xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 29d0f003403fe8289f776d81e0965a93cd0b1670)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static const char AnnotationSection[] = "llvm.metadata";
64 
65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
66   switch (CGM.getTarget().getCXXABI().getKind()) {
67   case TargetCXXABI::GenericAArch64:
68   case TargetCXXABI::GenericARM:
69   case TargetCXXABI::iOS:
70   case TargetCXXABI::iOS64:
71   case TargetCXXABI::WatchOS:
72   case TargetCXXABI::GenericMIPS:
73   case TargetCXXABI::GenericItanium:
74   case TargetCXXABI::WebAssembly:
75     return CreateItaniumCXXABI(CGM);
76   case TargetCXXABI::Microsoft:
77     return CreateMicrosoftCXXABI(CGM);
78   }
79 
80   llvm_unreachable("invalid C++ ABI kind");
81 }
82 
83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
84                              const PreprocessorOptions &PPO,
85                              const CodeGenOptions &CGO, llvm::Module &M,
86                              DiagnosticsEngine &diags,
87                              CoverageSourceInfo *CoverageInfo)
88     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
89       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
90       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
91       VMContext(M.getContext()), Types(*this), VTables(*this),
92       SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   SizeSizeInBytes =
107     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
108   IntAlignInBytes =
109     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
110   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
111   IntPtrTy = llvm::IntegerType::get(LLVMContext,
112     C.getTargetInfo().getMaxPointerWidth());
113   Int8PtrTy = Int8Ty->getPointerTo(0);
114   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
115   AllocaInt8PtrTy = Int8Ty->getPointerTo(
116       M.getDataLayout().getAllocaAddrSpace());
117   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
118 
119   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
120   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
121 
122   if (LangOpts.ObjC1)
123     createObjCRuntime();
124   if (LangOpts.OpenCL)
125     createOpenCLRuntime();
126   if (LangOpts.OpenMP)
127     createOpenMPRuntime();
128   if (LangOpts.CUDA)
129     createCUDARuntime();
130 
131   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
132   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
133       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
134     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
135                                getCXXABI().getMangleContext()));
136 
137   // If debug info or coverage generation is enabled, create the CGDebugInfo
138   // object.
139   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
140       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
141     DebugInfo.reset(new CGDebugInfo(*this));
142 
143   Block.GlobalUniqueCount = 0;
144 
145   if (C.getLangOpts().ObjC1)
146     ObjCData.reset(new ObjCEntrypoints());
147 
148   if (CodeGenOpts.hasProfileClangUse()) {
149     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
150         CodeGenOpts.ProfileInstrumentUsePath);
151     if (auto E = ReaderOrErr.takeError()) {
152       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
153                                               "Could not read profile %0: %1");
154       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
155         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
156                                   << EI.message();
157       });
158     } else
159       PGOReader = std::move(ReaderOrErr.get());
160   }
161 
162   // If coverage mapping generation is enabled, create the
163   // CoverageMappingModuleGen object.
164   if (CodeGenOpts.CoverageMapping)
165     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
166 }
167 
168 CodeGenModule::~CodeGenModule() {}
169 
170 void CodeGenModule::createObjCRuntime() {
171   // This is just isGNUFamily(), but we want to force implementors of
172   // new ABIs to decide how best to do this.
173   switch (LangOpts.ObjCRuntime.getKind()) {
174   case ObjCRuntime::GNUstep:
175   case ObjCRuntime::GCC:
176   case ObjCRuntime::ObjFW:
177     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
178     return;
179 
180   case ObjCRuntime::FragileMacOSX:
181   case ObjCRuntime::MacOSX:
182   case ObjCRuntime::iOS:
183   case ObjCRuntime::WatchOS:
184     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
185     return;
186   }
187   llvm_unreachable("bad runtime kind");
188 }
189 
190 void CodeGenModule::createOpenCLRuntime() {
191   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
192 }
193 
194 void CodeGenModule::createOpenMPRuntime() {
195   // Select a specialized code generation class based on the target, if any.
196   // If it does not exist use the default implementation.
197   switch (getTriple().getArch()) {
198   case llvm::Triple::nvptx:
199   case llvm::Triple::nvptx64:
200     assert(getLangOpts().OpenMPIsDevice &&
201            "OpenMP NVPTX is only prepared to deal with device code.");
202     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
203     break;
204   default:
205     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
206     break;
207   }
208 }
209 
210 void CodeGenModule::createCUDARuntime() {
211   CUDARuntime.reset(CreateNVCUDARuntime(*this));
212 }
213 
214 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
215   Replacements[Name] = C;
216 }
217 
218 void CodeGenModule::applyReplacements() {
219   for (auto &I : Replacements) {
220     StringRef MangledName = I.first();
221     llvm::Constant *Replacement = I.second;
222     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
223     if (!Entry)
224       continue;
225     auto *OldF = cast<llvm::Function>(Entry);
226     auto *NewF = dyn_cast<llvm::Function>(Replacement);
227     if (!NewF) {
228       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
229         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
230       } else {
231         auto *CE = cast<llvm::ConstantExpr>(Replacement);
232         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
233                CE->getOpcode() == llvm::Instruction::GetElementPtr);
234         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
235       }
236     }
237 
238     // Replace old with new, but keep the old order.
239     OldF->replaceAllUsesWith(Replacement);
240     if (NewF) {
241       NewF->removeFromParent();
242       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
243                                                        NewF);
244     }
245     OldF->eraseFromParent();
246   }
247 }
248 
249 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
250   GlobalValReplacements.push_back(std::make_pair(GV, C));
251 }
252 
253 void CodeGenModule::applyGlobalValReplacements() {
254   for (auto &I : GlobalValReplacements) {
255     llvm::GlobalValue *GV = I.first;
256     llvm::Constant *C = I.second;
257 
258     GV->replaceAllUsesWith(C);
259     GV->eraseFromParent();
260   }
261 }
262 
263 // This is only used in aliases that we created and we know they have a
264 // linear structure.
265 static const llvm::GlobalObject *getAliasedGlobal(
266     const llvm::GlobalIndirectSymbol &GIS) {
267   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
268   const llvm::Constant *C = &GIS;
269   for (;;) {
270     C = C->stripPointerCasts();
271     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
272       return GO;
273     // stripPointerCasts will not walk over weak aliases.
274     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
275     if (!GIS2)
276       return nullptr;
277     if (!Visited.insert(GIS2).second)
278       return nullptr;
279     C = GIS2->getIndirectSymbol();
280   }
281 }
282 
283 void CodeGenModule::checkAliases() {
284   // Check if the constructed aliases are well formed. It is really unfortunate
285   // that we have to do this in CodeGen, but we only construct mangled names
286   // and aliases during codegen.
287   bool Error = false;
288   DiagnosticsEngine &Diags = getDiags();
289   for (const GlobalDecl &GD : Aliases) {
290     const auto *D = cast<ValueDecl>(GD.getDecl());
291     SourceLocation Location;
292     bool IsIFunc = D->hasAttr<IFuncAttr>();
293     if (const Attr *A = D->getDefiningAttr())
294       Location = A->getLocation();
295     else
296       llvm_unreachable("Not an alias or ifunc?");
297     StringRef MangledName = getMangledName(GD);
298     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
299     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
300     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
301     if (!GV) {
302       Error = true;
303       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
304     } else if (GV->isDeclaration()) {
305       Error = true;
306       Diags.Report(Location, diag::err_alias_to_undefined)
307           << IsIFunc << IsIFunc;
308     } else if (IsIFunc) {
309       // Check resolver function type.
310       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
311           GV->getType()->getPointerElementType());
312       assert(FTy);
313       if (!FTy->getReturnType()->isPointerTy())
314         Diags.Report(Location, diag::err_ifunc_resolver_return);
315       if (FTy->getNumParams())
316         Diags.Report(Location, diag::err_ifunc_resolver_params);
317     }
318 
319     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
320     llvm::GlobalValue *AliaseeGV;
321     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
322       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
323     else
324       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
325 
326     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
327       StringRef AliasSection = SA->getName();
328       if (AliasSection != AliaseeGV->getSection())
329         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
330             << AliasSection << IsIFunc << IsIFunc;
331     }
332 
333     // We have to handle alias to weak aliases in here. LLVM itself disallows
334     // this since the object semantics would not match the IL one. For
335     // compatibility with gcc we implement it by just pointing the alias
336     // to its aliasee's aliasee. We also warn, since the user is probably
337     // expecting the link to be weak.
338     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
339       if (GA->isInterposable()) {
340         Diags.Report(Location, diag::warn_alias_to_weak_alias)
341             << GV->getName() << GA->getName() << IsIFunc;
342         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
343             GA->getIndirectSymbol(), Alias->getType());
344         Alias->setIndirectSymbol(Aliasee);
345       }
346     }
347   }
348   if (!Error)
349     return;
350 
351   for (const GlobalDecl &GD : Aliases) {
352     StringRef MangledName = getMangledName(GD);
353     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
354     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
355     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
356     Alias->eraseFromParent();
357   }
358 }
359 
360 void CodeGenModule::clear() {
361   DeferredDeclsToEmit.clear();
362   if (OpenMPRuntime)
363     OpenMPRuntime->clear();
364 }
365 
366 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
367                                        StringRef MainFile) {
368   if (!hasDiagnostics())
369     return;
370   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
371     if (MainFile.empty())
372       MainFile = "<stdin>";
373     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
374   } else {
375     if (Mismatched > 0)
376       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
377 
378     if (Missing > 0)
379       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
380   }
381 }
382 
383 void CodeGenModule::Release() {
384   EmitDeferred();
385   applyGlobalValReplacements();
386   applyReplacements();
387   checkAliases();
388   EmitCXXGlobalInitFunc();
389   EmitCXXGlobalDtorFunc();
390   EmitCXXThreadLocalInitFunc();
391   if (ObjCRuntime)
392     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
393       AddGlobalCtor(ObjCInitFunction);
394   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
395       CUDARuntime) {
396     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
397       AddGlobalCtor(CudaCtorFunction);
398     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
399       AddGlobalDtor(CudaDtorFunction);
400   }
401   if (OpenMPRuntime)
402     if (llvm::Function *OpenMPRegistrationFunction =
403             OpenMPRuntime->emitRegistrationFunction()) {
404       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
405         OpenMPRegistrationFunction : nullptr;
406       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
407     }
408   if (PGOReader) {
409     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
410     if (PGOStats.hasDiagnostics())
411       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
412   }
413   EmitCtorList(GlobalCtors, "llvm.global_ctors");
414   EmitCtorList(GlobalDtors, "llvm.global_dtors");
415   EmitGlobalAnnotations();
416   EmitStaticExternCAliases();
417   EmitDeferredUnusedCoverageMappings();
418   if (CoverageMapping)
419     CoverageMapping->emit();
420   if (CodeGenOpts.SanitizeCfiCrossDso) {
421     CodeGenFunction(*this).EmitCfiCheckFail();
422     CodeGenFunction(*this).EmitCfiCheckStub();
423   }
424   emitAtAvailableLinkGuard();
425   emitLLVMUsed();
426   if (SanStats)
427     SanStats->finish();
428 
429   if (CodeGenOpts.Autolink &&
430       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
431     EmitModuleLinkOptions();
432   }
433 
434   // Record mregparm value now so it is visible through rest of codegen.
435   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
436     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
437                               CodeGenOpts.NumRegisterParameters);
438 
439   if (CodeGenOpts.DwarfVersion) {
440     // We actually want the latest version when there are conflicts.
441     // We can change from Warning to Latest if such mode is supported.
442     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
443                               CodeGenOpts.DwarfVersion);
444   }
445   if (CodeGenOpts.EmitCodeView) {
446     // Indicate that we want CodeView in the metadata.
447     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
448   }
449   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
450     // We don't support LTO with 2 with different StrictVTablePointers
451     // FIXME: we could support it by stripping all the information introduced
452     // by StrictVTablePointers.
453 
454     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
455 
456     llvm::Metadata *Ops[2] = {
457               llvm::MDString::get(VMContext, "StrictVTablePointers"),
458               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
459                   llvm::Type::getInt32Ty(VMContext), 1))};
460 
461     getModule().addModuleFlag(llvm::Module::Require,
462                               "StrictVTablePointersRequirement",
463                               llvm::MDNode::get(VMContext, Ops));
464   }
465   if (DebugInfo)
466     // We support a single version in the linked module. The LLVM
467     // parser will drop debug info with a different version number
468     // (and warn about it, too).
469     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
470                               llvm::DEBUG_METADATA_VERSION);
471 
472   // Width of wchar_t in bytes
473   uint64_t WCharWidth =
474       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
475   assert(LangOpts.ShortWChar ||
476          llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) ==
477                  Target.getWCharWidth() / 8 &&
478              "LLVM wchar_t size out of sync");
479 
480   // We need to record the widths of enums and wchar_t, so that we can generate
481   // the correct build attributes in the ARM backend. wchar_size is also used by
482   // TargetLibraryInfo.
483   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
484 
485   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
486   if (   Arch == llvm::Triple::arm
487       || Arch == llvm::Triple::armeb
488       || Arch == llvm::Triple::thumb
489       || Arch == llvm::Triple::thumbeb) {
490     // The minimum width of an enum in bytes
491     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
492     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
493   }
494 
495   if (CodeGenOpts.SanitizeCfiCrossDso) {
496     // Indicate that we want cross-DSO control flow integrity checks.
497     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
498   }
499 
500   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
501     // Indicate whether __nvvm_reflect should be configured to flush denormal
502     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
503     // property.)
504     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
505                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
506   }
507 
508   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
509     assert(PLevel < 3 && "Invalid PIC Level");
510     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
511     if (Context.getLangOpts().PIE)
512       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
513   }
514 
515   SimplifyPersonality();
516 
517   if (getCodeGenOpts().EmitDeclMetadata)
518     EmitDeclMetadata();
519 
520   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
521     EmitCoverageFile();
522 
523   if (DebugInfo)
524     DebugInfo->finalize();
525 
526   EmitVersionIdentMetadata();
527 
528   EmitTargetMetadata();
529 }
530 
531 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
532   // Make sure that this type is translated.
533   Types.UpdateCompletedType(TD);
534 }
535 
536 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
537   // Make sure that this type is translated.
538   Types.RefreshTypeCacheForClass(RD);
539 }
540 
541 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
542   if (!TBAA)
543     return nullptr;
544   return TBAA->getTBAAInfo(QTy);
545 }
546 
547 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
548   if (!TBAA)
549     return nullptr;
550   return TBAA->getTBAAInfoForVTablePtr();
551 }
552 
553 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
554   if (!TBAA)
555     return nullptr;
556   return TBAA->getTBAAStructInfo(QTy);
557 }
558 
559 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
560                                                   llvm::MDNode *AccessN,
561                                                   uint64_t O) {
562   if (!TBAA)
563     return nullptr;
564   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
565 }
566 
567 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
568 /// and struct-path aware TBAA, the tag has the same format:
569 /// base type, access type and offset.
570 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
571 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
572                                                 llvm::MDNode *TBAAInfo,
573                                                 bool ConvertTypeToTag) {
574   if (ConvertTypeToTag && TBAA)
575     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
576                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
577   else
578     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
579 }
580 
581 void CodeGenModule::DecorateInstructionWithInvariantGroup(
582     llvm::Instruction *I, const CXXRecordDecl *RD) {
583   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
584                  llvm::MDNode::get(getLLVMContext(), {}));
585 }
586 
587 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
588   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
589   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
590 }
591 
592 /// ErrorUnsupported - Print out an error that codegen doesn't support the
593 /// specified stmt yet.
594 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
595   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
596                                                "cannot compile this %0 yet");
597   std::string Msg = Type;
598   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
599     << Msg << S->getSourceRange();
600 }
601 
602 /// ErrorUnsupported - Print out an error that codegen doesn't support the
603 /// specified decl yet.
604 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
605   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
606                                                "cannot compile this %0 yet");
607   std::string Msg = Type;
608   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
609 }
610 
611 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
612   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
613 }
614 
615 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
616                                         const NamedDecl *D) const {
617   // Internal definitions always have default visibility.
618   if (GV->hasLocalLinkage()) {
619     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
620     return;
621   }
622 
623   // Set visibility for definitions.
624   LinkageInfo LV = D->getLinkageAndVisibility();
625   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
626     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
627 }
628 
629 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
630   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
631       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
632       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
633       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
634       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
635 }
636 
637 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
638     CodeGenOptions::TLSModel M) {
639   switch (M) {
640   case CodeGenOptions::GeneralDynamicTLSModel:
641     return llvm::GlobalVariable::GeneralDynamicTLSModel;
642   case CodeGenOptions::LocalDynamicTLSModel:
643     return llvm::GlobalVariable::LocalDynamicTLSModel;
644   case CodeGenOptions::InitialExecTLSModel:
645     return llvm::GlobalVariable::InitialExecTLSModel;
646   case CodeGenOptions::LocalExecTLSModel:
647     return llvm::GlobalVariable::LocalExecTLSModel;
648   }
649   llvm_unreachable("Invalid TLS model!");
650 }
651 
652 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
653   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
654 
655   llvm::GlobalValue::ThreadLocalMode TLM;
656   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
657 
658   // Override the TLS model if it is explicitly specified.
