1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 if (!LangOpts.NeXTRuntime) 139 ObjCRuntime = CreateGNUObjCRuntime(*this); 140 else 141 ObjCRuntime = CreateMacObjCRuntime(*this); 142 } 143 144 void CodeGenModule::createOpenCLRuntime() { 145 OpenCLRuntime = new CGOpenCLRuntime(*this); 146 } 147 148 void CodeGenModule::createCUDARuntime() { 149 CUDARuntime = CreateNVCUDARuntime(*this); 150 } 151 152 void CodeGenModule::Release() { 153 EmitDeferred(); 154 EmitCXXGlobalInitFunc(); 155 EmitCXXGlobalDtorFunc(); 156 if (ObjCRuntime) 157 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 158 AddGlobalCtor(ObjCInitFunction); 159 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 160 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 161 EmitGlobalAnnotations(); 162 EmitLLVMUsed(); 163 164 SimplifyPersonality(); 165 166 if (getCodeGenOpts().EmitDeclMetadata) 167 EmitDeclMetadata(); 168 169 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 170 EmitCoverageFile(); 171 172 if (DebugInfo) 173 DebugInfo->finalize(); 174 } 175 176 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 177 // Make sure that this type is translated. 178 Types.UpdateCompletedType(TD); 179 } 180 181 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 182 if (!TBAA) 183 return 0; 184 return TBAA->getTBAAInfo(QTy); 185 } 186 187 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 188 if (!TBAA) 189 return 0; 190 return TBAA->getTBAAInfoForVTablePtr(); 191 } 192 193 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 194 llvm::MDNode *TBAAInfo) { 195 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 196 } 197 198 bool CodeGenModule::isTargetDarwin() const { 199 return getContext().getTargetInfo().getTriple().isOSDarwin(); 200 } 201 202 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 203 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 204 getDiags().Report(Context.getFullLoc(loc), diagID); 205 } 206 207 /// ErrorUnsupported - Print out an error that codegen doesn't support the 208 /// specified stmt yet. 209 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 210 bool OmitOnError) { 211 if (OmitOnError && getDiags().hasErrorOccurred()) 212 return; 213 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 214 "cannot compile this %0 yet"); 215 std::string Msg = Type; 216 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 217 << Msg << S->getSourceRange(); 218 } 219 220 /// ErrorUnsupported - Print out an error that codegen doesn't support the 221 /// specified decl yet. 222 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 223 bool OmitOnError) { 224 if (OmitOnError && getDiags().hasErrorOccurred()) 225 return; 226 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 227 "cannot compile this %0 yet"); 228 std::string Msg = Type; 229 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 230 } 231 232 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 233 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 234 } 235 236 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 237 const NamedDecl *D) const { 238 // Internal definitions always have default visibility. 239 if (GV->hasLocalLinkage()) { 240 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 241 return; 242 } 243 244 // Set visibility for definitions. 245 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 246 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 247 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 248 } 249 250 /// Set the symbol visibility of type information (vtable and RTTI) 251 /// associated with the given type. 252 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 253 const CXXRecordDecl *RD, 254 TypeVisibilityKind TVK) const { 255 setGlobalVisibility(GV, RD); 256 257 if (!CodeGenOpts.HiddenWeakVTables) 258 return; 259 260 // We never want to drop the visibility for RTTI names. 261 if (TVK == TVK_ForRTTIName) 262 return; 263 264 // We want to drop the visibility to hidden for weak type symbols. 265 // This isn't possible if there might be unresolved references 266 // elsewhere that rely on this symbol being visible. 267 268 // This should be kept roughly in sync with setThunkVisibility 269 // in CGVTables.cpp. 270 271 // Preconditions. 272 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 273 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 274 return; 275 276 // Don't override an explicit visibility attribute. 277 if (RD->getExplicitVisibility()) 278 return; 279 280 switch (RD->getTemplateSpecializationKind()) { 281 // We have to disable the optimization if this is an EI definition 282 // because there might be EI declarations in other shared objects. 283 case TSK_ExplicitInstantiationDefinition: 284 case TSK_ExplicitInstantiationDeclaration: 285 return; 286 287 // Every use of a non-template class's type information has to emit it. 288 case TSK_Undeclared: 289 break; 290 291 // In theory, implicit instantiations can ignore the possibility of 292 // an explicit instantiation declaration because there necessarily 293 // must be an EI definition somewhere with default visibility. In 294 // practice, it's possible to have an explicit instantiation for 295 // an arbitrary template class, and linkers aren't necessarily able 296 // to deal with mixed-visibility symbols. 297 case TSK_ExplicitSpecialization: 298 case TSK_ImplicitInstantiation: 299 if (!CodeGenOpts.HiddenWeakTemplateVTables) 300 return; 301 break; 302 } 303 304 // If there's a key function, there may be translation units 305 // that don't have the key function's definition. But ignore 306 // this if we're emitting RTTI under -fno-rtti. 307 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 308 if (Context.getKeyFunction(RD)) 309 return; 310 } 311 312 // Otherwise, drop the visibility to hidden. 313 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 314 GV->setUnnamedAddr(true); 315 } 316 317 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 318 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 319 320 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 321 if (!Str.empty()) 322 return Str; 323 324 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 325 IdentifierInfo *II = ND->getIdentifier(); 326 assert(II && "Attempt to mangle unnamed decl."); 327 328 Str = II->getName(); 329 return Str; 330 } 331 332 SmallString<256> Buffer; 333 llvm::raw_svector_ostream Out(Buffer); 334 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 335 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 336 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 337 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 338 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 339 getCXXABI().getMangleContext().mangleBlock(BD, Out); 340 else 341 getCXXABI().getMangleContext().mangleName(ND, Out); 342 343 // Allocate space for the mangled name. 344 Out.flush(); 345 size_t Length = Buffer.size(); 346 char *Name = MangledNamesAllocator.Allocate<char>(Length); 347 std::copy(Buffer.begin(), Buffer.end(), Name); 348 349 Str = StringRef(Name, Length); 350 351 return Str; 352 } 353 354 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 355 const BlockDecl *BD) { 356 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 357 const Decl *D = GD.getDecl(); 358 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 359 if (D == 0) 360 MangleCtx.mangleGlobalBlock(BD, Out); 361 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 362 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 363 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 364 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 365 else 366 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 367 } 368 369 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 370 return getModule().getNamedValue(Name); 371 } 372 373 /// AddGlobalCtor - Add a function to the list that will be called before 374 /// main() runs. 375 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 376 // FIXME: Type coercion of void()* types. 377 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 378 } 379 380 /// AddGlobalDtor - Add a function to the list that will be called 381 /// when the module is unloaded. 382 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 383 // FIXME: Type coercion of void()* types. 384 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 385 } 386 387 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 388 // Ctor function type is void()*. 389 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 390 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 391 392 // Get the type of a ctor entry, { i32, void ()* }. 393 llvm::StructType *CtorStructTy = 394 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 395 396 // Construct the constructor and destructor arrays. 397 SmallVector<llvm::Constant*, 8> Ctors; 398 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 399 llvm::Constant *S[] = { 400 llvm::ConstantInt::get(Int32Ty, I->second, false), 401 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 402 }; 403 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 404 } 405 406 if (!Ctors.empty()) { 407 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 408 new llvm::GlobalVariable(TheModule, AT, false, 409 llvm::GlobalValue::AppendingLinkage, 410 llvm::ConstantArray::get(AT, Ctors), 411 GlobalName); 412 } 413 } 414 415 llvm::GlobalValue::LinkageTypes 416 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 417 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 418 419 if (Linkage == GVA_Internal) 420 return llvm::Function::InternalLinkage; 421 422 if (D->hasAttr<DLLExportAttr>()) 423 return llvm::Function::DLLExportLinkage; 424 425 if (D->hasAttr<WeakAttr>()) 426 return llvm::Function::WeakAnyLinkage; 427 428 // In C99 mode, 'inline' functions are guaranteed to have a strong 429 // definition somewhere else, so we can use available_externally linkage. 430 if (Linkage == GVA_C99Inline) 431 return llvm::Function::AvailableExternallyLinkage; 432 433 // Note that Apple's kernel linker doesn't support symbol 434 // coalescing, so we need to avoid linkonce and weak linkages there. 435 // Normally, this means we just map to internal, but for explicit 436 // instantiations we'll map to external. 437 438 // In C++, the compiler has to emit a definition in every translation unit 439 // that references the function. We should use linkonce_odr because 440 // a) if all references in this translation unit are optimized away, we 441 // don't need to codegen it. b) if the function persists, it needs to be 442 // merged with other definitions. c) C++ has the ODR, so we know the 443 // definition is dependable. 444 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 445 return !Context.getLangOpts().AppleKext 446 ? llvm::Function::LinkOnceODRLinkage 447 : llvm::Function::InternalLinkage; 448 449 // An explicit instantiation of a template has weak linkage, since 450 // explicit instantiations can occur in multiple translation units 451 // and must all be equivalent. However, we are not allowed to 452 // throw away these explicit instantiations. 453 if (Linkage == GVA_ExplicitTemplateInstantiation) 454 return !Context.getLangOpts().AppleKext 455 ? llvm::Function::WeakODRLinkage 456 : llvm::Function::ExternalLinkage; 457 458 // Otherwise, we have strong external linkage. 