xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2c1dd2716a07a173773ac2ba04b5f2da73a1fc6c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/Target/Mangler.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Support/CallSite.h"
46 #include "llvm/Support/ErrorHandling.h"
47 using namespace clang;
48 using namespace CodeGen;
49 
50 static const char AnnotationSection[] = "llvm.metadata";
51 
52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
53   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
54   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
55   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
56   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
57   }
58 
59   llvm_unreachable("invalid C++ ABI kind");
60 }
61 
62 
63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                              llvm::Module &M, const llvm::TargetData &TD,
65                              DiagnosticsEngine &diags)
66   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68     ABI(createCXXABI(*this)),
69     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
70     TBAA(0),
71     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72     DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
73     ConstantStringClassRef(0), NSConstantStringType(0),
74     VMContext(M.getContext()),
75     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
76     BlockObjectAssign(0), BlockObjectDispose(0),
77     BlockDescriptorType(0), GenericBlockLiteralType(0) {
78   if (Features.ObjC1)
79     createObjCRuntime();
80   if (Features.OpenCL)
81     createOpenCLRuntime();
82   if (Features.CUDA)
83     createCUDARuntime();
84 
85   // Enable TBAA unless it's suppressed.
86   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
87     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
88                            ABI.getMangleContext());
89 
90   // If debug info or coverage generation is enabled, create the CGDebugInfo
91   // object.
92   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
93       CodeGenOpts.EmitGcovNotes)
94     DebugInfo = new CGDebugInfo(*this);
95 
96   Block.GlobalUniqueCount = 0;
97 
98   if (C.getLangOptions().ObjCAutoRefCount)
99     ARCData = new ARCEntrypoints();
100   RRData = new RREntrypoints();
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109   PointerAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
112   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
113   Int8PtrTy = Int8Ty->getPointerTo(0);
114   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
115 }
116 
117 CodeGenModule::~CodeGenModule() {
118   delete ObjCRuntime;
119   delete OpenCLRuntime;
120   delete CUDARuntime;
121   delete TheTargetCodeGenInfo;
122   delete &ABI;
123   delete TBAA;
124   delete DebugInfo;
125   delete ARCData;
126   delete RRData;
127 }
128 
129 void CodeGenModule::createObjCRuntime() {
130   if (!Features.NeXTRuntime)
131     ObjCRuntime = CreateGNUObjCRuntime(*this);
132   else
133     ObjCRuntime = CreateMacObjCRuntime(*this);
134 }
135 
136 void CodeGenModule::createOpenCLRuntime() {
137   OpenCLRuntime = new CGOpenCLRuntime(*this);
138 }
139 
140 void CodeGenModule::createCUDARuntime() {
141   CUDARuntime = CreateNVCUDARuntime(*this);
142 }
143 
144 void CodeGenModule::Release() {
145   EmitDeferred();
146   EmitCXXGlobalInitFunc();
147   EmitCXXGlobalDtorFunc();
148   if (ObjCRuntime)
149     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
150       AddGlobalCtor(ObjCInitFunction);
151   EmitCtorList(GlobalCtors, "llvm.global_ctors");
152   EmitCtorList(GlobalDtors, "llvm.global_dtors");
153   EmitGlobalAnnotations();
154   EmitLLVMUsed();
155 
156   SimplifyPersonality();
157 
158   if (getCodeGenOpts().EmitDeclMetadata)
159     EmitDeclMetadata();
160 
161   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
162     EmitCoverageFile();
163 
164   if (DebugInfo)
165     DebugInfo->finalize();
166 }
167 
168 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
169   // Make sure that this type is translated.
170   Types.UpdateCompletedType(TD);
171   if (DebugInfo)
172     DebugInfo->UpdateCompletedType(TD);
173 }
174 
175 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
176   if (!TBAA)
177     return 0;
178   return TBAA->getTBAAInfo(QTy);
179 }
180 
181 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
182                                         llvm::MDNode *TBAAInfo) {
183   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
184 }
185 
186 bool CodeGenModule::isTargetDarwin() const {
187   return getContext().getTargetInfo().getTriple().isOSDarwin();
188 }
189 
190 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
191   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
192   getDiags().Report(Context.getFullLoc(loc), diagID);
193 }
194 
195 /// ErrorUnsupported - Print out an error that codegen doesn't support the
196 /// specified stmt yet.
197 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
198                                      bool OmitOnError) {
199   if (OmitOnError && getDiags().hasErrorOccurred())
200     return;
201   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
202                                                "cannot compile this %0 yet");
203   std::string Msg = Type;
204   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
205     << Msg << S->getSourceRange();
206 }
207 
208 /// ErrorUnsupported - Print out an error that codegen doesn't support the
209 /// specified decl yet.
210 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
211                                      bool OmitOnError) {
212   if (OmitOnError && getDiags().hasErrorOccurred())
213     return;
214   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
215                                                "cannot compile this %0 yet");
216   std::string Msg = Type;
217   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
218 }
219 
220 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
221   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
222 }
223 
224 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
225                                         const NamedDecl *D) const {
226   // Internal definitions always have default visibility.
227   if (GV->hasLocalLinkage()) {
228     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
229     return;
230   }
231 
232   // Set visibility for definitions.
233   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
234   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
235     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
236 }
237 
238 /// Set the symbol visibility of type information (vtable and RTTI)
239 /// associated with the given type.
240 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
241                                       const CXXRecordDecl *RD,
242                                       TypeVisibilityKind TVK) const {
243   setGlobalVisibility(GV, RD);
244 
245   if (!CodeGenOpts.HiddenWeakVTables)
246     return;
247 
248   // We never want to drop the visibility for RTTI names.
249   if (TVK == TVK_ForRTTIName)
250     return;
251 
252   // We want to drop the visibility to hidden for weak type symbols.
253   // This isn't possible if there might be unresolved references
254   // elsewhere that rely on this symbol being visible.
255 
256   // This should be kept roughly in sync with setThunkVisibility
257   // in CGVTables.cpp.
258 
259   // Preconditions.
260   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
261       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
262     return;
263 
264   // Don't override an explicit visibility attribute.
265   if (RD->getExplicitVisibility())
266     return;
267 
268   switch (RD->getTemplateSpecializationKind()) {
269   // We have to disable the optimization if this is an EI definition
270   // because there might be EI declarations in other shared objects.
271   case TSK_ExplicitInstantiationDefinition:
272   case TSK_ExplicitInstantiationDeclaration:
273     return;
274 
275   // Every use of a non-template class's type information has to emit it.
276   case TSK_Undeclared:
277     break;
278 
279   // In theory, implicit instantiations can ignore the possibility of
280   // an explicit instantiation declaration because there necessarily
281   // must be an EI definition somewhere with default visibility.  In
282   // practice, it's possible to have an explicit instantiation for
283   // an arbitrary template class, and linkers aren't necessarily able
284   // to deal with mixed-visibility symbols.
285   case TSK_ExplicitSpecialization:
286   case TSK_ImplicitInstantiation:
287     if (!CodeGenOpts.HiddenWeakTemplateVTables)
288       return;
289     break;
290   }
291 
292   // If there's a key function, there may be translation units
293   // that don't have the key function's definition.  But ignore
294   // this if we're emitting RTTI under -fno-rtti.
295   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
296     if (Context.getKeyFunction(RD))
297       return;
298   }
299 
300   // Otherwise, drop the visibility to hidden.
301   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
302   GV->setUnnamedAddr(true);
303 }
304 
305 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
306   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
307 
308   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
309   if (!Str.empty())
310     return Str;
311 
312   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
313     IdentifierInfo *II = ND->getIdentifier();
314     assert(II && "Attempt to mangle unnamed decl.");
315 
316     Str = II->getName();
317     return Str;
318   }
319 
320   SmallString<256> Buffer;
321   llvm::raw_svector_ostream Out(Buffer);
322   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
323     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
324   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
325     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
326   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
327     getCXXABI().getMangleContext().mangleBlock(BD, Out);
328   else
329     getCXXABI().getMangleContext().mangleName(ND, Out);
330 
331   // Allocate space for the mangled name.
332   Out.flush();
333   size_t Length = Buffer.size();
334   char *Name = MangledNamesAllocator.Allocate<char>(Length);
335   std::copy(Buffer.begin(), Buffer.end(), Name);
336 
337   Str = StringRef(Name, Length);
338 
339   return Str;
340 }
341 
342 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
343                                         const BlockDecl *BD) {
344   MangleContext &MangleCtx = getCXXABI().getMangleContext();
345   const Decl *D = GD.getDecl();
346   llvm::raw_svector_ostream Out(Buffer.getBuffer());
347   if (D == 0)
348     MangleCtx.mangleGlobalBlock(BD, Out);
349   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
350     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
351   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
352     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
353   else
354     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
355 }
356 
357 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
358   return getModule().getNamedValue(Name);
359 }
360 
361 /// AddGlobalCtor - Add a function to the list that will be called before
362 /// main() runs.
363 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
364   // FIXME: Type coercion of void()* types.
365   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
366 }
367 
368 /// AddGlobalDtor - Add a function to the list that will be called
369 /// when the module is unloaded.
370 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
371   // FIXME: Type coercion of void()* types.
372   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
373 }
374 
375 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
376   // Ctor function type is void()*.
377   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
378   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
379 
380   // Get the type of a ctor entry, { i32, void ()* }.
381   llvm::StructType *CtorStructTy =
382     llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
383                           llvm::PointerType::getUnqual(CtorFTy), NULL);
384 
385   // Construct the constructor and destructor arrays.