659   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
660     TLM = GetLLVMTLSModel(Attr->getModel());
661   }
662 
663   GV->setThreadLocalMode(TLM);
664 }
665 
666 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
667   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
668 
669   // Some ABIs don't have constructor variants.  Make sure that base and
670   // complete constructors get mangled the same.
671   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
672     if (!getTarget().getCXXABI().hasConstructorVariants()) {
673       CXXCtorType OrigCtorType = GD.getCtorType();
674       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
675       if (OrigCtorType == Ctor_Base)
676         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
677     }
678   }
679 
680   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
681   if (!FoundStr.empty())
682     return FoundStr;
683 
684   const auto *ND = cast<NamedDecl>(GD.getDecl());
685   SmallString<256> Buffer;
686   StringRef Str;
687   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
688     llvm::raw_svector_ostream Out(Buffer);
689     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
690       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
691     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
692       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
693     else
694       getCXXABI().getMangleContext().mangleName(ND, Out);
695     Str = Out.str();
696   } else {
697     IdentifierInfo *II = ND->getIdentifier();
698     assert(II && "Attempt to mangle unnamed decl.");
699     const auto *FD = dyn_cast<FunctionDecl>(ND);
700 
701     if (FD &&
702         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
703       llvm::raw_svector_ostream Out(Buffer);
704       Out << "__regcall3__" << II->getName();
705       Str = Out.str();
706     } else {
707       Str = II->getName();
708     }
709   }
710 
711   // Keep the first result in the case of a mangling collision.
712   auto Result = Manglings.insert(std::make_pair(Str, GD));
713   return FoundStr = Result.first->first();
714 }
715 
716 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
717                                              const BlockDecl *BD) {
718   MangleContext &MangleCtx = getCXXABI().getMangleContext();
719   const Decl *D = GD.getDecl();
720 
721   SmallString<256> Buffer;
722   llvm::raw_svector_ostream Out(Buffer);
723   if (!D)
724     MangleCtx.mangleGlobalBlock(BD,
725       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
726   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
727     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
728   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
729     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
730   else
731     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
732 
733   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
734   return Result.first->first();
735 }
736 
737 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
738   return getModule().getNamedValue(Name);
739 }
740 
741 /// AddGlobalCtor - Add a function to the list that will be called before
742 /// main() runs.
743 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
744                                   llvm::Constant *AssociatedData) {
745   // FIXME: Type coercion of void()* types.
746   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
747 }
748 
749 /// AddGlobalDtor - Add a function to the list that will be called
750 /// when the module is unloaded.
751 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
752   // FIXME: Type coercion of void()* types.
753   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
754 }
755 
756 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
757   if (Fns.empty()) return;
758 
759   // Ctor function type is void()*.
760   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
761   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
762 
763   // Get the type of a ctor entry, { i32, void ()*, i8* }.
764   llvm::StructType *CtorStructTy = llvm::StructType::get(
765       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
766 
767   // Construct the constructor and destructor arrays.
768   ConstantInitBuilder builder(*this);
769   auto ctors = builder.beginArray(CtorStructTy);
770   for (const auto &I : Fns) {
771     auto ctor = ctors.beginStruct(CtorStructTy);
772     ctor.addInt(Int32Ty, I.Priority);
773     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
774     if (I.AssociatedData)
775       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
776     else
777       ctor.addNullPointer(VoidPtrTy);
778     ctor.finishAndAddTo(ctors);
779   }
780 
781   auto list =
782     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
783                                 /*constant*/ false,
784                                 llvm::GlobalValue::AppendingLinkage);
785 
786   // The LTO linker doesn't seem to like it when we set an alignment
787   // on appending variables.  Take it off as a workaround.
788   list->setAlignment(0);
789 
790   Fns.clear();
791 }
792 
793 llvm::GlobalValue::LinkageTypes
794 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
795   const auto *D = cast<FunctionDecl>(GD.getDecl());
796 
797   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
798 
799   if (isa<CXXDestructorDecl>(D) &&
800       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
801                                          GD.getDtorType())) {
802     // Destructor variants in the Microsoft C++ ABI are always internal or
803     // linkonce_odr thunks emitted on an as-needed basis.
804     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
805                                    : llvm::GlobalValue::LinkOnceODRLinkage;
806   }
807 
808   if (isa<CXXConstructorDecl>(D) &&
809       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
810       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
811     // Our approach to inheriting constructors is fundamentally different from
812     // that used by the MS ABI, so keep our inheriting constructor thunks
813     // internal rather than trying to pick an unambiguous mangling for them.
814     return llvm::GlobalValue::InternalLinkage;
815   }
816 
817   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
818 }
819 
820 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
821   const auto *FD = cast<FunctionDecl>(GD.getDecl());
822 
823   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
824     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
825       // Don't dllexport/import destructor thunks.
826       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
827       return;
828     }
829   }
830 
831   if (FD->hasAttr<DLLImportAttr>())
832     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
833   else if (FD->hasAttr<DLLExportAttr>())
834     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
835   else
836     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
837 }
838 
839 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
840   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
841   if (!MDS) return nullptr;
842 
843   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
844 }
845 
846 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
847                                                     llvm::Function *F) {
848   setNonAliasAttributes(D, F);
849 }
850 
851 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
852                                               const CGFunctionInfo &Info,
853                                               llvm::Function *F) {
854   unsigned CallingConv;
855   llvm::AttributeList PAL;
856   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
857   F->setAttributes(PAL);
858   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
859 }
860 
861 /// Determines whether the language options require us to model
862 /// unwind exceptions.  We treat -fexceptions as mandating this
863 /// except under the fragile ObjC ABI with only ObjC exceptions
864 /// enabled.  This means, for example, that C with -fexceptions
865 /// enables this.
866 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
867   // If exceptions are completely disabled, obviously this is false.
868   if (!LangOpts.Exceptions) return false;
869 
870   // If C++ exceptions are enabled, this is true.
871   if (LangOpts.CXXExceptions) return true;
872 
873   // If ObjC exceptions are enabled, this depends on the ABI.
874   if (LangOpts.ObjCExceptions) {
875     return LangOpts.ObjCRuntime.hasUnwindExceptions();
876   }
877 
878   return true;
879 }
880 
881 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
882                                                            llvm::Function *F) {
883   llvm::AttrBuilder B;
884 
885   if (CodeGenOpts.UnwindTables)
886     B.addAttribute(llvm::Attribute::UWTable);
887 
888   if (!hasUnwindExceptions(LangOpts))
889     B.addAttribute(llvm::Attribute::NoUnwind);
890 
891   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
892     B.addAttribute(llvm::Attribute::StackProtect);
893   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
894     B.addAttribute(llvm::Attribute::StackProtectStrong);
895   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
896     B.addAttribute(llvm::Attribute::StackProtectReq);
897 
898   if (!D) {
899     // If we don't have a declaration to control inlining, the function isn't
900     // explicitly marked as alwaysinline for semantic reasons, and inlining is
901     // disabled, mark the function as noinline.
902     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
903         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
904       B.addAttribute(llvm::Attribute::NoInline);
905 
906     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
907     return;
908   }
909 
910   if (D->hasAttr<OptimizeNoneAttr>()) {
911     B.addAttribute(llvm::Attribute::OptimizeNone);
912 
913     // OptimizeNone implies noinline; we should not be inlining such functions.
914     B.addAttribute(llvm::Attribute::NoInline);
915     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
916            "OptimizeNone and AlwaysInline on same function!");
917 
918     // We still need to handle naked functions even though optnone subsumes
919     // much of their semantics.
920     if (D->hasAttr<NakedAttr>())
921       B.addAttribute(llvm::Attribute::Naked);
922 
923     // OptimizeNone wins over OptimizeForSize and MinSize.
924     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
925     F->removeFnAttr(llvm::Attribute::MinSize);
926   } else if (D->hasAttr<NakedAttr>()) {
927     // Naked implies noinline: we should not be inlining such functions.
928     B.addAttribute(llvm::Attribute::Naked);
929     B.addAttribute(llvm::Attribute::NoInline);
930   } else if (D->hasAttr<NoDuplicateAttr>()) {
931     B.addAttribute(llvm::Attribute::NoDuplicate);
932   } else if (D->hasAttr<NoInlineAttr>()) {
933     B.addAttribute(llvm::Attribute::NoInline);
934   } else if (D->hasAttr<AlwaysInlineAttr>() &&
935              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
936     // (noinline wins over always_inline, and we can't specify both in IR)
937     B.addAttribute(llvm::Attribute::AlwaysInline);
938   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
939     // If we're not inlining, then force everything that isn't always_inline to
940     // carry an explicit noinline attribute.
941     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
942       B.addAttribute(llvm::Attribute::NoInline);
943   } else {
944     // Otherwise, propagate the inline hint attribute and potentially use its
945     // absence to mark things as noinline.
946     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
947       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
948             return Redecl->isInlineSpecified();
949           })) {
950         B.addAttribute(llvm::Attribute::InlineHint);
951       } else if (CodeGenOpts.getInlining() ==
952                      CodeGenOptions::OnlyHintInlining &&
953                  !FD->isInlined() &&
954                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
955         B.addAttribute(llvm::Attribute::NoInline);
956       }
957     }
958   }
959 
960   // Add other optimization related attributes if we are optimizing this
961   // function.
962   if (!D->hasAttr<OptimizeNoneAttr>()) {
963     if (D->hasAttr<ColdAttr>()) {
964       B.addAttribute(llvm::Attribute::OptimizeForSize);
965       B.addAttribute(llvm::Attribute::Cold);
966     }
967 
968     if (D->hasAttr<MinSizeAttr>())
969       B.addAttribute(llvm::Attribute::MinSize);
970   }
971 
972   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
973 
974   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
975   if (alignment)
976     F->setAlignment(alignment);
977 
978   // Some C++ ABIs require 2-byte alignment for member functions, in order to
979   // reserve a bit for differentiating between virtual and non-virtual member
980   // functions. If the current target's C++ ABI requires this and this is a
981   // member function, set its alignment accordingly.
982   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
983     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
984       F->setAlignment(2);
985   }
986 
987   // In the cross-dso CFI mode, we want !type attributes on definitions only.
988   if (CodeGenOpts.SanitizeCfiCrossDso)
989     if (auto *FD = dyn_cast<FunctionDecl>(D))
990       CreateFunctionTypeMetadata(FD, F);
991 }
992 
993 void CodeGenModule::SetCommonAttributes(const Decl *D,
994                                         llvm::GlobalValue *GV) {
995   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
996     setGlobalVisibility(GV, ND);
997   else
998     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
999 
1000   if (D && D->hasAttr<UsedAttr>())
1001     addUsedGlobal(GV);
1002 }
1003 
1004 void CodeGenModule::setAliasAttributes(const Decl *D,
1005                                        llvm::GlobalValue *GV) {
1006   SetCommonAttributes(D, GV);
1007 
1008   // Process the dllexport attribute based on whether the original definition
1009   // (not necessarily the aliasee) was exported.
1010   if (D->hasAttr<DLLExportAttr>())
1011     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1012 }
1013 
1014 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1015                                           llvm::GlobalObject *GO) {
1016   SetCommonAttributes(D, GO);
1017 
1018   if (D)
1019     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1020       GO->setSection(SA->getName());
1021 
1022   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1023 }
1024 
1025 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1026                                                   llvm::Function *F,
1027                                                   const CGFunctionInfo &FI) {
1028   SetLLVMFunctionAttributes(D, FI, F);
1029   SetLLVMFunctionAttributesForDefinition(D, F);
1030 
1031   F->setLinkage(llvm::Function::InternalLinkage);
1032 
1033   setNonAliasAttributes(D, F);
1034 }
1035 
1036 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1037                                          const NamedDecl *ND) {
1038   // Set linkage and visibility in case we never see a definition.
1039   LinkageInfo LV = ND->getLinkageAndVisibility();
1040   if (LV.getLinkage() != ExternalLinkage) {
1041     // Don't set internal linkage on declarations.
1042   } else {
1043     if (ND->hasAttr<DLLImportAttr>()) {
1044       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1045       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1046     } else if (ND->hasAttr<DLLExportAttr>()) {
1047       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1048     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1049       // "extern_weak" is overloaded in LLVM; we probably should have
1050       // separate linkage types for this.
1051       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1052     }
1053 
1054     // Set visibility on a declaration only if it's explicit.
1055     if (LV.isVisibilityExplicit())
1056       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1057   }
1058 }
1059 
1060 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1061                                                llvm::Function *F) {
1062   // Only if we are checking indirect calls.
1063   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1064     return;
1065 
1066   // Non-static class methods are handled via vtable pointer checks elsewhere.
1067   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1068     return;
1069 
1070   // Additionally, if building with cross-DSO support...
1071   if (CodeGenOpts.SanitizeCfiCrossDso) {
1072     // Skip available_externally functions. They won't be codegen'ed in the
1073     // current module anyway.
1074     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1075       return;
1076   }
1077 
1078   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1079   F->addTypeMetadata(0, MD);
1080 
1081   // Emit a hash-based bit set entry for cross-DSO calls.
1082   if (CodeGenOpts.SanitizeCfiCrossDso)
1083     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1084       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1085 }
1086 
1087 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1088                                           bool IsIncompleteFunction,
1089                                           bool IsThunk) {
1090   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1091     // If this is an intrinsic function, set the function's attributes
1092     // to the intrinsic's attributes.
1093     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1094     return;
1095   }
1096 
1097   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1098 
1099   if (!IsIncompleteFunction)
1100     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1101 
1102   // Add the Returned attribute for "this", except for iOS 5 and earlier
1103   // where substantial code, including the libstdc++ dylib, was compiled with
1104   // GCC and does not actually return "this".
1105   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1106       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1107     assert(!F->arg_empty() &&
1108            F->arg_begin()->getType()
1109              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1110            "unexpected this return");
1111     F->addAttribute(1, llvm::Attribute::Returned);
1112   }
1113 
1114   // Only a few attributes are set on declarations; these may later be
1115   // overridden by a definition.
1116 
1117   setLinkageAndVisibilityForGV(F, FD);
1118 
1119   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1120     F->setSection(SA->getName());
1121 
1122   if (FD->isReplaceableGlobalAllocationFunction()) {
1123     // A replaceable global allocation function does not act like a builtin by
1124     // default, only if it is invoked by a new-expression or delete-expression.
1125     F->addAttribute(llvm::AttributeList::FunctionIndex,
1126                     llvm::Attribute::NoBuiltin);
1127 
1128     // A sane operator new returns a non-aliasing pointer.
1129     // FIXME: Also add NonNull attribute to the return value
1130     // for the non-nothrow forms?
1131     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1132     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1133         (Kind == OO_New || Kind == OO_Array_New))
1134       F->addAttribute(llvm::AttributeList::ReturnIndex,
1135                       llvm::Attribute::NoAlias);
1136   }
1137 
1138   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1139     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1140   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1141     if (MD->isVirtual())
1142       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1143 
1144   // Don't emit entries for function declarations in the cross-DSO mode. This
1145   // is handled with better precision by the receiving DSO.
1146   if (!CodeGenOpts.SanitizeCfiCrossDso)
1147     CreateFunctionTypeMetadata(FD, F);
1148 }
1149 
1150 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1151   assert(!GV->isDeclaration() &&
1152          "Only globals with definition can force usage.");
1153   LLVMUsed.emplace_back(GV);
1154 }
1155 
1156 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1157   assert(!GV->isDeclaration() &&
1158          "Only globals with definition can force usage.");
1159   LLVMCompilerUsed.emplace_back(GV);
1160 }
1161 
1162 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1163                      std::vector<llvm::WeakTrackingVH> &List) {
1164   // Don't create llvm.used if there is no need.
1165   if (List.empty())
1166     return;
1167 
1168   // Convert List to what ConstantArray needs.
1169   SmallVector<llvm::Constant*, 8> UsedArray;
1170   UsedArray.resize(List.size());
1171   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1172     UsedArray[i] =
1173         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1174             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1175   }
1176 
1177   if (UsedArray.empty())
1178     return;
1179   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1180 
1181   auto *GV = new llvm::GlobalVariable(
1182       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1183       llvm::ConstantArray::get(ATy, UsedArray), Name);
1184 
1185   GV->setSection("llvm.metadata");
1186 }
1187 
1188 void CodeGenModule::emitLLVMUsed() {
1189   emitUsed(*this, "llvm.used", LLVMUsed);
1190   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1191 }
1192 
1193 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1194   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1195   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1196 }
1197 
1198 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1199   llvm::SmallString<32> Opt;
1200   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1201   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1202   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1203 }
1204 
1205 void CodeGenModule::AddDependentLib(StringRef Lib) {
1206   llvm::SmallString<24> Opt;
1207   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1208   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1209   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1210 }
1211 
1212 /// \brief Add link options implied by the given module, including modules
1213 /// it depends on, using a postorder walk.
