1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/Triple.h" 43 #include "llvm/Target/Mangler.h" 44 #include "llvm/Target/TargetData.h" 45 #include "llvm/Support/CallSite.h" 46 #include "llvm/Support/ErrorHandling.h" 47 using namespace clang; 48 using namespace CodeGen; 49 50 static const char AnnotationSection[] = "llvm.metadata"; 51 52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 53 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 54 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 55 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 56 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 57 } 58 59 llvm_unreachable("invalid C++ ABI kind"); 60 } 61 62 63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 64 llvm::Module &M, const llvm::TargetData &TD, 65 DiagnosticsEngine &diags) 66 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 67 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 68 ABI(createCXXABI(*this)), 69 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 70 TBAA(0), 71 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 72 DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0), 73 ConstantStringClassRef(0), NSConstantStringType(0), 74 VMContext(M.getContext()), 75 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 76 BlockObjectAssign(0), BlockObjectDispose(0), 77 BlockDescriptorType(0), GenericBlockLiteralType(0) { 78 if (Features.ObjC1) 79 createObjCRuntime(); 80 if (Features.OpenCL) 81 createOpenCLRuntime(); 82 if (Features.CUDA) 83 createCUDARuntime(); 84 85 // Enable TBAA unless it's suppressed. 86 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 87 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 88 ABI.getMangleContext()); 89 90 // If debug info or coverage generation is enabled, create the CGDebugInfo 91 // object. 92 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 93 CodeGenOpts.EmitGcovNotes) 94 DebugInfo = new CGDebugInfo(*this); 95 96 Block.GlobalUniqueCount = 0; 97 98 if (C.getLangOptions().ObjCAutoRefCount) 99 ARCData = new ARCEntrypoints(); 100 RRData = new RREntrypoints(); 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 112 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 113 Int8PtrTy = Int8Ty->getPointerTo(0); 114 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 115 } 116 117 CodeGenModule::~CodeGenModule() { 118 delete ObjCRuntime; 119 delete OpenCLRuntime; 120 delete CUDARuntime; 121 delete TheTargetCodeGenInfo; 122 delete &ABI; 123 delete TBAA; 124 delete DebugInfo; 125 delete ARCData; 126 delete RRData; 127 } 128 129 void CodeGenModule::createObjCRuntime() { 130 if (!Features.NeXTRuntime) 131 ObjCRuntime = CreateGNUObjCRuntime(*this); 132 else 133 ObjCRuntime = CreateMacObjCRuntime(*this); 134 } 135 136 void CodeGenModule::createOpenCLRuntime() { 137 OpenCLRuntime = new CGOpenCLRuntime(*this); 138 } 139 140 void CodeGenModule::createCUDARuntime() { 141 CUDARuntime = CreateNVCUDARuntime(*this); 142 } 143 144 void CodeGenModule::Release() { 145 EmitDeferred(); 146 EmitCXXGlobalInitFunc(); 147 EmitCXXGlobalDtorFunc(); 148 if (ObjCRuntime) 149 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 150 AddGlobalCtor(ObjCInitFunction); 151 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 152 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 153 EmitGlobalAnnotations(); 154 EmitLLVMUsed(); 155 156 SimplifyPersonality(); 157 158 if (getCodeGenOpts().EmitDeclMetadata) 159 EmitDeclMetadata(); 160 161 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 162 EmitCoverageFile(); 163 164 if (DebugInfo) 165 DebugInfo->finalize(); 166 } 167 168 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 169 // Make sure that this type is translated. 170 Types.UpdateCompletedType(TD); 171 if (DebugInfo) 172 DebugInfo->UpdateCompletedType(TD); 173 } 174 175 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 176 if (!TBAA) 177 return 0; 178 return TBAA->getTBAAInfo(QTy); 179 } 180 181 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 182 llvm::MDNode *TBAAInfo) { 183 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 184 } 185 186 bool CodeGenModule::isTargetDarwin() const { 187 return getContext().getTargetInfo().getTriple().isOSDarwin(); 188 } 189 190 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 191 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 192 getDiags().Report(Context.getFullLoc(loc), diagID); 193 } 194 195 /// ErrorUnsupported - Print out an error that codegen doesn't support the 196 /// specified stmt yet. 197 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 198 bool OmitOnError) { 199 if (OmitOnError && getDiags().hasErrorOccurred()) 200 return; 201 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 202 "cannot compile this %0 yet"); 203 std::string Msg = Type; 204 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 205 << Msg << S->getSourceRange(); 206 } 207 208 /// ErrorUnsupported - Print out an error that codegen doesn't support the 209 /// specified decl yet. 210 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 211 bool OmitOnError) { 212 if (OmitOnError && getDiags().hasErrorOccurred()) 213 return; 214 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 215 "cannot compile this %0 yet"); 216 std::string Msg = Type; 217 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 218 } 219 220 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 221 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 222 } 223 224 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 225 const NamedDecl *D) const { 226 // Internal definitions always have default visibility. 227 if (GV->hasLocalLinkage()) { 228 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 229 return; 230 } 231 232 // Set visibility for definitions. 233 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 234 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 235 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 236 } 237 238 /// Set the symbol visibility of type information (vtable and RTTI) 239 /// associated with the given type. 240 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 241 const CXXRecordDecl *RD, 242 TypeVisibilityKind TVK) const { 243 setGlobalVisibility(GV, RD); 244 245 if (!CodeGenOpts.HiddenWeakVTables) 246 return; 247 248 // We never want to drop the visibility for RTTI names. 249 if (TVK == TVK_ForRTTIName) 250 return; 251 252 // We want to drop the visibility to hidden for weak type symbols. 253 // This isn't possible if there might be unresolved references 254 // elsewhere that rely on this symbol being visible. 255 256 // This should be kept roughly in sync with setThunkVisibility 257 // in CGVTables.cpp. 258 259 // Preconditions. 260 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 261 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 262 return; 263 264 // Don't override an explicit visibility attribute. 265 if (RD->getExplicitVisibility()) 266 return; 267 268 switch (RD->getTemplateSpecializationKind()) { 269 // We have to disable the optimization if this is an EI definition 270 // because there might be EI declarations in other shared objects. 271 case TSK_ExplicitInstantiationDefinition: 272 case TSK_ExplicitInstantiationDeclaration: 273 return; 274 275 // Every use of a non-template class's type information has to emit it. 276 case TSK_Undeclared: 277 break; 278 279 // In theory, implicit instantiations can ignore the possibility of 280 // an explicit instantiation declaration because there necessarily 281 // must be an EI definition somewhere with default visibility. In 282 // practice, it's possible to have an explicit instantiation for 283 // an arbitrary template class, and linkers aren't necessarily able 284 // to deal with mixed-visibility symbols. 285 case TSK_ExplicitSpecialization: 286 case TSK_ImplicitInstantiation: 287 if (!CodeGenOpts.HiddenWeakTemplateVTables) 288 return; 289 break; 290 } 291 292 // If there's a key function, there may be translation units 293 // that don't have the key function's definition. But ignore 294 // this if we're emitting RTTI under -fno-rtti. 295 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 296 if (Context.getKeyFunction(RD)) 297 return; 298 } 299 300 // Otherwise, drop the visibility to hidden. 301 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 302 GV->setUnnamedAddr(true); 303 } 304 305 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 306 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 307 308 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 309 if (!Str.empty()) 310 return Str; 311 312 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 313 IdentifierInfo *II = ND->getIdentifier(); 314 assert(II && "Attempt to mangle unnamed decl."); 315 316 Str = II->getName(); 317 return Str; 318 } 319 320 SmallString<256> Buffer; 321 llvm::raw_svector_ostream Out(Buffer); 322 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 323 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 324 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 325 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 326 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 327 getCXXABI().getMangleContext().mangleBlock(BD, Out); 328 else 329 getCXXABI().getMangleContext().mangleName(ND, Out); 330 331 // Allocate space for the mangled name. 332 Out.flush(); 333 size_t Length = Buffer.size(); 334 char *Name = MangledNamesAllocator.Allocate<char>(Length); 335 std::copy(Buffer.begin(), Buffer.end(), Name); 336 337 Str = StringRef(Name, Length); 338 339 return Str; 340 } 341 342 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 343 const BlockDecl *BD) { 344 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 345 const Decl *D = GD.getDecl(); 346 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 347 if (D == 0) 348 MangleCtx.mangleGlobalBlock(BD, Out); 349 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 350 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 351 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 352 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 353 else 354 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 355 } 356 357 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 358 return getModule().getNamedValue(Name); 359 } 360 361 /// AddGlobalCtor - Add a function to the list that will be called before 362 /// main() runs. 363 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 364 // FIXME: Type coercion of void()* types. 365 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 366 } 367 368 /// AddGlobalDtor - Add a function to the list that will be called 369 /// when the module is unloaded. 370 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 371 // FIXME: Type coercion of void()* types. 372 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 373 } 374 375 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 376 // Ctor function type is void()*. 