386   std::vector<llvm::Constant*> Ctors;
387   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
388     std::vector<llvm::Constant*> S;
389     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
390                 I->second, false));
391     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
392     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
393   }
394 
395   if (!Ctors.empty()) {
396     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
397     new llvm::GlobalVariable(TheModule, AT, false,
398                              llvm::GlobalValue::AppendingLinkage,
399                              llvm::ConstantArray::get(AT, Ctors),
400                              GlobalName);
401   }
402 }
403 
404 llvm::GlobalValue::LinkageTypes
405 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
406   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
407 
408   if (Linkage == GVA_Internal)
409     return llvm::Function::InternalLinkage;
410 
411   if (D->hasAttr<DLLExportAttr>())
412     return llvm::Function::DLLExportLinkage;
413 
414   if (D->hasAttr<WeakAttr>())
415     return llvm::Function::WeakAnyLinkage;
416 
417   // In C99 mode, 'inline' functions are guaranteed to have a strong
418   // definition somewhere else, so we can use available_externally linkage.
419   if (Linkage == GVA_C99Inline)
420     return llvm::Function::AvailableExternallyLinkage;
421 
422   // Note that Apple's kernel linker doesn't support symbol
423   // coalescing, so we need to avoid linkonce and weak linkages there.
424   // Normally, this means we just map to internal, but for explicit
425   // instantiations we'll map to external.
426 
427   // In C++, the compiler has to emit a definition in every translation unit
428   // that references the function.  We should use linkonce_odr because
429   // a) if all references in this translation unit are optimized away, we
430   // don't need to codegen it.  b) if the function persists, it needs to be
431   // merged with other definitions. c) C++ has the ODR, so we know the
432   // definition is dependable.
433   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
434     return !Context.getLangOptions().AppleKext
435              ? llvm::Function::LinkOnceODRLinkage
436              : llvm::Function::InternalLinkage;
437 
438   // An explicit instantiation of a template has weak linkage, since
439   // explicit instantiations can occur in multiple translation units
440   // and must all be equivalent. However, we are not allowed to
441   // throw away these explicit instantiations.
442   if (Linkage == GVA_ExplicitTemplateInstantiation)
443     return !Context.getLangOptions().AppleKext
444              ? llvm::Function::WeakODRLinkage
445              : llvm::Function::ExternalLinkage;
446 
447   // Otherwise, we have strong external linkage.
448   assert(Linkage == GVA_StrongExternal);
449   return llvm::Function::ExternalLinkage;
450 }
451 
452 
453 /// SetFunctionDefinitionAttributes - Set attributes for a global.
454 ///
455 /// FIXME: This is currently only done for aliases and functions, but not for
456 /// variables (these details are set in EmitGlobalVarDefinition for variables).
457 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
458                                                     llvm::GlobalValue *GV) {
459   SetCommonAttributes(D, GV);
460 }
461 
462 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
463                                               const CGFunctionInfo &Info,
464                                               llvm::Function *F) {
465   unsigned CallingConv;
466   AttributeListType AttributeList;
467   ConstructAttributeList(Info, D, AttributeList, CallingConv);
468   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
469                                           AttributeList.size()));
470   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
471 }
472 
473 /// Determines whether the language options require us to model
474 /// unwind exceptions.  We treat -fexceptions as mandating this
475 /// except under the fragile ObjC ABI with only ObjC exceptions
476 /// enabled.  This means, for example, that C with -fexceptions
477 /// enables this.
478 static bool hasUnwindExceptions(const LangOptions &Features) {
479   // If exceptions are completely disabled, obviously this is false.
480   if (!Features.Exceptions) return false;
481 
482   // If C++ exceptions are enabled, this is true.
483   if (Features.CXXExceptions) return true;
484 
485   // If ObjC exceptions are enabled, this depends on the ABI.
486   if (Features.ObjCExceptions) {
487     if (!Features.ObjCNonFragileABI) return false;
488   }
489 
490   return true;
491 }
492 
493 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
494                                                            llvm::Function *F) {
495   if (CodeGenOpts.UnwindTables)
496     F->setHasUWTable();
497 
498   if (!hasUnwindExceptions(Features))
499     F->addFnAttr(llvm::Attribute::NoUnwind);
500 
501   if (D->hasAttr<NakedAttr>()) {
502     // Naked implies noinline: we should not be inlining such functions.
503     F->addFnAttr(llvm::Attribute::Naked);
504     F->addFnAttr(llvm::Attribute::NoInline);
505   }
506 
507   if (D->hasAttr<NoInlineAttr>())
508     F->addFnAttr(llvm::Attribute::NoInline);
509 
510   // (noinline wins over always_inline, and we can't specify both in IR)
511   if (D->hasAttr<AlwaysInlineAttr>() &&
512       !F->hasFnAttr(llvm::Attribute::NoInline))
513     F->addFnAttr(llvm::Attribute::AlwaysInline);
514 
515   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
516     F->setUnnamedAddr(true);
517 
518   if (Features.getStackProtector() == LangOptions::SSPOn)
519     F->addFnAttr(llvm::Attribute::StackProtect);
520   else if (Features.getStackProtector() == LangOptions::SSPReq)
521     F->addFnAttr(llvm::Attribute::StackProtectReq);
522 
523   if (Features.AddressSanitizer) {
524     // When AddressSanitizer is enabled, set AddressSafety attribute
525     // unless __attribute__((no_address_safety_analysis)) is used.
526     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
527       F->addFnAttr(llvm::Attribute::AddressSafety);
528   }
529 
530   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
531   if (alignment)
532     F->setAlignment(alignment);
533 
534   // C++ ABI requires 2-byte alignment for member functions.
535   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
536     F->setAlignment(2);
537 }
538 
539 void CodeGenModule::SetCommonAttributes(const Decl *D,
540                                         llvm::GlobalValue *GV) {
541   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
542     setGlobalVisibility(GV, ND);
543   else
544     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
545 
546   if (D->hasAttr<UsedAttr>())
547     AddUsedGlobal(GV);
548 
549   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
550     GV->setSection(SA->getName());
551 
552   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
553 }
554 
555 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
556                                                   llvm::Function *F,
557                                                   const CGFunctionInfo &FI) {
558   SetLLVMFunctionAttributes(D, FI, F);
559   SetLLVMFunctionAttributesForDefinition(D, F);
560 
561   F->setLinkage(llvm::Function::InternalLinkage);
562 
563   SetCommonAttributes(D, F);
564 }
565 
566 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
567                                           llvm::Function *F,
568                                           bool IsIncompleteFunction) {
569   if (unsigned IID = F->getIntrinsicID()) {
570     // If this is an intrinsic function, set the function's attributes
571     // to the intrinsic's attributes.
572     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
573     return;
574   }
575 
576   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
577 
578   if (!IsIncompleteFunction)
579     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
580 
581   // Only a few attributes are set on declarations; these may later be
582   // overridden by a definition.
583 
584   if (FD->hasAttr<DLLImportAttr>()) {
585     F->setLinkage(llvm::Function::DLLImportLinkage);
586   } else if (FD->hasAttr<WeakAttr>() ||
587              FD->isWeakImported()) {
588     // "extern_weak" is overloaded in LLVM; we probably should have
589     // separate linkage types for this.
590     F->setLinkage(llvm::Function::ExternalWeakLinkage);
591   } else {
592     F->setLinkage(llvm::Function::ExternalLinkage);
593 
594     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
595     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
596       F->setVisibility(GetLLVMVisibility(LV.visibility()));
597     }
598   }
599 
600   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
601     F->setSection(SA->getName());
602 }
603 
604 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
605   assert(!GV->isDeclaration() &&
606          "Only globals with definition can force usage.");
607   LLVMUsed.push_back(GV);
608 }
609 
610 void CodeGenModule::EmitLLVMUsed() {
611   // Don't create llvm.used if there is no need.
612   if (LLVMUsed.empty())
613     return;
614 
615   llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
616 
617   // Convert LLVMUsed to what ConstantArray needs.
618   std::vector<llvm::Constant*> UsedArray;
619   UsedArray.resize(LLVMUsed.size());
620   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
621     UsedArray[i] =
622      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
623                                       i8PTy);
624   }
625 
626   if (UsedArray.empty())
627     return;
628   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
629 
630   llvm::GlobalVariable *GV =
631     new llvm::GlobalVariable(getModule(), ATy, false,
632                              llvm::GlobalValue::AppendingLinkage,
633                              llvm::ConstantArray::get(ATy, UsedArray),
634                              "llvm.used");
635 
636   GV->setSection("llvm.metadata");
637 }
638 
639 void CodeGenModule::EmitDeferred() {
640   // Emit code for any potentially referenced deferred decls.  Since a
641   // previously unused static decl may become used during the generation of code
642   // for a static function, iterate until no changes are made.
643 
644   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
645     if (!DeferredVTables.empty()) {
646       const CXXRecordDecl *RD = DeferredVTables.back();
647       DeferredVTables.pop_back();
648       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
649       continue;
650     }
651 
652     GlobalDecl D = DeferredDeclsToEmit.back();
653     DeferredDeclsToEmit.pop_back();
654 
655     // Check to see if we've already emitted this.  This is necessary
656     // for a couple of reasons: first, decls can end up in the
657     // deferred-decls queue multiple times, and second, decls can end
658     // up with definitions in unusual ways (e.g. by an extern inline
659     // function acquiring a strong function redefinition).  Just
660     // ignore these cases.
661     //
662     // TODO: That said, looking this up multiple times is very wasteful.
663     StringRef Name = getMangledName(D);
664     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
665     assert(CGRef && "Deferred decl wasn't referenced?");
666 
667     if (!CGRef->isDeclaration())
668       continue;
669 
670     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
671     // purposes an alias counts as a definition.
672     if (isa<llvm::GlobalAlias>(CGRef))
673       continue;
674 
675     // Otherwise, emit the definition and move on to the next one.
676     EmitGlobalDefinition(D);
677   }
678 }
679 
680 void CodeGenModule::EmitGlobalAnnotations() {
681   if (Annotations.empty())
682     return;
683 
684   // Create a new global variable for the ConstantStruct in the Module.