1214 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1215                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1216                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1217   // Import this module's parent.
1218   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1219     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1220   }
1221 
1222   // Import this module's dependencies.
1223   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1224     if (Visited.insert(Mod->Imports[I - 1]).second)
1225       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1226   }
1227 
1228   // Add linker options to link against the libraries/frameworks
1229   // described by this module.
1230   llvm::LLVMContext &Context = CGM.getLLVMContext();
1231   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1232     // Link against a framework.  Frameworks are currently Darwin only, so we
1233     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1234     if (Mod->LinkLibraries[I-1].IsFramework) {
1235       llvm::Metadata *Args[2] = {
1236           llvm::MDString::get(Context, "-framework"),
1237           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1238 
1239       Metadata.push_back(llvm::MDNode::get(Context, Args));
1240       continue;
1241     }
1242 
1243     // Link against a library.
1244     llvm::SmallString<24> Opt;
1245     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1246       Mod->LinkLibraries[I-1].Library, Opt);
1247     auto *OptString = llvm::MDString::get(Context, Opt);
1248     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1249   }
1250 }
1251 
1252 void CodeGenModule::EmitModuleLinkOptions() {
1253   // Collect the set of all of the modules we want to visit to emit link
1254   // options, which is essentially the imported modules and all of their
1255   // non-explicit child modules.
1256   llvm::SetVector<clang::Module *> LinkModules;
1257   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1258   SmallVector<clang::Module *, 16> Stack;
1259 
1260   // Seed the stack with imported modules.
1261   for (Module *M : ImportedModules) {
1262     // Do not add any link flags when an implementation TU of a module imports
1263     // a header of that same module.
1264     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1265         !getLangOpts().isCompilingModule())
1266       continue;
1267     if (Visited.insert(M).second)
1268       Stack.push_back(M);
1269   }
1270 
1271   // Find all of the modules to import, making a little effort to prune
1272   // non-leaf modules.
1273   while (!Stack.empty()) {
1274     clang::Module *Mod = Stack.pop_back_val();
1275 
1276     bool AnyChildren = false;
1277 
1278     // Visit the submodules of this module.
1279     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1280                                         SubEnd = Mod->submodule_end();
1281          Sub != SubEnd; ++Sub) {
1282       // Skip explicit children; they need to be explicitly imported to be
1283       // linked against.
1284       if ((*Sub)->IsExplicit)
1285         continue;
1286 
1287       if (Visited.insert(*Sub).second) {
1288         Stack.push_back(*Sub);
1289         AnyChildren = true;
1290       }
1291     }
1292 
1293     // We didn't find any children, so add this module to the list of
1294     // modules to link against.
1295     if (!AnyChildren) {
1296       LinkModules.insert(Mod);
1297     }
1298   }
1299 
1300   // Add link options for all of the imported modules in reverse topological
1301   // order.  We don't do anything to try to order import link flags with respect
1302   // to linker options inserted by things like #pragma comment().
1303   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1304   Visited.clear();
1305   for (Module *M : LinkModules)
1306     if (Visited.insert(M).second)
1307       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1308   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1309   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1310 
1311   // Add the linker options metadata flag.
1312   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1313                             llvm::MDNode::get(getLLVMContext(),
1314                                               LinkerOptionsMetadata));
1315 }
1316 
1317 void CodeGenModule::EmitDeferred() {
1318   // Emit code for any potentially referenced deferred decls.  Since a
1319   // previously unused static decl may become used during the generation of code
1320   // for a static function, iterate until no changes are made.
1321 
1322   if (!DeferredVTables.empty()) {
1323     EmitDeferredVTables();
1324 
1325     // Emitting a vtable doesn't directly cause more vtables to
1326     // become deferred, although it can cause functions to be
1327     // emitted that then need those vtables.
1328     assert(DeferredVTables.empty());
1329   }
1330 
1331   // Stop if we're out of both deferred vtables and deferred declarations.
1332   if (DeferredDeclsToEmit.empty())
1333     return;
1334 
1335   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1336   // work, it will not interfere with this.
1337   std::vector<GlobalDecl> CurDeclsToEmit;
1338   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1339 
1340   for (GlobalDecl &D : CurDeclsToEmit) {
1341     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1342     // to get GlobalValue with exactly the type we need, not something that
1343     // might had been created for another decl with the same mangled name but
1344     // different type.
1345     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1346         GetAddrOfGlobal(D, ForDefinition));
1347 
1348     // In case of different address spaces, we may still get a cast, even with
1349     // IsForDefinition equal to true. Query mangled names table to get
1350     // GlobalValue.
1351     if (!GV)
1352       GV = GetGlobalValue(getMangledName(D));
1353 
1354     // Make sure GetGlobalValue returned non-null.
1355     assert(GV);
1356 
1357     // Check to see if we've already emitted this.  This is necessary
1358     // for a couple of reasons: first, decls can end up in the
1359     // deferred-decls queue multiple times, and second, decls can end
1360     // up with definitions in unusual ways (e.g. by an extern inline
1361     // function acquiring a strong function redefinition).  Just
1362     // ignore these cases.
1363     if (!GV->isDeclaration())
1364       continue;
1365 
1366     // Otherwise, emit the definition and move on to the next one.
1367     EmitGlobalDefinition(D, GV);
1368 
1369     // If we found out that we need to emit more decls, do that recursively.
1370     // This has the advantage that the decls are emitted in a DFS and related
1371     // ones are close together, which is convenient for testing.
1372     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1373       EmitDeferred();
1374       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1375     }
1376   }
1377 }
1378 
1379 void CodeGenModule::EmitGlobalAnnotations() {
1380   if (Annotations.empty())
1381     return;
1382 
1383   // Create a new global variable for the ConstantStruct in the Module.
1384   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1385     Annotations[0]->getType(), Annotations.size()), Annotations);
1386   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1387                                       llvm::GlobalValue::AppendingLinkage,
1388                                       Array, "llvm.global.annotations");
1389   gv->setSection(AnnotationSection);
1390 }
1391 
1392 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1393   llvm::Constant *&AStr = AnnotationStrings[Str];
1394   if (AStr)
1395     return AStr;
1396 
1397   // Not found yet, create a new global.
1398   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1399   auto *gv =
1400       new llvm::GlobalVariable(getModule(), s->getType(), true,
1401                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1402   gv->setSection(AnnotationSection);
1403   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1404   AStr = gv;
1405   return gv;
1406 }
1407 
1408 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1409   SourceManager &SM = getContext().getSourceManager();
1410   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1411   if (PLoc.isValid())
1412     return EmitAnnotationString(PLoc.getFilename());
1413   return EmitAnnotationString(SM.getBufferName(Loc));
1414 }
1415 
1416 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1417   SourceManager &SM = getContext().getSourceManager();
1418   PresumedLoc PLoc = SM.getPresumedLoc(L);
1419   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1420     SM.getExpansionLineNumber(L);
1421   return llvm::ConstantInt::get(Int32Ty, LineNo);
1422 }
1423 
1424 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1425                                                 const AnnotateAttr *AA,
1426                                                 SourceLocation L) {
1427   // Get the globals for file name, annotation, and the line number.
1428   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1429                  *UnitGV = EmitAnnotationUnit(L),
1430                  *LineNoCst = EmitAnnotationLineNo(L);
1431 
1432   // Create the ConstantStruct for the global annotation.
1433   llvm::Constant *Fields[4] = {
1434     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1435     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1436     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1437     LineNoCst
1438   };
1439   return llvm::ConstantStruct::getAnon(Fields);
1440 }
1441 
1442 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1443                                          llvm::GlobalValue *GV) {
1444   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1445   // Get the struct elements for these annotations.
1446   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1447     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1448 }
1449 
1450 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1451                                            SourceLocation Loc) const {
1452   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1453   // Blacklist by function name.
1454   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1455     return true;
1456   // Blacklist by location.
1457   if (Loc.isValid())
1458     return SanitizerBL.isBlacklistedLocation(Loc);
1459   // If location is unknown, this may be a compiler-generated function. Assume
1460   // it's located in the main file.
1461   auto &SM = Context.getSourceManager();
1462   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1463     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1464   }
1465   return false;
1466 }
1467 
1468 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1469                                            SourceLocation Loc, QualType Ty,
1470                                            StringRef Category) const {
1471   // For now globals can be blacklisted only in ASan and KASan.
1472   if (!LangOpts.Sanitize.hasOneOf(
1473           SanitizerKind::Address | SanitizerKind::KernelAddress))
1474     return false;
1475   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1476   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1477     return true;
1478   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1479     return true;
1480   // Check global type.
1481   if (!Ty.isNull()) {
1482     // Drill down the array types: if global variable of a fixed type is
1483     // blacklisted, we also don't instrument arrays of them.
1484     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1485       Ty = AT->getElementType();
1486     Ty = Ty.getCanonicalType().getUnqualifiedType();
1487     // We allow to blacklist only record types (classes, structs etc.)
1488     if (Ty->isRecordType()) {
1489       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1490       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1491         return true;
1492     }
1493   }
1494   return false;
1495 }
1496 
1497 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1498                                    StringRef Category) const {
1499   if (!LangOpts.XRayInstrument)
1500     return false;
1501   const auto &XRayFilter = getContext().getXRayFilter();
1502   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1503   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1504   if (Loc.isValid())
1505     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1506   if (Attr == ImbueAttr::NONE)
1507     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1508   switch (Attr) {
1509   case ImbueAttr::NONE:
1510     return false;
1511   case ImbueAttr::ALWAYS:
1512     Fn->addFnAttr("function-instrument", "xray-always");
1513     break;
1514   case ImbueAttr::ALWAYS_ARG1:
1515     Fn->addFnAttr("function-instrument", "xray-always");
1516     Fn->addFnAttr("xray-log-args", "1");
1517     break;
1518   case ImbueAttr::NEVER:
1519     Fn->addFnAttr("function-instrument", "xray-never");
1520     break;
1521   }
1522   return true;
1523 }
1524 
1525 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1526   // Never defer when EmitAllDecls is specified.
1527   if (LangOpts.EmitAllDecls)
1528     return true;
1529 
1530   return getContext().DeclMustBeEmitted(Global);
1531 }
1532 
1533 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1534   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1535     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1536       // Implicit template instantiations may change linkage if they are later
1537       // explicitly instantiated, so they should not be emitted eagerly.
1538       return false;
1539   if (const auto *VD = dyn_cast<VarDecl>(Global))
1540     if (Context.getInlineVariableDefinitionKind(VD) ==
1541         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1542       // A definition of an inline constexpr static data member may change
1543       // linkage later if it's redeclared outside the class.
1544       return false;
1545   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1546   // codegen for global variables, because they may be marked as threadprivate.
1547   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1548       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1549     return false;
1550 
1551   return true;
1552 }
1553 
1554 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1555     const CXXUuidofExpr* E) {
1556   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1557   // well-formed.
1558   StringRef Uuid = E->getUuidStr();
1559   std::string Name = "_GUID_" + Uuid.lower();
1560   std::replace(Name.begin(), Name.end(), '-', '_');
1561 
1562   // The UUID descriptor should be pointer aligned.
1563   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1564 
1565   // Look for an existing global.
1566   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1567     return ConstantAddress(GV, Alignment);
1568 
1569   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1570   assert(Init && "failed to initialize as constant");
1571 
1572   auto *GV = new llvm::GlobalVariable(
1573       getModule(), Init->getType(),
1574       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1575   if (supportsCOMDAT())
1576     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1577   return ConstantAddress(GV, Alignment);
1578 }
1579 
1580 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1581   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1582   assert(AA && "No alias?");
1583 
1584   CharUnits Alignment = getContext().getDeclAlign(VD);
1585   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1586 
1587   // See if there is already something with the target's name in the module.
1588   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1589   if (Entry) {
1590     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1591     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1592     return ConstantAddress(Ptr, Alignment);
1593   }
1594 
1595   llvm::Constant *Aliasee;
1596   if (isa<llvm::FunctionType>(DeclTy))
1597     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1598                                       GlobalDecl(cast<FunctionDecl>(VD)),
1599                                       /*ForVTable=*/false);
1600   else
1601     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1602                                     llvm::PointerType::getUnqual(DeclTy),
1603                                     nullptr);
1604 
1605   auto *F = cast<llvm::GlobalValue>(Aliasee);
1606   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1607   WeakRefReferences.insert(F);
1608 
1609   return ConstantAddress(Aliasee, Alignment);
1610 }
1611 
1612 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1613   const auto *Global = cast<ValueDecl>(GD.getDecl());
1614 
1615   // Weak references don't produce any output by themselves.
1616   if (Global->hasAttr<WeakRefAttr>())
1617     return;
1618 
1619   // If this is an alias definition (which otherwise looks like a declaration)
1620   // emit it now.
1621   if (Global->hasAttr<AliasAttr>())
1622     return EmitAliasDefinition(GD);
1623 
1624   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1625   if (Global->hasAttr<IFuncAttr>())
1626     return emitIFuncDefinition(GD);
1627 
1628   // If this is CUDA, be selective about which declarations we emit.
1629   if (LangOpts.CUDA) {
1630     if (LangOpts.CUDAIsDevice) {
1631       if (!Global->hasAttr<CUDADeviceAttr>() &&
1632           !Global->hasAttr<CUDAGlobalAttr>() &&
1633           !Global->hasAttr<CUDAConstantAttr>() &&
1634           !Global->hasAttr<CUDASharedAttr>())
1635         return;
1636     } else {
1637       // We need to emit host-side 'shadows' for all global
1638       // device-side variables because the CUDA runtime needs their
1639       // size and host-side address in order to provide access to
1640       // their device-side incarnations.
1641 
1642       // So device-only functions are the only things we skip.
1643       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1644           Global->hasAttr<CUDADeviceAttr>())
1645         return;
1646 
1647       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1648              "Expected Variable or Function");
1649     }
1650   }
1651 
1652   if (LangOpts.OpenMP) {
1653     // If this is OpenMP device, check if it is legal to emit this global
1654     // normally.
1655     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1656       return;
1657     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1658       if (MustBeEmitted(Global))
1659         EmitOMPDeclareReduction(DRD);
1660       return;
1661     }
1662   }
1663 
1664   // Ignore declarations, they will be emitted on their first use.
1665   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1666     // Forward declarations are emitted lazily on first use.
1667     if (!FD->doesThisDeclarationHaveABody()) {
1668       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1669         return;
1670 
1671       StringRef MangledName = getMangledName(GD);
1672 
1673       // Compute the function info and LLVM type.
1674       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1675       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1676 
1677       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1678                               /*DontDefer=*/false);
1679       return;
1680     }
1681   } else {
1682     const auto *VD = cast<VarDecl>(Global);
1683     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1684     // We need to emit device-side global CUDA variables even if a
1685     // variable does not have a definition -- we still need to define
1686     // host-side shadow for it.
1687     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1688                            !VD->hasDefinition() &&
1689                            (VD->hasAttr<CUDAConstantAttr>() ||
1690                             VD->hasAttr<CUDADeviceAttr>());
1691     if (!MustEmitForCuda &&
1692         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1693         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1694       // If this declaration may have caused an inline variable definition to
1695       // change linkage, make sure that it's emitted.
1696       if (Context.getInlineVariableDefinitionKind(VD) ==
1697           ASTContext::InlineVariableDefinitionKind::Strong)
1698         GetAddrOfGlobalVar(VD);
1699       return;
1700     }
1701   }
1702 
1703   // Defer code generation to first use when possible, e.g. if this is an inline
1704   // function. If the global must always be emitted, do it eagerly if possible
1705   // to benefit from cache locality.
1706   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1707     // Emit the definition if it can't be deferred.
1708     EmitGlobalDefinition(GD);
1709     return;
1710   }
1711 
1712   // If we're deferring emission of a C++ variable with an
1713   // initializer, remember the order in which it appeared in the file.
1714   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1715       cast<VarDecl>(Global)->hasInit()) {
1716     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1717     CXXGlobalInits.push_back(nullptr);
1718   }
1719 
1720   StringRef MangledName = getMangledName(GD);
1721   if (GetGlobalValue(MangledName) != nullptr) {
1722     // The value has already been used and should therefore be emitted.
1723     addDeferredDeclToEmit(GD);
1724   } else if (MustBeEmitted(Global)) {
1725     // The value must be emitted, but cannot be emitted eagerly.
1726     assert(!MayBeEmittedEagerly(Global));
1727     addDeferredDeclToEmit(GD);
1728   } else {
1729     // Otherwise, remember that we saw a deferred decl with this name.  The
1730     // first use of the mangled name will cause it to move into
1731     // DeferredDeclsToEmit.
1732     DeferredDecls[MangledName] = GD;
1733   }
1734 }
1735 
1736 // Check if T is a class type with a destructor that's not dllimport.