377 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 378 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 379 380 // Get the type of a ctor entry, { i32, void ()* }. 381 llvm::StructType *CtorStructTy = 382 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 383 llvm::PointerType::getUnqual(CtorFTy), NULL); 384 385 // Construct the constructor and destructor arrays. 386 std::vector<llvm::Constant*> Ctors; 387 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 388 std::vector<llvm::Constant*> S; 389 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 390 I->second, false)); 391 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 392 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 393 } 394 395 if (!Ctors.empty()) { 396 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 397 new llvm::GlobalVariable(TheModule, AT, false, 398 llvm::GlobalValue::AppendingLinkage, 399 llvm::ConstantArray::get(AT, Ctors), 400 GlobalName); 401 } 402 } 403 404 llvm::GlobalValue::LinkageTypes 405 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 406 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 407 408 if (Linkage == GVA_Internal) 409 return llvm::Function::InternalLinkage; 410 411 if (D->hasAttr<DLLExportAttr>()) 412 return llvm::Function::DLLExportLinkage; 413 414 if (D->hasAttr<WeakAttr>()) 415 return llvm::Function::WeakAnyLinkage; 416 417 // In C99 mode, 'inline' functions are guaranteed to have a strong 418 // definition somewhere else, so we can use available_externally linkage. 419 if (Linkage == GVA_C99Inline) 420 return llvm::Function::AvailableExternallyLinkage; 421 422 // Note that Apple's kernel linker doesn't support symbol 423 // coalescing, so we need to avoid linkonce and weak linkages there. 424 // Normally, this means we just map to internal, but for explicit 425 // instantiations we'll map to external. 426 427 // In C++, the compiler has to emit a definition in every translation unit 428 // that references the function. We should use linkonce_odr because 429 // a) if all references in this translation unit are optimized away, we 430 // don't need to codegen it. b) if the function persists, it needs to be 431 // merged with other definitions. c) C++ has the ODR, so we know the 432 // definition is dependable. 433 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 434 return !Context.getLangOptions().AppleKext 435 ? llvm::Function::LinkOnceODRLinkage 436 : llvm::Function::InternalLinkage; 437 438 // An explicit instantiation of a template has weak linkage, since 439 // explicit instantiations can occur in multiple translation units 440 // and must all be equivalent. However, we are not allowed to 441 // throw away these explicit instantiations. 442 if (Linkage == GVA_ExplicitTemplateInstantiation) 443 return !Context.getLangOptions().AppleKext 444 ? llvm::Function::WeakODRLinkage 445 : llvm::Function::ExternalLinkage; 446 447 // Otherwise, we have strong external linkage. 448 assert(Linkage == GVA_StrongExternal); 449 return llvm::Function::ExternalLinkage; 450 } 451 452 453 /// SetFunctionDefinitionAttributes - Set attributes for a global. 454 /// 455 /// FIXME: This is currently only done for aliases and functions, but not for 456 /// variables (these details are set in EmitGlobalVarDefinition for variables). 457 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 458 llvm::GlobalValue *GV) { 459 SetCommonAttributes(D, GV); 460 } 461 462 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 463 const CGFunctionInfo &Info, 464 llvm::Function *F) { 465 unsigned CallingConv; 466 AttributeListType AttributeList; 467 ConstructAttributeList(Info, D, AttributeList, CallingConv); 468 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 469 AttributeList.size())); 470 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 471 } 472 473 /// Determines whether the language options require us to model 474 /// unwind exceptions. We treat -fexceptions as mandating this 475 /// except under the fragile ObjC ABI with only ObjC exceptions 476 /// enabled. This means, for example, that C with -fexceptions 477 /// enables this. 478 static bool hasUnwindExceptions(const LangOptions &Features) { 479 // If exceptions are completely disabled, obviously this is false. 480 if (!Features.Exceptions) return false; 481 482 // If C++ exceptions are enabled, this is true. 483 if (Features.CXXExceptions) return true; 484 485 // If ObjC exceptions are enabled, this depends on the ABI. 486 if (Features.ObjCExceptions) { 487 if (!Features.ObjCNonFragileABI) return false; 488 } 489 490 return true; 491 } 492 493 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 494 llvm::Function *F) { 495 if (CodeGenOpts.UnwindTables) 496 F->setHasUWTable(); 497 498 if (!hasUnwindExceptions(Features)) 499 F->addFnAttr(llvm::Attribute::NoUnwind); 500 501 if (D->hasAttr<NakedAttr>()) { 502 // Naked implies noinline: we should not be inlining such functions. 503 F->addFnAttr(llvm::Attribute::Naked); 504 F->addFnAttr(llvm::Attribute::NoInline); 505 } 506 507 if (D->hasAttr<NoInlineAttr>()) 508 F->addFnAttr(llvm::Attribute::NoInline); 509 510 // (noinline wins over always_inline, and we can't specify both in IR) 511 if (D->hasAttr<AlwaysInlineAttr>() && 512 !F->hasFnAttr(llvm::Attribute::NoInline)) 513 F->addFnAttr(llvm::Attribute::AlwaysInline); 514 515 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 516 F->setUnnamedAddr(true); 517 518 if (Features.getStackProtector() == LangOptions::SSPOn) 519 F->addFnAttr(llvm::Attribute::StackProtect); 520 else if (Features.getStackProtector() == LangOptions::SSPReq) 521 F->addFnAttr(llvm::Attribute::StackProtectReq); 522 523 if (Features.AddressSanitizer) { 524 // When AddressSanitizer is enabled, set AddressSafety attribute 525 // unless __attribute__((no_address_safety_analysis)) is used. 526 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 527 F->addFnAttr(llvm::Attribute::AddressSafety); 528 } 529 530 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 531 if (alignment) 532 F->setAlignment(alignment); 533 534 // C++ ABI requires 2-byte alignment for member functions. 535 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 536 F->setAlignment(2); 537 } 538 539 void CodeGenModule::SetCommonAttributes(const Decl *D, 540 llvm::GlobalValue *GV) { 541 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 542 setGlobalVisibility(GV, ND); 543 else 544 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 545 546 if (D->hasAttr<UsedAttr>()) 547 AddUsedGlobal(GV); 548 549 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 550 GV->setSection(SA->getName()); 551 552 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 553 } 554 555 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 556 llvm::Function *F, 557 const CGFunctionInfo &FI) { 558 SetLLVMFunctionAttributes(D, FI, F); 559 SetLLVMFunctionAttributesForDefinition(D, F); 560 561 F->setLinkage(llvm::Function::InternalLinkage); 562 563 SetCommonAttributes(D, F); 564 } 565 566 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 567 llvm::Function *F, 568 bool IsIncompleteFunction) { 569 if (unsigned IID = F->getIntrinsicID()) { 570 // If this is an intrinsic function, set the function's attributes 571 // to the intrinsic's attributes. 572 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 573 return; 574 } 575 576 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 577 578 if (!IsIncompleteFunction) 579 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 580 581 // Only a few attributes are set on declarations; these may later be 582 // overridden by a definition. 583 584 if (FD->hasAttr<DLLImportAttr>()) { 585 F->setLinkage(llvm::Function::DLLImportLinkage); 586 } else if (FD->hasAttr<WeakAttr>() || 587 FD->isWeakImported()) { 588 // "extern_weak" is overloaded in LLVM; we probably should have 589 // separate linkage types for this. 590 F->setLinkage(llvm::Function::ExternalWeakLinkage); 591 } else { 592 F->setLinkage(llvm::Function::ExternalLinkage); 593 594 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 595 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 596 F->setVisibility(GetLLVMVisibility(LV.visibility())); 597 } 598 } 599 600 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 601 F->setSection(SA->getName()); 602 } 603 604 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 605 assert(!GV->isDeclaration() && 606 "Only globals with definition can force usage."); 607 LLVMUsed.push_back(GV); 608 } 609 610 void CodeGenModule::EmitLLVMUsed() { 611 // Don't create llvm.used if there is no need. 612 if (LLVMUsed.empty()) 613 return; 614 615 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 616 617 // Convert LLVMUsed to what ConstantArray needs. 618 std::vector<llvm::Constant*> UsedArray; 619 UsedArray.resize(LLVMUsed.size()); 620 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 621 UsedArray[i] = 622 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 623 i8PTy); 624 } 625 626 if (UsedArray.empty()) 627 return; 628 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 629 630 llvm::GlobalVariable *GV = 631 new llvm::GlobalVariable(getModule(), ATy, false, 632 llvm::GlobalValue::AppendingLinkage, 633 llvm::ConstantArray::get(ATy, UsedArray), 634 "llvm.used"); 635 636 GV->setSection("llvm.metadata"); 637 } 638 639 void CodeGenModule::EmitDeferred() { 640 // Emit code for any potentially referenced deferred decls. Since a 641 // previously unused static decl may become used during the generation of code 642 // for a static function, iterate until no changes are made. 643 644 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 645 if (!DeferredVTables.empty()) { 646 const CXXRecordDecl *RD = DeferredVTables.back(); 647 DeferredVTables.pop_back(); 648 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 649 continue; 650 } 651 652 GlobalDecl D = DeferredDeclsToEmit.back(); 653 DeferredDeclsToEmit.pop_back(); 654 655 // Check to see if we've already emitted this. This is necessary 656 // for a couple of reasons: first, decls can end up in the 657 // deferred-decls queue multiple times, and second, decls can end 658 // up with definitions in unusual ways (e.g. by an extern inline 659 // function acquiring a strong function redefinition). Just 660 // ignore these cases. 661 // 662 // TODO: That said, looking this up multiple times is very wasteful. 663 StringRef Name = getMangledName(D); 664 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 665 assert(CGRef && "Deferred decl wasn't referenced?"); 666 667 if (!CGRef->isDeclaration()) 668 continue; 669 670 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 671 // purposes an alias counts as a definition. 672 if (isa<llvm::GlobalAlias>(CGRef)) 673 continue; 674 675 // Otherwise, emit the definition and move on to the next one. 676 EmitGlobalDefinition(D); 677 } 678 } 679 680 void CodeGenModule::EmitGlobalAnnotations() { 681 if (Annotations.empty()) 682 return; 683 684 // Create a new global variable for the ConstantStruct in the Module. 