685   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
686     Annotations[0]->getType(), Annotations.size()), Annotations);
687   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
688     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
689     "llvm.global.annotations");
690   gv->setSection(AnnotationSection);
691 }
692 
693 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
694   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
695   if (i != AnnotationStrings.end())
696     return i->second;
697 
698   // Not found yet, create a new global.
699   llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true);
700   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
701     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
702   gv->setSection(AnnotationSection);
703   gv->setUnnamedAddr(true);
704   AnnotationStrings[Str] = gv;
705   return gv;
706 }
707 
708 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
709   SourceManager &SM = getContext().getSourceManager();
710   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
711   if (PLoc.isValid())
712     return EmitAnnotationString(PLoc.getFilename());
713   return EmitAnnotationString(SM.getBufferName(Loc));
714 }
715 
716 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
717   SourceManager &SM = getContext().getSourceManager();
718   PresumedLoc PLoc = SM.getPresumedLoc(L);
719   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
720     SM.getExpansionLineNumber(L);
721   return llvm::ConstantInt::get(Int32Ty, LineNo);
722 }
723 
724 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
725                                                 const AnnotateAttr *AA,
726                                                 SourceLocation L) {
727   // Get the globals for file name, annotation, and the line number.
728   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
729                  *UnitGV = EmitAnnotationUnit(L),
730                  *LineNoCst = EmitAnnotationLineNo(L);
731 
732   // Create the ConstantStruct for the global annotation.
733   llvm::Constant *Fields[4] = {
734     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
735     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
736     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
737     LineNoCst
738   };
739   return llvm::ConstantStruct::getAnon(Fields);
740 }
741 
742 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
743                                          llvm::GlobalValue *GV) {
744   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
745   // Get the struct elements for these annotations.
746   for (specific_attr_iterator<AnnotateAttr>
747        ai = D->specific_attr_begin<AnnotateAttr>(),
748        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
749     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
750 }
751 
752 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
753   // Never defer when EmitAllDecls is specified.
754   if (Features.EmitAllDecls)
755     return false;
756 
757   return !getContext().DeclMustBeEmitted(Global);
758 }
759 
760 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
761   const AliasAttr *AA = VD->getAttr<AliasAttr>();
762   assert(AA && "No alias?");
763 
764   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
765 
766   // See if there is already something with the target's name in the module.
767   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
768 
769   llvm::Constant *Aliasee;
770   if (isa<llvm::FunctionType>(DeclTy))
771     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
772                                       /*ForVTable=*/false);
773   else
774     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
775                                     llvm::PointerType::getUnqual(DeclTy), 0);
776   if (!Entry) {
777     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
778     F->setLinkage(llvm::Function::ExternalWeakLinkage);
779     WeakRefReferences.insert(F);
780   }
781 
782   return Aliasee;
783 }
784 
785 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
786   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
787 
788   // Weak references don't produce any output by themselves.
789   if (Global->hasAttr<WeakRefAttr>())
790     return;
791 
792   // If this is an alias definition (which otherwise looks like a declaration)
793   // emit it now.
794   if (Global->hasAttr<AliasAttr>())
795     return EmitAliasDefinition(GD);
796 
797   // If this is CUDA, be selective about which declarations we emit.
798   if (Features.CUDA) {
799     if (CodeGenOpts.CUDAIsDevice) {
800       if (!Global->hasAttr<CUDADeviceAttr>() &&
801           !Global->hasAttr<CUDAGlobalAttr>() &&
802           !Global->hasAttr<CUDAConstantAttr>() &&
803           !Global->hasAttr<CUDASharedAttr>())
804         return;
805     } else {
806       if (!Global->hasAttr<CUDAHostAttr>() && (
807             Global->hasAttr<CUDADeviceAttr>() ||
808             Global->hasAttr<CUDAConstantAttr>() ||
809             Global->hasAttr<CUDASharedAttr>()))
810         return;
811     }
812   }
813 
814   // Ignore declarations, they will be emitted on their first use.
815   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
816     // Forward declarations are emitted lazily on first use.
817     if (!FD->doesThisDeclarationHaveABody()) {
818       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
819         return;
820 
821       const FunctionDecl *InlineDefinition = 0;
822       FD->getBody(InlineDefinition);
823 
824       StringRef MangledName = getMangledName(GD);
825       llvm::StringMap<GlobalDecl>::iterator DDI =
826           DeferredDecls.find(MangledName);
827       if (DDI != DeferredDecls.end())
828         DeferredDecls.erase(DDI);
829       EmitGlobalDefinition(InlineDefinition);
830       return;
831     }
832   } else {
833     const VarDecl *VD = cast<VarDecl>(Global);
834     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
835 
836     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
837       return;
838   }
839 
840   // Defer code generation when possible if this is a static definition, inline
841   // function etc.  These we only want to emit if they are used.
842   if (!MayDeferGeneration(Global)) {
843     // Emit the definition if it can't be deferred.
844     EmitGlobalDefinition(GD);
845     return;
846   }
847 
848   // If we're deferring emission of a C++ variable with an
849   // initializer, remember the order in which it appeared in the file.
850   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
851       cast<VarDecl>(Global)->hasInit()) {
852     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
853     CXXGlobalInits.push_back(0);
854   }
855 
856   // If the value has already been used, add it directly to the
857   // DeferredDeclsToEmit list.
858   StringRef MangledName = getMangledName(GD);
859   if (GetGlobalValue(MangledName))
860     DeferredDeclsToEmit.push_back(GD);
861   else {
862     // Otherwise, remember that we saw a deferred decl with this name.  The
863     // first use of the mangled name will cause it to move into
864     // DeferredDeclsToEmit.
865     DeferredDecls[MangledName] = GD;
866   }
867 }
868 
869 namespace {
870   struct FunctionIsDirectlyRecursive :
871     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
872     const StringRef Name;
873     const Builtin::Context &BI;
874     bool Result;
875     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
876       Name(N), BI(C), Result(false) {
877     }
878     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
879 
880     bool TraverseCallExpr(CallExpr *E) {
881       const FunctionDecl *FD = E->getDirectCallee();
882       if (!FD)
883         return true;
884       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
885       if (Attr && Name == Attr->getLabel()) {
886         Result = true;
887         return false;
888       }
889       unsigned BuiltinID = FD->getBuiltinID();
890       if (!BuiltinID)
891         return true;
892       StringRef BuiltinName = BI.GetName(BuiltinID);
893       if (BuiltinName.startswith("__builtin_") &&
894           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
895         Result = true;
896         return false;
897       }
898       return true;
899     }
900   };
901 }
902 
903 // isTriviallyRecursive - Check if this function calls another
904 // decl that, because of the asm attribute or the other decl being a builtin,
905 // ends up pointing to itself.
906 bool
907 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
908   StringRef Name;
909   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
910     // asm labels are a special kind of mangling we have to support.
911     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
912     if (!Attr)
913       return false;
914     Name = Attr->getLabel();
915   } else {
916     Name = FD->getName();
917   }
918 
919   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
920   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
921   return Walker.Result;
922 }
923 
924 bool
925 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
926   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
927     return true;
928   if (CodeGenOpts.OptimizationLevel == 0 &&
929       !F->hasAttr<AlwaysInlineAttr>())
930     return false;
931   // PR9614. Avoid cases where the source code is lying to us. An available
932   // externally function should have an equivalent function somewhere else,
933   // but a function that calls itself is clearly not equivalent to the real
934   // implementation.
935   // This happens in glibc's btowc and in some configure checks.
936   return !isTriviallyRecursive(F);
937 }
938 
939 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
940   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
941 
942   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
943                                  Context.getSourceManager(),
944                                  "Generating code for declaration");
945 
946   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
947     // At -O0, don't generate IR for functions with available_externally
948     // linkage.
949     if (!shouldEmitFunction(Function))
950       return;
951 
952     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
953       // Make sure to emit the definition(s) before we emit the thunks.
954       // This is necessary for the generation of certain thunks.
955       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
956         EmitCXXConstructor(CD, GD.getCtorType());
957       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
958         EmitCXXDestructor(DD, GD.getDtorType());
959       else
960         EmitGlobalFunctionDefinition(GD);
961 
962       if (Method->isVirtual())
963         getVTables().EmitThunks(GD);
964 
965       return;
966     }
967 
968     return EmitGlobalFunctionDefinition(GD);
969   }
970 
971   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
972     return EmitGlobalVarDefinition(VD);
973 
974   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
975 }
976 
977 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
978 /// module, create and return an llvm Function with the specified type. If there
979 /// is something in the module with the specified name, return it potentially
980 /// bitcasted to the right type.
981 ///
982 /// If D is non-null, it specifies a decl that correspond to this.  This is used
983 /// to set the attributes on the function when it is first created.
984 llvm::Constant *
985 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
986                                        llvm::Type *Ty,
987                                        GlobalDecl D, bool ForVTable,
988                                        llvm::Attributes ExtraAttrs) {
989   // Lookup the entry, lazily creating it if necessary.
990   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
991   if (Entry) {
992     if (WeakRefReferences.count(Entry)) {
993       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
994       if (FD && !FD->hasAttr<WeakAttr>())
995         Entry->setLinkage(llvm::Function::ExternalLinkage);
996 
997       WeakRefReferences.erase(Entry);
998     }
999 
1000     if (Entry->getType()->getElementType() == Ty)
1001       return Entry;
1002 
1003     // Make sure the result is of the correct type.
1004     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1005   }
1006 
1007   // This function doesn't have a complete type (for example, the return
1008   // type is an incomplete struct). Use a fake type instead, and make
1009   // sure not to try to set attributes.
