1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static const char AnnotationSection[] = "llvm.metadata"; 64 65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 66 switch (CGM.getTarget().getCXXABI().getKind()) { 67 case TargetCXXABI::GenericAArch64: 68 case TargetCXXABI::GenericARM: 69 case TargetCXXABI::iOS: 70 case TargetCXXABI::iOS64: 71 case TargetCXXABI::WatchOS: 72 case TargetCXXABI::GenericMIPS: 73 case TargetCXXABI::GenericItanium: 74 case TargetCXXABI::WebAssembly: 75 return CreateItaniumCXXABI(CGM); 76 case TargetCXXABI::Microsoft: 77 return CreateMicrosoftCXXABI(CGM); 78 } 79 80 llvm_unreachable("invalid C++ ABI kind"); 81 } 82 83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 84 const PreprocessorOptions &PPO, 85 const CodeGenOptions &CGO, llvm::Module &M, 86 DiagnosticsEngine &diags, 87 CoverageSourceInfo *CoverageInfo) 88 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 89 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 90 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 91 VMContext(M.getContext()), Types(*this), VTables(*this), 92 SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 SizeSizeInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 108 IntAlignInBytes = 109 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 110 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 111 IntPtrTy = llvm::IntegerType::get(LLVMContext, 112 C.getTargetInfo().getMaxPointerWidth()); 113 Int8PtrTy = Int8Ty->getPointerTo(0); 114 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 115 AllocaInt8PtrTy = Int8Ty->getPointerTo( 116 M.getDataLayout().getAllocaAddrSpace()); 117 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 118 119 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 120 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 121 122 if (LangOpts.ObjC1) 123 createObjCRuntime(); 124 if (LangOpts.OpenCL) 125 createOpenCLRuntime(); 126 if (LangOpts.OpenMP) 127 createOpenMPRuntime(); 128 if (LangOpts.CUDA) 129 createCUDARuntime(); 130 131 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 132 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 133 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 134 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 135 getCXXABI().getMangleContext())); 136 137 // If debug info or coverage generation is enabled, create the CGDebugInfo 138 // object. 139 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 140 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 141 DebugInfo.reset(new CGDebugInfo(*this)); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjC1) 146 ObjCData.reset(new ObjCEntrypoints()); 147 148 if (CodeGenOpts.hasProfileClangUse()) { 149 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 150 CodeGenOpts.ProfileInstrumentUsePath); 151 if (auto E = ReaderOrErr.takeError()) { 152 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 153 "Could not read profile %0: %1"); 154 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 155 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 156 << EI.message(); 157 }); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() {} 169 170 void CodeGenModule::createObjCRuntime() { 171 // This is just isGNUFamily(), but we want to force implementors of 172 // new ABIs to decide how best to do this. 173 switch (LangOpts.ObjCRuntime.getKind()) { 174 case ObjCRuntime::GNUstep: 175 case ObjCRuntime::GCC: 176 case ObjCRuntime::ObjFW: 177 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 178 return; 179 180 case ObjCRuntime::FragileMacOSX: 181 case ObjCRuntime::MacOSX: 182 case ObjCRuntime::iOS: 183 case ObjCRuntime::WatchOS: 184 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 185 return; 186 } 187 llvm_unreachable("bad runtime kind"); 188 } 189 190 void CodeGenModule::createOpenCLRuntime() { 191 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 192 } 193 194 void CodeGenModule::createOpenMPRuntime() { 195 // Select a specialized code generation class based on the target, if any. 196 // If it does not exist use the default implementation. 197 switch (getTriple().getArch()) { 198 case llvm::Triple::nvptx: 199 case llvm::Triple::nvptx64: 200 assert(getLangOpts().OpenMPIsDevice && 201 "OpenMP NVPTX is only prepared to deal with device code."); 202 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 203 break; 204 default: 205 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 206 break; 207 } 208 } 209 210 void CodeGenModule::createCUDARuntime() { 211 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 212 } 213 214 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 215 Replacements[Name] = C; 216 } 217 218 void CodeGenModule::applyReplacements() { 219 for (auto &I : Replacements) { 220 StringRef MangledName = I.first(); 221 llvm::Constant *Replacement = I.second; 222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 223 if (!Entry) 224 continue; 225 auto *OldF = cast<llvm::Function>(Entry); 226 auto *NewF = dyn_cast<llvm::Function>(Replacement); 227 if (!NewF) { 228 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 229 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 230 } else { 231 auto *CE = cast<llvm::ConstantExpr>(Replacement); 232 assert(CE->getOpcode() == llvm::Instruction::BitCast || 233 CE->getOpcode() == llvm::Instruction::GetElementPtr); 234 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 235 } 236 } 237 238 // Replace old with new, but keep the old order. 239 OldF->replaceAllUsesWith(Replacement); 240 if (NewF) { 241 NewF->removeFromParent(); 242 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 243 NewF); 244 } 245 OldF->eraseFromParent(); 246 } 247 } 248 249 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 250 GlobalValReplacements.push_back(std::make_pair(GV, C)); 251 } 252 253 void CodeGenModule::applyGlobalValReplacements() { 254 for (auto &I : GlobalValReplacements) { 255 llvm::GlobalValue *GV = I.first; 256 llvm::Constant *C = I.second; 257 258 GV->replaceAllUsesWith(C); 259 GV->eraseFromParent(); 260 } 261 } 262 263 // This is only used in aliases that we created and we know they have a 264 // linear structure. 265 static const llvm::GlobalObject *getAliasedGlobal( 266 const llvm::GlobalIndirectSymbol &GIS) { 267 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 268 const llvm::Constant *C = &GIS; 269 for (;;) { 270 C = C->stripPointerCasts(); 271 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 272 return GO; 273 // stripPointerCasts will not walk over weak aliases. 274 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 275 if (!GIS2) 276 return nullptr; 277 if (!Visited.insert(GIS2).second) 278 return nullptr; 279 C = GIS2->getIndirectSymbol(); 280 } 281 } 282 283 void CodeGenModule::checkAliases() { 284 // Check if the constructed aliases are well formed. It is really unfortunate 285 // that we have to do this in CodeGen, but we only construct mangled names 286 // and aliases during codegen. 287 bool Error = false; 288 DiagnosticsEngine &Diags = getDiags(); 289 for (const GlobalDecl &GD : Aliases) { 290 const auto *D = cast<ValueDecl>(GD.getDecl()); 291 SourceLocation Location; 292 bool IsIFunc = D->hasAttr<IFuncAttr>(); 293 if (const Attr *A = D->getDefiningAttr()) 294 Location = A->getLocation(); 295 else 296 llvm_unreachable("Not an alias or ifunc?"); 297 StringRef MangledName = getMangledName(GD); 298 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 299 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 300 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 301 if (!GV) { 302 Error = true; 303 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 304 } else if (GV->isDeclaration()) { 305 Error = true; 306 Diags.Report(Location, diag::err_alias_to_undefined) 307 << IsIFunc << IsIFunc; 308 } else if (IsIFunc) { 309 // Check resolver function type. 310 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 311 GV->getType()->getPointerElementType()); 312 assert(FTy); 313 if (!FTy->getReturnType()->isPointerTy()) 314 Diags.Report(Location, diag::err_ifunc_resolver_return); 315 if (FTy->getNumParams()) 316 Diags.Report(Location, diag::err_ifunc_resolver_params); 317 } 318 319 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 320 llvm::GlobalValue *AliaseeGV; 321 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 322 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 323 else 324 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 325 326 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 327 StringRef AliasSection = SA->getName(); 328 if (AliasSection != AliaseeGV->getSection()) 329 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 330 << AliasSection << IsIFunc << IsIFunc; 331 } 332 333 // We have to handle alias to weak aliases in here. LLVM itself disallows 334 // this since the object semantics would not match the IL one. For 335 // compatibility with gcc we implement it by just pointing the alias 336 // to its aliasee's aliasee. We also warn, since the user is probably 337 // expecting the link to be weak. 338 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 339 if (GA->isInterposable()) { 340 Diags.Report(Location, diag::warn_alias_to_weak_alias) 341 << GV->getName() << GA->getName() << IsIFunc; 342 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 343 GA->getIndirectSymbol(), Alias->getType()); 344 Alias->setIndirectSymbol(Aliasee); 345 } 346 } 347 } 348 if (!Error) 349 return; 350 351 for (const GlobalDecl &GD : Aliases) { 352 StringRef MangledName = getMangledName(GD); 353 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 354 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 355 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 356 Alias->eraseFromParent(); 357 } 358 } 359 360 void CodeGenModule::clear() { 361 DeferredDeclsToEmit.clear(); 362 if (OpenMPRuntime) 363 OpenMPRuntime->clear(); 364 } 365 366 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 367 StringRef MainFile) { 368 if (!hasDiagnostics()) 369 return; 370 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 371 if (MainFile.empty()) 372 MainFile = "<stdin>"; 373 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 374 } else { 375 if (Mismatched > 0) 376 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 377 378 if (Missing > 0) 379 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 380 } 381 } 382 383 void CodeGenModule::Release() { 384 EmitDeferred(); 385 EmitVTablesOpportunistically(); 386 applyGlobalValReplacements(); 387 applyReplacements(); 388 checkAliases(); 389 EmitCXXGlobalInitFunc(); 390 EmitCXXGlobalDtorFunc(); 391 EmitCXXThreadLocalInitFunc(); 392 if (ObjCRuntime) 393 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 394 AddGlobalCtor(ObjCInitFunction); 395 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 396 CUDARuntime) { 397 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 398 AddGlobalCtor(CudaCtorFunction); 399 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 400 AddGlobalDtor(CudaDtorFunction); 401 } 402 if (OpenMPRuntime) 403 if (llvm::Function *OpenMPRegistrationFunction = 404 OpenMPRuntime->emitRegistrationFunction()) { 405 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 406 OpenMPRegistrationFunction : nullptr; 407 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 408 } 409 if (PGOReader) { 410 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 411 if (PGOStats.hasDiagnostics()) 412 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 413 } 414 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 415 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 416 EmitGlobalAnnotations(); 417 EmitStaticExternCAliases(); 418 EmitDeferredUnusedCoverageMappings(); 419 if (CoverageMapping) 420 CoverageMapping->emit(); 421 if (CodeGenOpts.SanitizeCfiCrossDso) { 422 CodeGenFunction(*this).EmitCfiCheckFail(); 423 CodeGenFunction(*this).EmitCfiCheckStub(); 424 } 425 emitAtAvailableLinkGuard(); 426 emitLLVMUsed(); 427 if (SanStats) 428 SanStats->finish(); 429 430 if (CodeGenOpts.Autolink && 431 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 432 EmitModuleLinkOptions(); 433 } 434 435 // Record mregparm value now so it is visible through rest of codegen. 436 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 437 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 438 CodeGenOpts.NumRegisterParameters); 439 440 if (CodeGenOpts.DwarfVersion) { 441 // We actually want the latest version when there are conflicts. 442 // We can change from Warning to Latest if such mode is supported. 443 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 444 CodeGenOpts.DwarfVersion); 445 } 446 if (CodeGenOpts.EmitCodeView) { 447 // Indicate that we want CodeView in the metadata. 448 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 449 } 450 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 451 // We don't support LTO with 2 with different StrictVTablePointers 452 // FIXME: we could support it by stripping all the information introduced 453 // by StrictVTablePointers. 454 455 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 456 457 llvm::Metadata *Ops[2] = { 458 llvm::MDString::get(VMContext, "StrictVTablePointers"), 459 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 460 llvm::Type::getInt32Ty(VMContext), 1))}; 461 462 getModule().addModuleFlag(llvm::Module::Require, 463 "StrictVTablePointersRequirement", 464 llvm::MDNode::get(VMContext, Ops)); 465 } 466 if (DebugInfo) 467 // We support a single version in the linked module. The LLVM 468 // parser will drop debug info with a different version number 469 // (and warn about it, too). 470 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 471 llvm::DEBUG_METADATA_VERSION); 472 473 // Width of wchar_t in bytes 474 uint64_t WCharWidth = 475 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 476 assert((LangOpts.ShortWChar || 477 llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) == 478 Target.getWCharWidth() / 8) && 479 "LLVM wchar_t size out of sync"); 480 481 // We need to record the widths of enums and wchar_t, so that we can generate 482 // the correct build attributes in the ARM backend. wchar_size is also used by 483 // TargetLibraryInfo. 484 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 485 486 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 487 if ( Arch == llvm::Triple::arm 488 || Arch == llvm::Triple::armeb 489 || Arch == llvm::Triple::thumb 490 || Arch == llvm::Triple::thumbeb) { 491 // The minimum width of an enum in bytes 492 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 493 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 494 } 495 496 if (CodeGenOpts.SanitizeCfiCrossDso) { 497 // Indicate that we want cross-DSO control flow integrity checks. 498 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 499 } 500 501 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 502 // Indicate whether __nvvm_reflect should be configured to flush denormal 503 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 504 // property.) 505 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 506 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 507 } 508 509 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 510 assert(PLevel < 3 && "Invalid PIC Level"); 511 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 512 if (Context.getLangOpts().PIE) 513 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 514 } 515 516 SimplifyPersonality(); 517 518 if (getCodeGenOpts().EmitDeclMetadata) 519 EmitDeclMetadata(); 520 521 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 522 EmitCoverageFile(); 523 524 if (DebugInfo) 525 DebugInfo->finalize(); 526 527 EmitVersionIdentMetadata(); 528 529 EmitTargetMetadata(); 530 } 531 532 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 533 // Make sure that this type is translated. 534 Types.UpdateCompletedType(TD); 535 } 536 537 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 538 // Make sure that this type is translated. 539 Types.RefreshTypeCacheForClass(RD); 540 } 541 542 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 543 if (!TBAA) 544 return nullptr; 545 return TBAA->getTBAAInfo(QTy); 546 } 547 548 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 549 if (!TBAA) 550 return nullptr; 551 return TBAA->getTBAAInfoForVTablePtr(); 552 } 553 554 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 555 if (!TBAA) 556 return nullptr; 557 return TBAA->getTBAAStructInfo(QTy); 558 } 559 560 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 561 llvm::MDNode *AccessN, 562 uint64_t O) { 563 if (!TBAA) 564 return nullptr; 565 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 566 } 567 568 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 569 /// and struct-path aware TBAA, the tag has the same format: 570 /// base type, access type and offset. 571 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 572 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 573 llvm::MDNode *TBAAInfo, 574 bool ConvertTypeToTag) { 575 if (ConvertTypeToTag && TBAA) 576 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 577 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 578 else 579 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 580 } 581 582 void CodeGenModule::DecorateInstructionWithInvariantGroup( 583 llvm::Instruction *I, const CXXRecordDecl *RD) { 584 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 585 llvm::MDNode::get(getLLVMContext(), {})); 586 } 587 588 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 589 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 590 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 591 } 592 593 /// ErrorUnsupported - Print out an error that codegen doesn't support the 594 /// specified stmt yet. 595 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 596 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 597 "cannot compile this %0 yet"); 598 std::string Msg = Type; 599 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 600 << Msg << S->getSourceRange(); 601 } 602 603 /// ErrorUnsupported - Print out an error that codegen doesn't support the 604 /// specified decl yet. 605 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 606 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 607 "cannot compile this %0 yet"); 608 std::string Msg = Type; 609 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 610 } 611 612 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 613 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 614 } 615 616 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 617 const NamedDecl *D) const { 618 // Internal definitions always have default visibility. 619 if (GV->hasLocalLinkage()) { 620 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 621 return; 622 } 623 624 // Set visibility for definitions. 625 LinkageInfo LV = D->getLinkageAndVisibility(); 626 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 627 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 628 } 629 630 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 631 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 632 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 633 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 634 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 635 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 636 } 637 638 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 639 CodeGenOptions::TLSModel M) { 640 switch (M) { 641 case CodeGenOptions::GeneralDynamicTLSModel: 642 return llvm::GlobalVariable::GeneralDynamicTLSModel; 643 case CodeGenOptions::LocalDynamicTLSModel: 644 return llvm::GlobalVariable::LocalDynamicTLSModel; 645 case CodeGenOptions::InitialExecTLSModel: 646 return llvm::GlobalVariable::InitialExecTLSModel; 647 case CodeGenOptions::LocalExecTLSModel: 648 return llvm::GlobalVariable::LocalExecTLSModel; 649 } 650 llvm_unreachable("Invalid TLS model!"); 651 } 652 653 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 654 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 655 656 llvm::GlobalValue::ThreadLocalMode TLM; 657 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 658 659 // Override the TLS model if it is explicitly specified. 