685 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 686 Annotations[0]->getType(), Annotations.size()), Annotations); 687 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 688 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 689 "llvm.global.annotations"); 690 gv->setSection(AnnotationSection); 691 } 692 693 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 694 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 695 if (i != AnnotationStrings.end()) 696 return i->second; 697 698 // Not found yet, create a new global. 699 llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true); 700 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 701 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 702 gv->setSection(AnnotationSection); 703 gv->setUnnamedAddr(true); 704 AnnotationStrings[Str] = gv; 705 return gv; 706 } 707 708 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 709 SourceManager &SM = getContext().getSourceManager(); 710 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 711 if (PLoc.isValid()) 712 return EmitAnnotationString(PLoc.getFilename()); 713 return EmitAnnotationString(SM.getBufferName(Loc)); 714 } 715 716 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 717 SourceManager &SM = getContext().getSourceManager(); 718 PresumedLoc PLoc = SM.getPresumedLoc(L); 719 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 720 SM.getExpansionLineNumber(L); 721 return llvm::ConstantInt::get(Int32Ty, LineNo); 722 } 723 724 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 725 const AnnotateAttr *AA, 726 SourceLocation L) { 727 // Get the globals for file name, annotation, and the line number. 728 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 729 *UnitGV = EmitAnnotationUnit(L), 730 *LineNoCst = EmitAnnotationLineNo(L); 731 732 // Create the ConstantStruct for the global annotation. 733 llvm::Constant *Fields[4] = { 734 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 735 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 736 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 737 LineNoCst 738 }; 739 return llvm::ConstantStruct::getAnon(Fields); 740 } 741 742 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 743 llvm::GlobalValue *GV) { 744 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 745 // Get the struct elements for these annotations. 746 for (specific_attr_iterator<AnnotateAttr> 747 ai = D->specific_attr_begin<AnnotateAttr>(), 748 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 749 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 750 } 751 752 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 753 // Never defer when EmitAllDecls is specified. 754 if (Features.EmitAllDecls) 755 return false; 756 757 return !getContext().DeclMustBeEmitted(Global); 758 } 759 760 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 761 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 762 assert(AA && "No alias?"); 763 764 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 765 766 // See if there is already something with the target's name in the module. 767 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 768 769 llvm::Constant *Aliasee; 770 if (isa<llvm::FunctionType>(DeclTy)) 771 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 772 /*ForVTable=*/false); 773 else 774 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 775 llvm::PointerType::getUnqual(DeclTy), 0); 776 if (!Entry) { 777 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 778 F->setLinkage(llvm::Function::ExternalWeakLinkage); 779 WeakRefReferences.insert(F); 780 } 781 782 return Aliasee; 783 } 784 785 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 786 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 787 788 // Weak references don't produce any output by themselves. 789 if (Global->hasAttr<WeakRefAttr>()) 790 return; 791 792 // If this is an alias definition (which otherwise looks like a declaration) 793 // emit it now. 794 if (Global->hasAttr<AliasAttr>()) 795 return EmitAliasDefinition(GD); 796 797 // If this is CUDA, be selective about which declarations we emit. 798 if (Features.CUDA) { 799 if (CodeGenOpts.CUDAIsDevice) { 800 if (!Global->hasAttr<CUDADeviceAttr>() && 801 !Global->hasAttr<CUDAGlobalAttr>() && 802 !Global->hasAttr<CUDAConstantAttr>() && 803 !Global->hasAttr<CUDASharedAttr>()) 804 return; 805 } else { 806 if (!Global->hasAttr<CUDAHostAttr>() && ( 807 Global->hasAttr<CUDADeviceAttr>() || 808 Global->hasAttr<CUDAConstantAttr>() || 809 Global->hasAttr<CUDASharedAttr>())) 810 return; 811 } 812 } 813 814 // Ignore declarations, they will be emitted on their first use. 815 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 816 // Forward declarations are emitted lazily on first use. 817 if (!FD->doesThisDeclarationHaveABody()) { 818 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 819 return; 820 821 const FunctionDecl *InlineDefinition = 0; 822 FD->getBody(InlineDefinition); 823 824 StringRef MangledName = getMangledName(GD); 825 llvm::StringMap<GlobalDecl>::iterator DDI = 826 DeferredDecls.find(MangledName); 827 if (DDI != DeferredDecls.end()) 828 DeferredDecls.erase(DDI); 829 EmitGlobalDefinition(InlineDefinition); 830 return; 831 } 832 } else { 833 const VarDecl *VD = cast<VarDecl>(Global); 834 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 835 836 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 837 return; 838 } 839 840 // Defer code generation when possible if this is a static definition, inline 841 // function etc. These we only want to emit if they are used. 842 if (!MayDeferGeneration(Global)) { 843 // Emit the definition if it can't be deferred. 844 EmitGlobalDefinition(GD); 845 return; 846 } 847 848 // If we're deferring emission of a C++ variable with an 849 // initializer, remember the order in which it appeared in the file. 850 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 851 cast<VarDecl>(Global)->hasInit()) { 852 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 853 CXXGlobalInits.push_back(0); 854 } 855 856 // If the value has already been used, add it directly to the 857 // DeferredDeclsToEmit list. 858 StringRef MangledName = getMangledName(GD); 859 if (GetGlobalValue(MangledName)) 860 DeferredDeclsToEmit.push_back(GD); 861 else { 862 // Otherwise, remember that we saw a deferred decl with this name. The 863 // first use of the mangled name will cause it to move into 864 // DeferredDeclsToEmit. 865 DeferredDecls[MangledName] = GD; 866 } 867 } 868 869 namespace { 870 struct FunctionIsDirectlyRecursive : 871 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 872 const StringRef Name; 873 const Builtin::Context &BI; 874 bool Result; 875 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 876 Name(N), BI(C), Result(false) { 877 } 878 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 879 880 bool TraverseCallExpr(CallExpr *E) { 881 const FunctionDecl *FD = E->getDirectCallee(); 882 if (!FD) 883 return true; 884 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 885 if (Attr && Name == Attr->getLabel()) { 886 Result = true; 887 return false; 888 } 889 unsigned BuiltinID = FD->getBuiltinID(); 890 if (!BuiltinID) 891 return true; 892 StringRef BuiltinName = BI.GetName(BuiltinID); 893 if (BuiltinName.startswith("__builtin_") && 894 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 895 Result = true; 896 return false; 897 } 898 return true; 899 } 900 }; 901 } 902 903 // isTriviallyRecursive - Check if this function calls another 904 // decl that, because of the asm attribute or the other decl being a builtin, 905 // ends up pointing to itself. 906 bool 907 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 908 StringRef Name; 909 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 910 // asm labels are a special kind of mangling we have to support. 911 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 912 if (!Attr) 913 return false; 914 Name = Attr->getLabel(); 915 } else { 916 Name = FD->getName(); 917 } 918 919 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 920 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 921 return Walker.Result; 922 } 923 924 bool 925 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 926 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 927 return true; 928 if (CodeGenOpts.OptimizationLevel == 0 && 929 !F->hasAttr<AlwaysInlineAttr>()) 930 return false; 931 // PR9614. Avoid cases where the source code is lying to us. An available 932 // externally function should have an equivalent function somewhere else, 933 // but a function that calls itself is clearly not equivalent to the real 934 // implementation. 935 // This happens in glibc's btowc and in some configure checks. 936 return !isTriviallyRecursive(F); 937 } 938 939 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 940 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 941 942 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 943 Context.getSourceManager(), 944 "Generating code for declaration"); 945 946 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 947 // At -O0, don't generate IR for functions with available_externally 948 // linkage. 949 if (!shouldEmitFunction(Function)) 950 return; 951 952 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 953 // Make sure to emit the definition(s) before we emit the thunks. 954 // This is necessary for the generation of certain thunks. 955 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 956 EmitCXXConstructor(CD, GD.getCtorType()); 957 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 958 EmitCXXDestructor(DD, GD.getDtorType()); 959 else 960 EmitGlobalFunctionDefinition(GD); 961 962 if (Method->isVirtual()) 963 getVTables().EmitThunks(GD); 964 965 return; 966 } 967 968 return EmitGlobalFunctionDefinition(GD); 969 } 970 971 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 972 return EmitGlobalVarDefinition(VD); 973 974 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 975 } 976 977 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 978 /// module, create and return an llvm Function with the specified type. If there 979 /// is something in the module with the specified name, return it potentially 980 /// bitcasted to the right type. 981 /// 982 /// If D is non-null, it specifies a decl that correspond to this. This is used 983 /// to set the attributes on the function when it is first created. 984 llvm::Constant * 985 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 986 llvm::Type *Ty, 987 GlobalDecl D, bool ForVTable, 988 llvm::Attributes ExtraAttrs) { 989 // Lookup the entry, lazily creating it if necessary. 