459 assert(Linkage == GVA_StrongExternal); 460 return llvm::Function::ExternalLinkage; 461 } 462 463 464 /// SetFunctionDefinitionAttributes - Set attributes for a global. 465 /// 466 /// FIXME: This is currently only done for aliases and functions, but not for 467 /// variables (these details are set in EmitGlobalVarDefinition for variables). 468 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 469 llvm::GlobalValue *GV) { 470 SetCommonAttributes(D, GV); 471 } 472 473 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 474 const CGFunctionInfo &Info, 475 llvm::Function *F) { 476 unsigned CallingConv; 477 AttributeListType AttributeList; 478 ConstructAttributeList(Info, D, AttributeList, CallingConv); 479 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 480 AttributeList.size())); 481 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 482 } 483 484 /// Determines whether the language options require us to model 485 /// unwind exceptions. We treat -fexceptions as mandating this 486 /// except under the fragile ObjC ABI with only ObjC exceptions 487 /// enabled. This means, for example, that C with -fexceptions 488 /// enables this. 489 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 490 // If exceptions are completely disabled, obviously this is false. 491 if (!LangOpts.Exceptions) return false; 492 493 // If C++ exceptions are enabled, this is true. 494 if (LangOpts.CXXExceptions) return true; 495 496 // If ObjC exceptions are enabled, this depends on the ABI. 497 if (LangOpts.ObjCExceptions) { 498 if (!LangOpts.ObjCNonFragileABI) return false; 499 } 500 501 return true; 502 } 503 504 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 505 llvm::Function *F) { 506 if (CodeGenOpts.UnwindTables) 507 F->setHasUWTable(); 508 509 if (!hasUnwindExceptions(LangOpts)) 510 F->addFnAttr(llvm::Attribute::NoUnwind); 511 512 if (D->hasAttr<NakedAttr>()) { 513 // Naked implies noinline: we should not be inlining such functions. 514 F->addFnAttr(llvm::Attribute::Naked); 515 F->addFnAttr(llvm::Attribute::NoInline); 516 } 517 518 if (D->hasAttr<NoInlineAttr>()) 519 F->addFnAttr(llvm::Attribute::NoInline); 520 521 // (noinline wins over always_inline, and we can't specify both in IR) 522 if (D->hasAttr<AlwaysInlineAttr>() && 523 !F->hasFnAttr(llvm::Attribute::NoInline)) 524 F->addFnAttr(llvm::Attribute::AlwaysInline); 525 526 // FIXME: Communicate hot and cold attributes to LLVM more directly. 527 if (D->hasAttr<ColdAttr>()) 528 F->addFnAttr(llvm::Attribute::OptimizeForSize); 529 530 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 531 F->setUnnamedAddr(true); 532 533 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 534 F->addFnAttr(llvm::Attribute::StackProtect); 535 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 536 F->addFnAttr(llvm::Attribute::StackProtectReq); 537 538 if (LangOpts.AddressSanitizer) { 539 // When AddressSanitizer is enabled, set AddressSafety attribute 540 // unless __attribute__((no_address_safety_analysis)) is used. 541 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 542 F->addFnAttr(llvm::Attribute::AddressSafety); 543 } 544 545 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 546 if (alignment) 547 F->setAlignment(alignment); 548 549 // C++ ABI requires 2-byte alignment for member functions. 550 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 551 F->setAlignment(2); 552 } 553 554 void CodeGenModule::SetCommonAttributes(const Decl *D, 555 llvm::GlobalValue *GV) { 556 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 557 setGlobalVisibility(GV, ND); 558 else 559 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 560 561 if (D->hasAttr<UsedAttr>()) 562 AddUsedGlobal(GV); 563 564 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 565 GV->setSection(SA->getName()); 566 567 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 568 } 569 570 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 571 llvm::Function *F, 572 const CGFunctionInfo &FI) { 573 SetLLVMFunctionAttributes(D, FI, F); 574 SetLLVMFunctionAttributesForDefinition(D, F); 575 576 F->setLinkage(llvm::Function::InternalLinkage); 577 578 SetCommonAttributes(D, F); 579 } 580 581 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 582 llvm::Function *F, 583 bool IsIncompleteFunction) { 584 if (unsigned IID = F->getIntrinsicID()) { 585 // If this is an intrinsic function, set the function's attributes 586 // to the intrinsic's attributes. 587 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 588 return; 589 } 590 591 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 592 593 if (!IsIncompleteFunction) 594 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 595 596 // Only a few attributes are set on declarations; these may later be 597 // overridden by a definition. 598 599 if (FD->hasAttr<DLLImportAttr>()) { 600 F->setLinkage(llvm::Function::DLLImportLinkage); 601 } else if (FD->hasAttr<WeakAttr>() || 602 FD->isWeakImported()) { 603 // "extern_weak" is overloaded in LLVM; we probably should have 604 // separate linkage types for this. 605 F->setLinkage(llvm::Function::ExternalWeakLinkage); 606 } else { 607 F->setLinkage(llvm::Function::ExternalLinkage); 608 609 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 610 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 611 F->setVisibility(GetLLVMVisibility(LV.visibility())); 612 } 613 } 614 615 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 616 F->setSection(SA->getName()); 617 } 618 619 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 620 assert(!GV->isDeclaration() && 621 "Only globals with definition can force usage."); 622 LLVMUsed.push_back(GV); 623 } 624 625 void CodeGenModule::EmitLLVMUsed() { 626 // Don't create llvm.used if there is no need. 627 if (LLVMUsed.empty()) 628 return; 629 630 // Convert LLVMUsed to what ConstantArray needs. 631 SmallVector<llvm::Constant*, 8> UsedArray; 632 UsedArray.resize(LLVMUsed.size()); 633 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 634 UsedArray[i] = 635 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 636 Int8PtrTy); 637 } 638 639 if (UsedArray.empty()) 640 return; 641 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 642 643 llvm::GlobalVariable *GV = 644 new llvm::GlobalVariable(getModule(), ATy, false, 645 llvm::GlobalValue::AppendingLinkage, 646 llvm::ConstantArray::get(ATy, UsedArray), 647 "llvm.used"); 648 649 GV->setSection("llvm.metadata"); 650 } 651 652 void CodeGenModule::EmitDeferred() { 653 // Emit code for any potentially referenced deferred decls. Since a 654 // previously unused static decl may become used during the generation of code 655 // for a static function, iterate until no changes are made. 656 657 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 658 if (!DeferredVTables.empty()) { 659 const CXXRecordDecl *RD = DeferredVTables.back(); 660 DeferredVTables.pop_back(); 661 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 662 continue; 663 } 664 665 GlobalDecl D = DeferredDeclsToEmit.back(); 666 DeferredDeclsToEmit.pop_back(); 667 668 // Check to see if we've already emitted this. This is necessary 669 // for a couple of reasons: first, decls can end up in the 670 // deferred-decls queue multiple times, and second, decls can end 671 // up with definitions in unusual ways (e.g. by an extern inline 672 // function acquiring a strong function redefinition). Just 673 // ignore these cases. 674 // 675 // TODO: That said, looking this up multiple times is very wasteful. 676 StringRef Name = getMangledName(D); 677 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 678 assert(CGRef && "Deferred decl wasn't referenced?"); 679 680 if (!CGRef->isDeclaration()) 681 continue; 682 683 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 684 // purposes an alias counts as a definition. 685 if (isa<llvm::GlobalAlias>(CGRef)) 686 continue; 687 688 // Otherwise, emit the definition and move on to the next one. 689 EmitGlobalDefinition(D); 690 } 691 } 692 693 void CodeGenModule::EmitGlobalAnnotations() { 694 if (Annotations.empty()) 695 return; 696 697 // Create a new global variable for the ConstantStruct in the Module. 698 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 699 Annotations[0]->getType(), Annotations.size()), Annotations); 700 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 701 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 702 "llvm.global.annotations"); 703 gv->setSection(AnnotationSection); 704 } 705 706 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 707 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 708 if (i != AnnotationStrings.end()) 709 return i->second; 710 711 // Not found yet, create a new global. 712 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 713 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 714 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 715 gv->setSection(AnnotationSection); 716 gv->setUnnamedAddr(true); 717 AnnotationStrings[Str] = gv; 718 return gv; 719 } 720 721 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 722 SourceManager &SM = getContext().getSourceManager(); 723 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 724 if (PLoc.isValid()) 725 return EmitAnnotationString(PLoc.getFilename()); 726 return EmitAnnotationString(SM.getBufferName(Loc)); 727 } 728 729 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 730 SourceManager &SM = getContext().getSourceManager(); 731 PresumedLoc PLoc = SM.getPresumedLoc(L); 732 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 733 SM.getExpansionLineNumber(L); 734 return llvm::ConstantInt::get(Int32Ty, LineNo); 735 } 736 737 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 738 const AnnotateAttr *AA, 739 SourceLocation L) { 740 // Get the globals for file name, annotation, and the line number. 741 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 742 *UnitGV = EmitAnnotationUnit(L), 743 *LineNoCst = EmitAnnotationLineNo(L); 744 745 // Create the ConstantStruct for the global annotation. 746 llvm::Constant *Fields[4] = { 747 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 748 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 749 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 750 LineNoCst 751 }; 752 return llvm::ConstantStruct::getAnon(Fields); 753 } 754 755 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 756 llvm::GlobalValue *GV) { 757 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 758 // Get the struct elements for these annotations. 759 for (specific_attr_iterator<AnnotateAttr> 760 ai = D->specific_attr_begin<AnnotateAttr>(), 761 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 762 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 763 } 764 765 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 766 // Never defer when EmitAllDecls is specified. 767 if (LangOpts.EmitAllDecls) 768 return false; 769 770 return !getContext().DeclMustBeEmitted(Global); 771 } 772 773 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 774 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 775 assert(AA && "No alias?"); 776 777 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 778 779 // See if there is already something with the target's name in the module. 