660 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 661 TLM = GetLLVMTLSModel(Attr->getModel()); 662 } 663 664 GV->setThreadLocalMode(TLM); 665 } 666 667 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 668 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 669 670 // Some ABIs don't have constructor variants. Make sure that base and 671 // complete constructors get mangled the same. 672 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 673 if (!getTarget().getCXXABI().hasConstructorVariants()) { 674 CXXCtorType OrigCtorType = GD.getCtorType(); 675 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 676 if (OrigCtorType == Ctor_Base) 677 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 678 } 679 } 680 681 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 682 if (!FoundStr.empty()) 683 return FoundStr; 684 685 const auto *ND = cast<NamedDecl>(GD.getDecl()); 686 SmallString<256> Buffer; 687 StringRef Str; 688 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 689 llvm::raw_svector_ostream Out(Buffer); 690 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 691 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 692 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 693 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 694 else 695 getCXXABI().getMangleContext().mangleName(ND, Out); 696 Str = Out.str(); 697 } else { 698 IdentifierInfo *II = ND->getIdentifier(); 699 assert(II && "Attempt to mangle unnamed decl."); 700 const auto *FD = dyn_cast<FunctionDecl>(ND); 701 702 if (FD && 703 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 704 llvm::raw_svector_ostream Out(Buffer); 705 Out << "__regcall3__" << II->getName(); 706 Str = Out.str(); 707 } else { 708 Str = II->getName(); 709 } 710 } 711 712 // Keep the first result in the case of a mangling collision. 713 auto Result = Manglings.insert(std::make_pair(Str, GD)); 714 return FoundStr = Result.first->first(); 715 } 716 717 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 718 const BlockDecl *BD) { 719 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 720 const Decl *D = GD.getDecl(); 721 722 SmallString<256> Buffer; 723 llvm::raw_svector_ostream Out(Buffer); 724 if (!D) 725 MangleCtx.mangleGlobalBlock(BD, 726 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 727 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 728 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 729 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 730 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 731 else 732 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 733 734 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 735 return Result.first->first(); 736 } 737 738 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 739 return getModule().getNamedValue(Name); 740 } 741 742 /// AddGlobalCtor - Add a function to the list that will be called before 743 /// main() runs. 744 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 745 llvm::Constant *AssociatedData) { 746 // FIXME: Type coercion of void()* types. 747 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 748 } 749 750 /// AddGlobalDtor - Add a function to the list that will be called 751 /// when the module is unloaded. 752 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 753 // FIXME: Type coercion of void()* types. 754 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 755 } 756 757 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 758 if (Fns.empty()) return; 759 760 // Ctor function type is void()*. 761 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 762 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 763 764 // Get the type of a ctor entry, { i32, void ()*, i8* }. 765 llvm::StructType *CtorStructTy = llvm::StructType::get( 766 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 767 768 // Construct the constructor and destructor arrays. 769 ConstantInitBuilder builder(*this); 770 auto ctors = builder.beginArray(CtorStructTy); 771 for (const auto &I : Fns) { 772 auto ctor = ctors.beginStruct(CtorStructTy); 773 ctor.addInt(Int32Ty, I.Priority); 774 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 775 if (I.AssociatedData) 776 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 777 else 778 ctor.addNullPointer(VoidPtrTy); 779 ctor.finishAndAddTo(ctors); 780 } 781 782 auto list = 783 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 784 /*constant*/ false, 785 llvm::GlobalValue::AppendingLinkage); 786 787 // The LTO linker doesn't seem to like it when we set an alignment 788 // on appending variables. Take it off as a workaround. 789 list->setAlignment(0); 790 791 Fns.clear(); 792 } 793 794 llvm::GlobalValue::LinkageTypes 795 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 796 const auto *D = cast<FunctionDecl>(GD.getDecl()); 797 798 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 799 800 if (isa<CXXDestructorDecl>(D) && 801 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 802 GD.getDtorType())) { 803 // Destructor variants in the Microsoft C++ ABI are always internal or 804 // linkonce_odr thunks emitted on an as-needed basis. 805 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 806 : llvm::GlobalValue::LinkOnceODRLinkage; 807 } 808 809 if (isa<CXXConstructorDecl>(D) && 810 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 811 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 812 // Our approach to inheriting constructors is fundamentally different from 813 // that used by the MS ABI, so keep our inheriting constructor thunks 814 // internal rather than trying to pick an unambiguous mangling for them. 815 return llvm::GlobalValue::InternalLinkage; 816 } 817 818 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 819 } 820 821 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 822 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 823 824 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 825 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 826 // Don't dllexport/import destructor thunks. 827 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 828 return; 829 } 830 } 831 832 if (FD->hasAttr<DLLImportAttr>()) 833 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 834 else if (FD->hasAttr<DLLExportAttr>()) 835 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 836 else 837 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 838 } 839 840 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 841 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 842 if (!MDS) return nullptr; 843 844 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 845 } 846 847 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 848 llvm::Function *F) { 849 setNonAliasAttributes(D, F); 850 } 851 852 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 853 const CGFunctionInfo &Info, 854 llvm::Function *F) { 855 unsigned CallingConv; 856 llvm::AttributeList PAL; 857 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 858 F->setAttributes(PAL); 859 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 860 } 861 862 /// Determines whether the language options require us to model 863 /// unwind exceptions. We treat -fexceptions as mandating this 864 /// except under the fragile ObjC ABI with only ObjC exceptions 865 /// enabled. This means, for example, that C with -fexceptions 866 /// enables this. 867 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 868 // If exceptions are completely disabled, obviously this is false. 869 if (!LangOpts.Exceptions) return false; 870 871 // If C++ exceptions are enabled, this is true. 872 if (LangOpts.CXXExceptions) return true; 873 874 // If ObjC exceptions are enabled, this depends on the ABI. 875 if (LangOpts.ObjCExceptions) { 876 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 877 } 878 879 return true; 880 } 881 882 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 883 llvm::Function *F) { 884 llvm::AttrBuilder B; 885 886 if (CodeGenOpts.UnwindTables) 887 B.addAttribute(llvm::Attribute::UWTable); 888 889 if (!hasUnwindExceptions(LangOpts)) 890 B.addAttribute(llvm::Attribute::NoUnwind); 891 892 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 893 B.addAttribute(llvm::Attribute::StackProtect); 894 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 895 B.addAttribute(llvm::Attribute::StackProtectStrong); 896 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 897 B.addAttribute(llvm::Attribute::StackProtectReq); 898 899 if (!D) { 900 // If we don't have a declaration to control inlining, the function isn't 901 // explicitly marked as alwaysinline for semantic reasons, and inlining is 902 // disabled, mark the function as noinline. 903 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 904 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 905 B.addAttribute(llvm::Attribute::NoInline); 906 907 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 908 return; 909 } 910 911 // Track whether we need to add the optnone LLVM attribute, 912 // starting with the default for this optimization level. 913 bool ShouldAddOptNone = 914 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 915 // We can't add optnone in the following cases, it won't pass the verifier. 916 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 917 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 918 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 919 920 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 921 B.addAttribute(llvm::Attribute::OptimizeNone); 922 923 // OptimizeNone implies noinline; we should not be inlining such functions. 924 B.addAttribute(llvm::Attribute::NoInline); 925 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 926 "OptimizeNone and AlwaysInline on same function!"); 927 928 // We still need to handle naked functions even though optnone subsumes 929 // much of their semantics. 930 if (D->hasAttr<NakedAttr>()) 931 B.addAttribute(llvm::Attribute::Naked); 932 933 // OptimizeNone wins over OptimizeForSize and MinSize. 934 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 935 F->removeFnAttr(llvm::Attribute::MinSize); 936 } else if (D->hasAttr<NakedAttr>()) { 937 // Naked implies noinline: we should not be inlining such functions. 938 B.addAttribute(llvm::Attribute::Naked); 939 B.addAttribute(llvm::Attribute::NoInline); 940 } else if (D->hasAttr<NoDuplicateAttr>()) { 941 B.addAttribute(llvm::Attribute::NoDuplicate); 942 } else if (D->hasAttr<NoInlineAttr>()) { 943 B.addAttribute(llvm::Attribute::NoInline); 944 } else if (D->hasAttr<AlwaysInlineAttr>() && 945 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 946 // (noinline wins over always_inline, and we can't specify both in IR) 947 B.addAttribute(llvm::Attribute::AlwaysInline); 948 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 949 // If we're not inlining, then force everything that isn't always_inline to 950 // carry an explicit noinline attribute. 951 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 952 B.addAttribute(llvm::Attribute::NoInline); 953 } else { 954 // Otherwise, propagate the inline hint attribute and potentially use its 955 // absence to mark things as noinline. 956 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 957 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 958 return Redecl->isInlineSpecified(); 959 })) { 960 B.addAttribute(llvm::Attribute::InlineHint); 961 } else if (CodeGenOpts.getInlining() == 962 CodeGenOptions::OnlyHintInlining && 963 !FD->isInlined() && 964 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 965 B.addAttribute(llvm::Attribute::NoInline); 966 } 967 } 968 } 969 970 // Add other optimization related attributes if we are optimizing this 971 // function. 972 if (!D->hasAttr<OptimizeNoneAttr>()) { 973 if (D->hasAttr<ColdAttr>()) { 974 if (!ShouldAddOptNone) 975 B.addAttribute(llvm::Attribute::OptimizeForSize); 976 B.addAttribute(llvm::Attribute::Cold); 977 } 978 979 if (D->hasAttr<MinSizeAttr>()) 980 B.addAttribute(llvm::Attribute::MinSize); 981 } 982 983 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 984 985 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 986 if (alignment) 987 F->setAlignment(alignment); 988 989 // Some C++ ABIs require 2-byte alignment for member functions, in order to 990 // reserve a bit for differentiating between virtual and non-virtual member 991 // functions. If the current target's C++ ABI requires this and this is a 992 // member function, set its alignment accordingly. 993 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 994 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 995 F->setAlignment(2); 996 } 997 998 // In the cross-dso CFI mode, we want !type attributes on definitions only. 999 if (CodeGenOpts.SanitizeCfiCrossDso) 1000 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1001 CreateFunctionTypeMetadata(FD, F); 1002 } 1003 1004 void CodeGenModule::SetCommonAttributes(const Decl *D, 1005 llvm::GlobalValue *GV) { 1006 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1007 setGlobalVisibility(GV, ND); 1008 else 1009 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1010 1011 if (D && D->hasAttr<UsedAttr>()) 1012 addUsedGlobal(GV); 1013 } 1014 1015 void CodeGenModule::setAliasAttributes(const Decl *D, 1016 llvm::GlobalValue *GV) { 1017 SetCommonAttributes(D, GV); 1018 1019 // Process the dllexport attribute based on whether the original definition 1020 // (not necessarily the aliasee) was exported. 1021 if (D->hasAttr<DLLExportAttr>()) 1022 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1023 } 1024 1025 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1026 llvm::GlobalObject *GO) { 1027 SetCommonAttributes(D, GO); 1028 1029 if (D) { 1030 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1031 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1032 GV->addAttribute("bss-section", SA->getName()); 1033 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1034 GV->addAttribute("data-section", SA->getName()); 1035 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1036 GV->addAttribute("rodata-section", SA->getName()); 1037 } 1038 1039 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1040 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1041 if (!D->getAttr<SectionAttr>()) 1042 F->addFnAttr("implicit-section-name", SA->getName()); 1043 } 1044 1045 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1046 GO->setSection(SA->getName()); 1047 } 1048 1049 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1050 } 1051 1052 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1053 llvm::Function *F, 1054 const CGFunctionInfo &FI) { 1055 SetLLVMFunctionAttributes(D, FI, F); 1056 SetLLVMFunctionAttributesForDefinition(D, F); 1057 1058 F->setLinkage(llvm::Function::InternalLinkage); 1059 1060 setNonAliasAttributes(D, F); 1061 } 1062 1063 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1064 const NamedDecl *ND) { 1065 // Set linkage and visibility in case we never see a definition. 1066 LinkageInfo LV = ND->getLinkageAndVisibility(); 1067 if (LV.getLinkage() != ExternalLinkage) { 1068 // Don't set internal linkage on declarations. 1069 } else { 1070 if (ND->hasAttr<DLLImportAttr>()) { 1071 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1072 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1073 } else if (ND->hasAttr<DLLExportAttr>()) { 1074 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1075 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1076 // "extern_weak" is overloaded in LLVM; we probably should have 1077 // separate linkage types for this. 1078 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1079 } 1080 1081 // Set visibility on a declaration only if it's explicit. 1082 if (LV.isVisibilityExplicit()) 1083 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1084 } 1085 } 1086 1087 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1088 llvm::Function *F) { 1089 // Only if we are checking indirect calls. 1090 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1091 return; 1092 1093 // Non-static class methods are handled via vtable pointer checks elsewhere. 1094 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1095 return; 1096 1097 // Additionally, if building with cross-DSO support... 1098 if (CodeGenOpts.SanitizeCfiCrossDso) { 1099 // Skip available_externally functions. They won't be codegen'ed in the 1100 // current module anyway. 1101 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1102 return; 1103 } 1104 1105 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1106 F->addTypeMetadata(0, MD); 1107 1108 // Emit a hash-based bit set entry for cross-DSO calls. 1109 if (CodeGenOpts.SanitizeCfiCrossDso) 1110 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1111 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1112 } 1113 1114 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1115 bool IsIncompleteFunction, 1116 bool IsThunk) { 1117 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1118 // If this is an intrinsic function, set the function's attributes 1119 // to the intrinsic's attributes. 1120 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1121 return; 1122 } 1123 1124 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1125 1126 if (!IsIncompleteFunction) 1127 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1128 1129 // Add the Returned attribute for "this", except for iOS 5 and earlier 1130 // where substantial code, including the libstdc++ dylib, was compiled with 1131 // GCC and does not actually return "this". 1132 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1133 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1134 assert(!F->arg_empty() && 1135 F->arg_begin()->getType() 1136 ->canLosslesslyBitCastTo(F->getReturnType()) && 1137 "unexpected this return"); 1138 F->addAttribute(1, llvm::Attribute::Returned); 1139 } 1140 1141 // Only a few attributes are set on declarations; these may later be 1142 // overridden by a definition. 1143 1144 setLinkageAndVisibilityForGV(F, FD); 1145 1146 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1147 F->addFnAttr("implicit-section-name"); 1148 } 1149 1150 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1151 F->setSection(SA->getName()); 1152 1153 if (FD->isReplaceableGlobalAllocationFunction()) { 1154 // A replaceable global allocation function does not act like a builtin by 1155 // default, only if it is invoked by a new-expression or delete-expression. 1156 F->addAttribute(llvm::AttributeList::FunctionIndex, 1157 llvm::Attribute::NoBuiltin); 1158 1159 // A sane operator new returns a non-aliasing pointer. 1160 // FIXME: Also add NonNull attribute to the return value 1161 // for the non-nothrow forms? 1162 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1163 if (getCodeGenOpts().AssumeSaneOperatorNew && 1164 (Kind == OO_New || Kind == OO_Array_New)) 1165 F->addAttribute(llvm::AttributeList::ReturnIndex, 1166 llvm::Attribute::NoAlias); 1167 } 1168 1169 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1170 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1171 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1172 if (MD->isVirtual()) 1173 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1174 1175 // Don't emit entries for function declarations in the cross-DSO mode. This 1176 // is handled with better precision by the receiving DSO. 1177 if (!CodeGenOpts.SanitizeCfiCrossDso) 1178 CreateFunctionTypeMetadata(FD, F); 1179 } 1180 1181 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1182 assert(!GV->isDeclaration() && 1183 "Only globals with definition can force usage."); 1184 LLVMUsed.emplace_back(GV); 1185 } 1186 1187 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1188 assert(!GV->isDeclaration() && 1189 "Only globals with definition can force usage."); 1190 LLVMCompilerUsed.emplace_back(GV); 1191 } 1192 1193 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1194 std::vector<llvm::WeakTrackingVH> &List) { 1195 // Don't create llvm.used if there is no need. 1196 if (List.empty()) 1197 return; 1198 1199 // Convert List to what ConstantArray needs. 