1737 static bool HasNonDllImportDtor(QualType T) {
1738   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1739     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1740       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1741         return true;
1742 
1743   return false;
1744 }
1745 
1746 namespace {
1747   struct FunctionIsDirectlyRecursive :
1748     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1749     const StringRef Name;
1750     const Builtin::Context &BI;
1751     bool Result;
1752     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1753       Name(N), BI(C), Result(false) {
1754     }
1755     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1756 
1757     bool TraverseCallExpr(CallExpr *E) {
1758       const FunctionDecl *FD = E->getDirectCallee();
1759       if (!FD)
1760         return true;
1761       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1762       if (Attr && Name == Attr->getLabel()) {
1763         Result = true;
1764         return false;
1765       }
1766       unsigned BuiltinID = FD->getBuiltinID();
1767       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1768         return true;
1769       StringRef BuiltinName = BI.getName(BuiltinID);
1770       if (BuiltinName.startswith("__builtin_") &&
1771           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1772         Result = true;
1773         return false;
1774       }
1775       return true;
1776     }
1777   };
1778 
1779   // Make sure we're not referencing non-imported vars or functions.
1780   struct DLLImportFunctionVisitor
1781       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1782     bool SafeToInline = true;
1783 
1784     bool shouldVisitImplicitCode() const { return true; }
1785 
1786     bool VisitVarDecl(VarDecl *VD) {
1787       if (VD->getTLSKind()) {
1788         // A thread-local variable cannot be imported.
1789         SafeToInline = false;
1790         return SafeToInline;
1791       }
1792 
1793       // A variable definition might imply a destructor call.
1794       if (VD->isThisDeclarationADefinition())
1795         SafeToInline = !HasNonDllImportDtor(VD->getType());
1796 
1797       return SafeToInline;
1798     }
1799 
1800     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1801       if (const auto *D = E->getTemporary()->getDestructor())
1802         SafeToInline = D->hasAttr<DLLImportAttr>();
1803       return SafeToInline;
1804     }
1805 
1806     bool VisitDeclRefExpr(DeclRefExpr *E) {
1807       ValueDecl *VD = E->getDecl();
1808       if (isa<FunctionDecl>(VD))
1809         SafeToInline = VD->hasAttr<DLLImportAttr>();
1810       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1811         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1812       return SafeToInline;
1813     }
1814 
1815     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1816       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1817       return SafeToInline;
1818     }
1819 
1820     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1821       CXXMethodDecl *M = E->getMethodDecl();
1822       if (!M) {
1823         // Call through a pointer to member function. This is safe to inline.
1824         SafeToInline = true;
1825       } else {
1826         SafeToInline = M->hasAttr<DLLImportAttr>();
1827       }
1828       return SafeToInline;
1829     }
1830 
1831     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1832       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1833       return SafeToInline;
1834     }
1835 
1836     bool VisitCXXNewExpr(CXXNewExpr *E) {
1837       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1838       return SafeToInline;
1839     }
1840   };
1841 }
1842 
1843 // isTriviallyRecursive - Check if this function calls another
1844 // decl that, because of the asm attribute or the other decl being a builtin,
1845 // ends up pointing to itself.
1846 bool
1847 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1848   StringRef Name;
1849   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1850     // asm labels are a special kind of mangling we have to support.
1851     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1852     if (!Attr)
1853       return false;
1854     Name = Attr->getLabel();
1855   } else {
1856     Name = FD->getName();
1857   }
1858 
1859   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1860   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1861   return Walker.Result;
1862 }
1863 
1864 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1865   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1866     return true;
1867   const auto *F = cast<FunctionDecl>(GD.getDecl());
1868   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1869     return false;
1870 
1871   if (F->hasAttr<DLLImportAttr>()) {
1872     // Check whether it would be safe to inline this dllimport function.
1873     DLLImportFunctionVisitor Visitor;
1874     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1875     if (!Visitor.SafeToInline)
1876       return false;
1877 
1878     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1879       // Implicit destructor invocations aren't captured in the AST, so the
1880       // check above can't see them. Check for them manually here.
1881       for (const Decl *Member : Dtor->getParent()->decls())
1882         if (isa<FieldDecl>(Member))
1883           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1884             return false;
1885       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1886         if (HasNonDllImportDtor(B.getType()))
1887           return false;
1888     }
1889   }
1890 
1891   // PR9614. Avoid cases where the source code is lying to us. An available
1892   // externally function should have an equivalent function somewhere else,
1893   // but a function that calls itself is clearly not equivalent to the real
1894   // implementation.
1895   // This happens in glibc's btowc and in some configure checks.
1896   return !isTriviallyRecursive(F);
1897 }
1898 
1899 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1900   const auto *D = cast<ValueDecl>(GD.getDecl());
1901 
1902   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1903                                  Context.getSourceManager(),
1904                                  "Generating code for declaration");
1905 
1906   if (isa<FunctionDecl>(D)) {
1907     // At -O0, don't generate IR for functions with available_externally
1908     // linkage.
1909     if (!shouldEmitFunction(GD))
1910       return;
1911 
1912     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1913       // Make sure to emit the definition(s) before we emit the thunks.
1914       // This is necessary for the generation of certain thunks.
1915       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1916         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1917       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1918         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1919       else
1920         EmitGlobalFunctionDefinition(GD, GV);
1921 
1922       if (Method->isVirtual())
1923         getVTables().EmitThunks(GD);
1924 
1925       return;
1926     }
1927 
1928     return EmitGlobalFunctionDefinition(GD, GV);
1929   }
1930 
1931   if (const auto *VD = dyn_cast<VarDecl>(D))
1932     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1933 
1934   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1935 }
1936 
1937 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1938                                                       llvm::Function *NewFn);
1939 
1940 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1941 /// module, create and return an llvm Function with the specified type. If there
1942 /// is something in the module with the specified name, return it potentially
1943 /// bitcasted to the right type.
1944 ///
1945 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1946 /// to set the attributes on the function when it is first created.
1947 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
1948     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
1949     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
1950     ForDefinition_t IsForDefinition) {
1951   const Decl *D = GD.getDecl();
1952 
1953   // Lookup the entry, lazily creating it if necessary.
1954   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1955   if (Entry) {
1956     if (WeakRefReferences.erase(Entry)) {
1957       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1958       if (FD && !FD->hasAttr<WeakAttr>())
1959         Entry->setLinkage(llvm::Function::ExternalLinkage);
1960     }
1961 
1962     // Handle dropped DLL attributes.
1963     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1964       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1965 
1966     // If there are two attempts to define the same mangled name, issue an
1967     // error.
1968     if (IsForDefinition && !Entry->isDeclaration()) {
1969       GlobalDecl OtherGD;
1970       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1971       // to make sure that we issue an error only once.
1972       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1973           (GD.getCanonicalDecl().getDecl() !=
1974            OtherGD.getCanonicalDecl().getDecl()) &&
1975           DiagnosedConflictingDefinitions.insert(GD).second) {
1976         getDiags().Report(D->getLocation(),
1977                           diag::err_duplicate_mangled_name);
1978         getDiags().Report(OtherGD.getDecl()->getLocation(),
1979                           diag::note_previous_definition);
1980       }
1981     }
1982 
1983     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1984         (Entry->getType()->getElementType() == Ty)) {
1985       return Entry;
1986     }
1987 
1988     // Make sure the result is of the correct type.
1989     // (If function is requested for a definition, we always need to create a new
1990     // function, not just return a bitcast.)
1991     if (!IsForDefinition)
1992       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1993   }
1994 
1995   // This function doesn't have a complete type (for example, the return
1996   // type is an incomplete struct). Use a fake type instead, and make
1997   // sure not to try to set attributes.
1998   bool IsIncompleteFunction = false;
1999 
2000   llvm::FunctionType *FTy;
2001   if (isa<llvm::FunctionType>(Ty)) {
2002     FTy = cast<llvm::FunctionType>(Ty);
2003   } else {
2004     FTy = llvm::FunctionType::get(VoidTy, false);
2005     IsIncompleteFunction = true;
2006   }
2007 
2008   llvm::Function *F =
2009       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2010                              Entry ? StringRef() : MangledName, &getModule());
2011 
2012   // If we already created a function with the same mangled name (but different
2013   // type) before, take its name and add it to the list of functions to be
2014   // replaced with F at the end of CodeGen.
2015   //
2016   // This happens if there is a prototype for a function (e.g. "int f()") and
2017   // then a definition of a different type (e.g. "int f(int x)").
2018   if (Entry) {
2019     F->takeName(Entry);
2020 
2021     // This might be an implementation of a function without a prototype, in
2022     // which case, try to do special replacement of calls which match the new
2023     // prototype.  The really key thing here is that we also potentially drop
2024     // arguments from the call site so as to make a direct call, which makes the
2025     // inliner happier and suppresses a number of optimizer warnings (!) about
2026     // dropping arguments.
2027     if (!Entry->use_empty()) {
2028       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2029       Entry->removeDeadConstantUsers();
2030     }
2031 
2032     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2033         F, Entry->getType()->getElementType()->getPointerTo());
2034     addGlobalValReplacement(Entry, BC);
2035   }
2036 
2037   assert(F->getName() == MangledName && "name was uniqued!");
2038   if (D)
2039     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2040   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2041     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2042     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2043   }
2044 
2045   if (!DontDefer) {
2046     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2047     // each other bottoming out with the base dtor.  Therefore we emit non-base
2048     // dtors on usage, even if there is no dtor definition in the TU.
2049     if (D && isa<CXXDestructorDecl>(D) &&
2050         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2051                                            GD.getDtorType()))
2052       addDeferredDeclToEmit(GD);
2053 
2054     // This is the first use or definition of a mangled name.  If there is a
2055     // deferred decl with this name, remember that we need to emit it at the end
2056     // of the file.
2057     auto DDI = DeferredDecls.find(MangledName);
2058     if (DDI != DeferredDecls.end()) {
2059       // Move the potentially referenced deferred decl to the
2060       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2061       // don't need it anymore).
2062       addDeferredDeclToEmit(DDI->second);
2063       DeferredDecls.erase(DDI);
2064 
2065       // Otherwise, there are cases we have to worry about where we're
2066       // using a declaration for which we must emit a definition but where
2067       // we might not find a top-level definition:
2068       //   - member functions defined inline in their classes
2069       //   - friend functions defined inline in some class
2070       //   - special member functions with implicit definitions
2071       // If we ever change our AST traversal to walk into class methods,
2072       // this will be unnecessary.
2073       //
2074       // We also don't emit a definition for a function if it's going to be an
2075       // entry in a vtable, unless it's already marked as used.
2076     } else if (getLangOpts().CPlusPlus && D) {
2077       // Look for a declaration that's lexically in a record.
2078       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2079            FD = FD->getPreviousDecl()) {
2080         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2081           if (FD->doesThisDeclarationHaveABody()) {
2082             addDeferredDeclToEmit(GD.getWithDecl(FD));
2083             break;
2084           }
2085         }
2086       }
2087     }
2088   }
2089 
2090   // Make sure the result is of the requested type.
2091   if (!IsIncompleteFunction) {
2092     assert(F->getType()->getElementType() == Ty);
2093     return F;
2094   }
2095 
2096   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2097   return llvm::ConstantExpr::getBitCast(F, PTy);
2098 }
2099 
2100 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2101 /// non-null, then this function will use the specified type if it has to
2102 /// create it (this occurs when we see a definition of the function).
2103 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2104                                                  llvm::Type *Ty,
2105                                                  bool ForVTable,
2106                                                  bool DontDefer,
2107                                               ForDefinition_t IsForDefinition) {
2108   // If there was no specific requested type, just convert it now.
2109   if (!Ty) {
2110     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2111     auto CanonTy = Context.getCanonicalType(FD->getType());
2112     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2113   }
2114 
2115   StringRef MangledName = getMangledName(GD);
2116   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2117                                  /*IsThunk=*/false, llvm::AttributeList(),
2118                                  IsForDefinition);
2119 }
2120 
2121 static const FunctionDecl *
2122 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2123   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2124   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2125 
2126   IdentifierInfo &CII = C.Idents.get(Name);
2127   for (const auto &Result : DC->lookup(&CII))
2128     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2129       return FD;
2130 
2131   if (!C.getLangOpts().CPlusPlus)
2132     return nullptr;
2133 
2134   // Demangle the premangled name from getTerminateFn()
2135   IdentifierInfo &CXXII =
2136       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2137           ? C.Idents.get("terminate")
2138           : C.Idents.get(Name);
2139 
2140   for (const auto &N : {"__cxxabiv1", "std"}) {
2141     IdentifierInfo &NS = C.Idents.get(N);
2142     for (const auto &Result : DC->lookup(&NS)) {
2143       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2144       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2145         for (const auto &Result : LSD->lookup(&NS))
2146           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2147             break;
2148 
2149       if (ND)
2150         for (const auto &Result : ND->lookup(&CXXII))
2151           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2152             return FD;
2153     }
2154   }
2155 
2156   return nullptr;
2157 }
2158 
2159 /// CreateRuntimeFunction - Create a new runtime function with the specified
2160 /// type and name.
2161 llvm::Constant *
2162 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2163                                      llvm::AttributeList ExtraAttrs,
2164                                      bool Local) {
2165   llvm::Constant *C =
2166       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2167                               /*DontDefer=*/false, /*IsThunk=*/false,
2168                               ExtraAttrs);
2169 
2170   if (auto *F = dyn_cast<llvm::Function>(C)) {
2171     if (F->empty()) {
2172       F->setCallingConv(getRuntimeCC());
2173 
2174       if (!Local && getTriple().isOSBinFormatCOFF() &&
2175           !getCodeGenOpts().LTOVisibilityPublicStd) {
2176         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2177         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2178           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2179           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2180         }
2181       }
2182     }
2183   }
2184 
2185   return C;
2186 }
2187 
2188 /// CreateBuiltinFunction - Create a new builtin function with the specified
2189 /// type and name.
2190 llvm::Constant *
2191 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2192                                      llvm::AttributeList ExtraAttrs) {
2193   llvm::Constant *C =
2194       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2195                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2196   if (auto *F = dyn_cast<llvm::Function>(C))
2197     if (F->empty())
2198       F->setCallingConv(getBuiltinCC());
2199   return C;
2200 }
2201 
2202 /// isTypeConstant - Determine whether an object of this type can be emitted
2203 /// as a constant.
2204 ///
2205 /// If ExcludeCtor is true, the duration when the object's constructor runs
2206 /// will not be considered. The caller will need to verify that the object is
2207 /// not written to during its construction.
2208 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2209   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2210     return false;
2211 
2212   if (Context.getLangOpts().CPlusPlus) {
2213     if (const CXXRecordDecl *Record
2214           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2215       return ExcludeCtor && !Record->hasMutableFields() &&
2216              Record->hasTrivialDestructor();
2217   }
2218 
2219   return true;
2220 }
2221 
2222 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2223 /// create and return an llvm GlobalVariable with the specified type.  If there
2224 /// is something in the module with the specified name, return it potentially
2225 /// bitcasted to the right type.
2226 ///
2227 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2228 /// to set the attributes on the global when it is first created.
2229 ///
2230 /// If IsForDefinition is true, it is guranteed that an actual global with
2231 /// type Ty will be returned, not conversion of a variable with the same
2232 /// mangled name but some other type.
2233 llvm::Constant *
2234 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2235                                      llvm::PointerType *Ty,
2236                                      const VarDecl *D,
2237                                      ForDefinition_t IsForDefinition) {
2238   // Lookup the entry, lazily creating it if necessary.
2239   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2240   if (Entry) {
2241     if (WeakRefReferences.erase(Entry)) {
2242       if (D && !D->hasAttr<WeakAttr>())
2243         Entry->setLinkage(llvm::Function::ExternalLinkage);
2244     }
2245 
2246     // Handle dropped DLL attributes.
2247     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2248       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2249 
2250     if (Entry->getType() == Ty)
2251       return Entry;
2252 
2253     // If there are two attempts to define the same mangled name, issue an
2254     // error.
2255     if (IsForDefinition && !Entry->isDeclaration()) {
2256       GlobalDecl OtherGD;
2257       const VarDecl *OtherD;
2258 
2259       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2260       // to make sure that we issue an error only once.
2261       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2262           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2263           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2264           OtherD->hasInit() &&
2265           DiagnosedConflictingDefinitions.insert(D).second) {
2266         getDiags().Report(D->getLocation(),
2267                           diag::err_duplicate_mangled_name);
2268         getDiags().Report(OtherGD.getDecl()->getLocation(),
2269                           diag::note_previous_definition);
2270       }
2271     }
2272 
2273     // Make sure the result is of the correct type.
2274     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2275       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2276 
2277     // (If global is requested for a definition, we always need to create a new
2278     // global, not just return a bitcast.)