990 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 991 if (Entry) { 992 if (WeakRefReferences.count(Entry)) { 993 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 994 if (FD && !FD->hasAttr<WeakAttr>()) 995 Entry->setLinkage(llvm::Function::ExternalLinkage); 996 997 WeakRefReferences.erase(Entry); 998 } 999 1000 if (Entry->getType()->getElementType() == Ty) 1001 return Entry; 1002 1003 // Make sure the result is of the correct type. 1004 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1005 } 1006 1007 // This function doesn't have a complete type (for example, the return 1008 // type is an incomplete struct). Use a fake type instead, and make 1009 // sure not to try to set attributes. 1010 bool IsIncompleteFunction = false; 1011 1012 llvm::FunctionType *FTy; 1013 if (isa<llvm::FunctionType>(Ty)) { 1014 FTy = cast<llvm::FunctionType>(Ty); 1015 } else { 1016 FTy = llvm::FunctionType::get(VoidTy, false); 1017 IsIncompleteFunction = true; 1018 } 1019 1020 llvm::Function *F = llvm::Function::Create(FTy, 1021 llvm::Function::ExternalLinkage, 1022 MangledName, &getModule()); 1023 assert(F->getName() == MangledName && "name was uniqued!"); 1024 if (D.getDecl()) 1025 SetFunctionAttributes(D, F, IsIncompleteFunction); 1026 if (ExtraAttrs != llvm::Attribute::None) 1027 F->addFnAttr(ExtraAttrs); 1028 1029 // This is the first use or definition of a mangled name. If there is a 1030 // deferred decl with this name, remember that we need to emit it at the end 1031 // of the file. 1032 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1033 if (DDI != DeferredDecls.end()) { 1034 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1035 // list, and remove it from DeferredDecls (since we don't need it anymore). 1036 DeferredDeclsToEmit.push_back(DDI->second); 1037 DeferredDecls.erase(DDI); 1038 1039 // Otherwise, there are cases we have to worry about where we're 1040 // using a declaration for which we must emit a definition but where 1041 // we might not find a top-level definition: 1042 // - member functions defined inline in their classes 1043 // - friend functions defined inline in some class 1044 // - special member functions with implicit definitions 1045 // If we ever change our AST traversal to walk into class methods, 1046 // this will be unnecessary. 1047 // 1048 // We also don't emit a definition for a function if it's going to be an entry 1049 // in a vtable, unless it's already marked as used. 1050 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 1051 // Look for a declaration that's lexically in a record. 1052 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1053 do { 1054 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1055 if (FD->isImplicit() && !ForVTable) { 1056 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1057 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1058 break; 1059 } else if (FD->doesThisDeclarationHaveABody()) { 1060 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1061 break; 1062 } 1063 } 1064 FD = FD->getPreviousDecl(); 1065 } while (FD); 1066 } 1067 1068 // Make sure the result is of the requested type. 1069 if (!IsIncompleteFunction) { 1070 assert(F->getType()->getElementType() == Ty); 1071 return F; 1072 } 1073 1074 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1075 return llvm::ConstantExpr::getBitCast(F, PTy); 1076 } 1077 1078 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1079 /// non-null, then this function will use the specified type if it has to 1080 /// create it (this occurs when we see a definition of the function). 1081 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1082 llvm::Type *Ty, 1083 bool ForVTable) { 1084 // If there was no specific requested type, just convert it now. 1085 if (!Ty) 1086 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1087 1088 StringRef MangledName = getMangledName(GD); 1089 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1090 } 1091 1092 /// CreateRuntimeFunction - Create a new runtime function with the specified 1093 /// type and name. 1094 llvm::Constant * 1095 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1096 StringRef Name, 1097 llvm::Attributes ExtraAttrs) { 1098 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1099 ExtraAttrs); 1100 } 1101 1102 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 1103 bool ConstantInit) { 1104 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 1105 return false; 1106 1107 if (Context.getLangOptions().CPlusPlus) { 1108 if (const RecordType *Record 1109 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 1110 return ConstantInit && 1111 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 1112 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 1113 } 1114 1115 return true; 1116 } 1117 1118 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1119 /// create and return an llvm GlobalVariable with the specified type. If there 1120 /// is something in the module with the specified name, return it potentially 1121 /// bitcasted to the right type. 1122 /// 1123 /// If D is non-null, it specifies a decl that correspond to this. This is used 1124 /// to set the attributes on the global when it is first created. 1125 llvm::Constant * 1126 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1127 llvm::PointerType *Ty, 1128 const VarDecl *D, 1129 bool UnnamedAddr) { 1130 // Lookup the entry, lazily creating it if necessary. 1131 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1132 if (Entry) { 1133 if (WeakRefReferences.count(Entry)) { 1134 if (D && !D->hasAttr<WeakAttr>()) 1135 Entry->setLinkage(llvm::Function::ExternalLinkage); 1136 1137 WeakRefReferences.erase(Entry); 1138 } 1139 1140 if (UnnamedAddr) 1141 Entry->setUnnamedAddr(true); 1142 1143 if (Entry->getType() == Ty) 1144 return Entry; 1145 1146 // Make sure the result is of the correct type. 1147 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1148 } 1149 1150 // This is the first use or definition of a mangled name. If there is a 1151 // deferred decl with this name, remember that we need to emit it at the end 1152 // of the file. 1153 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1154 if (DDI != DeferredDecls.end()) { 1155 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1156 // list, and remove it from DeferredDecls (since we don't need it anymore). 1157 DeferredDeclsToEmit.push_back(DDI->second); 1158 DeferredDecls.erase(DDI); 1159 } 1160 1161 llvm::GlobalVariable *GV = 1162 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1163 llvm::GlobalValue::ExternalLinkage, 1164 0, MangledName, 0, 1165 false, Ty->getAddressSpace()); 1166 1167 // Handle things which are present even on external declarations. 1168 if (D) { 1169 // FIXME: This code is overly simple and should be merged with other global 1170 // handling. 1171 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1172 1173 // Set linkage and visibility in case we never see a definition. 1174 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1175 if (LV.linkage() != ExternalLinkage) { 1176 // Don't set internal linkage on declarations. 1177 } else { 1178 if (D->hasAttr<DLLImportAttr>()) 1179 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1180 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1181 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1182 1183 // Set visibility on a declaration only if it's explicit. 1184 if (LV.visibilityExplicit()) 1185 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1186 } 1187 1188 GV->setThreadLocal(D->isThreadSpecified()); 1189 } 1190 1191 return GV; 1192 } 1193 1194 1195 llvm::GlobalVariable * 1196 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1197 llvm::Type *Ty, 1198 llvm::GlobalValue::LinkageTypes Linkage) { 1199 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1200 llvm::GlobalVariable *OldGV = 0; 1201 1202 1203 if (GV) { 1204 // Check if the variable has the right type. 1205 if (GV->getType()->getElementType() == Ty) 1206 return GV; 1207 1208 // Because C++ name mangling, the only way we can end up with an already 1209 // existing global with the same name is if it has been declared extern "C". 1210 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1211 OldGV = GV; 1212 } 1213 1214 // Create a new variable. 1215 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1216 Linkage, 0, Name); 1217 1218 if (OldGV) { 1219 // Replace occurrences of the old variable if needed. 1220 GV->takeName(OldGV); 1221 1222 if (!OldGV->use_empty()) { 1223 llvm::Constant *NewPtrForOldDecl = 1224 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1225 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1226 } 1227 1228 OldGV->eraseFromParent(); 1229 } 1230 1231 return GV; 1232 } 1233 1234 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1235 /// given global variable. If Ty is non-null and if the global doesn't exist, 1236 /// then it will be greated with the specified type instead of whatever the 1237 /// normal requested type would be. 1238 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1239 llvm::Type *Ty) { 1240 assert(D->hasGlobalStorage() && "Not a global variable"); 1241 QualType ASTTy = D->getType(); 1242 if (Ty == 0) 1243 Ty = getTypes().ConvertTypeForMem(ASTTy); 1244 1245 llvm::PointerType *PTy = 1246 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1247 1248 StringRef MangledName = getMangledName(D); 1249 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1250 } 1251 1252 /// CreateRuntimeVariable - Create a new runtime global variable with the 1253 /// specified type and name. 1254 llvm::Constant * 1255 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1256 StringRef Name) { 1257 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1258 true); 1259 } 1260 1261 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1262 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1263 1264 if (MayDeferGeneration(D)) { 1265 // If we have not seen a reference to this variable yet, place it 1266 // into the deferred declarations table to be emitted if needed 1267 // later. 1268 StringRef MangledName = getMangledName(D); 1269 if (!GetGlobalValue(MangledName)) { 1270 DeferredDecls[MangledName] = D; 1271 return; 1272 } 1273 } 1274 1275 // The tentative definition is the only definition. 1276 EmitGlobalVarDefinition(D); 1277 } 1278 1279 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1280 if (DefinitionRequired) 1281 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1282 } 1283 1284 llvm::GlobalVariable::LinkageTypes 1285 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1286 if (RD->getLinkage() != ExternalLinkage) 1287 return llvm::GlobalVariable::InternalLinkage; 1288 1289 if (const CXXMethodDecl *KeyFunction 1290 = RD->getASTContext().getKeyFunction(RD)) { 1291 // If this class has a key function, use that to determine the linkage of 1292 // the vtable. 1293 const FunctionDecl *Def = 0; 1294 if (KeyFunction->hasBody(Def)) 1295 KeyFunction = cast<CXXMethodDecl>(Def); 1296 1297 switch (KeyFunction->getTemplateSpecializationKind()) { 1298 case TSK_Undeclared: 1299 case TSK_ExplicitSpecialization: 1300 // When compiling with optimizations turned on, we emit all vtables, 1301 // even if the key function is not defined in the current translation 1302 // unit. If this is the case, use available_externally linkage. 