1200 SmallVector<llvm::Constant*, 8> UsedArray; 1201 UsedArray.resize(List.size()); 1202 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1203 UsedArray[i] = 1204 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1205 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1206 } 1207 1208 if (UsedArray.empty()) 1209 return; 1210 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1211 1212 auto *GV = new llvm::GlobalVariable( 1213 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1214 llvm::ConstantArray::get(ATy, UsedArray), Name); 1215 1216 GV->setSection("llvm.metadata"); 1217 } 1218 1219 void CodeGenModule::emitLLVMUsed() { 1220 emitUsed(*this, "llvm.used", LLVMUsed); 1221 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1222 } 1223 1224 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1225 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1226 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1227 } 1228 1229 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1230 llvm::SmallString<32> Opt; 1231 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1232 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1233 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1234 } 1235 1236 void CodeGenModule::AddDependentLib(StringRef Lib) { 1237 llvm::SmallString<24> Opt; 1238 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1239 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1240 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1241 } 1242 1243 /// \brief Add link options implied by the given module, including modules 1244 /// it depends on, using a postorder walk. 1245 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1246 SmallVectorImpl<llvm::Metadata *> &Metadata, 1247 llvm::SmallPtrSet<Module *, 16> &Visited) { 1248 // Import this module's parent. 1249 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1250 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1251 } 1252 1253 // Import this module's dependencies. 1254 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1255 if (Visited.insert(Mod->Imports[I - 1]).second) 1256 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1257 } 1258 1259 // Add linker options to link against the libraries/frameworks 1260 // described by this module. 1261 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1262 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1263 // Link against a framework. Frameworks are currently Darwin only, so we 1264 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1265 if (Mod->LinkLibraries[I-1].IsFramework) { 1266 llvm::Metadata *Args[2] = { 1267 llvm::MDString::get(Context, "-framework"), 1268 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1269 1270 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1271 continue; 1272 } 1273 1274 // Link against a library. 1275 llvm::SmallString<24> Opt; 1276 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1277 Mod->LinkLibraries[I-1].Library, Opt); 1278 auto *OptString = llvm::MDString::get(Context, Opt); 1279 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1280 } 1281 } 1282 1283 void CodeGenModule::EmitModuleLinkOptions() { 1284 // Collect the set of all of the modules we want to visit to emit link 1285 // options, which is essentially the imported modules and all of their 1286 // non-explicit child modules. 1287 llvm::SetVector<clang::Module *> LinkModules; 1288 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1289 SmallVector<clang::Module *, 16> Stack; 1290 1291 // Seed the stack with imported modules. 1292 for (Module *M : ImportedModules) { 1293 // Do not add any link flags when an implementation TU of a module imports 1294 // a header of that same module. 1295 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1296 !getLangOpts().isCompilingModule()) 1297 continue; 1298 if (Visited.insert(M).second) 1299 Stack.push_back(M); 1300 } 1301 1302 // Find all of the modules to import, making a little effort to prune 1303 // non-leaf modules. 1304 while (!Stack.empty()) { 1305 clang::Module *Mod = Stack.pop_back_val(); 1306 1307 bool AnyChildren = false; 1308 1309 // Visit the submodules of this module. 1310 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1311 SubEnd = Mod->submodule_end(); 1312 Sub != SubEnd; ++Sub) { 1313 // Skip explicit children; they need to be explicitly imported to be 1314 // linked against. 1315 if ((*Sub)->IsExplicit) 1316 continue; 1317 1318 if (Visited.insert(*Sub).second) { 1319 Stack.push_back(*Sub); 1320 AnyChildren = true; 1321 } 1322 } 1323 1324 // We didn't find any children, so add this module to the list of 1325 // modules to link against. 1326 if (!AnyChildren) { 1327 LinkModules.insert(Mod); 1328 } 1329 } 1330 1331 // Add link options for all of the imported modules in reverse topological 1332 // order. We don't do anything to try to order import link flags with respect 1333 // to linker options inserted by things like #pragma comment(). 1334 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1335 Visited.clear(); 1336 for (Module *M : LinkModules) 1337 if (Visited.insert(M).second) 1338 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1339 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1340 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1341 1342 // Add the linker options metadata flag. 1343 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1344 llvm::MDNode::get(getLLVMContext(), 1345 LinkerOptionsMetadata)); 1346 } 1347 1348 void CodeGenModule::EmitDeferred() { 1349 // Emit code for any potentially referenced deferred decls. Since a 1350 // previously unused static decl may become used during the generation of code 1351 // for a static function, iterate until no changes are made. 1352 1353 if (!DeferredVTables.empty()) { 1354 EmitDeferredVTables(); 1355 1356 // Emitting a vtable doesn't directly cause more vtables to 1357 // become deferred, although it can cause functions to be 1358 // emitted that then need those vtables. 1359 assert(DeferredVTables.empty()); 1360 } 1361 1362 // Stop if we're out of both deferred vtables and deferred declarations. 1363 if (DeferredDeclsToEmit.empty()) 1364 return; 1365 1366 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1367 // work, it will not interfere with this. 1368 std::vector<GlobalDecl> CurDeclsToEmit; 1369 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1370 1371 for (GlobalDecl &D : CurDeclsToEmit) { 1372 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1373 // to get GlobalValue with exactly the type we need, not something that 1374 // might had been created for another decl with the same mangled name but 1375 // different type. 1376 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1377 GetAddrOfGlobal(D, ForDefinition)); 1378 1379 // In case of different address spaces, we may still get a cast, even with 1380 // IsForDefinition equal to true. Query mangled names table to get 1381 // GlobalValue. 1382 if (!GV) 1383 GV = GetGlobalValue(getMangledName(D)); 1384 1385 // Make sure GetGlobalValue returned non-null. 1386 assert(GV); 1387 1388 // Check to see if we've already emitted this. This is necessary 1389 // for a couple of reasons: first, decls can end up in the 1390 // deferred-decls queue multiple times, and second, decls can end 1391 // up with definitions in unusual ways (e.g. by an extern inline 1392 // function acquiring a strong function redefinition). Just 1393 // ignore these cases. 1394 if (!GV->isDeclaration()) 1395 continue; 1396 1397 // Otherwise, emit the definition and move on to the next one. 1398 EmitGlobalDefinition(D, GV); 1399 1400 // If we found out that we need to emit more decls, do that recursively. 1401 // This has the advantage that the decls are emitted in a DFS and related 1402 // ones are close together, which is convenient for testing. 1403 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1404 EmitDeferred(); 1405 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1406 } 1407 } 1408 } 1409 1410 void CodeGenModule::EmitVTablesOpportunistically() { 1411 // Try to emit external vtables as available_externally if they have emitted 1412 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1413 // is not allowed to create new references to things that need to be emitted 1414 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1415 1416 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1417 && "Only emit opportunistic vtables with optimizations"); 1418 1419 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1420 assert(getVTables().isVTableExternal(RD) && 1421 "This queue should only contain external vtables"); 1422 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1423 VTables.GenerateClassData(RD); 1424 } 1425 OpportunisticVTables.clear(); 1426 } 1427 1428 void CodeGenModule::EmitGlobalAnnotations() { 1429 if (Annotations.empty()) 1430 return; 1431 1432 // Create a new global variable for the ConstantStruct in the Module. 1433 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1434 Annotations[0]->getType(), Annotations.size()), Annotations); 1435 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1436 llvm::GlobalValue::AppendingLinkage, 1437 Array, "llvm.global.annotations"); 1438 gv->setSection(AnnotationSection); 1439 } 1440 1441 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1442 llvm::Constant *&AStr = AnnotationStrings[Str]; 1443 if (AStr) 1444 return AStr; 1445 1446 // Not found yet, create a new global. 1447 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1448 auto *gv = 1449 new llvm::GlobalVariable(getModule(), s->getType(), true, 1450 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1451 gv->setSection(AnnotationSection); 1452 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1453 AStr = gv; 1454 return gv; 1455 } 1456 1457 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1458 SourceManager &SM = getContext().getSourceManager(); 1459 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1460 if (PLoc.isValid()) 1461 return EmitAnnotationString(PLoc.getFilename()); 1462 return EmitAnnotationString(SM.getBufferName(Loc)); 1463 } 1464 1465 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1466 SourceManager &SM = getContext().getSourceManager(); 1467 PresumedLoc PLoc = SM.getPresumedLoc(L); 1468 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1469 SM.getExpansionLineNumber(L); 1470 return llvm::ConstantInt::get(Int32Ty, LineNo); 1471 } 1472 1473 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1474 const AnnotateAttr *AA, 1475 SourceLocation L) { 1476 // Get the globals for file name, annotation, and the line number. 1477 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1478 *UnitGV = EmitAnnotationUnit(L), 1479 *LineNoCst = EmitAnnotationLineNo(L); 1480 1481 // Create the ConstantStruct for the global annotation. 1482 llvm::Constant *Fields[4] = { 1483 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1484 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1485 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1486 LineNoCst 1487 }; 1488 return llvm::ConstantStruct::getAnon(Fields); 1489 } 1490 1491 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1492 llvm::GlobalValue *GV) { 1493 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1494 // Get the struct elements for these annotations. 1495 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1496 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1497 } 1498 1499 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1500 SourceLocation Loc) const { 1501 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1502 // Blacklist by function name. 1503 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1504 return true; 1505 // Blacklist by location. 1506 if (Loc.isValid()) 1507 return SanitizerBL.isBlacklistedLocation(Loc); 1508 // If location is unknown, this may be a compiler-generated function. Assume 1509 // it's located in the main file. 1510 auto &SM = Context.getSourceManager(); 1511 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1512 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1513 } 1514 return false; 1515 } 1516 1517 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1518 SourceLocation Loc, QualType Ty, 1519 StringRef Category) const { 1520 // For now globals can be blacklisted only in ASan and KASan. 1521 if (!LangOpts.Sanitize.hasOneOf( 1522 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1523 return false; 1524 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1525 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1526 return true; 1527 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1528 return true; 1529 // Check global type. 1530 if (!Ty.isNull()) { 1531 // Drill down the array types: if global variable of a fixed type is 1532 // blacklisted, we also don't instrument arrays of them. 1533 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1534 Ty = AT->getElementType(); 1535 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1536 // We allow to blacklist only record types (classes, structs etc.) 1537 if (Ty->isRecordType()) { 1538 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1539 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1540 return true; 1541 } 1542 } 1543 return false; 1544 } 1545 1546 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1547 StringRef Category) const { 1548 if (!LangOpts.XRayInstrument) 1549 return false; 1550 const auto &XRayFilter = getContext().getXRayFilter(); 1551 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1552 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1553 if (Loc.isValid()) 1554 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1555 if (Attr == ImbueAttr::NONE) 1556 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1557 switch (Attr) { 1558 case ImbueAttr::NONE: 1559 return false; 1560 case ImbueAttr::ALWAYS: 1561 Fn->addFnAttr("function-instrument", "xray-always"); 1562 break; 1563 case ImbueAttr::ALWAYS_ARG1: 1564 Fn->addFnAttr("function-instrument", "xray-always"); 1565 Fn->addFnAttr("xray-log-args", "1"); 1566 break; 1567 case ImbueAttr::NEVER: 1568 Fn->addFnAttr("function-instrument", "xray-never"); 1569 break; 1570 } 1571 return true; 1572 } 1573 1574 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1575 // Never defer when EmitAllDecls is specified. 1576 if (LangOpts.EmitAllDecls) 1577 return true; 1578 1579 return getContext().DeclMustBeEmitted(Global); 1580 } 1581 1582 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1583 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1584 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1585 // Implicit template instantiations may change linkage if they are later 1586 // explicitly instantiated, so they should not be emitted eagerly. 1587 return false; 1588 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1589 if (Context.getInlineVariableDefinitionKind(VD) == 1590 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1591 // A definition of an inline constexpr static data member may change 1592 // linkage later if it's redeclared outside the class. 1593 return false; 1594 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1595 // codegen for global variables, because they may be marked as threadprivate. 1596 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1597 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1598 return false; 1599 1600 return true; 1601 } 1602 1603 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1604 const CXXUuidofExpr* E) { 1605 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1606 // well-formed. 1607 StringRef Uuid = E->getUuidStr(); 1608 std::string Name = "_GUID_" + Uuid.lower(); 1609 std::replace(Name.begin(), Name.end(), '-', '_'); 1610 1611 // The UUID descriptor should be pointer aligned. 1612 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1613 1614 // Look for an existing global. 1615 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1616 return ConstantAddress(GV, Alignment); 1617 1618 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1619 assert(Init && "failed to initialize as constant"); 1620 1621 auto *GV = new llvm::GlobalVariable( 1622 getModule(), Init->getType(), 1623 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1624 if (supportsCOMDAT()) 1625 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1626 return ConstantAddress(GV, Alignment); 1627 } 1628 1629 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1630 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1631 assert(AA && "No alias?"); 1632 1633 CharUnits Alignment = getContext().getDeclAlign(VD); 1634 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1635 1636 // See if there is already something with the target's name in the module. 1637 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1638 if (Entry) { 1639 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1640 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1641 return ConstantAddress(Ptr, Alignment); 1642 } 1643 1644 llvm::Constant *Aliasee; 1645 if (isa<llvm::FunctionType>(DeclTy)) 1646 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1647 GlobalDecl(cast<FunctionDecl>(VD)), 1648 /*ForVTable=*/false); 1649 else 1650 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1651 llvm::PointerType::getUnqual(DeclTy), 1652 nullptr); 1653 1654 auto *F = cast<llvm::GlobalValue>(Aliasee); 1655 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1656 WeakRefReferences.insert(F); 1657 1658 return ConstantAddress(Aliasee, Alignment); 1659 } 1660 1661 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1662 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1663 1664 // Weak references don't produce any output by themselves. 1665 if (Global->hasAttr<WeakRefAttr>()) 1666 return; 1667 1668 // If this is an alias definition (which otherwise looks like a declaration) 1669 // emit it now. 1670 if (Global->hasAttr<AliasAttr>()) 1671 return EmitAliasDefinition(GD); 1672 1673 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1674 if (Global->hasAttr<IFuncAttr>()) 1675 return emitIFuncDefinition(GD); 1676 1677 // If this is CUDA, be selective about which declarations we emit. 1678 if (LangOpts.CUDA) { 1679 if (LangOpts.CUDAIsDevice) { 1680 if (!Global->hasAttr<CUDADeviceAttr>() && 1681 !Global->hasAttr<CUDAGlobalAttr>() && 1682 !Global->hasAttr<CUDAConstantAttr>() && 1683 !Global->hasAttr<CUDASharedAttr>()) 1684 return; 1685 } else { 1686 // We need to emit host-side 'shadows' for all global 1687 // device-side variables because the CUDA runtime needs their 1688 // size and host-side address in order to provide access to 1689 // their device-side incarnations. 1690 1691 // So device-only functions are the only things we skip. 1692 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1693 Global->hasAttr<CUDADeviceAttr>()) 1694 return; 1695 1696 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1697 "Expected Variable or Function"); 1698 } 1699 } 1700 1701 if (LangOpts.OpenMP) { 1702 // If this is OpenMP device, check if it is legal to emit this global 1703 // normally. 1704 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1705 return; 1706 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1707 if (MustBeEmitted(Global)) 1708 EmitOMPDeclareReduction(DRD); 1709 return; 1710 } 1711 } 1712 1713 // Ignore declarations, they will be emitted on their first use. 1714 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1715 // Forward declarations are emitted lazily on first use. 1716 if (!FD->doesThisDeclarationHaveABody()) { 1717 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1718 return; 1719 1720 StringRef MangledName = getMangledName(GD); 1721 1722 // Compute the function info and LLVM type. 1723 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1724 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1725 1726 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1727 /*DontDefer=*/false); 1728 return; 1729 } 1730 } else { 1731 const auto *VD = cast<VarDecl>(Global); 1732 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1733 // We need to emit device-side global CUDA variables even if a 1734 // variable does not have a definition -- we still need to define 1735 // host-side shadow for it. 1736 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1737 !VD->hasDefinition() && 1738 (VD->hasAttr<CUDAConstantAttr>() || 1739 VD->hasAttr<CUDADeviceAttr>()); 1740 if (!MustEmitForCuda && 1741 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1742 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1743 // If this declaration may have caused an inline variable definition to 1744 // change linkage, make sure that it's emitted. 