780 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 781 782 llvm::Constant *Aliasee; 783 if (isa<llvm::FunctionType>(DeclTy)) 784 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 785 /*ForVTable=*/false); 786 else 787 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 788 llvm::PointerType::getUnqual(DeclTy), 0); 789 if (!Entry) { 790 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 791 F->setLinkage(llvm::Function::ExternalWeakLinkage); 792 WeakRefReferences.insert(F); 793 } 794 795 return Aliasee; 796 } 797 798 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 799 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 800 801 // Weak references don't produce any output by themselves. 802 if (Global->hasAttr<WeakRefAttr>()) 803 return; 804 805 // If this is an alias definition (which otherwise looks like a declaration) 806 // emit it now. 807 if (Global->hasAttr<AliasAttr>()) 808 return EmitAliasDefinition(GD); 809 810 // If this is CUDA, be selective about which declarations we emit. 811 if (LangOpts.CUDA) { 812 if (CodeGenOpts.CUDAIsDevice) { 813 if (!Global->hasAttr<CUDADeviceAttr>() && 814 !Global->hasAttr<CUDAGlobalAttr>() && 815 !Global->hasAttr<CUDAConstantAttr>() && 816 !Global->hasAttr<CUDASharedAttr>()) 817 return; 818 } else { 819 if (!Global->hasAttr<CUDAHostAttr>() && ( 820 Global->hasAttr<CUDADeviceAttr>() || 821 Global->hasAttr<CUDAConstantAttr>() || 822 Global->hasAttr<CUDASharedAttr>())) 823 return; 824 } 825 } 826 827 // Ignore declarations, they will be emitted on their first use. 828 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 829 // Forward declarations are emitted lazily on first use. 830 if (!FD->doesThisDeclarationHaveABody()) { 831 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 832 return; 833 834 const FunctionDecl *InlineDefinition = 0; 835 FD->getBody(InlineDefinition); 836 837 StringRef MangledName = getMangledName(GD); 838 DeferredDecls.erase(MangledName); 839 EmitGlobalDefinition(InlineDefinition); 840 return; 841 } 842 } else { 843 const VarDecl *VD = cast<VarDecl>(Global); 844 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 845 846 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 847 return; 848 } 849 850 // Defer code generation when possible if this is a static definition, inline 851 // function etc. These we only want to emit if they are used. 852 if (!MayDeferGeneration(Global)) { 853 // Emit the definition if it can't be deferred. 854 EmitGlobalDefinition(GD); 855 return; 856 } 857 858 // If we're deferring emission of a C++ variable with an 859 // initializer, remember the order in which it appeared in the file. 860 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 861 cast<VarDecl>(Global)->hasInit()) { 862 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 863 CXXGlobalInits.push_back(0); 864 } 865 866 // If the value has already been used, add it directly to the 867 // DeferredDeclsToEmit list. 868 StringRef MangledName = getMangledName(GD); 869 if (GetGlobalValue(MangledName)) 870 DeferredDeclsToEmit.push_back(GD); 871 else { 872 // Otherwise, remember that we saw a deferred decl with this name. The 873 // first use of the mangled name will cause it to move into 874 // DeferredDeclsToEmit. 875 DeferredDecls[MangledName] = GD; 876 } 877 } 878 879 namespace { 880 struct FunctionIsDirectlyRecursive : 881 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 882 const StringRef Name; 883 const Builtin::Context &BI; 884 bool Result; 885 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 886 Name(N), BI(C), Result(false) { 887 } 888 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 889 890 bool TraverseCallExpr(CallExpr *E) { 891 const FunctionDecl *FD = E->getDirectCallee(); 892 if (!FD) 893 return true; 894 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 895 if (Attr && Name == Attr->getLabel()) { 896 Result = true; 897 return false; 898 } 899 unsigned BuiltinID = FD->getBuiltinID(); 900 if (!BuiltinID) 901 return true; 902 StringRef BuiltinName = BI.GetName(BuiltinID); 903 if (BuiltinName.startswith("__builtin_") && 904 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 905 Result = true; 906 return false; 907 } 908 return true; 909 } 910 }; 911 } 912 913 // isTriviallyRecursive - Check if this function calls another 914 // decl that, because of the asm attribute or the other decl being a builtin, 915 // ends up pointing to itself. 916 bool 917 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 918 StringRef Name; 919 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 920 // asm labels are a special kind of mangling we have to support. 921 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 922 if (!Attr) 923 return false; 924 Name = Attr->getLabel(); 925 } else { 926 Name = FD->getName(); 927 } 928 929 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 930 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 931 return Walker.Result; 932 } 933 934 bool 935 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 936 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 937 return true; 938 if (CodeGenOpts.OptimizationLevel == 0 && 939 !F->hasAttr<AlwaysInlineAttr>()) 940 return false; 941 // PR9614. Avoid cases where the source code is lying to us. An available 942 // externally function should have an equivalent function somewhere else, 943 // but a function that calls itself is clearly not equivalent to the real 944 // implementation. 945 // This happens in glibc's btowc and in some configure checks. 946 return !isTriviallyRecursive(F); 947 } 948 949 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 950 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 951 952 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 953 Context.getSourceManager(), 954 "Generating code for declaration"); 955 956 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 957 // At -O0, don't generate IR for functions with available_externally 958 // linkage. 959 if (!shouldEmitFunction(Function)) 960 return; 961 962 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 963 // Make sure to emit the definition(s) before we emit the thunks. 964 // This is necessary for the generation of certain thunks. 965 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 966 EmitCXXConstructor(CD, GD.getCtorType()); 967 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 968 EmitCXXDestructor(DD, GD.getDtorType()); 969 else 970 EmitGlobalFunctionDefinition(GD); 971 972 if (Method->isVirtual()) 973 getVTables().EmitThunks(GD); 974 975 return; 976 } 977 978 return EmitGlobalFunctionDefinition(GD); 979 } 980 981 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 982 return EmitGlobalVarDefinition(VD); 983 984 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 985 } 986 987 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 988 /// module, create and return an llvm Function with the specified type. If there 989 /// is something in the module with the specified name, return it potentially 990 /// bitcasted to the right type. 991 /// 992 /// If D is non-null, it specifies a decl that correspond to this. This is used 993 /// to set the attributes on the function when it is first created. 994 llvm::Constant * 995 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 996 llvm::Type *Ty, 997 GlobalDecl D, bool ForVTable, 998 llvm::Attributes ExtraAttrs) { 999 // Lookup the entry, lazily creating it if necessary. 1000 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1001 if (Entry) { 1002 if (WeakRefReferences.count(Entry)) { 1003 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1004 if (FD && !FD->hasAttr<WeakAttr>()) 1005 Entry->setLinkage(llvm::Function::ExternalLinkage); 1006 1007 WeakRefReferences.erase(Entry); 1008 } 1009 1010 if (Entry->getType()->getElementType() == Ty) 1011 return Entry; 1012 1013 // Make sure the result is of the correct type. 1014 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1015 } 1016 1017 // This function doesn't have a complete type (for example, the return 1018 // type is an incomplete struct). Use a fake type instead, and make 1019 // sure not to try to set attributes. 1020 bool IsIncompleteFunction = false; 1021 1022 llvm::FunctionType *FTy; 1023 if (isa<llvm::FunctionType>(Ty)) { 1024 FTy = cast<llvm::FunctionType>(Ty); 1025 } else { 1026 FTy = llvm::FunctionType::get(VoidTy, false); 1027 IsIncompleteFunction = true; 1028 } 1029 1030 llvm::Function *F = llvm::Function::Create(FTy, 1031 llvm::Function::ExternalLinkage, 1032 MangledName, &getModule()); 1033 assert(F->getName() == MangledName && "name was uniqued!"); 1034 if (D.getDecl()) 1035 SetFunctionAttributes(D, F, IsIncompleteFunction); 1036 if (ExtraAttrs != llvm::Attribute::None) 1037 F->addFnAttr(ExtraAttrs); 1038 1039 // This is the first use or definition of a mangled name. If there is a 1040 // deferred decl with this name, remember that we need to emit it at the end 1041 // of the file. 1042 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1043 if (DDI != DeferredDecls.end()) { 1044 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1045 // list, and remove it from DeferredDecls (since we don't need it anymore). 1046 DeferredDeclsToEmit.push_back(DDI->second); 1047 DeferredDecls.erase(DDI); 1048 1049 // Otherwise, there are cases we have to worry about where we're 1050 // using a declaration for which we must emit a definition but where 1051 // we might not find a top-level definition: 1052 // - member functions defined inline in their classes 1053 // - friend functions defined inline in some class 1054 // - special member functions with implicit definitions 1055 // If we ever change our AST traversal to walk into class methods, 1056 // this will be unnecessary. 1057 // 1058 // We also don't emit a definition for a function if it's going to be an entry 1059 // in a vtable, unless it's already marked as used. 1060 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1061 // Look for a declaration that's lexically in a record. 1062 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1063 do { 1064 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1065 if (FD->isImplicit() && !ForVTable) { 1066 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1067 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1068 break; 1069 } else if (FD->doesThisDeclarationHaveABody()) { 1070 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1071 break; 1072 } 1073 } 1074 FD = FD->getPreviousDecl(); 1075 } while (FD); 1076 } 1077 1078 // Make sure the result is of the requested type. 1079 if (!IsIncompleteFunction) { 1080 assert(F->getType()->getElementType() == Ty); 1081 return F; 1082 } 1083 1084 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1085 return llvm::ConstantExpr::getBitCast(F, PTy); 1086 } 1087 1088 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1089 /// non-null, then this function will use the specified type if it has to 1090 /// create it (this occurs when we see a definition of the function). 