6589 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6590 D->setHasDestructors(true); 6591 } 6592 6593 // If the implementation doesn't have any ivar initializers, we don't need 6594 // a .cxx_construct. 6595 if (D->getNumIvarInitializers() == 0 || 6596 AllTrivialInitializers(*this, D)) 6597 return; 6598 6599 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6600 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6601 // The constructor returns 'self'. 6602 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6603 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6604 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6605 /*isVariadic=*/false, 6606 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6607 /*isImplicitlyDeclared=*/true, 6608 /*isDefined=*/false, ObjCImplementationControl::Required); 6609 D->addInstanceMethod(CTORMethod); 6610 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6611 D->setHasNonZeroConstructors(true); 6612 } 6613 6614 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6615 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6616 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6617 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6618 ErrorUnsupported(LSD, "linkage spec"); 6619 return; 6620 } 6621 6622 EmitDeclContext(LSD); 6623 } 6624 6625 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6626 // Device code should not be at top level. 6627 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6628 return; 6629 6630 std::unique_ptr<CodeGenFunction> &CurCGF = 6631 GlobalTopLevelStmtBlockInFlight.first; 6632 6633 // We emitted a top-level stmt but after it there is initialization. 6634 // Stop squashing the top-level stmts into a single function. 6635 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6636 CurCGF->FinishFunction(D->getEndLoc()); 6637 CurCGF = nullptr; 6638 } 6639 6640 if (!CurCGF) { 6641 // void __stmts__N(void) 6642 // FIXME: Ask the ABI name mangler to pick a name. 6643 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6644 FunctionArgList Args; 6645 QualType RetTy = getContext().VoidTy; 6646 const CGFunctionInfo &FnInfo = 6647 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6648 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6649 llvm::Function *Fn = llvm::Function::Create( 6650 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6651 6652 CurCGF.reset(new CodeGenFunction(*this)); 6653 GlobalTopLevelStmtBlockInFlight.second = D; 6654 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6655 D->getBeginLoc(), D->getBeginLoc()); 6656 CXXGlobalInits.push_back(Fn); 6657 } 6658 6659 CurCGF->EmitStmt(D->getStmt()); 6660 } 6661 6662 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6663 for (auto *I : DC->decls()) { 6664 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6665 // are themselves considered "top-level", so EmitTopLevelDecl on an 6666 // ObjCImplDecl does not recursively visit them. We need to do that in 6667 // case they're nested inside another construct (LinkageSpecDecl / 6668 // ExportDecl) that does stop them from being considered "top-level". 6669 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6670 for (auto *M : OID->methods()) 6671 EmitTopLevelDecl(M); 6672 } 6673 6674 EmitTopLevelDecl(I); 6675 } 6676 } 6677 6678 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6679 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6680 // Ignore dependent declarations. 6681 if (D->isTemplated()) 6682 return; 6683 6684 // Consteval function shouldn't be emitted. 6685 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6686 return; 6687 6688 switch (D->getKind()) { 6689 case Decl::CXXConversion: 6690 case Decl::CXXMethod: 6691 case Decl::Function: 6692 EmitGlobal(cast<FunctionDecl>(D)); 6693 // Always provide some coverage mapping 6694 // even for the functions that aren't emitted. 6695 AddDeferredUnusedCoverageMapping(D); 6696 break; 6697 6698 case Decl::CXXDeductionGuide: 6699 // Function-like, but does not result in code emission. 6700 break; 6701 6702 case Decl::Var: 6703 case Decl::Decomposition: 6704 case Decl::VarTemplateSpecialization: 6705 EmitGlobal(cast<VarDecl>(D)); 6706 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6707 for (auto *B : DD->bindings()) 6708 if (auto *HD = B->getHoldingVar()) 6709 EmitGlobal(HD); 6710 break; 6711 6712 // Indirect fields from global anonymous structs and unions can be 6713 // ignored; only the actual variable requires IR gen support. 