1745 if (Context.getInlineVariableDefinitionKind(VD) == 1746 ASTContext::InlineVariableDefinitionKind::Strong) 1747 GetAddrOfGlobalVar(VD); 1748 return; 1749 } 1750 } 1751 1752 // Defer code generation to first use when possible, e.g. if this is an inline 1753 // function. If the global must always be emitted, do it eagerly if possible 1754 // to benefit from cache locality. 1755 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1756 // Emit the definition if it can't be deferred. 1757 EmitGlobalDefinition(GD); 1758 return; 1759 } 1760 1761 // If we're deferring emission of a C++ variable with an 1762 // initializer, remember the order in which it appeared in the file. 1763 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1764 cast<VarDecl>(Global)->hasInit()) { 1765 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1766 CXXGlobalInits.push_back(nullptr); 1767 } 1768 1769 StringRef MangledName = getMangledName(GD); 1770 if (GetGlobalValue(MangledName) != nullptr) { 1771 // The value has already been used and should therefore be emitted. 1772 addDeferredDeclToEmit(GD); 1773 } else if (MustBeEmitted(Global)) { 1774 // The value must be emitted, but cannot be emitted eagerly. 1775 assert(!MayBeEmittedEagerly(Global)); 1776 addDeferredDeclToEmit(GD); 1777 } else { 1778 // Otherwise, remember that we saw a deferred decl with this name. The 1779 // first use of the mangled name will cause it to move into 1780 // DeferredDeclsToEmit. 1781 DeferredDecls[MangledName] = GD; 1782 } 1783 } 1784 1785 // Check if T is a class type with a destructor that's not dllimport. 1786 static bool HasNonDllImportDtor(QualType T) { 1787 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1788 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1789 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1790 return true; 1791 1792 return false; 1793 } 1794 1795 namespace { 1796 struct FunctionIsDirectlyRecursive : 1797 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1798 const StringRef Name; 1799 const Builtin::Context &BI; 1800 bool Result; 1801 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1802 Name(N), BI(C), Result(false) { 1803 } 1804 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1805 1806 bool TraverseCallExpr(CallExpr *E) { 1807 const FunctionDecl *FD = E->getDirectCallee(); 1808 if (!FD) 1809 return true; 1810 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1811 if (Attr && Name == Attr->getLabel()) { 1812 Result = true; 1813 return false; 1814 } 1815 unsigned BuiltinID = FD->getBuiltinID(); 1816 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1817 return true; 1818 StringRef BuiltinName = BI.getName(BuiltinID); 1819 if (BuiltinName.startswith("__builtin_") && 1820 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1821 Result = true; 1822 return false; 1823 } 1824 return true; 1825 } 1826 }; 1827 1828 // Make sure we're not referencing non-imported vars or functions. 1829 struct DLLImportFunctionVisitor 1830 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1831 bool SafeToInline = true; 1832 1833 bool shouldVisitImplicitCode() const { return true; } 1834 1835 bool VisitVarDecl(VarDecl *VD) { 1836 if (VD->getTLSKind()) { 1837 // A thread-local variable cannot be imported. 1838 SafeToInline = false; 1839 return SafeToInline; 1840 } 1841 1842 // A variable definition might imply a destructor call. 1843 if (VD->isThisDeclarationADefinition()) 1844 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1845 1846 return SafeToInline; 1847 } 1848 1849 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1850 if (const auto *D = E->getTemporary()->getDestructor()) 1851 SafeToInline = D->hasAttr<DLLImportAttr>(); 1852 return SafeToInline; 1853 } 1854 1855 bool VisitDeclRefExpr(DeclRefExpr *E) { 1856 ValueDecl *VD = E->getDecl(); 1857 if (isa<FunctionDecl>(VD)) 1858 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1859 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1860 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1861 return SafeToInline; 1862 } 1863 1864 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1865 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1866 return SafeToInline; 1867 } 1868 1869 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1870 CXXMethodDecl *M = E->getMethodDecl(); 1871 if (!M) { 1872 // Call through a pointer to member function. This is safe to inline. 1873 SafeToInline = true; 1874 } else { 1875 SafeToInline = M->hasAttr<DLLImportAttr>(); 1876 } 1877 return SafeToInline; 1878 } 1879 1880 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1881 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1882 return SafeToInline; 1883 } 1884 1885 bool VisitCXXNewExpr(CXXNewExpr *E) { 1886 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1887 return SafeToInline; 1888 } 1889 }; 1890 } 1891 1892 // isTriviallyRecursive - Check if this function calls another 1893 // decl that, because of the asm attribute or the other decl being a builtin, 1894 // ends up pointing to itself. 1895 bool 1896 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1897 StringRef Name; 1898 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1899 // asm labels are a special kind of mangling we have to support. 1900 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1901 if (!Attr) 1902 return false; 1903 Name = Attr->getLabel(); 1904 } else { 1905 Name = FD->getName(); 1906 } 1907 1908 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1909 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1910 return Walker.Result; 1911 } 1912 1913 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1914 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1915 return true; 1916 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1917 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1918 return false; 1919 1920 if (F->hasAttr<DLLImportAttr>()) { 1921 // Check whether it would be safe to inline this dllimport function. 1922 DLLImportFunctionVisitor Visitor; 1923 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1924 if (!Visitor.SafeToInline) 1925 return false; 1926 1927 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1928 // Implicit destructor invocations aren't captured in the AST, so the 1929 // check above can't see them. Check for them manually here. 1930 for (const Decl *Member : Dtor->getParent()->decls()) 1931 if (isa<FieldDecl>(Member)) 1932 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1933 return false; 1934 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1935 if (HasNonDllImportDtor(B.getType())) 1936 return false; 1937 } 1938 } 1939 1940 // PR9614. Avoid cases where the source code is lying to us. An available 1941 // externally function should have an equivalent function somewhere else, 1942 // but a function that calls itself is clearly not equivalent to the real 1943 // implementation. 1944 // This happens in glibc's btowc and in some configure checks. 1945 return !isTriviallyRecursive(F); 1946 } 1947 1948 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 1949 return CodeGenOpts.OptimizationLevel > 0; 1950 } 1951 1952 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1953 const auto *D = cast<ValueDecl>(GD.getDecl()); 1954 1955 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1956 Context.getSourceManager(), 1957 "Generating code for declaration"); 1958 1959 if (isa<FunctionDecl>(D)) { 1960 // At -O0, don't generate IR for functions with available_externally 1961 // linkage. 1962 if (!shouldEmitFunction(GD)) 1963 return; 1964 1965 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1966 // Make sure to emit the definition(s) before we emit the thunks. 1967 // This is necessary for the generation of certain thunks. 1968 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1969 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1970 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1971 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1972 else 1973 EmitGlobalFunctionDefinition(GD, GV); 1974 1975 if (Method->isVirtual()) 1976 getVTables().EmitThunks(GD); 1977 1978 return; 1979 } 1980 1981 return EmitGlobalFunctionDefinition(GD, GV); 1982 } 1983 1984 if (const auto *VD = dyn_cast<VarDecl>(D)) 1985 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1986 1987 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1988 } 1989 1990 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1991 llvm::Function *NewFn); 1992 1993 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1994 /// module, create and return an llvm Function with the specified type. If there 1995 /// is something in the module with the specified name, return it potentially 1996 /// bitcasted to the right type. 1997 /// 1998 /// If D is non-null, it specifies a decl that correspond to this. This is used 1999 /// to set the attributes on the function when it is first created. 2000 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2001 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2002 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2003 ForDefinition_t IsForDefinition) { 2004 const Decl *D = GD.getDecl(); 2005 2006 // Lookup the entry, lazily creating it if necessary. 2007 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2008 if (Entry) { 2009 if (WeakRefReferences.erase(Entry)) { 2010 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2011 if (FD && !FD->hasAttr<WeakAttr>()) 2012 Entry->setLinkage(llvm::Function::ExternalLinkage); 2013 } 2014 2015 // Handle dropped DLL attributes. 2016 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2017 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2018 2019 // If there are two attempts to define the same mangled name, issue an 2020 // error. 2021 if (IsForDefinition && !Entry->isDeclaration()) { 2022 GlobalDecl OtherGD; 2023 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2024 // to make sure that we issue an error only once. 2025 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2026 (GD.getCanonicalDecl().getDecl() != 2027 OtherGD.getCanonicalDecl().getDecl()) && 2028 DiagnosedConflictingDefinitions.insert(GD).second) { 2029 getDiags().Report(D->getLocation(), 2030 diag::err_duplicate_mangled_name); 2031 getDiags().Report(OtherGD.getDecl()->getLocation(), 2032 diag::note_previous_definition); 2033 } 2034 } 2035 2036 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2037 (Entry->getType()->getElementType() == Ty)) { 2038 return Entry; 2039 } 2040 2041 // Make sure the result is of the correct type. 2042 // (If function is requested for a definition, we always need to create a new 2043 // function, not just return a bitcast.) 2044 if (!IsForDefinition) 2045 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2046 } 2047 2048 // This function doesn't have a complete type (for example, the return 2049 // type is an incomplete struct). Use a fake type instead, and make 2050 // sure not to try to set attributes. 2051 bool IsIncompleteFunction = false; 2052 2053 llvm::FunctionType *FTy; 2054 if (isa<llvm::FunctionType>(Ty)) { 2055 FTy = cast<llvm::FunctionType>(Ty); 2056 } else { 2057 FTy = llvm::FunctionType::get(VoidTy, false); 2058 IsIncompleteFunction = true; 2059 } 2060 2061 llvm::Function *F = 2062 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2063 Entry ? StringRef() : MangledName, &getModule()); 2064 2065 // If we already created a function with the same mangled name (but different 2066 // type) before, take its name and add it to the list of functions to be 2067 // replaced with F at the end of CodeGen. 2068 // 2069 // This happens if there is a prototype for a function (e.g. "int f()") and 2070 // then a definition of a different type (e.g. "int f(int x)"). 2071 if (Entry) { 2072 F->takeName(Entry); 2073 2074 // This might be an implementation of a function without a prototype, in 2075 // which case, try to do special replacement of calls which match the new 2076 // prototype. The really key thing here is that we also potentially drop 2077 // arguments from the call site so as to make a direct call, which makes the 2078 // inliner happier and suppresses a number of optimizer warnings (!) about 2079 // dropping arguments. 2080 if (!Entry->use_empty()) { 2081 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2082 Entry->removeDeadConstantUsers(); 2083 } 2084 2085 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2086 F, Entry->getType()->getElementType()->getPointerTo()); 2087 addGlobalValReplacement(Entry, BC); 2088 } 2089 2090 assert(F->getName() == MangledName && "name was uniqued!"); 2091 if (D) 2092 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2093 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2094 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2095 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2096 } 2097 2098 if (!DontDefer) { 2099 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2100 // each other bottoming out with the base dtor. Therefore we emit non-base 2101 // dtors on usage, even if there is no dtor definition in the TU. 2102 if (D && isa<CXXDestructorDecl>(D) && 2103 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2104 GD.getDtorType())) 2105 addDeferredDeclToEmit(GD); 2106 2107 // This is the first use or definition of a mangled name. If there is a 2108 // deferred decl with this name, remember that we need to emit it at the end 2109 // of the file. 2110 auto DDI = DeferredDecls.find(MangledName); 2111 if (DDI != DeferredDecls.end()) { 2112 // Move the potentially referenced deferred decl to the 2113 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2114 // don't need it anymore). 2115 addDeferredDeclToEmit(DDI->second); 2116 DeferredDecls.erase(DDI); 2117 2118 // Otherwise, there are cases we have to worry about where we're 2119 // using a declaration for which we must emit a definition but where 2120 // we might not find a top-level definition: 2121 // - member functions defined inline in their classes 2122 // - friend functions defined inline in some class 2123 // - special member functions with implicit definitions 2124 // If we ever change our AST traversal to walk into class methods, 2125 // this will be unnecessary. 2126 // 2127 // We also don't emit a definition for a function if it's going to be an 2128 // entry in a vtable, unless it's already marked as used. 2129 } else if (getLangOpts().CPlusPlus && D) { 2130 // Look for a declaration that's lexically in a record. 2131 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2132 FD = FD->getPreviousDecl()) { 2133 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2134 if (FD->doesThisDeclarationHaveABody()) { 2135 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2136 break; 2137 } 2138 } 2139 } 2140 } 2141 } 2142 2143 // Make sure the result is of the requested type. 2144 if (!IsIncompleteFunction) { 2145 assert(F->getType()->getElementType() == Ty); 2146 return F; 2147 } 2148 2149 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2150 return llvm::ConstantExpr::getBitCast(F, PTy); 2151 } 2152 2153 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2154 /// non-null, then this function will use the specified type if it has to 2155 /// create it (this occurs when we see a definition of the function). 2156 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2157 llvm::Type *Ty, 2158 bool ForVTable, 2159 bool DontDefer, 2160 ForDefinition_t IsForDefinition) { 2161 // If there was no specific requested type, just convert it now. 2162 if (!Ty) { 2163 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2164 auto CanonTy = Context.getCanonicalType(FD->getType()); 2165 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2166 } 2167 2168 StringRef MangledName = getMangledName(GD); 2169 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2170 /*IsThunk=*/false, llvm::AttributeList(), 2171 IsForDefinition); 2172 } 2173 2174 static const FunctionDecl * 2175 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2176 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2177 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2178 2179 IdentifierInfo &CII = C.Idents.get(Name); 2180 for (const auto &Result : DC->lookup(&CII)) 2181 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2182 return FD; 2183 2184 if (!C.getLangOpts().CPlusPlus) 2185 return nullptr; 2186 2187 // Demangle the premangled name from getTerminateFn() 2188 IdentifierInfo &CXXII = 2189 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2190 ? C.Idents.get("terminate") 2191 : C.Idents.get(Name); 2192 2193 for (const auto &N : {"__cxxabiv1", "std"}) { 2194 IdentifierInfo &NS = C.Idents.get(N); 2195 for (const auto &Result : DC->lookup(&NS)) { 2196 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2197 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2198 for (const auto &Result : LSD->lookup(&NS)) 2199 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2200 break; 2201 2202 if (ND) 2203 for (const auto &Result : ND->lookup(&CXXII)) 2204 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2205 return FD; 2206 } 2207 } 2208 2209 return nullptr; 2210 } 2211 2212 /// CreateRuntimeFunction - Create a new runtime function with the specified 2213 /// type and name. 2214 llvm::Constant * 2215 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2216 llvm::AttributeList ExtraAttrs, 2217 bool Local) { 2218 llvm::Constant *C = 2219 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2220 /*DontDefer=*/false, /*IsThunk=*/false, 2221 ExtraAttrs); 2222 2223 if (auto *F = dyn_cast<llvm::Function>(C)) { 2224 if (F->empty()) { 2225 F->setCallingConv(getRuntimeCC()); 2226 2227 if (!Local && getTriple().isOSBinFormatCOFF() && 2228 !getCodeGenOpts().LTOVisibilityPublicStd) { 2229 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2230 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2231 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2232 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2233 } 2234 } 2235 } 2236 } 2237 2238 return C; 2239 } 2240 2241 /// CreateBuiltinFunction - Create a new builtin function with the specified 2242 /// type and name. 2243 llvm::Constant * 2244 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2245 llvm::AttributeList ExtraAttrs) { 2246 llvm::Constant *C = 2247 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2248 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2249 if (auto *F = dyn_cast<llvm::Function>(C)) 2250 if (F->empty()) 2251 F->setCallingConv(getBuiltinCC()); 2252 return C; 2253 } 2254 2255 /// isTypeConstant - Determine whether an object of this type can be emitted 2256 /// as a constant. 2257 /// 2258 /// If ExcludeCtor is true, the duration when the object's constructor runs 2259 /// will not be considered. The caller will need to verify that the object is 2260 /// not written to during its construction. 2261 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2262 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2263 return false; 2264 2265 if (Context.getLangOpts().CPlusPlus) { 2266 if (const CXXRecordDecl *Record 2267 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2268 return ExcludeCtor && !Record->hasMutableFields() && 2269 Record->hasTrivialDestructor(); 2270 } 2271 2272 return true; 2273 } 2274 2275 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2276 /// create and return an llvm GlobalVariable with the specified type. If there 2277 /// is something in the module with the specified name, return it potentially 2278 /// bitcasted to the right type. 2279 /// 2280 /// If D is non-null, it specifies a decl that correspond to this. This is used 2281 /// to set the attributes on the global when it is first created. 