1303 if (!Def && CodeGenOpts.OptimizationLevel) 1304 return llvm::GlobalVariable::AvailableExternallyLinkage; 1305 1306 if (KeyFunction->isInlined()) 1307 return !Context.getLangOptions().AppleKext ? 1308 llvm::GlobalVariable::LinkOnceODRLinkage : 1309 llvm::Function::InternalLinkage; 1310 1311 return llvm::GlobalVariable::ExternalLinkage; 1312 1313 case TSK_ImplicitInstantiation: 1314 return !Context.getLangOptions().AppleKext ? 1315 llvm::GlobalVariable::LinkOnceODRLinkage : 1316 llvm::Function::InternalLinkage; 1317 1318 case TSK_ExplicitInstantiationDefinition: 1319 return !Context.getLangOptions().AppleKext ? 1320 llvm::GlobalVariable::WeakODRLinkage : 1321 llvm::Function::InternalLinkage; 1322 1323 case TSK_ExplicitInstantiationDeclaration: 1324 // FIXME: Use available_externally linkage. However, this currently 1325 // breaks LLVM's build due to undefined symbols. 1326 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1327 return !Context.getLangOptions().AppleKext ? 1328 llvm::GlobalVariable::LinkOnceODRLinkage : 1329 llvm::Function::InternalLinkage; 1330 } 1331 } 1332 1333 if (Context.getLangOptions().AppleKext) 1334 return llvm::Function::InternalLinkage; 1335 1336 switch (RD->getTemplateSpecializationKind()) { 1337 case TSK_Undeclared: 1338 case TSK_ExplicitSpecialization: 1339 case TSK_ImplicitInstantiation: 1340 // FIXME: Use available_externally linkage. However, this currently 1341 // breaks LLVM's build due to undefined symbols. 1342 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1343 case TSK_ExplicitInstantiationDeclaration: 1344 return llvm::GlobalVariable::LinkOnceODRLinkage; 1345 1346 case TSK_ExplicitInstantiationDefinition: 1347 return llvm::GlobalVariable::WeakODRLinkage; 1348 } 1349 1350 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1351 } 1352 1353 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1354 return Context.toCharUnitsFromBits( 1355 TheTargetData.getTypeStoreSizeInBits(Ty)); 1356 } 1357 1358 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1359 llvm::Constant *Init = 0; 1360 QualType ASTTy = D->getType(); 1361 bool NonConstInit = false; 1362 1363 const VarDecl *InitDecl; 1364 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1365 1366 if (!InitExpr) { 1367 // This is a tentative definition; tentative definitions are 1368 // implicitly initialized with { 0 }. 1369 // 1370 // Note that tentative definitions are only emitted at the end of 1371 // a translation unit, so they should never have incomplete 1372 // type. In addition, EmitTentativeDefinition makes sure that we 1373 // never attempt to emit a tentative definition if a real one 1374 // exists. A use may still exists, however, so we still may need 1375 // to do a RAUW. 1376 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1377 Init = EmitNullConstant(D->getType()); 1378 } else { 1379 Init = EmitConstantInit(*InitDecl); 1380 if (!Init) { 1381 QualType T = InitExpr->getType(); 1382 if (D->getType()->isReferenceType()) 1383 T = D->getType(); 1384 1385 if (getLangOptions().CPlusPlus) { 1386 Init = EmitNullConstant(T); 1387 NonConstInit = true; 1388 } else { 1389 ErrorUnsupported(D, "static initializer"); 1390 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1391 } 1392 } else { 1393 // We don't need an initializer, so remove the entry for the delayed 1394 // initializer position (just in case this entry was delayed). 1395 if (getLangOptions().CPlusPlus) 1396 DelayedCXXInitPosition.erase(D); 1397 } 1398 } 1399 1400 llvm::Type* InitType = Init->getType(); 1401 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1402 1403 // Strip off a bitcast if we got one back. 1404 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1405 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1406 // all zero index gep. 1407 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1408 Entry = CE->getOperand(0); 1409 } 1410 1411 // Entry is now either a Function or GlobalVariable. 1412 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1413 1414 // We have a definition after a declaration with the wrong type. 1415 // We must make a new GlobalVariable* and update everything that used OldGV 1416 // (a declaration or tentative definition) with the new GlobalVariable* 1417 // (which will be a definition). 1418 // 1419 // This happens if there is a prototype for a global (e.g. 1420 // "extern int x[];") and then a definition of a different type (e.g. 1421 // "int x[10];"). This also happens when an initializer has a different type 1422 // from the type of the global (this happens with unions). 1423 if (GV == 0 || 1424 GV->getType()->getElementType() != InitType || 1425 GV->getType()->getAddressSpace() != 1426 getContext().getTargetAddressSpace(ASTTy)) { 1427 1428 // Move the old entry aside so that we'll create a new one. 1429 Entry->setName(StringRef()); 1430 1431 // Make a new global with the correct type, this is now guaranteed to work. 1432 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1433 1434 // Replace all uses of the old global with the new global 1435 llvm::Constant *NewPtrForOldDecl = 1436 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1437 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1438 1439 // Erase the old global, since it is no longer used. 1440 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1441 } 1442 1443 if (D->hasAttr<AnnotateAttr>()) 1444 AddGlobalAnnotations(D, GV); 1445 1446 GV->setInitializer(Init); 1447 1448 // If it is safe to mark the global 'constant', do so now. 1449 GV->setConstant(false); 1450 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1451 GV->setConstant(true); 1452 1453 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1454 1455 // Set the llvm linkage type as appropriate. 1456 llvm::GlobalValue::LinkageTypes Linkage = 1457 GetLLVMLinkageVarDefinition(D, GV); 1458 GV->setLinkage(Linkage); 1459 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1460 // common vars aren't constant even if declared const. 1461 GV->setConstant(false); 1462 1463 SetCommonAttributes(D, GV); 1464 1465 // Emit the initializer function if necessary. 1466 if (NonConstInit) 1467 EmitCXXGlobalVarDeclInitFunc(D, GV); 1468 1469 // Emit global variable debug information. 1470 if (CGDebugInfo *DI = getModuleDebugInfo()) 1471 DI->EmitGlobalVariable(GV, D); 1472 } 1473 1474 llvm::GlobalValue::LinkageTypes 1475 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1476 llvm::GlobalVariable *GV) { 1477 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1478 if (Linkage == GVA_Internal) 1479 return llvm::Function::InternalLinkage; 1480 else if (D->hasAttr<DLLImportAttr>()) 1481 return llvm::Function::DLLImportLinkage; 1482 else if (D->hasAttr<DLLExportAttr>()) 1483 return llvm::Function::DLLExportLinkage; 1484 else if (D->hasAttr<WeakAttr>()) { 1485 if (GV->isConstant()) 1486 return llvm::GlobalVariable::WeakODRLinkage; 1487 else 1488 return llvm::GlobalVariable::WeakAnyLinkage; 1489 } else if (Linkage == GVA_TemplateInstantiation || 1490 Linkage == GVA_ExplicitTemplateInstantiation) 1491 return llvm::GlobalVariable::WeakODRLinkage; 1492 else if (!getLangOptions().CPlusPlus && 1493 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1494 D->getAttr<CommonAttr>()) && 1495 !D->hasExternalStorage() && !D->getInit() && 1496 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1497 !D->getAttr<WeakImportAttr>()) { 1498 // Thread local vars aren't considered common linkage. 1499 return llvm::GlobalVariable::CommonLinkage; 1500 } 1501 return llvm::GlobalVariable::ExternalLinkage; 1502 } 1503 1504 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1505 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1506 /// existing call uses of the old function in the module, this adjusts them to 1507 /// call the new function directly. 1508 /// 1509 /// This is not just a cleanup: the always_inline pass requires direct calls to 1510 /// functions to be able to inline them. If there is a bitcast in the way, it 1511 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1512 /// run at -O0. 1513 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1514 llvm::Function *NewFn) { 1515 // If we're redefining a global as a function, don't transform it. 1516 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1517 if (OldFn == 0) return; 1518 1519 llvm::Type *NewRetTy = NewFn->getReturnType(); 1520 SmallVector<llvm::Value*, 4> ArgList; 1521 1522 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1523 UI != E; ) { 1524 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1525 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1526 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1527 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1528 llvm::CallSite CS(CI); 1529 if (!CI || !CS.isCallee(I)) continue; 1530 1531 // If the return types don't match exactly, and if the call isn't dead, then 1532 // we can't transform this call. 1533 if (CI->getType() != NewRetTy && !CI->use_empty()) 1534 continue; 1535 1536 // Get the attribute list. 1537 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1538 llvm::AttrListPtr AttrList = CI->getAttributes(); 1539 1540 // Get any return attributes. 1541 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1542 1543 // Add the return attributes. 1544 if (RAttrs) 1545 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1546 1547 // If the function was passed too few arguments, don't transform. If extra 1548 // arguments were passed, we silently drop them. If any of the types 1549 // mismatch, we don't transform. 1550 unsigned ArgNo = 0; 1551 bool DontTransform = false; 1552 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1553 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1554 if (CS.arg_size() == ArgNo || 1555 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1556 DontTransform = true; 1557 break; 1558 } 1559 1560 // Add any parameter attributes. 1561 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1562 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1563 } 1564 if (DontTransform) 1565 continue; 1566 1567 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1568 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1569 1570 // Okay, we can transform this. Create the new call instruction and copy 1571 // over the required information. 