1010   bool IsIncompleteFunction = false;
1011 
1012   llvm::FunctionType *FTy;
1013   if (isa<llvm::FunctionType>(Ty)) {
1014     FTy = cast<llvm::FunctionType>(Ty);
1015   } else {
1016     FTy = llvm::FunctionType::get(VoidTy, false);
1017     IsIncompleteFunction = true;
1018   }
1019 
1020   llvm::Function *F = llvm::Function::Create(FTy,
1021                                              llvm::Function::ExternalLinkage,
1022                                              MangledName, &getModule());
1023   assert(F->getName() == MangledName && "name was uniqued!");
1024   if (D.getDecl())
1025     SetFunctionAttributes(D, F, IsIncompleteFunction);
1026   if (ExtraAttrs != llvm::Attribute::None)
1027     F->addFnAttr(ExtraAttrs);
1028 
1029   // This is the first use or definition of a mangled name.  If there is a
1030   // deferred decl with this name, remember that we need to emit it at the end
1031   // of the file.
1032   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1033   if (DDI != DeferredDecls.end()) {
1034     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1035     // list, and remove it from DeferredDecls (since we don't need it anymore).
1036     DeferredDeclsToEmit.push_back(DDI->second);
1037     DeferredDecls.erase(DDI);
1038 
1039   // Otherwise, there are cases we have to worry about where we're
1040   // using a declaration for which we must emit a definition but where
1041   // we might not find a top-level definition:
1042   //   - member functions defined inline in their classes
1043   //   - friend functions defined inline in some class
1044   //   - special member functions with implicit definitions
1045   // If we ever change our AST traversal to walk into class methods,
1046   // this will be unnecessary.
1047   //
1048   // We also don't emit a definition for a function if it's going to be an entry
1049   // in a vtable, unless it's already marked as used.
1050   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1051     // Look for a declaration that's lexically in a record.
1052     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1053     do {
1054       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1055         if (FD->isImplicit() && !ForVTable) {
1056           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1057           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1058           break;
1059         } else if (FD->doesThisDeclarationHaveABody()) {
1060           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1061           break;
1062         }
1063       }
1064       FD = FD->getPreviousDecl();
1065     } while (FD);
1066   }
1067 
1068   // Make sure the result is of the requested type.
1069   if (!IsIncompleteFunction) {
1070     assert(F->getType()->getElementType() == Ty);
1071     return F;
1072   }
1073 
1074   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1075   return llvm::ConstantExpr::getBitCast(F, PTy);
1076 }
1077 
1078 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1079 /// non-null, then this function will use the specified type if it has to
1080 /// create it (this occurs when we see a definition of the function).
1081 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1082                                                  llvm::Type *Ty,
1083                                                  bool ForVTable) {
1084   // If there was no specific requested type, just convert it now.
1085   if (!Ty)
1086     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1087 
1088   StringRef MangledName = getMangledName(GD);
1089   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1090 }
1091 
1092 /// CreateRuntimeFunction - Create a new runtime function with the specified
1093 /// type and name.
1094 llvm::Constant *
1095 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1096                                      StringRef Name,
1097                                      llvm::Attributes ExtraAttrs) {
1098   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1099                                  ExtraAttrs);
1100 }
1101 
1102 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
1103                                  bool ConstantInit) {
1104   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
1105     return false;
1106 
1107   if (Context.getLangOptions().CPlusPlus) {
1108     if (const RecordType *Record
1109           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
1110       return ConstantInit &&
1111              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
1112              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
1113   }
1114 
1115   return true;
1116 }
1117 
1118 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1119 /// create and return an llvm GlobalVariable with the specified type.  If there
1120 /// is something in the module with the specified name, return it potentially
1121 /// bitcasted to the right type.
1122 ///
1123 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1124 /// to set the attributes on the global when it is first created.
1125 llvm::Constant *
1126 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1127                                      llvm::PointerType *Ty,
1128                                      const VarDecl *D,
1129                                      bool UnnamedAddr) {
1130   // Lookup the entry, lazily creating it if necessary.
1131   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1132   if (Entry) {
1133     if (WeakRefReferences.count(Entry)) {
1134       if (D && !D->hasAttr<WeakAttr>())
1135         Entry->setLinkage(llvm::Function::ExternalLinkage);
1136 
1137       WeakRefReferences.erase(Entry);
1138     }
1139 
1140     if (UnnamedAddr)
1141       Entry->setUnnamedAddr(true);
1142 
1143     if (Entry->getType() == Ty)
1144       return Entry;
1145 
1146     // Make sure the result is of the correct type.
1147     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1148   }
1149 
1150   // This is the first use or definition of a mangled name.  If there is a
1151   // deferred decl with this name, remember that we need to emit it at the end
1152   // of the file.
1153   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1154   if (DDI != DeferredDecls.end()) {
1155     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1156     // list, and remove it from DeferredDecls (since we don't need it anymore).
1157     DeferredDeclsToEmit.push_back(DDI->second);
1158     DeferredDecls.erase(DDI);
1159   }
1160 
1161   llvm::GlobalVariable *GV =
1162     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1163                              llvm::GlobalValue::ExternalLinkage,
1164                              0, MangledName, 0,
1165                              false, Ty->getAddressSpace());
1166 
1167   // Handle things which are present even on external declarations.
1168   if (D) {
1169     // FIXME: This code is overly simple and should be merged with other global
1170     // handling.
1171     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1172 
1173     // Set linkage and visibility in case we never see a definition.
1174     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1175     if (LV.linkage() != ExternalLinkage) {
1176       // Don't set internal linkage on declarations.
1177     } else {
1178       if (D->hasAttr<DLLImportAttr>())
1179         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1180       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1181         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1182 
1183       // Set visibility on a declaration only if it's explicit.
1184       if (LV.visibilityExplicit())
1185         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1186     }
1187 
1188     GV->setThreadLocal(D->isThreadSpecified());
1189   }
1190 
1191   return GV;
1192 }
1193 
1194 
1195 llvm::GlobalVariable *
1196 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1197                                       llvm::Type *Ty,
1198                                       llvm::GlobalValue::LinkageTypes Linkage) {
1199   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1200   llvm::GlobalVariable *OldGV = 0;
1201 
1202 
1203   if (GV) {
1204     // Check if the variable has the right type.
1205     if (GV->getType()->getElementType() == Ty)
1206       return GV;
1207 
1208     // Because C++ name mangling, the only way we can end up with an already
1209     // existing global with the same name is if it has been declared extern "C".
1210       assert(GV->isDeclaration() && "Declaration has wrong type!");
1211     OldGV = GV;
1212   }
1213 
1214   // Create a new variable.
1215   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1216                                 Linkage, 0, Name);
1217 
1218   if (OldGV) {
1219     // Replace occurrences of the old variable if needed.
1220     GV->takeName(OldGV);
1221 
1222     if (!OldGV->use_empty()) {
1223       llvm::Constant *NewPtrForOldDecl =
1224       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1225       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1226     }
1227 
1228     OldGV->eraseFromParent();
1229   }
1230 
1231   return GV;
1232 }
1233 
1234 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1235 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1236 /// then it will be greated with the specified type instead of whatever the
1237 /// normal requested type would be.
1238 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1239                                                   llvm::Type *Ty) {
1240   assert(D->hasGlobalStorage() && "Not a global variable");
1241   QualType ASTTy = D->getType();
1242   if (Ty == 0)
1243     Ty = getTypes().ConvertTypeForMem(ASTTy);
1244 
1245   llvm::PointerType *PTy =
1246     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1247 
1248   StringRef MangledName = getMangledName(D);
1249   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1250 }
1251 
1252 /// CreateRuntimeVariable - Create a new runtime global variable with the
1253 /// specified type and name.
1254 llvm::Constant *
1255 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1256                                      StringRef Name) {
1257   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1258                                true);
1259 }
1260 
1261 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1262   assert(!D->getInit() && "Cannot emit definite definitions here!");
1263 
1264   if (MayDeferGeneration(D)) {
1265     // If we have not seen a reference to this variable yet, place it
1266     // into the deferred declarations table to be emitted if needed
1267     // later.
1268     StringRef MangledName = getMangledName(D);
1269     if (!GetGlobalValue(MangledName)) {
1270       DeferredDecls[MangledName] = D;
1271       return;
1272     }
1273   }
1274 
1275   // The tentative definition is the only definition.
1276   EmitGlobalVarDefinition(D);
1277 }
1278 
1279 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1280   if (DefinitionRequired)
1281     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1282 }
1283 
1284 llvm::GlobalVariable::LinkageTypes
1285 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1286   if (RD->getLinkage() != ExternalLinkage)
1287     return llvm::GlobalVariable::InternalLinkage;
1288 
1289   if (const CXXMethodDecl *KeyFunction
1290                                     = RD->getASTContext().getKeyFunction(RD)) {
1291     // If this class has a key function, use that to determine the linkage of
1292     // the vtable.
1293     const FunctionDecl *Def = 0;
1294     if (KeyFunction->hasBody(Def))
1295       KeyFunction = cast<CXXMethodDecl>(Def);
1296 
1297     switch (KeyFunction->getTemplateSpecializationKind()) {
1298       case TSK_Undeclared:
1299       case TSK_ExplicitSpecialization:
1300         // When compiling with optimizations turned on, we emit all vtables,
1301         // even if the key function is not defined in the current translation
1302         // unit. If this is the case, use available_externally linkage.
1303         if (!Def && CodeGenOpts.OptimizationLevel)
1304           return llvm::GlobalVariable::AvailableExternallyLinkage;
1305 
1306         if (KeyFunction->isInlined())
1307           return !Context.getLangOptions().AppleKext ?
1308                    llvm::GlobalVariable::LinkOnceODRLinkage :
1309                    llvm::Function::InternalLinkage;
1310 
1311         return llvm::GlobalVariable::ExternalLinkage;
1312 
1313       case TSK_ImplicitInstantiation:
1314         return !Context.getLangOptions().AppleKext ?
1315                  llvm::GlobalVariable::LinkOnceODRLinkage :
1316                  llvm::Function::InternalLinkage;
1317 
1318       case TSK_ExplicitInstantiationDefinition:
1319         return !Context.getLangOptions().AppleKext ?