2282 /// 2283 /// If IsForDefinition is true, it is guranteed that an actual global with 2284 /// type Ty will be returned, not conversion of a variable with the same 2285 /// mangled name but some other type. 2286 llvm::Constant * 2287 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2288 llvm::PointerType *Ty, 2289 const VarDecl *D, 2290 ForDefinition_t IsForDefinition) { 2291 // Lookup the entry, lazily creating it if necessary. 2292 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2293 if (Entry) { 2294 if (WeakRefReferences.erase(Entry)) { 2295 if (D && !D->hasAttr<WeakAttr>()) 2296 Entry->setLinkage(llvm::Function::ExternalLinkage); 2297 } 2298 2299 // Handle dropped DLL attributes. 2300 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2301 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2302 2303 if (Entry->getType() == Ty) 2304 return Entry; 2305 2306 // If there are two attempts to define the same mangled name, issue an 2307 // error. 2308 if (IsForDefinition && !Entry->isDeclaration()) { 2309 GlobalDecl OtherGD; 2310 const VarDecl *OtherD; 2311 2312 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2313 // to make sure that we issue an error only once. 2314 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2315 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2316 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2317 OtherD->hasInit() && 2318 DiagnosedConflictingDefinitions.insert(D).second) { 2319 getDiags().Report(D->getLocation(), 2320 diag::err_duplicate_mangled_name); 2321 getDiags().Report(OtherGD.getDecl()->getLocation(), 2322 diag::note_previous_definition); 2323 } 2324 } 2325 2326 // Make sure the result is of the correct type. 2327 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2328 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2329 2330 // (If global is requested for a definition, we always need to create a new 2331 // global, not just return a bitcast.) 2332 if (!IsForDefinition) 2333 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2334 } 2335 2336 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2337 auto *GV = new llvm::GlobalVariable( 2338 getModule(), Ty->getElementType(), false, 2339 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2340 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2341 2342 // If we already created a global with the same mangled name (but different 2343 // type) before, take its name and remove it from its parent. 2344 if (Entry) { 2345 GV->takeName(Entry); 2346 2347 if (!Entry->use_empty()) { 2348 llvm::Constant *NewPtrForOldDecl = 2349 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2350 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2351 } 2352 2353 Entry->eraseFromParent(); 2354 } 2355 2356 // This is the first use or definition of a mangled name. If there is a 2357 // deferred decl with this name, remember that we need to emit it at the end 2358 // of the file. 2359 auto DDI = DeferredDecls.find(MangledName); 2360 if (DDI != DeferredDecls.end()) { 2361 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2362 // list, and remove it from DeferredDecls (since we don't need it anymore). 2363 addDeferredDeclToEmit(DDI->second); 2364 DeferredDecls.erase(DDI); 2365 } 2366 2367 // Handle things which are present even on external declarations. 2368 if (D) { 2369 // FIXME: This code is overly simple and should be merged with other global 2370 // handling. 2371 GV->setConstant(isTypeConstant(D->getType(), false)); 2372 2373 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2374 2375 setLinkageAndVisibilityForGV(GV, D); 2376 2377 if (D->getTLSKind()) { 2378 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2379 CXXThreadLocals.push_back(D); 2380 setTLSMode(GV, *D); 2381 } 2382 2383 // If required by the ABI, treat declarations of static data members with 2384 // inline initializers as definitions. 2385 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2386 EmitGlobalVarDefinition(D); 2387 } 2388 2389 // Handle XCore specific ABI requirements. 2390 if (getTriple().getArch() == llvm::Triple::xcore && 2391 D->getLanguageLinkage() == CLanguageLinkage && 2392 D->getType().isConstant(Context) && 2393 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2394 GV->setSection(".cp.rodata"); 2395 } 2396 2397 if (AddrSpace != Ty->getAddressSpace()) 2398 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2399 2400 return GV; 2401 } 2402 2403 llvm::Constant * 2404 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2405 ForDefinition_t IsForDefinition) { 2406 const Decl *D = GD.getDecl(); 2407 if (isa<CXXConstructorDecl>(D)) 2408 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2409 getFromCtorType(GD.getCtorType()), 2410 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2411 /*DontDefer=*/false, IsForDefinition); 2412 else if (isa<CXXDestructorDecl>(D)) 2413 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2414 getFromDtorType(GD.getDtorType()), 2415 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2416 /*DontDefer=*/false, IsForDefinition); 2417 else if (isa<CXXMethodDecl>(D)) { 2418 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2419 cast<CXXMethodDecl>(D)); 2420 auto Ty = getTypes().GetFunctionType(*FInfo); 2421 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2422 IsForDefinition); 2423 } else if (isa<FunctionDecl>(D)) { 2424 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2425 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2426 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2427 IsForDefinition); 2428 } else 2429 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2430 IsForDefinition); 2431 } 2432 2433 llvm::GlobalVariable * 2434 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2435 llvm::Type *Ty, 2436 llvm::GlobalValue::LinkageTypes Linkage) { 2437 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2438 llvm::GlobalVariable *OldGV = nullptr; 2439 2440 if (GV) { 2441 // Check if the variable has the right type. 2442 if (GV->getType()->getElementType() == Ty) 2443 return GV; 2444 2445 // Because C++ name mangling, the only way we can end up with an already 2446 // existing global with the same name is if it has been declared extern "C". 2447 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2448 OldGV = GV; 2449 } 2450 2451 // Create a new variable. 2452 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2453 Linkage, nullptr, Name); 2454 2455 if (OldGV) { 2456 // Replace occurrences of the old variable if needed. 2457 GV->takeName(OldGV); 2458 2459 if (!OldGV->use_empty()) { 2460 llvm::Constant *NewPtrForOldDecl = 2461 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2462 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2463 } 2464 2465 OldGV->eraseFromParent(); 2466 } 2467 2468 if (supportsCOMDAT() && GV->isWeakForLinker() && 2469 !GV->hasAvailableExternallyLinkage()) 2470 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2471 2472 return GV; 2473 } 2474 2475 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2476 /// given global variable. If Ty is non-null and if the global doesn't exist, 2477 /// then it will be created with the specified type instead of whatever the 2478 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2479 /// that an actual global with type Ty will be returned, not conversion of a 2480 /// variable with the same mangled name but some other type. 2481 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2482 llvm::Type *Ty, 2483 ForDefinition_t IsForDefinition) { 2484 assert(D->hasGlobalStorage() && "Not a global variable"); 2485 QualType ASTTy = D->getType(); 2486 if (!Ty) 2487 Ty = getTypes().ConvertTypeForMem(ASTTy); 2488 2489 llvm::PointerType *PTy = 2490 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2491 2492 StringRef MangledName = getMangledName(D); 2493 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2494 } 2495 2496 /// CreateRuntimeVariable - Create a new runtime global variable with the 2497 /// specified type and name. 2498 llvm::Constant * 2499 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2500 StringRef Name) { 2501 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2502 } 2503 2504 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2505 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2506 2507 StringRef MangledName = getMangledName(D); 2508 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2509 2510 // We already have a definition, not declaration, with the same mangled name. 2511 // Emitting of declaration is not required (and actually overwrites emitted 2512 // definition). 2513 if (GV && !GV->isDeclaration()) 2514 return; 2515 2516 // If we have not seen a reference to this variable yet, place it into the 2517 // deferred declarations table to be emitted if needed later. 2518 if (!MustBeEmitted(D) && !GV) { 2519 DeferredDecls[MangledName] = D; 2520 return; 2521 } 2522 2523 // The tentative definition is the only definition. 2524 EmitGlobalVarDefinition(D); 2525 } 2526 2527 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2528 return Context.toCharUnitsFromBits( 2529 getDataLayout().getTypeStoreSizeInBits(Ty)); 2530 } 2531 2532 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2533 unsigned AddrSpace) { 2534 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2535 if (D->hasAttr<CUDAConstantAttr>()) 2536 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2537 else if (D->hasAttr<CUDASharedAttr>()) 2538 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2539 else 2540 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2541 } 2542 2543 return AddrSpace; 2544 } 2545 2546 template<typename SomeDecl> 2547 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2548 llvm::GlobalValue *GV) { 2549 if (!getLangOpts().CPlusPlus) 2550 return; 2551 2552 // Must have 'used' attribute, or else inline assembly can't rely on 2553 // the name existing. 2554 if (!D->template hasAttr<UsedAttr>()) 2555 return; 2556 2557 // Must have internal linkage and an ordinary name. 2558 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2559 return; 2560 2561 // Must be in an extern "C" context. Entities declared directly within 2562 // a record are not extern "C" even if the record is in such a context. 2563 const SomeDecl *First = D->getFirstDecl(); 2564 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2565 return; 2566 2567 // OK, this is an internal linkage entity inside an extern "C" linkage 2568 // specification. Make a note of that so we can give it the "expected" 2569 // mangled name if nothing else is using that name. 2570 std::pair<StaticExternCMap::iterator, bool> R = 2571 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2572 2573 // If we have multiple internal linkage entities with the same name 2574 // in extern "C" regions, none of them gets that name. 2575 if (!R.second) 2576 R.first->second = nullptr; 2577 } 2578 2579 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2580 if (!CGM.supportsCOMDAT()) 2581 return false; 2582 2583 if (D.hasAttr<SelectAnyAttr>()) 2584 return true; 2585 2586 GVALinkage Linkage; 2587 if (auto *VD = dyn_cast<VarDecl>(&D)) 2588 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2589 else 2590 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2591 2592 switch (Linkage) { 2593 case GVA_Internal: 2594 case GVA_AvailableExternally: 2595 case GVA_StrongExternal: 2596 return false; 2597 case GVA_DiscardableODR: 2598 case GVA_StrongODR: 2599 return true; 2600 } 2601 llvm_unreachable("No such linkage"); 2602 } 2603 2604 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2605 llvm::GlobalObject &GO) { 2606 if (!shouldBeInCOMDAT(*this, D)) 2607 return; 2608 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2609 } 2610 2611 /// Pass IsTentative as true if you want to create a tentative definition. 2612 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2613 bool IsTentative) { 2614 // OpenCL global variables of sampler type are translated to function calls, 2615 // therefore no need to be translated. 2616 QualType ASTTy = D->getType(); 2617 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2618 return; 2619 2620 llvm::Constant *Init = nullptr; 2621 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2622 bool NeedsGlobalCtor = false; 2623 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2624 2625 const VarDecl *InitDecl; 2626 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2627 2628 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2629 // as part of their declaration." Sema has already checked for 2630 // error cases, so we just need to set Init to UndefValue. 2631 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2632 D->hasAttr<CUDASharedAttr>()) 2633 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2634 else if (!InitExpr) { 2635 // This is a tentative definition; tentative definitions are 2636 // implicitly initialized with { 0 }. 2637 // 2638 // Note that tentative definitions are only emitted at the end of 2639 // a translation unit, so they should never have incomplete 2640 // type. In addition, EmitTentativeDefinition makes sure that we 2641 // never attempt to emit a tentative definition if a real one 2642 // exists. A use may still exists, however, so we still may need 2643 // to do a RAUW. 2644 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2645 Init = EmitNullConstant(D->getType()); 2646 } else { 2647 initializedGlobalDecl = GlobalDecl(D); 2648 Init = EmitConstantInit(*InitDecl); 2649 2650 if (!Init) { 2651 QualType T = InitExpr->getType(); 2652 if (D->getType()->isReferenceType()) 2653 T = D->getType(); 2654 2655 if (getLangOpts().CPlusPlus) { 2656 Init = EmitNullConstant(T); 2657 NeedsGlobalCtor = true; 2658 } else { 2659 ErrorUnsupported(D, "static initializer"); 2660 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2661 } 2662 } else { 2663 // We don't need an initializer, so remove the entry for the delayed 2664 // initializer position (just in case this entry was delayed) if we 2665 // also don't need to register a destructor. 2666 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2667 DelayedCXXInitPosition.erase(D); 2668 } 2669 } 2670 2671 llvm::Type* InitType = Init->getType(); 2672 llvm::Constant *Entry = 2673 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2674 2675 // Strip off a bitcast if we got one back. 2676 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2677 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2678 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2679 // All zero index gep. 2680 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2681 Entry = CE->getOperand(0); 2682 } 2683 2684 // Entry is now either a Function or GlobalVariable. 2685 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2686 2687 // We have a definition after a declaration with the wrong type. 2688 // We must make a new GlobalVariable* and update everything that used OldGV 2689 // (a declaration or tentative definition) with the new GlobalVariable* 2690 // (which will be a definition). 2691 // 2692 // This happens if there is a prototype for a global (e.g. 2693 // "extern int x[];") and then a definition of a different type (e.g. 2694 // "int x[10];"). This also happens when an initializer has a different type 2695 // from the type of the global (this happens with unions). 2696 if (!GV || 2697 GV->getType()->getElementType() != InitType || 2698 GV->getType()->getAddressSpace() != 2699 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2700 2701 // Move the old entry aside so that we'll create a new one. 2702 Entry->setName(StringRef()); 2703 2704 // Make a new global with the correct type, this is now guaranteed to work. 2705 GV = cast<llvm::GlobalVariable>( 2706 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2707 2708 // Replace all uses of the old global with the new global 2709 llvm::Constant *NewPtrForOldDecl = 2710 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2711 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2712 2713 // Erase the old global, since it is no longer used. 2714 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2715 } 2716 2717 MaybeHandleStaticInExternC(D, GV); 2718 2719 if (D->hasAttr<AnnotateAttr>()) 2720 AddGlobalAnnotations(D, GV); 2721 2722 // Set the llvm linkage type as appropriate. 2723 llvm::GlobalValue::LinkageTypes Linkage = 2724 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2725 2726 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2727 // the device. [...]" 2728 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2729 // __device__, declares a variable that: [...] 2730 // Is accessible from all the threads within the grid and from the host 2731 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2732 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2733 if (GV && LangOpts.CUDA) { 2734 if (LangOpts.CUDAIsDevice) { 2735 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2736 GV->setExternallyInitialized(true); 2737 } else { 2738 // Host-side shadows of external declarations of device-side 2739 // global variables become internal definitions. These have to 2740 // be internal in order to prevent name conflicts with global 2741 // host variables with the same name in a different TUs. 2742 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2743 Linkage = llvm::GlobalValue::InternalLinkage; 2744 2745 // Shadow variables and their properties must be registered 2746 // with CUDA runtime. 2747 unsigned Flags = 0; 2748 if (!D->hasDefinition()) 2749 Flags |= CGCUDARuntime::ExternDeviceVar; 2750 if (D->hasAttr<CUDAConstantAttr>()) 2751 Flags |= CGCUDARuntime::ConstantDeviceVar; 2752 getCUDARuntime().registerDeviceVar(*GV, Flags); 2753 } else if (D->hasAttr<CUDASharedAttr>()) 2754 // __shared__ variables are odd. Shadows do get created, but 2755 // they are not registered with the CUDA runtime, so they 2756 // can't really be used to access their device-side 2757 // counterparts. It's not clear yet whether it's nvcc's bug or 2758 // a feature, but we've got to do the same for compatibility. 2759 Linkage = llvm::GlobalValue::InternalLinkage; 2760 } 2761 } 2762 GV->setInitializer(Init); 2763 2764 // If it is safe to mark the global 'constant', do so now. 2765 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2766 isTypeConstant(D->getType(), true)); 2767 2768 // If it is in a read-only section, mark it 'constant'. 2769 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2770 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2771 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2772 GV->setConstant(true); 2773 } 2774 2775 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2776 2777 2778 // On Darwin, if the normal linkage of a C++ thread_local variable is 2779 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2780 // copies within a linkage unit; otherwise, the backing variable has 2781 // internal linkage and all accesses should just be calls to the 2782 // Itanium-specified entry point, which has the normal linkage of the 2783 // variable. This is to preserve the ability to change the implementation 2784 // behind the scenes. 2785 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2786 Context.getTargetInfo().getTriple().isOSDarwin() && 2787 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2788 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2789 Linkage = llvm::GlobalValue::InternalLinkage; 2790 2791 GV->setLinkage(Linkage); 2792 if (D->hasAttr<DLLImportAttr>()) 2793 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2794 else if (D->hasAttr<DLLExportAttr>()) 2795 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2796 else 2797 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2798 2799 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2800 // common vars aren't constant even if declared const. 