1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 EmitCXXThreadLocalInitFunc(); 401 if (ObjCRuntime) 402 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 403 AddGlobalCtor(ObjCInitFunction); 404 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 405 CUDARuntime) { 406 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 407 AddGlobalCtor(CudaCtorFunction); 408 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 409 AddGlobalDtor(CudaDtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (CodeGenOpts.NoPLT) 560 getModule().setRtLibUseGOT(); 561 562 SimplifyPersonality(); 563 564 if (getCodeGenOpts().EmitDeclMetadata) 565 EmitDeclMetadata(); 566 567 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 568 EmitCoverageFile(); 569 570 if (DebugInfo) 571 DebugInfo->finalize(); 572 573 EmitVersionIdentMetadata(); 574 575 EmitTargetMetadata(); 576 } 577 578 void CodeGenModule::EmitOpenCLMetadata() { 579 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 580 // opencl.ocl.version named metadata node. 581 llvm::Metadata *OCLVerElts[] = { 582 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 583 Int32Ty, LangOpts.OpenCLVersion / 100)), 584 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 585 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 586 llvm::NamedMDNode *OCLVerMD = 587 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 588 llvm::LLVMContext &Ctx = TheModule.getContext(); 589 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 590 } 591 592 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 593 // Make sure that this type is translated. 594 Types.UpdateCompletedType(TD); 595 } 596 597 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 598 // Make sure that this type is translated. 599 Types.RefreshTypeCacheForClass(RD); 600 } 601 602 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 603 if (!TBAA) 604 return nullptr; 605 return TBAA->getTypeInfo(QTy); 606 } 607 608 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 609 if (!TBAA) 610 return TBAAAccessInfo(); 611 return TBAA->getAccessInfo(AccessType); 612 } 613 614 TBAAAccessInfo 615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 616 if (!TBAA) 617 return TBAAAccessInfo(); 618 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 619 } 620 621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 622 if (!TBAA) 623 return nullptr; 624 return TBAA->getTBAAStructInfo(QTy); 625 } 626 627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 628 if (!TBAA) 629 return nullptr; 630 return TBAA->getBaseTypeInfo(QTy); 631 } 632 633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 634 if (!TBAA) 635 return nullptr; 636 return TBAA->getAccessTagInfo(Info); 637 } 638 639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 640 TBAAAccessInfo TargetInfo) { 641 if (!TBAA) 642 return TBAAAccessInfo(); 643 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 644 } 645 646 TBAAAccessInfo 647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 648 TBAAAccessInfo InfoB) { 649 if (!TBAA) 650 return TBAAAccessInfo(); 651 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 652 } 653 654 TBAAAccessInfo 655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 656 TBAAAccessInfo SrcInfo) { 657 if (!TBAA) 658 return TBAAAccessInfo(); 659 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 660 } 661 662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 663 TBAAAccessInfo TBAAInfo) { 664 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 665 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 666 } 667 668 void CodeGenModule::DecorateInstructionWithInvariantGroup( 669 llvm::Instruction *I, const CXXRecordDecl *RD) { 670 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 671 llvm::MDNode::get(getLLVMContext(), {})); 672 } 673 674 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 675 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 676 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 677 } 678 679 /// ErrorUnsupported - Print out an error that codegen doesn't support the 680 /// specified stmt yet. 681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 682 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 683 "cannot compile this %0 yet"); 684 std::string Msg = Type; 685 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 686 << Msg << S->getSourceRange(); 687 } 688 689 /// ErrorUnsupported - Print out an error that codegen doesn't support the 690 /// specified decl yet. 691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 692 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 693 "cannot compile this %0 yet"); 694 std::string Msg = Type; 695 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 696 } 697 698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 699 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 700 } 701 702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 703 const NamedDecl *D) const { 704 if (GV->hasDLLImportStorageClass()) 705 return; 706 // Internal definitions always have default visibility. 707 if (GV->hasLocalLinkage()) { 708 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 709 return; 710 } 711 if (!D) 712 return; 713 // Set visibility for definitions. 714 LinkageInfo LV = D->getLinkageAndVisibility(); 715 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 716 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 717 } 718 719 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 720 llvm::GlobalValue *GV) { 721 if (GV->hasLocalLinkage()) 722 return true; 723 724 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 725 return true; 726 727 // DLLImport explicitly marks the GV as external. 728 if (GV->hasDLLImportStorageClass()) 729 return false; 730 731 const llvm::Triple &TT = CGM.getTriple(); 732 // Every other GV is local on COFF. 733 // Make an exception for windows OS in the triple: Some firmware builds use 734 // *-win32-macho triples. This (accidentally?) produced windows relocations 735 // without GOT tables in older clang versions; Keep this behaviour. 736 // FIXME: even thread local variables? 737 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 738 return true; 739 740 // Only handle COFF and ELF for now. 741 if (!TT.isOSBinFormatELF()) 742 return false; 743 744 // If this is not an executable, don't assume anything is local. 745 const auto &CGOpts = CGM.getCodeGenOpts(); 746 llvm::Reloc::Model RM = CGOpts.RelocationModel; 747 const auto &LOpts = CGM.getLangOpts(); 748 if (RM != llvm::Reloc::Static && !LOpts.PIE) 749 return false; 750 751 // A definition cannot be preempted from an executable. 752 if (!GV->isDeclarationForLinker()) 753 return true; 754 755 // Most PIC code sequences that assume that a symbol is local cannot produce a 756 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 757 // depended, it seems worth it to handle it here. 758 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 759 return false; 760 761 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 762 llvm::Triple::ArchType Arch = TT.getArch(); 763 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 764 Arch == llvm::Triple::ppc64le) 765 return false; 766 767 // If we can use copy relocations we can assume it is local. 768 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 769 if (!Var->isThreadLocal() && 770 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 771 return true; 772 773 // If we can use a plt entry as the symbol address we can assume it 774 // is local. 775 // FIXME: This should work for PIE, but the gold linker doesn't support it. 776 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 777 return true; 778 779 // Otherwise don't assue it is local. 780 return false; 781 } 782 783 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 784 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 785 } 786 787 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 788 GlobalDecl GD) const { 789 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 790 // C++ destructors have a few C++ ABI specific special cases. 791 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 792 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 793 return; 794 } 795 setDLLImportDLLExport(GV, D); 796 } 797 798 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 799 const NamedDecl *D) const { 800 if (D && D->isExternallyVisible()) { 801 if (D->hasAttr<DLLImportAttr>()) 802 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 803 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 804 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 805 } 806 } 807 808 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 809 GlobalDecl GD) const { 810 setDLLImportDLLExport(GV, GD); 811 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 812 } 813 814 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 815 const NamedDecl *D) const { 816 setDLLImportDLLExport(GV, D); 817 setGlobalVisibilityAndLocal(GV, D); 818 } 819 820 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 821 const NamedDecl *D) const { 822 setGlobalVisibility(GV, D); 823 setDSOLocal(GV); 824 } 825 826 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 827 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 828 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 829 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 830 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 831 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 832 } 833 834 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 835 CodeGenOptions::TLSModel M) { 836 switch (M) { 837 case CodeGenOptions::GeneralDynamicTLSModel: 838 return llvm::GlobalVariable::GeneralDynamicTLSModel; 839 case CodeGenOptions::LocalDynamicTLSModel: 840 return llvm::GlobalVariable::LocalDynamicTLSModel; 841 case CodeGenOptions::InitialExecTLSModel: 842 return llvm::GlobalVariable::InitialExecTLSModel; 843 case CodeGenOptions::LocalExecTLSModel: 844 return llvm::GlobalVariable::LocalExecTLSModel; 845 } 846 llvm_unreachable("Invalid TLS model!"); 847 } 848 849 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 850 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 851 852 llvm::GlobalValue::ThreadLocalMode TLM; 853 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 854 855 // Override the TLS model if it is explicitly specified. 856 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 857 TLM = GetLLVMTLSModel(Attr->getModel()); 858 } 859 860 GV->setThreadLocalMode(TLM); 861 } 862 863 static void AppendTargetMangling(const CodeGenModule &CGM, 864 const TargetAttr *Attr, raw_ostream &Out) { 865 if (Attr->isDefaultVersion()) 866 return; 867 868 Out << '.'; 869 const auto &Target = CGM.getTarget(); 870 TargetAttr::ParsedTargetAttr Info = 871 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 872 // Multiversioning doesn't allow "no-${feature}", so we can 873 // only have "+" prefixes here. 874 assert(LHS.startswith("+") && RHS.startswith("+") && 875 "Features should always have a prefix."); 876 return Target.multiVersionSortPriority(LHS.substr(1)) > 877 Target.multiVersionSortPriority(RHS.substr(1)); 878 }); 879 880 bool IsFirst = true; 881 882 if (!Info.Architecture.empty()) { 883 IsFirst = false; 884 Out << "arch_" << Info.Architecture; 885 } 886 887 for (StringRef Feat : Info.Features) { 888 if (!IsFirst) 889 Out << '_'; 890 IsFirst = false; 891 Out << Feat.substr(1); 892 } 893 } 894 895 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 896 const NamedDecl *ND, 897 bool OmitTargetMangling = false) { 898 SmallString<256> Buffer; 899 llvm::raw_svector_ostream Out(Buffer); 900 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 901 if (MC.shouldMangleDeclName(ND)) { 902 llvm::raw_svector_ostream Out(Buffer); 903 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 904 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 905 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 906 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 907 else 908 MC.mangleName(ND, Out); 909 } else { 910 IdentifierInfo *II = ND->getIdentifier(); 911 assert(II && "Attempt to mangle unnamed decl."); 912 const auto *FD = dyn_cast<FunctionDecl>(ND); 913 914 if (FD && 915 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 916 llvm::raw_svector_ostream Out(Buffer); 917 Out << "__regcall3__" << II->getName(); 918 } else { 919 Out << II->getName(); 920 } 921 } 922 923 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 924 if (FD->isMultiVersion() && !OmitTargetMangling) 925 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 926 return Out.str(); 927 } 928 929 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 930 const FunctionDecl *FD) { 931 if (!FD->isMultiVersion()) 932 return; 933 934 // Get the name of what this would be without the 'target' attribute. This 935 // allows us to lookup the version that was emitted when this wasn't a 936 // multiversion function. 937 std::string NonTargetName = 938 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 939 GlobalDecl OtherGD; 940 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 941 assert(OtherGD.getCanonicalDecl() 942 .getDecl() 943 ->getAsFunction() 944 ->isMultiVersion() && 945 "Other GD should now be a multiversioned function"); 946 // OtherFD is the version of this function that was mangled BEFORE 947 // becoming a MultiVersion function. It potentially needs to be updated. 948 const FunctionDecl *OtherFD = 949 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 950 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 951 // This is so that if the initial version was already the 'default' 952 // version, we don't try to update it. 953 if (OtherName != NonTargetName) { 954 // Remove instead of erase, since others may have stored the StringRef 955 // to this. 956 const auto ExistingRecord = Manglings.find(NonTargetName); 957 if (ExistingRecord != std::end(Manglings)) 958 Manglings.remove(&(*ExistingRecord)); 959 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 960 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 961 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 962 Entry->setName(OtherName); 963 } 964 } 965 } 966 967 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 968 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 969 970 // Some ABIs don't have constructor variants. Make sure that base and 971 // complete constructors get mangled the same. 972 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 973 if (!getTarget().getCXXABI().hasConstructorVariants()) { 974 CXXCtorType OrigCtorType = GD.getCtorType(); 975 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 976 if (OrigCtorType == Ctor_Base) 977 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 978 } 979 } 980 981 auto FoundName = MangledDeclNames.find(CanonicalGD); 982 if (FoundName != MangledDeclNames.end()) 983 return FoundName->second; 984 985 986 // Keep the first result in the case of a mangling collision. 987 const auto *ND = cast<NamedDecl>(GD.getDecl()); 988 auto Result = 989 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 990 return MangledDeclNames[CanonicalGD] = Result.first->first(); 991 } 992 993 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 994 const BlockDecl *BD) { 995 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 996 const Decl *D = GD.getDecl(); 997 998 SmallString<256> Buffer; 999 llvm::raw_svector_ostream Out(Buffer); 1000 if (!D) 1001 MangleCtx.mangleGlobalBlock(BD, 1002 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1003 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1004 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1005 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1006 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1007 else 1008 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1009 1010 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1011 return Result.first->first(); 1012 } 1013 1014 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1015 return getModule().getNamedValue(Name); 1016 } 1017 1018 /// AddGlobalCtor - Add a function to the list that will be called before 1019 /// main() runs. 1020 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1021 llvm::Constant *AssociatedData) { 1022 // FIXME: Type coercion of void()* types. 1023 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1024 } 1025 1026 /// AddGlobalDtor - Add a function to the list that will be called 1027 /// when the module is unloaded. 1028 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1029 // FIXME: Type coercion of void()* types. 1030 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1031 } 1032 1033 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1034 if (Fns.empty()) return; 1035 1036 // Ctor function type is void()*. 1037 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1038 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1039 1040 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1041 llvm::StructType *CtorStructTy = llvm::StructType::get( 1042 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1043 1044 // Construct the constructor and destructor arrays. 1045 ConstantInitBuilder builder(*this); 1046 auto ctors = builder.beginArray(CtorStructTy); 1047 for (const auto &I : Fns) { 1048 auto ctor = ctors.beginStruct(CtorStructTy); 1049 ctor.addInt(Int32Ty, I.Priority); 1050 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1051 if (I.AssociatedData) 1052 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1053 else 1054 ctor.addNullPointer(VoidPtrTy); 1055 ctor.finishAndAddTo(ctors); 1056 } 1057 1058 auto list = 1059 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1060 /*constant*/ false, 1061 llvm::GlobalValue::AppendingLinkage); 1062 1063 // The LTO linker doesn't seem to like it when we set an alignment 1064 // on appending variables. Take it off as a workaround. 1065 list->setAlignment(0); 1066 1067 Fns.clear(); 1068 } 1069 1070 llvm::GlobalValue::LinkageTypes 1071 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1072 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1073 1074 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1075 1076 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1077 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1078 1079 if (isa<CXXConstructorDecl>(D) && 1080 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1081 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1082 // Our approach to inheriting constructors is fundamentally different from 1083 // that used by the MS ABI, so keep our inheriting constructor thunks 1084 // internal rather than trying to pick an unambiguous mangling for them. 1085 return llvm::GlobalValue::InternalLinkage; 1086 } 1087 1088 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1089 } 1090 1091 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1092 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1093 if (!MDS) return nullptr; 1094 1095 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1096 } 1097 1098 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1099 const CGFunctionInfo &Info, 1100 llvm::Function *F) { 1101 unsigned CallingConv; 1102 llvm::AttributeList PAL; 1103 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1104 F->setAttributes(PAL); 1105 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1106 } 1107 1108 /// Determines whether the language options require us to model 1109 /// unwind exceptions. We treat -fexceptions as mandating this 1110 /// except under the fragile ObjC ABI with only ObjC exceptions 1111 /// enabled. This means, for example, that C with -fexceptions 1112 /// enables this. 1113 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1114 // If exceptions are completely disabled, obviously this is false. 1115 if (!LangOpts.Exceptions) return false; 1116 1117 // If C++ exceptions are enabled, this is true. 1118 if (LangOpts.CXXExceptions) return true; 1119 1120 // If ObjC exceptions are enabled, this depends on the ABI. 1121 if (LangOpts.ObjCExceptions) { 1122 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1123 } 1124 1125 return true; 1126 } 1127 1128 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1129 llvm::Function *F) { 1130 llvm::AttrBuilder B; 1131 1132 if (CodeGenOpts.UnwindTables) 1133 B.addAttribute(llvm::Attribute::UWTable); 1134 1135 if (!hasUnwindExceptions(LangOpts)) 1136 B.addAttribute(llvm::Attribute::NoUnwind); 1137 1138 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1139 B.addAttribute(llvm::Attribute::StackProtect); 1140 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1141 B.addAttribute(llvm::Attribute::StackProtectStrong); 1142 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1143 B.addAttribute(llvm::Attribute::StackProtectReq); 1144 1145 if (!D) { 1146 // If we don't have a declaration to control inlining, the function isn't 1147 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1148 // disabled, mark the function as noinline. 