6714 case Decl::IndirectField: 6715 break; 6716 6717 // C++ Decls 6718 case Decl::Namespace: 6719 EmitDeclContext(cast<NamespaceDecl>(D)); 6720 break; 6721 case Decl::ClassTemplateSpecialization: { 6722 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6723 if (CGDebugInfo *DI = getModuleDebugInfo()) 6724 if (Spec->getSpecializationKind() == 6725 TSK_ExplicitInstantiationDefinition && 6726 Spec->hasDefinition()) 6727 DI->completeTemplateDefinition(*Spec); 6728 } [[fallthrough]]; 6729 case Decl::CXXRecord: { 6730 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6731 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6732 if (CRD->hasDefinition()) 6733 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6734 if (auto *ES = D->getASTContext().getExternalSource()) 6735 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6736 DI->completeUnusedClass(*CRD); 6737 } 6738 // Emit any static data members, they may be definitions. 6739 for (auto *I : CRD->decls()) 6740 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6741 EmitTopLevelDecl(I); 6742 break; 6743 } 6744 // No code generation needed. 6745 case Decl::UsingShadow: 6746 case Decl::ClassTemplate: 6747 case Decl::VarTemplate: 6748 case Decl::Concept: 6749 case Decl::VarTemplatePartialSpecialization: 6750 case Decl::FunctionTemplate: 6751 case Decl::TypeAliasTemplate: 6752 case Decl::Block: 6753 case Decl::Empty: 6754 case Decl::Binding: 6755 break; 6756 case Decl::Using: // using X; [C++] 6757 if (CGDebugInfo *DI = getModuleDebugInfo()) 6758 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6759 break; 6760 case Decl::UsingEnum: // using enum X; [C++] 6761 if (CGDebugInfo *DI = getModuleDebugInfo()) 6762 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6763 break; 6764 case Decl::NamespaceAlias: 6765 if (CGDebugInfo *DI = getModuleDebugInfo()) 6766 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6767 break; 6768 case Decl::UsingDirective: // using namespace X; [C++] 6769 if (CGDebugInfo *DI = getModuleDebugInfo()) 6770 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6771 break; 6772 case Decl::CXXConstructor: 6773 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6774 break; 6775 case Decl::CXXDestructor: 6776 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6777 break; 6778 6779 case Decl::StaticAssert: 6780 // Nothing to do. 6781 break; 6782 6783 // Objective-C Decls 6784 6785 // Forward declarations, no (immediate) code generation. 6786 case Decl::ObjCInterface: 6787 case Decl::ObjCCategory: 6788 break; 6789 6790 case Decl::ObjCProtocol: { 6791 auto *Proto = cast<ObjCProtocolDecl>(D); 6792 if (Proto->isThisDeclarationADefinition()) 6793 ObjCRuntime->GenerateProtocol(Proto); 6794 break; 6795 } 6796 6797 case Decl::ObjCCategoryImpl: 6798 // Categories have properties but don't support synthesize so we 6799 // can ignore them here. 6800 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6801 break; 6802 6803 case Decl::ObjCImplementation: { 6804 auto *OMD = cast<ObjCImplementationDecl>(D); 6805 EmitObjCPropertyImplementations(OMD); 6806 EmitObjCIvarInitializations(OMD); 6807 ObjCRuntime->GenerateClass(OMD); 6808 // Emit global variable debug information. 6809 if (CGDebugInfo *DI = getModuleDebugInfo()) 6810 if (getCodeGenOpts().hasReducedDebugInfo()) 6811 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6812 OMD->getClassInterface()), OMD->getLocation()); 6813 break; 6814 } 6815 case Decl::ObjCMethod: { 6816 auto *OMD = cast<ObjCMethodDecl>(D); 6817 // If this is not a prototype, emit the body. 6818 if (OMD->getBody()) 6819 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6820 break; 6821 } 6822 case Decl::ObjCCompatibleAlias: 6823 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6824 break; 6825 6826 case Decl::PragmaComment: { 6827 const auto *PCD = cast<PragmaCommentDecl>(D); 6828 switch (PCD->getCommentKind()) { 6829 case PCK_Unknown: 6830 llvm_unreachable("unexpected pragma comment kind"); 6831 case PCK_Linker: 6832 AppendLinkerOptions(PCD->getArg()); 6833 break; 6834 case PCK_Lib: 6835 AddDependentLib(PCD->getArg()); 6836 break; 6837 case PCK_Compiler: 6838 case PCK_ExeStr: 6839 case PCK_User: 6840 break; // We ignore all of these. 6841 } 6842 break; 6843 } 6844 6845 case Decl::PragmaDetectMismatch: { 6846 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6847 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6848 break; 6849 } 6850 6851 case Decl::LinkageSpec: 6852 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6853 break; 6854 6855 case Decl::FileScopeAsm: { 6856 // File-scope asm is ignored during device-side CUDA compilation. 