1320                  llvm::GlobalVariable::WeakODRLinkage :
1321                  llvm::Function::InternalLinkage;
1322 
1323       case TSK_ExplicitInstantiationDeclaration:
1324         // FIXME: Use available_externally linkage. However, this currently
1325         // breaks LLVM's build due to undefined symbols.
1326         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1327         return !Context.getLangOptions().AppleKext ?
1328                  llvm::GlobalVariable::LinkOnceODRLinkage :
1329                  llvm::Function::InternalLinkage;
1330     }
1331   }
1332 
1333   if (Context.getLangOptions().AppleKext)
1334     return llvm::Function::InternalLinkage;
1335 
1336   switch (RD->getTemplateSpecializationKind()) {
1337   case TSK_Undeclared:
1338   case TSK_ExplicitSpecialization:
1339   case TSK_ImplicitInstantiation:
1340     // FIXME: Use available_externally linkage. However, this currently
1341     // breaks LLVM's build due to undefined symbols.
1342     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1343   case TSK_ExplicitInstantiationDeclaration:
1344     return llvm::GlobalVariable::LinkOnceODRLinkage;
1345 
1346   case TSK_ExplicitInstantiationDefinition:
1347       return llvm::GlobalVariable::WeakODRLinkage;
1348   }
1349 
1350   llvm_unreachable("Invalid TemplateSpecializationKind!");
1351 }
1352 
1353 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1354     return Context.toCharUnitsFromBits(
1355       TheTargetData.getTypeStoreSizeInBits(Ty));
1356 }
1357 
1358 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1359   llvm::Constant *Init = 0;
1360   QualType ASTTy = D->getType();
1361   bool NonConstInit = false;
1362 
1363   const VarDecl *InitDecl;
1364   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1365 
1366   if (!InitExpr) {
1367     // This is a tentative definition; tentative definitions are
1368     // implicitly initialized with { 0 }.
1369     //
1370     // Note that tentative definitions are only emitted at the end of
1371     // a translation unit, so they should never have incomplete
1372     // type. In addition, EmitTentativeDefinition makes sure that we
1373     // never attempt to emit a tentative definition if a real one
1374     // exists. A use may still exists, however, so we still may need
1375     // to do a RAUW.
1376     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1377     Init = EmitNullConstant(D->getType());
1378   } else {
1379     Init = EmitConstantInit(*InitDecl);
1380     if (!Init) {
1381       QualType T = InitExpr->getType();
1382       if (D->getType()->isReferenceType())
1383         T = D->getType();
1384 
1385       if (getLangOptions().CPlusPlus) {
1386         Init = EmitNullConstant(T);
1387         NonConstInit = true;
1388       } else {
1389         ErrorUnsupported(D, "static initializer");
1390         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1391       }
1392     } else {
1393       // We don't need an initializer, so remove the entry for the delayed
1394       // initializer position (just in case this entry was delayed).
1395       if (getLangOptions().CPlusPlus)
1396         DelayedCXXInitPosition.erase(D);
1397     }
1398   }
1399 
1400   llvm::Type* InitType = Init->getType();
1401   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1402 
1403   // Strip off a bitcast if we got one back.
1404   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1405     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1406            // all zero index gep.
1407            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1408     Entry = CE->getOperand(0);
1409   }
1410 
1411   // Entry is now either a Function or GlobalVariable.
1412   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1413 
1414   // We have a definition after a declaration with the wrong type.
1415   // We must make a new GlobalVariable* and update everything that used OldGV
1416   // (a declaration or tentative definition) with the new GlobalVariable*
1417   // (which will be a definition).
1418   //
1419   // This happens if there is a prototype for a global (e.g.
1420   // "extern int x[];") and then a definition of a different type (e.g.
1421   // "int x[10];"). This also happens when an initializer has a different type
1422   // from the type of the global (this happens with unions).
1423   if (GV == 0 ||
1424       GV->getType()->getElementType() != InitType ||
1425       GV->getType()->getAddressSpace() !=
1426         getContext().getTargetAddressSpace(ASTTy)) {
1427 
1428     // Move the old entry aside so that we'll create a new one.
1429     Entry->setName(StringRef());
1430 
1431     // Make a new global with the correct type, this is now guaranteed to work.
1432     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1433 
1434     // Replace all uses of the old global with the new global
1435     llvm::Constant *NewPtrForOldDecl =
1436         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1437     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1438 
1439     // Erase the old global, since it is no longer used.
1440     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1441   }
1442 
1443   if (D->hasAttr<AnnotateAttr>())
1444     AddGlobalAnnotations(D, GV);
1445 
1446   GV->setInitializer(Init);
1447 
1448   // If it is safe to mark the global 'constant', do so now.
1449   GV->setConstant(false);
1450   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1451     GV->setConstant(true);
1452 
1453   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1454 
1455   // Set the llvm linkage type as appropriate.
1456   llvm::GlobalValue::LinkageTypes Linkage =
1457     GetLLVMLinkageVarDefinition(D, GV);
1458   GV->setLinkage(Linkage);
1459   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1460     // common vars aren't constant even if declared const.
1461     GV->setConstant(false);
1462 
1463   SetCommonAttributes(D, GV);
1464 
1465   // Emit the initializer function if necessary.
1466   if (NonConstInit)
1467     EmitCXXGlobalVarDeclInitFunc(D, GV);
1468 
1469   // Emit global variable debug information.
1470   if (CGDebugInfo *DI = getModuleDebugInfo())
1471     DI->EmitGlobalVariable(GV, D);
1472 }
1473 
1474 llvm::GlobalValue::LinkageTypes
1475 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1476                                            llvm::GlobalVariable *GV) {
1477   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1478   if (Linkage == GVA_Internal)
1479     return llvm::Function::InternalLinkage;
1480   else if (D->hasAttr<DLLImportAttr>())
1481     return llvm::Function::DLLImportLinkage;
1482   else if (D->hasAttr<DLLExportAttr>())
1483     return llvm::Function::DLLExportLinkage;
1484   else if (D->hasAttr<WeakAttr>()) {
1485     if (GV->isConstant())
1486       return llvm::GlobalVariable::WeakODRLinkage;
1487     else
1488       return llvm::GlobalVariable::WeakAnyLinkage;
1489   } else if (Linkage == GVA_TemplateInstantiation ||
1490              Linkage == GVA_ExplicitTemplateInstantiation)
1491     return llvm::GlobalVariable::WeakODRLinkage;
1492   else if (!getLangOptions().CPlusPlus &&
1493            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1494              D->getAttr<CommonAttr>()) &&
1495            !D->hasExternalStorage() && !D->getInit() &&
1496            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1497            !D->getAttr<WeakImportAttr>()) {
1498     // Thread local vars aren't considered common linkage.
1499     return llvm::GlobalVariable::CommonLinkage;
1500   }
1501   return llvm::GlobalVariable::ExternalLinkage;
1502 }
1503 
1504 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1505 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1506 /// existing call uses of the old function in the module, this adjusts them to
1507 /// call the new function directly.
1508 ///
1509 /// This is not just a cleanup: the always_inline pass requires direct calls to
1510 /// functions to be able to inline them.  If there is a bitcast in the way, it
1511 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1512 /// run at -O0.
1513 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1514                                                       llvm::Function *NewFn) {
1515   // If we're redefining a global as a function, don't transform it.
1516   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1517   if (OldFn == 0) return;
1518 
1519   llvm::Type *NewRetTy = NewFn->getReturnType();
1520   SmallVector<llvm::Value*, 4> ArgList;
1521 
1522   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1523        UI != E; ) {
1524     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1525     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1526     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1527     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1528     llvm::CallSite CS(CI);
1529     if (!CI || !CS.isCallee(I)) continue;
1530 
1531     // If the return types don't match exactly, and if the call isn't dead, then
1532     // we can't transform this call.
1533     if (CI->getType() != NewRetTy && !CI->use_empty())
1534       continue;
1535 
1536     // Get the attribute list.
1537     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1538     llvm::AttrListPtr AttrList = CI->getAttributes();
1539 
1540     // Get any return attributes.
1541     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1542 
1543     // Add the return attributes.
1544     if (RAttrs)
1545       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1546 
1547     // If the function was passed too few arguments, don't transform.  If extra
1548     // arguments were passed, we silently drop them.  If any of the types
1549     // mismatch, we don't transform.
1550     unsigned ArgNo = 0;
1551     bool DontTransform = false;
1552     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1553          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1554       if (CS.arg_size() == ArgNo ||
1555           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1556         DontTransform = true;
1557         break;
1558       }
1559 
1560       // Add any parameter attributes.
1561       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1562         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1563     }
1564     if (DontTransform)
1565       continue;
1566 
1567     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1568       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1569 
1570     // Okay, we can transform this.  Create the new call instruction and copy
1571     // over the required information.
1572     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1573     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1574     ArgList.clear();
1575     if (!NewCall->getType()->isVoidTy())
1576       NewCall->takeName(CI);
1577     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1578                                                   AttrVec.end()));
1579     NewCall->setCallingConv(CI->getCallingConv());
1580 
1581     // Finally, remove the old call, replacing any uses with the new one.
1582     if (!CI->use_empty())
1583       CI->replaceAllUsesWith(NewCall);
1584 
1585     // Copy debug location attached to CI.
1586     if (!CI->getDebugLoc().isUnknown())
1587       NewCall->setDebugLoc(CI->getDebugLoc());
1588     CI->eraseFromParent();
1589   }
1590 }
1591 
1592 
1593 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1594   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1595 
1596   // Compute the function info and LLVM type.
1597   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1598   bool variadic = false;
1599   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1600     variadic = fpt->isVariadic();
1601   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1602 
1603   // Get or create the prototype for the function.