2801 GV->setConstant(false); 2802 // Tentative definition of global variables may be initialized with 2803 // non-zero null pointers. In this case they should have weak linkage 2804 // since common linkage must have zero initializer and must not have 2805 // explicit section therefore cannot have non-zero initial value. 2806 if (!GV->getInitializer()->isNullValue()) 2807 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2808 } 2809 2810 setNonAliasAttributes(D, GV); 2811 2812 if (D->getTLSKind() && !GV->isThreadLocal()) { 2813 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2814 CXXThreadLocals.push_back(D); 2815 setTLSMode(GV, *D); 2816 } 2817 2818 maybeSetTrivialComdat(*D, *GV); 2819 2820 // Emit the initializer function if necessary. 2821 if (NeedsGlobalCtor || NeedsGlobalDtor) 2822 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2823 2824 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2825 2826 // Emit global variable debug information. 2827 if (CGDebugInfo *DI = getModuleDebugInfo()) 2828 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2829 DI->EmitGlobalVariable(GV, D); 2830 } 2831 2832 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2833 CodeGenModule &CGM, const VarDecl *D, 2834 bool NoCommon) { 2835 // Don't give variables common linkage if -fno-common was specified unless it 2836 // was overridden by a NoCommon attribute. 2837 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2838 return true; 2839 2840 // C11 6.9.2/2: 2841 // A declaration of an identifier for an object that has file scope without 2842 // an initializer, and without a storage-class specifier or with the 2843 // storage-class specifier static, constitutes a tentative definition. 2844 if (D->getInit() || D->hasExternalStorage()) 2845 return true; 2846 2847 // A variable cannot be both common and exist in a section. 2848 if (D->hasAttr<SectionAttr>()) 2849 return true; 2850 2851 // A variable cannot be both common and exist in a section. 2852 // We dont try to determine which is the right section in the front-end. 2853 // If no specialized section name is applicable, it will resort to default. 2854 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2855 D->hasAttr<PragmaClangDataSectionAttr>() || 2856 D->hasAttr<PragmaClangRodataSectionAttr>()) 2857 return true; 2858 2859 // Thread local vars aren't considered common linkage. 2860 if (D->getTLSKind()) 2861 return true; 2862 2863 // Tentative definitions marked with WeakImportAttr are true definitions. 2864 if (D->hasAttr<WeakImportAttr>()) 2865 return true; 2866 2867 // A variable cannot be both common and exist in a comdat. 2868 if (shouldBeInCOMDAT(CGM, *D)) 2869 return true; 2870 2871 // Declarations with a required alignment do not have common linkage in MSVC 2872 // mode. 2873 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2874 if (D->hasAttr<AlignedAttr>()) 2875 return true; 2876 QualType VarType = D->getType(); 2877 if (Context.isAlignmentRequired(VarType)) 2878 return true; 2879 2880 if (const auto *RT = VarType->getAs<RecordType>()) { 2881 const RecordDecl *RD = RT->getDecl(); 2882 for (const FieldDecl *FD : RD->fields()) { 2883 if (FD->isBitField()) 2884 continue; 2885 if (FD->hasAttr<AlignedAttr>()) 2886 return true; 2887 if (Context.isAlignmentRequired(FD->getType())) 2888 return true; 2889 } 2890 } 2891 } 2892 2893 return false; 2894 } 2895 2896 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2897 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2898 if (Linkage == GVA_Internal) 2899 return llvm::Function::InternalLinkage; 2900 2901 if (D->hasAttr<WeakAttr>()) { 2902 if (IsConstantVariable) 2903 return llvm::GlobalVariable::WeakODRLinkage; 2904 else 2905 return llvm::GlobalVariable::WeakAnyLinkage; 2906 } 2907 2908 // We are guaranteed to have a strong definition somewhere else, 2909 // so we can use available_externally linkage. 2910 if (Linkage == GVA_AvailableExternally) 2911 return llvm::GlobalValue::AvailableExternallyLinkage; 2912 2913 // Note that Apple's kernel linker doesn't support symbol 2914 // coalescing, so we need to avoid linkonce and weak linkages there. 2915 // Normally, this means we just map to internal, but for explicit 2916 // instantiations we'll map to external. 2917 2918 // In C++, the compiler has to emit a definition in every translation unit 2919 // that references the function. We should use linkonce_odr because 2920 // a) if all references in this translation unit are optimized away, we 2921 // don't need to codegen it. b) if the function persists, it needs to be 2922 // merged with other definitions. c) C++ has the ODR, so we know the 2923 // definition is dependable. 2924 if (Linkage == GVA_DiscardableODR) 2925 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2926 : llvm::Function::InternalLinkage; 2927 2928 // An explicit instantiation of a template has weak linkage, since 2929 // explicit instantiations can occur in multiple translation units 2930 // and must all be equivalent. However, we are not allowed to 2931 // throw away these explicit instantiations. 2932 // 2933 // We don't currently support CUDA device code spread out across multiple TUs, 2934 // so say that CUDA templates are either external (for kernels) or internal. 2935 // This lets llvm perform aggressive inter-procedural optimizations. 2936 if (Linkage == GVA_StrongODR) { 2937 if (Context.getLangOpts().AppleKext) 2938 return llvm::Function::ExternalLinkage; 2939 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2940 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2941 : llvm::Function::InternalLinkage; 2942 return llvm::Function::WeakODRLinkage; 2943 } 2944 2945 // C++ doesn't have tentative definitions and thus cannot have common 2946 // linkage. 2947 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2948 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2949 CodeGenOpts.NoCommon)) 2950 return llvm::GlobalVariable::CommonLinkage; 2951 2952 // selectany symbols are externally visible, so use weak instead of 2953 // linkonce. MSVC optimizes away references to const selectany globals, so 2954 // all definitions should be the same and ODR linkage should be used. 2955 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2956 if (D->hasAttr<SelectAnyAttr>()) 2957 return llvm::GlobalVariable::WeakODRLinkage; 2958 2959 // Otherwise, we have strong external linkage. 2960 assert(Linkage == GVA_StrongExternal); 2961 return llvm::GlobalVariable::ExternalLinkage; 2962 } 2963 2964 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2965 const VarDecl *VD, bool IsConstant) { 2966 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2967 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2968 } 2969 2970 /// Replace the uses of a function that was declared with a non-proto type. 2971 /// We want to silently drop extra arguments from call sites 2972 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2973 llvm::Function *newFn) { 2974 // Fast path. 2975 if (old->use_empty()) return; 2976 2977 llvm::Type *newRetTy = newFn->getReturnType(); 2978 SmallVector<llvm::Value*, 4> newArgs; 2979 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2980 2981 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2982 ui != ue; ) { 2983 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2984 llvm::User *user = use->getUser(); 2985 2986 // Recognize and replace uses of bitcasts. Most calls to 2987 // unprototyped functions will use bitcasts. 2988 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2989 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2990 replaceUsesOfNonProtoConstant(bitcast, newFn); 2991 continue; 2992 } 2993 2994 // Recognize calls to the function. 2995 llvm::CallSite callSite(user); 2996 if (!callSite) continue; 2997 if (!callSite.isCallee(&*use)) continue; 2998 2999 // If the return types don't match exactly, then we can't 3000 // transform this call unless it's dead. 3001 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3002 continue; 3003 3004 // Get the call site's attribute list. 3005 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3006 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3007 3008 // If the function was passed too few arguments, don't transform. 3009 unsigned newNumArgs = newFn->arg_size(); 3010 if (callSite.arg_size() < newNumArgs) continue; 3011 3012 // If extra arguments were passed, we silently drop them. 3013 // If any of the types mismatch, we don't transform. 3014 unsigned argNo = 0; 3015 bool dontTransform = false; 3016 for (llvm::Argument &A : newFn->args()) { 3017 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3018 dontTransform = true; 3019 break; 3020 } 3021 3022 // Add any parameter attributes. 3023 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3024 argNo++; 3025 } 3026 if (dontTransform) 3027 continue; 3028 3029 // Okay, we can transform this. Create the new call instruction and copy 3030 // over the required information. 3031 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3032 3033 // Copy over any operand bundles. 3034 callSite.getOperandBundlesAsDefs(newBundles); 3035 3036 llvm::CallSite newCall; 3037 if (callSite.isCall()) { 3038 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3039 callSite.getInstruction()); 3040 } else { 3041 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3042 newCall = llvm::InvokeInst::Create(newFn, 3043 oldInvoke->getNormalDest(), 3044 oldInvoke->getUnwindDest(), 3045 newArgs, newBundles, "", 3046 callSite.getInstruction()); 3047 } 3048 newArgs.clear(); // for the next iteration 3049 3050 if (!newCall->getType()->isVoidTy()) 3051 newCall->takeName(callSite.getInstruction()); 3052 newCall.setAttributes(llvm::AttributeList::get( 3053 newFn->getContext(), oldAttrs.getFnAttributes(), 3054 oldAttrs.getRetAttributes(), newArgAttrs)); 3055 newCall.setCallingConv(callSite.getCallingConv()); 3056 3057 // Finally, remove the old call, replacing any uses with the new one. 3058 if (!callSite->use_empty()) 3059 callSite->replaceAllUsesWith(newCall.getInstruction()); 3060 3061 // Copy debug location attached to CI. 3062 if (callSite->getDebugLoc()) 3063 newCall->setDebugLoc(callSite->getDebugLoc()); 3064 3065 callSite->eraseFromParent(); 3066 } 3067 } 3068 3069 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3070 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3071 /// existing call uses of the old function in the module, this adjusts them to 3072 /// call the new function directly. 3073 /// 3074 /// This is not just a cleanup: the always_inline pass requires direct calls to 3075 /// functions to be able to inline them. If there is a bitcast in the way, it 3076 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3077 /// run at -O0. 3078 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3079 llvm::Function *NewFn) { 3080 // If we're redefining a global as a function, don't transform it. 3081 if (!isa<llvm::Function>(Old)) return; 3082 3083 replaceUsesOfNonProtoConstant(Old, NewFn); 3084 } 3085 3086 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3087 auto DK = VD->isThisDeclarationADefinition(); 3088 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3089 return; 3090 3091 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3092 // If we have a definition, this might be a deferred decl. If the 3093 // instantiation is explicit, make sure we emit it at the end. 3094 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3095 GetAddrOfGlobalVar(VD); 3096 3097 EmitTopLevelDecl(VD); 3098 } 3099 3100 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3101 llvm::GlobalValue *GV) { 3102 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3103 3104 // Compute the function info and LLVM type. 3105 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3106 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3107 3108 // Get or create the prototype for the function. 3109 if (!GV || (GV->getType()->getElementType() != Ty)) 3110 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3111 /*DontDefer=*/true, 3112 ForDefinition)); 3113 3114 // Already emitted. 3115 if (!GV->isDeclaration()) 3116 return; 3117 3118 // We need to set linkage and visibility on the function before 3119 // generating code for it because various parts of IR generation 3120 // want to propagate this information down (e.g. to local static 3121 // declarations). 3122 auto *Fn = cast<llvm::Function>(GV); 3123 setFunctionLinkage(GD, Fn); 3124 setFunctionDLLStorageClass(GD, Fn); 3125 3126 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3127 setGlobalVisibility(Fn, D); 3128 3129 MaybeHandleStaticInExternC(D, Fn); 3130 3131 maybeSetTrivialComdat(*D, *Fn); 3132 3133 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3134 3135 setFunctionDefinitionAttributes(D, Fn); 3136 SetLLVMFunctionAttributesForDefinition(D, Fn); 3137 3138 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3139 AddGlobalCtor(Fn, CA->getPriority()); 3140 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3141 AddGlobalDtor(Fn, DA->getPriority()); 3142 if (D->hasAttr<AnnotateAttr>()) 3143 AddGlobalAnnotations(D, Fn); 3144 } 3145 3146 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3147 const auto *D = cast<ValueDecl>(GD.getDecl()); 3148 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3149 assert(AA && "Not an alias?"); 3150 3151 StringRef MangledName = getMangledName(GD); 3152 3153 if (AA->getAliasee() == MangledName) { 3154 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3155 return; 3156 } 3157 3158 // If there is a definition in the module, then it wins over the alias. 3159 // This is dubious, but allow it to be safe. Just ignore the alias. 3160 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3161 if (Entry && !Entry->isDeclaration()) 3162 return; 3163 3164 Aliases.push_back(GD); 3165 3166 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3167 3168 // Create a reference to the named value. This ensures that it is emitted 3169 // if a deferred decl. 3170 llvm::Constant *Aliasee; 3171 if (isa<llvm::FunctionType>(DeclTy)) 3172 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3173 /*ForVTable=*/false); 3174 else 3175 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3176 llvm::PointerType::getUnqual(DeclTy), 3177 /*D=*/nullptr); 3178 3179 // Create the new alias itself, but don't set a name yet. 3180 auto *GA = llvm::GlobalAlias::create( 3181 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3182 3183 if (Entry) { 3184 if (GA->getAliasee() == Entry) { 3185 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3186 return; 3187 } 3188 3189 assert(Entry->isDeclaration()); 3190 3191 // If there is a declaration in the module, then we had an extern followed 3192 // by the alias, as in: 3193 // extern int test6(); 3194 // ... 3195 // int test6() __attribute__((alias("test7"))); 3196 // 3197 // Remove it and replace uses of it with the alias. 3198 GA->takeName(Entry); 3199 3200 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3201 Entry->getType())); 3202 Entry->eraseFromParent(); 3203 } else { 3204 GA->setName(MangledName); 3205 } 3206 3207 // Set attributes which are particular to an alias; this is a 3208 // specialization of the attributes which may be set on a global 3209 // variable/function. 3210 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3211 D->isWeakImported()) { 3212 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3213 } 3214 3215 if (const auto *VD = dyn_cast<VarDecl>(D)) 3216 if (VD->getTLSKind()) 3217 setTLSMode(GA, *VD); 3218 3219 setAliasAttributes(D, GA); 3220 } 3221 3222 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3223 const auto *D = cast<ValueDecl>(GD.getDecl()); 3224 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3225 assert(IFA && "Not an ifunc?"); 3226 3227 StringRef MangledName = getMangledName(GD); 3228 3229 if (IFA->getResolver() == MangledName) { 3230 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3231 return; 3232 } 3233 3234 // Report an error if some definition overrides ifunc. 3235 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3236 if (Entry && !Entry->isDeclaration()) { 3237 GlobalDecl OtherGD; 3238 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3239 DiagnosedConflictingDefinitions.insert(GD).second) { 3240 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3241 Diags.Report(OtherGD.getDecl()->getLocation(), 3242 diag::note_previous_definition); 3243 } 3244 return; 3245 } 3246 3247 Aliases.push_back(GD); 3248 3249 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3250 llvm::Constant *Resolver = 3251 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3252 /*ForVTable=*/false); 3253 llvm::GlobalIFunc *GIF = 3254 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3255 "", Resolver, &getModule()); 3256 if (Entry) { 3257 if (GIF->getResolver() == Entry) { 3258 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3259 return; 3260 } 3261 assert(Entry->isDeclaration()); 3262 3263 // If there is a declaration in the module, then we had an extern followed 3264 // by the ifunc, as in: 3265 // extern int test(); 3266 // ... 3267 // int test() __attribute__((ifunc("resolver"))); 3268 // 3269 // Remove it and replace uses of it with the ifunc. 3270 GIF->takeName(Entry); 3271 3272 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3273 Entry->getType())); 3274 Entry->eraseFromParent(); 3275 } else 3276 GIF->setName(MangledName); 3277 3278 SetCommonAttributes(D, GIF); 3279 } 3280 3281 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3282 ArrayRef<llvm::Type*> Tys) { 3283 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3284 Tys); 3285 } 3286 3287 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3288 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3289 const StringLiteral *Literal, bool TargetIsLSB, 3290 bool &IsUTF16, unsigned &StringLength) { 3291 StringRef String = Literal->getString(); 3292 unsigned NumBytes = String.size(); 3293 3294 // Check for simple case. 3295 if (!Literal->containsNonAsciiOrNull()) { 3296 StringLength = NumBytes; 3297 return *Map.insert(std::make_pair(String, nullptr)).first; 3298 } 3299 3300 // Otherwise, convert the UTF8 literals into a string of shorts. 3301 IsUTF16 = true; 3302 3303 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3304 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3305 llvm::UTF16 *ToPtr = &ToBuf[0]; 3306 3307 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3308 ToPtr + NumBytes, llvm::strictConversion); 3309 3310 // ConvertUTF8toUTF16 returns the length in ToPtr. 3311 StringLength = ToPtr - &ToBuf[0]; 3312 3313 // Add an explicit null. 3314 *ToPtr = 0; 3315 return *Map.insert(std::make_pair( 3316 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3317 (StringLength + 1) * 2), 3318 nullptr)).first; 3319 } 3320 3321 ConstantAddress 3322 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3323 unsigned StringLength = 0; 3324 bool isUTF16 = false; 3325 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3326 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3327 getDataLayout().isLittleEndian(), isUTF16, 3328 StringLength); 3329 3330 if (auto *C = Entry.second) 3331 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3332 3333 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3334 llvm::Constant *Zeros[] = { Zero, Zero }; 3335 3336 // If we don't already have it, get __CFConstantStringClassReference. 3337 if (!CFConstantStringClassRef) { 3338 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3339 Ty = llvm::ArrayType::get(Ty, 0); 3340 llvm::Constant *GV = 3341 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3342 3343 if (getTriple().isOSBinFormatCOFF()) { 3344 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3345 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3346 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3347 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3348 3349 const VarDecl *VD = nullptr; 3350 for (const auto &Result : DC->lookup(&II)) 3351 if ((VD = dyn_cast<VarDecl>(Result))) 3352 break; 3353 3354 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3355 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3356 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3357 } else { 3358 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3359 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3360 } 3361 } 3362 3363 // Decay array -> ptr 3364 CFConstantStringClassRef = 3365 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3366 } 3367 3368 QualType CFTy = getContext().getCFConstantStringType(); 3369 3370 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3371 3372 ConstantInitBuilder Builder(*this); 3373 auto Fields = Builder.beginStruct(STy); 3374 3375 // Class pointer. 