1149 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1150 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1151 B.addAttribute(llvm::Attribute::NoInline); 1152 1153 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1154 return; 1155 } 1156 1157 // Track whether we need to add the optnone LLVM attribute, 1158 // starting with the default for this optimization level. 1159 bool ShouldAddOptNone = 1160 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1161 // We can't add optnone in the following cases, it won't pass the verifier. 1162 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1163 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1164 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1165 1166 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1167 B.addAttribute(llvm::Attribute::OptimizeNone); 1168 1169 // OptimizeNone implies noinline; we should not be inlining such functions. 1170 B.addAttribute(llvm::Attribute::NoInline); 1171 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1172 "OptimizeNone and AlwaysInline on same function!"); 1173 1174 // We still need to handle naked functions even though optnone subsumes 1175 // much of their semantics. 1176 if (D->hasAttr<NakedAttr>()) 1177 B.addAttribute(llvm::Attribute::Naked); 1178 1179 // OptimizeNone wins over OptimizeForSize and MinSize. 1180 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1181 F->removeFnAttr(llvm::Attribute::MinSize); 1182 } else if (D->hasAttr<NakedAttr>()) { 1183 // Naked implies noinline: we should not be inlining such functions. 1184 B.addAttribute(llvm::Attribute::Naked); 1185 B.addAttribute(llvm::Attribute::NoInline); 1186 } else if (D->hasAttr<NoDuplicateAttr>()) { 1187 B.addAttribute(llvm::Attribute::NoDuplicate); 1188 } else if (D->hasAttr<NoInlineAttr>()) { 1189 B.addAttribute(llvm::Attribute::NoInline); 1190 } else if (D->hasAttr<AlwaysInlineAttr>() && 1191 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1192 // (noinline wins over always_inline, and we can't specify both in IR) 1193 B.addAttribute(llvm::Attribute::AlwaysInline); 1194 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1195 // If we're not inlining, then force everything that isn't always_inline to 1196 // carry an explicit noinline attribute. 1197 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1198 B.addAttribute(llvm::Attribute::NoInline); 1199 } else { 1200 // Otherwise, propagate the inline hint attribute and potentially use its 1201 // absence to mark things as noinline. 1202 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1203 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1204 return Redecl->isInlineSpecified(); 1205 })) { 1206 B.addAttribute(llvm::Attribute::InlineHint); 1207 } else if (CodeGenOpts.getInlining() == 1208 CodeGenOptions::OnlyHintInlining && 1209 !FD->isInlined() && 1210 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1211 B.addAttribute(llvm::Attribute::NoInline); 1212 } 1213 } 1214 } 1215 1216 // Add other optimization related attributes if we are optimizing this 1217 // function. 1218 if (!D->hasAttr<OptimizeNoneAttr>()) { 1219 if (D->hasAttr<ColdAttr>()) { 1220 if (!ShouldAddOptNone) 1221 B.addAttribute(llvm::Attribute::OptimizeForSize); 1222 B.addAttribute(llvm::Attribute::Cold); 1223 } 1224 1225 if (D->hasAttr<MinSizeAttr>()) 1226 B.addAttribute(llvm::Attribute::MinSize); 1227 } 1228 1229 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1230 1231 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1232 if (alignment) 1233 F->setAlignment(alignment); 1234 1235 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1236 // reserve a bit for differentiating between virtual and non-virtual member 1237 // functions. If the current target's C++ ABI requires this and this is a 1238 // member function, set its alignment accordingly. 1239 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1240 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1241 F->setAlignment(2); 1242 } 1243 1244 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1245 if (CodeGenOpts.SanitizeCfiCrossDso) 1246 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1247 CreateFunctionTypeMetadata(FD, F); 1248 } 1249 1250 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1251 const Decl *D = GD.getDecl(); 1252 if (dyn_cast_or_null<NamedDecl>(D)) 1253 setGVProperties(GV, GD); 1254 else 1255 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1256 1257 if (D && D->hasAttr<UsedAttr>()) 1258 addUsedGlobal(GV); 1259 } 1260 1261 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1262 llvm::AttrBuilder &Attrs) { 1263 // Add target-cpu and target-features attributes to functions. If 1264 // we have a decl for the function and it has a target attribute then 1265 // parse that and add it to the feature set. 1266 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1267 std::vector<std::string> Features; 1268 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1269 FD = FD ? FD->getMostRecentDecl() : FD; 1270 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1271 bool AddedAttr = false; 1272 if (TD) { 1273 llvm::StringMap<bool> FeatureMap; 1274 getFunctionFeatureMap(FeatureMap, FD); 1275 1276 // Produce the canonical string for this set of features. 1277 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1278 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1279 1280 // Now add the target-cpu and target-features to the function. 1281 // While we populated the feature map above, we still need to 1282 // get and parse the target attribute so we can get the cpu for 1283 // the function. 1284 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1285 if (ParsedAttr.Architecture != "" && 1286 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1287 TargetCPU = ParsedAttr.Architecture; 1288 } else { 1289 // Otherwise just add the existing target cpu and target features to the 1290 // function. 1291 Features = getTarget().getTargetOpts().Features; 1292 } 1293 1294 if (TargetCPU != "") { 1295 Attrs.addAttribute("target-cpu", TargetCPU); 1296 AddedAttr = true; 1297 } 1298 if (!Features.empty()) { 1299 llvm::sort(Features.begin(), Features.end()); 1300 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1301 AddedAttr = true; 1302 } 1303 1304 return AddedAttr; 1305 } 1306 1307 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1308 llvm::GlobalObject *GO) { 1309 const Decl *D = GD.getDecl(); 1310 SetCommonAttributes(GD, GO); 1311 1312 if (D) { 1313 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1314 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1315 GV->addAttribute("bss-section", SA->getName()); 1316 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1317 GV->addAttribute("data-section", SA->getName()); 1318 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1319 GV->addAttribute("rodata-section", SA->getName()); 1320 } 1321 1322 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1323 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1324 if (!D->getAttr<SectionAttr>()) 1325 F->addFnAttr("implicit-section-name", SA->getName()); 1326 1327 llvm::AttrBuilder Attrs; 1328 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1329 // We know that GetCPUAndFeaturesAttributes will always have the 1330 // newest set, since it has the newest possible FunctionDecl, so the 1331 // new ones should replace the old. 1332 F->removeFnAttr("target-cpu"); 1333 F->removeFnAttr("target-features"); 1334 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1335 } 1336 } 1337 1338 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1339 GO->setSection(SA->getName()); 1340 } 1341 1342 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1343 } 1344 1345 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1346 llvm::Function *F, 1347 const CGFunctionInfo &FI) { 1348 const Decl *D = GD.getDecl(); 1349 SetLLVMFunctionAttributes(D, FI, F); 1350 SetLLVMFunctionAttributesForDefinition(D, F); 1351 1352 F->setLinkage(llvm::Function::InternalLinkage); 1353 1354 setNonAliasAttributes(GD, F); 1355 } 1356 1357 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1358 // Set linkage and visibility in case we never see a definition. 1359 LinkageInfo LV = ND->getLinkageAndVisibility(); 1360 // Don't set internal linkage on declarations. 1361 // "extern_weak" is overloaded in LLVM; we probably should have 1362 // separate linkage types for this. 1363 if (isExternallyVisible(LV.getLinkage()) && 1364 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1365 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1366 } 1367 1368 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1369 llvm::Function *F) { 1370 // Only if we are checking indirect calls. 1371 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1372 return; 1373 1374 // Non-static class methods are handled via vtable pointer checks elsewhere. 1375 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1376 return; 1377 1378 // Additionally, if building with cross-DSO support... 1379 if (CodeGenOpts.SanitizeCfiCrossDso) { 1380 // Skip available_externally functions. They won't be codegen'ed in the 1381 // current module anyway. 1382 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1383 return; 1384 } 1385 1386 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1387 F->addTypeMetadata(0, MD); 1388 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1389 1390 // Emit a hash-based bit set entry for cross-DSO calls. 1391 if (CodeGenOpts.SanitizeCfiCrossDso) 1392 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1393 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1394 } 1395 1396 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1397 bool IsIncompleteFunction, 1398 bool IsThunk) { 1399 1400 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1401 // If this is an intrinsic function, set the function's attributes 1402 // to the intrinsic's attributes. 1403 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1404 return; 1405 } 1406 1407 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1408 1409 if (!IsIncompleteFunction) { 1410 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1411 // Setup target-specific attributes. 1412 if (F->isDeclaration()) 1413 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1414 } 1415 1416 // Add the Returned attribute for "this", except for iOS 5 and earlier 1417 // where substantial code, including the libstdc++ dylib, was compiled with 1418 // GCC and does not actually return "this". 1419 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1420 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1421 assert(!F->arg_empty() && 1422 F->arg_begin()->getType() 1423 ->canLosslesslyBitCastTo(F->getReturnType()) && 1424 "unexpected this return"); 1425 F->addAttribute(1, llvm::Attribute::Returned); 1426 } 1427 1428 // Only a few attributes are set on declarations; these may later be 1429 // overridden by a definition. 1430 1431 setLinkageForGV(F, FD); 1432 setGVProperties(F, FD); 1433 1434 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1435 F->addFnAttr("implicit-section-name"); 1436 } 1437 1438 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1439 F->setSection(SA->getName()); 1440 1441 if (FD->isReplaceableGlobalAllocationFunction()) { 1442 // A replaceable global allocation function does not act like a builtin by 1443 // default, only if it is invoked by a new-expression or delete-expression. 1444 F->addAttribute(llvm::AttributeList::FunctionIndex, 1445 llvm::Attribute::NoBuiltin); 1446 1447 // A sane operator new returns a non-aliasing pointer. 1448 // FIXME: Also add NonNull attribute to the return value 1449 // for the non-nothrow forms? 1450 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1451 if (getCodeGenOpts().AssumeSaneOperatorNew && 1452 (Kind == OO_New || Kind == OO_Array_New)) 1453 F->addAttribute(llvm::AttributeList::ReturnIndex, 1454 llvm::Attribute::NoAlias); 1455 } 1456 1457 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1458 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1459 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1460 if (MD->isVirtual()) 1461 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1462 1463 // Don't emit entries for function declarations in the cross-DSO mode. This 1464 // is handled with better precision by the receiving DSO. 1465 if (!CodeGenOpts.SanitizeCfiCrossDso) 1466 CreateFunctionTypeMetadata(FD, F); 1467 1468 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1469 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1470 } 1471 1472 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1473 assert(!GV->isDeclaration() && 1474 "Only globals with definition can force usage."); 1475 LLVMUsed.emplace_back(GV); 1476 } 1477 1478 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1479 assert(!GV->isDeclaration() && 1480 "Only globals with definition can force usage."); 1481 LLVMCompilerUsed.emplace_back(GV); 1482 } 1483 1484 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1485 std::vector<llvm::WeakTrackingVH> &List) { 1486 // Don't create llvm.used if there is no need. 1487 if (List.empty()) 1488 return; 1489 1490 // Convert List to what ConstantArray needs. 1491 SmallVector<llvm::Constant*, 8> UsedArray; 1492 UsedArray.resize(List.size()); 1493 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1494 UsedArray[i] = 1495 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1496 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1497 } 1498 1499 if (UsedArray.empty()) 1500 return; 1501 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1502 1503 auto *GV = new llvm::GlobalVariable( 1504 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1505 llvm::ConstantArray::get(ATy, UsedArray), Name); 1506 1507 GV->setSection("llvm.metadata"); 1508 } 1509 1510 void CodeGenModule::emitLLVMUsed() { 1511 emitUsed(*this, "llvm.used", LLVMUsed); 1512 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1513 } 1514 1515 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1516 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1517 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1518 } 1519 1520 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1521 llvm::SmallString<32> Opt; 1522 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1523 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1524 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1525 } 1526 1527 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1528 auto &C = getLLVMContext(); 1529 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1530 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1531 } 1532 1533 void CodeGenModule::AddDependentLib(StringRef Lib) { 1534 llvm::SmallString<24> Opt; 1535 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1536 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1537 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1538 } 1539 1540 /// \brief Add link options implied by the given module, including modules 1541 /// it depends on, using a postorder walk. 1542 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1543 SmallVectorImpl<llvm::MDNode *> &Metadata, 1544 llvm::SmallPtrSet<Module *, 16> &Visited) { 1545 // Import this module's parent. 1546 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1547 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1548 } 1549 1550 // Import this module's dependencies. 1551 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1552 if (Visited.insert(Mod->Imports[I - 1]).second) 1553 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1554 } 1555 1556 // Add linker options to link against the libraries/frameworks 1557 // described by this module. 1558 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1559 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1560 // Link against a framework. Frameworks are currently Darwin only, so we 1561 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1562 if (Mod->LinkLibraries[I-1].IsFramework) { 1563 llvm::Metadata *Args[2] = { 1564 llvm::MDString::get(Context, "-framework"), 1565 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1566 1567 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1568 continue; 1569 } 1570 1571 // Link against a library. 1572 llvm::SmallString<24> Opt; 1573 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1574 Mod->LinkLibraries[I-1].Library, Opt); 1575 auto *OptString = llvm::MDString::get(Context, Opt); 1576 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1577 } 1578 } 1579 1580 void CodeGenModule::EmitModuleLinkOptions() { 1581 // Collect the set of all of the modules we want to visit to emit link 1582 // options, which is essentially the imported modules and all of their 1583 // non-explicit child modules. 1584 llvm::SetVector<clang::Module *> LinkModules; 1585 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1586 SmallVector<clang::Module *, 16> Stack; 1587 1588 // Seed the stack with imported modules. 1589 for (Module *M : ImportedModules) { 1590 // Do not add any link flags when an implementation TU of a module imports 1591 // a header of that same module. 1592 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1593 !getLangOpts().isCompilingModule()) 1594 continue; 1595 if (Visited.insert(M).second) 1596 Stack.push_back(M); 1597 } 1598 1599 // Find all of the modules to import, making a little effort to prune 1600 // non-leaf modules. 1601 while (!Stack.empty()) { 1602 clang::Module *Mod = Stack.pop_back_val(); 1603 1604 bool AnyChildren = false; 1605 1606 // Visit the submodules of this module. 1607 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1608 SubEnd = Mod->submodule_end(); 1609 Sub != SubEnd; ++Sub) { 1610 // Skip explicit children; they need to be explicitly imported to be 1611 // linked against. 1612 if ((*Sub)->IsExplicit) 1613 continue; 1614 1615 if (Visited.insert(*Sub).second) { 1616 Stack.push_back(*Sub); 1617 AnyChildren = true; 1618 } 1619 } 1620 1621 // We didn't find any children, so add this module to the list of 1622 // modules to link against. 1623 if (!AnyChildren) { 1624 LinkModules.insert(Mod); 1625 } 1626 } 1627 1628 // Add link options for all of the imported modules in reverse topological 1629 // order. We don't do anything to try to order import link flags with respect 1630 // to linker options inserted by things like #pragma comment(). 1631 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1632 Visited.clear(); 1633 for (Module *M : LinkModules) 1634 if (Visited.insert(M).second) 1635 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1636 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1637 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1638 1639 // Add the linker options metadata flag. 1640 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1641 for (auto *MD : LinkerOptionsMetadata) 1642 NMD->addOperand(MD); 1643 } 1644 1645 void CodeGenModule::EmitDeferred() { 1646 // Emit code for any potentially referenced deferred decls. Since a 1647 // previously unused static decl may become used during the generation of code 1648 // for a static function, iterate until no changes are made. 1649 1650 if (!DeferredVTables.empty()) { 1651 EmitDeferredVTables(); 1652 1653 // Emitting a vtable doesn't directly cause more vtables to 1654 // become deferred, although it can cause functions to be 1655 // emitted that then need those vtables. 1656 assert(DeferredVTables.empty()); 1657 } 1658 1659 // Stop if we're out of both deferred vtables and deferred declarations. 1660 if (DeferredDeclsToEmit.empty()) 1661 return; 1662 1663 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1664 // work, it will not interfere with this. 1665 std::vector<GlobalDecl> CurDeclsToEmit; 1666 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1667 1668 for (GlobalDecl &D : CurDeclsToEmit) { 1669 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1670 // to get GlobalValue with exactly the type we need, not something that 1671 // might had been created for another decl with the same mangled name but 1672 // different type. 1673 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1674 GetAddrOfGlobal(D, ForDefinition)); 1675 1676 // In case of different address spaces, we may still get a cast, even with 1677 // IsForDefinition equal to true. Query mangled names table to get 1678 // GlobalValue. 