1604   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1605 
1606   // Strip off a bitcast if we got one back.
1607   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1608     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1609     Entry = CE->getOperand(0);
1610   }
1611 
1612 
1613   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1614     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1615 
1616     // If the types mismatch then we have to rewrite the definition.
1617     assert(OldFn->isDeclaration() &&
1618            "Shouldn't replace non-declaration");
1619 
1620     // F is the Function* for the one with the wrong type, we must make a new
1621     // Function* and update everything that used F (a declaration) with the new
1622     // Function* (which will be a definition).
1623     //
1624     // This happens if there is a prototype for a function
1625     // (e.g. "int f()") and then a definition of a different type
1626     // (e.g. "int f(int x)").  Move the old function aside so that it
1627     // doesn't interfere with GetAddrOfFunction.
1628     OldFn->setName(StringRef());
1629     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1630 
1631     // If this is an implementation of a function without a prototype, try to
1632     // replace any existing uses of the function (which may be calls) with uses
1633     // of the new function
1634     if (D->getType()->isFunctionNoProtoType()) {
1635       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1636       OldFn->removeDeadConstantUsers();
1637     }
1638 
1639     // Replace uses of F with the Function we will endow with a body.
1640     if (!Entry->use_empty()) {
1641       llvm::Constant *NewPtrForOldDecl =
1642         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1643       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1644     }
1645 
1646     // Ok, delete the old function now, which is dead.
1647     OldFn->eraseFromParent();
1648 
1649     Entry = NewFn;
1650   }
1651 
1652   // We need to set linkage and visibility on the function before
1653   // generating code for it because various parts of IR generation
1654   // want to propagate this information down (e.g. to local static
1655   // declarations).
1656   llvm::Function *Fn = cast<llvm::Function>(Entry);
1657   setFunctionLinkage(D, Fn);
1658 
1659   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1660   setGlobalVisibility(Fn, D);
1661 
1662   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1663 
1664   SetFunctionDefinitionAttributes(D, Fn);
1665   SetLLVMFunctionAttributesForDefinition(D, Fn);
1666 
1667   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1668     AddGlobalCtor(Fn, CA->getPriority());
1669   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1670     AddGlobalDtor(Fn, DA->getPriority());
1671   if (D->hasAttr<AnnotateAttr>())
1672     AddGlobalAnnotations(D, Fn);
1673 }
1674 
1675 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1676   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1677   const AliasAttr *AA = D->getAttr<AliasAttr>();
1678   assert(AA && "Not an alias?");
1679 
1680   StringRef MangledName = getMangledName(GD);
1681 
1682   // If there is a definition in the module, then it wins over the alias.
1683   // This is dubious, but allow it to be safe.  Just ignore the alias.
1684   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1685   if (Entry && !Entry->isDeclaration())
1686     return;
1687 
1688   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1689 
1690   // Create a reference to the named value.  This ensures that it is emitted
1691   // if a deferred decl.
1692   llvm::Constant *Aliasee;
1693   if (isa<llvm::FunctionType>(DeclTy))
1694     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1695                                       /*ForVTable=*/false);
1696   else
1697     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1698                                     llvm::PointerType::getUnqual(DeclTy), 0);
1699 
1700   // Create the new alias itself, but don't set a name yet.
1701   llvm::GlobalValue *GA =
1702     new llvm::GlobalAlias(Aliasee->getType(),
1703                           llvm::Function::ExternalLinkage,
1704                           "", Aliasee, &getModule());
1705 
1706   if (Entry) {
1707     assert(Entry->isDeclaration());
1708 
1709     // If there is a declaration in the module, then we had an extern followed
1710     // by the alias, as in:
1711     //   extern int test6();
1712     //   ...
1713     //   int test6() __attribute__((alias("test7")));
1714     //
1715     // Remove it and replace uses of it with the alias.
1716     GA->takeName(Entry);
1717 
1718     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1719                                                           Entry->getType()));
1720     Entry->eraseFromParent();
1721   } else {
1722     GA->setName(MangledName);
1723   }
1724 
1725   // Set attributes which are particular to an alias; this is a
1726   // specialization of the attributes which may be set on a global
1727   // variable/function.
1728   if (D->hasAttr<DLLExportAttr>()) {
1729     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1730       // The dllexport attribute is ignored for undefined symbols.
1731       if (FD->hasBody())
1732         GA->setLinkage(llvm::Function::DLLExportLinkage);
1733     } else {
1734       GA->setLinkage(llvm::Function::DLLExportLinkage);
1735     }
1736   } else if (D->hasAttr<WeakAttr>() ||
1737              D->hasAttr<WeakRefAttr>() ||
1738              D->isWeakImported()) {
1739     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1740   }
1741 
1742   SetCommonAttributes(D, GA);
1743 }
1744 
1745 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1746                                             ArrayRef<llvm::Type*> Tys) {
1747   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1748                                          Tys);
1749 }
1750 
1751 static llvm::StringMapEntry<llvm::Constant*> &
1752 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1753                          const StringLiteral *Literal,
1754                          bool TargetIsLSB,
1755                          bool &IsUTF16,
1756                          unsigned &StringLength) {
1757   StringRef String = Literal->getString();
1758   unsigned NumBytes = String.size();
1759 
1760   // Check for simple case.
1761   if (!Literal->containsNonAsciiOrNull()) {
1762     StringLength = NumBytes;
1763     return Map.GetOrCreateValue(String);
1764   }
1765 
1766   // Otherwise, convert the UTF8 literals into a byte string.
1767   SmallVector<UTF16, 128> ToBuf(NumBytes);
1768   const UTF8 *FromPtr = (UTF8 *)String.data();
1769   UTF16 *ToPtr = &ToBuf[0];
1770 
1771   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1772                            &ToPtr, ToPtr + NumBytes,
1773                            strictConversion);
1774 
1775   // ConvertUTF8toUTF16 returns the length in ToPtr.
1776   StringLength = ToPtr - &ToBuf[0];
1777 
1778   // Render the UTF-16 string into a byte array and convert to the target byte
1779   // order.
1780   //
1781   // FIXME: This isn't something we should need to do here.
1782   SmallString<128> AsBytes;
1783   AsBytes.reserve(StringLength * 2);
1784   for (unsigned i = 0; i != StringLength; ++i) {
1785     unsigned short Val = ToBuf[i];
1786     if (TargetIsLSB) {
1787       AsBytes.push_back(Val & 0xFF);
1788       AsBytes.push_back(Val >> 8);
1789     } else {
1790       AsBytes.push_back(Val >> 8);
1791       AsBytes.push_back(Val & 0xFF);
1792     }
1793   }
1794   // Append one extra null character, the second is automatically added by our
1795   // caller.
1796   AsBytes.push_back(0);
1797 
1798   IsUTF16 = true;
1799   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1800 }
1801 
1802 static llvm::StringMapEntry<llvm::Constant*> &
1803 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1804 		       const StringLiteral *Literal,
1805 		       unsigned &StringLength)
1806 {
1807 	StringRef String = Literal->getString();
1808 	StringLength = String.size();
1809 	return Map.GetOrCreateValue(String);
1810 }
1811 
1812 llvm::Constant *
1813 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1814   unsigned StringLength = 0;
1815   bool isUTF16 = false;
1816   llvm::StringMapEntry<llvm::Constant*> &Entry =
1817     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1818                              getTargetData().isLittleEndian(),
1819                              isUTF16, StringLength);
1820 
1821   if (llvm::Constant *C = Entry.getValue())
1822     return C;
1823 
1824   llvm::Constant *Zero =
1825       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1826   llvm::Constant *Zeros[] = { Zero, Zero };
1827 
1828   // If we don't already have it, get __CFConstantStringClassReference.
1829   if (!CFConstantStringClassRef) {
1830     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1831     Ty = llvm::ArrayType::get(Ty, 0);
1832     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1833                                            "__CFConstantStringClassReference");
1834     // Decay array -> ptr
1835     CFConstantStringClassRef =
1836       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1837   }
1838 
1839   QualType CFTy = getContext().getCFConstantStringType();
1840 
1841   llvm::StructType *STy =
1842     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1843 
1844   llvm::Constant *Fields[4];
1845 
1846   // Class pointer.
1847   Fields[0] = CFConstantStringClassRef;
1848 
1849   // Flags.
1850   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1851   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1852     llvm::ConstantInt::get(Ty, 0x07C8);
1853 
1854   // String pointer.
1855   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1856 
1857   llvm::GlobalValue::LinkageTypes Linkage;
1858   if (isUTF16)
1859     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1860     Linkage = llvm::GlobalValue::InternalLinkage;
1861   else
1862     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1863     // when using private linkage. It is not clear if this is a bug in ld
1864     // or a reasonable new restriction.
1865     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1866 
1867   // Note: -fwritable-strings doesn't make the backing store strings of
1868   // CFStrings writable. (See <rdar://problem/10657500>)
1869   llvm::GlobalVariable *GV =
1870     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
1871                              Linkage, C, ".str");
1872   GV->setUnnamedAddr(true);
1873   if (isUTF16) {
1874     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1875     GV->setAlignment(Align.getQuantity());
1876   } else {
1877     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1878     GV->setAlignment(Align.getQuantity());
1879   }
1880   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1881 
1882   // String length.
1883   Ty = getTypes().ConvertType(getContext().LongTy);
1884   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1885 
1886   // The struct.