3376 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3377 3378 // Flags. 3379 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3380 3381 // String pointer. 3382 llvm::Constant *C = nullptr; 3383 if (isUTF16) { 3384 auto Arr = llvm::makeArrayRef( 3385 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3386 Entry.first().size() / 2); 3387 C = llvm::ConstantDataArray::get(VMContext, Arr); 3388 } else { 3389 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3390 } 3391 3392 // Note: -fwritable-strings doesn't make the backing store strings of 3393 // CFStrings writable. (See <rdar://problem/10657500>) 3394 auto *GV = 3395 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3396 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3397 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3398 // Don't enforce the target's minimum global alignment, since the only use 3399 // of the string is via this class initializer. 3400 CharUnits Align = isUTF16 3401 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3402 : getContext().getTypeAlignInChars(getContext().CharTy); 3403 GV->setAlignment(Align.getQuantity()); 3404 3405 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3406 // Without it LLVM can merge the string with a non unnamed_addr one during 3407 // LTO. Doing that changes the section it ends in, which surprises ld64. 3408 if (getTriple().isOSBinFormatMachO()) 3409 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3410 : "__TEXT,__cstring,cstring_literals"); 3411 3412 // String. 3413 llvm::Constant *Str = 3414 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3415 3416 if (isUTF16) 3417 // Cast the UTF16 string to the correct type. 3418 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3419 Fields.add(Str); 3420 3421 // String length. 3422 auto Ty = getTypes().ConvertType(getContext().LongTy); 3423 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3424 3425 CharUnits Alignment = getPointerAlign(); 3426 3427 // The struct. 3428 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3429 /*isConstant=*/false, 3430 llvm::GlobalVariable::PrivateLinkage); 3431 switch (getTriple().getObjectFormat()) { 3432 case llvm::Triple::UnknownObjectFormat: 3433 llvm_unreachable("unknown file format"); 3434 case llvm::Triple::COFF: 3435 case llvm::Triple::ELF: 3436 case llvm::Triple::Wasm: 3437 GV->setSection("cfstring"); 3438 break; 3439 case llvm::Triple::MachO: 3440 GV->setSection("__DATA,__cfstring"); 3441 break; 3442 } 3443 Entry.second = GV; 3444 3445 return ConstantAddress(GV, Alignment); 3446 } 3447 3448 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3449 if (ObjCFastEnumerationStateType.isNull()) { 3450 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3451 D->startDefinition(); 3452 3453 QualType FieldTypes[] = { 3454 Context.UnsignedLongTy, 3455 Context.getPointerType(Context.getObjCIdType()), 3456 Context.getPointerType(Context.UnsignedLongTy), 3457 Context.getConstantArrayType(Context.UnsignedLongTy, 3458 llvm::APInt(32, 5), ArrayType::Normal, 0) 3459 }; 3460 3461 for (size_t i = 0; i < 4; ++i) { 3462 FieldDecl *Field = FieldDecl::Create(Context, 3463 D, 3464 SourceLocation(), 3465 SourceLocation(), nullptr, 3466 FieldTypes[i], /*TInfo=*/nullptr, 3467 /*BitWidth=*/nullptr, 3468 /*Mutable=*/false, 3469 ICIS_NoInit); 3470 Field->setAccess(AS_public); 3471 D->addDecl(Field); 3472 } 3473 3474 D->completeDefinition(); 3475 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3476 } 3477 3478 return ObjCFastEnumerationStateType; 3479 } 3480 3481 llvm::Constant * 3482 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3483 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3484 3485 // Don't emit it as the address of the string, emit the string data itself 3486 // as an inline array. 3487 if (E->getCharByteWidth() == 1) { 3488 SmallString<64> Str(E->getString()); 3489 3490 // Resize the string to the right size, which is indicated by its type. 3491 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3492 Str.resize(CAT->getSize().getZExtValue()); 3493 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3494 } 3495 3496 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3497 llvm::Type *ElemTy = AType->getElementType(); 3498 unsigned NumElements = AType->getNumElements(); 3499 3500 // Wide strings have either 2-byte or 4-byte elements. 3501 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3502 SmallVector<uint16_t, 32> Elements; 3503 Elements.reserve(NumElements); 3504 3505 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3506 Elements.push_back(E->getCodeUnit(i)); 3507 Elements.resize(NumElements); 3508 return llvm::ConstantDataArray::get(VMContext, Elements); 3509 } 3510 3511 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3512 SmallVector<uint32_t, 32> Elements; 3513 Elements.reserve(NumElements); 3514 3515 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3516 Elements.push_back(E->getCodeUnit(i)); 3517 Elements.resize(NumElements); 3518 return llvm::ConstantDataArray::get(VMContext, Elements); 3519 } 3520 3521 static llvm::GlobalVariable * 3522 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3523 CodeGenModule &CGM, StringRef GlobalName, 3524 CharUnits Alignment) { 3525 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3526 unsigned AddrSpace = 0; 3527 if (CGM.getLangOpts().OpenCL) 3528 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3529 3530 llvm::Module &M = CGM.getModule(); 3531 // Create a global variable for this string 3532 auto *GV = new llvm::GlobalVariable( 3533 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3534 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3535 GV->setAlignment(Alignment.getQuantity()); 3536 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3537 if (GV->isWeakForLinker()) { 3538 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3539 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3540 } 3541 3542 return GV; 3543 } 3544 3545 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3546 /// constant array for the given string literal. 3547 ConstantAddress 3548 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3549 StringRef Name) { 3550 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3551 3552 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3553 llvm::GlobalVariable **Entry = nullptr; 3554 if (!LangOpts.WritableStrings) { 3555 Entry = &ConstantStringMap[C]; 3556 if (auto GV = *Entry) { 3557 if (Alignment.getQuantity() > GV->getAlignment()) 3558 GV->setAlignment(Alignment.getQuantity()); 3559 return ConstantAddress(GV, Alignment); 3560 } 3561 } 3562 3563 SmallString<256> MangledNameBuffer; 3564 StringRef GlobalVariableName; 3565 llvm::GlobalValue::LinkageTypes LT; 3566 3567 // Mangle the string literal if the ABI allows for it. However, we cannot 3568 // do this if we are compiling with ASan or -fwritable-strings because they 3569 // rely on strings having normal linkage. 3570 if (!LangOpts.WritableStrings && 3571 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3572 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3573 llvm::raw_svector_ostream Out(MangledNameBuffer); 3574 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3575 3576 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3577 GlobalVariableName = MangledNameBuffer; 3578 } else { 3579 LT = llvm::GlobalValue::PrivateLinkage; 3580 GlobalVariableName = Name; 3581 } 3582 3583 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3584 if (Entry) 3585 *Entry = GV; 3586 3587 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3588 QualType()); 3589 return ConstantAddress(GV, Alignment); 3590 } 3591 3592 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3593 /// array for the given ObjCEncodeExpr node. 3594 ConstantAddress 3595 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3596 std::string Str; 3597 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3598 3599 return GetAddrOfConstantCString(Str); 3600 } 3601 3602 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3603 /// the literal and a terminating '\0' character. 3604 /// The result has pointer to array type. 3605 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3606 const std::string &Str, const char *GlobalName) { 3607 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3608 CharUnits Alignment = 3609 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3610 3611 llvm::Constant *C = 3612 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3613 3614 // Don't share any string literals if strings aren't constant. 3615 llvm::GlobalVariable **Entry = nullptr; 3616 if (!LangOpts.WritableStrings) { 3617 Entry = &ConstantStringMap[C]; 3618 if (auto GV = *Entry) { 3619 if (Alignment.getQuantity() > GV->getAlignment()) 3620 GV->setAlignment(Alignment.getQuantity()); 3621 return ConstantAddress(GV, Alignment); 3622 } 3623 } 3624 3625 // Get the default prefix if a name wasn't specified. 3626 if (!GlobalName) 3627 GlobalName = ".str"; 3628 // Create a global variable for this. 3629 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3630 GlobalName, Alignment); 3631 if (Entry) 3632 *Entry = GV; 3633 return ConstantAddress(GV, Alignment); 3634 } 3635 3636 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3637 const MaterializeTemporaryExpr *E, const Expr *Init) { 3638 assert((E->getStorageDuration() == SD_Static || 3639 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3640 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3641 3642 // If we're not materializing a subobject of the temporary, keep the 3643 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3644 QualType MaterializedType = Init->getType(); 3645 if (Init == E->GetTemporaryExpr()) 3646 MaterializedType = E->getType(); 3647 3648 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3649 3650 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3651 return ConstantAddress(Slot, Align); 3652 3653 // FIXME: If an externally-visible declaration extends multiple temporaries, 3654 // we need to give each temporary the same name in every translation unit (and 3655 // we also need to make the temporaries externally-visible). 3656 SmallString<256> Name; 3657 llvm::raw_svector_ostream Out(Name); 3658 getCXXABI().getMangleContext().mangleReferenceTemporary( 3659 VD, E->getManglingNumber(), Out); 3660 3661 APValue *Value = nullptr; 3662 if (E->getStorageDuration() == SD_Static) { 3663 // We might have a cached constant initializer for this temporary. Note 3664 // that this might have a different value from the value computed by 3665 // evaluating the initializer if the surrounding constant expression 3666 // modifies the temporary. 3667 Value = getContext().getMaterializedTemporaryValue(E, false); 3668 if (Value && Value->isUninit()) 3669 Value = nullptr; 3670 } 3671 3672 // Try evaluating it now, it might have a constant initializer. 3673 Expr::EvalResult EvalResult; 3674 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3675 !EvalResult.hasSideEffects()) 3676 Value = &EvalResult.Val; 3677 3678 llvm::Constant *InitialValue = nullptr; 3679 bool Constant = false; 3680 llvm::Type *Type; 3681 if (Value) { 3682 // The temporary has a constant initializer, use it. 3683 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3684 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3685 Type = InitialValue->getType(); 3686 } else { 3687 // No initializer, the initialization will be provided when we 3688 // initialize the declaration which performed lifetime extension. 3689 Type = getTypes().ConvertTypeForMem(MaterializedType); 3690 } 3691 3692 // Create a global variable for this lifetime-extended temporary. 3693 llvm::GlobalValue::LinkageTypes Linkage = 3694 getLLVMLinkageVarDefinition(VD, Constant); 3695 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3696 const VarDecl *InitVD; 3697 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3698 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3699 // Temporaries defined inside a class get linkonce_odr linkage because the 3700 // class can be defined in multipe translation units. 3701 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3702 } else { 3703 // There is no need for this temporary to have external linkage if the 3704 // VarDecl has external linkage. 3705 Linkage = llvm::GlobalVariable::InternalLinkage; 3706 } 3707 } 3708 unsigned AddrSpace = GetGlobalVarAddressSpace( 3709 VD, getContext().getTargetAddressSpace(MaterializedType)); 3710 auto *GV = new llvm::GlobalVariable( 3711 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3712 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3713 AddrSpace); 3714 setGlobalVisibility(GV, VD); 3715 GV->setAlignment(Align.getQuantity()); 3716 if (supportsCOMDAT() && GV->isWeakForLinker()) 3717 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3718 if (VD->getTLSKind()) 3719 setTLSMode(GV, *VD); 3720 MaterializedGlobalTemporaryMap[E] = GV; 3721 return ConstantAddress(GV, Align); 3722 } 3723 3724 /// EmitObjCPropertyImplementations - Emit information for synthesized 3725 /// properties for an implementation. 3726 void CodeGenModule::EmitObjCPropertyImplementations(const 3727 ObjCImplementationDecl *D) { 3728 for (const auto *PID : D->property_impls()) { 3729 // Dynamic is just for type-checking. 3730 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3731 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3732 3733 // Determine which methods need to be implemented, some may have 3734 // been overridden. Note that ::isPropertyAccessor is not the method 3735 // we want, that just indicates if the decl came from a 3736 // property. What we want to know is if the method is defined in 3737 // this implementation. 3738 if (!D->getInstanceMethod(PD->getGetterName())) 3739 CodeGenFunction(*this).GenerateObjCGetter( 3740 const_cast<ObjCImplementationDecl *>(D), PID); 3741 if (!PD->isReadOnly() && 3742 !D->getInstanceMethod(PD->getSetterName())) 3743 CodeGenFunction(*this).GenerateObjCSetter( 3744 const_cast<ObjCImplementationDecl *>(D), PID); 3745 } 3746 } 3747 } 3748 3749 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3750 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3751 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3752 ivar; ivar = ivar->getNextIvar()) 3753 if (ivar->getType().isDestructedType()) 3754 return true; 3755 3756 return false; 3757 } 3758 3759 static bool AllTrivialInitializers(CodeGenModule &CGM, 3760 ObjCImplementationDecl *D) { 3761 CodeGenFunction CGF(CGM); 3762 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3763 E = D->init_end(); B != E; ++B) { 3764 CXXCtorInitializer *CtorInitExp = *B; 3765 Expr *Init = CtorInitExp->getInit(); 3766 if (!CGF.isTrivialInitializer(Init)) 3767 return false; 3768 } 3769 return true; 3770 } 3771 3772 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3773 /// for an implementation. 3774 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3775 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3776 if (needsDestructMethod(D)) { 3777 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3778 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3779 ObjCMethodDecl *DTORMethod = 3780 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3781 cxxSelector, getContext().VoidTy, nullptr, D, 3782 /*isInstance=*/true, /*isVariadic=*/false, 3783 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3784 /*isDefined=*/false, ObjCMethodDecl::Required); 3785 D->addInstanceMethod(DTORMethod); 3786 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3787 D->setHasDestructors(true); 3788 } 3789 3790 // If the implementation doesn't have any ivar initializers, we don't need 3791 // a .cxx_construct. 3792 if (D->getNumIvarInitializers() == 0 || 3793 AllTrivialInitializers(*this, D)) 3794 return; 3795 3796 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3797 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3798 // The constructor returns 'self'. 3799 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3800 D->getLocation(), 3801 D->getLocation(), 3802 cxxSelector, 3803 getContext().getObjCIdType(), 3804 nullptr, D, /*isInstance=*/true, 3805 /*isVariadic=*/false, 3806 /*isPropertyAccessor=*/true, 3807 /*isImplicitlyDeclared=*/true, 3808 /*isDefined=*/false, 3809 ObjCMethodDecl::Required); 3810 D->addInstanceMethod(CTORMethod); 3811 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3812 D->setHasNonZeroConstructors(true); 3813 } 3814 3815 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3816 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3817 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3818 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3819 ErrorUnsupported(LSD, "linkage spec"); 3820 return; 3821 } 3822 3823 EmitDeclContext(LSD); 3824 } 3825 3826 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3827 for (auto *I : DC->decls()) { 3828 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3829 // are themselves considered "top-level", so EmitTopLevelDecl on an 3830 // ObjCImplDecl does not recursively visit them. We need to do that in 3831 // case they're nested inside another construct (LinkageSpecDecl / 3832 // ExportDecl) that does stop them from being considered "top-level". 3833 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3834 for (auto *M : OID->methods()) 3835 EmitTopLevelDecl(M); 3836 } 3837 3838 EmitTopLevelDecl(I); 3839 } 3840 } 3841 3842 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3843 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3844 // Ignore dependent declarations. 3845 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3846 return; 3847 3848 switch (D->getKind()) { 3849 case Decl::CXXConversion: 3850 case Decl::CXXMethod: 3851 case Decl::Function: 3852 // Skip function templates 3853 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3854 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3855 return; 3856 3857 EmitGlobal(cast<FunctionDecl>(D)); 3858 // Always provide some coverage mapping 3859 // even for the functions that aren't emitted. 3860 AddDeferredUnusedCoverageMapping(D); 3861 break; 3862 3863 case Decl::CXXDeductionGuide: 3864 // Function-like, but does not result in code emission. 3865 break; 3866 3867 case Decl::Var: 3868 case Decl::Decomposition: 3869 // Skip variable templates 3870 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3871 return; 3872 LLVM_FALLTHROUGH; 3873 case Decl::VarTemplateSpecialization: 3874 EmitGlobal(cast<VarDecl>(D)); 3875 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3876 for (auto *B : DD->bindings()) 3877 if (auto *HD = B->getHoldingVar()) 3878 EmitGlobal(HD); 3879 break; 3880 3881 // Indirect fields from global anonymous structs and unions can be 3882 // ignored; only the actual variable requires IR gen support. 3883 case Decl::IndirectField: 3884 break; 3885 3886 // C++ Decls 3887 case Decl::Namespace: 3888 EmitDeclContext(cast<NamespaceDecl>(D)); 3889 break; 3890 case Decl::CXXRecord: 3891 if (DebugInfo) { 3892 if (auto *ES = D->getASTContext().getExternalSource()) 3893 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3894 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3895 } 3896 // Emit any static data members, they may be definitions. 3897 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3898 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3899 EmitTopLevelDecl(I); 3900 break; 3901 // No code generation needed. 