6857 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6858 break; 6859 // File-scope asm is ignored during device-side OpenMP compilation. 6860 if (LangOpts.OpenMPIsTargetDevice) 6861 break; 6862 // File-scope asm is ignored during device-side SYCL compilation. 6863 if (LangOpts.SYCLIsDevice) 6864 break; 6865 auto *AD = cast<FileScopeAsmDecl>(D); 6866 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6867 break; 6868 } 6869 6870 case Decl::TopLevelStmt: 6871 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6872 break; 6873 6874 case Decl::Import: { 6875 auto *Import = cast<ImportDecl>(D); 6876 6877 // If we've already imported this module, we're done. 6878 if (!ImportedModules.insert(Import->getImportedModule())) 6879 break; 6880 6881 // Emit debug information for direct imports. 6882 if (!Import->getImportedOwningModule()) { 6883 if (CGDebugInfo *DI = getModuleDebugInfo()) 6884 DI->EmitImportDecl(*Import); 6885 } 6886 6887 // For C++ standard modules we are done - we will call the module 6888 // initializer for imported modules, and that will likewise call those for 6889 // any imports it has. 6890 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6891 !Import->getImportedOwningModule()->isModuleMapModule()) 6892 break; 6893 6894 // For clang C++ module map modules the initializers for sub-modules are 6895 // emitted here. 6896 6897 // Find all of the submodules and emit the module initializers. 6898 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6899 SmallVector<clang::Module *, 16> Stack; 6900 Visited.insert(Import->getImportedModule()); 6901 Stack.push_back(Import->getImportedModule()); 6902 6903 while (!Stack.empty()) { 6904 clang::Module *Mod = Stack.pop_back_val(); 6905 if (!EmittedModuleInitializers.insert(Mod).second) 6906 continue; 6907 6908 for (auto *D : Context.getModuleInitializers(Mod)) 6909 EmitTopLevelDecl(D); 6910 6911 // Visit the submodules of this module. 6912 for (auto *Submodule : Mod->submodules()) { 6913 // Skip explicit children; they need to be explicitly imported to emit 6914 // the initializers. 6915 if (Submodule->IsExplicit) 6916 continue; 6917 6918 if (Visited.insert(Submodule).second) 6919 Stack.push_back(Submodule); 6920 } 6921 } 6922 break; 6923 } 6924 6925 case Decl::Export: 6926 EmitDeclContext(cast<ExportDecl>(D)); 6927 break; 6928 6929 case Decl::OMPThreadPrivate: 6930 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6931 break; 6932 6933 case Decl::OMPAllocate: 6934 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6935 break; 6936 6937 case Decl::OMPDeclareReduction: 6938 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6939 break; 6940 6941 case Decl::OMPDeclareMapper: 6942 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6943 break; 6944 6945 case Decl::OMPRequires: 6946 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6947 break; 6948 6949 case Decl::Typedef: 6950 case Decl::TypeAlias: // using foo = bar; [C++11] 6951 if (CGDebugInfo *DI = getModuleDebugInfo()) 6952 DI->EmitAndRetainType( 6953 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6954 break; 6955 6956 case Decl::Record: 6957 if (CGDebugInfo *DI = getModuleDebugInfo()) 6958 if (cast<RecordDecl>(D)->getDefinition()) 6959 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6960 break; 6961 6962 case Decl::Enum: 6963 if (CGDebugInfo *DI = getModuleDebugInfo()) 6964 if (cast<EnumDecl>(D)->getDefinition()) 6965 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6966 break; 6967 6968 case Decl::HLSLBuffer: 6969 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6970 break; 6971 6972 default: 6973 // Make sure we handled everything we should, every other kind is a 6974 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6975 // function. Need to recode Decl::Kind to do that easily. 6976 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6977 break; 6978 } 6979 } 6980 6981 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6982 // Do we need to generate coverage mapping? 6983 if (!CodeGenOpts.CoverageMapping) 6984 return; 6985 switch (D->getKind()) { 6986 case Decl::CXXConversion: 6987 case Decl::CXXMethod: 6988 case Decl::Function: 6989 case Decl::ObjCMethod: 6990 case Decl::CXXConstructor: 6991 case Decl::CXXDestructor: { 6992 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6993 break; 6994 SourceManager &SM = getContext().getSourceManager(); 6995 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6996 break; 6997 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 6998 break; 6999 } 7000 default: 7001 break; 7002 }; 7003 } 7004 7005 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7006 // Do we need to generate coverage mapping? 