1091 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1092 llvm::Type *Ty, 1093 bool ForVTable) { 1094 // If there was no specific requested type, just convert it now. 1095 if (!Ty) 1096 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1097 1098 StringRef MangledName = getMangledName(GD); 1099 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1100 } 1101 1102 /// CreateRuntimeFunction - Create a new runtime function with the specified 1103 /// type and name. 1104 llvm::Constant * 1105 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1106 StringRef Name, 1107 llvm::Attributes ExtraAttrs) { 1108 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1109 ExtraAttrs); 1110 } 1111 1112 /// isTypeConstant - Determine whether an object of this type can be emitted 1113 /// as a constant. 1114 /// 1115 /// If ExcludeCtor is true, the duration when the object's constructor runs 1116 /// will not be considered. The caller will need to verify that the object is 1117 /// not written to during its construction. 1118 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1119 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1120 return false; 1121 1122 if (Context.getLangOpts().CPlusPlus) { 1123 if (const CXXRecordDecl *Record 1124 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1125 return ExcludeCtor && !Record->hasMutableFields() && 1126 Record->hasTrivialDestructor(); 1127 } 1128 1129 return true; 1130 } 1131 1132 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1133 /// create and return an llvm GlobalVariable with the specified type. If there 1134 /// is something in the module with the specified name, return it potentially 1135 /// bitcasted to the right type. 1136 /// 1137 /// If D is non-null, it specifies a decl that correspond to this. This is used 1138 /// to set the attributes on the global when it is first created. 1139 llvm::Constant * 1140 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1141 llvm::PointerType *Ty, 1142 const VarDecl *D, 1143 bool UnnamedAddr) { 1144 // Lookup the entry, lazily creating it if necessary. 1145 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1146 if (Entry) { 1147 if (WeakRefReferences.count(Entry)) { 1148 if (D && !D->hasAttr<WeakAttr>()) 1149 Entry->setLinkage(llvm::Function::ExternalLinkage); 1150 1151 WeakRefReferences.erase(Entry); 1152 } 1153 1154 if (UnnamedAddr) 1155 Entry->setUnnamedAddr(true); 1156 1157 if (Entry->getType() == Ty) 1158 return Entry; 1159 1160 // Make sure the result is of the correct type. 1161 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1162 } 1163 1164 // This is the first use or definition of a mangled name. If there is a 1165 // deferred decl with this name, remember that we need to emit it at the end 1166 // of the file. 1167 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1168 if (DDI != DeferredDecls.end()) { 1169 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1170 // list, and remove it from DeferredDecls (since we don't need it anymore). 1171 DeferredDeclsToEmit.push_back(DDI->second); 1172 DeferredDecls.erase(DDI); 1173 } 1174 1175 llvm::GlobalVariable *GV = 1176 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1177 llvm::GlobalValue::ExternalLinkage, 1178 0, MangledName, 0, 1179 false, Ty->getAddressSpace()); 1180 1181 // Handle things which are present even on external declarations. 1182 if (D) { 1183 // FIXME: This code is overly simple and should be merged with other global 1184 // handling. 1185 GV->setConstant(isTypeConstant(D->getType(), false)); 1186 1187 // Set linkage and visibility in case we never see a definition. 1188 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1189 if (LV.linkage() != ExternalLinkage) { 1190 // Don't set internal linkage on declarations. 1191 } else { 1192 if (D->hasAttr<DLLImportAttr>()) 1193 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1194 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1195 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1196 1197 // Set visibility on a declaration only if it's explicit. 1198 if (LV.visibilityExplicit()) 1199 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1200 } 1201 1202 GV->setThreadLocal(D->isThreadSpecified()); 1203 } 1204 1205 return GV; 1206 } 1207 1208 1209 llvm::GlobalVariable * 1210 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1211 llvm::Type *Ty, 1212 llvm::GlobalValue::LinkageTypes Linkage) { 1213 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1214 llvm::GlobalVariable *OldGV = 0; 1215 1216 1217 if (GV) { 1218 // Check if the variable has the right type. 1219 if (GV->getType()->getElementType() == Ty) 1220 return GV; 1221 1222 // Because C++ name mangling, the only way we can end up with an already 1223 // existing global with the same name is if it has been declared extern "C". 1224 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1225 OldGV = GV; 1226 } 1227 1228 // Create a new variable. 1229 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1230 Linkage, 0, Name); 1231 1232 if (OldGV) { 1233 // Replace occurrences of the old variable if needed. 1234 GV->takeName(OldGV); 1235 1236 if (!OldGV->use_empty()) { 1237 llvm::Constant *NewPtrForOldDecl = 1238 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1239 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1240 } 1241 1242 OldGV->eraseFromParent(); 1243 } 1244 1245 return GV; 1246 } 1247 1248 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1249 /// given global variable. If Ty is non-null and if the global doesn't exist, 1250 /// then it will be created with the specified type instead of whatever the 1251 /// normal requested type would be. 1252 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1253 llvm::Type *Ty) { 1254 assert(D->hasGlobalStorage() && "Not a global variable"); 1255 QualType ASTTy = D->getType(); 1256 if (Ty == 0) 1257 Ty = getTypes().ConvertTypeForMem(ASTTy); 1258 1259 llvm::PointerType *PTy = 1260 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1261 1262 StringRef MangledName = getMangledName(D); 1263 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1264 } 1265 1266 /// CreateRuntimeVariable - Create a new runtime global variable with the 1267 /// specified type and name. 1268 llvm::Constant * 1269 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1270 StringRef Name) { 1271 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1272 true); 1273 } 1274 1275 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1276 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1277 1278 if (MayDeferGeneration(D)) { 1279 // If we have not seen a reference to this variable yet, place it 1280 // into the deferred declarations table to be emitted if needed 1281 // later. 1282 StringRef MangledName = getMangledName(D); 1283 if (!GetGlobalValue(MangledName)) { 1284 DeferredDecls[MangledName] = D; 1285 return; 1286 } 1287 } 1288 1289 // The tentative definition is the only definition. 1290 EmitGlobalVarDefinition(D); 1291 } 1292 1293 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1294 if (DefinitionRequired) 1295 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1296 } 1297 1298 llvm::GlobalVariable::LinkageTypes 1299 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1300 if (RD->getLinkage() != ExternalLinkage) 1301 return llvm::GlobalVariable::InternalLinkage; 1302 1303 if (const CXXMethodDecl *KeyFunction 1304 = RD->getASTContext().getKeyFunction(RD)) { 1305 // If this class has a key function, use that to determine the linkage of 1306 // the vtable. 1307 const FunctionDecl *Def = 0; 1308 if (KeyFunction->hasBody(Def)) 1309 KeyFunction = cast<CXXMethodDecl>(Def); 1310 1311 switch (KeyFunction->getTemplateSpecializationKind()) { 1312 case TSK_Undeclared: 1313 case TSK_ExplicitSpecialization: 1314 // When compiling with optimizations turned on, we emit all vtables, 1315 // even if the key function is not defined in the current translation 1316 // unit. If this is the case, use available_externally linkage. 1317 if (!Def && CodeGenOpts.OptimizationLevel) 1318 return llvm::GlobalVariable::AvailableExternallyLinkage; 1319 1320 if (KeyFunction->isInlined()) 1321 return !Context.getLangOpts().AppleKext ? 1322 llvm::GlobalVariable::LinkOnceODRLinkage : 1323 llvm::Function::InternalLinkage; 1324 1325 return llvm::GlobalVariable::ExternalLinkage; 1326 1327 case TSK_ImplicitInstantiation: 1328 return !Context.getLangOpts().AppleKext ? 1329 llvm::GlobalVariable::LinkOnceODRLinkage : 1330 llvm::Function::InternalLinkage; 1331 1332 case TSK_ExplicitInstantiationDefinition: 1333 return !Context.getLangOpts().AppleKext ? 1334 llvm::GlobalVariable::WeakODRLinkage : 1335 llvm::Function::InternalLinkage; 1336 1337 case TSK_ExplicitInstantiationDeclaration: 1338 // FIXME: Use available_externally linkage. However, this currently 1339 // breaks LLVM's build due to undefined symbols. 1340 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1341 return !Context.getLangOpts().AppleKext ? 1342 llvm::GlobalVariable::LinkOnceODRLinkage : 1343 llvm::Function::InternalLinkage; 1344 } 1345 } 1346 1347 if (Context.getLangOpts().AppleKext) 1348 return llvm::Function::InternalLinkage; 1349 1350 switch (RD->getTemplateSpecializationKind()) { 1351 case TSK_Undeclared: 1352 case TSK_ExplicitSpecialization: 1353 case TSK_ImplicitInstantiation: 1354 // FIXME: Use available_externally linkage. However, this currently 1355 // breaks LLVM's build due to undefined symbols. 1356 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1357 case TSK_ExplicitInstantiationDeclaration: 1358 return llvm::GlobalVariable::LinkOnceODRLinkage; 1359 1360 case TSK_ExplicitInstantiationDefinition: 1361 return llvm::GlobalVariable::WeakODRLinkage; 1362 } 1363 1364 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1365 } 1366 1367 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1368 return Context.toCharUnitsFromBits( 1369 TheTargetData.getTypeStoreSizeInBits(Ty)); 1370 } 1371 1372 llvm::Constant * 1373 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1374 const Expr *rawInit) { 1375 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1376 if (const ExprWithCleanups *withCleanups = 1377 dyn_cast<ExprWithCleanups>(rawInit)) { 1378 cleanups = withCleanups->getObjects(); 1379 rawInit = withCleanups->getSubExpr(); 1380 } 1381 1382 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1383 if (!init || !init->initializesStdInitializerList() || 1384 init->getNumInits() == 0) 1385 return 0; 1386 1387 ASTContext &ctx = getContext(); 1388 unsigned numInits = init->getNumInits(); 1389 // FIXME: This check is here because we would otherwise silently miscompile 1390 // nested global std::initializer_lists. Better would be to have a real 1391 // implementation. 1392 for (unsigned i = 0; i < numInits; ++i) { 1393 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1394 if (inner && inner->initializesStdInitializerList()) { 1395 ErrorUnsupported(inner, "nested global std::initializer_list"); 1396 return 0; 1397 } 1398 } 1399 1400 // Synthesize a fake VarDecl for the array and initialize that. 1401 QualType elementType = init->getInit(0)->getType(); 1402 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1403 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1404 ArrayType::Normal, 0); 1405 1406 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1407 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1408 arrayType, D->getLocation()); 1409 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1410 D->getDeclContext()), 1411 D->getLocStart(), D->getLocation(), 1412 name, arrayType, sourceInfo, 1413 SC_Static, SC_Static); 1414 1415 // Now clone the InitListExpr to initialize the array instead. 