1679 if (!GV) 1680 GV = GetGlobalValue(getMangledName(D)); 1681 1682 // Make sure GetGlobalValue returned non-null. 1683 assert(GV); 1684 1685 // Check to see if we've already emitted this. This is necessary 1686 // for a couple of reasons: first, decls can end up in the 1687 // deferred-decls queue multiple times, and second, decls can end 1688 // up with definitions in unusual ways (e.g. by an extern inline 1689 // function acquiring a strong function redefinition). Just 1690 // ignore these cases. 1691 if (!GV->isDeclaration()) 1692 continue; 1693 1694 // Otherwise, emit the definition and move on to the next one. 1695 EmitGlobalDefinition(D, GV); 1696 1697 // If we found out that we need to emit more decls, do that recursively. 1698 // This has the advantage that the decls are emitted in a DFS and related 1699 // ones are close together, which is convenient for testing. 1700 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1701 EmitDeferred(); 1702 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1703 } 1704 } 1705 } 1706 1707 void CodeGenModule::EmitVTablesOpportunistically() { 1708 // Try to emit external vtables as available_externally if they have emitted 1709 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1710 // is not allowed to create new references to things that need to be emitted 1711 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1712 1713 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1714 && "Only emit opportunistic vtables with optimizations"); 1715 1716 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1717 assert(getVTables().isVTableExternal(RD) && 1718 "This queue should only contain external vtables"); 1719 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1720 VTables.GenerateClassData(RD); 1721 } 1722 OpportunisticVTables.clear(); 1723 } 1724 1725 void CodeGenModule::EmitGlobalAnnotations() { 1726 if (Annotations.empty()) 1727 return; 1728 1729 // Create a new global variable for the ConstantStruct in the Module. 1730 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1731 Annotations[0]->getType(), Annotations.size()), Annotations); 1732 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1733 llvm::GlobalValue::AppendingLinkage, 1734 Array, "llvm.global.annotations"); 1735 gv->setSection(AnnotationSection); 1736 } 1737 1738 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1739 llvm::Constant *&AStr = AnnotationStrings[Str]; 1740 if (AStr) 1741 return AStr; 1742 1743 // Not found yet, create a new global. 1744 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1745 auto *gv = 1746 new llvm::GlobalVariable(getModule(), s->getType(), true, 1747 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1748 gv->setSection(AnnotationSection); 1749 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1750 AStr = gv; 1751 return gv; 1752 } 1753 1754 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1755 SourceManager &SM = getContext().getSourceManager(); 1756 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1757 if (PLoc.isValid()) 1758 return EmitAnnotationString(PLoc.getFilename()); 1759 return EmitAnnotationString(SM.getBufferName(Loc)); 1760 } 1761 1762 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1763 SourceManager &SM = getContext().getSourceManager(); 1764 PresumedLoc PLoc = SM.getPresumedLoc(L); 1765 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1766 SM.getExpansionLineNumber(L); 1767 return llvm::ConstantInt::get(Int32Ty, LineNo); 1768 } 1769 1770 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1771 const AnnotateAttr *AA, 1772 SourceLocation L) { 1773 // Get the globals for file name, annotation, and the line number. 1774 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1775 *UnitGV = EmitAnnotationUnit(L), 1776 *LineNoCst = EmitAnnotationLineNo(L); 1777 1778 // Create the ConstantStruct for the global annotation. 1779 llvm::Constant *Fields[4] = { 1780 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1781 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1782 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1783 LineNoCst 1784 }; 1785 return llvm::ConstantStruct::getAnon(Fields); 1786 } 1787 1788 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1789 llvm::GlobalValue *GV) { 1790 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1791 // Get the struct elements for these annotations. 1792 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1793 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1794 } 1795 1796 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1797 llvm::Function *Fn, 1798 SourceLocation Loc) const { 1799 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1800 // Blacklist by function name. 1801 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1802 return true; 1803 // Blacklist by location. 1804 if (Loc.isValid()) 1805 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1806 // If location is unknown, this may be a compiler-generated function. Assume 1807 // it's located in the main file. 1808 auto &SM = Context.getSourceManager(); 1809 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1810 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1811 } 1812 return false; 1813 } 1814 1815 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1816 SourceLocation Loc, QualType Ty, 1817 StringRef Category) const { 1818 // For now globals can be blacklisted only in ASan and KASan. 1819 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1820 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1821 if (!EnabledAsanMask) 1822 return false; 1823 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1824 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1825 return true; 1826 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1827 return true; 1828 // Check global type. 1829 if (!Ty.isNull()) { 1830 // Drill down the array types: if global variable of a fixed type is 1831 // blacklisted, we also don't instrument arrays of them. 1832 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1833 Ty = AT->getElementType(); 1834 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1835 // We allow to blacklist only record types (classes, structs etc.) 1836 if (Ty->isRecordType()) { 1837 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1838 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1839 return true; 1840 } 1841 } 1842 return false; 1843 } 1844 1845 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1846 StringRef Category) const { 1847 if (!LangOpts.XRayInstrument) 1848 return false; 1849 const auto &XRayFilter = getContext().getXRayFilter(); 1850 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1851 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1852 if (Loc.isValid()) 1853 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1854 if (Attr == ImbueAttr::NONE) 1855 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1856 switch (Attr) { 1857 case ImbueAttr::NONE: 1858 return false; 1859 case ImbueAttr::ALWAYS: 1860 Fn->addFnAttr("function-instrument", "xray-always"); 1861 break; 1862 case ImbueAttr::ALWAYS_ARG1: 1863 Fn->addFnAttr("function-instrument", "xray-always"); 1864 Fn->addFnAttr("xray-log-args", "1"); 1865 break; 1866 case ImbueAttr::NEVER: 1867 Fn->addFnAttr("function-instrument", "xray-never"); 1868 break; 1869 } 1870 return true; 1871 } 1872 1873 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1874 // Never defer when EmitAllDecls is specified. 1875 if (LangOpts.EmitAllDecls) 1876 return true; 1877 1878 return getContext().DeclMustBeEmitted(Global); 1879 } 1880 1881 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1882 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1883 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1884 // Implicit template instantiations may change linkage if they are later 1885 // explicitly instantiated, so they should not be emitted eagerly. 1886 return false; 1887 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1888 if (Context.getInlineVariableDefinitionKind(VD) == 1889 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1890 // A definition of an inline constexpr static data member may change 1891 // linkage later if it's redeclared outside the class. 1892 return false; 1893 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1894 // codegen for global variables, because they may be marked as threadprivate. 1895 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1896 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1897 return false; 1898 1899 return true; 1900 } 1901 1902 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1903 const CXXUuidofExpr* E) { 1904 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1905 // well-formed. 1906 StringRef Uuid = E->getUuidStr(); 1907 std::string Name = "_GUID_" + Uuid.lower(); 1908 std::replace(Name.begin(), Name.end(), '-', '_'); 1909 1910 // The UUID descriptor should be pointer aligned. 1911 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1912 1913 // Look for an existing global. 1914 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1915 return ConstantAddress(GV, Alignment); 1916 1917 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1918 assert(Init && "failed to initialize as constant"); 1919 1920 auto *GV = new llvm::GlobalVariable( 1921 getModule(), Init->getType(), 1922 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1923 if (supportsCOMDAT()) 1924 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1925 setDSOLocal(GV); 1926 return ConstantAddress(GV, Alignment); 1927 } 1928 1929 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1930 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1931 assert(AA && "No alias?"); 1932 1933 CharUnits Alignment = getContext().getDeclAlign(VD); 1934 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1935 1936 // See if there is already something with the target's name in the module. 1937 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1938 if (Entry) { 1939 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1940 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1941 return ConstantAddress(Ptr, Alignment); 1942 } 1943 1944 llvm::Constant *Aliasee; 1945 if (isa<llvm::FunctionType>(DeclTy)) 1946 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1947 GlobalDecl(cast<FunctionDecl>(VD)), 1948 /*ForVTable=*/false); 1949 else 1950 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1951 llvm::PointerType::getUnqual(DeclTy), 1952 nullptr); 1953 1954 auto *F = cast<llvm::GlobalValue>(Aliasee); 1955 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1956 WeakRefReferences.insert(F); 1957 1958 return ConstantAddress(Aliasee, Alignment); 1959 } 1960 1961 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1962 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1963 1964 // Weak references don't produce any output by themselves. 1965 if (Global->hasAttr<WeakRefAttr>()) 1966 return; 1967 1968 // If this is an alias definition (which otherwise looks like a declaration) 1969 // emit it now. 1970 if (Global->hasAttr<AliasAttr>()) 1971 return EmitAliasDefinition(GD); 1972 1973 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1974 if (Global->hasAttr<IFuncAttr>()) 1975 return emitIFuncDefinition(GD); 1976 1977 // If this is CUDA, be selective about which declarations we emit. 1978 if (LangOpts.CUDA) { 1979 if (LangOpts.CUDAIsDevice) { 1980 if (!Global->hasAttr<CUDADeviceAttr>() && 1981 !Global->hasAttr<CUDAGlobalAttr>() && 1982 !Global->hasAttr<CUDAConstantAttr>() && 1983 !Global->hasAttr<CUDASharedAttr>()) 1984 return; 1985 } else { 1986 // We need to emit host-side 'shadows' for all global 1987 // device-side variables because the CUDA runtime needs their 1988 // size and host-side address in order to provide access to 1989 // their device-side incarnations. 1990 1991 // So device-only functions are the only things we skip. 1992 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1993 Global->hasAttr<CUDADeviceAttr>()) 1994 return; 1995 1996 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1997 "Expected Variable or Function"); 1998 } 1999 } 2000 2001 if (LangOpts.OpenMP) { 2002 // If this is OpenMP device, check if it is legal to emit this global 2003 // normally. 2004 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2005 return; 2006 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2007 if (MustBeEmitted(Global)) 2008 EmitOMPDeclareReduction(DRD); 2009 return; 2010 } 2011 } 2012 2013 // Ignore declarations, they will be emitted on their first use. 2014 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2015 // Forward declarations are emitted lazily on first use. 2016 if (!FD->doesThisDeclarationHaveABody()) { 2017 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2018 return; 2019 2020 StringRef MangledName = getMangledName(GD); 2021 2022 // Compute the function info and LLVM type. 2023 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2024 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2025 2026 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2027 /*DontDefer=*/false); 2028 return; 2029 } 2030 } else { 2031 const auto *VD = cast<VarDecl>(Global); 2032 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2033 // We need to emit device-side global CUDA variables even if a 2034 // variable does not have a definition -- we still need to define 2035 // host-side shadow for it. 2036 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2037 !VD->hasDefinition() && 2038 (VD->hasAttr<CUDAConstantAttr>() || 2039 VD->hasAttr<CUDADeviceAttr>()); 2040 if (!MustEmitForCuda && 2041 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2042 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2043 // If this declaration may have caused an inline variable definition to 2044 // change linkage, make sure that it's emitted. 2045 if (Context.getInlineVariableDefinitionKind(VD) == 2046 ASTContext::InlineVariableDefinitionKind::Strong) 2047 GetAddrOfGlobalVar(VD); 2048 return; 2049 } 2050 } 2051 2052 // Defer code generation to first use when possible, e.g. if this is an inline 2053 // function. If the global must always be emitted, do it eagerly if possible 2054 // to benefit from cache locality. 2055 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2056 // Emit the definition if it can't be deferred. 2057 EmitGlobalDefinition(GD); 2058 return; 2059 } 2060 2061 // If we're deferring emission of a C++ variable with an 2062 // initializer, remember the order in which it appeared in the file. 2063 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2064 cast<VarDecl>(Global)->hasInit()) { 2065 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2066 CXXGlobalInits.push_back(nullptr); 2067 } 2068 2069 StringRef MangledName = getMangledName(GD); 2070 if (GetGlobalValue(MangledName) != nullptr) { 2071 // The value has already been used and should therefore be emitted. 2072 addDeferredDeclToEmit(GD); 2073 } else if (MustBeEmitted(Global)) { 2074 // The value must be emitted, but cannot be emitted eagerly. 2075 assert(!MayBeEmittedEagerly(Global)); 2076 addDeferredDeclToEmit(GD); 2077 } else { 2078 // Otherwise, remember that we saw a deferred decl with this name. The 2079 // first use of the mangled name will cause it to move into 2080 // DeferredDeclsToEmit. 2081 DeferredDecls[MangledName] = GD; 2082 } 2083 } 2084 2085 // Check if T is a class type with a destructor that's not dllimport. 2086 static bool HasNonDllImportDtor(QualType T) { 2087 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2088 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2089 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2090 return true; 2091 2092 return false; 2093 } 2094 2095 namespace { 2096 struct FunctionIsDirectlyRecursive : 2097 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2098 const StringRef Name; 2099 const Builtin::Context &BI; 2100 bool Result; 2101 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2102 Name(N), BI(C), Result(false) { 2103 } 2104 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2105 2106 bool TraverseCallExpr(CallExpr *E) { 2107 const FunctionDecl *FD = E->getDirectCallee(); 2108 if (!FD) 2109 return true; 2110 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2111 if (Attr && Name == Attr->getLabel()) { 2112 Result = true; 2113 return false; 2114 } 2115 unsigned BuiltinID = FD->getBuiltinID(); 2116 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2117 return true; 2118 StringRef BuiltinName = BI.getName(BuiltinID); 2119 if (BuiltinName.startswith("__builtin_") && 2120 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2121 Result = true; 2122 return false; 2123 } 2124 return true; 2125 } 2126 }; 2127 2128 // Make sure we're not referencing non-imported vars or functions. 2129 struct DLLImportFunctionVisitor 2130 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2131 bool SafeToInline = true; 2132 2133 bool shouldVisitImplicitCode() const { return true; } 2134 2135 bool VisitVarDecl(VarDecl *VD) { 2136 if (VD->getTLSKind()) { 2137 // A thread-local variable cannot be imported. 2138 SafeToInline = false; 2139 return SafeToInline; 2140 } 2141 2142 // A variable definition might imply a destructor call. 2143 if (VD->isThisDeclarationADefinition()) 2144 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2145 2146 return SafeToInline; 2147 } 2148 2149 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2150 if (const auto *D = E->getTemporary()->getDestructor()) 2151 SafeToInline = D->hasAttr<DLLImportAttr>(); 2152 return SafeToInline; 2153 } 2154 2155 bool VisitDeclRefExpr(DeclRefExpr *E) { 2156 ValueDecl *VD = E->getDecl(); 2157 if (isa<FunctionDecl>(VD)) 2158 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2159 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2160 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2161 return SafeToInline; 2162 } 2163 2164 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2165 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2166 return SafeToInline; 2167 } 2168 2169 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2170 CXXMethodDecl *M = E->getMethodDecl(); 2171 if (!M) { 2172 // Call through a pointer to member function. This is safe to inline. 2173 SafeToInline = true; 2174 } else { 2175 SafeToInline = M->hasAttr<DLLImportAttr>(); 2176 } 2177 return SafeToInline; 2178 } 2179 2180 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2181 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2182 return SafeToInline; 2183 } 2184 2185 bool VisitCXXNewExpr(CXXNewExpr *E) { 2186 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2187 return SafeToInline; 2188 } 2189 }; 2190 } 2191 2192 // isTriviallyRecursive - Check if this function calls another 2193 // decl that, because of the asm attribute or the other decl being a builtin, 2194 // ends up pointing to itself. 2195 bool 2196 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2197 StringRef Name; 2198 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2199 // asm labels are a special kind of mangling we have to support. 2200 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2201 if (!Attr) 2202 return false; 2203 Name = Attr->getLabel(); 2204 } else { 2205 Name = FD->getName(); 2206 } 2207 2208 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2209 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2210 return Walker.Result; 2211 } 2212 2213 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2214 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2215 return true; 2216 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2217 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2218 return false; 2219 2220 if (F->hasAttr<DLLImportAttr>()) { 2221 // Check whether it would be safe to inline this dllimport function. 2222 DLLImportFunctionVisitor Visitor; 2223 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2224 if (!Visitor.SafeToInline) 2225 return false; 2226 2227 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2228 // Implicit destructor invocations aren't captured in the AST, so the 2229 // check above can't see them. Check for them manually here. 2230 for (const Decl *Member : Dtor->getParent()->decls()) 2231 if (isa<FieldDecl>(Member)) 2232 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2233 return false; 2234 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2235 if (HasNonDllImportDtor(B.getType())) 2236 return false; 2237 } 2238 } 2239 2240 // PR9614. Avoid cases where the source code is lying to us. An available 2241 // externally function should have an equivalent function somewhere else, 2242 // but a function that calls itself is clearly not equivalent to the real 2243 // implementation. 