7007 if (!CodeGenOpts.CoverageMapping) 7008 return; 7009 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7010 if (Fn->isTemplateInstantiation()) 7011 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7012 } 7013 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7014 } 7015 7016 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7017 // We call takeVector() here to avoid use-after-free. 7018 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7019 // we deserialize function bodies to emit coverage info for them, and that 7020 // deserializes more declarations. How should we handle that case? 7021 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7022 if (!Entry.second) 7023 continue; 7024 const Decl *D = Entry.first; 7025 switch (D->getKind()) { 7026 case Decl::CXXConversion: 7027 case Decl::CXXMethod: 7028 case Decl::Function: 7029 case Decl::ObjCMethod: { 7030 CodeGenPGO PGO(*this); 7031 GlobalDecl GD(cast<FunctionDecl>(D)); 7032 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7033 getFunctionLinkage(GD)); 7034 break; 7035 } 7036 case Decl::CXXConstructor: { 7037 CodeGenPGO PGO(*this); 7038 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7039 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7040 getFunctionLinkage(GD)); 7041 break; 7042 } 7043 case Decl::CXXDestructor: { 7044 CodeGenPGO PGO(*this); 7045 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7046 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7047 getFunctionLinkage(GD)); 7048 break; 7049 } 7050 default: 7051 break; 7052 }; 7053 } 7054 } 7055 7056 void CodeGenModule::EmitMainVoidAlias() { 7057 // In order to transition away from "__original_main" gracefully, emit an 7058 // alias for "main" in the no-argument case so that libc can detect when 7059 // new-style no-argument main is in used. 7060 if (llvm::Function *F = getModule().getFunction("main")) { 7061 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7062 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7063 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7064 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7065 } 7066 } 7067 } 7068 7069 /// Turns the given pointer into a constant. 7070 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7071 const void *Ptr) { 7072 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7073 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7074 return llvm::ConstantInt::get(i64, PtrInt); 7075 } 7076 7077 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7078 llvm::NamedMDNode *&GlobalMetadata, 7079 GlobalDecl D, 7080 llvm::GlobalValue *Addr) { 7081 if (!GlobalMetadata) 7082 GlobalMetadata = 7083 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7084 7085 // TODO: should we report variant information for ctors/dtors? 7086 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7087 llvm::ConstantAsMetadata::get(GetPointerConstant( 7088 CGM.getLLVMContext(), D.getDecl()))}; 7089 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7090 } 7091 7092 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7093 llvm::GlobalValue *CppFunc) { 7094 // Store the list of ifuncs we need to replace uses in. 7095 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7096 // List of ConstantExprs that we should be able to delete when we're done 7097 // here. 7098 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7099 7100 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7101 if (Elem == CppFunc) 7102 return false; 7103 7104 // First make sure that all users of this are ifuncs (or ifuncs via a 7105 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7106 // later. 7107 for (llvm::User *User : Elem->users()) { 7108 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7109 // ifunc directly. In any other case, just give up, as we don't know what we 7110 // could break by changing those. 7111 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7112 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7113 return false; 7114 7115 for (llvm::User *CEUser : ConstExpr->users()) { 7116 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7117 IFuncs.push_back(IFunc); 7118 } else { 7119 return false; 7120 } 7121 } 7122 CEs.push_back(ConstExpr); 7123 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7124 IFuncs.push_back(IFunc); 7125 } else { 7126 // This user is one we don't know how to handle, so fail redirection. This 7127 // will result in an ifunc retaining a resolver name that will ultimately 7128 // fail to be resolved to a defined function. 