3902 case Decl::UsingShadow: 3903 case Decl::ClassTemplate: 3904 case Decl::VarTemplate: 3905 case Decl::VarTemplatePartialSpecialization: 3906 case Decl::FunctionTemplate: 3907 case Decl::TypeAliasTemplate: 3908 case Decl::Block: 3909 case Decl::Empty: 3910 break; 3911 case Decl::Using: // using X; [C++] 3912 if (CGDebugInfo *DI = getModuleDebugInfo()) 3913 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3914 return; 3915 case Decl::NamespaceAlias: 3916 if (CGDebugInfo *DI = getModuleDebugInfo()) 3917 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3918 return; 3919 case Decl::UsingDirective: // using namespace X; [C++] 3920 if (CGDebugInfo *DI = getModuleDebugInfo()) 3921 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3922 return; 3923 case Decl::CXXConstructor: 3924 // Skip function templates 3925 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3926 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3927 return; 3928 3929 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3930 break; 3931 case Decl::CXXDestructor: 3932 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3933 return; 3934 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3935 break; 3936 3937 case Decl::StaticAssert: 3938 // Nothing to do. 3939 break; 3940 3941 // Objective-C Decls 3942 3943 // Forward declarations, no (immediate) code generation. 3944 case Decl::ObjCInterface: 3945 case Decl::ObjCCategory: 3946 break; 3947 3948 case Decl::ObjCProtocol: { 3949 auto *Proto = cast<ObjCProtocolDecl>(D); 3950 if (Proto->isThisDeclarationADefinition()) 3951 ObjCRuntime->GenerateProtocol(Proto); 3952 break; 3953 } 3954 3955 case Decl::ObjCCategoryImpl: 3956 // Categories have properties but don't support synthesize so we 3957 // can ignore them here. 3958 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3959 break; 3960 3961 case Decl::ObjCImplementation: { 3962 auto *OMD = cast<ObjCImplementationDecl>(D); 3963 EmitObjCPropertyImplementations(OMD); 3964 EmitObjCIvarInitializations(OMD); 3965 ObjCRuntime->GenerateClass(OMD); 3966 // Emit global variable debug information. 3967 if (CGDebugInfo *DI = getModuleDebugInfo()) 3968 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3969 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3970 OMD->getClassInterface()), OMD->getLocation()); 3971 break; 3972 } 3973 case Decl::ObjCMethod: { 3974 auto *OMD = cast<ObjCMethodDecl>(D); 3975 // If this is not a prototype, emit the body. 3976 if (OMD->getBody()) 3977 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3978 break; 3979 } 3980 case Decl::ObjCCompatibleAlias: 3981 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3982 break; 3983 3984 case Decl::PragmaComment: { 3985 const auto *PCD = cast<PragmaCommentDecl>(D); 3986 switch (PCD->getCommentKind()) { 3987 case PCK_Unknown: 3988 llvm_unreachable("unexpected pragma comment kind"); 3989 case PCK_Linker: 3990 AppendLinkerOptions(PCD->getArg()); 3991 break; 3992 case PCK_Lib: 3993 AddDependentLib(PCD->getArg()); 3994 break; 3995 case PCK_Compiler: 3996 case PCK_ExeStr: 3997 case PCK_User: 3998 break; // We ignore all of these. 3999 } 4000 break; 4001 } 4002 4003 case Decl::PragmaDetectMismatch: { 4004 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4005 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4006 break; 4007 } 4008 4009 case Decl::LinkageSpec: 4010 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4011 break; 4012 4013 case Decl::FileScopeAsm: { 4014 // File-scope asm is ignored during device-side CUDA compilation. 4015 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4016 break; 4017 // File-scope asm is ignored during device-side OpenMP compilation. 4018 if (LangOpts.OpenMPIsDevice) 4019 break; 4020 auto *AD = cast<FileScopeAsmDecl>(D); 4021 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4022 break; 4023 } 4024 4025 case Decl::Import: { 4026 auto *Import = cast<ImportDecl>(D); 4027 4028 // If we've already imported this module, we're done. 4029 if (!ImportedModules.insert(Import->getImportedModule())) 4030 break; 4031 4032 // Emit debug information for direct imports. 4033 if (!Import->getImportedOwningModule()) { 4034 if (CGDebugInfo *DI = getModuleDebugInfo()) 4035 DI->EmitImportDecl(*Import); 4036 } 4037 4038 // Find all of the submodules and emit the module initializers. 4039 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4040 SmallVector<clang::Module *, 16> Stack; 4041 Visited.insert(Import->getImportedModule()); 4042 Stack.push_back(Import->getImportedModule()); 4043 4044 while (!Stack.empty()) { 4045 clang::Module *Mod = Stack.pop_back_val(); 4046 if (!EmittedModuleInitializers.insert(Mod).second) 4047 continue; 4048 4049 for (auto *D : Context.getModuleInitializers(Mod)) 4050 EmitTopLevelDecl(D); 4051 4052 // Visit the submodules of this module. 4053 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4054 SubEnd = Mod->submodule_end(); 4055 Sub != SubEnd; ++Sub) { 4056 // Skip explicit children; they need to be explicitly imported to emit 4057 // the initializers. 4058 if ((*Sub)->IsExplicit) 4059 continue; 4060 4061 if (Visited.insert(*Sub).second) 4062 Stack.push_back(*Sub); 4063 } 4064 } 4065 break; 4066 } 4067 4068 case Decl::Export: 4069 EmitDeclContext(cast<ExportDecl>(D)); 4070 break; 4071 4072 case Decl::OMPThreadPrivate: 4073 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4074 break; 4075 4076 case Decl::ClassTemplateSpecialization: { 4077 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4078 if (DebugInfo && 4079 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4080 Spec->hasDefinition()) 4081 DebugInfo->completeTemplateDefinition(*Spec); 4082 break; 4083 } 4084 4085 case Decl::OMPDeclareReduction: 4086 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4087 break; 4088 4089 default: 4090 // Make sure we handled everything we should, every other kind is a 4091 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4092 // function. Need to recode Decl::Kind to do that easily. 4093 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4094 break; 4095 } 4096 } 4097 4098 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4099 // Do we need to generate coverage mapping? 4100 if (!CodeGenOpts.CoverageMapping) 4101 return; 4102 switch (D->getKind()) { 4103 case Decl::CXXConversion: 4104 case Decl::CXXMethod: 4105 case Decl::Function: 4106 case Decl::ObjCMethod: 4107 case Decl::CXXConstructor: 4108 case Decl::CXXDestructor: { 4109 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4110 return; 4111 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4112 if (I == DeferredEmptyCoverageMappingDecls.end()) 4113 DeferredEmptyCoverageMappingDecls[D] = true; 4114 break; 4115 } 4116 default: 4117 break; 4118 }; 4119 } 4120 4121 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4122 // Do we need to generate coverage mapping? 4123 if (!CodeGenOpts.CoverageMapping) 4124 return; 4125 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4126 if (Fn->isTemplateInstantiation()) 4127 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4128 } 4129 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4130 if (I == DeferredEmptyCoverageMappingDecls.end()) 4131 DeferredEmptyCoverageMappingDecls[D] = false; 4132 else 4133 I->second = false; 4134 } 4135 4136 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4137 std::vector<const Decl *> DeferredDecls; 4138 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4139 if (!I.second) 4140 continue; 4141 DeferredDecls.push_back(I.first); 4142 } 4143 // Sort the declarations by their location to make sure that the tests get a 4144 // predictable order for the coverage mapping for the unused declarations. 4145 if (CodeGenOpts.DumpCoverageMapping) 4146 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4147 [] (const Decl *LHS, const Decl *RHS) { 4148 return LHS->getLocStart() < RHS->getLocStart(); 4149 }); 4150 for (const auto *D : DeferredDecls) { 4151 switch (D->getKind()) { 4152 case Decl::CXXConversion: 4153 case Decl::CXXMethod: 4154 case Decl::Function: 4155 case Decl::ObjCMethod: { 4156 CodeGenPGO PGO(*this); 4157 GlobalDecl GD(cast<FunctionDecl>(D)); 4158 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4159 getFunctionLinkage(GD)); 4160 break; 4161 } 4162 case Decl::CXXConstructor: { 4163 CodeGenPGO PGO(*this); 4164 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4165 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4166 getFunctionLinkage(GD)); 4167 break; 4168 } 4169 case Decl::CXXDestructor: { 4170 CodeGenPGO PGO(*this); 4171 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4172 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4173 getFunctionLinkage(GD)); 4174 break; 4175 } 4176 default: 4177 break; 4178 }; 4179 } 4180 } 4181 4182 /// Turns the given pointer into a constant. 4183 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4184 const void *Ptr) { 4185 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4186 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4187 return llvm::ConstantInt::get(i64, PtrInt); 4188 } 4189 4190 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4191 llvm::NamedMDNode *&GlobalMetadata, 4192 GlobalDecl D, 4193 llvm::GlobalValue *Addr) { 4194 if (!GlobalMetadata) 4195 GlobalMetadata = 4196 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4197 4198 // TODO: should we report variant information for ctors/dtors? 4199 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4200 llvm::ConstantAsMetadata::get(GetPointerConstant( 4201 CGM.getLLVMContext(), D.getDecl()))}; 4202 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4203 } 4204 4205 /// For each function which is declared within an extern "C" region and marked 4206 /// as 'used', but has internal linkage, create an alias from the unmangled 4207 /// name to the mangled name if possible. People expect to be able to refer 4208 /// to such functions with an unmangled name from inline assembly within the 4209 /// same translation unit. 4210 void CodeGenModule::EmitStaticExternCAliases() { 4211 // Don't do anything if we're generating CUDA device code -- the NVPTX 4212 // assembly target doesn't support aliases. 4213 if (Context.getTargetInfo().getTriple().isNVPTX()) 4214 return; 4215 for (auto &I : StaticExternCValues) { 4216 IdentifierInfo *Name = I.first; 4217 llvm::GlobalValue *Val = I.second; 4218 if (Val && !getModule().getNamedValue(Name->getName())) 4219 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4220 } 4221 } 4222 4223 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4224 GlobalDecl &Result) const { 4225 auto Res = Manglings.find(MangledName); 4226 if (Res == Manglings.end()) 4227 return false; 4228 Result = Res->getValue(); 4229 return true; 4230 } 4231 4232 /// Emits metadata nodes associating all the global values in the 4233 /// current module with the Decls they came from. This is useful for 4234 /// projects using IR gen as a subroutine. 4235 /// 4236 /// Since there's currently no way to associate an MDNode directly 4237 /// with an llvm::GlobalValue, we create a global named metadata 4238 /// with the name 'clang.global.decl.ptrs'. 4239 void CodeGenModule::EmitDeclMetadata() { 4240 llvm::NamedMDNode *GlobalMetadata = nullptr; 4241 4242 for (auto &I : MangledDeclNames) { 4243 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4244 // Some mangled names don't necessarily have an associated GlobalValue 4245 // in this module, e.g. if we mangled it for DebugInfo. 4246 if (Addr) 4247 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4248 } 4249 } 4250 4251 /// Emits metadata nodes for all the local variables in the current 4252 /// function. 4253 void CodeGenFunction::EmitDeclMetadata() { 4254 if (LocalDeclMap.empty()) return; 4255 4256 llvm::LLVMContext &Context = getLLVMContext(); 4257 4258 // Find the unique metadata ID for this name. 4259 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4260 4261 llvm::NamedMDNode *GlobalMetadata = nullptr; 4262 4263 for (auto &I : LocalDeclMap) { 4264 const Decl *D = I.first; 4265 llvm::Value *Addr = I.second.getPointer(); 4266 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4267 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4268 Alloca->setMetadata( 4269 DeclPtrKind, llvm::MDNode::get( 4270 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4271 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4272 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4273 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4274 } 4275 } 4276 } 4277 4278 void CodeGenModule::EmitVersionIdentMetadata() { 4279 llvm::NamedMDNode *IdentMetadata = 4280 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4281 std::string Version = getClangFullVersion(); 4282 llvm::LLVMContext &Ctx = TheModule.getContext(); 4283 4284 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4285 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4286 } 4287 4288 void CodeGenModule::EmitTargetMetadata() { 4289 // Warning, new MangledDeclNames may be appended within this loop. 4290 // We rely on MapVector insertions adding new elements to the end 4291 // of the container. 4292 // FIXME: Move this loop into the one target that needs it, and only 4293 // loop over those declarations for which we couldn't emit the target 4294 // metadata when we emitted the declaration. 4295 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4296 auto Val = *(MangledDeclNames.begin() + I); 4297 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4298 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4299 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4300 } 4301 } 4302 4303 void CodeGenModule::EmitCoverageFile() { 4304 if (getCodeGenOpts().CoverageDataFile.empty() && 4305 getCodeGenOpts().CoverageNotesFile.empty()) 4306 return; 4307 4308 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4309 if (!CUNode) 4310 return; 4311 4312 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4313 llvm::LLVMContext &Ctx = TheModule.getContext(); 4314 auto *CoverageDataFile = 4315 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4316 auto *CoverageNotesFile = 4317 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4318 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4319 llvm::MDNode *CU = CUNode->getOperand(i); 4320 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4321 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4322 } 4323 } 4324 4325 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4326 // Sema has checked that all uuid strings are of the form 4327 // "12345678-1234-1234-1234-1234567890ab". 4328 assert(Uuid.size() == 36); 4329 for (unsigned i = 0; i < 36; ++i) { 4330 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4331 else assert(isHexDigit(Uuid[i])); 4332 } 4333 4334 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4335 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4336 4337 llvm::Constant *Field3[8]; 4338 for (unsigned Idx = 0; Idx < 8; ++Idx) 4339 Field3[Idx] = llvm::ConstantInt::get( 4340 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4341 4342 llvm::Constant *Fields[4] = { 4343 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4344 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4345 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4346 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4347 }; 4348 4349 return llvm::ConstantStruct::getAnon(Fields); 4350 } 4351 4352 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4353 bool ForEH) { 4354 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4355 // FIXME: should we even be calling this method if RTTI is disabled 4356 // and it's not for EH? 4357 if (!ForEH && !getLangOpts().RTTI) 4358 return llvm::Constant::getNullValue(Int8PtrTy); 4359 4360 if (ForEH && Ty->isObjCObjectPointerType() && 4361 LangOpts.ObjCRuntime.isGNUFamily()) 4362 return ObjCRuntime->GetEHType(Ty); 4363 4364 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4365 } 4366 4367 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4368 for (auto RefExpr : D->varlists()) { 4369 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4370 bool PerformInit = 4371 VD->getAnyInitializer() && 4372 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4373 /*ForRef=*/false); 4374 4375 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4376 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4377 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4378 CXXGlobalInits.push_back(InitFunction); 4379 } 4380 } 4381 4382 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4383 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4384 if (InternalId) 4385 return InternalId; 4386 4387 if (isExternallyVisible(T->getLinkage())) { 4388 std::string OutName; 4389 llvm::raw_string_ostream Out(OutName); 4390 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4391 4392 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4393 } else { 4394 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4395 llvm::ArrayRef<llvm::Metadata *>()); 4396 } 4397 4398 return InternalId; 4399 } 4400 4401 /// Returns whether this module needs the "all-vtables" type identifier. 4402 bool CodeGenModule::NeedAllVtablesTypeId() const { 4403 // Returns true if at least one of vtable-based CFI checkers is enabled and 4404 // is not in the trapping mode. 4405 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4406 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4407 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4408 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4409 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4410 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4411 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4412 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4413 } 4414 4415 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4416 CharUnits Offset, 4417 const CXXRecordDecl *RD) { 4418 llvm::Metadata *MD = 4419 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4420 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4421 4422 if (CodeGenOpts.SanitizeCfiCrossDso) 4423 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4424 VTable->addTypeMetadata(Offset.getQuantity(), 4425 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4426 4427 if (NeedAllVtablesTypeId()) { 4428 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4429 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4430 } 4431 } 4432 4433 // Fills in the supplied string map with the set of target features for the 4434 // passed in function. 4435 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4436 const FunctionDecl *FD) { 4437 StringRef TargetCPU = Target.getTargetOpts().CPU; 4438 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4439 // If we have a TargetAttr build up the feature map based on that. 4440 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4441 4442 // Make a copy of the features as passed on the command line into the 4443 // beginning of the additional features from the function to override. 4444 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4445 Target.getTargetOpts().FeaturesAsWritten.begin(), 4446 Target.getTargetOpts().FeaturesAsWritten.end()); 4447 4448 if (ParsedAttr.second != "") 4449 TargetCPU = ParsedAttr.second; 4450 4451 // Now populate the feature map, first with the TargetCPU which is either 4452 // the default or a new one from the target attribute string. Then we'll use 4453 // the passed in features (FeaturesAsWritten) along with the new ones from 4454 // the attribute. 4455 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4456 } else { 4457 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4458 Target.getTargetOpts().Features); 4459 } 4460 } 4461 4462 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4463 if (!SanStats) 4464 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4465 4466 return *SanStats; 4467 } 4468 llvm::Value * 4469 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4470 CodeGenFunction &CGF) { 4471 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4472 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4473 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4474 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4475 "__translate_sampler_initializer"), 4476 {C}); 4477 } 4478