2244 // This happens in glibc's btowc and in some configure checks. 2245 return !isTriviallyRecursive(F); 2246 } 2247 2248 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2249 return CodeGenOpts.OptimizationLevel > 0; 2250 } 2251 2252 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2253 const auto *D = cast<ValueDecl>(GD.getDecl()); 2254 2255 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2256 Context.getSourceManager(), 2257 "Generating code for declaration"); 2258 2259 if (isa<FunctionDecl>(D)) { 2260 // At -O0, don't generate IR for functions with available_externally 2261 // linkage. 2262 if (!shouldEmitFunction(GD)) 2263 return; 2264 2265 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2266 // Make sure to emit the definition(s) before we emit the thunks. 2267 // This is necessary for the generation of certain thunks. 2268 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2269 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2270 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2271 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2272 else 2273 EmitGlobalFunctionDefinition(GD, GV); 2274 2275 if (Method->isVirtual()) 2276 getVTables().EmitThunks(GD); 2277 2278 return; 2279 } 2280 2281 return EmitGlobalFunctionDefinition(GD, GV); 2282 } 2283 2284 if (const auto *VD = dyn_cast<VarDecl>(D)) 2285 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2286 2287 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2288 } 2289 2290 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2291 llvm::Function *NewFn); 2292 2293 void CodeGenModule::emitMultiVersionFunctions() { 2294 for (GlobalDecl GD : MultiVersionFuncs) { 2295 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2296 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2297 getContext().forEachMultiversionedFunctionVersion( 2298 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2299 GlobalDecl CurGD{ 2300 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2301 StringRef MangledName = getMangledName(CurGD); 2302 llvm::Constant *Func = GetGlobalValue(MangledName); 2303 if (!Func) { 2304 if (CurFD->isDefined()) { 2305 EmitGlobalFunctionDefinition(CurGD, nullptr); 2306 Func = GetGlobalValue(MangledName); 2307 } else { 2308 const CGFunctionInfo &FI = 2309 getTypes().arrangeGlobalDeclaration(GD); 2310 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2311 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2312 /*DontDefer=*/false, ForDefinition); 2313 } 2314 assert(Func && "This should have just been created"); 2315 } 2316 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2317 CurFD->getAttr<TargetAttr>()->parse()); 2318 }); 2319 2320 llvm::Function *ResolverFunc = cast<llvm::Function>( 2321 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2322 if (supportsCOMDAT()) 2323 ResolverFunc->setComdat( 2324 getModule().getOrInsertComdat(ResolverFunc->getName())); 2325 std::stable_sort( 2326 Options.begin(), Options.end(), 2327 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2328 CodeGenFunction CGF(*this); 2329 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2330 } 2331 } 2332 2333 /// If an ifunc for the specified mangled name is not in the module, create and 2334 /// return an llvm IFunc Function with the specified type. 2335 llvm::Constant * 2336 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2337 StringRef MangledName, 2338 const FunctionDecl *FD) { 2339 std::string IFuncName = (MangledName + ".ifunc").str(); 2340 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2341 return IFuncGV; 2342 2343 // Since this is the first time we've created this IFunc, make sure 2344 // that we put this multiversioned function into the list to be 2345 // replaced later. 2346 MultiVersionFuncs.push_back(GD); 2347 2348 std::string ResolverName = (MangledName + ".resolver").str(); 2349 llvm::Type *ResolverType = llvm::FunctionType::get( 2350 llvm::PointerType::get(DeclTy, 2351 Context.getTargetAddressSpace(FD->getType())), 2352 false); 2353 llvm::Constant *Resolver = 2354 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2355 /*ForVTable=*/false); 2356 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2357 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2358 GIF->setName(IFuncName); 2359 SetCommonAttributes(FD, GIF); 2360 2361 return GIF; 2362 } 2363 2364 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2365 /// module, create and return an llvm Function with the specified type. If there 2366 /// is something in the module with the specified name, return it potentially 2367 /// bitcasted to the right type. 2368 /// 2369 /// If D is non-null, it specifies a decl that correspond to this. This is used 2370 /// to set the attributes on the function when it is first created. 2371 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2372 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2373 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2374 ForDefinition_t IsForDefinition) { 2375 const Decl *D = GD.getDecl(); 2376 2377 // Any attempts to use a MultiVersion function should result in retrieving 2378 // the iFunc instead. Name Mangling will handle the rest of the changes. 2379 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2380 // For the device mark the function as one that should be emitted. 2381 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2382 !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() && 2383 !DontDefer && !IsForDefinition) 2384 addDeferredDeclToEmit(GD); 2385 2386 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2387 UpdateMultiVersionNames(GD, FD); 2388 if (!IsForDefinition) 2389 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2390 } 2391 } 2392 2393 // Lookup the entry, lazily creating it if necessary. 2394 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2395 if (Entry) { 2396 if (WeakRefReferences.erase(Entry)) { 2397 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2398 if (FD && !FD->hasAttr<WeakAttr>()) 2399 Entry->setLinkage(llvm::Function::ExternalLinkage); 2400 } 2401 2402 // Handle dropped DLL attributes. 2403 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2404 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2405 setDSOLocal(Entry); 2406 } 2407 2408 // If there are two attempts to define the same mangled name, issue an 2409 // error. 2410 if (IsForDefinition && !Entry->isDeclaration()) { 2411 GlobalDecl OtherGD; 2412 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2413 // to make sure that we issue an error only once. 2414 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2415 (GD.getCanonicalDecl().getDecl() != 2416 OtherGD.getCanonicalDecl().getDecl()) && 2417 DiagnosedConflictingDefinitions.insert(GD).second) { 2418 getDiags().Report(D->getLocation(), 2419 diag::err_duplicate_mangled_name); 2420 getDiags().Report(OtherGD.getDecl()->getLocation(), 2421 diag::note_previous_definition); 2422 } 2423 } 2424 2425 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2426 (Entry->getType()->getElementType() == Ty)) { 2427 return Entry; 2428 } 2429 2430 // Make sure the result is of the correct type. 2431 // (If function is requested for a definition, we always need to create a new 2432 // function, not just return a bitcast.) 2433 if (!IsForDefinition) 2434 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2435 } 2436 2437 // This function doesn't have a complete type (for example, the return 2438 // type is an incomplete struct). Use a fake type instead, and make 2439 // sure not to try to set attributes. 2440 bool IsIncompleteFunction = false; 2441 2442 llvm::FunctionType *FTy; 2443 if (isa<llvm::FunctionType>(Ty)) { 2444 FTy = cast<llvm::FunctionType>(Ty); 2445 } else { 2446 FTy = llvm::FunctionType::get(VoidTy, false); 2447 IsIncompleteFunction = true; 2448 } 2449 2450 llvm::Function *F = 2451 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2452 Entry ? StringRef() : MangledName, &getModule()); 2453 2454 // If we already created a function with the same mangled name (but different 2455 // type) before, take its name and add it to the list of functions to be 2456 // replaced with F at the end of CodeGen. 2457 // 2458 // This happens if there is a prototype for a function (e.g. "int f()") and 2459 // then a definition of a different type (e.g. "int f(int x)"). 2460 if (Entry) { 2461 F->takeName(Entry); 2462 2463 // This might be an implementation of a function without a prototype, in 2464 // which case, try to do special replacement of calls which match the new 2465 // prototype. The really key thing here is that we also potentially drop 2466 // arguments from the call site so as to make a direct call, which makes the 2467 // inliner happier and suppresses a number of optimizer warnings (!) about 2468 // dropping arguments. 2469 if (!Entry->use_empty()) { 2470 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2471 Entry->removeDeadConstantUsers(); 2472 } 2473 2474 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2475 F, Entry->getType()->getElementType()->getPointerTo()); 2476 addGlobalValReplacement(Entry, BC); 2477 } 2478 2479 assert(F->getName() == MangledName && "name was uniqued!"); 2480 if (D) 2481 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2482 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2483 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2484 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2485 } 2486 2487 if (!DontDefer) { 2488 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2489 // each other bottoming out with the base dtor. Therefore we emit non-base 2490 // dtors on usage, even if there is no dtor definition in the TU. 2491 if (D && isa<CXXDestructorDecl>(D) && 2492 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2493 GD.getDtorType())) 2494 addDeferredDeclToEmit(GD); 2495 2496 // This is the first use or definition of a mangled name. If there is a 2497 // deferred decl with this name, remember that we need to emit it at the end 2498 // of the file. 2499 auto DDI = DeferredDecls.find(MangledName); 2500 if (DDI != DeferredDecls.end()) { 2501 // Move the potentially referenced deferred decl to the 2502 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2503 // don't need it anymore). 2504 addDeferredDeclToEmit(DDI->second); 2505 DeferredDecls.erase(DDI); 2506 2507 // Otherwise, there are cases we have to worry about where we're 2508 // using a declaration for which we must emit a definition but where 2509 // we might not find a top-level definition: 2510 // - member functions defined inline in their classes 2511 // - friend functions defined inline in some class 2512 // - special member functions with implicit definitions 2513 // If we ever change our AST traversal to walk into class methods, 2514 // this will be unnecessary. 2515 // 2516 // We also don't emit a definition for a function if it's going to be an 2517 // entry in a vtable, unless it's already marked as used. 2518 } else if (getLangOpts().CPlusPlus && D) { 2519 // Look for a declaration that's lexically in a record. 2520 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2521 FD = FD->getPreviousDecl()) { 2522 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2523 if (FD->doesThisDeclarationHaveABody()) { 2524 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2525 break; 2526 } 2527 } 2528 } 2529 } 2530 } 2531 2532 // Make sure the result is of the requested type. 2533 if (!IsIncompleteFunction) { 2534 assert(F->getType()->getElementType() == Ty); 2535 return F; 2536 } 2537 2538 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2539 return llvm::ConstantExpr::getBitCast(F, PTy); 2540 } 2541 2542 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2543 /// non-null, then this function will use the specified type if it has to 2544 /// create it (this occurs when we see a definition of the function). 2545 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2546 llvm::Type *Ty, 2547 bool ForVTable, 2548 bool DontDefer, 2549 ForDefinition_t IsForDefinition) { 2550 // If there was no specific requested type, just convert it now. 2551 if (!Ty) { 2552 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2553 auto CanonTy = Context.getCanonicalType(FD->getType()); 2554 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2555 } 2556 2557 // Devirtualized destructor calls may come through here instead of via 2558 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2559 // of the complete destructor when necessary. 2560 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2561 if (getTarget().getCXXABI().isMicrosoft() && 2562 GD.getDtorType() == Dtor_Complete && 2563 DD->getParent()->getNumVBases() == 0) 2564 GD = GlobalDecl(DD, Dtor_Base); 2565 } 2566 2567 StringRef MangledName = getMangledName(GD); 2568 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2569 /*IsThunk=*/false, llvm::AttributeList(), 2570 IsForDefinition); 2571 } 2572 2573 static const FunctionDecl * 2574 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2575 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2576 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2577 2578 IdentifierInfo &CII = C.Idents.get(Name); 2579 for (const auto &Result : DC->lookup(&CII)) 2580 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2581 return FD; 2582 2583 if (!C.getLangOpts().CPlusPlus) 2584 return nullptr; 2585 2586 // Demangle the premangled name from getTerminateFn() 2587 IdentifierInfo &CXXII = 2588 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2589 ? C.Idents.get("terminate") 2590 : C.Idents.get(Name); 2591 2592 for (const auto &N : {"__cxxabiv1", "std"}) { 2593 IdentifierInfo &NS = C.Idents.get(N); 2594 for (const auto &Result : DC->lookup(&NS)) { 2595 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2596 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2597 for (const auto &Result : LSD->lookup(&NS)) 2598 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2599 break; 2600 2601 if (ND) 2602 for (const auto &Result : ND->lookup(&CXXII)) 2603 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2604 return FD; 2605 } 2606 } 2607 2608 return nullptr; 2609 } 2610 2611 /// CreateRuntimeFunction - Create a new runtime function with the specified 2612 /// type and name. 2613 llvm::Constant * 2614 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2615 llvm::AttributeList ExtraAttrs, 2616 bool Local) { 2617 llvm::Constant *C = 2618 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2619 /*DontDefer=*/false, /*IsThunk=*/false, 2620 ExtraAttrs); 2621 2622 if (auto *F = dyn_cast<llvm::Function>(C)) { 2623 if (F->empty()) { 2624 F->setCallingConv(getRuntimeCC()); 2625 2626 if (!Local && getTriple().isOSBinFormatCOFF() && 2627 !getCodeGenOpts().LTOVisibilityPublicStd && 2628 !getTriple().isWindowsGNUEnvironment()) { 2629 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2630 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2631 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2632 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2633 } 2634 } 2635 setDSOLocal(F); 2636 } 2637 } 2638 2639 return C; 2640 } 2641 2642 /// CreateBuiltinFunction - Create a new builtin function with the specified 2643 /// type and name. 2644 llvm::Constant * 2645 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2646 llvm::AttributeList ExtraAttrs) { 2647 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2648 } 2649 2650 /// isTypeConstant - Determine whether an object of this type can be emitted 2651 /// as a constant. 2652 /// 2653 /// If ExcludeCtor is true, the duration when the object's constructor runs 2654 /// will not be considered. The caller will need to verify that the object is 2655 /// not written to during its construction. 2656 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2657 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2658 return false; 2659 2660 if (Context.getLangOpts().CPlusPlus) { 2661 if (const CXXRecordDecl *Record 2662 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2663 return ExcludeCtor && !Record->hasMutableFields() && 2664 Record->hasTrivialDestructor(); 2665 } 2666 2667 return true; 2668 } 2669 2670 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2671 /// create and return an llvm GlobalVariable with the specified type. If there 2672 /// is something in the module with the specified name, return it potentially 2673 /// bitcasted to the right type. 2674 /// 2675 /// If D is non-null, it specifies a decl that correspond to this. This is used 2676 /// to set the attributes on the global when it is first created. 2677 /// 2678 /// If IsForDefinition is true, it is guaranteed that an actual global with 2679 /// type Ty will be returned, not conversion of a variable with the same 2680 /// mangled name but some other type. 2681 llvm::Constant * 2682 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2683 llvm::PointerType *Ty, 2684 const VarDecl *D, 2685 ForDefinition_t IsForDefinition) { 2686 // Lookup the entry, lazily creating it if necessary. 2687 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2688 if (Entry) { 2689 if (WeakRefReferences.erase(Entry)) { 2690 if (D && !D->hasAttr<WeakAttr>()) 2691 Entry->setLinkage(llvm::Function::ExternalLinkage); 2692 } 2693 2694 // Handle dropped DLL attributes. 2695 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2696 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2697 2698 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2699 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2700 2701 if (Entry->getType() == Ty) 2702 return Entry; 2703 2704 // If there are two attempts to define the same mangled name, issue an 2705 // error. 2706 if (IsForDefinition && !Entry->isDeclaration()) { 2707 GlobalDecl OtherGD; 2708 const VarDecl *OtherD; 2709 2710 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2711 // to make sure that we issue an error only once. 2712 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2713 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2714 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2715 OtherD->hasInit() && 2716 DiagnosedConflictingDefinitions.insert(D).second) { 2717 getDiags().Report(D->getLocation(), 2718 diag::err_duplicate_mangled_name); 2719 getDiags().Report(OtherGD.getDecl()->getLocation(), 2720 diag::note_previous_definition); 2721 } 2722 } 2723 2724 // Make sure the result is of the correct type. 2725 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2726 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2727 2728 // (If global is requested for a definition, we always need to create a new 2729 // global, not just return a bitcast.) 2730 if (!IsForDefinition) 2731 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2732 } 2733 2734 auto AddrSpace = GetGlobalVarAddressSpace(D); 2735 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2736 2737 auto *GV = new llvm::GlobalVariable( 2738 getModule(), Ty->getElementType(), false, 2739 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2740 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2741 2742 // If we already created a global with the same mangled name (but different 2743 // type) before, take its name and remove it from its parent. 2744 if (Entry) { 2745 GV->takeName(Entry); 2746 2747 if (!Entry->use_empty()) { 2748 llvm::Constant *NewPtrForOldDecl = 2749 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2750 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2751 } 2752 2753 Entry->eraseFromParent(); 2754 } 2755 2756 // This is the first use or definition of a mangled name. If there is a 2757 // deferred decl with this name, remember that we need to emit it at the end 2758 // of the file. 2759 auto DDI = DeferredDecls.find(MangledName); 2760 if (DDI != DeferredDecls.end()) { 2761 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2762 // list, and remove it from DeferredDecls (since we don't need it anymore). 2763 addDeferredDeclToEmit(DDI->second); 2764 DeferredDecls.erase(DDI); 2765 } 2766 2767 // Handle things which are present even on external declarations. 