7129 return false; 7130 } 7131 } 7132 7133 // Now we know this is a valid case where we can do this alias replacement, we 7134 // need to remove all of the references to Elem (and the bitcasts!) so we can 7135 // delete it. 7136 for (llvm::GlobalIFunc *IFunc : IFuncs) 7137 IFunc->setResolver(nullptr); 7138 for (llvm::ConstantExpr *ConstExpr : CEs) 7139 ConstExpr->destroyConstant(); 7140 7141 // We should now be out of uses for the 'old' version of this function, so we 7142 // can erase it as well. 7143 Elem->eraseFromParent(); 7144 7145 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7146 // The type of the resolver is always just a function-type that returns the 7147 // type of the IFunc, so create that here. If the type of the actual 7148 // resolver doesn't match, it just gets bitcast to the right thing. 7149 auto *ResolverTy = 7150 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7151 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7152 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7153 IFunc->setResolver(Resolver); 7154 } 7155 return true; 7156 } 7157 7158 /// For each function which is declared within an extern "C" region and marked 7159 /// as 'used', but has internal linkage, create an alias from the unmangled 7160 /// name to the mangled name if possible. People expect to be able to refer 7161 /// to such functions with an unmangled name from inline assembly within the 7162 /// same translation unit. 7163 void CodeGenModule::EmitStaticExternCAliases() { 7164 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7165 return; 7166 for (auto &I : StaticExternCValues) { 7167 IdentifierInfo *Name = I.first; 7168 llvm::GlobalValue *Val = I.second; 7169 7170 // If Val is null, that implies there were multiple declarations that each 7171 // had a claim to the unmangled name. In this case, generation of the alias 7172 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7173 if (!Val) 7174 break; 7175 7176 llvm::GlobalValue *ExistingElem = 7177 getModule().getNamedValue(Name->getName()); 7178 7179 // If there is either not something already by this name, or we were able to 7180 // replace all uses from IFuncs, create the alias. 7181 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7182 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7183 } 7184 } 7185 7186 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7187 GlobalDecl &Result) const { 7188 auto Res = Manglings.find(MangledName); 7189 if (Res == Manglings.end()) 7190 return false; 7191 Result = Res->getValue(); 7192 return true; 7193 } 7194 7195 /// Emits metadata nodes associating all the global values in the 7196 /// current module with the Decls they came from. This is useful for 7197 /// projects using IR gen as a subroutine. 7198 /// 7199 /// Since there's currently no way to associate an MDNode directly 7200 /// with an llvm::GlobalValue, we create a global named metadata 7201 /// with the name 'clang.global.decl.ptrs'. 7202 void CodeGenModule::EmitDeclMetadata() { 7203 llvm::NamedMDNode *GlobalMetadata = nullptr; 7204 7205 for (auto &I : MangledDeclNames) { 7206 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7207 // Some mangled names don't necessarily have an associated GlobalValue 7208 // in this module, e.g. if we mangled it for DebugInfo. 7209 if (Addr) 7210 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7211 } 7212 } 7213 7214 /// Emits metadata nodes for all the local variables in the current 7215 /// function. 7216 void CodeGenFunction::EmitDeclMetadata() { 7217 if (LocalDeclMap.empty()) return; 7218 7219 llvm::LLVMContext &Context = getLLVMContext(); 7220 7221 // Find the unique metadata ID for this name. 7222 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7223 7224 llvm::NamedMDNode *GlobalMetadata = nullptr; 7225 7226 for (auto &I : LocalDeclMap) { 7227 const Decl *D = I.first; 7228 llvm::Value *Addr = I.second.getPointer(); 7229 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7230 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7231 Alloca->setMetadata( 7232 DeclPtrKind, llvm::MDNode::get( 7233 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7234 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7235 