2279     if (!IsForDefinition)
2280       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2281   }
2282 
2283   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2284   auto *GV = new llvm::GlobalVariable(
2285       getModule(), Ty->getElementType(), false,
2286       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2287       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2288 
2289   // If we already created a global with the same mangled name (but different
2290   // type) before, take its name and remove it from its parent.
2291   if (Entry) {
2292     GV->takeName(Entry);
2293 
2294     if (!Entry->use_empty()) {
2295       llvm::Constant *NewPtrForOldDecl =
2296           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2297       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2298     }
2299 
2300     Entry->eraseFromParent();
2301   }
2302 
2303   // This is the first use or definition of a mangled name.  If there is a
2304   // deferred decl with this name, remember that we need to emit it at the end
2305   // of the file.
2306   auto DDI = DeferredDecls.find(MangledName);
2307   if (DDI != DeferredDecls.end()) {
2308     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2309     // list, and remove it from DeferredDecls (since we don't need it anymore).
2310     addDeferredDeclToEmit(DDI->second);
2311     DeferredDecls.erase(DDI);
2312   }
2313 
2314   // Handle things which are present even on external declarations.
2315   if (D) {
2316     // FIXME: This code is overly simple and should be merged with other global
2317     // handling.
2318     GV->setConstant(isTypeConstant(D->getType(), false));
2319 
2320     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2321 
2322     setLinkageAndVisibilityForGV(GV, D);
2323 
2324     if (D->getTLSKind()) {
2325       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2326         CXXThreadLocals.push_back(D);
2327       setTLSMode(GV, *D);
2328     }
2329 
2330     // If required by the ABI, treat declarations of static data members with
2331     // inline initializers as definitions.
2332     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2333       EmitGlobalVarDefinition(D);
2334     }
2335 
2336     // Handle XCore specific ABI requirements.
2337     if (getTriple().getArch() == llvm::Triple::xcore &&
2338         D->getLanguageLinkage() == CLanguageLinkage &&
2339         D->getType().isConstant(Context) &&
2340         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2341       GV->setSection(".cp.rodata");
2342   }
2343 
2344   if (AddrSpace != Ty->getAddressSpace())
2345     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2346 
2347   return GV;
2348 }
2349 
2350 llvm::Constant *
2351 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2352                                ForDefinition_t IsForDefinition) {
2353   const Decl *D = GD.getDecl();
2354   if (isa<CXXConstructorDecl>(D))
2355     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2356                                 getFromCtorType(GD.getCtorType()),
2357                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2358                                 /*DontDefer=*/false, IsForDefinition);
2359   else if (isa<CXXDestructorDecl>(D))
2360     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2361                                 getFromDtorType(GD.getDtorType()),
2362                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2363                                 /*DontDefer=*/false, IsForDefinition);
2364   else if (isa<CXXMethodDecl>(D)) {
2365     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2366         cast<CXXMethodDecl>(D));
2367     auto Ty = getTypes().GetFunctionType(*FInfo);
2368     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2369                              IsForDefinition);
2370   } else if (isa<FunctionDecl>(D)) {
2371     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2372     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2373     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2374                              IsForDefinition);
2375   } else
2376     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2377                               IsForDefinition);
2378 }
2379 
2380 llvm::GlobalVariable *
2381 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2382                                       llvm::Type *Ty,
2383                                       llvm::GlobalValue::LinkageTypes Linkage) {
2384   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2385   llvm::GlobalVariable *OldGV = nullptr;
2386 
2387   if (GV) {
2388     // Check if the variable has the right type.
2389     if (GV->getType()->getElementType() == Ty)
2390       return GV;
2391 
2392     // Because C++ name mangling, the only way we can end up with an already
2393     // existing global with the same name is if it has been declared extern "C".
2394     assert(GV->isDeclaration() && "Declaration has wrong type!");
2395     OldGV = GV;
2396   }
2397 
2398   // Create a new variable.
2399   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2400                                 Linkage, nullptr, Name);
2401 
2402   if (OldGV) {
2403     // Replace occurrences of the old variable if needed.
2404     GV->takeName(OldGV);
2405 
2406     if (!OldGV->use_empty()) {
2407       llvm::Constant *NewPtrForOldDecl =
2408       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2409       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2410     }
2411 
2412     OldGV->eraseFromParent();
2413   }
2414 
2415   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2416       !GV->hasAvailableExternallyLinkage())
2417     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2418 
2419   return GV;
2420 }
2421 
2422 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2423 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2424 /// then it will be created with the specified type instead of whatever the
2425 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2426 /// that an actual global with type Ty will be returned, not conversion of a
2427 /// variable with the same mangled name but some other type.
2428 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2429                                                   llvm::Type *Ty,
2430                                            ForDefinition_t IsForDefinition) {
2431   assert(D->hasGlobalStorage() && "Not a global variable");
2432   QualType ASTTy = D->getType();
2433   if (!Ty)
2434     Ty = getTypes().ConvertTypeForMem(ASTTy);
2435 
2436   llvm::PointerType *PTy =
2437     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2438 
2439   StringRef MangledName = getMangledName(D);
2440   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2441 }
2442 
2443 /// CreateRuntimeVariable - Create a new runtime global variable with the
2444 /// specified type and name.
2445 llvm::Constant *
2446 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2447                                      StringRef Name) {
2448   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2449 }
2450 
2451 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2452   assert(!D->getInit() && "Cannot emit definite definitions here!");
2453 
2454   StringRef MangledName = getMangledName(D);
2455   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2456 
2457   // We already have a definition, not declaration, with the same mangled name.
2458   // Emitting of declaration is not required (and actually overwrites emitted
2459   // definition).
2460   if (GV && !GV->isDeclaration())
2461     return;
2462 
2463   // If we have not seen a reference to this variable yet, place it into the
2464   // deferred declarations table to be emitted if needed later.
2465   if (!MustBeEmitted(D) && !GV) {
2466       DeferredDecls[MangledName] = D;
2467       return;
2468   }
2469 
2470   // The tentative definition is the only definition.
2471   EmitGlobalVarDefinition(D);
2472 }
2473 
2474 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2475   return Context.toCharUnitsFromBits(
2476       getDataLayout().getTypeStoreSizeInBits(Ty));
2477 }
2478 
2479 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2480                                                  unsigned AddrSpace) {
2481   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2482     if (D->hasAttr<CUDAConstantAttr>())
2483       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2484     else if (D->hasAttr<CUDASharedAttr>())
2485       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2486     else
2487       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2488   }
2489 
2490   return AddrSpace;
2491 }
2492 
2493 template<typename SomeDecl>
2494 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2495                                                llvm::GlobalValue *GV) {
2496   if (!getLangOpts().CPlusPlus)
2497     return;
2498 
2499   // Must have 'used' attribute, or else inline assembly can't rely on
2500   // the name existing.
2501   if (!D->template hasAttr<UsedAttr>())
2502     return;
2503 
2504   // Must have internal linkage and an ordinary name.
2505   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2506     return;
2507 
2508   // Must be in an extern "C" context. Entities declared directly within
2509   // a record are not extern "C" even if the record is in such a context.
2510   const SomeDecl *First = D->getFirstDecl();
2511   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2512     return;
2513 
2514   // OK, this is an internal linkage entity inside an extern "C" linkage
2515   // specification. Make a note of that so we can give it the "expected"
2516   // mangled name if nothing else is using that name.
2517   std::pair<StaticExternCMap::iterator, bool> R =
2518       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2519 
2520   // If we have multiple internal linkage entities with the same name
2521   // in extern "C" regions, none of them gets that name.
2522   if (!R.second)
2523     R.first->second = nullptr;
2524 }
2525 
2526 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2527   if (!CGM.supportsCOMDAT())
2528     return false;
2529 
2530   if (D.hasAttr<SelectAnyAttr>())
2531     return true;
2532 
2533   GVALinkage Linkage;
2534   if (auto *VD = dyn_cast<VarDecl>(&D))
2535     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2536   else
2537     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2538 
2539   switch (Linkage) {
2540   case GVA_Internal:
2541   case GVA_AvailableExternally:
2542   case GVA_StrongExternal:
2543     return false;
2544   case GVA_DiscardableODR:
2545   case GVA_StrongODR:
2546     return true;
2547   }
2548   llvm_unreachable("No such linkage");
2549 }
2550 
2551 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2552                                           llvm::GlobalObject &GO) {
2553   if (!shouldBeInCOMDAT(*this, D))
2554     return;
2555   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2556 }
2557 
2558 /// Pass IsTentative as true if you want to create a tentative definition.
2559 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2560                                             bool IsTentative) {
2561   // OpenCL global variables of sampler type are translated to function calls,
2562   // therefore no need to be translated.
2563   QualType ASTTy = D->getType();
2564   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2565     return;
2566 
2567   llvm::Constant *Init = nullptr;
2568   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2569   bool NeedsGlobalCtor = false;
2570   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2571 
2572   const VarDecl *InitDecl;
2573   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2574 
2575   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2576   // as part of their declaration."  Sema has already checked for
2577   // error cases, so we just need to set Init to UndefValue.
2578   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2579       D->hasAttr<CUDASharedAttr>())
2580     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2581   else if (!InitExpr) {
2582     // This is a tentative definition; tentative definitions are
2583     // implicitly initialized with { 0 }.
2584     //
2585     // Note that tentative definitions are only emitted at the end of
2586     // a translation unit, so they should never have incomplete
2587     // type. In addition, EmitTentativeDefinition makes sure that we
2588     // never attempt to emit a tentative definition if a real one
2589     // exists. A use may still exists, however, so we still may need
2590     // to do a RAUW.
2591     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2592     Init = EmitNullConstant(D->getType());
2593   } else {
2594     initializedGlobalDecl = GlobalDecl(D);
2595     Init = EmitConstantInit(*InitDecl);
2596 
2597     if (!Init) {
2598       QualType T = InitExpr->getType();
2599       if (D->getType()->isReferenceType())
2600         T = D->getType();
2601 
2602       if (getLangOpts().CPlusPlus) {
2603         Init = EmitNullConstant(T);
2604         NeedsGlobalCtor = true;
2605       } else {
2606         ErrorUnsupported(D, "static initializer");
2607         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2608       }
2609     } else {
2610       // We don't need an initializer, so remove the entry for the delayed
2611       // initializer position (just in case this entry was delayed) if we
2612       // also don't need to register a destructor.
2613       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2614         DelayedCXXInitPosition.erase(D);
2615     }
2616   }
2617 
2618   llvm::Type* InitType = Init->getType();
2619   llvm::Constant *Entry =
2620       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2621 
2622   // Strip off a bitcast if we got one back.
2623   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2624     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2625            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2626            // All zero index gep.
2627            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2628     Entry = CE->getOperand(0);
2629   }
2630 
2631   // Entry is now either a Function or GlobalVariable.
2632   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2633 
2634   // We have a definition after a declaration with the wrong type.
2635   // We must make a new GlobalVariable* and update everything that used OldGV
2636   // (a declaration or tentative definition) with the new GlobalVariable*
2637   // (which will be a definition).
2638   //
2639   // This happens if there is a prototype for a global (e.g.
2640   // "extern int x[];") and then a definition of a different type (e.g.
2641   // "int x[10];"). This also happens when an initializer has a different type
2642   // from the type of the global (this happens with unions).
2643   if (!GV ||
2644       GV->getType()->getElementType() != InitType ||
2645       GV->getType()->getAddressSpace() !=
2646        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2647 
2648     // Move the old entry aside so that we'll create a new one.
2649     Entry->setName(StringRef());
2650 
2651     // Make a new global with the correct type, this is now guaranteed to work.
2652     GV = cast<llvm::GlobalVariable>(
2653         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2654 
2655     // Replace all uses of the old global with the new global
2656     llvm::Constant *NewPtrForOldDecl =
2657         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2658     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2659 
2660     // Erase the old global, since it is no longer used.
2661     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2662   }
2663 
2664   MaybeHandleStaticInExternC(D, GV);
2665 
2666   if (D->hasAttr<AnnotateAttr>())
2667     AddGlobalAnnotations(D, GV);
2668 
2669   // Set the llvm linkage type as appropriate.
2670   llvm::GlobalValue::LinkageTypes Linkage =
2671       getLLVMLinkageVarDefinition(D, GV->isConstant());
2672 
2673   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2674   // the device. [...]"
2675   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2676   // __device__, declares a variable that: [...]
2677   // Is accessible from all the threads within the grid and from the host
2678   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2679   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2680   if (GV && LangOpts.CUDA) {
2681     if (LangOpts.CUDAIsDevice) {
2682       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2683         GV->setExternallyInitialized(true);
2684     } else {
2685       // Host-side shadows of external declarations of device-side
2686       // global variables become internal definitions. These have to
2687       // be internal in order to prevent name conflicts with global
2688       // host variables with the same name in a different TUs.
2689       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2690         Linkage = llvm::GlobalValue::InternalLinkage;
2691 
2692         // Shadow variables and their properties must be registered
2693         // with CUDA runtime.
2694         unsigned Flags = 0;
2695         if (!D->hasDefinition())
2696           Flags |= CGCUDARuntime::ExternDeviceVar;
2697         if (D->hasAttr<CUDAConstantAttr>())
2698           Flags |= CGCUDARuntime::ConstantDeviceVar;
2699         getCUDARuntime().registerDeviceVar(*GV, Flags);
2700       } else if (D->hasAttr<CUDASharedAttr>())
2701         // __shared__ variables are odd. Shadows do get created, but
2702         // they are not registered with the CUDA runtime, so they
2703         // can't really be used to access their device-side
2704         // counterparts. It's not clear yet whether it's nvcc's bug or
2705         // a feature, but we've got to do the same for compatibility.
2706         Linkage = llvm::GlobalValue::InternalLinkage;
2707     }
2708   }
2709   GV->setInitializer(Init);
2710 
2711   // If it is safe to mark the global 'constant', do so now.
2712   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2713                   isTypeConstant(D->getType(), true));
2714 
2715   // If it is in a read-only section, mark it 'constant'.
2716   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2717     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2718     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2719       GV->setConstant(true);
2720   }
2721 
2722   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2723 
2724 
2725   // On Darwin, if the normal linkage of a C++ thread_local variable is
2726   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2727   // copies within a linkage unit; otherwise, the backing variable has
2728   // internal linkage and all accesses should just be calls to the
2729   // Itanium-specified entry point, which has the normal linkage of the
2730   // variable. This is to preserve the ability to change the implementation
2731   // behind the scenes.
2732   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2733       Context.getTargetInfo().getTriple().isOSDarwin() &&
2734       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2735       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2736     Linkage = llvm::GlobalValue::InternalLinkage;
2737 
2738   GV->setLinkage(Linkage);
2739   if (D->hasAttr<DLLImportAttr>())
2740     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2741   else if (D->hasAttr<DLLExportAttr>())
2742     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2743   else
2744     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2745 
2746   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2747     // common vars aren't constant even if declared const.
2748     GV->setConstant(false);
2749     // Tentative definition of global variables may be initialized with
2750     // non-zero null pointers. In this case they should have weak linkage
2751     // since common linkage must have zero initializer and must not have
2752     // explicit section therefore cannot have non-zero initial value.
2753     if (!GV->getInitializer()->isNullValue())
2754       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2755   }
2756 
2757   setNonAliasAttributes(D, GV);
2758 
2759   if (D->getTLSKind() && !GV->isThreadLocal()) {
2760     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2761       CXXThreadLocals.push_back(D);
2762     setTLSMode(GV, *D);
2763   }
2764 
2765   maybeSetTrivialComdat(*D, *GV);
2766 
2767   // Emit the initializer function if necessary.
2768   if (NeedsGlobalCtor || NeedsGlobalDtor)
2769     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2770 
2771   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2772 
2773   // Emit global variable debug information.
2774   if (CGDebugInfo *DI = getModuleDebugInfo())
2775     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2776       DI->EmitGlobalVariable(GV, D);
2777 }
2778 
2779 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2780                                       CodeGenModule &CGM, const VarDecl *D,
2781                                       bool NoCommon) {
2782   // Don't give variables common linkage if -fno-common was specified unless it
2783   // was overridden by a NoCommon attribute.
2784   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2785     return true;
2786 
2787   // C11 6.9.2/2:
2788   //   A declaration of an identifier for an object that has file scope without
2789   //   an initializer, and without a storage-class specifier or with the
2790   //   storage-class specifier static, constitutes a tentative definition.
2791   if (D->getInit() || D->hasExternalStorage())
2792     return true;
2793 
2794   // A variable cannot be both common and exist in a section.
2795   if (D->hasAttr<SectionAttr>())
2796     return true;
2797 
2798   // Thread local vars aren't considered common linkage.
2799   if (D->getTLSKind())
2800     return true;
2801 
2802   // Tentative definitions marked with WeakImportAttr are true definitions.
2803   if (D->hasAttr<WeakImportAttr>())
2804     return true;
2805 
2806   // A variable cannot be both common and exist in a comdat.
2807   if (shouldBeInCOMDAT(CGM, *D))
2808     return true;
2809 
2810   // Declarations with a required alignment do not have common linkage in MSVC
2811   // mode.