1887   C = llvm::ConstantStruct::get(STy, Fields);
1888   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1889                                 llvm::GlobalVariable::PrivateLinkage, C,
1890                                 "_unnamed_cfstring_");
1891   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1892     GV->setSection(Sect);
1893   Entry.setValue(GV);
1894 
1895   return GV;
1896 }
1897 
1898 static RecordDecl *
1899 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1900                  DeclContext *DC, IdentifierInfo *Id) {
1901   SourceLocation Loc;
1902   if (Ctx.getLangOptions().CPlusPlus)
1903     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1904   else
1905     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1906 }
1907 
1908 llvm::Constant *
1909 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1910   unsigned StringLength = 0;
1911   llvm::StringMapEntry<llvm::Constant*> &Entry =
1912     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1913 
1914   if (llvm::Constant *C = Entry.getValue())
1915     return C;
1916 
1917   llvm::Constant *Zero =
1918   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1919   llvm::Constant *Zeros[] = { Zero, Zero };
1920 
1921   // If we don't already have it, get _NSConstantStringClassReference.
1922   if (!ConstantStringClassRef) {
1923     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1924     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1925     llvm::Constant *GV;
1926     if (Features.ObjCNonFragileABI) {
1927       std::string str =
1928         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1929                             : "OBJC_CLASS_$_" + StringClass;
1930       GV = getObjCRuntime().GetClassGlobal(str);
1931       // Make sure the result is of the correct type.
1932       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1933       ConstantStringClassRef =
1934         llvm::ConstantExpr::getBitCast(GV, PTy);
1935     } else {
1936       std::string str =
1937         StringClass.empty() ? "_NSConstantStringClassReference"
1938                             : "_" + StringClass + "ClassReference";
1939       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1940       GV = CreateRuntimeVariable(PTy, str);
1941       // Decay array -> ptr
1942       ConstantStringClassRef =
1943         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1944     }
1945   }
1946 
1947   if (!NSConstantStringType) {
1948     // Construct the type for a constant NSString.
1949     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1950                                      Context.getTranslationUnitDecl(),
1951                                    &Context.Idents.get("__builtin_NSString"));
1952     D->startDefinition();
1953 
1954     QualType FieldTypes[3];
1955 
1956     // const int *isa;
1957     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1958     // const char *str;
1959     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1960     // unsigned int length;
1961     FieldTypes[2] = Context.UnsignedIntTy;
1962 
1963     // Create fields
1964     for (unsigned i = 0; i < 3; ++i) {
1965       FieldDecl *Field = FieldDecl::Create(Context, D,
1966                                            SourceLocation(),
1967                                            SourceLocation(), 0,
1968                                            FieldTypes[i], /*TInfo=*/0,
1969                                            /*BitWidth=*/0,
1970                                            /*Mutable=*/false,
1971                                            /*HasInit=*/false);
1972       Field->setAccess(AS_public);
1973       D->addDecl(Field);
1974     }
1975 
1976     D->completeDefinition();
1977     QualType NSTy = Context.getTagDeclType(D);
1978     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1979   }
1980 
1981   llvm::Constant *Fields[3];
1982 
1983   // Class pointer.
1984   Fields[0] = ConstantStringClassRef;
1985 
1986   // String pointer.
1987   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1988 
1989   llvm::GlobalValue::LinkageTypes Linkage;
1990   bool isConstant;
1991   Linkage = llvm::GlobalValue::PrivateLinkage;
1992   isConstant = !Features.WritableStrings;
1993 
1994   llvm::GlobalVariable *GV =
1995   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1996                            ".str");
1997   GV->setUnnamedAddr(true);
1998   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1999   GV->setAlignment(Align.getQuantity());
2000   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2001 
2002   // String length.
2003   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2004   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2005 
2006   // The struct.
2007   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2008   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2009                                 llvm::GlobalVariable::PrivateLinkage, C,
2010                                 "_unnamed_nsstring_");
2011   // FIXME. Fix section.
2012   if (const char *Sect =
2013         Features.ObjCNonFragileABI
2014           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2015           : getContext().getTargetInfo().getNSStringSection())
2016     GV->setSection(Sect);
2017   Entry.setValue(GV);
2018 
2019   return GV;
2020 }
2021 
2022 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2023   if (ObjCFastEnumerationStateType.isNull()) {
2024     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2025                                      Context.getTranslationUnitDecl(),
2026                       &Context.Idents.get("__objcFastEnumerationState"));
2027     D->startDefinition();
2028 
2029     QualType FieldTypes[] = {
2030       Context.UnsignedLongTy,
2031       Context.getPointerType(Context.getObjCIdType()),
2032       Context.getPointerType(Context.UnsignedLongTy),
2033       Context.getConstantArrayType(Context.UnsignedLongTy,
2034                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2035     };
2036 
2037     for (size_t i = 0; i < 4; ++i) {
2038       FieldDecl *Field = FieldDecl::Create(Context,
2039                                            D,
2040                                            SourceLocation(),
2041                                            SourceLocation(), 0,
2042                                            FieldTypes[i], /*TInfo=*/0,
2043                                            /*BitWidth=*/0,
2044                                            /*Mutable=*/false,
2045                                            /*HasInit=*/false);
2046       Field->setAccess(AS_public);
2047       D->addDecl(Field);
2048     }
2049 
2050     D->completeDefinition();
2051     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2052   }
2053 
2054   return ObjCFastEnumerationStateType;
2055 }
2056 
2057 /// GetStringForStringLiteral - Return the appropriate bytes for a
2058 /// string literal, properly padded to match the literal type.
2059 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
2060   assert((E->isAscii() || E->isUTF8())
2061          && "Use GetConstantArrayFromStringLiteral for wide strings");
2062   const ASTContext &Context = getContext();
2063   const ConstantArrayType *CAT =
2064     Context.getAsConstantArrayType(E->getType());
2065   assert(CAT && "String isn't pointer or array!");
2066 
2067   // Resize the string to the right size.
2068   uint64_t RealLen = CAT->getSize().getZExtValue();
2069 
2070   std::string Str = E->getString().str();
2071   Str.resize(RealLen, '\0');
2072 
2073   return Str;
2074 }
2075 
2076 llvm::Constant *
2077 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2078   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2079 
2080   // Don't emit it as the address of the string, emit the string data itself
2081   // as an inline array.
2082   if (E->getCharByteWidth()==1) {
2083     return llvm::ConstantArray::get(VMContext,
2084                                     GetStringForStringLiteral(E), false);
2085   } else {
2086     llvm::ArrayType *AType =
2087       cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2088     llvm::Type *ElemTy = AType->getElementType();
2089     unsigned NumElements = AType->getNumElements();
2090     std::vector<llvm::Constant*> Elts;
2091     Elts.reserve(NumElements);
2092 
2093     for(unsigned i=0;i<E->getLength();++i) {
2094       unsigned value = E->getCodeUnit(i);
2095       llvm::Constant *C = llvm::ConstantInt::get(ElemTy,value,false);
2096       Elts.push_back(C);
2097     }
2098     for(unsigned i=E->getLength();i<NumElements;++i) {
2099       llvm::Constant *C = llvm::ConstantInt::get(ElemTy,0,false);
2100       Elts.push_back(C);
2101     }
2102 
2103     return llvm::ConstantArray::get(AType, Elts);
2104   }
2105 
2106 }
2107 
2108 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2109 /// constant array for the given string literal.
2110 llvm::Constant *
2111 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2112   // FIXME: This can be more efficient.
2113   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
2114   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2115   if (S->isAscii() || S->isUTF8()) {
2116     return GetAddrOfConstantString(GetStringForStringLiteral(S),
2117                                    /* GlobalName */ 0,
2118                                    Align.getQuantity());
2119   }
2120 
2121   // FIXME: the following does not memoize wide strings
2122   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2123   llvm::GlobalVariable *GV =
2124     new llvm::GlobalVariable(getModule(),C->getType(),
2125                              !Features.WritableStrings,
2126                              llvm::GlobalValue::PrivateLinkage,
2127                              C,".str");
2128 
2129   GV->setAlignment(Align.getQuantity());
2130   GV->setUnnamedAddr(true);
2131 
2132   return GV;
2133 }
2134 
2135 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2136 /// array for the given ObjCEncodeExpr node.
2137 llvm::Constant *
2138 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2139   std::string Str;
2140   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2141 
2142   return GetAddrOfConstantCString(Str);
2143 }
2144 
2145 
2146 /// GenerateWritableString -- Creates storage for a string literal.
2147 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2148                                              bool constant,
2149                                              CodeGenModule &CGM,
2150                                              const char *GlobalName,
2151                                              unsigned Alignment) {
2152   // Create Constant for this string literal. Don't add a '\0'.
2153   llvm::Constant *C =
2154       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
2155 
2156   // Create a global variable for this string
2157   llvm::GlobalVariable *GV =
2158     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2159                              llvm::GlobalValue::PrivateLinkage,
2160                              C, GlobalName);
2161   GV->setAlignment(Alignment);
2162   GV->setUnnamedAddr(true);
2163   return GV;
2164 }
2165 
2166 /// GetAddrOfConstantString - Returns a pointer to a character array
2167 /// containing the literal. This contents are exactly that of the
2168 /// given string, i.e. it will not be null terminated automatically;
2169 /// see GetAddrOfConstantCString. Note that whether the result is
2170 /// actually a pointer to an LLVM constant depends on
2171 /// Feature.WriteableStrings.
2172 ///
2173 /// The result has pointer to array type.
2174 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2175                                                        const char *GlobalName,
2176                                                        unsigned Alignment) {
2177   bool IsConstant = !Features.WritableStrings;
2178 
2179   // Get the default prefix if a name wasn't specified.
2180   if (!GlobalName)
2181     GlobalName = ".str";
2182 
2183   // Don't share any string literals if strings aren't constant.
2184   if (!IsConstant)
2185     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2186 
2187   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2188     ConstantStringMap.GetOrCreateValue(Str);
2189 
2190   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2191     if (Alignment > GV->getAlignment()) {
2192       GV->setAlignment(Alignment);
2193     }
2194     return GV;
2195   }
2196 
2197   // Create a global variable for this.
2198   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment);
2199   Entry.setValue(GV);
2200   return GV;
2201 }
2202 
2203 /// GetAddrOfConstantCString - Returns a pointer to a character
2204 /// array containing the literal and a terminating '\0'
2205 /// character. The result has pointer to array type.