1416 // Incredible hack: we want to use the existing InitListExpr here, so we need 1417 // to tell it that it no longer initializes a std::initializer_list. 1418 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1419 const_cast<InitListExpr*>(init)->getInits(), 1420 init->getNumInits(), 1421 init->getRBraceLoc()); 1422 arrayInit->setType(arrayType); 1423 1424 if (!cleanups.empty()) 1425 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1426 1427 backingArray->setInit(arrayInit); 1428 1429 // Emit the definition of the array. 1430 EmitGlobalVarDefinition(backingArray); 1431 1432 // Inspect the initializer list to validate it and determine its type. 1433 // FIXME: doing this every time is probably inefficient; caching would be nice 1434 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1435 RecordDecl::field_iterator field = record->field_begin(); 1436 if (field == record->field_end()) { 1437 ErrorUnsupported(D, "weird std::initializer_list"); 1438 return 0; 1439 } 1440 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1441 // Start pointer. 1442 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1443 ErrorUnsupported(D, "weird std::initializer_list"); 1444 return 0; 1445 } 1446 ++field; 1447 if (field == record->field_end()) { 1448 ErrorUnsupported(D, "weird std::initializer_list"); 1449 return 0; 1450 } 1451 bool isStartEnd = false; 1452 if (ctx.hasSameType(field->getType(), elementPtr)) { 1453 // End pointer. 1454 isStartEnd = true; 1455 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1456 ErrorUnsupported(D, "weird std::initializer_list"); 1457 return 0; 1458 } 1459 1460 // Now build an APValue representing the std::initializer_list. 1461 APValue initListValue(APValue::UninitStruct(), 0, 2); 1462 APValue &startField = initListValue.getStructField(0); 1463 APValue::LValuePathEntry startOffsetPathEntry; 1464 startOffsetPathEntry.ArrayIndex = 0; 1465 startField = APValue(APValue::LValueBase(backingArray), 1466 CharUnits::fromQuantity(0), 1467 llvm::makeArrayRef(startOffsetPathEntry), 1468 /*IsOnePastTheEnd=*/false, 0); 1469 1470 if (isStartEnd) { 1471 APValue &endField = initListValue.getStructField(1); 1472 APValue::LValuePathEntry endOffsetPathEntry; 1473 endOffsetPathEntry.ArrayIndex = numInits; 1474 endField = APValue(APValue::LValueBase(backingArray), 1475 ctx.getTypeSizeInChars(elementType) * numInits, 1476 llvm::makeArrayRef(endOffsetPathEntry), 1477 /*IsOnePastTheEnd=*/true, 0); 1478 } else { 1479 APValue &sizeField = initListValue.getStructField(1); 1480 sizeField = APValue(llvm::APSInt(numElements)); 1481 } 1482 1483 // Emit the constant for the initializer_list. 1484 llvm::Constant *llvmInit = 1485 EmitConstantValueForMemory(initListValue, D->getType()); 1486 assert(llvmInit && "failed to initialize as constant"); 1487 return llvmInit; 1488 } 1489 1490 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1491 llvm::Constant *Init = 0; 1492 QualType ASTTy = D->getType(); 1493 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1494 bool NeedsGlobalCtor = false; 1495 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1496 1497 const VarDecl *InitDecl; 1498 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1499 1500 if (!InitExpr) { 1501 // This is a tentative definition; tentative definitions are 1502 // implicitly initialized with { 0 }. 1503 // 1504 // Note that tentative definitions are only emitted at the end of 1505 // a translation unit, so they should never have incomplete 1506 // type. In addition, EmitTentativeDefinition makes sure that we 1507 // never attempt to emit a tentative definition if a real one 1508 // exists. A use may still exists, however, so we still may need 1509 // to do a RAUW. 1510 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1511 Init = EmitNullConstant(D->getType()); 1512 } else { 1513 // If this is a std::initializer_list, emit the special initializer. 1514 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1515 // An empty init list will perform zero-initialization, which happens 1516 // to be exactly what we want. 1517 // FIXME: It does so in a global constructor, which is *not* what we 1518 // want. 1519 1520 if (!Init) 1521 Init = EmitConstantInit(*InitDecl); 1522 if (!Init) { 1523 QualType T = InitExpr->getType(); 1524 if (D->getType()->isReferenceType()) 1525 T = D->getType(); 1526 1527 if (getLangOpts().CPlusPlus) { 1528 Init = EmitNullConstant(T); 1529 NeedsGlobalCtor = true; 1530 } else { 1531 ErrorUnsupported(D, "static initializer"); 1532 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1533 } 1534 } else { 1535 // We don't need an initializer, so remove the entry for the delayed 1536 // initializer position (just in case this entry was delayed) if we 1537 // also don't need to register a destructor. 1538 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1539 DelayedCXXInitPosition.erase(D); 1540 } 1541 } 1542 1543 llvm::Type* InitType = Init->getType(); 1544 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1545 1546 // Strip off a bitcast if we got one back. 1547 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1548 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1549 // all zero index gep. 1550 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1551 Entry = CE->getOperand(0); 1552 } 1553 1554 // Entry is now either a Function or GlobalVariable. 1555 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1556 1557 // We have a definition after a declaration with the wrong type. 1558 // We must make a new GlobalVariable* and update everything that used OldGV 1559 // (a declaration or tentative definition) with the new GlobalVariable* 1560 // (which will be a definition). 1561 // 1562 // This happens if there is a prototype for a global (e.g. 1563 // "extern int x[];") and then a definition of a different type (e.g. 1564 // "int x[10];"). This also happens when an initializer has a different type 1565 // from the type of the global (this happens with unions). 1566 if (GV == 0 || 1567 GV->getType()->getElementType() != InitType || 1568 GV->getType()->getAddressSpace() != 1569 getContext().getTargetAddressSpace(ASTTy)) { 1570 1571 // Move the old entry aside so that we'll create a new one. 1572 Entry->setName(StringRef()); 1573 1574 // Make a new global with the correct type, this is now guaranteed to work. 1575 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1576 1577 // Replace all uses of the old global with the new global 1578 llvm::Constant *NewPtrForOldDecl = 1579 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1580 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1581 1582 // Erase the old global, since it is no longer used. 1583 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1584 } 1585 1586 if (D->hasAttr<AnnotateAttr>()) 1587 AddGlobalAnnotations(D, GV); 1588 1589 GV->setInitializer(Init); 1590 1591 // If it is safe to mark the global 'constant', do so now. 1592 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1593 isTypeConstant(D->getType(), true)); 1594 1595 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1596 1597 // Set the llvm linkage type as appropriate. 1598 llvm::GlobalValue::LinkageTypes Linkage = 1599 GetLLVMLinkageVarDefinition(D, GV); 1600 GV->setLinkage(Linkage); 1601 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1602 // common vars aren't constant even if declared const. 1603 GV->setConstant(false); 1604 1605 SetCommonAttributes(D, GV); 1606 1607 // Emit the initializer function if necessary. 1608 if (NeedsGlobalCtor || NeedsGlobalDtor) 1609 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1610 1611 // Emit global variable debug information. 1612 if (CGDebugInfo *DI = getModuleDebugInfo()) 1613 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1614 DI->EmitGlobalVariable(GV, D); 1615 } 1616 1617 llvm::GlobalValue::LinkageTypes 1618 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1619 llvm::GlobalVariable *GV) { 1620 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1621 if (Linkage == GVA_Internal) 1622 return llvm::Function::InternalLinkage; 1623 else if (D->hasAttr<DLLImportAttr>()) 1624 return llvm::Function::DLLImportLinkage; 1625 else if (D->hasAttr<DLLExportAttr>()) 1626 return llvm::Function::DLLExportLinkage; 1627 else if (D->hasAttr<WeakAttr>()) { 1628 if (GV->isConstant()) 1629 return llvm::GlobalVariable::WeakODRLinkage; 1630 else 1631 return llvm::GlobalVariable::WeakAnyLinkage; 1632 } else if (Linkage == GVA_TemplateInstantiation || 1633 Linkage == GVA_ExplicitTemplateInstantiation) 1634 return llvm::GlobalVariable::WeakODRLinkage; 1635 else if (!getLangOpts().CPlusPlus && 1636 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1637 D->getAttr<CommonAttr>()) && 1638 !D->hasExternalStorage() && !D->getInit() && 1639 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1640 !D->getAttr<WeakImportAttr>()) { 1641 // Thread local vars aren't considered common linkage. 1642 return llvm::GlobalVariable::CommonLinkage; 1643 } 1644 return llvm::GlobalVariable::ExternalLinkage; 1645 } 1646 1647 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1648 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1649 /// existing call uses of the old function in the module, this adjusts them to 1650 /// call the new function directly. 1651 /// 1652 /// This is not just a cleanup: the always_inline pass requires direct calls to 1653 /// functions to be able to inline them. If there is a bitcast in the way, it 1654 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1655 /// run at -O0. 1656 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1657 llvm::Function *NewFn) { 1658 // If we're redefining a global as a function, don't transform it. 1659 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1660 if (OldFn == 0) return; 1661 1662 llvm::Type *NewRetTy = NewFn->getReturnType(); 1663 SmallVector<llvm::Value*, 4> ArgList; 1664 1665 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1666 UI != E; ) { 1667 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1668 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1669 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1670 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1671 llvm::CallSite CS(CI); 1672 if (!CI || !CS.isCallee(I)) continue; 1673 1674 // If the return types don't match exactly, and if the call isn't dead, then 1675 // we can't transform this call. 1676 if (CI->getType() != NewRetTy && !CI->use_empty()) 1677 continue; 1678 1679 // Get the attribute list. 1680 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1681 llvm::AttrListPtr AttrList = CI->getAttributes(); 1682 1683 // Get any return attributes. 1684 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1685 1686 // Add the return attributes. 1687 if (RAttrs) 1688 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1689 1690 // If the function was passed too few arguments, don't transform. If extra 1691 // arguments were passed, we silently drop them. If any of the types 1692 // mismatch, we don't transform. 1693 unsigned ArgNo = 0; 1694 bool DontTransform = false; 1695 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1696 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1697 if (CS.arg_size() == ArgNo || 1698 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1699 DontTransform = true; 1700 break; 1701 } 1702 1703 // Add any parameter attributes. 