2812   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2813     if (D->hasAttr<AlignedAttr>())
2814       return true;
2815     QualType VarType = D->getType();
2816     if (Context.isAlignmentRequired(VarType))
2817       return true;
2818 
2819     if (const auto *RT = VarType->getAs<RecordType>()) {
2820       const RecordDecl *RD = RT->getDecl();
2821       for (const FieldDecl *FD : RD->fields()) {
2822         if (FD->isBitField())
2823           continue;
2824         if (FD->hasAttr<AlignedAttr>())
2825           return true;
2826         if (Context.isAlignmentRequired(FD->getType()))
2827           return true;
2828       }
2829     }
2830   }
2831 
2832   return false;
2833 }
2834 
2835 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2836     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2837   if (Linkage == GVA_Internal)
2838     return llvm::Function::InternalLinkage;
2839 
2840   if (D->hasAttr<WeakAttr>()) {
2841     if (IsConstantVariable)
2842       return llvm::GlobalVariable::WeakODRLinkage;
2843     else
2844       return llvm::GlobalVariable::WeakAnyLinkage;
2845   }
2846 
2847   // We are guaranteed to have a strong definition somewhere else,
2848   // so we can use available_externally linkage.
2849   if (Linkage == GVA_AvailableExternally)
2850     return llvm::GlobalValue::AvailableExternallyLinkage;
2851 
2852   // Note that Apple's kernel linker doesn't support symbol
2853   // coalescing, so we need to avoid linkonce and weak linkages there.
2854   // Normally, this means we just map to internal, but for explicit
2855   // instantiations we'll map to external.
2856 
2857   // In C++, the compiler has to emit a definition in every translation unit
2858   // that references the function.  We should use linkonce_odr because
2859   // a) if all references in this translation unit are optimized away, we
2860   // don't need to codegen it.  b) if the function persists, it needs to be
2861   // merged with other definitions. c) C++ has the ODR, so we know the
2862   // definition is dependable.
2863   if (Linkage == GVA_DiscardableODR)
2864     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2865                                             : llvm::Function::InternalLinkage;
2866 
2867   // An explicit instantiation of a template has weak linkage, since
2868   // explicit instantiations can occur in multiple translation units
2869   // and must all be equivalent. However, we are not allowed to
2870   // throw away these explicit instantiations.
2871   //
2872   // We don't currently support CUDA device code spread out across multiple TUs,
2873   // so say that CUDA templates are either external (for kernels) or internal.
2874   // This lets llvm perform aggressive inter-procedural optimizations.
2875   if (Linkage == GVA_StrongODR) {
2876     if (Context.getLangOpts().AppleKext)
2877       return llvm::Function::ExternalLinkage;
2878     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2879       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2880                                           : llvm::Function::InternalLinkage;
2881     return llvm::Function::WeakODRLinkage;
2882   }
2883 
2884   // C++ doesn't have tentative definitions and thus cannot have common
2885   // linkage.
2886   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2887       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2888                                  CodeGenOpts.NoCommon))
2889     return llvm::GlobalVariable::CommonLinkage;
2890 
2891   // selectany symbols are externally visible, so use weak instead of
2892   // linkonce.  MSVC optimizes away references to const selectany globals, so
2893   // all definitions should be the same and ODR linkage should be used.
2894   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2895   if (D->hasAttr<SelectAnyAttr>())
2896     return llvm::GlobalVariable::WeakODRLinkage;
2897 
2898   // Otherwise, we have strong external linkage.
2899   assert(Linkage == GVA_StrongExternal);
2900   return llvm::GlobalVariable::ExternalLinkage;
2901 }
2902 
2903 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2904     const VarDecl *VD, bool IsConstant) {
2905   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2906   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2907 }
2908 
2909 /// Replace the uses of a function that was declared with a non-proto type.
2910 /// We want to silently drop extra arguments from call sites
2911 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2912                                           llvm::Function *newFn) {
2913   // Fast path.
2914   if (old->use_empty()) return;
2915 
2916   llvm::Type *newRetTy = newFn->getReturnType();
2917   SmallVector<llvm::Value*, 4> newArgs;
2918   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2919 
2920   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2921          ui != ue; ) {
2922     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2923     llvm::User *user = use->getUser();
2924 
2925     // Recognize and replace uses of bitcasts.  Most calls to
2926     // unprototyped functions will use bitcasts.
2927     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2928       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2929         replaceUsesOfNonProtoConstant(bitcast, newFn);
2930       continue;
2931     }
2932 
2933     // Recognize calls to the function.
2934     llvm::CallSite callSite(user);
2935     if (!callSite) continue;
2936     if (!callSite.isCallee(&*use)) continue;
2937 
2938     // If the return types don't match exactly, then we can't
2939     // transform this call unless it's dead.
2940     if (callSite->getType() != newRetTy && !callSite->use_empty())
2941       continue;
2942 
2943     // Get the call site's attribute list.
2944     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
2945     llvm::AttributeList oldAttrs = callSite.getAttributes();
2946 
2947     // If the function was passed too few arguments, don't transform.
2948     unsigned newNumArgs = newFn->arg_size();
2949     if (callSite.arg_size() < newNumArgs) continue;
2950 
2951     // If extra arguments were passed, we silently drop them.
2952     // If any of the types mismatch, we don't transform.
2953     unsigned argNo = 0;
2954     bool dontTransform = false;
2955     for (llvm::Argument &A : newFn->args()) {
2956       if (callSite.getArgument(argNo)->getType() != A.getType()) {
2957         dontTransform = true;
2958         break;
2959       }
2960 
2961       // Add any parameter attributes.
2962       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
2963       argNo++;
2964     }
2965     if (dontTransform)
2966       continue;
2967 
2968     // Okay, we can transform this.  Create the new call instruction and copy
2969     // over the required information.
2970     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2971 
2972     // Copy over any operand bundles.
2973     callSite.getOperandBundlesAsDefs(newBundles);
2974 
2975     llvm::CallSite newCall;
2976     if (callSite.isCall()) {
2977       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2978                                        callSite.getInstruction());
2979     } else {
2980       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2981       newCall = llvm::InvokeInst::Create(newFn,
2982                                          oldInvoke->getNormalDest(),
2983                                          oldInvoke->getUnwindDest(),
2984                                          newArgs, newBundles, "",
2985                                          callSite.getInstruction());
2986     }
2987     newArgs.clear(); // for the next iteration
2988 
2989     if (!newCall->getType()->isVoidTy())
2990       newCall->takeName(callSite.getInstruction());
2991     newCall.setAttributes(llvm::AttributeList::get(
2992         newFn->getContext(), oldAttrs.getFnAttributes(),
2993         oldAttrs.getRetAttributes(), newArgAttrs));
2994     newCall.setCallingConv(callSite.getCallingConv());
2995 
2996     // Finally, remove the old call, replacing any uses with the new one.
2997     if (!callSite->use_empty())
2998       callSite->replaceAllUsesWith(newCall.getInstruction());
2999 
3000     // Copy debug location attached to CI.
3001     if (callSite->getDebugLoc())
3002       newCall->setDebugLoc(callSite->getDebugLoc());
3003 
3004     callSite->eraseFromParent();
3005   }
3006 }
3007 
3008 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3009 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3010 /// existing call uses of the old function in the module, this adjusts them to
3011 /// call the new function directly.
3012 ///
3013 /// This is not just a cleanup: the always_inline pass requires direct calls to
3014 /// functions to be able to inline them.  If there is a bitcast in the way, it
3015 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3016 /// run at -O0.
3017 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3018                                                       llvm::Function *NewFn) {
3019   // If we're redefining a global as a function, don't transform it.
3020   if (!isa<llvm::Function>(Old)) return;
3021 
3022   replaceUsesOfNonProtoConstant(Old, NewFn);
3023 }
3024 
3025 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3026   auto DK = VD->isThisDeclarationADefinition();
3027   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3028     return;
3029 
3030   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3031   // If we have a definition, this might be a deferred decl. If the
3032   // instantiation is explicit, make sure we emit it at the end.
3033   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3034     GetAddrOfGlobalVar(VD);
3035 
3036   EmitTopLevelDecl(VD);
3037 }
3038 
3039 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3040                                                  llvm::GlobalValue *GV) {
3041   const auto *D = cast<FunctionDecl>(GD.getDecl());
3042 
3043   // Compute the function info and LLVM type.
3044   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3045   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3046 
3047   // Get or create the prototype for the function.
3048   if (!GV || (GV->getType()->getElementType() != Ty))
3049     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3050                                                    /*DontDefer=*/true,
3051                                                    ForDefinition));
3052 
3053   // Already emitted.
3054   if (!GV->isDeclaration())
3055     return;
3056 
3057   // We need to set linkage and visibility on the function before
3058   // generating code for it because various parts of IR generation
3059   // want to propagate this information down (e.g. to local static
3060   // declarations).
3061   auto *Fn = cast<llvm::Function>(GV);
3062   setFunctionLinkage(GD, Fn);
3063   setFunctionDLLStorageClass(GD, Fn);
3064 
3065   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3066   setGlobalVisibility(Fn, D);
3067 
3068   MaybeHandleStaticInExternC(D, Fn);
3069 
3070   maybeSetTrivialComdat(*D, *Fn);
3071 
3072   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3073 
3074   setFunctionDefinitionAttributes(D, Fn);
3075   SetLLVMFunctionAttributesForDefinition(D, Fn);
3076 
3077   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3078     AddGlobalCtor(Fn, CA->getPriority());
3079   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3080     AddGlobalDtor(Fn, DA->getPriority());
3081   if (D->hasAttr<AnnotateAttr>())
3082     AddGlobalAnnotations(D, Fn);
3083 }
3084 
3085 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3086   const auto *D = cast<ValueDecl>(GD.getDecl());
3087   const AliasAttr *AA = D->getAttr<AliasAttr>();
3088   assert(AA && "Not an alias?");
3089 
3090   StringRef MangledName = getMangledName(GD);
3091 
3092   if (AA->getAliasee() == MangledName) {
3093     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3094     return;
3095   }
3096 
3097   // If there is a definition in the module, then it wins over the alias.
3098   // This is dubious, but allow it to be safe.  Just ignore the alias.
3099   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3100   if (Entry && !Entry->isDeclaration())
3101     return;
3102 
3103   Aliases.push_back(GD);
3104 
3105   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3106 
3107   // Create a reference to the named value.  This ensures that it is emitted
3108   // if a deferred decl.
3109   llvm::Constant *Aliasee;
3110   if (isa<llvm::FunctionType>(DeclTy))
3111     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3112                                       /*ForVTable=*/false);
3113   else
3114     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3115                                     llvm::PointerType::getUnqual(DeclTy),
3116                                     /*D=*/nullptr);
3117 
3118   // Create the new alias itself, but don't set a name yet.
3119   auto *GA = llvm::GlobalAlias::create(
3120       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3121 
3122   if (Entry) {
3123     if (GA->getAliasee() == Entry) {
3124       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3125       return;
3126     }
3127 
3128     assert(Entry->isDeclaration());
3129 
3130     // If there is a declaration in the module, then we had an extern followed
3131     // by the alias, as in:
3132     //   extern int test6();
3133     //   ...
3134     //   int test6() __attribute__((alias("test7")));
3135     //
3136     // Remove it and replace uses of it with the alias.
3137     GA->takeName(Entry);
3138 
3139     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3140                                                           Entry->getType()));
3141     Entry->eraseFromParent();
3142   } else {
3143     GA->setName(MangledName);
3144   }
3145 
3146   // Set attributes which are particular to an alias; this is a
3147   // specialization of the attributes which may be set on a global
3148   // variable/function.
3149   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3150       D->isWeakImported()) {
3151     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3152   }
3153 
3154   if (const auto *VD = dyn_cast<VarDecl>(D))
3155     if (VD->getTLSKind())
3156       setTLSMode(GA, *VD);
3157 
3158   setAliasAttributes(D, GA);
3159 }
3160 
3161 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3162   const auto *D = cast<ValueDecl>(GD.getDecl());
3163   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3164   assert(IFA && "Not an ifunc?");
3165 
3166   StringRef MangledName = getMangledName(GD);
3167 
3168   if (IFA->getResolver() == MangledName) {
3169     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3170     return;
3171   }
3172 
3173   // Report an error if some definition overrides ifunc.
3174   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3175   if (Entry && !Entry->isDeclaration()) {
3176     GlobalDecl OtherGD;
3177     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3178         DiagnosedConflictingDefinitions.insert(GD).second) {
3179       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3180       Diags.Report(OtherGD.getDecl()->getLocation(),
3181                    diag::note_previous_definition);
3182     }
3183     return;
3184   }
3185 
3186   Aliases.push_back(GD);
3187 
3188   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3189   llvm::Constant *Resolver =
3190       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3191                               /*ForVTable=*/false);
3192   llvm::GlobalIFunc *GIF =
3193       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3194                                 "", Resolver, &getModule());
3195   if (Entry) {
3196     if (GIF->getResolver() == Entry) {
3197       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3198       return;
3199     }
3200     assert(Entry->isDeclaration());
3201 
3202     // If there is a declaration in the module, then we had an extern followed
3203     // by the ifunc, as in:
3204     //   extern int test();
3205     //   ...
3206     //   int test() __attribute__((ifunc("resolver")));
3207     //
3208     // Remove it and replace uses of it with the ifunc.
3209     GIF->takeName(Entry);
3210 
3211     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3212                                                           Entry->getType()));
3213     Entry->eraseFromParent();
3214   } else
3215     GIF->setName(MangledName);
3216 
3217   SetCommonAttributes(D, GIF);
3218 }
3219 
3220 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3221                                             ArrayRef<llvm::Type*> Tys) {
3222   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3223                                          Tys);
3224 }
3225 
3226 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3227 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3228                          const StringLiteral *Literal, bool TargetIsLSB,
3229                          bool &IsUTF16, unsigned &StringLength) {
3230   StringRef String = Literal->getString();
3231   unsigned NumBytes = String.size();
3232 
3233   // Check for simple case.
3234   if (!Literal->containsNonAsciiOrNull()) {
3235     StringLength = NumBytes;
3236     return *Map.insert(std::make_pair(String, nullptr)).first;
3237   }
3238 
3239   // Otherwise, convert the UTF8 literals into a string of shorts.
3240   IsUTF16 = true;
3241 
3242   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3243   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3244   llvm::UTF16 *ToPtr = &ToBuf[0];
3245 
3246   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3247                                  ToPtr + NumBytes, llvm::strictConversion);
3248 
3249   // ConvertUTF8toUTF16 returns the length in ToPtr.
3250   StringLength = ToPtr - &ToBuf[0];
3251 
3252   // Add an explicit null.
3253   *ToPtr = 0;
3254   return *Map.insert(std::make_pair(
3255                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3256                                    (StringLength + 1) * 2),
3257                          nullptr)).first;
3258 }
3259 
3260 ConstantAddress
3261 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3262   unsigned StringLength = 0;
3263   bool isUTF16 = false;
3264   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3265       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3266                                getDataLayout().isLittleEndian(), isUTF16,
3267                                StringLength);
3268 
3269   if (auto *C = Entry.second)
3270     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3271 
3272   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3273   llvm::Constant *Zeros[] = { Zero, Zero };
3274 
3275   // If we don't already have it, get __CFConstantStringClassReference.
3276   if (!CFConstantStringClassRef) {
3277     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3278     Ty = llvm::ArrayType::get(Ty, 0);
3279     llvm::Constant *GV =
3280         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3281 
3282     if (getTriple().isOSBinFormatCOFF()) {
3283       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3284       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3285       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3286       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3287 
3288       const VarDecl *VD = nullptr;
3289       for (const auto &Result : DC->lookup(&II))
3290         if ((VD = dyn_cast<VarDecl>(Result)))
3291           break;
3292 
3293       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3294         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3295         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3296       } else {
3297         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3298         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3299       }
3300     }
3301 
3302     // Decay array -> ptr
3303     CFConstantStringClassRef =
3304         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3305   }
3306 
3307   QualType CFTy = getContext().getCFConstantStringType();
3308 
3309   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3310 
3311   ConstantInitBuilder Builder(*this);
3312   auto Fields = Builder.beginStruct(STy);
3313 
3314   // Class pointer.
3315   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3316 
3317   // Flags.
3318   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3319 
3320   // String pointer.
3321   llvm::Constant *C = nullptr;
3322   if (isUTF16) {
3323     auto Arr = llvm::makeArrayRef(
3324         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3325         Entry.first().size() / 2);
3326     C = llvm::ConstantDataArray::get(VMContext, Arr);
3327   } else {
3328     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3329   }
3330 
3331   // Note: -fwritable-strings doesn't make the backing store strings of
3332   // CFStrings writable. (See <rdar://problem/10657500>)
3333   auto *GV =
3334       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3335                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3336   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3337   // Don't enforce the target's minimum global alignment, since the only use
3338   // of the string is via this class initializer.