1572 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1573 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1574 ArgList.clear(); 1575 if (!NewCall->getType()->isVoidTy()) 1576 NewCall->takeName(CI); 1577 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1578 AttrVec.end())); 1579 NewCall->setCallingConv(CI->getCallingConv()); 1580 1581 // Finally, remove the old call, replacing any uses with the new one. 1582 if (!CI->use_empty()) 1583 CI->replaceAllUsesWith(NewCall); 1584 1585 // Copy debug location attached to CI. 1586 if (!CI->getDebugLoc().isUnknown()) 1587 NewCall->setDebugLoc(CI->getDebugLoc()); 1588 CI->eraseFromParent(); 1589 } 1590 } 1591 1592 1593 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1594 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1595 1596 // Compute the function info and LLVM type. 1597 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1598 bool variadic = false; 1599 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1600 variadic = fpt->isVariadic(); 1601 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1602 1603 // Get or create the prototype for the function. 1604 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1605 1606 // Strip off a bitcast if we got one back. 1607 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1608 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1609 Entry = CE->getOperand(0); 1610 } 1611 1612 1613 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1614 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1615 1616 // If the types mismatch then we have to rewrite the definition. 1617 assert(OldFn->isDeclaration() && 1618 "Shouldn't replace non-declaration"); 1619 1620 // F is the Function* for the one with the wrong type, we must make a new 1621 // Function* and update everything that used F (a declaration) with the new 1622 // Function* (which will be a definition). 1623 // 1624 // This happens if there is a prototype for a function 1625 // (e.g. "int f()") and then a definition of a different type 1626 // (e.g. "int f(int x)"). Move the old function aside so that it 1627 // doesn't interfere with GetAddrOfFunction. 1628 OldFn->setName(StringRef()); 1629 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1630 1631 // If this is an implementation of a function without a prototype, try to 1632 // replace any existing uses of the function (which may be calls) with uses 1633 // of the new function 1634 if (D->getType()->isFunctionNoProtoType()) { 1635 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1636 OldFn->removeDeadConstantUsers(); 1637 } 1638 1639 // Replace uses of F with the Function we will endow with a body. 1640 if (!Entry->use_empty()) { 1641 llvm::Constant *NewPtrForOldDecl = 1642 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1643 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1644 } 1645 1646 // Ok, delete the old function now, which is dead. 1647 OldFn->eraseFromParent(); 1648 1649 Entry = NewFn; 1650 } 1651 1652 // We need to set linkage and visibility on the function before 1653 // generating code for it because various parts of IR generation 1654 // want to propagate this information down (e.g. to local static 1655 // declarations). 1656 llvm::Function *Fn = cast<llvm::Function>(Entry); 1657 setFunctionLinkage(D, Fn); 1658 1659 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1660 setGlobalVisibility(Fn, D); 1661 1662 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1663 1664 SetFunctionDefinitionAttributes(D, Fn); 1665 SetLLVMFunctionAttributesForDefinition(D, Fn); 1666 1667 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1668 AddGlobalCtor(Fn, CA->getPriority()); 1669 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1670 AddGlobalDtor(Fn, DA->getPriority()); 1671 if (D->hasAttr<AnnotateAttr>()) 1672 AddGlobalAnnotations(D, Fn); 1673 } 1674 1675 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1676 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1677 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1678 assert(AA && "Not an alias?"); 1679 1680 StringRef MangledName = getMangledName(GD); 1681 1682 // If there is a definition in the module, then it wins over the alias. 1683 // This is dubious, but allow it to be safe. Just ignore the alias. 1684 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1685 if (Entry && !Entry->isDeclaration()) 1686 return; 1687 1688 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1689 1690 // Create a reference to the named value. This ensures that it is emitted 1691 // if a deferred decl. 1692 llvm::Constant *Aliasee; 1693 if (isa<llvm::FunctionType>(DeclTy)) 1694 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1695 /*ForVTable=*/false); 1696 else 1697 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1698 llvm::PointerType::getUnqual(DeclTy), 0); 1699 1700 // Create the new alias itself, but don't set a name yet. 1701 llvm::GlobalValue *GA = 1702 new llvm::GlobalAlias(Aliasee->getType(), 1703 llvm::Function::ExternalLinkage, 1704 "", Aliasee, &getModule()); 1705 1706 if (Entry) { 1707 assert(Entry->isDeclaration()); 1708 1709 // If there is a declaration in the module, then we had an extern followed 1710 // by the alias, as in: 1711 // extern int test6(); 1712 // ... 1713 // int test6() __attribute__((alias("test7"))); 1714 // 1715 // Remove it and replace uses of it with the alias. 1716 GA->takeName(Entry); 1717 1718 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1719 Entry->getType())); 1720 Entry->eraseFromParent(); 1721 } else { 1722 GA->setName(MangledName); 1723 } 1724 1725 // Set attributes which are particular to an alias; this is a 1726 // specialization of the attributes which may be set on a global 1727 // variable/function. 1728 if (D->hasAttr<DLLExportAttr>()) { 1729 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1730 // The dllexport attribute is ignored for undefined symbols. 1731 if (FD->hasBody()) 1732 GA->setLinkage(llvm::Function::DLLExportLinkage); 1733 } else { 1734 GA->setLinkage(llvm::Function::DLLExportLinkage); 1735 } 1736 } else if (D->hasAttr<WeakAttr>() || 1737 D->hasAttr<WeakRefAttr>() || 1738 D->isWeakImported()) { 1739 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1740 } 1741 1742 SetCommonAttributes(D, GA); 1743 } 1744 1745 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1746 ArrayRef<llvm::Type*> Tys) { 1747 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1748 Tys); 1749 } 1750 1751 static llvm::StringMapEntry<llvm::Constant*> & 1752 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1753 const StringLiteral *Literal, 1754 bool TargetIsLSB, 1755 bool &IsUTF16, 1756 unsigned &StringLength) { 1757 StringRef String = Literal->getString(); 1758 unsigned NumBytes = String.size(); 1759 1760 // Check for simple case. 1761 if (!Literal->containsNonAsciiOrNull()) { 1762 StringLength = NumBytes; 1763 return Map.GetOrCreateValue(String); 1764 } 1765 1766 // Otherwise, convert the UTF8 literals into a byte string. 1767 SmallVector<UTF16, 128> ToBuf(NumBytes); 1768 const UTF8 *FromPtr = (UTF8 *)String.data(); 1769 UTF16 *ToPtr = &ToBuf[0]; 1770 1771 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1772 &ToPtr, ToPtr + NumBytes, 1773 strictConversion); 1774 1775 // ConvertUTF8toUTF16 returns the length in ToPtr. 1776 StringLength = ToPtr - &ToBuf[0]; 1777 1778 // Render the UTF-16 string into a byte array and convert to the target byte 1779 // order. 1780 // 1781 // FIXME: This isn't something we should need to do here. 1782 SmallString<128> AsBytes; 1783 AsBytes.reserve(StringLength * 2); 1784 for (unsigned i = 0; i != StringLength; ++i) { 1785 unsigned short Val = ToBuf[i]; 1786 if (TargetIsLSB) { 1787 AsBytes.push_back(Val & 0xFF); 1788 AsBytes.push_back(Val >> 8); 1789 } else { 1790 AsBytes.push_back(Val >> 8); 1791 AsBytes.push_back(Val & 0xFF); 1792 } 1793 } 1794 // Append one extra null character, the second is automatically added by our 1795 // caller. 1796 AsBytes.push_back(0); 1797 1798 IsUTF16 = true; 1799 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1800 } 1801 1802 static llvm::StringMapEntry<llvm::Constant*> & 1803 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1804 const StringLiteral *Literal, 1805 unsigned &StringLength) 1806 { 1807 StringRef String = Literal->getString(); 1808 StringLength = String.size(); 1809 return Map.GetOrCreateValue(String); 1810 } 1811 1812 llvm::Constant * 1813 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1814 unsigned StringLength = 0; 1815 bool isUTF16 = false; 1816 llvm::StringMapEntry<llvm::Constant*> &Entry = 1817 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1818 getTargetData().isLittleEndian(), 1819 isUTF16, StringLength); 1820 1821 if (llvm::Constant *C = Entry.getValue()) 1822 return C; 1823 1824 llvm::Constant *Zero = 1825 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1826 llvm::Constant *Zeros[] = { Zero, Zero }; 1827 1828 // If we don't already have it, get __CFConstantStringClassReference. 1829 if (!CFConstantStringClassRef) { 1830 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1831 Ty = llvm::ArrayType::get(Ty, 0); 1832 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1833 "__CFConstantStringClassReference"); 1834 // Decay array -> ptr 1835 CFConstantStringClassRef = 1836 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1837 } 1838 1839 QualType CFTy = getContext().getCFConstantStringType(); 1840 1841 llvm::StructType *STy = 1842 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1843 1844 llvm::Constant *Fields[4]; 1845 1846 // Class pointer. 1847 Fields[0] = CFConstantStringClassRef; 1848 1849 // Flags. 1850 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1851 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1852 llvm::ConstantInt::get(Ty, 0x07C8); 1853 1854 // String pointer. 1855 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1856 1857 llvm::GlobalValue::LinkageTypes Linkage; 1858 if (isUTF16) 1859 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1860 Linkage = llvm::GlobalValue::InternalLinkage; 1861 else 1862 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1863 // when using private linkage. It is not clear if this is a bug in ld 1864 // or a reasonable new restriction. 1865 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1866 1867 // Note: -fwritable-strings doesn't make the backing store strings of 1868 // CFStrings writable. (See <rdar://problem/10657500>) 1869 llvm::GlobalVariable *GV = 1870 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 1871 Linkage, C, ".str"); 1872 GV->setUnnamedAddr(true); 1873 if (isUTF16) { 1874 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1875 GV->setAlignment(Align.getQuantity()); 1876 } else { 1877 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1878 GV->setAlignment(Align.getQuantity()); 1879 } 1880 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1881 1882 // String length. 1883 Ty = getTypes().ConvertType(getContext().LongTy); 1884 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1885 1886 // The struct. 