1704 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1705 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1706 } 1707 if (DontTransform) 1708 continue; 1709 1710 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1711 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1712 1713 // Okay, we can transform this. Create the new call instruction and copy 1714 // over the required information. 1715 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1716 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1717 ArgList.clear(); 1718 if (!NewCall->getType()->isVoidTy()) 1719 NewCall->takeName(CI); 1720 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1721 AttrVec.end())); 1722 NewCall->setCallingConv(CI->getCallingConv()); 1723 1724 // Finally, remove the old call, replacing any uses with the new one. 1725 if (!CI->use_empty()) 1726 CI->replaceAllUsesWith(NewCall); 1727 1728 // Copy debug location attached to CI. 1729 if (!CI->getDebugLoc().isUnknown()) 1730 NewCall->setDebugLoc(CI->getDebugLoc()); 1731 CI->eraseFromParent(); 1732 } 1733 } 1734 1735 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1736 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1737 // If we have a definition, this might be a deferred decl. If the 1738 // instantiation is explicit, make sure we emit it at the end. 1739 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1740 GetAddrOfGlobalVar(VD); 1741 } 1742 1743 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1744 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1745 1746 // Compute the function info and LLVM type. 1747 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1748 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1749 1750 // Get or create the prototype for the function. 1751 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1752 1753 // Strip off a bitcast if we got one back. 1754 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1755 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1756 Entry = CE->getOperand(0); 1757 } 1758 1759 1760 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1761 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1762 1763 // If the types mismatch then we have to rewrite the definition. 1764 assert(OldFn->isDeclaration() && 1765 "Shouldn't replace non-declaration"); 1766 1767 // F is the Function* for the one with the wrong type, we must make a new 1768 // Function* and update everything that used F (a declaration) with the new 1769 // Function* (which will be a definition). 1770 // 1771 // This happens if there is a prototype for a function 1772 // (e.g. "int f()") and then a definition of a different type 1773 // (e.g. "int f(int x)"). Move the old function aside so that it 1774 // doesn't interfere with GetAddrOfFunction. 1775 OldFn->setName(StringRef()); 1776 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1777 1778 // If this is an implementation of a function without a prototype, try to 1779 // replace any existing uses of the function (which may be calls) with uses 1780 // of the new function 1781 if (D->getType()->isFunctionNoProtoType()) { 1782 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1783 OldFn->removeDeadConstantUsers(); 1784 } 1785 1786 // Replace uses of F with the Function we will endow with a body. 1787 if (!Entry->use_empty()) { 1788 llvm::Constant *NewPtrForOldDecl = 1789 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1790 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1791 } 1792 1793 // Ok, delete the old function now, which is dead. 1794 OldFn->eraseFromParent(); 1795 1796 Entry = NewFn; 1797 } 1798 1799 // We need to set linkage and visibility on the function before 1800 // generating code for it because various parts of IR generation 1801 // want to propagate this information down (e.g. to local static 1802 // declarations). 1803 llvm::Function *Fn = cast<llvm::Function>(Entry); 1804 setFunctionLinkage(D, Fn); 1805 1806 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1807 setGlobalVisibility(Fn, D); 1808 1809 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1810 1811 SetFunctionDefinitionAttributes(D, Fn); 1812 SetLLVMFunctionAttributesForDefinition(D, Fn); 1813 1814 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1815 AddGlobalCtor(Fn, CA->getPriority()); 1816 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1817 AddGlobalDtor(Fn, DA->getPriority()); 1818 if (D->hasAttr<AnnotateAttr>()) 1819 AddGlobalAnnotations(D, Fn); 1820 } 1821 1822 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1823 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1824 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1825 assert(AA && "Not an alias?"); 1826 1827 StringRef MangledName = getMangledName(GD); 1828 1829 // If there is a definition in the module, then it wins over the alias. 1830 // This is dubious, but allow it to be safe. Just ignore the alias. 1831 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1832 if (Entry && !Entry->isDeclaration()) 1833 return; 1834 1835 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1836 1837 // Create a reference to the named value. This ensures that it is emitted 1838 // if a deferred decl. 1839 llvm::Constant *Aliasee; 1840 if (isa<llvm::FunctionType>(DeclTy)) 1841 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1842 /*ForVTable=*/false); 1843 else 1844 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1845 llvm::PointerType::getUnqual(DeclTy), 0); 1846 1847 // Create the new alias itself, but don't set a name yet. 1848 llvm::GlobalValue *GA = 1849 new llvm::GlobalAlias(Aliasee->getType(), 1850 llvm::Function::ExternalLinkage, 1851 "", Aliasee, &getModule()); 1852 1853 if (Entry) { 1854 assert(Entry->isDeclaration()); 1855 1856 // If there is a declaration in the module, then we had an extern followed 1857 // by the alias, as in: 1858 // extern int test6(); 1859 // ... 1860 // int test6() __attribute__((alias("test7"))); 1861 // 1862 // Remove it and replace uses of it with the alias. 1863 GA->takeName(Entry); 1864 1865 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1866 Entry->getType())); 1867 Entry->eraseFromParent(); 1868 } else { 1869 GA->setName(MangledName); 1870 } 1871 1872 // Set attributes which are particular to an alias; this is a 1873 // specialization of the attributes which may be set on a global 1874 // variable/function. 1875 if (D->hasAttr<DLLExportAttr>()) { 1876 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1877 // The dllexport attribute is ignored for undefined symbols. 1878 if (FD->hasBody()) 1879 GA->setLinkage(llvm::Function::DLLExportLinkage); 1880 } else { 1881 GA->setLinkage(llvm::Function::DLLExportLinkage); 1882 } 1883 } else if (D->hasAttr<WeakAttr>() || 1884 D->hasAttr<WeakRefAttr>() || 1885 D->isWeakImported()) { 1886 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1887 } 1888 1889 SetCommonAttributes(D, GA); 1890 } 1891 1892 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1893 ArrayRef<llvm::Type*> Tys) { 1894 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1895 Tys); 1896 } 1897 1898 static llvm::StringMapEntry<llvm::Constant*> & 1899 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1900 const StringLiteral *Literal, 1901 bool TargetIsLSB, 1902 bool &IsUTF16, 1903 unsigned &StringLength) { 1904 StringRef String = Literal->getString(); 1905 unsigned NumBytes = String.size(); 1906 1907 // Check for simple case. 1908 if (!Literal->containsNonAsciiOrNull()) { 1909 StringLength = NumBytes; 1910 return Map.GetOrCreateValue(String); 1911 } 1912 1913 // Otherwise, convert the UTF8 literals into a string of shorts. 1914 IsUTF16 = true; 1915 1916 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1917 const UTF8 *FromPtr = (UTF8 *)String.data(); 1918 UTF16 *ToPtr = &ToBuf[0]; 1919 1920 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1921 &ToPtr, ToPtr + NumBytes, 1922 strictConversion); 1923 1924 // ConvertUTF8toUTF16 returns the length in ToPtr. 1925 StringLength = ToPtr - &ToBuf[0]; 1926 1927 // Add an explicit null. 1928 *ToPtr = 0; 1929 return Map. 1930 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 1931 (StringLength + 1) * 2)); 1932 } 1933 1934 static llvm::StringMapEntry<llvm::Constant*> & 1935 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1936 const StringLiteral *Literal, 1937 unsigned &StringLength) { 1938 StringRef String = Literal->getString(); 1939 StringLength = String.size(); 1940 return Map.GetOrCreateValue(String); 1941 } 1942 1943 llvm::Constant * 1944 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1945 unsigned StringLength = 0; 1946 bool isUTF16 = false; 1947 llvm::StringMapEntry<llvm::Constant*> &Entry = 1948 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1949 getTargetData().isLittleEndian(), 1950 isUTF16, StringLength); 1951 1952 if (llvm::Constant *C = Entry.getValue()) 1953 return C; 1954 1955 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1956 llvm::Constant *Zeros[] = { Zero, Zero }; 1957 1958 // If we don't already have it, get __CFConstantStringClassReference. 1959 if (!CFConstantStringClassRef) { 1960 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1961 Ty = llvm::ArrayType::get(Ty, 0); 1962 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1963 "__CFConstantStringClassReference"); 1964 // Decay array -> ptr 1965 CFConstantStringClassRef = 1966 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1967 } 1968 1969 QualType CFTy = getContext().getCFConstantStringType(); 1970 1971 llvm::StructType *STy = 1972 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1973 1974 llvm::Constant *Fields[4]; 1975 1976 // Class pointer. 1977 Fields[0] = CFConstantStringClassRef; 1978 1979 // Flags. 1980 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1981 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1982 llvm::ConstantInt::get(Ty, 0x07C8); 1983 1984 // String pointer. 1985 llvm::Constant *C = 0; 1986 if (isUTF16) { 1987 ArrayRef<uint16_t> Arr = 1988 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 1989 Entry.getKey().size() / 2); 1990 C = llvm::ConstantDataArray::get(VMContext, Arr); 1991 } else { 1992 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 1993 } 1994 1995 llvm::GlobalValue::LinkageTypes Linkage; 1996 if (isUTF16) 1997 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1998 Linkage = llvm::GlobalValue::InternalLinkage; 1999 else 2000 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2001 // when using private linkage. It is not clear if this is a bug in ld 2002 // or a reasonable new restriction. 2003 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2004 2005 // Note: -fwritable-strings doesn't make the backing store strings of 2006 // CFStrings writable. (See <rdar://problem/10657500>) 2007 llvm::GlobalVariable *GV = 2008 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2009 Linkage, C, ".str"); 2010 GV->setUnnamedAddr(true); 2011 if (isUTF16) { 2012 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2013 GV->setAlignment(Align.getQuantity()); 2014 } else { 2015 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2016 GV->setAlignment(Align.getQuantity()); 2017 } 2018 2019 // String. 