2206 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2207                                                         const char *GlobalName,
2208                                                         unsigned Alignment) {
2209   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2210   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2211 }
2212 
2213 /// EmitObjCPropertyImplementations - Emit information for synthesized
2214 /// properties for an implementation.
2215 void CodeGenModule::EmitObjCPropertyImplementations(const
2216                                                     ObjCImplementationDecl *D) {
2217   for (ObjCImplementationDecl::propimpl_iterator
2218          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2219     ObjCPropertyImplDecl *PID = *i;
2220 
2221     // Dynamic is just for type-checking.
2222     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2223       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2224 
2225       // Determine which methods need to be implemented, some may have
2226       // been overridden. Note that ::isSynthesized is not the method
2227       // we want, that just indicates if the decl came from a
2228       // property. What we want to know is if the method is defined in
2229       // this implementation.
2230       if (!D->getInstanceMethod(PD->getGetterName()))
2231         CodeGenFunction(*this).GenerateObjCGetter(
2232                                  const_cast<ObjCImplementationDecl *>(D), PID);
2233       if (!PD->isReadOnly() &&
2234           !D->getInstanceMethod(PD->getSetterName()))
2235         CodeGenFunction(*this).GenerateObjCSetter(
2236                                  const_cast<ObjCImplementationDecl *>(D), PID);
2237     }
2238   }
2239 }
2240 
2241 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2242   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2243   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2244        ivar; ivar = ivar->getNextIvar())
2245     if (ivar->getType().isDestructedType())
2246       return true;
2247 
2248   return false;
2249 }
2250 
2251 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2252 /// for an implementation.
2253 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2254   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2255   if (needsDestructMethod(D)) {
2256     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2257     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2258     ObjCMethodDecl *DTORMethod =
2259       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2260                              cxxSelector, getContext().VoidTy, 0, D,
2261                              /*isInstance=*/true, /*isVariadic=*/false,
2262                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2263                              /*isDefined=*/false, ObjCMethodDecl::Required);
2264     D->addInstanceMethod(DTORMethod);
2265     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2266     D->setHasCXXStructors(true);
2267   }
2268 
2269   // If the implementation doesn't have any ivar initializers, we don't need
2270   // a .cxx_construct.
2271   if (D->getNumIvarInitializers() == 0)
2272     return;
2273 
2274   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2275   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2276   // The constructor returns 'self'.
2277   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2278                                                 D->getLocation(),
2279                                                 D->getLocation(),
2280                                                 cxxSelector,
2281                                                 getContext().getObjCIdType(), 0,
2282                                                 D, /*isInstance=*/true,
2283                                                 /*isVariadic=*/false,
2284                                                 /*isSynthesized=*/true,
2285                                                 /*isImplicitlyDeclared=*/true,
2286                                                 /*isDefined=*/false,
2287                                                 ObjCMethodDecl::Required);
2288   D->addInstanceMethod(CTORMethod);
2289   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2290   D->setHasCXXStructors(true);
2291 }
2292 
2293 /// EmitNamespace - Emit all declarations in a namespace.
2294 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2295   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2296        I != E; ++I)
2297     EmitTopLevelDecl(*I);
2298 }
2299 
2300 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2301 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2302   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2303       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2304     ErrorUnsupported(LSD, "linkage spec");
2305     return;
2306   }
2307 
2308   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2309        I != E; ++I)
2310     EmitTopLevelDecl(*I);
2311 }
2312 
2313 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2314 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2315   // If an error has occurred, stop code generation, but continue
2316   // parsing and semantic analysis (to ensure all warnings and errors
2317   // are emitted).
2318   if (Diags.hasErrorOccurred())
2319     return;
2320 
2321   // Ignore dependent declarations.
2322   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2323     return;
2324 
2325   switch (D->getKind()) {
2326   case Decl::CXXConversion:
2327   case Decl::CXXMethod:
2328   case Decl::Function:
2329     // Skip function templates
2330     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2331         cast<FunctionDecl>(D)->isLateTemplateParsed())
2332       return;
2333 
2334     EmitGlobal(cast<FunctionDecl>(D));
2335     break;
2336 
2337   case Decl::Var:
2338     EmitGlobal(cast<VarDecl>(D));
2339     break;
2340 
2341   // Indirect fields from global anonymous structs and unions can be
2342   // ignored; only the actual variable requires IR gen support.
2343   case Decl::IndirectField:
2344     break;
2345 
2346   // C++ Decls
2347   case Decl::Namespace:
2348     EmitNamespace(cast<NamespaceDecl>(D));
2349     break;
2350     // No code generation needed.
2351   case Decl::UsingShadow:
2352   case Decl::Using:
2353   case Decl::UsingDirective:
2354   case Decl::ClassTemplate:
2355   case Decl::FunctionTemplate:
2356   case Decl::TypeAliasTemplate:
2357   case Decl::NamespaceAlias:
2358   case Decl::Block:
2359   case Decl::Import:
2360     break;
2361   case Decl::CXXConstructor:
2362     // Skip function templates
2363     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2364         cast<FunctionDecl>(D)->isLateTemplateParsed())
2365       return;
2366 
2367     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2368     break;
2369   case Decl::CXXDestructor:
2370     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2371       return;
2372     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2373     break;
2374 
2375   case Decl::StaticAssert:
2376     // Nothing to do.
2377     break;
2378 
2379   // Objective-C Decls
2380 
2381   // Forward declarations, no (immediate) code generation.
2382   case Decl::ObjCInterface:
2383     break;
2384 
2385   case Decl::ObjCCategory: {
2386     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2387     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2388       Context.ResetObjCLayout(CD->getClassInterface());
2389     break;
2390   }
2391 
2392   case Decl::ObjCProtocol: {
2393     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2394     if (Proto->isThisDeclarationADefinition())
2395       ObjCRuntime->GenerateProtocol(Proto);
2396     break;
2397   }
2398 
2399   case Decl::ObjCCategoryImpl:
2400     // Categories have properties but don't support synthesize so we
2401     // can ignore them here.
2402     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2403     break;
2404 
2405   case Decl::ObjCImplementation: {
2406     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2407     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2408       Context.ResetObjCLayout(OMD->getClassInterface());
2409     EmitObjCPropertyImplementations(OMD);
2410     EmitObjCIvarInitializations(OMD);
2411     ObjCRuntime->GenerateClass(OMD);
2412     break;
2413   }
2414   case Decl::ObjCMethod: {
2415     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2416     // If this is not a prototype, emit the body.
2417     if (OMD->getBody())
2418       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2419     break;
2420   }
2421   case Decl::ObjCCompatibleAlias:
2422     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2423     break;
2424 
2425   case Decl::LinkageSpec:
2426     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2427     break;
2428 
2429   case Decl::FileScopeAsm: {
2430     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2431     StringRef AsmString = AD->getAsmString()->getString();
2432 
2433     const std::string &S = getModule().getModuleInlineAsm();
2434     if (S.empty())
2435       getModule().setModuleInlineAsm(AsmString);
2436     else if (*--S.end() == '\n')
2437       getModule().setModuleInlineAsm(S + AsmString.str());
2438     else
2439       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2440     break;
2441   }
2442 
2443   default:
2444     // Make sure we handled everything we should, every other kind is a
2445     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2446     // function. Need to recode Decl::Kind to do that easily.
2447     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2448   }
2449 }
2450 
2451 /// Turns the given pointer into a constant.
2452 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2453                                           const void *Ptr) {
2454   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2455   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2456   return llvm::ConstantInt::get(i64, PtrInt);
2457 }
2458 
2459 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2460                                    llvm::NamedMDNode *&GlobalMetadata,
2461                                    GlobalDecl D,
2462                                    llvm::GlobalValue *Addr) {
2463   if (!GlobalMetadata)
2464     GlobalMetadata =
2465       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2466 
2467   // TODO: should we report variant information for ctors/dtors?
2468   llvm::Value *Ops[] = {
2469     Addr,
2470     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2471   };
2472   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2473 }
2474 
2475 /// Emits metadata nodes associating all the global values in the
2476 /// current module with the Decls they came from.  This is useful for
2477 /// projects using IR gen as a subroutine.
2478 ///
2479 /// Since there's currently no way to associate an MDNode directly
2480 /// with an llvm::GlobalValue, we create a global named metadata
2481 /// with the name 'clang.global.decl.ptrs'.
2482 void CodeGenModule::EmitDeclMetadata() {
2483   llvm::NamedMDNode *GlobalMetadata = 0;
2484 
2485   // StaticLocalDeclMap
2486   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2487          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2488        I != E; ++I) {
2489     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2490     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2491   }
2492 }
2493 
2494 /// Emits metadata nodes for all the local variables in the current
2495 /// function.
2496 void CodeGenFunction::EmitDeclMetadata() {
2497   if (LocalDeclMap.empty()) return;
2498 
2499   llvm::LLVMContext &Context = getLLVMContext();
2500 
2501   // Find the unique metadata ID for this name.
2502   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2503 
2504   llvm::NamedMDNode *GlobalMetadata = 0;
2505 
2506   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2507          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2508     const Decl *D = I->first;
2509     llvm::Value *Addr = I->second;
2510 
2511     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2512       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2513       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2514     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2515       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2516       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2517     }
2518   }
2519 }
2520 
2521 void CodeGenModule::EmitCoverageFile() {
2522   if (!getCodeGenOpts().CoverageFile.empty()) {
2523     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2524       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2525       llvm::LLVMContext &Ctx = TheModule.getContext();
2526       llvm::MDString *CoverageFile =
2527           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2528       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2529         llvm::MDNode *CU = CUNode->getOperand(i);
2530         llvm::Value *node[] = { CoverageFile, CU };
2531         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2532         GCov->addOperand(N);
2533       }
2534     }
2535   }
2536 }
2537