1887 C = llvm::ConstantStruct::get(STy, Fields); 1888 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1889 llvm::GlobalVariable::PrivateLinkage, C, 1890 "_unnamed_cfstring_"); 1891 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1892 GV->setSection(Sect); 1893 Entry.setValue(GV); 1894 1895 return GV; 1896 } 1897 1898 static RecordDecl * 1899 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1900 DeclContext *DC, IdentifierInfo *Id) { 1901 SourceLocation Loc; 1902 if (Ctx.getLangOptions().CPlusPlus) 1903 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1904 else 1905 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1906 } 1907 1908 llvm::Constant * 1909 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1910 unsigned StringLength = 0; 1911 llvm::StringMapEntry<llvm::Constant*> &Entry = 1912 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1913 1914 if (llvm::Constant *C = Entry.getValue()) 1915 return C; 1916 1917 llvm::Constant *Zero = 1918 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1919 llvm::Constant *Zeros[] = { Zero, Zero }; 1920 1921 // If we don't already have it, get _NSConstantStringClassReference. 1922 if (!ConstantStringClassRef) { 1923 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1924 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1925 llvm::Constant *GV; 1926 if (Features.ObjCNonFragileABI) { 1927 std::string str = 1928 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1929 : "OBJC_CLASS_$_" + StringClass; 1930 GV = getObjCRuntime().GetClassGlobal(str); 1931 // Make sure the result is of the correct type. 1932 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1933 ConstantStringClassRef = 1934 llvm::ConstantExpr::getBitCast(GV, PTy); 1935 } else { 1936 std::string str = 1937 StringClass.empty() ? "_NSConstantStringClassReference" 1938 : "_" + StringClass + "ClassReference"; 1939 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1940 GV = CreateRuntimeVariable(PTy, str); 1941 // Decay array -> ptr 1942 ConstantStringClassRef = 1943 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1944 } 1945 } 1946 1947 if (!NSConstantStringType) { 1948 // Construct the type for a constant NSString. 1949 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1950 Context.getTranslationUnitDecl(), 1951 &Context.Idents.get("__builtin_NSString")); 1952 D->startDefinition(); 1953 1954 QualType FieldTypes[3]; 1955 1956 // const int *isa; 1957 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1958 // const char *str; 1959 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1960 // unsigned int length; 1961 FieldTypes[2] = Context.UnsignedIntTy; 1962 1963 // Create fields 1964 for (unsigned i = 0; i < 3; ++i) { 1965 FieldDecl *Field = FieldDecl::Create(Context, D, 1966 SourceLocation(), 1967 SourceLocation(), 0, 1968 FieldTypes[i], /*TInfo=*/0, 1969 /*BitWidth=*/0, 1970 /*Mutable=*/false, 1971 /*HasInit=*/false); 1972 Field->setAccess(AS_public); 1973 D->addDecl(Field); 1974 } 1975 1976 D->completeDefinition(); 1977 QualType NSTy = Context.getTagDeclType(D); 1978 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1979 } 1980 1981 llvm::Constant *Fields[3]; 1982 1983 // Class pointer. 1984 Fields[0] = ConstantStringClassRef; 1985 1986 // String pointer. 1987 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1988 1989 llvm::GlobalValue::LinkageTypes Linkage; 1990 bool isConstant; 1991 Linkage = llvm::GlobalValue::PrivateLinkage; 1992 isConstant = !Features.WritableStrings; 1993 1994 llvm::GlobalVariable *GV = 1995 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1996 ".str"); 1997 GV->setUnnamedAddr(true); 1998 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1999 GV->setAlignment(Align.getQuantity()); 2000 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2001 2002 // String length. 2003 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2004 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2005 2006 // The struct. 2007 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2008 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2009 llvm::GlobalVariable::PrivateLinkage, C, 2010 "_unnamed_nsstring_"); 2011 // FIXME. Fix section. 2012 if (const char *Sect = 2013 Features.ObjCNonFragileABI 2014 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2015 : getContext().getTargetInfo().getNSStringSection()) 2016 GV->setSection(Sect); 2017 Entry.setValue(GV); 2018 2019 return GV; 2020 } 2021 2022 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2023 if (ObjCFastEnumerationStateType.isNull()) { 2024 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2025 Context.getTranslationUnitDecl(), 2026 &Context.Idents.get("__objcFastEnumerationState")); 2027 D->startDefinition(); 2028 2029 QualType FieldTypes[] = { 2030 Context.UnsignedLongTy, 2031 Context.getPointerType(Context.getObjCIdType()), 2032 Context.getPointerType(Context.UnsignedLongTy), 2033 Context.getConstantArrayType(Context.UnsignedLongTy, 2034 llvm::APInt(32, 5), ArrayType::Normal, 0) 2035 }; 2036 2037 for (size_t i = 0; i < 4; ++i) { 2038 FieldDecl *Field = FieldDecl::Create(Context, 2039 D, 2040 SourceLocation(), 2041 SourceLocation(), 0, 2042 FieldTypes[i], /*TInfo=*/0, 2043 /*BitWidth=*/0, 2044 /*Mutable=*/false, 2045 /*HasInit=*/false); 2046 Field->setAccess(AS_public); 2047 D->addDecl(Field); 2048 } 2049 2050 D->completeDefinition(); 2051 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2052 } 2053 2054 return ObjCFastEnumerationStateType; 2055 } 2056 2057 /// GetStringForStringLiteral - Return the appropriate bytes for a 2058 /// string literal, properly padded to match the literal type. 2059 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 2060 assert((E->isAscii() || E->isUTF8()) 2061 && "Use GetConstantArrayFromStringLiteral for wide strings"); 2062 const ASTContext &Context = getContext(); 2063 const ConstantArrayType *CAT = 2064 Context.getAsConstantArrayType(E->getType()); 2065 assert(CAT && "String isn't pointer or array!"); 2066 2067 // Resize the string to the right size. 2068 uint64_t RealLen = CAT->getSize().getZExtValue(); 2069 2070 std::string Str = E->getString().str(); 2071 Str.resize(RealLen, '\0'); 2072 2073 return Str; 2074 } 2075 2076 llvm::Constant * 2077 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2078 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2079 2080 // Don't emit it as the address of the string, emit the string data itself 2081 // as an inline array. 2082 if (E->getCharByteWidth()==1) { 2083 return llvm::ConstantArray::get(VMContext, 2084 GetStringForStringLiteral(E), false); 2085 } else { 2086 llvm::ArrayType *AType = 2087 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2088 llvm::Type *ElemTy = AType->getElementType(); 2089 unsigned NumElements = AType->getNumElements(); 2090 std::vector<llvm::Constant*> Elts; 2091 Elts.reserve(NumElements); 2092 2093 for(unsigned i=0;i<E->getLength();++i) { 2094 unsigned value = E->getCodeUnit(i); 2095 llvm::Constant *C = llvm::ConstantInt::get(ElemTy,value,false); 2096 Elts.push_back(C); 2097 } 2098 for(unsigned i=E->getLength();i<NumElements;++i) { 2099 llvm::Constant *C = llvm::ConstantInt::get(ElemTy,0,false); 2100 Elts.push_back(C); 2101 } 2102 2103 return llvm::ConstantArray::get(AType, Elts); 2104 } 2105 2106 } 2107 2108 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2109 /// constant array for the given string literal. 2110 llvm::Constant * 2111 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2112 // FIXME: This can be more efficient. 2113 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 2114 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2115 if (S->isAscii() || S->isUTF8()) { 2116 return GetAddrOfConstantString(GetStringForStringLiteral(S), 2117 /* GlobalName */ 0, 2118 Align.getQuantity()); 2119 } 2120 2121 // FIXME: the following does not memoize wide strings 2122 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2123 llvm::GlobalVariable *GV = 2124 new llvm::GlobalVariable(getModule(),C->getType(), 2125 !Features.WritableStrings, 2126 llvm::GlobalValue::PrivateLinkage, 2127 C,".str"); 2128 2129 GV->setAlignment(Align.getQuantity()); 2130 GV->setUnnamedAddr(true); 2131 2132 return GV; 2133 } 2134 2135 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2136 /// array for the given ObjCEncodeExpr node. 2137 llvm::Constant * 2138 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2139 std::string Str; 2140 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2141 2142 return GetAddrOfConstantCString(Str); 2143 } 2144 2145 2146 /// GenerateWritableString -- Creates storage for a string literal. 2147 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2148 bool constant, 2149 CodeGenModule &CGM, 2150 const char *GlobalName, 2151 unsigned Alignment) { 2152 // Create Constant for this string literal. Don't add a '\0'. 2153 llvm::Constant *C = 2154 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2155 2156 // Create a global variable for this string 2157 llvm::GlobalVariable *GV = 2158 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2159 llvm::GlobalValue::PrivateLinkage, 2160 C, GlobalName); 2161 GV->setAlignment(Alignment); 2162 GV->setUnnamedAddr(true); 2163 return GV; 2164 } 2165 2166 /// GetAddrOfConstantString - Returns a pointer to a character array 2167 /// containing the literal. This contents are exactly that of the 2168 /// given string, i.e. it will not be null terminated automatically; 2169 /// see GetAddrOfConstantCString. Note that whether the result is 2170 /// actually a pointer to an LLVM constant depends on 2171 /// Feature.WriteableStrings. 2172 /// 2173 /// The result has pointer to array type. 2174 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2175 const char *GlobalName, 2176 unsigned Alignment) { 2177 bool IsConstant = !Features.WritableStrings; 2178 2179 // Get the default prefix if a name wasn't specified. 2180 if (!GlobalName) 2181 GlobalName = ".str"; 2182 2183 // Don't share any string literals if strings aren't constant. 2184 if (!IsConstant) 2185 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2186 2187 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2188 ConstantStringMap.GetOrCreateValue(Str); 2189 2190 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2191 if (Alignment > GV->getAlignment()) { 2192 GV->setAlignment(Alignment); 2193 } 2194 return GV; 2195 } 2196 2197 // Create a global variable for this. 2198 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2199 Entry.setValue(GV); 2200 return GV; 2201 } 2202 2203 /// GetAddrOfConstantCString - Returns a pointer to a character 2204 /// array containing the literal and a terminating '\0' 2205 /// character. The result has pointer to array type. 2206 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2207 const char *GlobalName, 2208 unsigned Alignment) { 2209 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2210 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2211 } 2212 2213 /// EmitObjCPropertyImplementations - Emit information for synthesized 2214 /// properties for an implementation. 2215 void CodeGenModule::EmitObjCPropertyImplementations(const 2216 ObjCImplementationDecl *D) { 2217 for (ObjCImplementationDecl::propimpl_iterator 2218 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2219 ObjCPropertyImplDecl *PID = *i; 2220 2221 // Dynamic is just for type-checking. 