2768 if (D) { 2769 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2770 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2771 2772 // FIXME: This code is overly simple and should be merged with other global 2773 // handling. 2774 GV->setConstant(isTypeConstant(D->getType(), false)); 2775 2776 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2777 2778 setLinkageForGV(GV, D); 2779 2780 if (D->getTLSKind()) { 2781 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2782 CXXThreadLocals.push_back(D); 2783 setTLSMode(GV, *D); 2784 } 2785 2786 setGVProperties(GV, D); 2787 2788 // If required by the ABI, treat declarations of static data members with 2789 // inline initializers as definitions. 2790 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2791 EmitGlobalVarDefinition(D); 2792 } 2793 2794 // Emit section information for extern variables. 2795 if (D->hasExternalStorage()) { 2796 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2797 GV->setSection(SA->getName()); 2798 } 2799 2800 // Handle XCore specific ABI requirements. 2801 if (getTriple().getArch() == llvm::Triple::xcore && 2802 D->getLanguageLinkage() == CLanguageLinkage && 2803 D->getType().isConstant(Context) && 2804 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2805 GV->setSection(".cp.rodata"); 2806 2807 // Check if we a have a const declaration with an initializer, we may be 2808 // able to emit it as available_externally to expose it's value to the 2809 // optimizer. 2810 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2811 D->getType().isConstQualified() && !GV->hasInitializer() && 2812 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2813 const auto *Record = 2814 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2815 bool HasMutableFields = Record && Record->hasMutableFields(); 2816 if (!HasMutableFields) { 2817 const VarDecl *InitDecl; 2818 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2819 if (InitExpr) { 2820 ConstantEmitter emitter(*this); 2821 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2822 if (Init) { 2823 auto *InitType = Init->getType(); 2824 if (GV->getType()->getElementType() != InitType) { 2825 // The type of the initializer does not match the definition. 2826 // This happens when an initializer has a different type from 2827 // the type of the global (because of padding at the end of a 2828 // structure for instance). 2829 GV->setName(StringRef()); 2830 // Make a new global with the correct type, this is now guaranteed 2831 // to work. 2832 auto *NewGV = cast<llvm::GlobalVariable>( 2833 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2834 2835 // Erase the old global, since it is no longer used. 2836 GV->eraseFromParent(); 2837 GV = NewGV; 2838 } else { 2839 GV->setInitializer(Init); 2840 GV->setConstant(true); 2841 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2842 } 2843 emitter.finalize(GV); 2844 } 2845 } 2846 } 2847 } 2848 } 2849 2850 LangAS ExpectedAS = 2851 D ? D->getType().getAddressSpace() 2852 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2853 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2854 Ty->getPointerAddressSpace()); 2855 if (AddrSpace != ExpectedAS) 2856 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2857 ExpectedAS, Ty); 2858 2859 return GV; 2860 } 2861 2862 llvm::Constant * 2863 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2864 ForDefinition_t IsForDefinition) { 2865 const Decl *D = GD.getDecl(); 2866 if (isa<CXXConstructorDecl>(D)) 2867 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2868 getFromCtorType(GD.getCtorType()), 2869 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2870 /*DontDefer=*/false, IsForDefinition); 2871 else if (isa<CXXDestructorDecl>(D)) 2872 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2873 getFromDtorType(GD.getDtorType()), 2874 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2875 /*DontDefer=*/false, IsForDefinition); 2876 else if (isa<CXXMethodDecl>(D)) { 2877 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2878 cast<CXXMethodDecl>(D)); 2879 auto Ty = getTypes().GetFunctionType(*FInfo); 2880 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2881 IsForDefinition); 2882 } else if (isa<FunctionDecl>(D)) { 2883 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2884 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2885 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2886 IsForDefinition); 2887 } else 2888 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2889 IsForDefinition); 2890 } 2891 2892 llvm::GlobalVariable * 2893 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2894 llvm::Type *Ty, 2895 llvm::GlobalValue::LinkageTypes Linkage) { 2896 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2897 llvm::GlobalVariable *OldGV = nullptr; 2898 2899 if (GV) { 2900 // Check if the variable has the right type. 2901 if (GV->getType()->getElementType() == Ty) 2902 return GV; 2903 2904 // Because C++ name mangling, the only way we can end up with an already 2905 // existing global with the same name is if it has been declared extern "C". 2906 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2907 OldGV = GV; 2908 } 2909 2910 // Create a new variable. 2911 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2912 Linkage, nullptr, Name); 2913 2914 if (OldGV) { 2915 // Replace occurrences of the old variable if needed. 2916 GV->takeName(OldGV); 2917 2918 if (!OldGV->use_empty()) { 2919 llvm::Constant *NewPtrForOldDecl = 2920 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2921 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2922 } 2923 2924 OldGV->eraseFromParent(); 2925 } 2926 2927 if (supportsCOMDAT() && GV->isWeakForLinker() && 2928 !GV->hasAvailableExternallyLinkage()) 2929 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2930 2931 return GV; 2932 } 2933 2934 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2935 /// given global variable. If Ty is non-null and if the global doesn't exist, 2936 /// then it will be created with the specified type instead of whatever the 2937 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 2938 /// that an actual global with type Ty will be returned, not conversion of a 2939 /// variable with the same mangled name but some other type. 2940 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2941 llvm::Type *Ty, 2942 ForDefinition_t IsForDefinition) { 2943 assert(D->hasGlobalStorage() && "Not a global variable"); 2944 QualType ASTTy = D->getType(); 2945 if (!Ty) 2946 Ty = getTypes().ConvertTypeForMem(ASTTy); 2947 2948 llvm::PointerType *PTy = 2949 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2950 2951 StringRef MangledName = getMangledName(D); 2952 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2953 } 2954 2955 /// CreateRuntimeVariable - Create a new runtime global variable with the 2956 /// specified type and name. 2957 llvm::Constant * 2958 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2959 StringRef Name) { 2960 auto *Ret = 2961 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2962 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 2963 return Ret; 2964 } 2965 2966 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2967 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2968 2969 StringRef MangledName = getMangledName(D); 2970 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2971 2972 // We already have a definition, not declaration, with the same mangled name. 2973 // Emitting of declaration is not required (and actually overwrites emitted 2974 // definition). 2975 if (GV && !GV->isDeclaration()) 2976 return; 2977 2978 // If we have not seen a reference to this variable yet, place it into the 2979 // deferred declarations table to be emitted if needed later. 2980 if (!MustBeEmitted(D) && !GV) { 2981 DeferredDecls[MangledName] = D; 2982 return; 2983 } 2984 2985 // The tentative definition is the only definition. 2986 EmitGlobalVarDefinition(D); 2987 } 2988 2989 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2990 return Context.toCharUnitsFromBits( 2991 getDataLayout().getTypeStoreSizeInBits(Ty)); 2992 } 2993 2994 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2995 LangAS AddrSpace = LangAS::Default; 2996 if (LangOpts.OpenCL) { 2997 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2998 assert(AddrSpace == LangAS::opencl_global || 2999 AddrSpace == LangAS::opencl_constant || 3000 AddrSpace == LangAS::opencl_local || 3001 AddrSpace >= LangAS::FirstTargetAddressSpace); 3002 return AddrSpace; 3003 } 3004 3005 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3006 if (D && D->hasAttr<CUDAConstantAttr>()) 3007 return LangAS::cuda_constant; 3008 else if (D && D->hasAttr<CUDASharedAttr>()) 3009 return LangAS::cuda_shared; 3010 else 3011 return LangAS::cuda_device; 3012 } 3013 3014 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3015 } 3016 3017 template<typename SomeDecl> 3018 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3019 llvm::GlobalValue *GV) { 3020 if (!getLangOpts().CPlusPlus) 3021 return; 3022 3023 // Must have 'used' attribute, or else inline assembly can't rely on 3024 // the name existing. 3025 if (!D->template hasAttr<UsedAttr>()) 3026 return; 3027 3028 // Must have internal linkage and an ordinary name. 3029 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3030 return; 3031 3032 // Must be in an extern "C" context. Entities declared directly within 3033 // a record are not extern "C" even if the record is in such a context. 3034 const SomeDecl *First = D->getFirstDecl(); 3035 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3036 return; 3037 3038 // OK, this is an internal linkage entity inside an extern "C" linkage 3039 // specification. Make a note of that so we can give it the "expected" 3040 // mangled name if nothing else is using that name. 3041 std::pair<StaticExternCMap::iterator, bool> R = 3042 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3043 3044 // If we have multiple internal linkage entities with the same name 3045 // in extern "C" regions, none of them gets that name. 3046 if (!R.second) 3047 R.first->second = nullptr; 3048 } 3049 3050 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3051 if (!CGM.supportsCOMDAT()) 3052 return false; 3053 3054 if (D.hasAttr<SelectAnyAttr>()) 3055 return true; 3056 3057 GVALinkage Linkage; 3058 if (auto *VD = dyn_cast<VarDecl>(&D)) 3059 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3060 else 3061 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3062 3063 switch (Linkage) { 3064 case GVA_Internal: 3065 case GVA_AvailableExternally: 3066 case GVA_StrongExternal: 3067 return false; 3068 case GVA_DiscardableODR: 3069 case GVA_StrongODR: 3070 return true; 3071 } 3072 llvm_unreachable("No such linkage"); 3073 } 3074 3075 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3076 llvm::GlobalObject &GO) { 3077 if (!shouldBeInCOMDAT(*this, D)) 3078 return; 3079 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3080 } 3081 3082 /// Pass IsTentative as true if you want to create a tentative definition. 3083 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3084 bool IsTentative) { 3085 // OpenCL global variables of sampler type are translated to function calls, 3086 // therefore no need to be translated. 3087 QualType ASTTy = D->getType(); 3088 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3089 return; 3090 3091 // If this is OpenMP device, check if it is legal to emit this global 3092 // normally. 3093 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3094 OpenMPRuntime->emitTargetGlobalVariable(D)) 3095 return; 3096 3097 llvm::Constant *Init = nullptr; 3098 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3099 bool NeedsGlobalCtor = false; 3100 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3101 3102 const VarDecl *InitDecl; 3103 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3104 3105 Optional<ConstantEmitter> emitter; 3106 3107 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3108 // as part of their declaration." Sema has already checked for 3109 // error cases, so we just need to set Init to UndefValue. 3110 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3111 D->hasAttr<CUDASharedAttr>()) 3112 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3113 else if (!InitExpr) { 3114 // This is a tentative definition; tentative definitions are 3115 // implicitly initialized with { 0 }. 3116 // 3117 // Note that tentative definitions are only emitted at the end of 3118 // a translation unit, so they should never have incomplete 3119 // type. In addition, EmitTentativeDefinition makes sure that we 3120 // never attempt to emit a tentative definition if a real one 3121 // exists. A use may still exists, however, so we still may need 3122 // to do a RAUW. 3123 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3124 Init = EmitNullConstant(D->getType()); 3125 } else { 3126 initializedGlobalDecl = GlobalDecl(D); 3127 emitter.emplace(*this); 3128 Init = emitter->tryEmitForInitializer(*InitDecl); 3129 3130 if (!Init) { 3131 QualType T = InitExpr->getType(); 3132 if (D->getType()->isReferenceType()) 3133 T = D->getType(); 3134 3135 if (getLangOpts().CPlusPlus) { 3136 Init = EmitNullConstant(T); 3137 NeedsGlobalCtor = true; 3138 } else { 3139 ErrorUnsupported(D, "static initializer"); 3140 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3141 } 3142 } else { 3143 // We don't need an initializer, so remove the entry for the delayed 3144 // initializer position (just in case this entry was delayed) if we 3145 // also don't need to register a destructor. 3146 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3147 DelayedCXXInitPosition.erase(D); 3148 } 3149 } 3150 3151 llvm::Type* InitType = Init->getType(); 3152 llvm::Constant *Entry = 3153 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3154 3155 // Strip off a bitcast if we got one back. 3156 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3157 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3158 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3159 // All zero index gep. 3160 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3161 Entry = CE->getOperand(0); 3162 } 3163 3164 // Entry is now either a Function or GlobalVariable. 3165 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3166 3167 // We have a definition after a declaration with the wrong type. 3168 // We must make a new GlobalVariable* and update everything that used OldGV 3169 // (a declaration or tentative definition) with the new GlobalVariable* 3170 // (which will be a definition). 3171 // 3172 // This happens if there is a prototype for a global (e.g. 3173 // "extern int x[];") and then a definition of a different type (e.g. 3174 // "int x[10];"). This also happens when an initializer has a different type 3175 // from the type of the global (this happens with unions). 3176 if (!GV || GV->getType()->getElementType() != InitType || 3177 GV->getType()->getAddressSpace() != 3178 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3179 3180 // Move the old entry aside so that we'll create a new one. 3181 Entry->setName(StringRef()); 3182 3183 // Make a new global with the correct type, this is now guaranteed to work. 3184 GV = cast<llvm::GlobalVariable>( 3185 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3186 3187 // Replace all uses of the old global with the new global 3188 llvm::Constant *NewPtrForOldDecl = 3189 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3190 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3191 3192 // Erase the old global, since it is no longer used. 3193 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3194 } 3195 3196 MaybeHandleStaticInExternC(D, GV); 3197 3198 if (D->hasAttr<AnnotateAttr>()) 3199 AddGlobalAnnotations(D, GV); 3200 3201 // Set the llvm linkage type as appropriate. 3202 llvm::GlobalValue::LinkageTypes Linkage = 3203 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3204 3205 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3206 // the device. [...]" 3207 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3208 // __device__, declares a variable that: [...] 3209 // Is accessible from all the threads within the grid and from the host 3210 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3211 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3212 if (GV && LangOpts.CUDA) { 3213 if (LangOpts.CUDAIsDevice) { 3214 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3215 GV->setExternallyInitialized(true); 3216 } else { 3217 // Host-side shadows of external declarations of device-side 3218 // global variables become internal definitions. These have to 3219 // be internal in order to prevent name conflicts with global 3220 // host variables with the same name in a different TUs. 3221 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3222 Linkage = llvm::GlobalValue::InternalLinkage; 3223 3224 // Shadow variables and their properties must be registered 3225 // with CUDA runtime. 3226 unsigned Flags = 0; 3227 if (!D->hasDefinition()) 3228 Flags |= CGCUDARuntime::ExternDeviceVar; 3229 if (D->hasAttr<CUDAConstantAttr>()) 3230 Flags |= CGCUDARuntime::ConstantDeviceVar; 3231 getCUDARuntime().registerDeviceVar(*GV, Flags); 3232 } else if (D->hasAttr<CUDASharedAttr>()) 3233 // __shared__ variables are odd. Shadows do get created, but 3234 // they are not registered with the CUDA runtime, so they 3235 // can't really be used to access their device-side 3236 // counterparts. It's not clear yet whether it's nvcc's bug or 3237 // a feature, but we've got to do the same for compatibility. 3238 Linkage = llvm::GlobalValue::InternalLinkage; 3239 } 3240 } 3241 3242 GV->setInitializer(Init); 3243 if (emitter) emitter->finalize(GV); 3244 3245 // If it is safe to mark the global 'constant', do so now. 3246 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3247 isTypeConstant(D->getType(), true)); 3248 3249 // If it is in a read-only section, mark it 'constant'. 3250 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3251 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3252 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3253 GV->setConstant(true); 3254 } 3255 3256 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3257 3258 3259 // On Darwin, if the normal linkage of a C++ thread_local variable is 3260 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3261 // copies within a linkage unit; otherwise, the backing variable has 3262 // internal linkage and all accesses should just be calls to the 3263 // Itanium-specified entry point, which has the normal linkage of the 3264 // variable. This is to preserve the ability to change the implementation 3265 // behind the scenes. 3266 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3267 Context.getTargetInfo().getTriple().isOSDarwin() && 3268 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3269 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3270 Linkage = llvm::GlobalValue::InternalLinkage; 3271 3272 GV->setLinkage(Linkage); 3273 if (D->hasAttr<DLLImportAttr>()) 3274 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3275 else if (D->hasAttr<DLLExportAttr>()) 3276 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3277 else 3278 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3279 3280 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3281 // common vars aren't constant even if declared const. 3282 GV->setConstant(false); 3283 // Tentative definition of global variables may be initialized with 3284 // non-zero null pointers. In this case they should have weak linkage 3285 // since common linkage must have zero initializer and must not have 3286 // explicit section therefore cannot have non-zero initial value. 3287 if (!GV->getInitializer()->isNullValue()) 3288 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3289 } 3290 3291 setNonAliasAttributes(D, GV); 3292 3293 if (D->getTLSKind() && !GV->isThreadLocal()) { 3294 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3295 CXXThreadLocals.push_back(D); 3296 setTLSMode(GV, *D); 3297 } 3298 3299 maybeSetTrivialComdat(*D, *GV); 3300 3301 // Emit the initializer function if necessary. 3302 if (NeedsGlobalCtor || NeedsGlobalDtor) 3303 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3304 3305 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3306 3307 // Emit global variable debug information. 