2020 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2021 2022 if (isUTF16) 2023 // Cast the UTF16 string to the correct type. 2024 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2025 2026 // String length. 2027 Ty = getTypes().ConvertType(getContext().LongTy); 2028 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2029 2030 // The struct. 2031 C = llvm::ConstantStruct::get(STy, Fields); 2032 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2033 llvm::GlobalVariable::PrivateLinkage, C, 2034 "_unnamed_cfstring_"); 2035 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2036 GV->setSection(Sect); 2037 Entry.setValue(GV); 2038 2039 return GV; 2040 } 2041 2042 static RecordDecl * 2043 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2044 DeclContext *DC, IdentifierInfo *Id) { 2045 SourceLocation Loc; 2046 if (Ctx.getLangOpts().CPlusPlus) 2047 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2048 else 2049 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2050 } 2051 2052 llvm::Constant * 2053 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2054 unsigned StringLength = 0; 2055 llvm::StringMapEntry<llvm::Constant*> &Entry = 2056 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2057 2058 if (llvm::Constant *C = Entry.getValue()) 2059 return C; 2060 2061 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2062 llvm::Constant *Zeros[] = { Zero, Zero }; 2063 2064 // If we don't already have it, get _NSConstantStringClassReference. 2065 if (!ConstantStringClassRef) { 2066 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2067 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2068 llvm::Constant *GV; 2069 if (LangOpts.ObjCNonFragileABI) { 2070 std::string str = 2071 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2072 : "OBJC_CLASS_$_" + StringClass; 2073 GV = getObjCRuntime().GetClassGlobal(str); 2074 // Make sure the result is of the correct type. 2075 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2076 ConstantStringClassRef = 2077 llvm::ConstantExpr::getBitCast(GV, PTy); 2078 } else { 2079 std::string str = 2080 StringClass.empty() ? "_NSConstantStringClassReference" 2081 : "_" + StringClass + "ClassReference"; 2082 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2083 GV = CreateRuntimeVariable(PTy, str); 2084 // Decay array -> ptr 2085 ConstantStringClassRef = 2086 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2087 } 2088 } 2089 2090 if (!NSConstantStringType) { 2091 // Construct the type for a constant NSString. 2092 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2093 Context.getTranslationUnitDecl(), 2094 &Context.Idents.get("__builtin_NSString")); 2095 D->startDefinition(); 2096 2097 QualType FieldTypes[3]; 2098 2099 // const int *isa; 2100 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2101 // const char *str; 2102 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2103 // unsigned int length; 2104 FieldTypes[2] = Context.UnsignedIntTy; 2105 2106 // Create fields 2107 for (unsigned i = 0; i < 3; ++i) { 2108 FieldDecl *Field = FieldDecl::Create(Context, D, 2109 SourceLocation(), 2110 SourceLocation(), 0, 2111 FieldTypes[i], /*TInfo=*/0, 2112 /*BitWidth=*/0, 2113 /*Mutable=*/false, 2114 /*HasInit=*/false); 2115 Field->setAccess(AS_public); 2116 D->addDecl(Field); 2117 } 2118 2119 D->completeDefinition(); 2120 QualType NSTy = Context.getTagDeclType(D); 2121 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2122 } 2123 2124 llvm::Constant *Fields[3]; 2125 2126 // Class pointer. 2127 Fields[0] = ConstantStringClassRef; 2128 2129 // String pointer. 2130 llvm::Constant *C = 2131 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2132 2133 llvm::GlobalValue::LinkageTypes Linkage; 2134 bool isConstant; 2135 Linkage = llvm::GlobalValue::PrivateLinkage; 2136 isConstant = !LangOpts.WritableStrings; 2137 2138 llvm::GlobalVariable *GV = 2139 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2140 ".str"); 2141 GV->setUnnamedAddr(true); 2142 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2143 GV->setAlignment(Align.getQuantity()); 2144 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2145 2146 // String length. 2147 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2148 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2149 2150 // The struct. 2151 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2152 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2153 llvm::GlobalVariable::PrivateLinkage, C, 2154 "_unnamed_nsstring_"); 2155 // FIXME. Fix section. 2156 if (const char *Sect = 2157 LangOpts.ObjCNonFragileABI 2158 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2159 : getContext().getTargetInfo().getNSStringSection()) 2160 GV->setSection(Sect); 2161 Entry.setValue(GV); 2162 2163 return GV; 2164 } 2165 2166 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2167 if (ObjCFastEnumerationStateType.isNull()) { 2168 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2169 Context.getTranslationUnitDecl(), 2170 &Context.Idents.get("__objcFastEnumerationState")); 2171 D->startDefinition(); 2172 2173 QualType FieldTypes[] = { 2174 Context.UnsignedLongTy, 2175 Context.getPointerType(Context.getObjCIdType()), 2176 Context.getPointerType(Context.UnsignedLongTy), 2177 Context.getConstantArrayType(Context.UnsignedLongTy, 2178 llvm::APInt(32, 5), ArrayType::Normal, 0) 2179 }; 2180 2181 for (size_t i = 0; i < 4; ++i) { 2182 FieldDecl *Field = FieldDecl::Create(Context, 2183 D, 2184 SourceLocation(), 2185 SourceLocation(), 0, 2186 FieldTypes[i], /*TInfo=*/0, 2187 /*BitWidth=*/0, 2188 /*Mutable=*/false, 2189 /*HasInit=*/false); 2190 Field->setAccess(AS_public); 2191 D->addDecl(Field); 2192 } 2193 2194 D->completeDefinition(); 2195 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2196 } 2197 2198 return ObjCFastEnumerationStateType; 2199 } 2200 2201 llvm::Constant * 2202 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2203 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2204 2205 // Don't emit it as the address of the string, emit the string data itself 2206 // as an inline array. 2207 if (E->getCharByteWidth() == 1) { 2208 SmallString<64> Str(E->getString()); 2209 2210 // Resize the string to the right size, which is indicated by its type. 2211 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2212 Str.resize(CAT->getSize().getZExtValue()); 2213 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2214 } 2215 2216 llvm::ArrayType *AType = 2217 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2218 llvm::Type *ElemTy = AType->getElementType(); 2219 unsigned NumElements = AType->getNumElements(); 2220 2221 // Wide strings have either 2-byte or 4-byte elements. 2222 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2223 SmallVector<uint16_t, 32> Elements; 2224 Elements.reserve(NumElements); 2225 2226 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2227 Elements.push_back(E->getCodeUnit(i)); 2228 Elements.resize(NumElements); 2229 return llvm::ConstantDataArray::get(VMContext, Elements); 2230 } 2231 2232 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2233 SmallVector<uint32_t, 32> Elements; 2234 Elements.reserve(NumElements); 2235 2236 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2237 Elements.push_back(E->getCodeUnit(i)); 2238 Elements.resize(NumElements); 2239 return llvm::ConstantDataArray::get(VMContext, Elements); 2240 } 2241 2242 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2243 /// constant array for the given string literal. 2244 llvm::Constant * 2245 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2246 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2247 if (S->isAscii() || S->isUTF8()) { 2248 SmallString<64> Str(S->getString()); 2249 2250 // Resize the string to the right size, which is indicated by its type. 2251 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2252 Str.resize(CAT->getSize().getZExtValue()); 2253 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2254 } 2255 2256 // FIXME: the following does not memoize wide strings. 2257 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2258 llvm::GlobalVariable *GV = 2259 new llvm::GlobalVariable(getModule(),C->getType(), 2260 !LangOpts.WritableStrings, 2261 llvm::GlobalValue::PrivateLinkage, 2262 C,".str"); 2263 2264 GV->setAlignment(Align.getQuantity()); 2265 GV->setUnnamedAddr(true); 2266 return GV; 2267 } 2268 2269 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2270 /// array for the given ObjCEncodeExpr node. 2271 llvm::Constant * 2272 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2273 std::string Str; 2274 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2275 2276 return GetAddrOfConstantCString(Str); 2277 } 2278 2279 2280 /// GenerateWritableString -- Creates storage for a string literal. 2281 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2282 bool constant, 2283 CodeGenModule &CGM, 2284 const char *GlobalName, 2285 unsigned Alignment) { 2286 // Create Constant for this string literal. Don't add a '\0'. 2287 llvm::Constant *C = 2288 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2289 2290 // Create a global variable for this string 2291 llvm::GlobalVariable *GV = 2292 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2293 llvm::GlobalValue::PrivateLinkage, 2294 C, GlobalName); 2295 GV->setAlignment(Alignment); 2296 GV->setUnnamedAddr(true); 2297 return GV; 2298 } 2299 2300 /// GetAddrOfConstantString - Returns a pointer to a character array 2301 /// containing the literal. This contents are exactly that of the 2302 /// given string, i.e. it will not be null terminated automatically; 2303 /// see GetAddrOfConstantCString. Note that whether the result is 2304 /// actually a pointer to an LLVM constant depends on 2305 /// Feature.WriteableStrings. 2306 /// 2307 /// The result has pointer to array type. 2308 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2309 const char *GlobalName, 2310 unsigned Alignment) { 2311 // Get the default prefix if a name wasn't specified. 2312 if (!GlobalName) 2313 GlobalName = ".str"; 2314 2315 // Don't share any string literals if strings aren't constant. 2316 if (LangOpts.WritableStrings) 2317 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2318 2319 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2320 ConstantStringMap.GetOrCreateValue(Str); 2321 2322 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2323 if (Alignment > GV->getAlignment()) { 2324 GV->setAlignment(Alignment); 2325 } 2326 return GV; 2327 } 2328 2329 // Create a global variable for this. 2330 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2331 Alignment); 2332 Entry.setValue(GV); 2333 return GV; 2334 } 2335 2336 /// GetAddrOfConstantCString - Returns a pointer to a character 2337 /// array containing the literal and a terminating '\0' 2338 /// character. The result has pointer to array type. 2339 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2340 const char *GlobalName, 2341 unsigned Alignment) { 2342 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2343 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2344 } 2345 2346 /// EmitObjCPropertyImplementations - Emit information for synthesized 2347 /// properties for an implementation. 