3339   CharUnits Align = isUTF16
3340                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3341                         : getContext().getTypeAlignInChars(getContext().CharTy);
3342   GV->setAlignment(Align.getQuantity());
3343 
3344   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3345   // Without it LLVM can merge the string with a non unnamed_addr one during
3346   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3347   if (getTriple().isOSBinFormatMachO())
3348     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3349                            : "__TEXT,__cstring,cstring_literals");
3350 
3351   // String.
3352   llvm::Constant *Str =
3353       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3354 
3355   if (isUTF16)
3356     // Cast the UTF16 string to the correct type.
3357     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3358   Fields.add(Str);
3359 
3360   // String length.
3361   auto Ty = getTypes().ConvertType(getContext().LongTy);
3362   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3363 
3364   CharUnits Alignment = getPointerAlign();
3365 
3366   // The struct.
3367   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3368                                     /*isConstant=*/false,
3369                                     llvm::GlobalVariable::PrivateLinkage);
3370   switch (getTriple().getObjectFormat()) {
3371   case llvm::Triple::UnknownObjectFormat:
3372     llvm_unreachable("unknown file format");
3373   case llvm::Triple::COFF:
3374   case llvm::Triple::ELF:
3375   case llvm::Triple::Wasm:
3376     GV->setSection("cfstring");
3377     break;
3378   case llvm::Triple::MachO:
3379     GV->setSection("__DATA,__cfstring");
3380     break;
3381   }
3382   Entry.second = GV;
3383 
3384   return ConstantAddress(GV, Alignment);
3385 }
3386 
3387 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3388   if (ObjCFastEnumerationStateType.isNull()) {
3389     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3390     D->startDefinition();
3391 
3392     QualType FieldTypes[] = {
3393       Context.UnsignedLongTy,
3394       Context.getPointerType(Context.getObjCIdType()),
3395       Context.getPointerType(Context.UnsignedLongTy),
3396       Context.getConstantArrayType(Context.UnsignedLongTy,
3397                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3398     };
3399 
3400     for (size_t i = 0; i < 4; ++i) {
3401       FieldDecl *Field = FieldDecl::Create(Context,
3402                                            D,
3403                                            SourceLocation(),
3404                                            SourceLocation(), nullptr,
3405                                            FieldTypes[i], /*TInfo=*/nullptr,
3406                                            /*BitWidth=*/nullptr,
3407                                            /*Mutable=*/false,
3408                                            ICIS_NoInit);
3409       Field->setAccess(AS_public);
3410       D->addDecl(Field);
3411     }
3412 
3413     D->completeDefinition();
3414     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3415   }
3416 
3417   return ObjCFastEnumerationStateType;
3418 }
3419 
3420 llvm::Constant *
3421 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3422   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3423 
3424   // Don't emit it as the address of the string, emit the string data itself
3425   // as an inline array.
3426   if (E->getCharByteWidth() == 1) {
3427     SmallString<64> Str(E->getString());
3428 
3429     // Resize the string to the right size, which is indicated by its type.
3430     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3431     Str.resize(CAT->getSize().getZExtValue());
3432     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3433   }
3434 
3435   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3436   llvm::Type *ElemTy = AType->getElementType();
3437   unsigned NumElements = AType->getNumElements();
3438 
3439   // Wide strings have either 2-byte or 4-byte elements.
3440   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3441     SmallVector<uint16_t, 32> Elements;
3442     Elements.reserve(NumElements);
3443 
3444     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3445       Elements.push_back(E->getCodeUnit(i));
3446     Elements.resize(NumElements);
3447     return llvm::ConstantDataArray::get(VMContext, Elements);
3448   }
3449 
3450   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3451   SmallVector<uint32_t, 32> Elements;
3452   Elements.reserve(NumElements);
3453 
3454   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3455     Elements.push_back(E->getCodeUnit(i));
3456   Elements.resize(NumElements);
3457   return llvm::ConstantDataArray::get(VMContext, Elements);
3458 }
3459 
3460 static llvm::GlobalVariable *
3461 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3462                       CodeGenModule &CGM, StringRef GlobalName,
3463                       CharUnits Alignment) {
3464   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3465   unsigned AddrSpace = 0;
3466   if (CGM.getLangOpts().OpenCL)
3467     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3468 
3469   llvm::Module &M = CGM.getModule();
3470   // Create a global variable for this string
3471   auto *GV = new llvm::GlobalVariable(
3472       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3473       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3474   GV->setAlignment(Alignment.getQuantity());
3475   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3476   if (GV->isWeakForLinker()) {
3477     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3478     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3479   }
3480 
3481   return GV;
3482 }
3483 
3484 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3485 /// constant array for the given string literal.
3486 ConstantAddress
3487 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3488                                                   StringRef Name) {
3489   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3490 
3491   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3492   llvm::GlobalVariable **Entry = nullptr;
3493   if (!LangOpts.WritableStrings) {
3494     Entry = &ConstantStringMap[C];
3495     if (auto GV = *Entry) {
3496       if (Alignment.getQuantity() > GV->getAlignment())
3497         GV->setAlignment(Alignment.getQuantity());
3498       return ConstantAddress(GV, Alignment);
3499     }
3500   }
3501 
3502   SmallString<256> MangledNameBuffer;
3503   StringRef GlobalVariableName;
3504   llvm::GlobalValue::LinkageTypes LT;
3505 
3506   // Mangle the string literal if the ABI allows for it.  However, we cannot
3507   // do this if  we are compiling with ASan or -fwritable-strings because they
3508   // rely on strings having normal linkage.
3509   if (!LangOpts.WritableStrings &&
3510       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3511       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3512     llvm::raw_svector_ostream Out(MangledNameBuffer);
3513     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3514 
3515     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3516     GlobalVariableName = MangledNameBuffer;
3517   } else {
3518     LT = llvm::GlobalValue::PrivateLinkage;
3519     GlobalVariableName = Name;
3520   }
3521 
3522   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3523   if (Entry)
3524     *Entry = GV;
3525 
3526   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3527                                   QualType());
3528   return ConstantAddress(GV, Alignment);
3529 }
3530 
3531 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3532 /// array for the given ObjCEncodeExpr node.
3533 ConstantAddress
3534 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3535   std::string Str;
3536   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3537 
3538   return GetAddrOfConstantCString(Str);
3539 }
3540 
3541 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3542 /// the literal and a terminating '\0' character.
3543 /// The result has pointer to array type.
3544 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3545     const std::string &Str, const char *GlobalName) {
3546   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3547   CharUnits Alignment =
3548     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3549 
3550   llvm::Constant *C =
3551       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3552 
3553   // Don't share any string literals if strings aren't constant.
3554   llvm::GlobalVariable **Entry = nullptr;
3555   if (!LangOpts.WritableStrings) {
3556     Entry = &ConstantStringMap[C];
3557     if (auto GV = *Entry) {
3558       if (Alignment.getQuantity() > GV->getAlignment())
3559         GV->setAlignment(Alignment.getQuantity());
3560       return ConstantAddress(GV, Alignment);
3561     }
3562   }
3563 
3564   // Get the default prefix if a name wasn't specified.
3565   if (!GlobalName)
3566     GlobalName = ".str";
3567   // Create a global variable for this.
3568   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3569                                   GlobalName, Alignment);
3570   if (Entry)
3571     *Entry = GV;
3572   return ConstantAddress(GV, Alignment);
3573 }
3574 
3575 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3576     const MaterializeTemporaryExpr *E, const Expr *Init) {
3577   assert((E->getStorageDuration() == SD_Static ||
3578           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3579   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3580 
3581   // If we're not materializing a subobject of the temporary, keep the
3582   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3583   QualType MaterializedType = Init->getType();
3584   if (Init == E->GetTemporaryExpr())
3585     MaterializedType = E->getType();
3586 
3587   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3588 
3589   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3590     return ConstantAddress(Slot, Align);
3591 
3592   // FIXME: If an externally-visible declaration extends multiple temporaries,
3593   // we need to give each temporary the same name in every translation unit (and
3594   // we also need to make the temporaries externally-visible).
3595   SmallString<256> Name;
3596   llvm::raw_svector_ostream Out(Name);
3597   getCXXABI().getMangleContext().mangleReferenceTemporary(
3598       VD, E->getManglingNumber(), Out);
3599 
3600   APValue *Value = nullptr;
3601   if (E->getStorageDuration() == SD_Static) {
3602     // We might have a cached constant initializer for this temporary. Note
3603     // that this might have a different value from the value computed by
3604     // evaluating the initializer if the surrounding constant expression
3605     // modifies the temporary.
3606     Value = getContext().getMaterializedTemporaryValue(E, false);
3607     if (Value && Value->isUninit())
3608       Value = nullptr;
3609   }
3610 
3611   // Try evaluating it now, it might have a constant initializer.
3612   Expr::EvalResult EvalResult;
3613   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3614       !EvalResult.hasSideEffects())
3615     Value = &EvalResult.Val;
3616 
3617   llvm::Constant *InitialValue = nullptr;
3618   bool Constant = false;
3619   llvm::Type *Type;
3620   if (Value) {
3621     // The temporary has a constant initializer, use it.
3622     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3623     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3624     Type = InitialValue->getType();
3625   } else {
3626     // No initializer, the initialization will be provided when we
3627     // initialize the declaration which performed lifetime extension.
3628     Type = getTypes().ConvertTypeForMem(MaterializedType);
3629   }
3630 
3631   // Create a global variable for this lifetime-extended temporary.
3632   llvm::GlobalValue::LinkageTypes Linkage =
3633       getLLVMLinkageVarDefinition(VD, Constant);
3634   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3635     const VarDecl *InitVD;
3636     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3637         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3638       // Temporaries defined inside a class get linkonce_odr linkage because the
3639       // class can be defined in multipe translation units.
3640       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3641     } else {
3642       // There is no need for this temporary to have external linkage if the
3643       // VarDecl has external linkage.
3644       Linkage = llvm::GlobalVariable::InternalLinkage;
3645     }
3646   }
3647   unsigned AddrSpace = GetGlobalVarAddressSpace(
3648       VD, getContext().getTargetAddressSpace(MaterializedType));
3649   auto *GV = new llvm::GlobalVariable(
3650       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3651       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3652       AddrSpace);
3653   setGlobalVisibility(GV, VD);
3654   GV->setAlignment(Align.getQuantity());
3655   if (supportsCOMDAT() && GV->isWeakForLinker())
3656     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3657   if (VD->getTLSKind())
3658     setTLSMode(GV, *VD);
3659   MaterializedGlobalTemporaryMap[E] = GV;
3660   return ConstantAddress(GV, Align);
3661 }
3662 
3663 /// EmitObjCPropertyImplementations - Emit information for synthesized
3664 /// properties for an implementation.
3665 void CodeGenModule::EmitObjCPropertyImplementations(const
3666                                                     ObjCImplementationDecl *D) {
3667   for (const auto *PID : D->property_impls()) {
3668     // Dynamic is just for type-checking.
3669     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3670       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3671 
3672       // Determine which methods need to be implemented, some may have
3673       // been overridden. Note that ::isPropertyAccessor is not the method
3674       // we want, that just indicates if the decl came from a
3675       // property. What we want to know is if the method is defined in
3676       // this implementation.
3677       if (!D->getInstanceMethod(PD->getGetterName()))
3678         CodeGenFunction(*this).GenerateObjCGetter(
3679                                  const_cast<ObjCImplementationDecl *>(D), PID);
3680       if (!PD->isReadOnly() &&
3681           !D->getInstanceMethod(PD->getSetterName()))
3682         CodeGenFunction(*this).GenerateObjCSetter(
3683                                  const_cast<ObjCImplementationDecl *>(D), PID);
3684     }
3685   }
3686 }
3687 
3688 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3689   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3690   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3691        ivar; ivar = ivar->getNextIvar())
3692     if (ivar->getType().isDestructedType())
3693       return true;
3694 
3695   return false;
3696 }
3697 
3698 static bool AllTrivialInitializers(CodeGenModule &CGM,
3699                                    ObjCImplementationDecl *D) {
3700   CodeGenFunction CGF(CGM);
3701   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3702        E = D->init_end(); B != E; ++B) {
3703     CXXCtorInitializer *CtorInitExp = *B;
3704     Expr *Init = CtorInitExp->getInit();
3705     if (!CGF.isTrivialInitializer(Init))
3706       return false;
3707   }
3708   return true;
3709 }
3710 
3711 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3712 /// for an implementation.
3713 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3714   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3715   if (needsDestructMethod(D)) {
3716     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3717     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3718     ObjCMethodDecl *DTORMethod =
3719       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3720                              cxxSelector, getContext().VoidTy, nullptr, D,
3721                              /*isInstance=*/true, /*isVariadic=*/false,
3722                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3723                              /*isDefined=*/false, ObjCMethodDecl::Required);
3724     D->addInstanceMethod(DTORMethod);
3725     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3726     D->setHasDestructors(true);
3727   }
3728 
3729   // If the implementation doesn't have any ivar initializers, we don't need
3730   // a .cxx_construct.
3731   if (D->getNumIvarInitializers() == 0 ||
3732       AllTrivialInitializers(*this, D))
3733     return;
3734 
3735   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3736   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3737   // The constructor returns 'self'.
3738   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3739                                                 D->getLocation(),
3740                                                 D->getLocation(),
3741                                                 cxxSelector,
3742                                                 getContext().getObjCIdType(),
3743                                                 nullptr, D, /*isInstance=*/true,
3744                                                 /*isVariadic=*/false,
3745                                                 /*isPropertyAccessor=*/true,
3746                                                 /*isImplicitlyDeclared=*/true,
3747                                                 /*isDefined=*/false,
3748                                                 ObjCMethodDecl::Required);
3749   D->addInstanceMethod(CTORMethod);
3750   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3751   D->setHasNonZeroConstructors(true);
3752 }
3753 
3754 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3755 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3756   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3757       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3758     ErrorUnsupported(LSD, "linkage spec");
3759     return;
3760   }
3761 
3762   EmitDeclContext(LSD);
3763 }
3764 
3765 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3766   for (auto *I : DC->decls()) {
3767     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3768     // are themselves considered "top-level", so EmitTopLevelDecl on an
3769     // ObjCImplDecl does not recursively visit them. We need to do that in
3770     // case they're nested inside another construct (LinkageSpecDecl /
3771     // ExportDecl) that does stop them from being considered "top-level".
3772     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3773       for (auto *M : OID->methods())
3774         EmitTopLevelDecl(M);
3775     }
3776 
3777     EmitTopLevelDecl(I);
3778   }
3779 }
3780 
3781 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3782 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3783   // Ignore dependent declarations.
3784   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3785     return;
3786 
3787   switch (D->getKind()) {
3788   case Decl::CXXConversion:
3789   case Decl::CXXMethod:
3790   case Decl::Function:
3791     // Skip function templates
3792     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3793         cast<FunctionDecl>(D)->isLateTemplateParsed())
3794       return;
3795 
3796     EmitGlobal(cast<FunctionDecl>(D));
3797     // Always provide some coverage mapping
3798     // even for the functions that aren't emitted.
3799     AddDeferredUnusedCoverageMapping(D);
3800     break;
3801 
3802   case Decl::CXXDeductionGuide:
3803     // Function-like, but does not result in code emission.
3804     break;
3805 
3806   case Decl::Var:
3807   case Decl::Decomposition:
3808     // Skip variable templates
3809     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3810       return;
3811   case Decl::VarTemplateSpecialization:
3812     EmitGlobal(cast<VarDecl>(D));
3813     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3814       for (auto *B : DD->bindings())
3815         if (auto *HD = B->getHoldingVar())
3816           EmitGlobal(HD);
3817     break;
3818 
3819   // Indirect fields from global anonymous structs and unions can be
3820   // ignored; only the actual variable requires IR gen support.
3821   case Decl::IndirectField:
3822     break;
3823 
3824   // C++ Decls
3825   case Decl::Namespace:
3826     EmitDeclContext(cast<NamespaceDecl>(D));
3827     break;
3828   case Decl::CXXRecord:
3829     if (DebugInfo) {
3830       if (auto *ES = D->getASTContext().getExternalSource())
3831         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
3832           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
3833     }
3834     // Emit any static data members, they may be definitions.
3835     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3836       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3837         EmitTopLevelDecl(I);
3838     break;
3839     // No code generation needed.
3840   case Decl::UsingShadow:
3841   case Decl::ClassTemplate:
3842   case Decl::VarTemplate:
3843   case Decl::VarTemplatePartialSpecialization:
3844   case Decl::FunctionTemplate:
3845   case Decl::TypeAliasTemplate:
3846   case Decl::Block:
3847   case Decl::Empty:
3848     break;
3849   case Decl::Using:          // using X; [C++]
3850     if (CGDebugInfo *DI = getModuleDebugInfo())
3851         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3852     return;
3853   case Decl::NamespaceAlias:
3854     if (CGDebugInfo *DI = getModuleDebugInfo())
3855         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3856     return;
3857   case Decl::UsingDirective: // using namespace X; [C++]
3858     if (CGDebugInfo *DI = getModuleDebugInfo())
3859       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3860     return;
3861   case Decl::CXXConstructor:
3862     // Skip function templates
3863     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3864         cast<FunctionDecl>(D)->isLateTemplateParsed())
3865       return;
3866 
3867     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3868     break;
3869   case Decl::CXXDestructor:
3870     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3871       return;
3872     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3873     break;
3874 
3875   case Decl::StaticAssert:
3876     // Nothing to do.