3308 if (CGDebugInfo *DI = getModuleDebugInfo()) 3309 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3310 DI->EmitGlobalVariable(GV, D); 3311 } 3312 3313 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3314 CodeGenModule &CGM, const VarDecl *D, 3315 bool NoCommon) { 3316 // Don't give variables common linkage if -fno-common was specified unless it 3317 // was overridden by a NoCommon attribute. 3318 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3319 return true; 3320 3321 // C11 6.9.2/2: 3322 // A declaration of an identifier for an object that has file scope without 3323 // an initializer, and without a storage-class specifier or with the 3324 // storage-class specifier static, constitutes a tentative definition. 3325 if (D->getInit() || D->hasExternalStorage()) 3326 return true; 3327 3328 // A variable cannot be both common and exist in a section. 3329 if (D->hasAttr<SectionAttr>()) 3330 return true; 3331 3332 // A variable cannot be both common and exist in a section. 3333 // We don't try to determine which is the right section in the front-end. 3334 // If no specialized section name is applicable, it will resort to default. 3335 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3336 D->hasAttr<PragmaClangDataSectionAttr>() || 3337 D->hasAttr<PragmaClangRodataSectionAttr>()) 3338 return true; 3339 3340 // Thread local vars aren't considered common linkage. 3341 if (D->getTLSKind()) 3342 return true; 3343 3344 // Tentative definitions marked with WeakImportAttr are true definitions. 3345 if (D->hasAttr<WeakImportAttr>()) 3346 return true; 3347 3348 // A variable cannot be both common and exist in a comdat. 3349 if (shouldBeInCOMDAT(CGM, *D)) 3350 return true; 3351 3352 // Declarations with a required alignment do not have common linkage in MSVC 3353 // mode. 3354 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3355 if (D->hasAttr<AlignedAttr>()) 3356 return true; 3357 QualType VarType = D->getType(); 3358 if (Context.isAlignmentRequired(VarType)) 3359 return true; 3360 3361 if (const auto *RT = VarType->getAs<RecordType>()) { 3362 const RecordDecl *RD = RT->getDecl(); 3363 for (const FieldDecl *FD : RD->fields()) { 3364 if (FD->isBitField()) 3365 continue; 3366 if (FD->hasAttr<AlignedAttr>()) 3367 return true; 3368 if (Context.isAlignmentRequired(FD->getType())) 3369 return true; 3370 } 3371 } 3372 } 3373 3374 return false; 3375 } 3376 3377 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3378 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3379 if (Linkage == GVA_Internal) 3380 return llvm::Function::InternalLinkage; 3381 3382 if (D->hasAttr<WeakAttr>()) { 3383 if (IsConstantVariable) 3384 return llvm::GlobalVariable::WeakODRLinkage; 3385 else 3386 return llvm::GlobalVariable::WeakAnyLinkage; 3387 } 3388 3389 // We are guaranteed to have a strong definition somewhere else, 3390 // so we can use available_externally linkage. 3391 if (Linkage == GVA_AvailableExternally) 3392 return llvm::GlobalValue::AvailableExternallyLinkage; 3393 3394 // Note that Apple's kernel linker doesn't support symbol 3395 // coalescing, so we need to avoid linkonce and weak linkages there. 3396 // Normally, this means we just map to internal, but for explicit 3397 // instantiations we'll map to external. 3398 3399 // In C++, the compiler has to emit a definition in every translation unit 3400 // that references the function. We should use linkonce_odr because 3401 // a) if all references in this translation unit are optimized away, we 3402 // don't need to codegen it. b) if the function persists, it needs to be 3403 // merged with other definitions. c) C++ has the ODR, so we know the 3404 // definition is dependable. 3405 if (Linkage == GVA_DiscardableODR) 3406 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3407 : llvm::Function::InternalLinkage; 3408 3409 // An explicit instantiation of a template has weak linkage, since 3410 // explicit instantiations can occur in multiple translation units 3411 // and must all be equivalent. However, we are not allowed to 3412 // throw away these explicit instantiations. 3413 // 3414 // We don't currently support CUDA device code spread out across multiple TUs, 3415 // so say that CUDA templates are either external (for kernels) or internal. 3416 // This lets llvm perform aggressive inter-procedural optimizations. 3417 if (Linkage == GVA_StrongODR) { 3418 if (Context.getLangOpts().AppleKext) 3419 return llvm::Function::ExternalLinkage; 3420 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3421 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3422 : llvm::Function::InternalLinkage; 3423 return llvm::Function::WeakODRLinkage; 3424 } 3425 3426 // C++ doesn't have tentative definitions and thus cannot have common 3427 // linkage. 3428 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3429 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3430 CodeGenOpts.NoCommon)) 3431 return llvm::GlobalVariable::CommonLinkage; 3432 3433 // selectany symbols are externally visible, so use weak instead of 3434 // linkonce. MSVC optimizes away references to const selectany globals, so 3435 // all definitions should be the same and ODR linkage should be used. 3436 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3437 if (D->hasAttr<SelectAnyAttr>()) 3438 return llvm::GlobalVariable::WeakODRLinkage; 3439 3440 // Otherwise, we have strong external linkage. 3441 assert(Linkage == GVA_StrongExternal); 3442 return llvm::GlobalVariable::ExternalLinkage; 3443 } 3444 3445 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3446 const VarDecl *VD, bool IsConstant) { 3447 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3448 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3449 } 3450 3451 /// Replace the uses of a function that was declared with a non-proto type. 3452 /// We want to silently drop extra arguments from call sites 3453 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3454 llvm::Function *newFn) { 3455 // Fast path. 3456 if (old->use_empty()) return; 3457 3458 llvm::Type *newRetTy = newFn->getReturnType(); 3459 SmallVector<llvm::Value*, 4> newArgs; 3460 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3461 3462 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3463 ui != ue; ) { 3464 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3465 llvm::User *user = use->getUser(); 3466 3467 // Recognize and replace uses of bitcasts. Most calls to 3468 // unprototyped functions will use bitcasts. 3469 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3470 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3471 replaceUsesOfNonProtoConstant(bitcast, newFn); 3472 continue; 3473 } 3474 3475 // Recognize calls to the function. 3476 llvm::CallSite callSite(user); 3477 if (!callSite) continue; 3478 if (!callSite.isCallee(&*use)) continue; 3479 3480 // If the return types don't match exactly, then we can't 3481 // transform this call unless it's dead. 3482 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3483 continue; 3484 3485 // Get the call site's attribute list. 3486 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3487 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3488 3489 // If the function was passed too few arguments, don't transform. 3490 unsigned newNumArgs = newFn->arg_size(); 3491 if (callSite.arg_size() < newNumArgs) continue; 3492 3493 // If extra arguments were passed, we silently drop them. 3494 // If any of the types mismatch, we don't transform. 3495 unsigned argNo = 0; 3496 bool dontTransform = false; 3497 for (llvm::Argument &A : newFn->args()) { 3498 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3499 dontTransform = true; 3500 break; 3501 } 3502 3503 // Add any parameter attributes. 3504 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3505 argNo++; 3506 } 3507 if (dontTransform) 3508 continue; 3509 3510 // Okay, we can transform this. Create the new call instruction and copy 3511 // over the required information. 3512 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3513 3514 // Copy over any operand bundles. 3515 callSite.getOperandBundlesAsDefs(newBundles); 3516 3517 llvm::CallSite newCall; 3518 if (callSite.isCall()) { 3519 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3520 callSite.getInstruction()); 3521 } else { 3522 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3523 newCall = llvm::InvokeInst::Create(newFn, 3524 oldInvoke->getNormalDest(), 3525 oldInvoke->getUnwindDest(), 3526 newArgs, newBundles, "", 3527 callSite.getInstruction()); 3528 } 3529 newArgs.clear(); // for the next iteration 3530 3531 if (!newCall->getType()->isVoidTy()) 3532 newCall->takeName(callSite.getInstruction()); 3533 newCall.setAttributes(llvm::AttributeList::get( 3534 newFn->getContext(), oldAttrs.getFnAttributes(), 3535 oldAttrs.getRetAttributes(), newArgAttrs)); 3536 newCall.setCallingConv(callSite.getCallingConv()); 3537 3538 // Finally, remove the old call, replacing any uses with the new one. 3539 if (!callSite->use_empty()) 3540 callSite->replaceAllUsesWith(newCall.getInstruction()); 3541 3542 // Copy debug location attached to CI. 3543 if (callSite->getDebugLoc()) 3544 newCall->setDebugLoc(callSite->getDebugLoc()); 3545 3546 callSite->eraseFromParent(); 3547 } 3548 } 3549 3550 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3551 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3552 /// existing call uses of the old function in the module, this adjusts them to 3553 /// call the new function directly. 3554 /// 3555 /// This is not just a cleanup: the always_inline pass requires direct calls to 3556 /// functions to be able to inline them. If there is a bitcast in the way, it 3557 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3558 /// run at -O0. 3559 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3560 llvm::Function *NewFn) { 3561 // If we're redefining a global as a function, don't transform it. 3562 if (!isa<llvm::Function>(Old)) return; 3563 3564 replaceUsesOfNonProtoConstant(Old, NewFn); 3565 } 3566 3567 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3568 auto DK = VD->isThisDeclarationADefinition(); 3569 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3570 return; 3571 3572 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3573 // If we have a definition, this might be a deferred decl. If the 3574 // instantiation is explicit, make sure we emit it at the end. 3575 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3576 GetAddrOfGlobalVar(VD); 3577 3578 EmitTopLevelDecl(VD); 3579 } 3580 3581 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3582 llvm::GlobalValue *GV) { 3583 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3584 3585 // Compute the function info and LLVM type. 3586 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3587 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3588 3589 // Get or create the prototype for the function. 3590 if (!GV || (GV->getType()->getElementType() != Ty)) 3591 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3592 /*DontDefer=*/true, 3593 ForDefinition)); 3594 3595 // Already emitted. 3596 if (!GV->isDeclaration()) 3597 return; 3598 3599 // We need to set linkage and visibility on the function before 3600 // generating code for it because various parts of IR generation 3601 // want to propagate this information down (e.g. to local static 3602 // declarations). 3603 auto *Fn = cast<llvm::Function>(GV); 3604 setFunctionLinkage(GD, Fn); 3605 3606 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3607 setGVProperties(Fn, GD); 3608 3609 MaybeHandleStaticInExternC(D, Fn); 3610 3611 maybeSetTrivialComdat(*D, *Fn); 3612 3613 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3614 3615 setNonAliasAttributes(GD, Fn); 3616 SetLLVMFunctionAttributesForDefinition(D, Fn); 3617 3618 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3619 AddGlobalCtor(Fn, CA->getPriority()); 3620 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3621 AddGlobalDtor(Fn, DA->getPriority()); 3622 if (D->hasAttr<AnnotateAttr>()) 3623 AddGlobalAnnotations(D, Fn); 3624 } 3625 3626 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3627 const auto *D = cast<ValueDecl>(GD.getDecl()); 3628 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3629 assert(AA && "Not an alias?"); 3630 3631 StringRef MangledName = getMangledName(GD); 3632 3633 if (AA->getAliasee() == MangledName) { 3634 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3635 return; 3636 } 3637 3638 // If there is a definition in the module, then it wins over the alias. 3639 // This is dubious, but allow it to be safe. Just ignore the alias. 3640 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3641 if (Entry && !Entry->isDeclaration()) 3642 return; 3643 3644 Aliases.push_back(GD); 3645 3646 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3647 3648 // Create a reference to the named value. This ensures that it is emitted 3649 // if a deferred decl. 3650 llvm::Constant *Aliasee; 3651 if (isa<llvm::FunctionType>(DeclTy)) 3652 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3653 /*ForVTable=*/false); 3654 else 3655 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3656 llvm::PointerType::getUnqual(DeclTy), 3657 /*D=*/nullptr); 3658 3659 // Create the new alias itself, but don't set a name yet. 3660 auto *GA = llvm::GlobalAlias::create( 3661 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3662 3663 if (Entry) { 3664 if (GA->getAliasee() == Entry) { 3665 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3666 return; 3667 } 3668 3669 assert(Entry->isDeclaration()); 3670 3671 // If there is a declaration in the module, then we had an extern followed 3672 // by the alias, as in: 3673 // extern int test6(); 3674 // ... 3675 // int test6() __attribute__((alias("test7"))); 3676 // 3677 // Remove it and replace uses of it with the alias. 3678 GA->takeName(Entry); 3679 3680 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3681 Entry->getType())); 3682 Entry->eraseFromParent(); 3683 } else { 3684 GA->setName(MangledName); 3685 } 3686 3687 // Set attributes which are particular to an alias; this is a 3688 // specialization of the attributes which may be set on a global 3689 // variable/function. 3690 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3691 D->isWeakImported()) { 3692 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3693 } 3694 3695 if (const auto *VD = dyn_cast<VarDecl>(D)) 3696 if (VD->getTLSKind()) 3697 setTLSMode(GA, *VD); 3698 3699 SetCommonAttributes(GD, GA); 3700 } 3701 3702 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3703 const auto *D = cast<ValueDecl>(GD.getDecl()); 3704 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3705 assert(IFA && "Not an ifunc?"); 3706 3707 StringRef MangledName = getMangledName(GD); 3708 3709 if (IFA->getResolver() == MangledName) { 3710 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3711 return; 3712 } 3713 3714 // Report an error if some definition overrides ifunc. 3715 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3716 if (Entry && !Entry->isDeclaration()) { 3717 GlobalDecl OtherGD; 3718 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3719 DiagnosedConflictingDefinitions.insert(GD).second) { 3720 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3721 Diags.Report(OtherGD.getDecl()->getLocation(), 3722 diag::note_previous_definition); 3723 } 3724 return; 3725 } 3726 3727 Aliases.push_back(GD); 3728 3729 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3730 llvm::Constant *Resolver = 3731 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3732 /*ForVTable=*/false); 3733 llvm::GlobalIFunc *GIF = 3734 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3735 "", Resolver, &getModule()); 3736 if (Entry) { 3737 if (GIF->getResolver() == Entry) { 3738 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3739 return; 3740 } 3741 assert(Entry->isDeclaration()); 3742 3743 // If there is a declaration in the module, then we had an extern followed 3744 // by the ifunc, as in: 3745 // extern int test(); 3746 // ... 3747 // int test() __attribute__((ifunc("resolver"))); 3748 // 3749 // Remove it and replace uses of it with the ifunc. 3750 GIF->takeName(Entry); 3751 3752 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3753 Entry->getType())); 3754 Entry->eraseFromParent(); 3755 } else 3756 GIF->setName(MangledName); 3757 3758 SetCommonAttributes(GD, GIF); 3759 } 3760 3761 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3762 ArrayRef<llvm::Type*> Tys) { 3763 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3764 Tys); 3765 } 3766 3767 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3768 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3769 const StringLiteral *Literal, bool TargetIsLSB, 3770 bool &IsUTF16, unsigned &StringLength) { 3771 StringRef String = Literal->getString(); 3772 unsigned NumBytes = String.size(); 3773 3774 // Check for simple case. 3775 if (!Literal->containsNonAsciiOrNull()) { 3776 StringLength = NumBytes; 3777 return *Map.insert(std::make_pair(String, nullptr)).first; 3778 } 3779 3780 // Otherwise, convert the UTF8 literals into a string of shorts. 3781 IsUTF16 = true; 3782 3783 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3784 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3785 llvm::UTF16 *ToPtr = &ToBuf[0]; 3786 3787 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3788 ToPtr + NumBytes, llvm::strictConversion); 3789 3790 // ConvertUTF8toUTF16 returns the length in ToPtr. 3791 StringLength = ToPtr - &ToBuf[0]; 3792 3793 // Add an explicit null. 3794 *ToPtr = 0; 3795 return *Map.insert(std::make_pair( 3796 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3797 (StringLength + 1) * 2), 3798 nullptr)).first; 3799 } 3800 3801 ConstantAddress 3802 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3803 unsigned StringLength = 0; 3804 bool isUTF16 = false; 3805 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3806 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3807 getDataLayout().isLittleEndian(), isUTF16, 3808 StringLength); 3809 3810 if (auto *C = Entry.second) 3811 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3812 3813 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3814 llvm::Constant *Zeros[] = { Zero, Zero }; 3815 3816 // If we don't already have it, get __CFConstantStringClassReference. 3817 if (!CFConstantStringClassRef) { 3818 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3819 Ty = llvm::ArrayType::get(Ty, 0); 3820 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 3821 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 3822 3823 if (getTriple().isOSBinFormatCOFF()) { 3824 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3825 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3826 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3827 3828 const VarDecl *VD = nullptr; 3829 for (const auto &Result : DC->lookup(&II)) 3830 if ((VD = dyn_cast<VarDecl>(Result))) 3831 break; 3832 3833 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3834 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3835 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3836 } else { 3837 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3838 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3839 } 3840 } 3841 setDSOLocal(GV); 3842 3843 // Decay array -> ptr 3844 CFConstantStringClassRef = 3845 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3846 } 3847 3848 QualType CFTy = getContext().getCFConstantStringType(); 3849 3850 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3851 3852 ConstantInitBuilder Builder(*this); 3853 auto Fields = Builder.beginStruct(STy); 3854 3855 // Class pointer. 3856 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3857 3858 // Flags. 3859 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3860 3861 // String pointer. 3862 llvm::Constant *C = nullptr; 3863 if (isUTF16) { 3864 auto Arr = llvm::makeArrayRef( 3865 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3866 Entry.first().size() / 2); 3867 C = llvm::ConstantDataArray::get(VMContext, Arr); 3868 } else { 3869 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3870 } 3871 3872 // Note: -fwritable-strings doesn't make the backing store strings of 3873 // CFStrings writable. (See <rdar://problem/10657500>) 3874 auto *GV = 3875 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3876 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3877 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3878 // Don't enforce the target's minimum global alignment, since the only use 3879 // of the string is via this class initializer. 