2348 void CodeGenModule::EmitObjCPropertyImplementations(const 2349 ObjCImplementationDecl *D) { 2350 for (ObjCImplementationDecl::propimpl_iterator 2351 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2352 ObjCPropertyImplDecl *PID = &*i; 2353 2354 // Dynamic is just for type-checking. 2355 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2356 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2357 2358 // Determine which methods need to be implemented, some may have 2359 // been overridden. Note that ::isSynthesized is not the method 2360 // we want, that just indicates if the decl came from a 2361 // property. What we want to know is if the method is defined in 2362 // this implementation. 2363 if (!D->getInstanceMethod(PD->getGetterName())) 2364 CodeGenFunction(*this).GenerateObjCGetter( 2365 const_cast<ObjCImplementationDecl *>(D), PID); 2366 if (!PD->isReadOnly() && 2367 !D->getInstanceMethod(PD->getSetterName())) 2368 CodeGenFunction(*this).GenerateObjCSetter( 2369 const_cast<ObjCImplementationDecl *>(D), PID); 2370 } 2371 } 2372 } 2373 2374 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2375 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2376 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2377 ivar; ivar = ivar->getNextIvar()) 2378 if (ivar->getType().isDestructedType()) 2379 return true; 2380 2381 return false; 2382 } 2383 2384 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2385 /// for an implementation. 2386 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2387 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2388 if (needsDestructMethod(D)) { 2389 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2390 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2391 ObjCMethodDecl *DTORMethod = 2392 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2393 cxxSelector, getContext().VoidTy, 0, D, 2394 /*isInstance=*/true, /*isVariadic=*/false, 2395 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2396 /*isDefined=*/false, ObjCMethodDecl::Required); 2397 D->addInstanceMethod(DTORMethod); 2398 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2399 D->setHasCXXStructors(true); 2400 } 2401 2402 // If the implementation doesn't have any ivar initializers, we don't need 2403 // a .cxx_construct. 2404 if (D->getNumIvarInitializers() == 0) 2405 return; 2406 2407 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2408 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2409 // The constructor returns 'self'. 2410 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2411 D->getLocation(), 2412 D->getLocation(), 2413 cxxSelector, 2414 getContext().getObjCIdType(), 0, 2415 D, /*isInstance=*/true, 2416 /*isVariadic=*/false, 2417 /*isSynthesized=*/true, 2418 /*isImplicitlyDeclared=*/true, 2419 /*isDefined=*/false, 2420 ObjCMethodDecl::Required); 2421 D->addInstanceMethod(CTORMethod); 2422 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2423 D->setHasCXXStructors(true); 2424 } 2425 2426 /// EmitNamespace - Emit all declarations in a namespace. 2427 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2428 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2429 I != E; ++I) 2430 EmitTopLevelDecl(*I); 2431 } 2432 2433 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2434 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2435 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2436 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2437 ErrorUnsupported(LSD, "linkage spec"); 2438 return; 2439 } 2440 2441 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2442 I != E; ++I) 2443 EmitTopLevelDecl(*I); 2444 } 2445 2446 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2447 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2448 // If an error has occurred, stop code generation, but continue 2449 // parsing and semantic analysis (to ensure all warnings and errors 2450 // are emitted). 2451 if (Diags.hasErrorOccurred()) 2452 return; 2453 2454 // Ignore dependent declarations. 2455 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2456 return; 2457 2458 switch (D->getKind()) { 2459 case Decl::CXXConversion: 2460 case Decl::CXXMethod: 2461 case Decl::Function: 2462 // Skip function templates 2463 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2464 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2465 return; 2466 2467 EmitGlobal(cast<FunctionDecl>(D)); 2468 break; 2469 2470 case Decl::Var: 2471 EmitGlobal(cast<VarDecl>(D)); 2472 break; 2473 2474 // Indirect fields from global anonymous structs and unions can be 2475 // ignored; only the actual variable requires IR gen support. 2476 case Decl::IndirectField: 2477 break; 2478 2479 // C++ Decls 2480 case Decl::Namespace: 2481 EmitNamespace(cast<NamespaceDecl>(D)); 2482 break; 2483 // No code generation needed. 2484 case Decl::UsingShadow: 2485 case Decl::Using: 2486 case Decl::UsingDirective: 2487 case Decl::ClassTemplate: 2488 case Decl::FunctionTemplate: 2489 case Decl::TypeAliasTemplate: 2490 case Decl::NamespaceAlias: 2491 case Decl::Block: 2492 case Decl::Import: 2493 break; 2494 case Decl::CXXConstructor: 2495 // Skip function templates 2496 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2497 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2498 return; 2499 2500 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2501 break; 2502 case Decl::CXXDestructor: 2503 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2504 return; 2505 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2506 break; 2507 2508 case Decl::StaticAssert: 2509 // Nothing to do. 2510 break; 2511 2512 // Objective-C Decls 2513 2514 // Forward declarations, no (immediate) code generation. 2515 case Decl::ObjCInterface: 2516 break; 2517 2518 case Decl::ObjCCategory: { 2519 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2520 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2521 Context.ResetObjCLayout(CD->getClassInterface()); 2522 break; 2523 } 2524 2525 case Decl::ObjCProtocol: { 2526 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2527 if (Proto->isThisDeclarationADefinition()) 2528 ObjCRuntime->GenerateProtocol(Proto); 2529 break; 2530 } 2531 2532 case Decl::ObjCCategoryImpl: 2533 // Categories have properties but don't support synthesize so we 2534 // can ignore them here. 2535 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2536 break; 2537 2538 case Decl::ObjCImplementation: { 2539 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2540 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2541 Context.ResetObjCLayout(OMD->getClassInterface()); 2542 EmitObjCPropertyImplementations(OMD); 2543 EmitObjCIvarInitializations(OMD); 2544 ObjCRuntime->GenerateClass(OMD); 2545 // Emit global variable debug information. 2546 if (CGDebugInfo *DI = getModuleDebugInfo()) 2547 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2548 OMD->getLocation()); 2549 2550 break; 2551 } 2552 case Decl::ObjCMethod: { 2553 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2554 // If this is not a prototype, emit the body. 2555 if (OMD->getBody()) 2556 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2557 break; 2558 } 2559 case Decl::ObjCCompatibleAlias: 2560 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2561 break; 2562 2563 case Decl::LinkageSpec: 2564 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2565 break; 2566 2567 case Decl::FileScopeAsm: { 2568 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2569 StringRef AsmString = AD->getAsmString()->getString(); 2570 2571 const std::string &S = getModule().getModuleInlineAsm(); 2572 if (S.empty()) 2573 getModule().setModuleInlineAsm(AsmString); 2574 else if (*--S.end() == '\n') 2575 getModule().setModuleInlineAsm(S + AsmString.str()); 2576 else 2577 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2578 break; 2579 } 2580 2581 default: 2582 // Make sure we handled everything we should, every other kind is a 2583 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2584 // function. Need to recode Decl::Kind to do that easily. 2585 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2586 } 2587 } 2588 2589 /// Turns the given pointer into a constant. 2590 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2591 const void *Ptr) { 2592 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2593 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2594 return llvm::ConstantInt::get(i64, PtrInt); 2595 } 2596 2597 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2598 llvm::NamedMDNode *&GlobalMetadata, 2599 GlobalDecl D, 2600 llvm::GlobalValue *Addr) { 2601 if (!GlobalMetadata) 2602 GlobalMetadata = 2603 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2604 2605 // TODO: should we report variant information for ctors/dtors? 2606 llvm::Value *Ops[] = { 2607 Addr, 2608 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2609 }; 2610 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2611 } 2612 2613 /// Emits metadata nodes associating all the global values in the 2614 /// current module with the Decls they came from. This is useful for 2615 /// projects using IR gen as a subroutine. 2616 /// 2617 /// Since there's currently no way to associate an MDNode directly 2618 /// with an llvm::GlobalValue, we create a global named metadata 2619 /// with the name 'clang.global.decl.ptrs'. 2620 void CodeGenModule::EmitDeclMetadata() { 2621 llvm::NamedMDNode *GlobalMetadata = 0; 2622 2623 // StaticLocalDeclMap 2624 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2625 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2626 I != E; ++I) { 2627 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2628 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2629 } 2630 } 2631 2632 /// Emits metadata nodes for all the local variables in the current 2633 /// function. 2634 void CodeGenFunction::EmitDeclMetadata() { 2635 if (LocalDeclMap.empty()) return; 2636 2637 llvm::LLVMContext &Context = getLLVMContext(); 2638 2639 // Find the unique metadata ID for this name. 2640 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2641 2642 llvm::NamedMDNode *GlobalMetadata = 0; 2643 2644 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2645 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2646 const Decl *D = I->first; 2647 llvm::Value *Addr = I->second; 2648 2649 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2650 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2651 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2652 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2653 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2654 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2655 } 2656 } 2657 } 2658 2659 void CodeGenModule::EmitCoverageFile() { 2660 if (!getCodeGenOpts().CoverageFile.empty()) { 2661 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2662 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2663 llvm::LLVMContext &Ctx = TheModule.getContext(); 2664 llvm::MDString *CoverageFile = 2665 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2666 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2667 llvm::MDNode *CU = CUNode->getOperand(i); 2668 llvm::Value *node[] = { CoverageFile, CU }; 2669 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2670 GCov->addOperand(N); 2671 } 2672 } 2673 } 2674 } 2675