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7236 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7237 } 7238 } 7239 } 7240 7241 void CodeGenModule::EmitVersionIdentMetadata() { 7242 llvm::NamedMDNode *IdentMetadata = 7243 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7244 std::string Version = getClangFullVersion(); 7245 llvm::LLVMContext &Ctx = TheModule.getContext(); 7246 7247 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7248 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7249 } 7250 7251 void CodeGenModule::EmitCommandLineMetadata() { 7252 llvm::NamedMDNode *CommandLineMetadata = 7253 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7254 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7255 llvm::LLVMContext &Ctx = TheModule.getContext(); 7256 7257 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7258 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7259 } 7260 7261 void CodeGenModule::EmitCoverageFile() { 7262 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7263 if (!CUNode) 7264 return; 7265 7266 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7267 llvm::LLVMContext &Ctx = TheModule.getContext(); 7268 auto *CoverageDataFile = 7269 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7270 auto *CoverageNotesFile = 7271 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7272 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7273 llvm::MDNode *CU = CUNode->getOperand(i); 7274 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7275 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7276 } 7277 } 7278 7279 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7280 bool ForEH) { 7281 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7282 // FIXME: should we even be calling this method if RTTI is disabled 7283 // and it's not for EH? 7284 if (!shouldEmitRTTI(ForEH)) 7285 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7286 7287 if (ForEH && Ty->isObjCObjectPointerType() && 7288 LangOpts.ObjCRuntime.isGNUFamily()) 7289 return ObjCRuntime->GetEHType(Ty); 7290 7291 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7292 } 7293 7294 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7295 // Do not emit threadprivates in simd-only mode. 7296 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7297 return; 7298 for (auto RefExpr : D->varlists()) { 7299 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7300 bool PerformInit = 7301 VD->getAnyInitializer() && 7302 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7303 /*ForRef=*/false); 7304 7305 Address Addr(GetAddrOfGlobalVar(VD), 7306 getTypes().ConvertTypeForMem(VD->getType()), 7307 getContext().getDeclAlign(VD)); 7308 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7309 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7310 CXXGlobalInits.push_back(InitFunction); 7311 } 7312 } 7313 7314 llvm::Metadata * 7315 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7316 StringRef Suffix) { 7317 if (auto *FnType = T->getAs<FunctionProtoType>()) 7318 T = getContext().getFunctionType( 7319 FnType->getReturnType(), FnType->getParamTypes(), 7320 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7321 7322 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7323 if (InternalId) 7324 return InternalId; 7325 7326 if (isExternallyVisible(T->getLinkage())) { 7327 std::string OutName; 7328 llvm::raw_string_ostream Out(OutName); 7329 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7330 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7331 7332 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7333 Out << ".normalized"; 7334 7335 Out << Suffix; 7336 7337 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7338 } else { 7339 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7340 llvm::ArrayRef<llvm::Metadata *>()); 7341 } 7342 7343 return InternalId; 7344 } 7345 7346 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7347 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7348 } 7349 7350 llvm::Metadata * 7351 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7352 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7353 } 7354 7355 // Generalize pointer types to a void pointer with the qualifiers of the 7356 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7357 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7358 // 'void *'. 