2222 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2223 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2224 2225 // Determine which methods need to be implemented, some may have 2226 // been overridden. Note that ::isSynthesized is not the method 2227 // we want, that just indicates if the decl came from a 2228 // property. What we want to know is if the method is defined in 2229 // this implementation. 2230 if (!D->getInstanceMethod(PD->getGetterName())) 2231 CodeGenFunction(*this).GenerateObjCGetter( 2232 const_cast<ObjCImplementationDecl *>(D), PID); 2233 if (!PD->isReadOnly() && 2234 !D->getInstanceMethod(PD->getSetterName())) 2235 CodeGenFunction(*this).GenerateObjCSetter( 2236 const_cast<ObjCImplementationDecl *>(D), PID); 2237 } 2238 } 2239 } 2240 2241 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2242 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2243 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2244 ivar; ivar = ivar->getNextIvar()) 2245 if (ivar->getType().isDestructedType()) 2246 return true; 2247 2248 return false; 2249 } 2250 2251 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2252 /// for an implementation. 2253 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2254 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2255 if (needsDestructMethod(D)) { 2256 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2257 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2258 ObjCMethodDecl *DTORMethod = 2259 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2260 cxxSelector, getContext().VoidTy, 0, D, 2261 /*isInstance=*/true, /*isVariadic=*/false, 2262 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2263 /*isDefined=*/false, ObjCMethodDecl::Required); 2264 D->addInstanceMethod(DTORMethod); 2265 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2266 D->setHasCXXStructors(true); 2267 } 2268 2269 // If the implementation doesn't have any ivar initializers, we don't need 2270 // a .cxx_construct. 2271 if (D->getNumIvarInitializers() == 0) 2272 return; 2273 2274 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2275 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2276 // The constructor returns 'self'. 2277 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2278 D->getLocation(), 2279 D->getLocation(), 2280 cxxSelector, 2281 getContext().getObjCIdType(), 0, 2282 D, /*isInstance=*/true, 2283 /*isVariadic=*/false, 2284 /*isSynthesized=*/true, 2285 /*isImplicitlyDeclared=*/true, 2286 /*isDefined=*/false, 2287 ObjCMethodDecl::Required); 2288 D->addInstanceMethod(CTORMethod); 2289 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2290 D->setHasCXXStructors(true); 2291 } 2292 2293 /// EmitNamespace - Emit all declarations in a namespace. 2294 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2295 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2296 I != E; ++I) 2297 EmitTopLevelDecl(*I); 2298 } 2299 2300 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2301 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2302 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2303 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2304 ErrorUnsupported(LSD, "linkage spec"); 2305 return; 2306 } 2307 2308 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2309 I != E; ++I) 2310 EmitTopLevelDecl(*I); 2311 } 2312 2313 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2314 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2315 // If an error has occurred, stop code generation, but continue 2316 // parsing and semantic analysis (to ensure all warnings and errors 2317 // are emitted). 2318 if (Diags.hasErrorOccurred()) 2319 return; 2320 2321 // Ignore dependent declarations. 2322 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2323 return; 2324 2325 switch (D->getKind()) { 2326 case Decl::CXXConversion: 2327 case Decl::CXXMethod: 2328 case Decl::Function: 2329 // Skip function templates 2330 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2331 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2332 return; 2333 2334 EmitGlobal(cast<FunctionDecl>(D)); 2335 break; 2336 2337 case Decl::Var: 2338 EmitGlobal(cast<VarDecl>(D)); 2339 break; 2340 2341 // Indirect fields from global anonymous structs and unions can be 2342 // ignored; only the actual variable requires IR gen support. 2343 case Decl::IndirectField: 2344 break; 2345 2346 // C++ Decls 2347 case Decl::Namespace: 2348 EmitNamespace(cast<NamespaceDecl>(D)); 2349 break; 2350 // No code generation needed. 2351 case Decl::UsingShadow: 2352 case Decl::Using: 2353 case Decl::UsingDirective: 2354 case Decl::ClassTemplate: 2355 case Decl::FunctionTemplate: 2356 case Decl::TypeAliasTemplate: 2357 case Decl::NamespaceAlias: 2358 case Decl::Block: 2359 case Decl::Import: 2360 break; 2361 case Decl::CXXConstructor: 2362 // Skip function templates 2363 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2364 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2365 return; 2366 2367 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2368 break; 2369 case Decl::CXXDestructor: 2370 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2371 return; 2372 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2373 break; 2374 2375 case Decl::StaticAssert: 2376 // Nothing to do. 2377 break; 2378 2379 // Objective-C Decls 2380 2381 // Forward declarations, no (immediate) code generation. 2382 case Decl::ObjCInterface: 2383 break; 2384 2385 case Decl::ObjCCategory: { 2386 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2387 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2388 Context.ResetObjCLayout(CD->getClassInterface()); 2389 break; 2390 } 2391 2392 case Decl::ObjCProtocol: { 2393 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2394 if (Proto->isThisDeclarationADefinition()) 2395 ObjCRuntime->GenerateProtocol(Proto); 2396 break; 2397 } 2398 2399 case Decl::ObjCCategoryImpl: 2400 // Categories have properties but don't support synthesize so we 2401 // can ignore them here. 2402 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2403 break; 2404 2405 case Decl::ObjCImplementation: { 2406 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2407 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2408 Context.ResetObjCLayout(OMD->getClassInterface()); 2409 EmitObjCPropertyImplementations(OMD); 2410 EmitObjCIvarInitializations(OMD); 2411 ObjCRuntime->GenerateClass(OMD); 2412 break; 2413 } 2414 case Decl::ObjCMethod: { 2415 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2416 // If this is not a prototype, emit the body. 2417 if (OMD->getBody()) 2418 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2419 break; 2420 } 2421 case Decl::ObjCCompatibleAlias: 2422 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2423 break; 2424 2425 case Decl::LinkageSpec: 2426 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2427 break; 2428 2429 case Decl::FileScopeAsm: { 2430 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2431 StringRef AsmString = AD->getAsmString()->getString(); 2432 2433 const std::string &S = getModule().getModuleInlineAsm(); 2434 if (S.empty()) 2435 getModule().setModuleInlineAsm(AsmString); 2436 else if (*--S.end() == '\n') 2437 getModule().setModuleInlineAsm(S + AsmString.str()); 2438 else 2439 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2440 break; 2441 } 2442 2443 default: 2444 // Make sure we handled everything we should, every other kind is a 2445 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2446 // function. Need to recode Decl::Kind to do that easily. 2447 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2448 } 2449 } 2450 2451 /// Turns the given pointer into a constant. 2452 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2453 const void *Ptr) { 2454 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2455 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2456 return llvm::ConstantInt::get(i64, PtrInt); 2457 } 2458 2459 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2460 llvm::NamedMDNode *&GlobalMetadata, 2461 GlobalDecl D, 2462 llvm::GlobalValue *Addr) { 2463 if (!GlobalMetadata) 2464 GlobalMetadata = 2465 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2466 2467 // TODO: should we report variant information for ctors/dtors? 2468 llvm::Value *Ops[] = { 2469 Addr, 2470 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2471 }; 2472 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2473 } 2474 2475 /// Emits metadata nodes associating all the global values in the 2476 /// current module with the Decls they came from. This is useful for 2477 /// projects using IR gen as a subroutine. 2478 /// 2479 /// Since there's currently no way to associate an MDNode directly 2480 /// with an llvm::GlobalValue, we create a global named metadata 2481 /// with the name 'clang.global.decl.ptrs'. 2482 void CodeGenModule::EmitDeclMetadata() { 2483 llvm::NamedMDNode *GlobalMetadata = 0; 2484 2485 // StaticLocalDeclMap 2486 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2487 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2488 I != E; ++I) { 2489 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2490 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2491 } 2492 } 2493 2494 /// Emits metadata nodes for all the local variables in the current 2495 /// function. 2496 void CodeGenFunction::EmitDeclMetadata() { 2497 if (LocalDeclMap.empty()) return; 2498 2499 llvm::LLVMContext &Context = getLLVMContext(); 2500 2501 // Find the unique metadata ID for this name. 2502 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2503 2504 llvm::NamedMDNode *GlobalMetadata = 0; 2505 2506 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2507 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2508 const Decl *D = I->first; 2509 llvm::Value *Addr = I->second; 2510 2511 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2512 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2513 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2514 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2515 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2516 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2517 } 2518 } 2519 } 2520 2521 void CodeGenModule::EmitCoverageFile() { 2522 if (!getCodeGenOpts().CoverageFile.empty()) { 2523 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2524 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2525 llvm::LLVMContext &Ctx = TheModule.getContext(); 2526 llvm::MDString *CoverageFile = 2527 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2528 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2529 llvm::MDNode *CU = CUNode->getOperand(i); 2530 llvm::Value *node[] = { CoverageFile, CU }; 2531 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2532 GCov->addOperand(N); 2533 } 2534 } 2535 } 2536 } 2537