3880 CharUnits Align = isUTF16 3881 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3882 : getContext().getTypeAlignInChars(getContext().CharTy); 3883 GV->setAlignment(Align.getQuantity()); 3884 3885 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3886 // Without it LLVM can merge the string with a non unnamed_addr one during 3887 // LTO. Doing that changes the section it ends in, which surprises ld64. 3888 if (getTriple().isOSBinFormatMachO()) 3889 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3890 : "__TEXT,__cstring,cstring_literals"); 3891 3892 // String. 3893 llvm::Constant *Str = 3894 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3895 3896 if (isUTF16) 3897 // Cast the UTF16 string to the correct type. 3898 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3899 Fields.add(Str); 3900 3901 // String length. 3902 auto Ty = getTypes().ConvertType(getContext().LongTy); 3903 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3904 3905 CharUnits Alignment = getPointerAlign(); 3906 3907 // The struct. 3908 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3909 /*isConstant=*/false, 3910 llvm::GlobalVariable::PrivateLinkage); 3911 switch (getTriple().getObjectFormat()) { 3912 case llvm::Triple::UnknownObjectFormat: 3913 llvm_unreachable("unknown file format"); 3914 case llvm::Triple::COFF: 3915 case llvm::Triple::ELF: 3916 case llvm::Triple::Wasm: 3917 GV->setSection("cfstring"); 3918 break; 3919 case llvm::Triple::MachO: 3920 GV->setSection("__DATA,__cfstring"); 3921 break; 3922 } 3923 Entry.second = GV; 3924 3925 return ConstantAddress(GV, Alignment); 3926 } 3927 3928 bool CodeGenModule::getExpressionLocationsEnabled() const { 3929 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3930 } 3931 3932 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3933 if (ObjCFastEnumerationStateType.isNull()) { 3934 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3935 D->startDefinition(); 3936 3937 QualType FieldTypes[] = { 3938 Context.UnsignedLongTy, 3939 Context.getPointerType(Context.getObjCIdType()), 3940 Context.getPointerType(Context.UnsignedLongTy), 3941 Context.getConstantArrayType(Context.UnsignedLongTy, 3942 llvm::APInt(32, 5), ArrayType::Normal, 0) 3943 }; 3944 3945 for (size_t i = 0; i < 4; ++i) { 3946 FieldDecl *Field = FieldDecl::Create(Context, 3947 D, 3948 SourceLocation(), 3949 SourceLocation(), nullptr, 3950 FieldTypes[i], /*TInfo=*/nullptr, 3951 /*BitWidth=*/nullptr, 3952 /*Mutable=*/false, 3953 ICIS_NoInit); 3954 Field->setAccess(AS_public); 3955 D->addDecl(Field); 3956 } 3957 3958 D->completeDefinition(); 3959 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3960 } 3961 3962 return ObjCFastEnumerationStateType; 3963 } 3964 3965 llvm::Constant * 3966 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3967 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3968 3969 // Don't emit it as the address of the string, emit the string data itself 3970 // as an inline array. 3971 if (E->getCharByteWidth() == 1) { 3972 SmallString<64> Str(E->getString()); 3973 3974 // Resize the string to the right size, which is indicated by its type. 3975 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3976 Str.resize(CAT->getSize().getZExtValue()); 3977 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3978 } 3979 3980 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3981 llvm::Type *ElemTy = AType->getElementType(); 3982 unsigned NumElements = AType->getNumElements(); 3983 3984 // Wide strings have either 2-byte or 4-byte elements. 3985 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3986 SmallVector<uint16_t, 32> Elements; 3987 Elements.reserve(NumElements); 3988 3989 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3990 Elements.push_back(E->getCodeUnit(i)); 3991 Elements.resize(NumElements); 3992 return llvm::ConstantDataArray::get(VMContext, Elements); 3993 } 3994 3995 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3996 SmallVector<uint32_t, 32> Elements; 3997 Elements.reserve(NumElements); 3998 3999 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4000 Elements.push_back(E->getCodeUnit(i)); 4001 Elements.resize(NumElements); 4002 return llvm::ConstantDataArray::get(VMContext, Elements); 4003 } 4004 4005 static llvm::GlobalVariable * 4006 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4007 CodeGenModule &CGM, StringRef GlobalName, 4008 CharUnits Alignment) { 4009 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4010 unsigned AddrSpace = 0; 4011 if (CGM.getLangOpts().OpenCL) 4012 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 4013 4014 llvm::Module &M = CGM.getModule(); 4015 // Create a global variable for this string 4016 auto *GV = new llvm::GlobalVariable( 4017 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4018 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4019 GV->setAlignment(Alignment.getQuantity()); 4020 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4021 if (GV->isWeakForLinker()) { 4022 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4023 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4024 } 4025 CGM.setDSOLocal(GV); 4026 4027 return GV; 4028 } 4029 4030 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4031 /// constant array for the given string literal. 4032 ConstantAddress 4033 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4034 StringRef Name) { 4035 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4036 4037 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4038 llvm::GlobalVariable **Entry = nullptr; 4039 if (!LangOpts.WritableStrings) { 4040 Entry = &ConstantStringMap[C]; 4041 if (auto GV = *Entry) { 4042 if (Alignment.getQuantity() > GV->getAlignment()) 4043 GV->setAlignment(Alignment.getQuantity()); 4044 return ConstantAddress(GV, Alignment); 4045 } 4046 } 4047 4048 SmallString<256> MangledNameBuffer; 4049 StringRef GlobalVariableName; 4050 llvm::GlobalValue::LinkageTypes LT; 4051 4052 // Mangle the string literal if the ABI allows for it. However, we cannot 4053 // do this if we are compiling with ASan or -fwritable-strings because they 4054 // rely on strings having normal linkage. 4055 if (!LangOpts.WritableStrings && 4056 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4057 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4058 llvm::raw_svector_ostream Out(MangledNameBuffer); 4059 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4060 4061 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4062 GlobalVariableName = MangledNameBuffer; 4063 } else { 4064 LT = llvm::GlobalValue::PrivateLinkage; 4065 GlobalVariableName = Name; 4066 } 4067 4068 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4069 if (Entry) 4070 *Entry = GV; 4071 4072 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4073 QualType()); 4074 return ConstantAddress(GV, Alignment); 4075 } 4076 4077 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4078 /// array for the given ObjCEncodeExpr node. 4079 ConstantAddress 4080 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4081 std::string Str; 4082 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4083 4084 return GetAddrOfConstantCString(Str); 4085 } 4086 4087 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4088 /// the literal and a terminating '\0' character. 4089 /// The result has pointer to array type. 4090 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4091 const std::string &Str, const char *GlobalName) { 4092 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4093 CharUnits Alignment = 4094 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4095 4096 llvm::Constant *C = 4097 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4098 4099 // Don't share any string literals if strings aren't constant. 4100 llvm::GlobalVariable **Entry = nullptr; 4101 if (!LangOpts.WritableStrings) { 4102 Entry = &ConstantStringMap[C]; 4103 if (auto GV = *Entry) { 4104 if (Alignment.getQuantity() > GV->getAlignment()) 4105 GV->setAlignment(Alignment.getQuantity()); 4106 return ConstantAddress(GV, Alignment); 4107 } 4108 } 4109 4110 // Get the default prefix if a name wasn't specified. 4111 if (!GlobalName) 4112 GlobalName = ".str"; 4113 // Create a global variable for this. 4114 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4115 GlobalName, Alignment); 4116 if (Entry) 4117 *Entry = GV; 4118 return ConstantAddress(GV, Alignment); 4119 } 4120 4121 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4122 const MaterializeTemporaryExpr *E, const Expr *Init) { 4123 assert((E->getStorageDuration() == SD_Static || 4124 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4125 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4126 4127 // If we're not materializing a subobject of the temporary, keep the 4128 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4129 QualType MaterializedType = Init->getType(); 4130 if (Init == E->GetTemporaryExpr()) 4131 MaterializedType = E->getType(); 4132 4133 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4134 4135 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4136 return ConstantAddress(Slot, Align); 4137 4138 // FIXME: If an externally-visible declaration extends multiple temporaries, 4139 // we need to give each temporary the same name in every translation unit (and 4140 // we also need to make the temporaries externally-visible). 4141 SmallString<256> Name; 4142 llvm::raw_svector_ostream Out(Name); 4143 getCXXABI().getMangleContext().mangleReferenceTemporary( 4144 VD, E->getManglingNumber(), Out); 4145 4146 APValue *Value = nullptr; 4147 if (E->getStorageDuration() == SD_Static) { 4148 // We might have a cached constant initializer for this temporary. Note 4149 // that this might have a different value from the value computed by 4150 // evaluating the initializer if the surrounding constant expression 4151 // modifies the temporary. 4152 Value = getContext().getMaterializedTemporaryValue(E, false); 4153 if (Value && Value->isUninit()) 4154 Value = nullptr; 4155 } 4156 4157 // Try evaluating it now, it might have a constant initializer. 4158 Expr::EvalResult EvalResult; 4159 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4160 !EvalResult.hasSideEffects()) 4161 Value = &EvalResult.Val; 4162 4163 LangAS AddrSpace = 4164 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4165 4166 Optional<ConstantEmitter> emitter; 4167 llvm::Constant *InitialValue = nullptr; 4168 bool Constant = false; 4169 llvm::Type *Type; 4170 if (Value) { 4171 // The temporary has a constant initializer, use it. 4172 emitter.emplace(*this); 4173 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4174 MaterializedType); 4175 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4176 Type = InitialValue->getType(); 4177 } else { 4178 // No initializer, the initialization will be provided when we 4179 // initialize the declaration which performed lifetime extension. 4180 Type = getTypes().ConvertTypeForMem(MaterializedType); 4181 } 4182 4183 // Create a global variable for this lifetime-extended temporary. 4184 llvm::GlobalValue::LinkageTypes Linkage = 4185 getLLVMLinkageVarDefinition(VD, Constant); 4186 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4187 const VarDecl *InitVD; 4188 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4189 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4190 // Temporaries defined inside a class get linkonce_odr linkage because the 4191 // class can be defined in multiple translation units. 4192 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4193 } else { 4194 // There is no need for this temporary to have external linkage if the 4195 // VarDecl has external linkage. 4196 Linkage = llvm::GlobalVariable::InternalLinkage; 4197 } 4198 } 4199 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4200 auto *GV = new llvm::GlobalVariable( 4201 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4202 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4203 if (emitter) emitter->finalize(GV); 4204 setGVProperties(GV, VD); 4205 GV->setAlignment(Align.getQuantity()); 4206 if (supportsCOMDAT() && GV->isWeakForLinker()) 4207 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4208 if (VD->getTLSKind()) 4209 setTLSMode(GV, *VD); 4210 llvm::Constant *CV = GV; 4211 if (AddrSpace != LangAS::Default) 4212 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4213 *this, GV, AddrSpace, LangAS::Default, 4214 Type->getPointerTo( 4215 getContext().getTargetAddressSpace(LangAS::Default))); 4216 MaterializedGlobalTemporaryMap[E] = CV; 4217 return ConstantAddress(CV, Align); 4218 } 4219 4220 /// EmitObjCPropertyImplementations - Emit information for synthesized 4221 /// properties for an implementation. 4222 void CodeGenModule::EmitObjCPropertyImplementations(const 4223 ObjCImplementationDecl *D) { 4224 for (const auto *PID : D->property_impls()) { 4225 // Dynamic is just for type-checking. 4226 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4227 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4228 4229 // Determine which methods need to be implemented, some may have 4230 // been overridden. Note that ::isPropertyAccessor is not the method 4231 // we want, that just indicates if the decl came from a 4232 // property. What we want to know is if the method is defined in 4233 // this implementation. 4234 if (!D->getInstanceMethod(PD->getGetterName())) 4235 CodeGenFunction(*this).GenerateObjCGetter( 4236 const_cast<ObjCImplementationDecl *>(D), PID); 4237 if (!PD->isReadOnly() && 4238 !D->getInstanceMethod(PD->getSetterName())) 4239 CodeGenFunction(*this).GenerateObjCSetter( 4240 const_cast<ObjCImplementationDecl *>(D), PID); 4241 } 4242 } 4243 } 4244 4245 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4246 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4247 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4248 ivar; ivar = ivar->getNextIvar()) 4249 if (ivar->getType().isDestructedType()) 4250 return true; 4251 4252 return false; 4253 } 4254 4255 static bool AllTrivialInitializers(CodeGenModule &CGM, 4256 ObjCImplementationDecl *D) { 4257 CodeGenFunction CGF(CGM); 4258 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4259 E = D->init_end(); B != E; ++B) { 4260 CXXCtorInitializer *CtorInitExp = *B; 4261 Expr *Init = CtorInitExp->getInit(); 4262 if (!CGF.isTrivialInitializer(Init)) 4263 return false; 4264 } 4265 return true; 4266 } 4267 4268 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4269 /// for an implementation. 4270 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4271 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4272 if (needsDestructMethod(D)) { 4273 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4274 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4275 ObjCMethodDecl *DTORMethod = 4276 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4277 cxxSelector, getContext().VoidTy, nullptr, D, 4278 /*isInstance=*/true, /*isVariadic=*/false, 4279 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4280 /*isDefined=*/false, ObjCMethodDecl::Required); 4281 D->addInstanceMethod(DTORMethod); 4282 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4283 D->setHasDestructors(true); 4284 } 4285 4286 // If the implementation doesn't have any ivar initializers, we don't need 4287 // a .cxx_construct. 4288 if (D->getNumIvarInitializers() == 0 || 4289 AllTrivialInitializers(*this, D)) 4290 return; 4291 4292 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4293 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4294 // The constructor returns 'self'. 4295 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4296 D->getLocation(), 4297 D->getLocation(), 4298 cxxSelector, 4299 getContext().getObjCIdType(), 4300 nullptr, D, /*isInstance=*/true, 4301 /*isVariadic=*/false, 4302 /*isPropertyAccessor=*/true, 4303 /*isImplicitlyDeclared=*/true, 4304 /*isDefined=*/false, 4305 ObjCMethodDecl::Required); 4306 D->addInstanceMethod(CTORMethod); 4307 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4308 D->setHasNonZeroConstructors(true); 4309 } 4310 4311 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4312 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4313 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4314 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4315 ErrorUnsupported(LSD, "linkage spec"); 4316 return; 4317 } 4318 4319 EmitDeclContext(LSD); 4320 } 4321 4322 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4323 for (auto *I : DC->decls()) { 4324 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4325 // are themselves considered "top-level", so EmitTopLevelDecl on an 4326 // ObjCImplDecl does not recursively visit them. We need to do that in 4327 // case they're nested inside another construct (LinkageSpecDecl / 4328 // ExportDecl) that does stop them from being considered "top-level". 4329 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4330 for (auto *M : OID->methods()) 4331 EmitTopLevelDecl(M); 4332 } 4333 4334 EmitTopLevelDecl(I); 4335 } 4336 } 4337 4338 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4339 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4340 // Ignore dependent declarations. 4341 if (D->isTemplated()) 4342 return; 4343 4344 switch (D->getKind()) { 4345 case Decl::CXXConversion: 4346 case Decl::CXXMethod: 4347 case Decl::Function: 4348 EmitGlobal(cast<FunctionDecl>(D)); 4349 // Always provide some coverage mapping 4350 // even for the functions that aren't emitted. 4351 AddDeferredUnusedCoverageMapping(D); 4352 break; 4353 4354 case Decl::CXXDeductionGuide: 4355 // Function-like, but does not result in code emission. 4356 break; 4357 4358 case Decl::Var: 4359 case Decl::Decomposition: 4360 case Decl::VarTemplateSpecialization: 4361 EmitGlobal(cast<VarDecl>(D)); 4362 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4363 for (auto *B : DD->bindings()) 4364 if (auto *HD = B->getHoldingVar()) 4365 EmitGlobal(HD); 4366 break; 4367 4368 // Indirect fields from global anonymous structs and unions can be 4369 // ignored; only the actual variable requires IR gen support. 4370 case Decl::IndirectField: 4371 break; 4372 4373 // C++ Decls 4374 case Decl::Namespace: 4375 EmitDeclContext(cast<NamespaceDecl>(D)); 4376 break; 4377 case Decl::ClassTemplateSpecialization: { 4378 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4379 if (DebugInfo && 4380 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4381 Spec->hasDefinition()) 4382 DebugInfo->completeTemplateDefinition(*Spec); 4383 } LLVM_FALLTHROUGH; 4384 case Decl::CXXRecord: 4385 if (DebugInfo) { 4386 if (auto *ES = D->getASTContext().getExternalSource()) 4387 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4388 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4389 } 4390 // Emit any static data members, they may be definitions. 4391 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4392 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4393 EmitTopLevelDecl(I); 4394 break; 4395 // No code generation needed. 4396 case Decl::UsingShadow: 4397 case Decl::ClassTemplate: 4398 case Decl::VarTemplate: 4399 case Decl::VarTemplatePartialSpecialization: 4400 case Decl::FunctionTemplate: 4401 case Decl::TypeAliasTemplate: 4402 case Decl::Block: 4403 case Decl::Empty: 4404 break; 4405 case Decl::Using: // using X; [C++] 4406 if (CGDebugInfo *DI = getModuleDebugInfo()) 4407 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4408 return; 4409 case Decl::NamespaceAlias: 4410 if (CGDebugInfo *DI = getModuleDebugInfo()) 4411 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4412 return; 4413 case Decl::UsingDirective: // using namespace X; [C++] 4414 if (CGDebugInfo *DI = getModuleDebugInfo()) 4415 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4416 return; 4417 case Decl::CXXConstructor: 4418 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4419 break; 4420 case Decl::CXXDestructor: 4421 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4422 break; 4423 4424 case Decl::StaticAssert: 4425 // Nothing to do. 4426 break; 4427 4428 // Objective-C Decls 4429 4430 // Forward declarations, no (immediate) code generation. 4431 case Decl::ObjCInterface: 4432 case Decl::ObjCCategory: 4433 break; 4434 4435 case Decl::ObjCProtocol: { 4436 auto *Proto = cast<ObjCProtocolDecl>(D); 4437 if (Proto->isThisDeclarationADefinition()) 4438 ObjCRuntime->GenerateProtocol(Proto); 4439 break; 4440 } 4441 4442 case Decl::ObjCCategoryImpl: 4443 // Categories have properties but don't support synthesize so we 4444 // can ignore them here. 4445 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4446 break; 4447 4448 case Decl::ObjCImplementation: { 4449 auto *OMD = cast<ObjCImplementationDecl>(D); 4450 EmitObjCPropertyImplementations(OMD); 4451 EmitObjCIvarInitializations(OMD); 4452 ObjCRuntime->GenerateClass(OMD); 4453 // Emit global variable debug information. 