7359 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7360 if (!Ty->isPointerType()) 7361 return Ty; 7362 7363 return Ctx.getPointerType( 7364 QualType(Ctx.VoidTy).withCVRQualifiers( 7365 Ty->getPointeeType().getCVRQualifiers())); 7366 } 7367 7368 // Apply type generalization to a FunctionType's return and argument types 7369 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7370 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7371 SmallVector<QualType, 8> GeneralizedParams; 7372 for (auto &Param : FnType->param_types()) 7373 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7374 7375 return Ctx.getFunctionType( 7376 GeneralizeType(Ctx, FnType->getReturnType()), 7377 GeneralizedParams, FnType->getExtProtoInfo()); 7378 } 7379 7380 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7381 return Ctx.getFunctionNoProtoType( 7382 GeneralizeType(Ctx, FnType->getReturnType())); 7383 7384 llvm_unreachable("Encountered unknown FunctionType"); 7385 } 7386 7387 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7388 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7389 GeneralizedMetadataIdMap, ".generalized"); 7390 } 7391 7392 /// Returns whether this module needs the "all-vtables" type identifier. 7393 bool CodeGenModule::NeedAllVtablesTypeId() const { 7394 // Returns true if at least one of vtable-based CFI checkers is enabled and 7395 // is not in the trapping mode. 7396 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7397 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7398 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7399 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7400 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7401 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7402 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7403 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7404 } 7405 7406 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7407 CharUnits Offset, 7408 const CXXRecordDecl *RD) { 7409 llvm::Metadata *MD = 7410 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7411 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7412 7413 if (CodeGenOpts.SanitizeCfiCrossDso) 7414 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7415 VTable->addTypeMetadata(Offset.getQuantity(), 7416 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7417 7418 if (NeedAllVtablesTypeId()) { 7419 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7420 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7421 } 7422 } 7423 7424 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7425 if (!SanStats) 7426 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7427 7428 return *SanStats; 7429 } 7430 7431 llvm::Value * 7432 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7433 CodeGenFunction &CGF) { 7434 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7435 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7436 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7437 auto *Call = CGF.EmitRuntimeCall( 7438 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7439 return Call; 7440 } 7441 7442 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7443 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7444 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7445 /* forPointeeType= */ true); 7446 } 7447 7448 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7449 LValueBaseInfo *BaseInfo, 7450 TBAAAccessInfo *TBAAInfo, 7451 bool forPointeeType) { 7452 if (TBAAInfo) 7453 *TBAAInfo = getTBAAAccessInfo(T); 7454 7455 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7456 // that doesn't return the information we need to compute BaseInfo. 7457 7458 // Honor alignment typedef attributes even on incomplete types. 7459 // We also honor them straight for C++ class types, even as pointees; 7460 // there's an expressivity gap here. 7461 if (auto TT = T->getAs<TypedefType>()) { 7462 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7463 if (BaseInfo) 7464 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7465 return getContext().toCharUnitsFromBits(Align); 7466 } 7467 } 7468 7469 bool AlignForArray = T->isArrayType(); 7470 7471 // Analyze the base element type, so we don't get confused by incomplete 7472 // array types. 