3877     break;
3878 
3879   // Objective-C Decls
3880 
3881   // Forward declarations, no (immediate) code generation.
3882   case Decl::ObjCInterface:
3883   case Decl::ObjCCategory:
3884     break;
3885 
3886   case Decl::ObjCProtocol: {
3887     auto *Proto = cast<ObjCProtocolDecl>(D);
3888     if (Proto->isThisDeclarationADefinition())
3889       ObjCRuntime->GenerateProtocol(Proto);
3890     break;
3891   }
3892 
3893   case Decl::ObjCCategoryImpl:
3894     // Categories have properties but don't support synthesize so we
3895     // can ignore them here.
3896     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3897     break;
3898 
3899   case Decl::ObjCImplementation: {
3900     auto *OMD = cast<ObjCImplementationDecl>(D);
3901     EmitObjCPropertyImplementations(OMD);
3902     EmitObjCIvarInitializations(OMD);
3903     ObjCRuntime->GenerateClass(OMD);
3904     // Emit global variable debug information.
3905     if (CGDebugInfo *DI = getModuleDebugInfo())
3906       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3907         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3908             OMD->getClassInterface()), OMD->getLocation());
3909     break;
3910   }
3911   case Decl::ObjCMethod: {
3912     auto *OMD = cast<ObjCMethodDecl>(D);
3913     // If this is not a prototype, emit the body.
3914     if (OMD->getBody())
3915       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3916     break;
3917   }
3918   case Decl::ObjCCompatibleAlias:
3919     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3920     break;
3921 
3922   case Decl::PragmaComment: {
3923     const auto *PCD = cast<PragmaCommentDecl>(D);
3924     switch (PCD->getCommentKind()) {
3925     case PCK_Unknown:
3926       llvm_unreachable("unexpected pragma comment kind");
3927     case PCK_Linker:
3928       AppendLinkerOptions(PCD->getArg());
3929       break;
3930     case PCK_Lib:
3931       AddDependentLib(PCD->getArg());
3932       break;
3933     case PCK_Compiler:
3934     case PCK_ExeStr:
3935     case PCK_User:
3936       break; // We ignore all of these.
3937     }
3938     break;
3939   }
3940 
3941   case Decl::PragmaDetectMismatch: {
3942     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3943     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3944     break;
3945   }
3946 
3947   case Decl::LinkageSpec:
3948     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3949     break;
3950 
3951   case Decl::FileScopeAsm: {
3952     // File-scope asm is ignored during device-side CUDA compilation.
3953     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3954       break;
3955     // File-scope asm is ignored during device-side OpenMP compilation.
3956     if (LangOpts.OpenMPIsDevice)
3957       break;
3958     auto *AD = cast<FileScopeAsmDecl>(D);
3959     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3960     break;
3961   }
3962 
3963   case Decl::Import: {
3964     auto *Import = cast<ImportDecl>(D);
3965 
3966     // If we've already imported this module, we're done.
3967     if (!ImportedModules.insert(Import->getImportedModule()))
3968       break;
3969 
3970     // Emit debug information for direct imports.
3971     if (!Import->getImportedOwningModule()) {
3972       if (CGDebugInfo *DI = getModuleDebugInfo())
3973         DI->EmitImportDecl(*Import);
3974     }
3975 
3976     // Find all of the submodules and emit the module initializers.
3977     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3978     SmallVector<clang::Module *, 16> Stack;
3979     Visited.insert(Import->getImportedModule());
3980     Stack.push_back(Import->getImportedModule());
3981 
3982     while (!Stack.empty()) {
3983       clang::Module *Mod = Stack.pop_back_val();
3984       if (!EmittedModuleInitializers.insert(Mod).second)
3985         continue;
3986 
3987       for (auto *D : Context.getModuleInitializers(Mod))
3988         EmitTopLevelDecl(D);
3989 
3990       // Visit the submodules of this module.
3991       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3992                                              SubEnd = Mod->submodule_end();
3993            Sub != SubEnd; ++Sub) {
3994         // Skip explicit children; they need to be explicitly imported to emit
3995         // the initializers.
3996         if ((*Sub)->IsExplicit)
3997           continue;
3998 
3999         if (Visited.insert(*Sub).second)
4000           Stack.push_back(*Sub);
4001       }
4002     }
4003     break;
4004   }
4005 
4006   case Decl::Export:
4007     EmitDeclContext(cast<ExportDecl>(D));
4008     break;
4009 
4010   case Decl::OMPThreadPrivate:
4011     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4012     break;
4013 
4014   case Decl::ClassTemplateSpecialization: {
4015     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4016     if (DebugInfo &&
4017         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4018         Spec->hasDefinition())
4019       DebugInfo->completeTemplateDefinition(*Spec);
4020     break;
4021   }
4022 
4023   case Decl::OMPDeclareReduction:
4024     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4025     break;
4026 
4027   default:
4028     // Make sure we handled everything we should, every other kind is a
4029     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4030     // function. Need to recode Decl::Kind to do that easily.
4031     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4032     break;
4033   }
4034 }
4035 
4036 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4037   // Do we need to generate coverage mapping?
4038   if (!CodeGenOpts.CoverageMapping)
4039     return;
4040   switch (D->getKind()) {
4041   case Decl::CXXConversion:
4042   case Decl::CXXMethod:
4043   case Decl::Function:
4044   case Decl::ObjCMethod:
4045   case Decl::CXXConstructor:
4046   case Decl::CXXDestructor: {
4047     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4048       return;
4049     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4050     if (I == DeferredEmptyCoverageMappingDecls.end())
4051       DeferredEmptyCoverageMappingDecls[D] = true;
4052     break;
4053   }
4054   default:
4055     break;
4056   };
4057 }
4058 
4059 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4060   // Do we need to generate coverage mapping?
4061   if (!CodeGenOpts.CoverageMapping)
4062     return;
4063   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4064     if (Fn->isTemplateInstantiation())
4065       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4066   }
4067   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4068   if (I == DeferredEmptyCoverageMappingDecls.end())
4069     DeferredEmptyCoverageMappingDecls[D] = false;
4070   else
4071     I->second = false;
4072 }
4073 
4074 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4075   std::vector<const Decl *> DeferredDecls;
4076   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4077     if (!I.second)
4078       continue;
4079     DeferredDecls.push_back(I.first);
4080   }
4081   // Sort the declarations by their location to make sure that the tests get a
4082   // predictable order for the coverage mapping for the unused declarations.
4083   if (CodeGenOpts.DumpCoverageMapping)
4084     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4085               [] (const Decl *LHS, const Decl *RHS) {
4086       return LHS->getLocStart() < RHS->getLocStart();
4087     });
4088   for (const auto *D : DeferredDecls) {
4089     switch (D->getKind()) {
4090     case Decl::CXXConversion:
4091     case Decl::CXXMethod:
4092     case Decl::Function:
4093     case Decl::ObjCMethod: {
4094       CodeGenPGO PGO(*this);
4095       GlobalDecl GD(cast<FunctionDecl>(D));
4096       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4097                                   getFunctionLinkage(GD));
4098       break;
4099     }
4100     case Decl::CXXConstructor: {
4101       CodeGenPGO PGO(*this);
4102       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4103       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4104                                   getFunctionLinkage(GD));
4105       break;
4106     }
4107     case Decl::CXXDestructor: {
4108       CodeGenPGO PGO(*this);
4109       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4110       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4111                                   getFunctionLinkage(GD));
4112       break;
4113     }
4114     default:
4115       break;
4116     };
4117   }
4118 }
4119 
4120 /// Turns the given pointer into a constant.
4121 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4122                                           const void *Ptr) {
4123   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4124   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4125   return llvm::ConstantInt::get(i64, PtrInt);
4126 }
4127 
4128 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4129                                    llvm::NamedMDNode *&GlobalMetadata,
4130                                    GlobalDecl D,
4131                                    llvm::GlobalValue *Addr) {
4132   if (!GlobalMetadata)
4133     GlobalMetadata =
4134       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4135 
4136   // TODO: should we report variant information for ctors/dtors?
4137   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4138                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4139                                CGM.getLLVMContext(), D.getDecl()))};
4140   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4141 }
4142 
4143 /// For each function which is declared within an extern "C" region and marked
4144 /// as 'used', but has internal linkage, create an alias from the unmangled
4145 /// name to the mangled name if possible. People expect to be able to refer
4146 /// to such functions with an unmangled name from inline assembly within the
4147 /// same translation unit.
4148 void CodeGenModule::EmitStaticExternCAliases() {
4149   // Don't do anything if we're generating CUDA device code -- the NVPTX
4150   // assembly target doesn't support aliases.
4151   if (Context.getTargetInfo().getTriple().isNVPTX())
4152     return;
4153   for (auto &I : StaticExternCValues) {
4154     IdentifierInfo *Name = I.first;
4155     llvm::GlobalValue *Val = I.second;
4156     if (Val && !getModule().getNamedValue(Name->getName()))
4157       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4158   }
4159 }
4160 
4161 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4162                                              GlobalDecl &Result) const {
4163   auto Res = Manglings.find(MangledName);
4164   if (Res == Manglings.end())
4165     return false;
4166   Result = Res->getValue();
4167   return true;
4168 }
4169 
4170 /// Emits metadata nodes associating all the global values in the
4171 /// current module with the Decls they came from.  This is useful for
4172 /// projects using IR gen as a subroutine.
4173 ///
4174 /// Since there's currently no way to associate an MDNode directly
4175 /// with an llvm::GlobalValue, we create a global named metadata
4176 /// with the name 'clang.global.decl.ptrs'.
4177 void CodeGenModule::EmitDeclMetadata() {
4178   llvm::NamedMDNode *GlobalMetadata = nullptr;
4179 
4180   for (auto &I : MangledDeclNames) {
4181     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4182     // Some mangled names don't necessarily have an associated GlobalValue
4183     // in this module, e.g. if we mangled it for DebugInfo.
4184     if (Addr)
4185       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4186   }
4187 }
4188 
4189 /// Emits metadata nodes for all the local variables in the current
4190 /// function.
4191 void CodeGenFunction::EmitDeclMetadata() {
4192   if (LocalDeclMap.empty()) return;
4193 
4194   llvm::LLVMContext &Context = getLLVMContext();
4195 
4196   // Find the unique metadata ID for this name.
4197   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4198 
4199   llvm::NamedMDNode *GlobalMetadata = nullptr;
4200 
4201   for (auto &I : LocalDeclMap) {
4202     const Decl *D = I.first;
4203     llvm::Value *Addr = I.second.getPointer();
4204     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4205       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4206       Alloca->setMetadata(
4207           DeclPtrKind, llvm::MDNode::get(
4208                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4209     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4210       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4211       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4212     }
4213   }
4214 }
4215 
4216 void CodeGenModule::EmitVersionIdentMetadata() {
4217   llvm::NamedMDNode *IdentMetadata =
4218     TheModule.getOrInsertNamedMetadata("llvm.ident");
4219   std::string Version = getClangFullVersion();
4220   llvm::LLVMContext &Ctx = TheModule.getContext();
4221 
4222   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4223   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4224 }
4225 
4226 void CodeGenModule::EmitTargetMetadata() {
4227   // Warning, new MangledDeclNames may be appended within this loop.
4228   // We rely on MapVector insertions adding new elements to the end
4229   // of the container.
4230   // FIXME: Move this loop into the one target that needs it, and only
4231   // loop over those declarations for which we couldn't emit the target
4232   // metadata when we emitted the declaration.
4233   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4234     auto Val = *(MangledDeclNames.begin() + I);
4235     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4236     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4237     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4238   }
4239 }
4240 
4241 void CodeGenModule::EmitCoverageFile() {
4242   if (getCodeGenOpts().CoverageDataFile.empty() &&
4243       getCodeGenOpts().CoverageNotesFile.empty())
4244     return;
4245 
4246   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4247   if (!CUNode)
4248     return;
4249 
4250   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4251   llvm::LLVMContext &Ctx = TheModule.getContext();
4252   auto *CoverageDataFile =
4253       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4254   auto *CoverageNotesFile =
4255       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4256   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4257     llvm::MDNode *CU = CUNode->getOperand(i);
4258     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4259     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4260   }
4261 }
4262 
4263 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4264   // Sema has checked that all uuid strings are of the form
4265   // "12345678-1234-1234-1234-1234567890ab".
4266   assert(Uuid.size() == 36);
4267   for (unsigned i = 0; i < 36; ++i) {
4268     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4269     else                                         assert(isHexDigit(Uuid[i]));
4270   }
4271 
4272   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4273   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4274 
4275   llvm::Constant *Field3[8];
4276   for (unsigned Idx = 0; Idx < 8; ++Idx)
4277     Field3[Idx] = llvm::ConstantInt::get(
4278         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4279 
4280   llvm::Constant *Fields[4] = {
4281     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4282     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4283     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4284     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4285   };
4286 
4287   return llvm::ConstantStruct::getAnon(Fields);
4288 }
4289 
4290 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4291                                                        bool ForEH) {
4292   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4293   // FIXME: should we even be calling this method if RTTI is disabled
4294   // and it's not for EH?
4295   if (!ForEH && !getLangOpts().RTTI)
4296     return llvm::Constant::getNullValue(Int8PtrTy);
4297 
4298   if (ForEH && Ty->isObjCObjectPointerType() &&
4299       LangOpts.ObjCRuntime.isGNUFamily())
4300     return ObjCRuntime->GetEHType(Ty);
4301 
4302   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4303 }
4304 
4305 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4306   for (auto RefExpr : D->varlists()) {
4307     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4308     bool PerformInit =
4309         VD->getAnyInitializer() &&
4310         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4311                                                         /*ForRef=*/false);
4312 
4313     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4314     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4315             VD, Addr, RefExpr->getLocStart(), PerformInit))
4316       CXXGlobalInits.push_back(InitFunction);
4317   }
4318 }
4319 
4320 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4321   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4322   if (InternalId)
4323     return InternalId;
4324 
4325   if (isExternallyVisible(T->getLinkage())) {
4326     std::string OutName;
4327     llvm::raw_string_ostream Out(OutName);
4328     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4329 
4330     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4331   } else {
4332     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4333                                            llvm::ArrayRef<llvm::Metadata *>());
4334   }
4335 
4336   return InternalId;
4337 }
4338 
4339 /// Returns whether this module needs the "all-vtables" type identifier.
4340 bool CodeGenModule::NeedAllVtablesTypeId() const {
4341   // Returns true if at least one of vtable-based CFI checkers is enabled and
4342   // is not in the trapping mode.
4343   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4344            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4345           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4346            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4347           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4348            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4349           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4350            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4351 }
4352 
4353 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4354                                           CharUnits Offset,
4355                                           const CXXRecordDecl *RD) {
4356   llvm::Metadata *MD =
4357       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4358   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4359 
4360   if (CodeGenOpts.SanitizeCfiCrossDso)
4361     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4362       VTable->addTypeMetadata(Offset.getQuantity(),
4363                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4364 
4365   if (NeedAllVtablesTypeId()) {
4366     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4367     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4368   }
4369 }
4370 
4371 // Fills in the supplied string map with the set of target features for the
4372 // passed in function.
4373 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4374                                           const FunctionDecl *FD) {
4375   StringRef TargetCPU = Target.getTargetOpts().CPU;
4376   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4377     // If we have a TargetAttr build up the feature map based on that.
4378     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4379 
4380     // Make a copy of the features as passed on the command line into the
4381     // beginning of the additional features from the function to override.
4382     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4383                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4384                             Target.getTargetOpts().FeaturesAsWritten.end());
4385 
4386     if (ParsedAttr.second != "")
4387       TargetCPU = ParsedAttr.second;
4388 
4389     // Now populate the feature map, first with the TargetCPU which is either
4390     // the default or a new one from the target attribute string. Then we'll use
4391     // the passed in features (FeaturesAsWritten) along with the new ones from
4392     // the attribute.
4393     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4394   } else {
4395     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4396                           Target.getTargetOpts().Features);
4397   }
4398 }
4399 
4400 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4401   if (!SanStats)
4402     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4403 
4404   return *SanStats;
4405 }
4406 llvm::Value *
4407 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4408                                                   CodeGenFunction &CGF) {
4409   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4410   auto SamplerT = getOpenCLRuntime().getSamplerType();
4411   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4412   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4413                                 "__translate_sampler_initializer"),
4414                                 {C});
4415 }
4416