4454 if (CGDebugInfo *DI = getModuleDebugInfo()) 4455 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4456 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4457 OMD->getClassInterface()), OMD->getLocation()); 4458 break; 4459 } 4460 case Decl::ObjCMethod: { 4461 auto *OMD = cast<ObjCMethodDecl>(D); 4462 // If this is not a prototype, emit the body. 4463 if (OMD->getBody()) 4464 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4465 break; 4466 } 4467 case Decl::ObjCCompatibleAlias: 4468 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4469 break; 4470 4471 case Decl::PragmaComment: { 4472 const auto *PCD = cast<PragmaCommentDecl>(D); 4473 switch (PCD->getCommentKind()) { 4474 case PCK_Unknown: 4475 llvm_unreachable("unexpected pragma comment kind"); 4476 case PCK_Linker: 4477 AppendLinkerOptions(PCD->getArg()); 4478 break; 4479 case PCK_Lib: 4480 if (getTarget().getTriple().isOSBinFormatELF() && 4481 !getTarget().getTriple().isPS4()) 4482 AddELFLibDirective(PCD->getArg()); 4483 else 4484 AddDependentLib(PCD->getArg()); 4485 break; 4486 case PCK_Compiler: 4487 case PCK_ExeStr: 4488 case PCK_User: 4489 break; // We ignore all of these. 4490 } 4491 break; 4492 } 4493 4494 case Decl::PragmaDetectMismatch: { 4495 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4496 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4497 break; 4498 } 4499 4500 case Decl::LinkageSpec: 4501 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4502 break; 4503 4504 case Decl::FileScopeAsm: { 4505 // File-scope asm is ignored during device-side CUDA compilation. 4506 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4507 break; 4508 // File-scope asm is ignored during device-side OpenMP compilation. 4509 if (LangOpts.OpenMPIsDevice) 4510 break; 4511 auto *AD = cast<FileScopeAsmDecl>(D); 4512 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4513 break; 4514 } 4515 4516 case Decl::Import: { 4517 auto *Import = cast<ImportDecl>(D); 4518 4519 // If we've already imported this module, we're done. 4520 if (!ImportedModules.insert(Import->getImportedModule())) 4521 break; 4522 4523 // Emit debug information for direct imports. 4524 if (!Import->getImportedOwningModule()) { 4525 if (CGDebugInfo *DI = getModuleDebugInfo()) 4526 DI->EmitImportDecl(*Import); 4527 } 4528 4529 // Find all of the submodules and emit the module initializers. 4530 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4531 SmallVector<clang::Module *, 16> Stack; 4532 Visited.insert(Import->getImportedModule()); 4533 Stack.push_back(Import->getImportedModule()); 4534 4535 while (!Stack.empty()) { 4536 clang::Module *Mod = Stack.pop_back_val(); 4537 if (!EmittedModuleInitializers.insert(Mod).second) 4538 continue; 4539 4540 for (auto *D : Context.getModuleInitializers(Mod)) 4541 EmitTopLevelDecl(D); 4542 4543 // Visit the submodules of this module. 4544 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4545 SubEnd = Mod->submodule_end(); 4546 Sub != SubEnd; ++Sub) { 4547 // Skip explicit children; they need to be explicitly imported to emit 4548 // the initializers. 4549 if ((*Sub)->IsExplicit) 4550 continue; 4551 4552 if (Visited.insert(*Sub).second) 4553 Stack.push_back(*Sub); 4554 } 4555 } 4556 break; 4557 } 4558 4559 case Decl::Export: 4560 EmitDeclContext(cast<ExportDecl>(D)); 4561 break; 4562 4563 case Decl::OMPThreadPrivate: 4564 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4565 break; 4566 4567 case Decl::OMPDeclareReduction: 4568 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4569 break; 4570 4571 default: 4572 // Make sure we handled everything we should, every other kind is a 4573 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4574 // function. Need to recode Decl::Kind to do that easily. 4575 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4576 break; 4577 } 4578 } 4579 4580 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4581 // Do we need to generate coverage mapping? 4582 if (!CodeGenOpts.CoverageMapping) 4583 return; 4584 switch (D->getKind()) { 4585 case Decl::CXXConversion: 4586 case Decl::CXXMethod: 4587 case Decl::Function: 4588 case Decl::ObjCMethod: 4589 case Decl::CXXConstructor: 4590 case Decl::CXXDestructor: { 4591 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4592 return; 4593 SourceManager &SM = getContext().getSourceManager(); 4594 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4595 return; 4596 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4597 if (I == DeferredEmptyCoverageMappingDecls.end()) 4598 DeferredEmptyCoverageMappingDecls[D] = true; 4599 break; 4600 } 4601 default: 4602 break; 4603 }; 4604 } 4605 4606 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4607 // Do we need to generate coverage mapping? 4608 if (!CodeGenOpts.CoverageMapping) 4609 return; 4610 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4611 if (Fn->isTemplateInstantiation()) 4612 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4613 } 4614 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4615 if (I == DeferredEmptyCoverageMappingDecls.end()) 4616 DeferredEmptyCoverageMappingDecls[D] = false; 4617 else 4618 I->second = false; 4619 } 4620 4621 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4622 // We call takeVector() here to avoid use-after-free. 4623 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4624 // we deserialize function bodies to emit coverage info for them, and that 4625 // deserializes more declarations. How should we handle that case? 4626 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4627 if (!Entry.second) 4628 continue; 4629 const Decl *D = Entry.first; 4630 switch (D->getKind()) { 4631 case Decl::CXXConversion: 4632 case Decl::CXXMethod: 4633 case Decl::Function: 4634 case Decl::ObjCMethod: { 4635 CodeGenPGO PGO(*this); 4636 GlobalDecl GD(cast<FunctionDecl>(D)); 4637 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4638 getFunctionLinkage(GD)); 4639 break; 4640 } 4641 case Decl::CXXConstructor: { 4642 CodeGenPGO PGO(*this); 4643 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4644 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4645 getFunctionLinkage(GD)); 4646 break; 4647 } 4648 case Decl::CXXDestructor: { 4649 CodeGenPGO PGO(*this); 4650 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4651 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4652 getFunctionLinkage(GD)); 4653 break; 4654 } 4655 default: 4656 break; 4657 }; 4658 } 4659 } 4660 4661 /// Turns the given pointer into a constant. 4662 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4663 const void *Ptr) { 4664 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4665 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4666 return llvm::ConstantInt::get(i64, PtrInt); 4667 } 4668 4669 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4670 llvm::NamedMDNode *&GlobalMetadata, 4671 GlobalDecl D, 4672 llvm::GlobalValue *Addr) { 4673 if (!GlobalMetadata) 4674 GlobalMetadata = 4675 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4676 4677 // TODO: should we report variant information for ctors/dtors? 4678 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4679 llvm::ConstantAsMetadata::get(GetPointerConstant( 4680 CGM.getLLVMContext(), D.getDecl()))}; 4681 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4682 } 4683 4684 /// For each function which is declared within an extern "C" region and marked 4685 /// as 'used', but has internal linkage, create an alias from the unmangled 4686 /// name to the mangled name if possible. People expect to be able to refer 4687 /// to such functions with an unmangled name from inline assembly within the 4688 /// same translation unit. 4689 void CodeGenModule::EmitStaticExternCAliases() { 4690 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4691 return; 4692 for (auto &I : StaticExternCValues) { 4693 IdentifierInfo *Name = I.first; 4694 llvm::GlobalValue *Val = I.second; 4695 if (Val && !getModule().getNamedValue(Name->getName())) 4696 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4697 } 4698 } 4699 4700 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4701 GlobalDecl &Result) const { 4702 auto Res = Manglings.find(MangledName); 4703 if (Res == Manglings.end()) 4704 return false; 4705 Result = Res->getValue(); 4706 return true; 4707 } 4708 4709 /// Emits metadata nodes associating all the global values in the 4710 /// current module with the Decls they came from. This is useful for 4711 /// projects using IR gen as a subroutine. 4712 /// 4713 /// Since there's currently no way to associate an MDNode directly 4714 /// with an llvm::GlobalValue, we create a global named metadata 4715 /// with the name 'clang.global.decl.ptrs'. 4716 void CodeGenModule::EmitDeclMetadata() { 4717 llvm::NamedMDNode *GlobalMetadata = nullptr; 4718 4719 for (auto &I : MangledDeclNames) { 4720 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4721 // Some mangled names don't necessarily have an associated GlobalValue 4722 // in this module, e.g. if we mangled it for DebugInfo. 4723 if (Addr) 4724 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4725 } 4726 } 4727 4728 /// Emits metadata nodes for all the local variables in the current 4729 /// function. 4730 void CodeGenFunction::EmitDeclMetadata() { 4731 if (LocalDeclMap.empty()) return; 4732 4733 llvm::LLVMContext &Context = getLLVMContext(); 4734 4735 // Find the unique metadata ID for this name. 4736 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4737 4738 llvm::NamedMDNode *GlobalMetadata = nullptr; 4739 4740 for (auto &I : LocalDeclMap) { 4741 const Decl *D = I.first; 4742 llvm::Value *Addr = I.second.getPointer(); 4743 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4744 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4745 Alloca->setMetadata( 4746 DeclPtrKind, llvm::MDNode::get( 4747 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4748 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4749 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4750 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4751 } 4752 } 4753 } 4754 4755 void CodeGenModule::EmitVersionIdentMetadata() { 4756 llvm::NamedMDNode *IdentMetadata = 4757 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4758 std::string Version = getClangFullVersion(); 4759 llvm::LLVMContext &Ctx = TheModule.getContext(); 4760 4761 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4762 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4763 } 4764 4765 void CodeGenModule::EmitTargetMetadata() { 4766 // Warning, new MangledDeclNames may be appended within this loop. 4767 // We rely on MapVector insertions adding new elements to the end 4768 // of the container. 4769 // FIXME: Move this loop into the one target that needs it, and only 4770 // loop over those declarations for which we couldn't emit the target 4771 // metadata when we emitted the declaration. 4772 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4773 auto Val = *(MangledDeclNames.begin() + I); 4774 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4775 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4776 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4777 } 4778 } 4779 4780 void CodeGenModule::EmitCoverageFile() { 4781 if (getCodeGenOpts().CoverageDataFile.empty() && 4782 getCodeGenOpts().CoverageNotesFile.empty()) 4783 return; 4784 4785 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4786 if (!CUNode) 4787 return; 4788 4789 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4790 llvm::LLVMContext &Ctx = TheModule.getContext(); 4791 auto *CoverageDataFile = 4792 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4793 auto *CoverageNotesFile = 4794 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4795 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4796 llvm::MDNode *CU = CUNode->getOperand(i); 4797 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4798 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4799 } 4800 } 4801 4802 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4803 // Sema has checked that all uuid strings are of the form 4804 // "12345678-1234-1234-1234-1234567890ab". 4805 assert(Uuid.size() == 36); 4806 for (unsigned i = 0; i < 36; ++i) { 4807 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4808 else assert(isHexDigit(Uuid[i])); 4809 } 4810 4811 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4812 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4813 4814 llvm::Constant *Field3[8]; 4815 for (unsigned Idx = 0; Idx < 8; ++Idx) 4816 Field3[Idx] = llvm::ConstantInt::get( 4817 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4818 4819 llvm::Constant *Fields[4] = { 4820 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4821 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4822 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4823 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4824 }; 4825 4826 return llvm::ConstantStruct::getAnon(Fields); 4827 } 4828 4829 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4830 bool ForEH) { 4831 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4832 // FIXME: should we even be calling this method if RTTI is disabled 4833 // and it's not for EH? 4834 if (!ForEH && !getLangOpts().RTTI) 4835 return llvm::Constant::getNullValue(Int8PtrTy); 4836 4837 if (ForEH && Ty->isObjCObjectPointerType() && 4838 LangOpts.ObjCRuntime.isGNUFamily()) 4839 return ObjCRuntime->GetEHType(Ty); 4840 4841 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4842 } 4843 4844 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4845 // Do not emit threadprivates in simd-only mode. 4846 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4847 return; 4848 for (auto RefExpr : D->varlists()) { 4849 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4850 bool PerformInit = 4851 VD->getAnyInitializer() && 4852 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4853 /*ForRef=*/false); 4854 4855 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4856 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4857 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4858 CXXGlobalInits.push_back(InitFunction); 4859 } 4860 } 4861 4862 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4863 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4864 if (InternalId) 4865 return InternalId; 4866 4867 if (isExternallyVisible(T->getLinkage())) { 4868 std::string OutName; 4869 llvm::raw_string_ostream Out(OutName); 4870 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4871 4872 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4873 } else { 4874 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4875 llvm::ArrayRef<llvm::Metadata *>()); 4876 } 4877 4878 return InternalId; 4879 } 4880 4881 // Generalize pointer types to a void pointer with the qualifiers of the 4882 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4883 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4884 // 'void *'. 4885 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4886 if (!Ty->isPointerType()) 4887 return Ty; 4888 4889 return Ctx.getPointerType( 4890 QualType(Ctx.VoidTy).withCVRQualifiers( 4891 Ty->getPointeeType().getCVRQualifiers())); 4892 } 4893 4894 // Apply type generalization to a FunctionType's return and argument types 4895 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4896 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4897 SmallVector<QualType, 8> GeneralizedParams; 4898 for (auto &Param : FnType->param_types()) 4899 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4900 4901 return Ctx.getFunctionType( 4902 GeneralizeType(Ctx, FnType->getReturnType()), 4903 GeneralizedParams, FnType->getExtProtoInfo()); 4904 } 4905 4906 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4907 return Ctx.getFunctionNoProtoType( 4908 GeneralizeType(Ctx, FnType->getReturnType())); 4909 4910 llvm_unreachable("Encountered unknown FunctionType"); 4911 } 4912 4913 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4914 T = GeneralizeFunctionType(getContext(), T); 4915 4916 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4917 if (InternalId) 4918 return InternalId; 4919 4920 if (isExternallyVisible(T->getLinkage())) { 4921 std::string OutName; 4922 llvm::raw_string_ostream Out(OutName); 4923 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4924 Out << ".generalized"; 4925 4926 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4927 } else { 4928 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4929 llvm::ArrayRef<llvm::Metadata *>()); 4930 } 4931 4932 return InternalId; 4933 } 4934 4935 /// Returns whether this module needs the "all-vtables" type identifier. 4936 bool CodeGenModule::NeedAllVtablesTypeId() const { 4937 // Returns true if at least one of vtable-based CFI checkers is enabled and 4938 // is not in the trapping mode. 4939 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4940 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4941 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4942 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4943 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4944 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4945 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4946 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4947 } 4948 4949 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4950 CharUnits Offset, 4951 const CXXRecordDecl *RD) { 4952 llvm::Metadata *MD = 4953 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4954 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4955 4956 if (CodeGenOpts.SanitizeCfiCrossDso) 4957 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4958 VTable->addTypeMetadata(Offset.getQuantity(), 4959 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4960 4961 if (NeedAllVtablesTypeId()) { 4962 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4963 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4964 } 4965 } 4966 4967 // Fills in the supplied string map with the set of target features for the 4968 // passed in function. 4969 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4970 const FunctionDecl *FD) { 4971 StringRef TargetCPU = Target.getTargetOpts().CPU; 4972 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4973 // If we have a TargetAttr build up the feature map based on that. 4974 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4975 4976 ParsedAttr.Features.erase( 4977 llvm::remove_if(ParsedAttr.Features, 4978 [&](const std::string &Feat) { 4979 return !Target.isValidFeatureName( 4980 StringRef{Feat}.substr(1)); 4981 }), 4982 ParsedAttr.Features.end()); 4983 4984 // Make a copy of the features as passed on the command line into the 4985 // beginning of the additional features from the function to override. 4986 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4987 Target.getTargetOpts().FeaturesAsWritten.begin(), 4988 Target.getTargetOpts().FeaturesAsWritten.end()); 4989 4990 if (ParsedAttr.Architecture != "" && 4991 Target.isValidCPUName(ParsedAttr.Architecture)) 4992 TargetCPU = ParsedAttr.Architecture; 4993 4994 // Now populate the feature map, first with the TargetCPU which is either 4995 // the default or a new one from the target attribute string. Then we'll use 4996 // the passed in features (FeaturesAsWritten) along with the new ones from 4997 // the attribute. 4998 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4999 ParsedAttr.Features); 5000 } else { 5001 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5002 Target.getTargetOpts().Features); 5003 } 5004 } 5005 5006 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5007 if (!SanStats) 5008 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5009 5010 return *SanStats; 5011 } 5012 llvm::Value * 5013 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5014 CodeGenFunction &CGF) { 5015 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5016 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5017 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5018 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5019 "__translate_sampler_initializer"), 5020 {C}); 5021 } 5022