7473 T = getContext().getBaseElementType(T); 7474 7475 if (T->isIncompleteType()) { 7476 // We could try to replicate the logic from 7477 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7478 // type is incomplete, so it's impossible to test. We could try to reuse 7479 // getTypeAlignIfKnown, but that doesn't return the information we need 7480 // to set BaseInfo. So just ignore the possibility that the alignment is 7481 // greater than one. 7482 if (BaseInfo) 7483 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7484 return CharUnits::One(); 7485 } 7486 7487 if (BaseInfo) 7488 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7489 7490 CharUnits Alignment; 7491 const CXXRecordDecl *RD; 7492 if (T.getQualifiers().hasUnaligned()) { 7493 Alignment = CharUnits::One(); 7494 } else if (forPointeeType && !AlignForArray && 7495 (RD = T->getAsCXXRecordDecl())) { 7496 // For C++ class pointees, we don't know whether we're pointing at a 7497 // base or a complete object, so we generally need to use the 7498 // non-virtual alignment. 7499 Alignment = getClassPointerAlignment(RD); 7500 } else { 7501 Alignment = getContext().getTypeAlignInChars(T); 7502 } 7503 7504 // Cap to the global maximum type alignment unless the alignment 7505 // was somehow explicit on the type. 7506 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7507 if (Alignment.getQuantity() > MaxAlign && 7508 !getContext().isAlignmentRequired(T)) 7509 Alignment = CharUnits::fromQuantity(MaxAlign); 7510 } 7511 return Alignment; 7512 } 7513 7514 bool CodeGenModule::stopAutoInit() { 7515 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7516 if (StopAfter) { 7517 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7518 // used 7519 if (NumAutoVarInit >= StopAfter) { 7520 return true; 7521 } 7522 if (!NumAutoVarInit) { 7523 unsigned DiagID = getDiags().getCustomDiagID( 7524 DiagnosticsEngine::Warning, 7525 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7526 "number of times ftrivial-auto-var-init=%1 gets applied."); 7527 getDiags().Report(DiagID) 7528 << StopAfter 7529 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7530 LangOptions::TrivialAutoVarInitKind::Zero 7531 ? "zero" 7532 : "pattern"); 7533 } 7534 ++NumAutoVarInit; 7535 } 7536 return false; 7537 } 7538 7539 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7540 const Decl *D) const { 7541 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7542 // postfix beginning with '.' since the symbol name can be demangled. 7543 if (LangOpts.HIP) 7544 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7545 else 7546 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7547 7548 // If the CUID is not specified we try to generate a unique postfix. 7549 if (getLangOpts().CUID.empty()) { 7550 SourceManager &SM = getContext().getSourceManager(); 7551 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7552 assert(PLoc.isValid() && "Source location is expected to be valid."); 7553 7554 // Get the hash of the user defined macros. 7555 llvm::MD5 Hash; 7556 llvm::MD5::MD5Result Result; 7557 for (const auto &Arg : PreprocessorOpts.Macros) 7558 Hash.update(Arg.first); 7559 Hash.final(Result); 7560 7561 // Get the UniqueID for the file containing the decl. 7562 llvm::sys::fs::UniqueID ID; 7563 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7564 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7565 assert(PLoc.isValid() && "Source location is expected to be valid."); 7566 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7567 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7568 << PLoc.getFilename() << EC.message(); 7569 } 7570 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7571 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7572 } else { 7573 OS << getContext().getCUIDHash(); 7574 } 7575 } 7576 7577 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7578 assert(DeferredDeclsToEmit.empty() && 7579 "Should have emitted all decls deferred to emit."); 7580 assert(NewBuilder->DeferredDecls.empty() && 7581 "Newly created module should not have deferred decls"); 7582 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7583 assert(EmittedDeferredDecls.empty() && 7584 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7585 7586 assert(NewBuilder->DeferredVTables.empty() && 7587 "Newly created module should not have deferred vtables"); 7588 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7589 7590 assert(NewBuilder->MangledDeclNames.empty() && 7591 "Newly created module should not have mangled decl names"); 7592 assert(NewBuilder->Manglings.empty() && 7593 "Newly created module should not have manglings"); 7594 NewBuilder->Manglings = std::move(Manglings); 7595 7596 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7597 7598 NewBuilder->TBAA = std::move(TBAA); 7599 7600 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7601 } 7602